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Preface

This work concludes my Master’s degree in Mechanical engineering at Delft University of Technology.
In this work, I take a deep dive into a novel field of engineering research, Mechanical Metamaterials,
within the Mechanical Metamaterials of Compact Motion Systems (MeCoMoS) group of the Precision
and Micro-systems Engineering (PME) department. In my work, I have identified an expansion of the
classical elasticity theory from continuum mechanics as a promising framework for the description of
mechanical metamaterials, and attempted to validate its description for a specific set of mechanical
metamaterials that exist in two-dimensional space.

Notably, this thesis diverges from the specialization of my master track BioMechanical Design. Al-
though I sincerely enjoyed learning about nature and especially the human body through the lens of a
mechanical engineer, I have found that the more abstract mathematics that drive the field of engineer-
ing are still alluring to me. Discussing this desire with several professors led me to the office of my
eventual supervisor, Just Herder, where he introduced me to the MeCoMoS group in a pleasant first
meeting.

Initially reading about the topic, I found it extremely interesting, both from the perspective of my master
track, with research being published mentioning constructs as ”meta bio-implants”, as well as from
a fundamental engineering perspective with the field drawing inspiration from mathematical concepts
like group theory and combinatorics, whilst feeling like a logical successor of one of my favorite topics:
compliant mechanisms. As you can imagine, my choice was quickly made, I would graduate on this
topic.

Now, well over a year later, the time has come to complete the thesis. But before all of this ends, I
must share my extensive gratitude to my supervisors, Just Herder and Pierre Roberjot, for their weekly
meetings, interesting discussions and pleasant atmosphere. I often feel a complete chaos in my mind
when ideas start to come, and you have never let me leave a meeting feeling worse. Somehow we
always managed to sort out the thoughts and create clarity from the chaos. I sincerely believe this
combination of friendliness and the depth of our discussions is what I most enjoyed during this project.
For this I am extremely grateful, it would not have been the same without you.

Additionally, I would like to thank other members of the MeCoMoS group for their expertise, invaluable
insights and assisting me in keeping the broader picture in mind. Furthermore, I would like to provide
a sincere thank you to the PME lab-staff, Patrick van Holst and Spiridon van Veldhoven, with their
insights for my experimental setup, helping me printing the MMs and thinking along to solve the issues
that arose. Additionally, I want to thank Bradley But for his assistance in wiring up the linear stage with a
6-DOF reaction force sensor and our friendly and constructive interactions regarding the experimental
setup.

Last but not least, I must thank all people who have supported me throughout this journey. Starting
with my family and my girlfriend, who were always there, made the hard times bearable and have
never ceased to challenge me by making me explain my thesis work. Additionally, I would like to thank
the many friends, some of whom feel like family, for all the good memories, for never letting me feel
alone, the mutual support during the hardest parts of the Master and for letting me sleep in their homes
countless of times. I could not have completed this degree without your support, and definitely would
not have enjoyed it as much as I did without you.

Bas Bets
Delft, June 2025
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Summary

This thesis explores the application of micropolar elasticity theory as a comprehensive framework for
describing the behavior of planar chiral mechanical metamaterials. Mechanical metamaterials (MMs),
also known as architected materials, are engineered structures whose unique physical properties arise
from their internal geometries consisting of repeating volume elements, rather than their base materials.
These properties enable applications like wave-dispersion control, soft robotic actuators or tunable and
reconfigurable motion systems.

This work begins by situating metamaterials, and especially how they are described, within the broader
field of continuum mechanics, highlighting the limitations of classical elasticity in systems with high
stress gradients or internal structural complexity. To address these gaps, the author proposes using
a decoupled version of an expanded theory of elasticity called ”micropolar elasticity” — a generalized
theory that introduces rotational degrees of freedom and additional stress-strain interactions at the
micro-scale.

However, it was found that the application of this theory in the field of MMs has proven difficult. A major-
ity of the research implemented both linear and isotropic assumptions to retrieve the elastic constants
of the decoupled micropolar elastic tensor. However, no consensus was reached in the literature to
what extent these assumptions are valid in the case of MMs, especially in the face of chirality. To in-
vestigate the anisotropy of these MMs in the two-dimensions, a novel two-dimensional experimental
method was developed to measure all independent micropolar elastic constants of a selected tetra-
chiral metamaterial unit cell — the ”missing rib 4” structure. This method avoids the assumptions of
linearity and isotropy common in the literature and whilst being capable of isolating micropolar effects,
such as independent rotational stiffness and shear-moment coupling.

Experimental results were obtained using custom-built test setups with high-precision force and dis-
placement sensors. Despite challenges such as significant mechanical hysteresis (attributed to inter-
face friction), the data showed high repeatability. Post-processing successfully removed these non-
linear effects, revealing core elastic behaviors. From the measurements, 36 independent micropolar
constants were calculated. These were compared to analytical models and symmetry-based theoret-
ical predictions. Notably, discrepancies between analytical and symmetry-predicted couplings were
observed, highlighting the importance of direct experimental validation in micropolar elasticity.

The findings contribute a methodology for characterizing planar metamaterials free of assumptions and
demonstrate that micropolar elasticity offers predictive power beyond classical approaches. Addition-
ally, it was found that the frequently made assumption of isotropy does not hold for the selected MM
geometry. As such, the authors propose more research is needed to derive anisotropic tensors and
how their change depending on the symmetries in the MM. The work closes by suggesting future re-
search paths suggests a road-map to the development inverse design frameworks for motion-system
applications.
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1
Introduction

1.1. Background
The rapidly growing field of mechanical metamaterials (MMs), also referred to as architected structures,
meta-structures or architected materials, constitute a novel class of materials with physical behavior
unseen in nature. These unique behaviors are frequently used as the design goal and are achieved
through the tessellation of meso-scale geometries characterized by so-called unit-cells (UC’s), into the
macro-scale material. These built-in geometries allow a vast design freedom, ranging from controlled
mass-transport or tissue regeneration performance in meta bio-materials [30] to integrated actuators
and controlled stiffness in soft robotic systems [24].

One area of interest in MMs considers the field of compact motion systems. Here, the mechanical
design plays a crucial role in themotion accuracy and actuator requirements. While the field of precision
mechanism design has reached maturity in recent decades through rigorous design frameworks [25]
and extensive analytical solutions [28], extension of such schemes towards MM design has proven
difficult.

In general, the design of MMs consists of two main aspects: the unit cell design and the tesselation of
unit cells through the material. This opens up a wide design space, for example, ranging from a periodic
homogeneous tesselation of centrosymmetric square UCs, to an aperiodic heterogeneous structure of
varying n-fold symmetric chiral UC’s tessellated in random orientations.

To aid in the design process of such MMs, various strategies have been applied in order generate
designs more systematically. Presently, it was found that these strategies can be roughly categorized
as follows:

1. Computational intelligence: utilizes the fast-growing field of machine learning and artificial intel-
ligence to generate and predict suitable topological designs based on learning models. Faces
limitations in predicting bulk properties, optimizing architectures, and transferring results across
datasets[52];

2. Topology optimization: adjusts predefined geometric parameters or systematically removes mate-
rial in low-stress areas to create an optimized geometry based on desired bulk material behavior.
Also used in combination with a scale-separation framework that decomposes desired bulk behav-
ior into local elastic requirements [44, 42, 43]. Thorough parameter analysis remains impractical
and computationally expensive[20, 46];

3. Combinatorial design: utilizes theories from the mathematical field of combinatorics to systemat-
ically investigate the propagation of unit cell behavior into the tessellated structure [58, 18, 54];

4. Group theory: utilizes geometric point groups as a way of categorizing UC’s and finding all poten-
tial tesselations. Symmetry groups appear useful for UC design [48, 12], whereas lattice groups
systematically identify the possible space-filling tesselation [40, 19].

1



1.2. Problem analysis 2

5. Insight: applies insights or ideas from the researchers, drawing inspiration from other fields of
geometry such as paper-folding, to investigate (singular) combinations of unit cell and or tessela-
tion;

In general, there appears to be no consensus in literature as to which strategy will lead the way, and
they all have their own set of advantages and drawbacks. Some studies suggest integrating various
strategies such as combinatorics and topology optimization alongside aforementioned machine learn-
ing to improve both accuracy and efficiency, reducing the computational requirements[4, 49]. However,
it can not be denied that the relatively simple question of how to systematically find metamaterial ge-
ometries based on desired behavior is not yet solved[11]. Thus, it appears universally agreed that it is
essential to find stronger fundamental relationships between geometry and mechanics [60, 20, 46, 11].

1.2. Problem analysis
As such, we shift to the field of materials science. Its quintessential question revolves around sys-
tematically describing, predicting and designing an abundant variety of materials for specific material
properties. Continuum mechanics lies at the intersection of engineering mechanics and materials sci-
ence. It provides fundamental yet functional relationships, enabling insights gained from materials
science to propagate into constitutive relations and functional guidelines used in engineering.

So far, capturing isotropic and linearmaterial behavior has essentially been solved by classical (Cauchy)
elasticity theory [7]. Although Cauchy elasticity has proven extremely useful in a wide variety of settings,
it is limited by its simplicity to only describe non-centrosymmetric, linear and incompressible materials
[11], which is very limiting in the perspective of MMs. To combat these limitations, finite element meth-
ods have extended the applicability of Cauchy elasticity and serve as a baseline for the analysis of
more complex geometries. However, as mentioned before, such methods do not directly contribute
to a stronger understanding of the governing mechanics between meso-structure and macro-behavior
and remain computationally expensive.

Due to these limitations, researchers have long been expanding and generalizing the principles of
Cauchy elasticity into theories such as couple-stress theory [37, 29], micropolar theory [15, 16] and
Willis’ theory [57, 39]. Here, couple-stress theory allows for internal moments (or couple-stresses) to
exist and aid in the deformation of the continuum, effectively adding two elastic constants (β and γ)
to the material description. Micropolar elasticity, otherwise known as Cosserat elasticity, does not just
allow internal moments to exist, but also allows internal rotations (or couple strains) to occur, adding an-
other two elastic constants (κ and α). The most elaborate theories are found in the so-called micromor-
phic theory of elasticity [17, 53], which expand the 3 spatial degrees of freedom with a micro-distortion
tensor containing 9 additional degrees of freedom for each node [11].

When choosing a constitutive model, there is a trade-off between theoretical complexity and the com-
plexity of behavior that has to be described. For MM design, it has been found that classical descrip-
tions such as Cauchy elasticity are unable to correctly describe their continuum. Willis’ elasticity, on the
other hand, is frequently and successfully applied when designing for specific electrodynamic proper-
ties. However, for designing low-frequency and static mechanical metamaterials it lacks the additional
degrees of freedom allowed by other theories[39]. The couple-stress theory does allow for internal mo-
ment stresses to exist, but lacks independent rotational freedom of the micropolar nodes. Micropolar
elasticity on the other hand, does allow such independent couple-strains to exist alongside the couple-
stresses. Lastly, micromorphic elasticity could allow for even more detailed descriptions of MMs, but
it is not yet clear to what extend the added complexity contributes to the predictive accuracy of the
theory.

As such, this study adopts micropolar elasticity as the theoretical framework due to its ability to include
chiral and anisotropic behavior [11] with minimal added complexity. On top of the displacements u and
v of points in a lattice, it also allows nodal rotations ϕi of those points [16, 17]. Following the notations
of Eringen[16, 17], this expands the classical set of elastic constants, volumetric stiffness (Lamé’s first
parameter) λ and shear stiffness (Lamé’s second parameter) µ, with the micropolar modulus (couple
modulus) κ, and the Cosserat twist moduli α, β and γ [17]. In this paper, the preferred notation of the
micropolar theory suggested by [22] is used with some alternations to prevent confusion. An overview
of all symbols used is presented in the Nomenclature.
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On the other hand, it has proven difficult to identify the values of these micropolar elastic constants,
especially when trying to derive them analytically. Lakes and Yang were the first to succeed experi-
mentally, using bending-creep and torsion tests to measure the micropolar elastic constants through
related engineering constants in materials such as human bone, polymeric foams and metallic foams
[32, 31]. However, they only managed to do so by assuming isotropic behavior.

More recently, researchers have once more begun identifying the micropolar constants specifically
for the development and analyses of MMs. For centrosymmetric (achiral) periodic metamaterials, the
elastic tensors have been derived analytically and in closed form by Bacigalupo [1]. Origami-like meta-
materials have their continuum constants be derived through homogenization as Kirchoff-Love plates
[55] or using a one-dimensional beam model to identify coupling constants of couple-stress theory [9].
For fully planar chiral metamaterials, [34] uses a mono-clinic micropolar model to predict all micropo-
lar constants of selected chiral geometries and performs both experimental and numerical validation,
essentially deriving the elastic constants for a planar case. In [33] this result is expanded to three di-
mensional metamaterials by applying the two-dimensional case to all faces of a three-dimensional unit
cell.

One study [12] finds that the internal rotations of the micropolar theory tensor can be ”decoupled” and
presents what they call the Decoupled Micropolar Elasticity (DME) tensor. Based on symmetry oper-
ations they predict both presence and absence of couplings for each point group. They expand their
work to three-dimensional cases in [13]. Unfortunately, in neither study do they verify their results exper-
imentally. In a similar fashion, [48] created a minimal chiral structure and utilizes the same symmetry
operations to differentiate several families of MMs based on chirality and their inherent unit cell point
group.

Here, we see a potential gap. In this study we aim to validate the decoupled micropolar elastic (DME)
constants as proposed by [12] for the MM families proposed by [48]. In this way, we aim to validate
what couplings exist inside the MMs. However, no literature was found describing a method to validate
the micropolar elastic constants of the plane. By performing physical experiments, the authors aim to
find a ground-truth of potential couplings that are not affected by underlying assumptions of analytical
models and finite element simulations.

1.3. Research objective
This study aims to experimentally validate of the decoupled micropolar elastic constants as described
by Cui [12], using the metamaterial families proposed by Roberjot [48]. To this end, a novel experi-
mental setup is used with the goal of finding the internal stress-tensor and using them to calculate the
elastic constants, free of assumptions on the tensor entries. These results will then be compared to
an analytical model of Bahaloo [2] and the predicted couplings from Cui [12]. Finally, all is put in the
perspective of the design of MMs for compact motion systems, presenting a promising way forward.

1.4. Structure
The remainder of this study is organized as follows. Section 2.1 provides a comprehensive overview of
micropolar elasticity, including its simplification for planar cases and the application of the decoupling
method proposed by Cui [12] to a selected mechanical metamaterial unit cell. Section 2.2 details the
metamaterial families classified by Roberjot [48], from which a chiral unit cell is selected based on avail-
able analytical models. Section 2.3 introduces the experimental methodology used to determine the
micropolar elastic constants by solving the system of equations of the DME tensor. Section 2.4 details
the physical embodiment of the experimental setup. Next, Section 3 presents the experimental results,
including the retrieval of planar micropolar constants, their evolution under strain, and a comparison
with analytical and theoretical models. Then, Section 4 discusses the findings in the context of existing
literature, explores their implications for mechanical metamaterial design in compact motion systems,
and outlines potential directions for future research. Finally, a conclusion is drawn on the validity of the
results and frequent assumptions made in the literature.



2
Methods

In this chapter, an in-depth overview of micropolar elasticity is presented, followed by a planar simplifi-
cation of the theory. Next, a mathematical decoupling transformation is presented and applied onto a
chosen chiral unit cell.

2.1. Micropolar elasticity - an overview
One of the most fundamental fields of engineering is Continuum Mechanics. Its principles, especially
the theory of linear elasticity, helped engineers to understand the behavior of materials on a functional
level, opening the doors to all engineering achievements humanity has produced. From buildings close
to a kilometer tall, to permanent scientific residences in Low Earth Orbit.

However, classical continuum mechanics has its limitations. This is especially true in cases where ma-
terials contain larger stress gradients (e.g. porous materials) or where materials contain load-bearing
internal structures. Then, the classical theory of elasticity cannot accurately describe the material be-
havior properly.

2.1.1. A generalized theory of elasticity
For this reason, researchers sought to expand the theory of elasticity. Voigt was one of the first to
achieve this, expanding the theory to include antisymmetric stresses, creating the first couple-stress
theory of elasticity [56]. His work was further developed by the Cosserat brothers, who allowed a body to
have an independent micro-rotation field alongside the displacement field [15]. Finally, Eringen included
micro-inertia into the theory and coined it the micropolar theory of elasticity [16]. This micropolar theory
of elasticity now contains 6 elastic constants to describe linear, homogeneous and centrally symmetric
materials. These are the classical bulk modulus (Lamé’s first parameter) λ and shear modulus (Lamé’s
second parameter) µ, the micropolar couple modulus κ, and the Cosserat twist moduli α, β and γ [17].

From the complete micropolar elastic description, it is possible to reduce to a couple-stress theory
version by enforcing the couple modulus κ and first twist moduli α to infinity [23]. Thus, the internal
micro-rotations are set to have infinite stiffness with respect to the macro-rotations and displacements,
removing the independent micro-rotation field from the description. This couple-stress theory is thus
fully defined by the four remaining elastic constants λ, µ, β and γ. Further simplification of couple-stress
theory can be achieved by forcing the remaining twist-moduli, β and γ to be zero [23], leaving only the
classical Lamé parameters to define the material behavior, just as in the classical theory of elasticity.

More broadly speaking, the micropolar theory of elasticity shows promise as a more useful as descrip-
tor of materials containing additional micro- and meso structure like bone or porous materials, but their
experimental validation still proves difficult aswell [23, 22]. Experiments have been performed on ma-
terials like bone and polymer foam through bending-creep and tensile-torsion tests in various studies
performed by Lakes [32, 31], where they measured the engineering constants: Em, Gm, νm, lb, lt, N
and Ψ, which are expressed as functions of the elastic constants. Here, Em, Gm and νm are the mi-
cropolar bulk modulus, the micropolar shear modulus and the micropolar Poisson’s Ratio respectively.

4



2.1. Micropolar elasticity - an overview 5

(a) (b) (c)

Figure 2.1: (a) Classical stresses on in Cauchy elasticity, showing principal σxx, σyy and shear σxy , σyx stresses. [7]. (b)
Micropolar stresses in Eringen elasticity [16], showing the additional couple stresses mxz ,myz (representation adapted from
[5]). (c) Decoupled micropolar stresses in DME, showing one symmetric shear stress Sxy and one (antisymmetric) internal

torque stress Txy , alongside the unaltered principal stresses Sxx, Syy and couple stresses mxz ,myz .

Then, lb is the characteristic length in bending, lt is the characteristic length in Torsion,N is the coupling
number and Ψ is the polar ratio. When simplified to two dimensions only the micropolar bulk modulus
Em, micropolar Poisson’s ratio νm, characteristic length l and coupling number N survive [38], corre-
sponding to the elastic constants of λ, µ, κ and γ. The simplification to classical elasticity is then found
by setting the characteristic length l to zero [38]. The relations between the elastic and engineering
constants for the planar case are:

l2 =
γ

4µ+ 2κ
(2.1a)

N =
κ

2µ+ 2κ
(2.1b)

νm =
λ

2µ+ 2λ+ κ
(2.1c)

N =
(2µ+ κ)(3λ+ 2µ+ κ)

2λ+ 2µ+ κ
(2.1d)

2.1.2. Planar micropolar elasticity
In general micropolar elasticity, a planar continuum can be described with the following constitutive
equation in index notation and following the conventions set by Eringen [17] with some exceptions to
prevent confusion:

σij = Cijklεkl +Bijklφkl

mij = Bijklεkl +Dijklφkl

(2.2)

Here, εij = δuj/δxi represents the regular Cauchy strain tensor, whereas φij = δϕj/δxi represents
the couple strain tensor. Similarly, σij is the Cauchy stress tensor and mij is the couple stress tensor.
The indexes i, j and k, l represent the set of directions xx, xy, yx, yy, xz and yz. See [22] for a complete
overview and comparison between notation styles of the symbols used in micropolar elasticity.

The classical (σij) and couple (mij) stresses can be combined into a generalized vector form σ̄ =
{σxx, σyy, σxy, σyx,mxz,myz}T . And similarly the classical (εij) and couple (φkl) strain can be combined
into ε̄ = {εxx, εyy, εxy, εyx, φxz, φyz}T . Thus resulting in the standard micropolar constitutive equation
σ = Q · ε, with Q the micropolar elasticity tensor, filled with arbitrary entries Cij , Bij and Dij .
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

σxx

σyy

σxy

σyx

mxz

myz


=


C11 C12 C13 C14 B11 B12

C22 C23 C24 B21 B22

C33 C34 B31 B32

C44 B41 B42

sym D11 D12

D22





εxx
εyy
εxy
εyx
φxz

φyz


(2.3)

Furthermore, the micropolar strain components of ε can be derived from the local displacement field
variables u, v and ϕ according to Nakamura and Lakes [38]:



εxx
εyy
εxy
εyx
φxz

φyz


=



∂
∂x 0 0
0 ∂

∂y 0

0 ∂
∂x −1

∂
∂y 0 1

0 0 ∂
∂x

0 0 ∂
∂y


u
v
ϕ

 (2.4)

In this study, we attempt to describe the behavior of a full metamaterial unit cell with the micropolar
tensor. For this reason, the concepts of stress and strain in this micropolar description lose their original
physical meaning, and can be referred to as ”meta-stress” and ”meta-strain” instead. This better indi-
cates their separation from classical engineering quantities, as these meta-stresses and meta-strains
encapsulate the volume enclosed by a unit-cell, which for a significant part consists of empty space.
Nevertheless, the remainder of this study will refer to these quantities by their traditional names.

2.1.3. Decoupled micropolar elasticity
However useful the micropolar theory of elasticity is, in the above forms, it is still only valid for linear,
isotropic and centrally symmetric (achiral) materials [22]. To include chiral behavior into the theory, a
decoupling procedure can be applied, extracting the anti-symmetric micro-rotation from the symmetric
shear strains [47, 12].

Following the decomposition of [12], the symmetric and anti-symmetric components of σij and εij can
be separated, splitting the symmetric shear stress Sij = Sji and strain Eij = Eji from their anti-
symmetric components Tij = −Tji and Aij = −Aji.

Sij =
σij + σji

2
= Sji, Tij =

σij − σji

2
= −Tji (2.5)

Eij =
εij + εji

2
= Eji, Aij =

εij − εji
2

= −Aji (2.6)

Most notably, it is stated that this anti-symmetric component Txy represents a stress torque and Axy a
strain rotation. In other words, a torque per unit area and associated dimensionless strain rotation per
unit area, directly applied at a micropolar node. Furthermore, from [12] it turns out that

Exy = γxy/2

Axy = Ω− ϕ,
(2.7)

meaning that Exy is equal to half of the pure engineering strain γxy and that Axy represents a local
rotation at one point as the difference between the macro rotation of the body Ω and the nodal rotation
ϕ in macro coordinates at the point of interest. See [12] for a clear visual representation.

As such, the decoupled micropolar constitutive relation becomes S = q ·E [12]:

Sxx

Syy

Sxy

Txy

mxz

myz


=


c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26
c33 c34 c35 c36

c44 c45 c46
sym c55 c56

c66



q 

Exx

Eyy

2Exy

2Axy

φxz

φyz


(2.8)
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And relates to the original micropolar elasticity matrix Q as [12]
c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26
c33 c34 c35 c36

c44 c45 c46
sym c55 c56

c66

 =


C11 C12

C13+C14

2
C13−C14

2 B11 B12

C22
C23+C24

2
C23−C24

2 B21 B22
C33+C44+2C34

4
C33−C44

2
B31+B41

2
B32+B42

2
C33+C44−2C34

4
B31−B41

2
B32−B42

2
sym D11 D12

D22


(2.9)

From this, it is worth noting that the decoupling equations only change the shear terms in the stress- and
strain tensors. Those related to the principal directions (xx and yy) and those related to the curvatures
(xz and yz) remain unchanged compared the standard micropolar elasticity.

B2

B1

R

S

A2

A1

               Output

Input
A1 A2 S R B1 B2

Figure 2.2: A visual representation of the couplings described by DME. Blue arrows represent an input or applied stress, the
red arrows represent an output or observed strain.

Figure 2.2 shows a visual representation of the physical interpretation of each elastic constant in the
DME tensor.

2.1.4. Fourfold symmetric micropolar elasticity
For a fourfold rotationally symmetric unit cell, it is then predicted to contain the following terms [12]:



Sxx

Syy

Sxy

Txy

mxz

myz


=


c11 c12 c13 c14 0 0

c11 −c14 −c13 0 0
c33 c34 0 0

c33 0 0
sym c55 0

c55



qsym 

Exx

Eyy

2Exy

2Axy

φxz

φyz


. (2.10)

Looking at the physical implication, it is thus predicted that the fourfold symmetric unit cells can show
axial-axial (Exx to Eyy), axial-shear (Exx or Eyy to 2Exy), axial-rotation (Exx or Eyy to 2Axy) and shear-
rotation (2Exy to 2Axy) couplings. A visual of all potential couplings from DME theory is shown in
Figure 2.2. In this study, we will compare this symmetry-based prediction of the presence of decoupled
elastic constants with both an analytical model of a fourfold-symmetric unit cell, and with experimentally
measured elastic constants of the same unit cell.
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2.2. Planar chiral mechanical metamaterials
In this study, only two-dimensional and chiral MMs are investigated. Following the work of Roberjot
[48], this study examines three chiral families, consisting of the HoneyComb (Hc), Missing Rib (Mr) and
Closed Geometry (Cg).

2.2.1. Chiral metamaterial families.
These three families are constructed through alternating copy-rotations of a so-called minimal auxetic
structure [48]. Figure 2.3 shows the definitions of the minimal auxetic structure, with the lengths and
thicknesses of members 1 to 3 a1, a2, a3 and h1, h2, h3, structural depth b and the initial angle θ0.

 

Figure 2.3: A schematic drawing of the parameters that define the minimal chiral Z. Moving from top-left to bottom right are the
lengths of each element a1 to a3 and the thickness t1 to t3, as well as a universal depth b and an initial angle θ0 between a1

and a2 and between a2 and a3.

From this minimal structure, the three chiral families: Hc, Mr and Cg, are generated according to [48],
such that in

• Missing Rib: element a3 vanishes altogether and the unit cell is bound by the endpoint of element
a1.

• Honey Comb: element a3 vanishes into a rigid body with sides a2 and the unit cell is bound by
the endpoint of element a1.

• Closed Geometry: element a3 remains and the unit cell is bound by the midpoint of element a1.

Lastly, for the remainder of this study it is assumed that all unit cells are created of minimal auxetic
structures where a1 = a2 = a3 = a and θ0 = 60 deg, corresponding as it was found to contain the most
isotropic behavior [34]. A schematic overview of the three resulting chiral families is shown in Figure
2.4.

2.2.2. Analytical modeling
Various studies have been deriving analytical models for chiral MMs and the most elaborate analytical
relations have been derived for the Mr4 tessellated geometry [35, 10, 2, 34]. For this reason, this study
will conduct experiments on the same geometry, using the existing literature for validation.

The models for the micropolar elastic tensor have been found through derivations of the strain energy
density function. For geometries of Z3 (three-fold rotationally symmetric) and Z6 invariance (six-fold
rotationally symmetric), these were achieved by assuming a hemitropic (isotropic except in mirroring)
continuum [35]. On the other hand, [10] performs the derivation assuming an orthotropic continuum of
Z2 (two-fold rotationally symmetric) and Z4 invariance (four-fold rotationally symmetric).

More recently, these isotropic and orthotropic solutions were combined to analytically derive expres-
sions for all micropolar elastic constants specifically for the missing-rib tetra-chiral (Mr4) geometry
shown on the left of Figure 2.4 [27, 2].
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Figure 2.4: The fourfold rotationally symmetric variants of the chiral families from left to right are Missing Rib (Mr4),
Honeycomb (Hc4) and Closed Geometry (Cg) shown with lengths a1 = a2 = a3. The dashed lines shows the repeating unit of

the square unit cells.

Following these derivations, the micropolar elastic tensor was separated into sub-matrices C,D and B
[35, 10, 2]. Here, C is a fourth order tensor describing the constitutive relations to the ”regular” strains,
D is a second order tensor describing the elasticity of the couple strains, and B is a third order tensor
describing the coupling between the strains and couple strains.

σ =

[
C B
BT D

]
ε (2.11)

This coupling matrix B is also said to contain the chiral effect, however, for two-dimensional chiral
isotropic materials, it was found that B = 0 [35]. To compensate and retain the chiral effect and include
material anisotropy, C was decomposed into a hemitropic Chemi [35] and a fourfold-invariant C4fold ’[10]
component. Thus, the micropolar elastic tensors are defined as

C = Chemi + C4fold =


λ+ 2µ λ A −A

λ+ 2µ A −A
µ+ κ µ− κ

sym. µ+ κ

+


ζ −ζ B B

ζ −B −B
−ζ −ζ

sym. −ζ

 (2.12a)

B =


0 0
0 0
0 0
0 0

 (2.12b)

D =

(
γ 0
0 γ

)
(2.12c)

Here, λ, µ, κ and γ are the micropolar elastic constants as described before, the parameter A is intro-
duced to characterize the chiral effect [35], and its sign determines the handedness of chirality. The
constantsB and ζ are introduced to account for the anisotropy of a fourfold symmetric lattice [10]. All of
these elastic constants can be analytically expressed in terms of the dimensionless thickness η = h/a,
base material Young’s modulus Eb and initial corner angle θ0, which are presented in Equations 2.14.

Now, the individual and decomposed elastic tensors C, D and B are assembled into the standard
micropolar form of Equation 2.3 to be
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

σxx

σyy

σxy

σyx

mxz

myz


=




λ+ 2µ+ ζ λ− ζ A+B −A+B

λ+ 2µ+ ζ A−B −A−B
sym µ+ κ− ζ µ− κ− ζ

µ+ κ− ζ


(C)

0

0

[
γ 0
0 γ

](D)





εxx
εyy
εxy
εyx
φxz

φyz


. (2.13)

From [2], it was found that all elastic constants λ, µ, κ, A, B, ζ and γ of the simplified Mr4 geometry
can be expressed as:

µ =
η3Eb sin

2(θ)

8(cos2(θ) + 4η2 sin2(2θ)
(2.14a)

λ = µ (2.14b)
A = 0 (2.14c)

B =
η3Eb1.5 sin(2θ) sin

2(θ)

η4 sin2(2θ) + η2[20 + 20 cos2(2θ)− 24 cos(2θ)] + 28 sin2(2θ)
(2.14d)

γ =
Ebη

3 sin2(θ)
{
(7 + η4

4 ) sin2(2θ) + 5η2[1 + cos2(2θ)]− 6η2 cos(2θ)
}

6
{
4 sin2(2θ) + η4 sin2(2θ) + 5η2[1 + cos2(2θ)]− 6η2 cos(2θ)

} (2.14e)

κ =
η3Eb sin

2(θ)
{
(4 + 8η2) sin2(θ)− (20 + 8η2 − η4) sin4(θ) + 16

}
R∗ (2.14f)

ζ =
η3Eb sin

2(θ)
{
(25 + η4

4 ) sin2(2θ) + 5η2(1 + cos2(2θ)− 6η2 cos(2θ)
}

2R∗ (2.14g)

where R∗ is a purely geometric parameter [2]:
R∗ = 4{112 sin2(θ)− 224 sin4(θ) + 112 sin6(θ) + 16η2

+8η4 sin2(θ)− 48η2 sin2(θ)− 16η4 sin4(θ) + 140η2 sin4(θ)

+248η4 sin6(θ)− 108η2 sin6(θ) + η6 sin4(θ)− η6 sin6(θ)}.
(2.14h)

Last, by applying Equations 2.14b and 2.14c, the analytical relation of Equation 2.13 simplifies to:



σxx

σyy

σxy

σyx

mxz

myz


=


3µ+ ζ µ− ζ B B 0 0

3µ+ ζ −B −B 0 0
µ+ κ− ζ µ− κ− ζ 0 0

µ+ κ− ζ 0 0
sym γ 0

γ





εxx
εyy
εxy
εyx
φxz

φyz


. (2.15)

2.2.3. Analytical decoupled micropolar elastic tensor
We can express it in the decoupled micropolar form. To do this, we apply the relationship of Equation
2.9 on the simplified analytical tensor of Equation 2.15, resulting in:



Sxx

Syy

Sxy

Txy

mxz

myz


=


3µ+ ζ µ− ζ B 0 0 0

3µ+ ζ −B 0 0 0
κ 0 0 0

4µ− 4ζ 0 0
sym γ 0

γ



= qana 

Exx

Eyy

2Exy

2Axy

φxz

φyz


. (2.16)

This analytical version of the decoupled micropolar tensor will be used in the next sections to compare
against the predicted couplings by symmetry and the experimentally measured results.
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(a) (b)

Figure 2.5: A schematic representation of all six decoupled micropolar stresses (a) and strains (b) that could exist on an Mr4
unit-cell element in the continuum.

2.3. Experimental principle
In this study, the elastic constants of DME in the plane will be investigated experimentally for the Mr4
geometry described above. To achieve this, we propose performing a separate experiment for each
part of the decoupled strain vector. Figure 2.5 shows a schematic representation of the decoupled
micropolar stresses and strains acting on a unit-cell element.

By creating datasets that actuate all possible strains and attempt to measure all shown stresses. In
this way, we retrieve six stress vectors S as independent functions of the six strains E, this results in
a total of 6 independent datasets, each containing a system of 6 equations:

1. Uni-axial in x, relating to Exx, hereafter referred to as experiment A1.
2. Uni-axial in y, relating to Eyy, hereafter referred to as experiment A2.
3. Symmetric shear (pure shear), relating to Exy, hereafter referred to as experiment S.
4. Antisymmetric shear (internal rotation), relating to Axy, hereafter referred to as experiment R.
5. 3-point-bending over x, relating to φxz, hereafter referred to as experiment B1.
6. 3-point-bending over y, relating to φyz, hereafter referred to as experiment B2.

From each dataset, the authors then expand the constitutive system of equations described by the
general decoupled micropolar tensor of Equation 2.8 to find the elastic constants relating to that strain.
As such there are 6 sets of 6 equations describing a maximum of 36 unknowns cij .

By the nature of the single-actuator experimental setup (with displacement d), it was practically infeasi-
ble to perform a symmetric shear experiment. Instead, two simple shear experiments, S1 and S2, are
performed. By doing this, we can make use of the decoupling equations, presented in Equation 2.5 to
retrieve a ”symmetric” and an ”antisymmetric” shear experiment, named S and A respectively.

Next to the antisymmetric shear experiment, a separate internal rotation experiment is performed.
This experiment is separated into a clockwise Rc and counterclockwise Rcc experiment due to one-
directional loading capacity of wire on the spool (with diameter r). It should be noted that this now
leaves a total of 7 datasets, as the antisymmetric shear experiment and the internal rotation experiment
will measure the same strain component Axy. The additional internal rotation experiment is performed
to ensure the elastic constants relating to this strain can always be isolated and calculated, effectively
reducing the likelihood that the system of equations becomes under-constrained.

All other experiments were directly performed in both positive and negative displacements. As such, a
total of 8 experiments were conducted, yielding the datasets for the 6 decoupled micropolar strains in
both positive and negative displacement. An overview of all experiments, applied deformations d and
constraints is given in Table 2.1.
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In Table 2.1 u and v are the applied deformations along the x- and y-axis respectively and the forced
internal rotation d/r relates to the applied micro-rotation strain ϕ. Ω represents the macro-rotation of
the sample and ϕ represents the micro-rotations of each unit-cell, which are either unconstrained (A1,
A2, S1, S2, B1, B2) or actuated (Rc, Rcc) in each experiment. An overview of these deformations for
each experiment type (Axial, Shear, Bending and Rotation) is shown in Figure 2.6.

(a) (b)

Figure 2.6: Representative displacement fields of (a): the axial experiments and (b): the bending experiments.

Table 2.1: An overview of all performed experiments, the forced displacement d, direct constraints on the boundaries, implicit
rotational constraints from the boundary constraints and the free displacements that have to be measured.

A1 d = ux vx, uy, vy = 0 Ω = 0 ϕ
A2 d = vy ux, vx, uy = 0 Ω = 0 ϕ

S1 d = uy ux, vx, vy = 0 - Ω, ϕ
S2 d = vx ux, uy, vy = 0 - Ω, ϕ

B1 d = vy ux, vx, uy = 0 Ω = 0 ϕ
B2 d = ux vx, uy, vy = 0 Ω = 0 ϕ

Rc d/r ∼ ϕ ux, uy, vx, vy = 0 Ω = 0 -
Rcc d/r ∼ ϕ ux, uy, vx, vy = 0 Ω = 0 -

2.3.1. Relating displacements to decoupled meta-strains
Applying the deformation field of each experiment, as described in Table 2.1 to the strain definitions of
Equation 2.4, the strain tensors of each experiment can be derived.

Since the deformations u and v are forced by a displacement d in each experiment and the micro-
rotations ϕ are tracked for each UC, the corresponding micropolar strain ε tensor can be calculated
based on the sample length L. Equation 2.4 can then be expanded for each experiment, resulting in
the strain measurements shown in Table 2.2. Here, the partial derivatives of the displacements u and
v are incorporated by dividing them by the sample length. The shear strains εxy and εyx have their
internal rotation ϕ calculated as the average measured micro-rotation of all four nodes of the sample.
The curvatures φ are calculated as the difference in micro-rotation between opposing free sides. Lastly,
the principal strains induced for the curvature experiments are found as the difference in displacement
between the actuated and the curving side.
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(c) (d)

Figure 2.6: Representative displacement fields of (c): the shear experiments and (d): the rotation experiment.

Table 2.2: An overview of all performed experiments with their standard micropolar strains, showing which strains are forced by
the displacement d, tracked as a function of d, or assumed to be zero.

Uni-axial in x d/L 0 −ϕ ϕ ∆ϕx/L ∆ϕy/L
Uni-axial in y 0 d/L ϕ −ϕ ∆ϕx/L ∆ϕy/L

Simple shear on x 0 0 d/L−ϕ ϕ ∆ϕx/L ∆ϕy/L
Simple shear on y 0 0 ϕ d/L−ϕ ∆ϕx/L ∆ϕy/L

3-point bending over x 0 ∆vy/L 0 0 ∆ϕx 0
3-point bending over y ∆x/L 0 0 0 0 ∆ϕy

Clockwise 0 0 −ϕ ϕ 0 0
Counterclockwise 0 0 −ϕ ϕ 0 0

It should be noted that the clockwise and counterclockwise are actuated with a prescribed internal ro-
tation d/r, but the measured micro-rotations are used in the strain tensors as they more accurately
describe the deformation effect. These experiments act as a separate and completely decoupled actu-
ation of the nodal rotations Axy.

To turn the simple shear experiment into decoupled symmetric and antisymmetric shear, the decoupling
formulae presented in Equation 2.5 are applied twice. First, onto the strain tensors ε of experiment
S1 and S2 as a whole. This creates a derived symmetric experiment (named S) and antisymmetric
experiment (named A):

εS =
εS1 + εS2

2
& εA =

εS1 − εS2

2
(2.17)

Then, the decoupling equations are applied on the datasets of each experiment, extracting the de-
coupled strain tensors E. Table 2.3 shows this decoupled strain field as a function of the applied
displacements d and and sample length L for all experiments.
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A2 S2 B2

A1 S1 B1Rc

Rcc

Figure 2.7: A figure showing a schematic representation of actuation and reaction forces for all experiments.

Table 2.3: An overview of all performed experiments and their decoupled micropolar strains, showing which strains are forced
by the displacement d, tracked as a function of d, or constrained to be zero.

Uni-axial in x d/L 0 0 −2ϕ ∆ϕx/L ∆ϕy/L
Uni-axial in y 0 d/L 0 −2ϕ ∆ϕx/L ∆ϕy/L

Symmetric shear 0 0 d/L 0 ∆ϕx/L ∆ϕy/L
Antisym. shear 0 0 0 d/L− 2ϕ ∆ϕx/L ∆ϕy/L

3-point bending in x 0 < d/L 0 −2ϕ ∆ϕx/L 0
3-point bending in y < d/L 0 0 −2ϕ 0 ∆ϕy/L

Rotation 0 0 0 −2ϕ 0 0

Based on the motion tracking results, all off diagonal strains of the top six experiments might be set
to zero if they are tracked to be insignificant. In this study, we assume these ”parasitic” strains to be
insignificant if their signal strength is less than 10% of the dominant strain signal strength. Similarly, the
curvature strains φ might be set to zero for the axial and shear experiments as well.

For the bending experiment, the axial-strains Exx and Eyy are used to apply the moment. However,
due to the inherent compressibility of the structures, this also results in a strain deformation alongside
the curvature deformation. The significance of this effect and how it is dealt with will be discussed in
Section 3.1.2.

2.3.2. Relating reaction loads to decoupled meta-stresses
Next to the strains, the stresses and couple stresses have to be determined. An overview of the free-
body-diagrams relating the actuator load, reaction forces and sensor measurements is presented in
Appendix A. A schematic representation of the reaction-forces for each experiment is shown in Figure
2.7.

From the derivations inAppendix A, the reaction forces contribute to the decoupledmicropolar stresses
as shown in Table 2.4.
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Table 2.4: An overview of the reduced datasets and their decoupled micropolar stresses, showing which reaction forces are
used to calculate them. For the stress calculation, all terms in this table are divided by the cross-sectional area of the UC.

Uni-axial in x −Fy 0 1
2Fx

1
2Fx−Mz− L

2 Fx 0 0
Uni-axial in y 0 −Fy

1
2Fx

1
2Fx−Mz− L

2 Fx 0 0

Symmetric shear 1
2Fx

1
2Fx − 1

2Fy 0 0 0
Antisymm. shear 1

2Fx
1
2Fx 0 ( 12 − L

2 )Fy −Mz 0 0

3-point bending in x 0 Fy
1
2Fx

1
2Fx+Mz− L

4 Fx LFy 0
3-point bending in y Fy 0 1

2Fx
1
2 +Mz − L

4 Fx 0 LFy

Clockwise 0 0 0 Mz 0 0
Counterclockwise 0 0 0 Mz 0 0

It should be noted that all couple-stresses of the non-bending experiment are set to zero. This stems
from the fact that moments inherently lack an attachment point in the plane, resulting in it being physi-
cally impossible to differentiate between a moment being applied on the x-face or on the y-face for the
experiment setup used in this study. Only for the bending experiments can it be assumed on which
face the moment is present, as it is induced there.

2.3.3. Solving the system of equations
Applied the forced and tracked strains onto the general DME tensor of Equation 2.8, the complete
system of equations can be expanded and simplified by removing the zero-strain terms. For example,
the system of equations for the symmetric shear experiment, when assuming that the curvatures φxz

and φyz are measured to be zero, becomes:

Sxx = 2c31Exy

Syy = 2c32Exy

Sxy = 2c33Exy

Txy = 2c34Exy

mxz = 2c35Exy

myz = 2c36Exy

−→

c31 = Sxx/2Exy

c32 = Syy/2Exy

c33 = Sxy/2Exy

c34 = Txy/2Exy

c35 = mxz/2Exy

c36 = myz/2Exy

(2.18)

Applying the stress definitions of Table 2.4, we have six equations containing six unknowns. As such,
the system can be solved, finding the six elastic constants relating to Exy strain. It should be noted that
when the curvature φyz is not measured to be zero, the individual elastic constants can not be retrieved
in this case.

2.4. Embodiment
In this section, the experimental setup, tools, experiment plates and experimented samples are pre-
sented, showcasing the used equipment, analysis tools, design parameters and fabrication processes.

2.4.1. Experimental setup
Conventional methods formeasuringmicropolar elastic constants are performed via the tensile-torsional
deformation of the micropolar solid. However, such experiments are infeasible when investigating two
dimensional structures. For this reason, this study implements conventional axial, shear and bending
tests to measure the micropolar elastic constants in the plane.

2.4.2. Tools
To measure the reaction forces on the fixed end of the MM sample, an ATI 6 DOF sensor is used (±2
Nm, ±150 N, 0.25% accuracy). For measuring the free deformations based on the internal rotation, a
video camera is used. All deformations were applied using a single-axis linear actuator, which ensures
minimal backlash and high repeatability (1 μm resolution, 0.1 step size).
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To perform the motion tracking, Kinovea software [8] is implemented to measure the local rotations of
each unit cell. In this way, the strain measures of ϕ, φxy and φxz will be measured. Figure 2.6 shows
the rotations measured by Kinovea as the rotations of the free ends of each unit cell. These free ends
correspond with the micro-rotation at the center of the unit cell, as these free ends are unloaded. The
retrieved data is processed in MATLAB software. The complete experimental protocol is detailed in
Appendix B.

2.4.3. Experiment plates
To perform the experiments, three plates where produced on which all 8 experiments are performed.
For the purpose of fast prototyping, the linear guides enabling the displacement in the experimental
plates are manufactured from 3D printed Poly-lactic Acid (PLA). A tolerance of 0.15mm between the
base-plate and actuated slider was found to ensure smooth motion without excessive play.

To improve repeatability and reduce the effect of surface defects, a sanding paste was applied between
the actuated sliders and the guide slots and the interface was ground down for 3 minutes. After the
sanding paste was cleaned off, a layer of grease was applied. The grease increased the friction be-
tween the surfaces, but was found to increase the repeatability of the experiments. This process was
repeated for all three experiment plates.

Top and side views of the three experimental plates are shown in Figure 2.8. The square grid of holes
in each plate is used for clamping the MM samples in place. The holes are designed to align with the
endpoints of a one-by-one, two-by-two or three-by-three tessellated grid of Mr4 unit cells. The square
grid is of size 100 by 100 mm, which is the size all samples will be printed as.

Actuator

Baseplate

Actuator slider slotSensor 
interface

(a)

Baseplate

Actuator

Sensor 
interface

Actuator slider slot

(b)

Sensor 
interface Actuator 

axle

Baseplate Clamps

Wire spool to actuator

Actuator 
axle

(c)

Figure 2.8: The experimental plates for all experiments. (a) the plate for axial and bending experiments, (b) the plate for shear
experiments, and (c) the plate for the rotation experiments.
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2.4.4. Experimented samples
The Mr4 tesselation and its parameters shown schematically in Figure 2.9. Here, L is the specimen
size, which constitutes of n tessellations of the UC with a characteristic length l. Furthermore, the
parameters h and a can be combined into a dimensionless thickness η = h/a. As such, there are a
total of three parameters that fully define the Mr4 geometry: dimensionless thickness η, initial angle θ0,
and Young’s Modulus of the constituent material Eb.

Origin

Figure 2.9: Left: the Mr4 lattice with unit cell boundaries shown. Right: the minimal Z structure with element lengths a, element
thicknesses h and initial angle θ0.

Scaling unit cells
To scale the unit cells such that they fit onto the experimental setup, the dimensionless thickness η
can be used. Since the elastic tensor of Mr4 is fully defined by the three parameters η, θ0 and Eb in
Equations 2.14, it should follow that scale of the Mr4 UC can be altered without changing the observed
behavior as long as the three parameters remain unchanged. Thus, with η = h/a, it is possible to
choose the element length a to any desired length such that the total sample length L fits into the
experimental setup, as long as the element thickness h is scaled inversely. For Mr4 the characteristic
length l of the unit cell can be found using trigonometric identities to be:

lMr4 = 2a
√
2− 2cos(θ0) (2.19)

(2.20)

For square lattices, it can then be said that the sample size L4 is simply L4 = n ∗ l. With this relation,
it becomes possible to find the required element lengths a, for a fixed angle θ, a fixed sample size L,
and a given tessellation number n.

Table 2.5: The geometric parameters of the analyzed geometries.

Mr4
1 60 100 100 50.0 2.5 0.05
2 60 100 50.0 25.0 1.3 0.05
3 60 100 33.3 16.7 0.8 0.05
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Based on preliminary experiments, it was found that choosing η = 0.05 showed reasonable stiffness
behavior with respect to the sensor sensitivity and force limits. Based on this choice, Table 2.5 shows
an overview of all parameters for a one-by-one, two-by-two and three-by-three tessellation of the Mr4
geometry. Due to temporal limitations, only the two-by-two sample is fully analyzed and included in this
study.

Manufacturing
For the experiments, the samples were manufactured by 3D printing technology of the Poly-ethylene
Terephthalate Glycol (PETG) material. This material shows more flexible behavior compared to other
frequently used materials like PLA and ABS and shows less viscoelastic behavior as compared to TPU,
whilst still being safe and easy to print on FDM printers [50, 26]. This balance of material-properties
makes PETG a frequently used material in compliant mechanisms and MM research [51, 6], and is why
it is used in this study as well.

The metamaterial samples are printed according to Table 2.5, with an out-of-plane thickness of b =
5mm. For the print settings, the following combination of parameters provided minimal stringing be-
tween walls and minimal agglomeration of material at layer seams.

Table 2.6: Used conditions for FDM 3D printing of PETG samples.

printer Prusa MK3S
material PETG
nozzle diameter 0.4 mm

printing temperature 230 °C
bed temperature 25 °C
retraction length 1.5 mm
lift height 0.1 mm
infill density 25 %
infill pattern Gyroid
layer height 0.1 mm
seam position Random
sample orientation Flat on built-plate

It should be noted that a relatively low infill percentage is used. This is done due to the small wall
thickness of the experimented samples. This was found to improve surface finish of the printed samples.
Perhaps that by leaving the infill low, this allows any over-extruded or excess material to flow to the
inside instead of accumulating on the outer surface.

No further investigation was conducted on the numerical influence of printing parameters on the printed
material properties. The effective Young’s modulus of the base material was found by fitting the results
of Finite Element simulations to the performed experiments. This is detailed further in Section 3.2.



3
Results

In this section, the raw experiment results of the force sensors are presented, and their processing
is detailed. Next, a similar principal is applied for the strain measurements extracted through motion
tracking. These results are then combined and the elastic constants are derived. Finally, the analytical
tensor is computed as well, such that a fair comparison can be made.

3.1. Experimental measurements
First, the experimental measurements are presented, starting with the force sensor data. After, the
motion tracking data is presented, after which these are combined to find the elastic constants. Lastly,
the internal rotation experiment is detailed.

3.1.1. Sensor measurements.
In the force sensor data, significant hysteresis was found to be present.
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Figure 3.1: The force-displacement measurements of the actuator Fact (a) and the measured reaction forces Fx (b), Fy (c)
and Mz (d) from the A1 experiment. The thin dotted lines represent the raw experimental data, solid black shows the average
over loops, green dotted shows the centerline between displacement directions and the solid blue line shows the processed

result removing the shear-moment coupling.

Figure 3.1 shows an example of the force-displacement measurements from the A1 experiment. The
black dotted lines are the raw measurements containing all repetitions of the experiment. The solid
black line shows the average signal over the loops. The solid yellow line shows the mid-point between
the two actuation directions, essentially removing the sliding friction effect. Last, the red line shows a
polynomial fitted function on the centerline. This process is shown for all measurements of all experi-
ments in Appendix D.

19
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Furthermore, the reaction force Fy opposes the displacement induced load at the actuator Fact, as
would be expected. On the other hand, the coupling between shear loads on the base-plate and the
measured reaction moment also appears perfectly inverse. This stems from the fact that the shear-
coupling inside the MM sample creates reaction forces at the interface with the plate attached to the
sensor. Since these reaction forces are not equal and opposite with respect to the sensor, a moment
is induced. A more detailed analysis of these coupled measurements and how they are removed from
the stiffness vectors is provided in Appendix A.

Next, the offsets at d = 0 and the coupledmeasurements are removed from the sensor dataset. Besides
this, the clockwise and anti-clockwise datasets are combined. Figure 3.1 shows an example of the
removed influence of Fx on the reaction moment measurement Mz. All decoupled results and a list of
removed offsets are shown in Appendix D.

The decoupled measurements are then used in the stress-definitions calculated in Appendix A. Please
note that the combined shear-moment measurements as derived in this appendix have already been
removed, as described above, and are not subtracted again. This results in the calculated micropolar
stresses as a function of the applied displacement d shown in Figure 3.2.
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Figure 3.2: The decoupled micropolar stresses (The components of S) as a function of the forced deformation d for each
experiment. The solid lines represent the stress corresponding with its primary experiment, whereas the dashed lines

represent that stress in the other experiments. Thus, for experiment A1 the stress Sxx, shown in (a), is the primary stress so
line A1 is solid, for Syy (b), the line corresponding to A2 is solid, etc.

Now that all the decoupled micropolar stresses are detailed, in the next section the decoupled microp-
olar strains are presented.

3.1.2. Motion tracking measurements.
In the motion tracking, the applied displacement d was measured alongside the internal rotations φ.
The applied displacement is tracked to make sure the measured internal rotations can be mapped to
the correct stresses from the reaction force sensor, which are also known as a function of the applied
displacement. As such, the strain tensors can be set according to Table 2.2. Following this, the simple
shear experiments are mathematically combined into a symmetric and antisymmetric experiment S and
A. Now, all 7 experimental datasets are decoupled according to Equations 2.5.

Figure 3.3 shows the flow from measured micro-rotation and displacement toward the derived decou-
pled symmetric and antisymmetric shear experiments. Note that in the derived symmetric experiment,
the antisymmetric strain vanishes Axy = 0, and in the derived antisymmetric experiment that the sym-
metric strain vanishes Exy = 0.
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Figure 3.3: The tracked micro-rotations ϕ of the two simple shear experiments, s1 in (a) and S2 in (b). The dashed black line
in (a-b) shows the averaged micro-rotation of each node in the S1 and S2 experiments. Below these, the shear strains εxy , εyx

of the derived symmetric (c) and antisymmetric (d) experiment, and the decoupled micropolar strains Exy and Axy for the
derived symmetric (e) and antisymmetric (f) experiment. The dashed black line in (c-f) shows the forced simple shear strain of

the S1 and S2 experiments.

Next, we investigate which unconstrained internal strains Axy, φxz and φyz can be neglected. Addition-
ally, we measure the axial strain in the bending experiments to investigate its prominence.

To asses this, we examine the relative strengths of the strains with respect to the primary actuated
strain. Based on Figure 3.4, the internal rotation strain Axy shows significant presence in the axial,
antisymmetric shear and bending experiments. On the other hand, the couple strains φxz and φyz

appear prominent in the bending experiments B1 and B2 only.
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Figure 3.4: The decoupled micropolar strains, Exx (a), Eyy (b), Exy (c), Axy (d), φxz (e) and φyz (f), relative to the designed
dominant strains as a function of the forced displacement d for each experiment. Thus, Exx = 1 for experiment A1, Eyy = 1
for experiment A2, etc. The singularity visible around d = 0 stems from the fact that it corresponds with a zero value of the

primary strain, resulting in an undefined/infinite relative strain.
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By taking the mean of the relative strain value at the extreme deformations (d = −10 and d = 10 mm)
we ignore the singularities in the signals that occur around d = 0. Table 3.1 then shows the relative
strength of each of the kinematically measured strains and lists if they are assumed zero or not. By
setting the threshold for assuming a strain is insignificant at 36% of the primary strain signal (diagonals
on the matrix) we can simplify the system of equations, making it solvable.

Table 3.1: The relative strength of the rotation-related strains with respect to the actuated strain for each experiment. When a
strain strength is smaller or equal to 0.36, it is assumed insignificant and neglected, otherwise it is included. The primary
strains are the diagonal strains with respect to themselves. Since Exx, Eyy and Exy are not tracked they do not show a

primary strain in the table. Axy , φxz and φyz are the primary strains of experiment A, B1 and B2 respectively.

A1
Axy −1.1 Included
φxz 0.36 Neglected
φxz 0.02 Neglected

A2
Axy −1.3 Included
φxz 0.10 Neglected
φxz 0.25 Neglected

S
Axy 0.19 Neglected
φxz 0.32 Neglected
φxz 0.22 Neglected

A
Axy 1 Primary
φxz 0.02 Neglected
φxz 0.03 Neglected

B1

Eyy 0.76 Included
Axy 1.13 Included
φxz 1 Primary
φxz 0 Defined zero

B2

Exx 0.74 Included
Axy 0.74 Included
φxz 0 Defined zero
φxz 1 Primary

By applying these results onto Table 2.3, we can retrieve an overview of the strains in the experiment
as shown in Table 3.2.
Table 3.2: An updated overview of all performed experiments their decoupled micropolar strains, showing which strains are

forced by the displacement d, which strains are tracked (ϕ) and which strains are assumed to be zero.

Uni-axial in x d/L 0 0 −2ϕ 0 0
Uni-axial in y 0 d/L 0 −2ϕ 0 0

Symmetric shear 0 0 d/L 0 0 0
Antisym. shear 0 0 0 d/L− 2ϕ 0 0

3-point bending in x 0 < d/L 0 −2ϕ ∆ϕx/L 0
3-point bending in y < d/L 0 0 −2ϕ 0 ∆ϕy/L

Rotation 0 0 0 −2ϕ 0 0

Now that both stress tensors and the strain tensors are fully set for each experiment, the system of
equations can be solved. This is detailed in Appendix E.

3.1.3. Experimental values for the decoupled micropolar elastic tensor
By solving the system of equations as detailed in Appendix E, we have managed to derive all 36
possible elastic constants for the DME tensor for a planar missing-rib 4 geometry. Figure 3.5 shows
all 36 elastic constants as a function of the applied displacement d.
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Figure 3.5: The calculated elastic constants as a function of the applied displacement d. Each plot (a-f) shows the elastic
constants, related to each of the micropolar strains, Exx (a), Eyy (b), Exy (c), Axy (d), φxz (e) and φyz (f). Here the sold lines

represent the material moduli on the diagonal of the DME tensor, and the dashed lines represent the off-diagonals.

It should be noted that typically, the elastic constants are defined as the slope of the stress-strain
curves. Here, this is impractical, as this would combine the effects of six potential micropolar constants
into each stress-strain curve. Looking at Figure 3.5 it appears that the elastic constants can be found
as the asymptotes of the signal when plotted against the applied displacement. On top of this, these
asymptotes show a minimal change over the applied displacement d, indicating linear elastic behavior
over the entire strain range of ±10 %.

To approximate the asymptotic value at d = 0, we average the elastic constants at the endpoints of the
displacements curve d = ±10. An example of this asymptote for the separate rotation experiment is
presented in Figure 3.6. This yielded the experimental entries of the DME tensor to be:



Sxx

Syy

Sxy

Txy

mxz

myz


=


−0.0369 −0.0074 −0.0029 0.0047 0.0644 1.0881
−0.0044 −0.0397 −0.0020 0.0032 0.9896 −0.0039
−0.0052 −0.0043 −0.0097 0 0.3549 0.1699
−0.0289 −0.0211 0 0.0169 −0.0025 0.0346

0 0 0 0 0.2321 0
0 0 0 0 0 0.2125





Exx

Eyy

2Exy

2Axy

φxz

φyz


(3.1)

3.1.4. Internal rotation experiment
In this case, the internal rotation experiment was not required to solve the system of equations. How-
ever, it can still serve as an additional check on the derived constant by the decoupled shear experi-
ments. Figure 3.6 shows this separate elastic constant. From it, we derive that its value evaluated at
extremity deformation to be crot44 = 0.0024. This value is very closely agrees with the value calculated
in the previous section using the shear experiments.

3.2. Analytical decoupled micropolar elastic tensor
In this section, the analytical version of the DME tensor is solved for the specific geometric parameters
used in this study. Only the Young’s modulus and Poisson’s ratio of the base material, PETG, are to
be characterized still.

3.2.1. Identifying base material properties
As identified by Özen [41], the Poisson’s ratio of 3D printer PETG is assumed to be ν = 0.35 . Regard-
ing the Young’s modulus of PETG, it was found to be highly dependent on exact printing parameters,
environmental conditions and post processing [21].
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Figure 3.6: The elastic constant found by the separate internal rotation experiment as a function of the applied rotation
360 ∗ d/r, with r the diameter is the wire spool used in actuation. The solid black line is the asymptote that describes the elastic

constant, essentially removing the effect of the singularity from the result.

For this reason, this study finds the effective Young’s modulus of the 3D printed PETG by model-
matching a Finite Element simulation to the observed force-displacement curve of the axial experiments.
In this way, the effective Young’s modulus of the base material was found to be Eb ≈ 800 MPa, which
lies well in the wide range found in literature (400 MPa - 2 GPa) and is consistent with the values found
in the literature [21].

Table 3.3: Geometric parameters used for calculating the analytical micropolar constants.

Dimensionless thickness η 0.05 [-]
Initial angle θ0 60 [deg]
Base Young’s modulus Eb 800 [MPa]

3.2.2. Calculating the analytical result
Using these parameters, the elastic constants are calculated to be:

µ λ γ κ A B ζ
0.0364 0.0364 0.0218 0.0276 0 0.0046 0.0333

(3.2)

Which can be filled into Equation 2.16 to retrieve the values of the analytical DME tensor as:



Sxx

Syy

Sxy

Txy

mxz

myz


=


0.1425 0.0031 0.0046 0 0 0
0.0031 0.1425 −0.0046 0 0 0
0.0046 −0.0046 0.0276 0 0 0

0 0 0 0.0124 0 0
0 0 0 0 0.0218 0
0 0 0 0 0 0.0218





Exx

Eyy

2Exy

2Axy

φxz

φyz


. (3.3)

3.3. Comparing the elastic constants
In this section, a qualitative and quantitative comparison between the results is presented. Starting
with the prediction by fourfold-symmetry qsym as described in Section 2.1.4:

qsym =


c11 c12 c13 c14 0 0

c11 −c14 −c13 0 0
c33 c34 0 0

c33 0 0
sym c55 0

c55

 (3.4)
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And the analytical result qana as described in Section 2.2.3.

qana =




0.1425 0.0031 0.0046 0
0.0031 0.1425 −0.0046 0
0.0046 −0.0046 0.0276 0

0 0 0 0.0124

 0

0

[
0.0218 0

0 0.0218

]

 (3.5)

We see that the major symmetry of the tensor is satisfied in both cases, as expected from the assump-
tions in both their derivations. The principal axial stiffnesses also match, both finding that c11 = c22.
However, Cui’s prediction that c23 = −c14 and c42 = −c13 does not transfer to the analytical case.
Instead, it finds that c23 = −c13. On top of this, the analytical model finds that c14 = c24 = c34 = 0,
whereas they were predicted to be present by the predictions of Cui. Additionally, the prediction of
Cui that c44 = c33 does not hold in the analytical model either. Lastly, both predict the cross-coupling
entries of the upper-right of the tensor are predicted to be zero in both cases, and that c66 = c55. Table
3.4 shows this comparison in a tabular format. Next, these findings are compared to the experimental
results qexp found in this study.

qexp =




−0.0369 −0.0074 −0.0029 0.0047
−0.0044 −0.0397 −0.0020 0.0032
−0.0052 −0.0043 −0.0097 0
−0.0289 −0.0211 0 0.0169


0.0644 1.0881
0.9896 −0.0039
0.3549 0.1699
−0.0025 0.0346

0

[
0.2321 0

0 0.2125

]

 (3.6)

Starting off, it was found that the major symmetry in the tensor, described by both Cui [12] and Bahaloo
[2], were not retrieved from these experiments. In stead, the experimentally obtained tensor qexp con-
tains many terms that differ significantly between the upper-right part of the tensor and the lower-left
part of the tensor.

Moving on, we can investigate these qualitative relationships in the tensor by checking the relative
strength of the predicted couplings presented above. This is detailed in Table 3.4.

Table 3.4: A comparison between predicted couplings by Cui [12] and by the analytical model by Bahaloo [2].

C
c22 = c11 c22 = c11 c22 = 1.08c11 c22 = c11
c23 = −c14 c23 = −c13 c23 = −0.43c14 = 0.70c13 None
c42 = −c13 c14, c24 = 0 c42 = −1.1c13 c42 = −c13
c34 ̸= 0 c34 = 0 c34 = 0 c34 = 0

B All zeros All zeros Fully exists None

D c66 = c55 c66 = c55 c66 = 0.92c55 c66 = c55
c56 = 0 c56 = 0 c56 = 0 c56 = 0

Based on Table 3.4we find that the prediction by Cui [12] and Bahaloo [2] agree on the fact that c11 = c22
and that c55 = c66. These findings are confirmed by our experimental results as well, and makes sense
when observing that the fourfold symmetric UC is identical under 90-degree rotations. Regarding the
off-diagonal c23, neither of the predictions matched the experimental findings well, with either the sign
or the magnitude diverging from our results. Regarding the off diagonal c42, the prediction by Bahaloo
matches our findings that it should not be present in the DME tensor. The off-diagonal c56 also matches
with both predictions. Lastly, both predictions assumed that the cross-couplings contained by theB part
of the tensor were all zeros. However, in this work they are all present with relatively strong stiffness
entries compared to the other constants.
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For a more quantitative comparison, we create an additional matrix. Here, the components of the
analytical tensor are divided by the non-zero components of the analytical tensor element-wise. Thus
retrieving their relative magnitude and making the sign differences clear.

qexp =


−0.2592 −2.3835 −0.6353 0 0 0
−1.4277 −0.2783 0.4230 0 0 0
−1.1266 0.9220 −0.3530 0 0 0

0 0 0 1.3624 0 0
0 0 0 0 10.6474 0
0 0 0 0 0 9.7454

⊙ qana (3.7)

Here, ⊙ denotes the element-wise multiplication symbol. Furthermore, it should be noted that this
tensor does not say anything regarding the elastic constants that were not present in the analytical
prediction.

Looking at these relative strengths, the diagonals of the axial elastic constants c11 and c22 were mea-
sured to be around −1/4th that of the analytical prediction. Off-diagonals c12 and c21 are of opposing
sign and very different from the analytical results. c31 and c32 are close to the analytical values, but c13
is of opposite sign. On the other side, this does not hold for c13 and c23. c13 is also of opposite sign
compared to the analytical result, but the magnitude is much further apart. The diagonal c33 was found
to have opposite sign and 0.35 times the magnitude compared to the analytical result. the diagonal
c44 matches the analytical prediction reasonably well, being 36% off. The final diagonals c55 and c66
were found to be approximately 10 times stronger than predicted by the analytical model. All cross cou-
pling terms in the upper-right of the tensor were were experimentally observed, contrary to predictions.
However, the entries in the lower-left of the tensor were found to be zero, aligning with the predictions.



4
Discussion

4.1. Validity of the results
It should be noted that numerous errors in the experiments were found during the analysis. In this
section, the validity of the obtained results are investigated, and the potential effects of both the errors
and the assumptions made onto the DME tensor components are detailed.

Mistakes in the setup
When looking at the results presented, one of the notable observations is the significance of the hystere-
sis effect in the force data of all experiments as illustrated by Figure 3.1. This pronounced hysteresis
effect arises directly from the applied grease between the base-plate slot and actuated slider. However,
due to the high repeatability (all loops almost perfectly align), this hysteresis effect can effectively be
removed.

Additionally, a strange phenomenon is observed. in Figure 3.1 where the shear force, and correspond-
ingly the measured torque, crosses itself at d ≈ 4 mm. This insinuates that energy is not dissipated
but generated in the range 4 < d < 9 mm. The only possible explanation appears to be that the sliding
friction is directionally dependent. In this case, friction term appears to vanish when the displacement
passes d > 1mm with positive velocity. Then, once it switches direction, the sliding friction increases
again, resulting in a more negative measured Fx. Unfortunately, this explanation might be insufficient,
and the true origins of its occurrence are not yet understood.

Looking at the full set of force-displacement curves shown in Appendix D and the motion-tracked
results, it was found that the shear experiments experienced a small jamming occurring at around
d = −2 and d = −5mm. This was later found to stem from a manufacturing defect in the slider of the
shear experiments, which bumped into the base-plate when the actuator pushed it in. This significantly
affected the results and although a polynomial fit was used to remove some of its effect, the results
must be interpreted with additional care. Besides this jam, some of the measurements were found to
have loose boundary constraints, resulting in some parasitic deformation modes at those locations on
the boundary of the sample. An overview of these observations is presented in Appendix C.

Taking these observations into account, it can inferred how they influenced the results. Whenever a
node got stuck in the actuator, its internal rotation mode got constrained and reduced the effective
bendable length of the sample, effectively increasing the strain energy density of the sample. The
average internal rotation ϕ would thus become smaller, whilst the measured forces are likely larger. It
should be noted that whenever one part of the UC became stuck, another appeared to show an extra
pronounced deformation or rotation. This might reduce the described effect on mean rotation, but does
not remove the effect on the bendable length. As such, this observation probably caused an overall
increase in stiffness value for the elastic constants derived from that experiment.

27



4.2. Interpreting the decoupled micropolar elastic tensors 28

On the other hand, whenever a boundary was poorly fixed, allowing a rotation to occur, the opposite
happens. Due to this free rotation, moments are not transferred properly to the base-plate, reducing
the torque measurement on the sensor. Additionally, the sample can achieve a more relaxed state
compared to when the boundaries are fully constrained. This results in a lower strain energy of the
entire sample, probably yielding lower overall stiffness values for the elastic constants derived from
that experiment.

Influence of assumptions
Besides these anomalies in the experiments, the assumptions made on how the reaction forces con-
tribute to the stress components and what strain components were assumed to be zero also impact
the findings.

Regarding the stress definitions, it was found that the choice of sign in the reaction forces causes
some diagonal entries of the elastic tensor to be negative. E.g. under a negative displacement d,
some reaction forces are positive. As such, we divide a negative stress over positive strain, or vise
versa, resulting in negative elastic constants. Additionally, the couple stress terms are set to zero by
definition, except for the bending experiments. The experimental setup implemented in this study was
unable distinguish between the moments applied on each face independently. Therefore, all moment
contributions were allocated to the internal rotation. Future work might include a torque sensor on
each constraint.

Moving on to the strain assumptions, we can predict their influence from a strain energy density per-
spective. By setting some strains to be zero, the stresses they might have induced are reallocated to
the remaining strains. Therefore, the remaining strains show an even more pronounced elastic con-
stants, as the observed reaction forces, which are a direct result from the strain energy of the deformed
sample, remain unchanged.

4.2. Interpreting the decoupled micropolar elastic tensors
To begin, we found that the derived elastic constants remain relatively constant over a 10 percent strain
range, thus supporting the use of linear approximations in the analysis of these materials.

Moving on to the experimentally obtained DME tensor, it should be noted that the diagonal constants
should be positive definite, as the total strain energy must be positive definite. This indicates sign-
mistakes in derivations, probably arising from an inverted definition of the positive direction between
the actuator axes, sensor axes and/or motion-tracked axes. However, the specific source of this error
could not be identified.

Looking at the axial diagonal elastic constants c11 and c22, their magnitude was found to be smaller
than the analytical prediction. It was also found that the internal rotations were found to play a signifi-
cant role in axial deformations. From a strain energy perspective, this means that a portion the strain
energy ascribed to the axial elastic constants c11 and c22 could have been transferred to the strain
energy carried by the internal rotation related constants c41 and c42. This effect is not present in the
analytical model, and for that reason could have caused this weakening of the diagonal. Additionally,
the couplings between internal rotation and principal strains c14, c24 support the idea that overall dilation
stiffness is driven by the internal rotation of such MMs, which was suggested by various other studies
[35, 59].

Regarding the diagonal constants c55 and c66, the opposite effect was observed, being significantly
stronger compared to the analytical prediction yet equal to each other from the experiments. This
discrepancy deserves further investigation, but is not explored further in this study.

Next, the major symmetries of the off-diagonal entries can be investigated. Here, a significant differ-
ence in magnitude between ”opposite” constants cij and cji was observed, possibly arising from the
separation of experiments with which the constants are measured, and the culmination of assumptions
and errors in the measurements. However, these differences are still quite large with respect to, for
example the axial constants c11/c22 and the curvature constants c55/c66 which are both within 10% of
magnitude. As such, our work supports the idea that the major symmetries are not necessarily satisfied
in the micropolar tensor, indicating anisotropic behavior [11].
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On the other hand, the tensor asymmetry in the cross-coupling constants, from c15 to c46 compared
to c51 to c64, directly follows from the assumptions made on the measured couple-stresses. A couple-
stress existing as a reaction force would have to be equal and opposite on both attachments to the
base-plate. Thus making it impossible to measure when utilizing just one reaction-force sensor. Their
presence could only be assumed for bending experiments, and it is unclear to what extend these couple-
stresses might influence in the other experiments executed in this study. However, the upper-right part
of the tensor, from c15 to c46, was fully filled.

All of these constants were predicted to be zero through both the analytical model and the symmetry
predictions. Yet, in our experiments they all show a strong presence in magnitude. This suggests that
the curvature strains introduce large stresses in all aspects of the decoupled micropolar description.
The results found here are hard to validate, as this section of the tensor is often set to zero by as-
sumption in the micropolar models. Nevertheless, the results obtained in this cross-coupling part of
the tensor do seem legitimate when taking into account the compressibility of the internal structures.
Thus, when performing bending experiments, a principal strain perpendicular to the axis of curvature
is induced, which in-turn corresponds strongly with the symmetric- and antisymmetric shear strains.
Furthermore, during the experiments, there appeared to be a transition-area. In the upper half of the
sample, the actuated side, shear and internal rotation appeared dominant under the applied strain. On
the bottom half of the sample, the curvature strain took the upper hand. This effect is visualized in
Figure A.1b. This peculiar separation of strains throughout the height of the sample is something to
look into more, but will not be discussed further here.

4.3. Relevance to the field
Looking at the analytical model of [2], it was noted that B only vanishes as a result of assumed isotropy
in [35] and hemitropy in [10]. These studies compensate for this simplification by adding additional
parameters in the C part of the constitutive relation to reintergrate anisotropy and chirality into the
constitutive relation. Using these additional parameters, Bahaloo creates a V-beam finite element to
reduce nodal DOFs and derive analytical solutions for a planar chiral lattice. [2], which is then used by
[34] to show that the Mr4 geometry is highly anisotropic. Unfortunately, generalization of this analytical
model is difficult as the derivation of the stiffness matrices proved tedious and highly dependent on
unit-cell geometry.

As such, there now appears to be a circular logic. Initially, full isotropy or hemitropy is assumed, forcing
the micropolar tensor to be symmetric and setting the cross-coupling matrix B = 0. Then, additional
elastic constants have to be introduced to accurately describe the material behavior based on chirality
and anisotropy. In reality, it was found that the micropolar elastic tensor does not require the major
symmetries to be present [11]. While isotropic assumptions have been found to translate to anisotropic
media from the perspective of bounded elastic properties[3], we find that their deformation behavior is
still fundamentally different from the perspective of the DME tensor. As such, it might concluded that
it is the asymmetry and cross-coupling terms of in the DME tensor that are the most descriptive of the
unique behaviors present inside MMs, warranting further investigation.

Performing these experiments with FE methods might prove to be more convenient; however there
remains the same problem of measuring the couple-stresses. Here, more complex FEMmodels should
be implemented that are capable to extract reaction moments on each part of the constraint faces, such
that it can always be related to a couple stress.

In literature regarding micropolar elasticity, the micropolar elastic constants are used for the constitutive
framework. However, in this work, we were unable to relate the entries of the DME tensor cij to the
micropolar elastic constants λ, µ, κ and γ or to the engineering constants Em, νm, l and N . This stems
from the isotropic assumption used in the definition of the material constants. Based on Eringen [17], a
fully anisotropic thermo-elastic solid can have up to 196 independent material moduli. These have been
simplified towards the creation of linear isotropic and centrosymmetric material models [17], but such
work is yet to be implemented in materials that exhibit anisotropic and non-centrosymmetric behavior.
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4.4. Generalization
In this work, only one tetra-chiral geometry is analyzed. Yet, we were unsuccessful in fully validating the
observed results with existing literature. Perhaps our method is flawed, or perhaps there is something
missing in literature. In future work, a more fine-tuned version of the method could be implemented
to yield more reliable and higher-accuracy measurements of the micropolar material moduli. With this,
comparisons with analytical models could be made with more certainty. Furthermore, the influence
of symmetry, chirality and hierarchy could all be investigated with the proposed method. Here, the
proposed method for sample-scaling might allow fairer comparisons with respect to analytical literature,
especially when investigating the scale-ability of the MM material moduli.

Taking another step back, this work only begins to explore the surface of the continuum models used
for describing MMs. Other descriptions might still prove effective to fully describe the spectra of possi-
ble behaviors in MMs. However, more research is needed to make any meaningful claims regarding
differences in effectiveness between the continuum descriptions and the assumptions made in them.

On another note, research suggests that micropolar descriptions of MMs do not scale [5, 11]. This
is an interesting finding and deserves to be investigated further. Does it still hold when scaling non-
dimensional parameters that define the stiffness like in this work? Or is it that the characteristic length
used in micropolar elasticity does not scale proportional to the unit-cell length? Or are these findings
artifacts from isotropic assumptions on the tensor? Moreover, future work could explore how not just
scale, but hierarchy influences the observed behavior, through stacking UCs of varying sizes, or group-
ing various UCs into higher-order repeating patterns.



5
Conclusion

In this work, we identify DME theory as a suitable framework for more extensive analysis of chiral MMs.
A two-dimensional simplification of the theory was applied to synthesize an experimental method capa-
ble of measuring all micropolar elastic constants without relying on preliminary assumptions frequently
applied in the literature. A specific family of planar chiral metamaterials, the Missing Rib 4 geome-
try, is investigated. Through our proposed methodology, we find the values of 36 potential indepen-
dent micropolar elastic constants. The results are compared to state-of-the-art analytical models, and
symmetry-based predictions.

It was found that all three decoupled micropolar tensors show differing results. The analytical model
does not predict independent couplings between internal micro-rotations of a micropolar continuum,
whereas these are predicted from symmetry. Our analytical results agreed with both predictions regard-
ing the diagonal constants related to axial strains and regarding the curvatures. For the off-diagonal
terms, no consistent agreement was found between the various predictions and the obtained results.

Additionally, our results show relatively strong coupling effects in the elastic constants between mi-
cropolar curvatures and all corresponding micropolar stresses components. This result differs from
most existing literature, where such couplings are often assumed zero in the face of isotropy. As
such, it appears that the assumption of isotropy might not be a suitable assumption in the analysis of
MMs, and that more research is needed to find the elastic constants of anisotropic MMs. Besides these
cross-couplings in the elastic tensor, the internal rotations showed coupled behavior to the axial strains,
supporting the thought that the dilatation stiffness of these compressible materials is influenced by their
capacity to have internal rotations.

On top of these results, this study found that all decoupled micropolar elastic constants showed consis-
tent values over a strain range of ±10%. This supports the use of linear-elasticity-based assumptions
in the analysis of MMs. Yet, more research is needed to investigate how this finding scales with tessel-
lation size (number of UCs) and UC size.

All in all, proper validation of the observed elastic constants remains challenging due to assumptions
in the literature that may not be universally valid when applied to chiral mechanical metamaterials.
Additionally, there appears to be a general scarcity of experimental validations of micropolar elastic
tensors, especially for anisotropic cases. Moving forward, further development of these theoriesmay be
essential for the development of more rigorous bridges betweenMM geometry and functional behavior.
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Epilogue

The future of mechanical metamaterials appears bright. Research on the topic is booming, yet many
obstacles are still to be overcome. Most of all, generalizations to three dimensions have to be made.

Extending our work to 3D MMs would require expanding the current methodology. The symmetry
predictions and DME tensor have already been expanded to 3D [13], as has the analytical model of
Missing Rib 4 geometry been expanded into a so-called metacube [33]. However, a comprehensive
classification does not yet exist as rigorous as has been achieved for 2D geometries by Roberjot [48].

Besides these frameworks, the experimental method for three-dimensional MMs would have to change.
The traditional measurement options of the bending-creep and tensile-torsion tests become accessible
again, but it remains unclear whether they are sufficient for fully anisotropic versions of DME. Alter-
natively, the proposed method can be expanded to the third dimension as well, but the main difficulty
would reside in the quantification of strains internal to the material, as they are obstructed by the exter-
nal surfaces. However, inspiration could be drawn from work by Beveridge [5].

An inverse homogenization method has been derived for Cauchy elasticity based on the point groups of
two-dimensional mechanical metamaterials [45]. This could be expanded to an inverse homogenization
of micropolar elasticity, but first a consensus has to be achieved regarding what parts of the tensor exist
in the varying point groups of planar mechanical metamaterials. An improved version of our method
might support these investigations by providing an assumption-free analysis on the existence of DME
tensor components.

A micropolar extension of such an inverse homogenization method would consist of a database of
three-dimensional UCs that have elastic tensors predicted by their geometric parameters and their
point groups. Then, these could be tuned to contain a desired micropolar elastic tensor.

This train of thought could facilitate a so called hierarchical design framework that separates global
topology, high-order repeating patterns, and the individual UCs to find an optimal geometry for a target
shape-change, similar to the proposed design rules of Dudek [14]. They separate the design of MMs
of moving systems into two parts: defining the design space including physical constraints, and solving
computational optimization problem [14]. Here, the optimization problem might be reduced in complex-
ity through the use of the inverse homogenization of the micropolar elastic tensors at the UC level of
the framework.

Lastly, more advanced UC’s could be incorporated, like the so-called building blocks based on the
Freedom- and Constraint Topology of Hopkins [25]. They created building blocks that could serve as
UC’s, such that they do not lose their individual degrees of freedomwhen tessellated in anymanner [36].
It would be interesting to see whether these building blocks could be described properly by micropolar
continuum elements. As such, we might end up with a universal database of UC geometries and how
each of its geometric parameters influences their micropolar tensor. The global elastic tensor could
then be retrieved using FE techniques of assembling local elastic tensors.

All in all, the field of mechanical metamaterials is rapidly progressing. We are far from solving the
quintessential question of rigorously relating the archived structures to desired shape-change ormechanism-
like functionality. And perhaps, this can only be achieved through integrating expanded theories of
elasticity, essentially allowing ourselves to say: Micromotions Matter.
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A
Deriving stress components.

In this appendix the decoupled micropolar stress components are derived from the reactions forces on
the constrained face of the sample.
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Figure A.1: Representative displacement fields of (a) the axial experiments, (b) the bending experiments, (c) the shear
experiments and (d) the rotation experiments.

37



A.1. Axial equilibrium 38

A.1. Axial equilibrium
For the axial experiments, shown in Figure A.1a, the micropolar stresses on each face are defined as:

SA1 =



Sxx = (Rl
y +Rr

y)/Area
Syy = 0

Sxy = (Rl
x +Rr

x)/Area
Txy = (M l

z +Mr
z )/Area

mxz = 0
myz = 0


& SA2 =



Sxx = 0
Syy = (Rl

y +Rr
y)/Area

Sxy = (Rl
x +Rr

x)/Area
Txy = (M l

z +Mr
z )/Area

mxz = 0
myz = 0


(A.1)

Then, the static equilibrium equations between the sensor and MM sample are found to be:∑
Fx+ = Fx − (Rl

x +Rr
x) = 0 (A.2a)∑
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(A.3)

Here, the load is applied in alignment with the measured principle strain. As such, Sxx is measured in
the uni-axial in x experiment, whereas Syy is measured in the uni-axial in y experiment.

By substituting the decoupled micropolar stress definitions of Equation A.1, these equations can be
rewritten to find how the micropolar stresses appear as a function of the measured reaction loads Fx,
Fy and Mz. Last, when assuming the two fixed ends of the MM sample (left and right) are loaded
equally such that Rl

y = Rr
y, these functions become

SA1 :
Sxx = −Fy/Area
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Txy = Mz

Area − L
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& SA1 :
Syy = −Fy/Area
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Area − L
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(A.4)

For the uni-axial in x experiment and switches Sxx = 0, Syy = −Fy/Area for the uni-axial in y experi-
ment.

A.2. Bending equilibrium
For the bending experiments, shown in Figure A.1b, the micropolar stresses on each face are defined
to be.
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Here, the load is applied perpendicular to the axis over which the curvature is measured. As such, in
the Bending over x experiment (measuring φxz), the actuated load is measured in Syy, which changes
to Sxx for the Bending of y experiment (measuring φyz). Then, the static equilibrium equations between
the sensor and MM sample are found to be:
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∑
Fx+ = Fx − (Rl
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By substituting the decoupled micropolar stress definitions of Equation A.5, these equations can be
rewritten to find how the micropolar stresses appear as a function of the measured reaction loads Fx,
Fy and Mz. Last, when assuming the two fixed ends of the MM sample (left and right) are loaded
equally such that Rl

y = Rr
y, these functions become:
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(A.8)

A.3. Shear equilibrium
A.3.1. Deriving decoupled micropolar stresses.
Assuming a standard micropolar stress tensors for shear on x S1 and shear on y S2 respectively as:
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(A.9)

These can be transformed into a symmetric experiment by applying the decoupling Equations 2.5 on
the entire stress vectors corresponding to the S1 and S2 experiments, resulting in a symmetric and
antisymmetric experiment stress vector:

σsym. =


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2 (R

t
x +Rb

x)/Area
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2 (R
t
x +Rb

x)/Area
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2

(Rt
y+Rb
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Area
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2

(Rt
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Area
mxz = 0
myz = 0
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

σxx = 1
2 (R

t
x +Rb

x)/Area
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2 (R
t
x +Rb

x)/Area
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2

(Rt
y+Rb
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Area − (Mt
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z )
Area

σyx = − 1
2

(Rt
y+Rb

y)

Area +
(Mt

z+Mb
z )

Area
mxz = 0
myz = 0


(A.10)

Which can then be decoupled individually to yield the decoupled stress tensors:
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Ssym. =

Sxx = 1
2 (R

t
x +Rb

x)/Area
Syy = 1

2 (R
t
x +Rb

x)/Area
Sxy = 1

2 (R
t
y +Rb

y)/Area
Txy = 0
mxz = 0
myz = 0

& Santisym. =

Sxx = 1
2 (R

t
x +Rb

x)/Area
Syy = 1

2 (R
t
x +Rb

x)/Area
Sxy = 0

Txy = 1
2 (R

t
y +Rb

y)/Area− (M t
z +M b

z )/Area
mxz = 0
myz = 0

(A.11)

Here, the load is applied aligned with the shear direction of the measured face. Since the shear exper-
iments are combined into a symmetric and antisymmetric experiment, the main load of the symmetric
experiment is found in Sxy, which changes to Txy for the antisymmetric experiment.

A.3.2. Solving the equilibrium
Looking at Figure A.1c, the static equilibrium equations between the sensor and MM sample are found
to be:

∑
Fx+ = Fx − (Rt

x +Rb
x) = 0 (A.12a)∑

Fy+ = Fy − (Rt
y +Rb

y) = 0 (A.12b)∑
MO = Mz − (M t

x +M b
z )−

L

2
(Rt

y +Rb
y)−

L

4
(Rt

x −Rb
x) = 0 (A.12c)

and that

Fx = (Rt
x +Rb

x)
Fy = −(Rt

y +Rb
y)

Mz = (M t
x +M b

z ) +
L
2 (R

t
y +Rb

y) +
L
4 (R

t
y −Rb

y)
(A.13)

By substituting the decoupled micropolar stress definitions of Equation A.11, these equations can be
rewritten to find how the micropolar stresses appear as a function of the measured reaction loads Fx,
Fy and Mz. Last, when assuming the two fixed ends of the MM sample (left and right) are loaded
equally such that Rl

y = Rr
y, these relations become:

Ssym. :

Sxx = 1
2Fx/Area

Syy = 1
2Fx/Area

Sxy = − 1
2Fy/Area

Txy = 0

& Santisym. :

Sxx = 1
2Fx/Area

Syy = 1
2Fx/Area

Sxy = 0
Txy = (( 12 + L

2 )Fy −Mz)/Area

(A.14)

A.4. Rotation equilibrium
For the rotation experiments, shown in Figure A.1d, the micropolar stresses on each face are defined
to be.

Sxx = 0 (A.15a)
Syy = 0 (A.15b)
Sxy = 0 (A.15c)

Txy =
∑
i

M i
z/Area (A.15d)

mxz = 0 (A.15e)
myz = 0 (A.15f)
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Here, all faces are fully constrained. Thus, the primary load measurement is Txy for both the clockwise
and anticlockwise experiments. Furthermore, it is directly assumed that al faces distribute the reaction
loads equally. Thus, the moment contributions of the axial reaction forces on the faces cancel out.

Then, the static equilibrium equations between the sensor and MM sample are found to be:

∑
Fx+ = Fx = 0 (A.16a)∑
Fy+ = Fy = 0 (A.16b)∑

MO = Mz −
∑
i

M i
z = 0 (A.16c)

By substituting the decoupled micropolar stress definitions of Equation A.15, these equations can be
rewritten to find how the micropolar stresses appear as a function of the measured reaction loads Fx,
Fy and Mz.

Fx = 0
Fy = 0

Mz =
∑

i M
i
z

−→ Txy = Mz/Area (A.17)



B
Experimental protocol

B.1. Experimental setup
B.1.1. Setting up the rig

1. Fix the rig to the table with M6 Allen bolts.
2. Attach the sensor to the rig, inserting the M3 Allen bolts from below. Make sure the sensor axes

are aligned with the square plate.
3. Ensure the bolts keeping the sensor at a given height are slightly loose. The height may need

adjusting.
4. Initialize the linear stage now that it can still move freely by booting up LabView with the combined

sensor package.
5. Move the linear stage interface suitably in-range to the rig through the LabView interface.

B.1.2. Axial/bending and shear plates
Attaching a sample for the axial, bending or shear experiments.

1. Attach the MM sample to the actuator slots, according to your measurement.
2. Attach the MM sample, with the actuator slots, to the base-plate and ensure the fixed are clamped

to a rigid connection.
3. Attach the base-plate, with the MM sample and actuator sliders attached, loosely to the actuator.
4. Attach the base-plate of the experiment, axial/bending or shear, to the sensor, inserting the M3

Allen bolts from above.
5. Ensure the MM is still connected to the actuator. Change the height of the base-plate if it is not

properly aligned. Use the steel measurement blocks to make incremental changes and ensure it
is all level.

6. Tighten the M3 nut of the actuator interface to the slider.

B.1.3. Rotation plate
Attaching a sample for the rotation experiment.

1. Push M3 contact pins through the pressure-fit internal holes of the MM sample.
2. Attach the MM sample to the base-plate and ensure all outside boundaries are are clamped rigidly

to the base-plate.
3. Attach the base-plate of the rotation experiment to the sensor, inserting the M3 Allen bolts from

above.
4. Insert the actuator rod through the base-plate, through the sensor, and through the double bearing

on the rig-end of the sensor from above.
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5. Ensure the ”arms” of the rod are free to rotate and touch the contact pins at the same instant on
both the top and bottom of the MM sample.

6. Push the spool attachment onto the actuator rod from the bottom side of the rig. Make sure the
large diameter spool faces the ground and that the other side does not quite touch the sensor
attachment plate of the rig.

7. Tighten the spool attachment onto the actuator rod using M3 allen bolts.
8. Lead the wire around the spool once or twice and bring the end towards the linear stage actuator

interface and attach the wire end to the actuator.
9. Tighten the M3 nut of the actuator interface to the wire end.

B.2. Calibration
Once the samples are set, a calibration has to be performed...

1. Set displacement velocity to 0.1 mm per second (Moderate accuracy setting).
2. Move the linear stage position such that its sensor registers approximately 0 N.
3. Tweak the alignment knobs on the linear stage such that the reaction force sensor measures

approximately 0N in the perpendicular axis of actuation (Fx).

B.3. Motion tracking
For the motion tracking, a phone holder is installed on the top of the rig. This holder was printed with
the specific dimensions of the authors phone, such that the camera was aligned with the center of the
sample in each experiment. All that is there to do is to press record before the experiment is initiated.
The motion tracking is then completed in post-processing.

B.4. Experiment protocols
1. Check if the setup is aligned, the actuator and all sensors are operational and the phone camera

is in place.
2. Double check that LABView is in relative displacement mode.
3. Press record on the camera.
4. Set the displacement d = −10 mm for the axial and bending experiments and d = −20 mm for

the shear and rotation experiments.
5. Wait for the stage to arrive at the destination, wait at least one second. and then set the dis-

placement to d = 10 mm and d = 20mm for the axial/bending and shear/rotation experiments
respectively.

6. Wait for the stage to arrive at the destination, wait at least one second, set the displacement to
d = 0mm. Once there wait at least 1 second again.

7. Repeat steps 4-6 at least three more times.
8. After the last repetition, stop the labview programm and stop recording on the video camera.
9. Right click on a grpah and export to excel. Repeat this for all graphs.

10. Copy-paste all data-files into a single excel, each column contains a signal ordered as:
[d, Fact, Fx, Fy, Fz,Mx,My,Mz] and let the rows contain the measured data of each signal.

11. Save this excel according to the experiment name containing at least the geometry, tesselation,
and experiment. E.g. create a folder named ”Mr4_2x2”, which describes the geometry and save
the excel as ”A1”, describing the experiment.

B.5. Error handling
Whenever the camera did not record, the experimental rig was bumped or a sensor malfunction during
an experiment, repeat the experiment.



C
Observations in experiments

Experiment Node Observations Result

A1

Top left Stuck in actuator. SC with B.L. ux = ϕ = 0, uy = d
Top right -
Bottom left Excessive rotation. SC at d = 9.5 mm
Bottom right B.C. not clamped

A2

Top left Stuck in actuator. SC with B.L. ux = ϕ = 0, uy = d
Top right -
Bottom left Excessive rotation. SC at d = 9.5 mm
Bottom right B.C. slips at d = 2.5 mm

S1

Top left B.C. not clamped
Top right -
Bottom left Actuator slip at d = [−5,−3] mm
Bottom right -

S2

Top left -
Top right -
Bottom left -
Bottom right -

B1

Top left Stuck in actuator. ux = ϕ = 0, uy = d
Top right -
Bottom left Excessive rotation.
Bottom right -

B2

Top left Stuck in actuator. ux = ϕ = 0, uy = d
Top right -
Bottom left Excessive rotation.
Bottom right -

Rc

Top left -
Top right -
Bottom left -
Bottom right -

Rc

Top left -
Top right -
Bottom left -
Bottom right -
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D
Figures of all results

Table D.1: A table showing the removed offsets

Experiment
offsets

Fact

[N]
Fy

[N]
Fx

[N]
Mz

[Nm]
ϕTL

[rad]
ϕTR

[rad]
ϕBL

[rad]
ϕBR

[rad]

A1 0.15 1.2 3.6 0.047 1.05 1.03 1.05 1.05

A2 0.18 1.4 3.6 0.025 1.07 1.05 1.05 1.06

S1 0.081 0.39 3.7 0.15 −0.49 −0.48 2.64 2.65

S2 0.22 0.45 3.6 0.15 −0.51 −0.49 2.63 2.62

B1 0.10 1.3 3.6 0.043 1.07 1.03 2.63 2.62

B2 0.10 1.4 3.7 0.034 1.06 1.04 2.64 2.62

Rc −0.024 1.1 3.4 0.060 −0.50 −2.10 1.05 2.65

Rcc −0.079 1.4 −3.4 0.058 −2.11 −2.07 1.06 2.67

D.1. Sensor data
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Figure D.1: Eight simple graphs
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D.2. Motion tracking data
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(a) A1 raw analysis
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(b) A2 raw analysis
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Figure D.2: Eight simple graphs
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(a) B1 raw analysis
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(b) B2 raw analysis
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Figure D.3: Eight simple graphs



E
Solving the system of equations

Now, taking the general form of the decoupled micropolar elasticity tensor presented in Equation 2.8
and applying the identified strain tensors from Table 2.4 for each experiment, we can write out the
systems of equations for each experiment.

SA1 =



Sxx

�
�>

0

Syy

Sxy

Txy

���: 0mxz

���*
0

myz


=


c11 c14
c21 c24
c31 c34
c41 c44
c51 c64
c61 c64


{
Exx

2Axy

}
& SA2 =



���* 0
Sxx

Syy

Sxy

Txy

���: 0mxz

���*
0

myz


=


c12 c14
c22 c24
c32 c34
c42 c44
c52 c64
c62 c64


{

Eyy

2Axy

}
(E.1)

For symmetric and antisymmetric shear S and A:

SS =



Sxx

Syy

Sxy

�
�>

0

Txy

���: 0mxz

���*
0

myz


=


c13
c23
c33
c43
c63
c63


{
2Exy

}
& SA =



Sxx

Syy

�
�>

0

Sxy

Txy

���: 0mxz

���*
0

myz


=


c14
c24
c34
c44
c64
c64


{
2Axy

}
(E.2)

For B1 and B2:

SB1 =



���* 0
Sxx

Syy

Sxy

Txy

mxz

���*
0

myz


=


c12 c14 c15
c22 c24 c25
c32 c34 c35
c42 c44 c45
c52 c64 c55
c62 c64 c65


 Eyy

2Axy

φxz

 & SB2 =
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Sxx
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Syy

Sxy

Txy

���: 0mxz

myz


=


c11 c14 c16
c21 c24 c26
c31 c34 c36
c41 c44 c46
c51 c64 c56
c61 c64 c66


 Exx

2Axy

φyz
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(E.3)

Now, we first solve the elastic constants relating to the symmetric and antisymmetric shear experi-
ments in Equations E.2. Applying the stresses definitions in Appendix A the elastic constants can be
calculated by evaluating at the displacement extremities d = ±10 mm.

c13 = SS
xx/(2E

S
xy)

c23 = SS
yy/(2E

S
xy)

c33 = SS
xy/(2E

S
xy)

c43 = c53 = c63 = 0

&

c14 = SA
xx/(2A

A
xy)

c24 = SA
yy/(2A

A
xy)

c44 = TA
xy/(2A

A
xy)

c34 = c54 = c64 = 0

(E.4)
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Then, these elastic constants can be substituted into Equations E.1, allowing them to be solved next.
First, the set of equations relating to A1 becomes:

SA1
xx = c11E
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c51 = c61 = 0

(E.5)

And the set of equations relating to A2 becomes:
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(E.6)

Lastly, the found elastic constants can be substituted into the equations relating to the bending experi-
ments in Equations E.3. Then, the system of equations of B1 becomes
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(E.7)

And for the B2 experiment

SB2
xx = c11E

B2
xx + 2c14A

B2
xy + c16φyz
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B2
xx + 2c24A

B2
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xy = c41E

B2
xx + 2c44A

B2
xy + c46φyz

���*
0

mB2
xz =����: 0

c51E
B2
xx +�����: 0

2c54A
B2
xy + c56φyz

mB2
yz =����: 0

c61E
B2
xx +�����: 0

2c64A
B2
xy + c66φyz

−→

c16 = (SB2
xx − c11E

B2
xx − 2c14A

B2
xy )/φyz

c26 = (−c21E
B2
xx − 2c24A

B2
xy )/φyz

c36 = (SB2
xy − c31E

B2
xx )/φyz

c46 = (TB2
xy − c41E

B2
xx − 2c44A

B2
xy )/φyz

c56 = 0
c66 = mB2

xy /φyz

(E.8)
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