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Abstract. We discuss recent advances in the study of topological
insulators protected by spatial symmetries by reviewing three repre-
sentative, theoretical examples. In three dimensions (3D), these states
of matter are generally characterized by the presence of gapless bound-
ary states at surfaces that respect the protecting spatial symmetry. We
discuss the appearance of these topological states in both crystals with
negligible spin–orbit coupling and a fourfold rotational symmetry, as
well as in mirror-symmetric crystals with sizable spin–orbit interaction
characterized by the so-called mirror Chern number. Finally, we also
discuss similar topological crystalline states in one-dimensional (1D)
insulators, such as nanowires or atomic chains, with mirror symmetry.
There, the prime physical consequence of the non-trivial topology is
the presence of quantized end charges.

1 Introduction

The study of topological phases of matter has brought to light a myriad of excep-
tional features and remarkable effects which have not only broadened our fundamental
knowledge of quantum states of matter in general but could also lead to a whole
new range of technologies and applications. Generally speaking, topological states
of matter are novel quantum phases that elude the celebrated Landau theory of
phase transitions and can be described using the mathematical language of topol-
ogy. A topological phase is characterized by a non-zero topological invariant which
is, in contrast to order parameters of conventional phases, a global quantity and
assumes only discrete, quantized values. This leads, in turn, to a characteristic quan-
tization of physical observables and to the presence of topologically protected surface
or boundary states.

Depending on the dimensionality and the symmetries of systems under consider-
ation, different topological classes and invariants are possible. This insight has led to
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the celebrated Altland–Zirnbauer classification of topological insulators and super-
conductors [1–8], which, however, takes into account only non-spatial symmetries:
time-reversal, particle-hole and chiral symmetry. The topological phases occurring in
the Altland–Zirnbauer table are commonly referred to as “strong” since their pro-
tecting symmetries are intrinsic properties of the systems and cannot be represented
by unitary operators that commute with the Hamiltonian. As a consequence, topo-
logically protected states appear on all surfaces of the system. Furthermore, these
states are also robust against weak disorder because those are spatial modifications
of the system and thus, do not affect a non-spatial symmetry.

In the search for novel-topological phases of matter, the notion of topological pro-
tection was relaxed to also include ordinary spatial symmetries represented by unitary
operators. This led to the discovery of topological crystalline insulators (TCI) [9,10]:
novel states of matter whose topological nature arises from crystal symmetries. Those
symmetries are point-group symmetries, such as inversion [11,12], mirror [13–16] and
rotation [9]; space-group symmetries [17–20], such as glide planes and screw axes;
or a combination of them [21–24]. Recently, this concept has even been extended to
include magnetic space groups [25–27]. The discovery of TCIs has opened the door
to a plethora of new topological phases based on the richness and complexity of
crystal structures. Topological crystalline insulators are “weaker” than their strong
relatives. The reason is twofold. First, crystal symmetries are susceptible to disorder.
Therefore, topological features are expected to persist only if the protecting crystal
symmetry is preserved on average [16,28]. Second, not all surfaces of a TCI can accom-
modate topological surface states, but only those that do not break the protecting
crystal symmetry. To prepare and find novel TCI phases, it is useful to extend the
standard Altland–Zirnbauer table to include the crystalline symmetries also. This
has been done for several cases, such as systems with inversion [12] or reflection
symmetry [14,28]. In general, the resulting tables are much more involved than the
standard Altland–Zirnbauer table due to the various possible relations between the
non-spatial symmetry operators and the additional unitary symmetries. The corre-
sponding invariants are typically derived from strong topological invariants associated
with symmetry-invariant Brillouin zone (BZ) cuts as we will see below. However, later
on we will also see that this is not always the case.

In this short review, we are going to discuss three selected examples of TCI. By
means of these pedagogical examples we illustrate how crystalline symmetries can lead
to novel topological phases, how new topological invariants can be defined, and what
features can arise as a consequence. For a broader and more in-depth recapitulation
of the field, we refer the reader to the review by Ando and Fu [10].

2 Topological crystalline insulators with rotational symmetry

The notion of “topological crystalline insulators (TCI)” was first introduced by Fu
using the example of a system with C4 rotational symmetry [9]. To obtain a minimal
model for a TCI, he considered a system of spinless electrons on a tetragonal lattice
with a unit cell consisting of two inequivalent atoms A and B stacked along the c axis
(see Fig. 1a). For this system, Fu derived a general four-band tight-binding model
taking into account only px and py orbitals of the electrons. Due to the symmetry of
the lattice and the chosen orbitals, the model has a natural C4 symmetry with respect
to a rotation about the z axis. Furthermore, the model has time-reversal symmetry
with Θ = K corresponding to complex conjugation.

This model features a gapped phase in a finite parameter range. Most remarkably,
the (001) surface, which preserves the C4 symmetry, exhibits surface states traversing
the entire bulk energy gap in this phase as shown in Figure 1c. Moreover, the surface
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Fig. 1. (a) Bipartite tetragonal lattice with a C4 axis. (b) Corresponding bulk BZ with the
four bulk momenta invariant under C4 rotation. The red lines indicate possible paths for the
calculation of the topological invariant ν0. (c) Band structure along high-symmetry lines in
the (001) surface BZ as presented in reference [9]. A quadratic surface band is highlighted
in red.

states are doubly degenerate at the M̄ point of the surface BZ. This degeneracy is
not accidental. The M̄ point is a fixed point under fourfold rotation and the two
degenerate states form a two-dimensional (2D) irreducible real representation of C4.
Hence, the degeneracy is protected by symmetry and cannot be removed. Note that
there is no Kramers theorem to enforce the degeneracy because Θ2 = +1.

Close to the M̄ point, the two bands of surface states can be represented in terms
of px and py orbitals. In this representation, C4 rotation can be represented by eiσyπ/4,
where σy is a Pauli matrix. In the presence of C4 and Θ symmetry, it can be shown
that, to leading order, the Hamiltonian of the surface states must be of the form

H(kx, ky) =
k2

2m0
1+

k2
x − k2

y

2m1
σz +

kxky
2m2

σx. (1)

Hence, the symmetry constrains suppress the linear order and lead to a quadratic dis-
persion around the M̄ point, as opposed to a linear Dirac dispersion for “conventional”
topological insulators.

Moreover, these surface states are topologically protected. This can be seen as
follows: due to the symmetry of the model, (001) surface states at the C4-invariant
momenta M̄ and Γ̄ must be doubly degenerate. Hence, in analogy with quantum spin
Hall insulators (QSHIs) in 2D, there are two topologically distinct ways of connecting
these doublets with each other and with the valance and conduction bands. This gives
rise to a Z2 classification, where in the nontrivial phase the surface bands cross the
Fermi level an odd number of times along a path connecting Γ̄ and M̄ . Note that other
surfaces do not feature topological surface states because they break C4 symmetry.

From a more general perspective, the topological nature of a spinless, time-reversal
invariant (TRI) insulator with C4 symmetry can be understood in the following
way. There are four C4-invariant momenta ki in the 3D BZ of the system, namely
Γ = (0, 0, 0), M = (π, π, 0), A = (π, π, π), and Z = (0, 0, π) [see Fig. 1b]. At these
points, the Bloch Hamiltonian H(ki) of the system commutes with the unitary oper-
ator U representing a C4 rotation. Hence, the energy states at ki can be chosen to be
eigenstates of fourfold rotation with possible rotation eigenvalues 1, −1, i, and −i.
In addition, the momenta ki are invariant under time-reversal. Due to time-reversal
symmetry with Θ = K and Θ2 = +1, this imposes a reality condition. More specifi-
cally, the Bloch Hamiltonian H(ki) at these points must be real and its eigenstates
can always be chosen to be real. Under these conditions, group theory tells us that,
whenever there is a state with rotation eigenvalue ±i, there must also be another,
degenerate state with eigenvalue ∓i. The reason is that the cyclic group C4 is a
rather peculiar group. It has four 1D irreducible representations. However, the two
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representations with C4 eigenvalues ±i, which are commonly grouped under the rep-
resentation label E, form a so-called separable degenerate representation [29]. It can
be shown that these representations always appear together and give rise to a degen-
erate doublet of states. Furthermore, such a doublet gives rise to an effective Kramers
theorem with respect to the operator Θ̃ ≡ UΘ, because Θ̃2 = UΘUΘ = U2Θ2 = −1,
where we have used that, with eigenvalues ±i, the rotation operator U squares to
−1. Note that we do not have an effective Kramers theorem for bands with rotation
eigenvalues ±1, because the corresponding rotation operator would square to +1.

For simplicity, let us assume that all occupied bands transform as doublets under
fourfold rotation. In this case, we can follow the steps of the derivation of the
Fu–Kane invariant for QSHIs in 2D [30], just with the operator Θ replaced by Θ̃
and with paths in k space connecting the C4-invariant momenta ki. Finally this
leads to Z2 topological invariants ν0 and νΓM, νAZ of the following form [9]:

(−1)ν0 = (−1)νΓM(−1)νAZ , (2)

(−1)νk1k2 = exp
(
i

∫ k2

k1

dk ·A(k)
)

Pf[w(k2)]
Pf[w(k1)]

, (3)

where A(k) = −i
∑
j〈ujk|∂k|ujk〉 is the U(1) Berry connection and the matrix

elements of w(ki) are defined as wmn(ki) = 〈umki |UΘ|unki〉. This matrix is anti-
symmetric because [H(ki), UΘ] = 0 and (UΘ)2 = −1. The line integrals for νΓM and
νAZ are along arbitrary paths connecting Γ with M and A with Z, respectively, that
lie within the plane kz = 0 and kz = π, respectively, as illustrated in Figure 1b. It
can be shown that, in contrast to QSHIs, (−1)νk1k2 is already a gauge-invariant Z2

quantity, i.e., νΓM and νAZ define topological invariants for the planes kz = 0 and
kz = π, respectively. Due to the relation in equation (2) between the three Z2 invari-
ants, a 3D crystalline topological insulator with time-reversal and C4 symmetry is
fully characterized by the strong index ν0 and one of the weak indices νΓM or νAZ .
This is similar to the relation between strong and weak indices for 3D topological
insulators with time-reversal symmetry. However, only the strong phase with ν0 = 1
gives rise to topological surface states on the (001) surface.

The Z2 invariants are only defined for doublet bands. Real materials usually have
both, doublet and singlet bands. Nonetheless, the Z2 invariants remain well-defined
as long as the doublet bands can be energetically separated from the singlet bands,
which is usually the case. This shows an important fundamental difference between
“conventional” topological insulators and TCI. In the latter, there is an interplay
between symmetry representations and the topology of the corresponding energy
bands. Specifically, in our example the nontrivial topology arises from doublet bands
alone whereas singlet bands are always trivial.

3 Mirror Chern number for systems with reflection symmetry

Let us consider a 3D insulating crystal with time-reversal symmetry and reflection
symmetry with respect to a mirror plane. Without loss of generality, let the mirror
plane be parallel to the yz plane, i.e., the mirror operation takes x to −x. For sim-
plicity, we further assume that the crystal is a simple cubic lattice (see Fig. 2a). Due
to reflection symmetry, the Bloch Hamiltonian H(k) of the system must satisfy

MH(kx, ky, kz)M−1 = H(−kx, ky, kz), (4)
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Fig. 2. (a) Simple cubic lattice with a mirror plane highlighted in turquoise. (b) Correspond-
ing bulk BZ with the two mirror-invariant planes highlighted in blue. The (001) surface BZ
is shown on top including the projections of the mirror-invariant planes. (c) Sketch of a
nontrivial surface band structure along the projection of the kx = 0 mirror-invariant plane.

where M is a unitary operator representing the mirror operation. From this equation
we immediately see that the Bloch Hamiltonian commutes with the mirror operator
M in the mirror-invariant planes kx = 0 and kx = π (see Fig. 2b). Therefore, in these
planes the Bloch Hamiltonian decomposes into two blocks corresponding to the mirror
eigenvalues m = +i and m = −i, respectively. Since the system has an energy gap,
we can associate a Chern number n±i(kx) with each of the blocks, where kx = 0 or π.
Moreover, time-reversal symmetry requires n+i + n−i = 0. Nevertheless, in analogy
with QSHIs, the difference of the two numbers defines a toplogical invariant for each
of the mirror-invariant planes. This is the so-called mirror Chern number [31],

nM(kx) =
1
2

[n+i(kx)− n−i(kx)]. (5)

What are the implications for surface states? First of all, we already know that
surface states can only be protected on surfaces that do not break reflection symmetry.
In our example, such a surface is for instance the (001) surface. In the corresponding
surface BZ the lines with kx = 0 and kx = π correspond to surface projections of the
mirror-invariant planes above (see Fig. 2b). Let us assume that nM is nontrivial for the
kx = 0 plane. Thus, the non-trivial blocks of the Bloch Hamiltonian in this plane give
rise to nM pairs of counterpropagating surface states along kx = 0 by bulk-boundary
correspondence (see Fig. 2c). At the crossing point between two counterpropagating
states, it is not possible to couple the states in order to open an energy gap since
they belong to two different reflection-symmetry sectors. Hence, the crossing point is
protected by symmetry. Away from kx = 0, the states no longer have a well-defined
mirror eigenvalue and the degeneracy is lifted. This gives rise to nM topologically
protected surface Dirac cones. In contrast to 3D TRI topological insulators, where
the Dirac cones are pinned to TRI momenta, the surface Dirac cones of a system
with non-trivial mirror Chern numbers can in principle be anywhere along the line
kx = 0 while respecting time-reversal symmetry [13].

A material realization of a topological crystalline insulator with nonzero mirror
Chern number is SnTe [13,32]. The crystal structure of SnTe is face-centered cubic
(rocksalt), as illustrated in Figure 3a. Moreover, the material is an insulator with
trivial Z2 invariants. However, the (011) mirror plane, and other planes equivalent
by symmetry, give rise to a non-trivial mirror Chern number of nM = −2 and thus,
to topologically protected Dirac cones on certain surfaces [13]. Remarkably, the total
number of protected Dirac cones depends on the considered surface, which is in stark
contrast to “conventional” topological insulators in 3D.
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Fig. 3. Lattice and BZs of the topological crystalline insulator SnTe as presented in refer-
ence [13]: (a) face-centered cubic lattice. (b) Corresponding BZ with high-symmetry points.
Also indicated is the (001) surface BZ and one of the mirror-invariant planes. (c) Fermi
surface of the (001) surface with four topologically protected Dirac-cone pockets.

The (001) surface is symmetric about the two equivalent (011) and (0-11) mir-
ror planes. In the surface BZ, these planes are projected onto two perpendicular
lines going through the X̄1 and X̄2 points. Since we have mirror Chern numbers of
nM = −2 associated with both lines, there are in total 2× 2 = 4 surface Dirac cones
around the Γ̄ point of the surface BZ (see Fig. 3c). Similarly, we can deduce the num-
ber of surface Dirac cones for other terminations. The (111) surface preserves three
equivalent mirror planes which are projected onto three mirror-invariant lines in the
corresponding surface BZ. Hence, there are 2× 3 = 6 topologically protected surface
Dirac cones on the (111) surface of SnTe. Finally, the (110) surface is symmetric
about one mirror plane giving rise to two surface Dirac cones.

4 One-dimensional topological insulators with time-reversal
symmetry

As we have seen in the previous sections, crystal symmetries can lead to entirely
novel topological phases of matter. In particular, classes of systems that are trivial
according to the standard Altland–Zirnbauer classification of topological insulators
might reveal a nontrivial topological nature once crystal symmetries are imposed.

In this light, we are going to turn our attention to one of the most-studied classes of
the Altland–Zirnbauer table, namely the symplectic class AII [7]. This class contains
all time-reversal symmetric systems whose time-reversal operator Θ squares to −1,
and thus concerns systems of spin-1/2 electrons with time-reversal symmetry. Most
importantly, the famous QSHIs in 2D and the Z2 topological insulators in 3D fall
into this class. However, in 1D this class does not allow for a non-trivial topology in
the scope of the standard Altland–Zirnbauer classification. Nevertheless, as we will
review below, it can be shown [16] that the presence of a crystalline symmetry, such as
reflection symmetry, gives rise to a class of 1D TRI crystalline topological insulators
beyond the standard Altland–Zirnbauer scheme.

For that purpose, let us now look into generic systems of fermions with spin one
half subject to a 1D crystalline potential. Furthermore, let us impose time-reversal
symmetry, as well as reflection symmetry with respect to a 1D mirror point (see
Fig. 4). Due to the periodicity of the lattice, such systems can be described by a
Bloch HamiltonianH(k), with the crystal momentum k ∈ (−π, π], which then satisfies
ΘH(k)Θ−1 = H(−k), where Θ = (1 ⊗ isy)K is the antiunitary time-reversal oper-
ator, and MH(k)M−1 = H(−k), with the unitary reflection operator M = I ⊗ isx.
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Fig. 4. One-dimensional (1D) lattice with a mirror point.

Here, the si are Pauli matrices associated with the system’s spin degree of freedom,
while I corresponds to spatial inversion with respect to other degrees of freedom the
system might have. Furthermore, we have that Θ2 = −1, M2 = −1, and [Θ,M ] = 0.
Given these general properties, our system allows for a classification in terms of a Z2

topological invariant, according to the extended Altland–Zirnbauer table augmented
by mirror symmetry [14,28]. In particular, this invariant can be formulated using the
concept of charge polarization [16].

4.1 Topological invariant for topological mirror insulators in one dimension

The total charge polarization associated with the 1D Bloch Hamiltonian H(k) can be
formulated as [33–36]:

Pρ =
1

2π

∫ π

−π
dk A(k), (6)

with the U(1) Berry connection

A(k) = i
∑
n

〈uk,n|∂k|uk,n〉, (7)

where |uk,n〉 is the lattice-periodic part of a Bloch state at momentum k and band
index n, and the sum is over all occupied bands. Note that we have set both the
electronic charge and the lattice constant to unity. It can be shown that the quantity
above is only well-defined up to an integer. Furthermore, it can generally assume any
value and can hence, not serve as a topological invariant.

To define topological invariants for TRI topological insulators in 2D and 3D, Fu
and Kane introduced the notion of partial polarization [30]. Remarkably, also for
systems in 1D the partial polarization can be used to define a topological invariant.

In insulators with time-reversal symmetry, due to Kramers’ theorem all 2N occu-
pied bands can be divided into N pairs connected by time reversal [30]. Such a
bipartition can be established by defining

|uI
−k,α〉 = −eiχα(k) Θ|uII

k,α〉, (8)

where Θ is the time-reversal operator from above, α = 1, . . . , N , and I, II are
the two time-reversed channels. With this, the partial polarizations are simply the
polarizations associated with the two channels, equation (9)

P s =
1

2π

∫ π

−π
dk As(k), s = I, II. (9)

We can restrict our consideration to P I since the two partial polarizations are
connected by P I = P II mod 1. Moreover, it can be shown that, given the system
preserves mirror symmetry with MH(k)M−1 = H(−k) and [M,Θ] = 0, we also have
PI = −PI mod 1 [16]. Hence, the partial polarization P I can only be 0 or 1/2, up to an
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Fig. 5. Phase diagram and spectra of the spin-orbit coupled, mirror-symmetric AAH model
with periodic boundary conditions and α = γ = 1/2, β = 1/4, V0 = 0, λ0 = 0.5t0, δλ =
−0.3t0, φt = φλ = π: (a) half-filling phase diagram of the bulk for φV = −π/4. The value of
the Z2 invariant ν is indicated by pixel color. (b) Bulk band structures for δV = 0.5t0 and
different δt. The band structures correspond to systems along the red arrow in (a). (Adapted
from Ref. [16])

integer, and a Z2 topological invariant is naturally defined by setting ν = 2P smod 2 ≡
0, 1. As a consequence, there exist two topologically distinct phases: trivial insulators
with ν = 0, and topological mirror insulators with ν = 1. It is not possible to connect
these phases by adiabatic transformations that conserve the defining symmetries and
that keep the bulk gap open. The corresponding topological invariant can be written
explicitly as [16],

ν :=
1
π

[ ∫ π

0

dk A(k) + i log
(Pf[w(π)]

Pf[w(0)]

)]
mod 2. (10)

The quantity wµν(k) = 〈u−k,µ|Θ|uk,ν〉 is a U(2N) matrix, where 2N is the number
of occupied energy bands. Furthermore, this matrix is antisymmetric at k = 0, π and
can therefore be assigned a Pfaffian Pf(w).

It is important to emphasize that the topological invariant of this class of systems
cannot be determined from the knowledge of the electronic wavefunctions only at the
mirror invariant momenta, as is the case for instance for the mirror Chern insula-
tors discussed above. In particular, this implicates that topological gap closing and
reopening transitions generally occur away from high-symmetry points in the 1D BZ.

Furthermore, also the bulk-boundary correspondence is rather unconventional in
these systems, and can be understood as follows. In the standard Altland–Zirnbauer
table, all non-trivial classes in 1D have either particle-hole or chiral symmetry.
Thus, by bulk-boundary correspondence, non-trivial insulators (or superconductors)
in these classes feature topological end states bound to zero energy which are pro-
tected by one or both of these two symmetries. By allowing for additional symmetries,
also systems with neither particle-hole nor chiral symmetry can become topologically
nontrivial, as we have seen in this section. As a consequence, topological end states
are no longer bound to appear at zero-energy and can even be “pushed” out of the
bulk-energy gap: the presence of end states is no longer a protected feature.

In contrast, the bulk-boundary correspondence in the class of systems considered
here manifests itself in the presence of quantized end charges. In fact, it can be
shown that, in general, a system’s charge polarization is directly linked to the charge
accumulated at its boundary [34]. We have seen that, for our systems, this polarization
is composed of two identical contributions P I and P II. Hence, the net bound charge
at each of the two end points of the system is [16],

Qb mod 2 = 2PI = ν. (11)
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In other words, the total bound charge can be written in terms of the system’s Z2

invariant ν and is therefore topologically protected. More specifically, the character-
izing feature of a topological mirror insulator with ν = 1 is the presence of an odd
number of integer-valued electronic end charges at its mirror-symmetric boundaries.

4.2 Spin–orbit coupled Aubry–André–Harper models: a realization of
topological mirror insulators

Having established the general theory, we will now discuss a model that realizes a
topological mirror insulator. In particular, let us consider an Aubry–André–Harper
(AAH) model [37–40] with spin–orbit coupling (SOC) given by the Hamiltonian
below [16],

H =
∑
j,σ

[t0 + δt cos(2παj + φt)] c
†
j+1,σcjσ

+
∑
j,σ

[V0 + δV cos(2πβj + φV )] c†jσcjσ

+ i
∑
j,σ,σ′

[λ0 + δλ cos(2πγj + φλ)] c†j+1,σs
y
σσ′cjσ′

+ h.c. (12)

Here, the operators c†jσ (cjσ) create (annihilate) an electron with spin σ (σ = ↑, ↓) at
lattice site j, and the si are Pauli matrices. The model contains harmonically mod-
ulated nearest-neighbor hopping, on-site potentials and spin–orbit coupling (SOC).
The Hamiltonian of equation (12) has time-reversal symmetry whereas the model is
mirror symmetric only for certain set of parameter configurations [16]. Experimen-
tally, this model can potentially be studied with ultracold Fermi gases in optical
lattices [41–48] or in a semiconductor nanowire with Rashba SOC [16].

Here, we are going to discuss the model in equation (12) with parameters α =
γ = 1/2, φt = φλ = π, V0 = 0, and β = 1/4, for which the model preserves reflection
symmetry if φV = −π/4 or 3π/4. Figure 5a shows the values of the Z2 invariant ν
as a function of the parameters δV and δt for fixed φV = −π/4 and with periodic
boundary conditions. We observe that ν is indeed quantized and gives rise to two
distinct phases: a trivial phase (ν = 0) on the right, and a topological mirror insulator
phase (ν = 1) on the left. Furthermore, we find that there is a bulk energy gap
closing–reopening transition across the phase boundary. Notably, the bulk gap closes
at BZ points different from the mirror-invariant momenta (see Fig. 5b). As pointed
out in the previous section, this is in stark contrast to other crystalline topological
phases.

Next, let us look into the bulk-boundary correspondence of the model. For
this purpose, let us first discuss its energy spectra for open boundary conditions
as a function of φV , as shown in Figure 6. As the sweeping parameter is varied,
the system passes through φV = −π/4 and 3π/4, at which the model preserves
reflection symmetry. Here, the finite, half-filled system features four degenerate in-
gap end states as long as the system parameters are in the topological region of
Figure 5a. This is shown in Figure 6a. Once mirror symmetry is broken, which is
the case away from the φV values specified above, the quadruplet of end states are
split into Kramers doublets. We note that the model is time-reversal symmetric for
all φV . On the contrary, we observe no end states at half filling in the trivial phase
(see Fig. 6b).
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Fig. 6. Spectra of the spin–orbit coupled AAH model with open boundary conditions as
a function of φV . Other parameters are α = γ = 1/2, β = 1/4, V0 = 0, δV = 0.5t0 λ0 =
0.5t0, δλ = −0.3t0, φt = φλ = π: (a) δt = −0.5t0, (b) δt = 0.5t0. States localized at the
ends of the chain are highlighted in red. The values φV = −π/4 and 3π/4 correspond to a
mirror-symmetric chain. (Adapted from Ref. [16].)

However, as discussed in the previous section, the presence of in-gap end states is
not a protected feature due to the lack of chiral symmetry. In particular, this means
that symmetry-allowed perturbations can move the end modes out of the bulk energy
gap. The point above can be demonstrated explicitly by adding a generic on-site
boundary potential

∑
σ VLR(c†1σc1σ + c†LσcLσ) to the model. In this case, we observe

that the end states in the half-filling gap disappear into the conduction band. At the
same time, another quadruplet of end modes moves up from the valence band into
the bulk energy gap (see Fig. 7a). Interestingly, these end modes are also present in the
trivial regime with on-site boundary potentials, as we show in Figure 7b. Hence, the
presence of these additional states cannot be connected to the topology of the bulk.

Let us instead look at the boundary charges of the system which are a protected
feature of topological mirror insulators. The end charge can be defined as the net
deviation of the local charge density close to the end from the average charge density
in the bulk [49],

QL = lim
l0<L→∞

L∑
j

Θ(l0 − j)(ρj − ρ̄), (13)

QR = lim
l0<L→∞

L∑
j

Θ(l0 − L+ j)(ρj − ρ̄), (14)

where QL and QR denote the left and right end charge, respectively. Here, L is the
length of the chain, Θ(x) is the Heaviside function and l0 is a cut-off. Moreover,
ρj =

∑N
ν |ψν(j)|2 is the local charge density of the ground state in units of −e.

The sum is over all states ψν up to the chemical potential µ. The quantity ρ̄ is the
average charge density inside the bulk which is determined by the chemical potential.
In the example discussed above, the chemical potential is in the half-filling gap, which
amounts to a bulk charge density of ρ̄ = 1.

Let us now look into the local charge densities of the trivial and topological
AAH chains with boundary potentials, which are displayed in the insets of Figure 7.
Furthermore, we choose the chemical potential µ to be above the “trivial” end states
in the half-filling bulk energy gap. In the topologically trivial regime, the behavior
of the local charge density close to the boundary is the same as in the bulk. For the
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Fig. 7. Spectra and local charge densities of the spin–orbit coupled, mirror-symmetric
AAH model with open boundary conditions and α = γ = 1/2, β = 1/4, V0 = 0, δV = 0.5t0,
λ0 = 0.5t0, δλ = −0.3t0, φt = φλ = π, φV = −π/4, and a boundary potential VLR = 0.6t0:
(a) topological phase with δt = −0.5t0, (b) trivial phase with δt = 0.4t0. The main panels
show the energy spectra with end states highlighted in red. The dashed line denotes the
chemical potential µ and the corresponding local charge densities ρj are presented in the
insets. In addition, the corresponding values of the electronic end charges QL and QR are
displayed. (Adapted from Ref. [16]).

topological mirror insulator, however, the local charge density strongly deviates at
the end of the chain and drops to 0. This already indicates the presence of electronic
end charges. More specifically, the calculated boundary charges are QL = QR = +1
in the topological phase (see Fig. 7a) and QL = QR = 0 in the trivial phase (see
Fig. 7b), which is in perfect agreement with the general relation of equation (11).

Finally, it can be shown that both the quantized end charges and the end states are
stable features of the system even in the presence of non-magnetic disorder with zero
mean [16]. In other words, as long as the protecting crystalline symmetry is preserved
on average, which is reflection for the systems considered here, the topological fea-
tures remain. However, more general lattice disorder is detrimental to the topological
properties of the system. In particular, the quantity that was previously a topological
invariant can now assume any rational value and, consequently, the end charges lose
their sharp quantization. This is in stark contrast to conventional “strong” topological
phases whose topology is stable towards any kind of weak lattice disorder.

5 Conclusions

The realization that crystalline symmetries have a profound impact on a system’s
topology has paved the way to a whole new zoo of topological states of matter. These
states of matter fall beyond the standard Altland–Zirnbauer classification since the
protecting symmetry is a local spatial symmetry. This symmetry protection, in turn,
typically entails the presence of gapless boundary states only on those surfaces which
respect the protecting spatial symmetry.

Here, we have reviewed three different examples of topological insulators protected
by crystalline symmetries. In particular, we have discussed a topological crystalline
phase protected by a fourfold rotational symmetry, which features quadratic surface
states and is characterized by two Z2 topological invariants. In crystals with reflection
symmetry, on the other hand, it is a non-zero mirror Chern number that gives rise to
novel topological insulators whose hallmark is the presence of unpinned surface Dirac
cones. Finally, we have also discussed a topological mirror insulator in 1D where the
non-trivial topological properties are reflected in the appearance of quantized end
charges, which are stable against weak disorder preserving on average the protecting
spatial symmetry.
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