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A B S T R A C T

Sequentially Linear Analysis (SLA), an event-by-event solution strategy in which a sequence of
scaled linear analyses with decreasing secant stiffness is performed, representing local damage
increments; is a robust alternative to nonlinear finite element analysis of quasi-brittle structures.
Since it is based on a fixed smeared crack constitutive model, severe spurious stresses and
inaccuracies may develop due to misalignment of the crack with the principal stress directions.
To this end, the elastic-brittle fraction model was conceived. The model separates the continuum
into several parallel fractions or layers, each with different properties, chosen in order to
represent the overall constitutive softening behaviour as accurately as possible. The main idea is
to mimick a rotating crack by a superposition of fractions, each with a fixed crack direction. In
this article, the model is presented for both the 2-dimensional and 3-dimensional frameworks,
with a general transition from any saw-tooth law to fraction material properties. The fraction
models are then validated and compared against the fixed crack model with SLA: using single
element and structural case studies. It is shown that the fraction model is able to mimick the
rotating crack model, that it leads to lesser spurious cracks and narrower localisation bands,
and in turn results in a more flexible post-peak response over all case studies compared to the
fixed crack model.

. Introduction

For centuries, quasi-brittle materials like concrete and masonry have been prevalently used as building material in the
onstruction industry. Concrete is used for its high compressive strength and favourable durability [1]. However, the material entails
ome significant drawbacks: concrete has a small tensile load-bearing capacity and shows quasi-brittle fracture behaviour, meaning
hat after the initiation of damage only a relatively small residual deformation capacity is available. Hence, the structure cracks quite
bruptly and very locally, and these cracks induce peaky behaviour in the load–displacement curve. Around these peaks, standard
ncremental iterative analysis, also called Non-Linear Finite Element Analysis (NLFEA), shows convergence problems due to the
rigin of alternative equilibrium paths. Consequently, the robustness of the solution procedure is strongly affected by quasi-brittle
racture, as has been found by many authors [2–4]. Within the framework of smeared cracking, as pioneered by Rashid [5] and
ater on improved by Bazant and Oh [6], many advanced solution methods have been proposed over the years to tackle these
onvergence issues, e.g. arc-length control [7] and energy release control [8]. Despite the numerous proposed solutions, robustness
f incremental iterative analysis for quasi-brittle materials remains a topic of research, especially regarding the analysis of full-scale
tructures in engineering practice.

∗ Corresponding author.
E-mail address: M.Pari@tudelft.nl (M. Pari).
vailable online 25 November 2022
013-7944/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.engfracmech.2022.108953
eceived 26 July 2022; Received in revised form 21 October 2022; Accepted 16 November 2022

https://www.elsevier.com/locate/engfracmech
http://www.elsevier.com/locate/engfracmech
mailto:M.Pari@tudelft.nl
https://doi.org/10.1016/j.engfracmech.2022.108953
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2022.108953&domain=pdf
https://doi.org/10.1016/j.engfracmech.2022.108953
http://creativecommons.org/licenses/by/4.0/


Engineering Fracture Mechanics 277 (2023) 108953D. Bresser et al.

a
e

These convergence issues can be inherently circumvented by invoking linear event-by-event approaches, providing a more robust
lternative. Inspired by so-called lattice models [9–11], in which a continuum is modelled by a network of elastic truss or beam
lements, Rots [12–14] proposed the framework of Sequentially Linear Analysis, from now on abbreviated by SLA. SLA is an event-

by-event strategy based on the fixed smeared cracking model, in which a sequence of scaled linear analyses with a decreasing
secant stiffness is performed, representing local damage increments. The continuous stress–strain softening curve is replaced by
a discontinuous saw-tooth curve. Instead of increasing the load on a structure, the approach locally increases the damage of the
considered structure, such that no abrupt cracks are missed and the complete load–displacement path is obtained from the damage
driven process. During the last decade, many research studies have been performed on SLA. The saw-tooth model has been improved
to make the fracture energy independent of the number of saw-teeth [14]. The method has been proven to be an alternative
for structural applications in masonry [15] and glass [16]. Extensions towards non-proportional loading within the framework of
SLA have been developed [17–19]. Additionally, a Force-release method has been proposed [20] to incorporate non-proportional
loading, in which unbalance stresses are gradually redistributed after each damage increment, potentially inducing new events.
Influences of mesh-directional bias have been reduced by the determination of smoothly curved C1-continuous crack paths [21],
and a multi-surface constitutive model for interface elements suitable for discrete modelling of damage in masonry and concrete has
also been proposed [22]. Furthermore, SLA has been combined with incremental iterative analysis [23], combining the advantages
of both approaches. In order to apply SLA to real-life structures, the approach has been extended towards shell elements [24],
3D-elements [25], including non-proportional loading as well, and efficient linear solvers have been proposed to improve the speed
of SLA [26].

The current SLA-framework is based on a fixed cracking model, in which the direction of a crack is fixed upon damage initiation,
potentially causing the development of severe spurious stresses and inaccuracies due to the misalignment of the crack with the
principal stress directions [2,27,28]. These spurious stresses cause additional energy dissipation and as a result, the structure behaves
stiffer, which is also referred to as stress-locking effects. In an attempt to mimick rotating cracks within sequentially linear analysis,
Hendriks and Rots [29] proposed a model consisting of several parallel fractions or layers, from now on called the Elastic-brittle
fraction model. Each of these fractions is elastic-perfectly brittle, but has different properties, chosen such to represent the constitutive
behaviour as accurately as possible. The fractions fail independent of each other and have their own specific crack direction. The
main idea is to mimick a rotating crack by a superposition of fractions each having their own fixed crack direction, thereby reducing
the aforementioned development of spurious stresses. The first test results are promising [29]: no over-stiff behaviour of the model
is observed, thus indicating similarities to a rotating crack model. The elastic-brittle fraction model fits well within the framework
of SLA and, since the model has not been fully developed yet and is only tested for a limited number of cases, this study will proceed
on the work of Hendriks and Rots.

In this study, the frameworks of regular SLA and the elastic-brittle fraction model are connected by a general transition from
any saw-tooth law to fraction material properties, thereby generalising the approach. Furthermore, the 2-dimensional framework
of the fraction model has been extended towards 3-dimensional structures to broaden the range of applications. Both the 2D and
3D frameworks are based on a smeared cracking model invoking an orthogonal damage approach, restricted to mode I tension
softening for homogeneous quasi-brittle materials, as described by the fictitious crack model [30]. Although compressive crushing
is not considered, the same approach can be applied for those cases as well. The article is organised as follows. Firstly, the current
framework of SLA is elaborated and the motivation for a rotating crack approach in SLA is substantiated. Secondly, the framework
and the work flow of the elastic-brittle fraction model are formally described for both 2D and 3D. Next, validation studies against
experimental benchmarks are performed and the fractions are indeed proved to crack sequentially under slightly different angles
approximating a rotating crack model, thereby significantly reducing the stiffening effects of spurious stresses.

2. SLA - methodology

For the simplified case of proportional loading, the following procedure is used in sequentially linear analysis:

• Add the external load as a reference unit load.
• Perform a linear elastic analysis and determine the principal stresses in all integration points.
• Determine the critical integration point in the structure, which is the integration point for which the principal stress utilises

most of the current strength capacity of that specific point.
• Determine the critical load multiplier, which is the ratio between the strength and the stress in the critical integration point,

and scale the reference load proportionally. Subsequently, determine the stress and strain fields by multiplying the unit load
response with the critical load multiplier.

• Perform a damage increment by reducing the strength and stiffness of the critical integration point according to a predefined
saw-tooth constitutive law, which will be discussed later in this section.

• Repeat this cycle of steps until the damage has reached a user-specified state. The non-linear response can be constructed by
connecting all consecutively found linear responses.

For the more complicated case of non-proportional loading paths, the main concept of the approach remains the same, although the
reader is referred to Refs. [17–19] for more information. Since the procedure damages a unique critical point one by one, it avoids
multiple cracks to occur simultaneously as in the incremental-iterative procedure, thereby circumventing alternate equilibrium paths
or bifurcations points.
2
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Fig. 1. Transition from continuum constitutive law (linear tension softening) to a ripple band saw-tooth law.

Within the framework of SLA, nonlinear constitutive laws are approximated with the aid of step-wise secant materials laws, in
literature often called saw-tooth laws. These laws prescribe the reduction of the strength and stiffness at each damage increment.
During the last two decades, different types of saw-tooth formulations have been developed [12–14,18]. In this study, the ripple
band formulation [14] is applied, as this formulation ensures the dissipated energy (or fracture energy) to be independent of the
mesh-size. In the ripple band formulation, a strength range is set as a percentage 𝑝 of the maximum tensile strength. Two auxiliary
curves are drawn: one +𝑝𝑓𝑡 above and one −𝑝𝑓𝑡 below the continuum constitutive curve, defining an envelope around the softening
curve, as visualised by Fig. 1 for the case of linear tension softening. First, the point of intersection 𝜖𝑡,𝑖 between the secant elastic
branch with stiffness 𝐸𝑖 and the upper curve is determined. The corresponding stress is called 𝑓+

𝑡,𝑖. Then, the tensile strength 𝑓−
𝑡,𝑖 on

the bottom curve for the same strain 𝜖𝑡,𝑖 is calculated and based on that, the new reduced secant stiffness 𝐸𝑖+1 for the next saw-tooth
is obtained by

𝐸𝑖+1 =
𝑓−
𝑡,𝑖

𝜖𝑡,𝑖
(1)

with

𝑓−
𝑡,𝑖 = 𝑓+

𝑡,𝑖 − 2𝑝𝑓𝑡 (2)

This procedure is repeated until a stress-free state is reached, equivalent to a fully developed crack. The number of saw-teeth 𝑁
follows from the procedure and depends on the width of the ripple band 2𝑝𝑓𝑡.

In this study, the procedure is applied in the context of a total strain based smeared cracking model. Upon crack initiation, the
initial isotropic stress–strain relation is replaced by an orthotropic relation, in line with the orthotropic damage model, and the axes
of orthotropy (normal direction 𝑛 and tangential direction 𝑡) are determined by the principal stress directions at crack initiation.
As the current framework of SLA is based on a fixed crack model, the axes of orthotropy are fixed upon crack initiation. For plane
stress states, the orthotropic constitutive relation is given by (e.g. [17,18]):

⎡

⎢

⎢

⎣

𝜎𝑛𝑛
𝜎𝑡𝑡
𝜎𝑛𝑡

⎤

⎥

⎥

⎦

= 1
1 − 𝜈𝑡𝑛𝜈𝑛𝑡

⎡

⎢

⎢

⎣

𝐸𝑛 𝜈𝑛𝑡𝐸𝑛 0
𝜈𝑡𝑛𝐸𝑡 𝐸𝑡 0
0 0

(

1 − 𝜈𝑡𝑛𝜈𝑛𝑡
)

𝐺𝑟𝑒𝑑

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜖𝑛𝑛
𝜖𝑡𝑡
𝛾𝑛𝑡

⎤

⎥

⎥

⎦

(3)

where 𝐸𝑛, 𝐸𝑡, 𝐺𝑟𝑒𝑑 , 𝜈𝑛𝑡 and 𝜈𝑡𝑛 are the damaged apparent properties. After the formation of a primary crack, the direction of the
crack is fixed and a reduced normal stiffness 𝐸𝑛 is inserted according to the applied saw-tooth law and 𝐸𝑡 remains 𝐸0, as this
direction is yet uncracked. Within the considered model, a second crack is allowed to form perpendicular to the primary crack.
Then, the tangential stiffness 𝐸𝑡 is also reduced according to the predefined saw-tooth law. The Poisson’s ratios are assumed to
educe accordingly with the modulus of elasticity:

𝜈𝑛𝑡 = 𝜈0
𝐸𝑡
𝐸0

and 𝜈𝑡𝑛 = 𝜈0
𝐸𝑛
𝐸0

(4)

here 𝜈0 and 𝐸0 are the initial Poisson’s ratio and stiffness. For fixed crack models, the definition of a saw-tooth law for 𝐸𝑛 and 𝐸𝑡
s not sufficient, as the principal directions might start to deviate from the crack direction introducing shear stresses on the cracking
lane. Hence, also the development of shear stresses and especially the shear stiffness 𝐺𝑟𝑒𝑑 during cracking must be considered. In

this study, the shear retention relation as proposed in the work of DeJong et al. [17] is applied:

𝐺𝑟𝑒𝑑 =
𝐸𝑚𝑖𝑛

2
(

1 + 𝜈0
𝐸𝑚𝑖𝑛
𝐸0

) = 𝛽 𝐺0 (5)
3

where 𝐸𝑚𝑖𝑛 = min(𝐸𝑛, 𝐸𝑡), 𝛽 is the shear retention factor and 𝐺0 the initial shear modulus of the material.
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3. Motivation for rotating crack approach in SLA

The axes of orthotropy, which describe the cracking plane, are fixed upon crack initiation within a fixed crack model. However,
uring further loading, the principal stress directions might change as a result of e.g. changing load conditions (non-proportional
oading) and stress redistribution during the fracture process. Due to the crack not co-rotating with the principal stress directions,
hear stresses are generated within the cracking plane, which is troubling for two reasons:

1. Stresses larger than the tensile strength can occur unnoticed as only the stresses along the fixed axes of orthotropy are
monitored, whereas the actual principal stress directions should be monitored to find the maximum stresses. In this way, stress
locking takes place, meaning that non-physical stresses, also known as spurious stresses, are generated within the cracking
plane leading to an incorrect over-stiff structural behaviour, especially when smeared cracks have to propagate in a zig-zag
fashion through the mesh.

2. In order to more realistically represent the stress rotations within the fixed crack model, the shear retention relation, as
given by Eq. (5), can be adapted. However, this inevitably leads to more complicated material laws or additional material
properties [31], which is not desirable for application in engineering practice.

The current SLA framework is based on a fixed crack model. Within a rotating crack model, the crack directions co-rotate with
the principal stress directions such that the development of spurious stresses is avoided. To this end, the unfavourable effects of
stress locking on SLA are expected to reduce for a rotating crack approach in SLA. Stress locking also results from the inability
of finite elements to reproduce the discontinuous nature of the actual displacement field around a crack [32]. This type of stress
locking is not expected to reduce for a rotating crack approach in SLA. Since SLA is an event-by-event strategy, in which each event
influences the subsequent events, it is expected that a rotating crack approach in SLA does not merely influence the local fracture
behaviour (e.g. less stress locking), but also affects the global fracture behaviour by more accurate crack paths and better crack
localisation.

For these reasons, several researchers [27,31,33,34] tried to envisage a rotating crack model within an event-by-event strategy
like SLA. By definition, an event-by-event strategy can only update 1 integration point at a time, whilst the rotating crack model
requires the crack directions of all cracked integration points to be updated during each event. Furthermore, the rotation of the
principal stresses and strains is non-linearly related to the load multiplier [27] and therefore, the nature of a rotating crack model
does not directly suit SLA. In literature, four alternative models are available to incorporate the rotation of cracks in SLA, which
are briefly discussed underneath (for more information, the reader is referred to the given references).

• Rotating crack as an event: one way of implementing rotating cracks within the framework of SLA is to define a new type
of event: the rotation of a crack, which is performed once a certain threshold angle is reached between the cracking plane
and the actual principal directions (only for cracked integration points). This approach has been elaborated by Slobbe [33]
assuming only proportional loading on the structure. The approach suffers from the so-called ’snowball-effect’: a crack rotation
event causes a change in stiffness and thereby a local stress redistribution, which in its turn again induces a crack rotation, a
subsequent change in stiffness and so on.

• Rotating crack in a Force-Release strategy: following a different path, Vorel and Boshoff [27] developed a rotating crack
model that can be used within the framework of SLA to analyse the behaviour of composites. As a starting point, the
Force-Release (F-R) approach [20], an incremental version of SLA, is utilised, in which the unbalanced forces are gradually
redistributed, with the possibility to induce another event meanwhile. The principal direction of the critical integration point
is updated after each stress redistribution. As the rotation of the principal directions is not known beforehand and depends
on the scaling factor, it is assumed that the load multiplier can be evaluated with respect to the last equilibrated principal
direction of the considered integration point. It is noted that the approach is not merely a secant linear analysis anymore, as
the disbalance forces are redistributed with the aid of load increments, hence following an incremental type of approach. The
method has been applied to a three-point bending test in shear failure and in bending failure. For both cases, the adapted
version of SLA including rotating cracks gave similar load displacement curves as the experiment and an incremental iterative
analysis.

• Rotating crack as a multi-directional crack: Lately, another approach to simulate a rotating crack model within SLA was
developed by Cook et al. [31]. Although the approach is developed for a different field of application, namely heterogeneous
brittle materials on a micro scale (aggregate grain level), it is also applicable for computational modelling of concrete
structures. In this approach, which is in fact a multi-directional smeared fixed crack approach, each element is given a certain
amount of predefined potential cracking planes. With the aid of a sequentially linear analysis, the critical potential crack plane
is searched for and damage increments are performed within the critical crack plane. The approach differs from SLA in the
sense that a critical pre-defined crack plane is searched for instead of a critical integration point. By allowing multiple fixed
cracks to form within one element in combination with a crack-tracking algorithm, rotating cracks are successfully simulated
and stress locking effects are reduced by the approach.

• Rotating crack in a sub-element strategy: Recently, a study by Liu [34] has been published, proposing a so-called sub-
element strategy, in which an element is discretised into elastic-perfectly brittle overlay elements. Although the author does
not mention this in their work, clear similarities with the fraction model [29] are found. However, the sub-element model is
more or less applied as a lattice model and no attention is paid to the crack direction. The main purpose of the sub-element
model by Liu was to offer an alternative to incremental iterative analysis and regular SLA, although it is fundamentally similar
to the fraction model and could have been used to mimick a rotating crack model as well.
4



Engineering Fracture Mechanics 277 (2023) 108953D. Bresser et al.
Fig. 2. (A) Single element elastic-brittle fraction model with definitions of fraction properties; (B)–(C)–(D)–(..) the fractions with each of their own fixed crack
directions and (E) the total element mimicking a rotating crack.

4. Elastic-brittle fraction model and work flow

In an attempt to mimick the effects of rotational cracking within sequentially linear analysis, Hendriks and Rots [29] developed
the Elastic-brittle fraction model. In two-dimensional space, this model subdivides each element in a set of 𝑁 parallel fractions 𝑘, as
visualised in Fig. 2(A). Each of these fractions is elastic-perfectly brittle with tensile strength 𝑓𝑡,𝑘, compressive strength 𝑓𝑐,𝑘, stiffness
𝐸𝑘 and thickness 𝛥𝑡𝑘, chosen in order to represent the continuum constitutive material law as accurately as possible. The Poisson’s
ratio 𝜈𝑘 is the same for all fractions and equal to the material property 𝜈. The total behaviour is found by the superposition of the
stresses and strains of the perfectly brittle fractions in parallel. Each of the fractions is allowed to have its own crack direction 𝜃𝑘
and therefore, the global/overall crack direction might rotate. In other words, the model utilises a fixed cracking model per fraction
and mimicks a rotating crack on element level. This process is depicted by Fig. 2, where (B)–(D) are the fixed crack fractions and
(E) is the mimicked rotating crack. Because the crack on element level is allowed to rotate, the proposed model might potentially
reduce stress locking effects, as briefly touched upon in Section 3.

As mentioned by Hendriks and Rots, the model describes softening as a gradual reduction of the cross-sectional area. In fact, this
is a more physically justified approach compared to regular SLA, as the formation of micro-cracks in the fracture zone, according
to the fictitious crack model of Hillerborg et al. [30], is equivalent to a reduction of the effective material cross-section. In the
following section, the theoretical framework of the elastic-brittle fraction model will be further elaborated for both 2D and 3D. As
the 3-dimensional framework is similar to its 2-dimensional equivalent, the elaboration of the 3-dimensional framework is limited.

4.1. 2-dimensional framework

4.1.1. Elastic-brittle constitutive relation per fraction and superposition
On a fraction level, represented by Figs. 2(B)–(D), the constitutive behaviour is governed by a fixed cracking approach. Therefore,

the theory as discussed in Section 2 can be applied straightforwardly. For a parallel fraction 𝑘, the elastic-perfectly brittle material
5
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behaviour is shown by Fig. 3(B). Up until either the compressive or tensile strength is reached, the fractions behave isotropic
according to

⎡

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤

⎥

⎥

⎦𝑘

=
𝐸𝑘

1 − 𝜈2𝑘

⎡

⎢

⎢

⎢

⎣

1 𝜈𝑘 0
𝜈𝑘 1 0
0 0 1−𝜈𝑘

2

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦

(6)

where 𝐸𝑘 and 𝜈𝑘 are the fractions’ stiffness and Poisson’s ratio respectively. The strain vector does not have an index 𝑘 as the strain is
the same for all fractions. Once the tensile or compressive strength is reached in direction 𝑛𝑘 (the maximum stress is obtained in the
principal stress direction), a completely developed crack perpendicular to the failure stress in direction 𝑡𝑘 is formed and the stiffness
𝐸𝑛,𝑘 = 0 is completely lost, representing the brittleness of the fraction. This is followed by the orthotropic material behaviour. The
principal stresses 𝜎𝑛𝑛,𝑘 and 𝜎𝑡𝑡,𝑘 are found using the Mohr’s circle:

𝜎𝑛𝑛,𝑡𝑡,𝑘 =
𝜎𝑥𝑥,𝑘 + 𝜎𝑦𝑦,𝑘

2
±

√

(𝜎𝑥𝑥,𝑘 − 𝜎𝑦𝑦,𝑘
2

)2
+ 𝜎2𝑥𝑦,𝑘 (7)

The crack direction 𝜃𝑘 is fixed to the principal stress and strain directions just before cracking, which coincide due to the isotropic
ehaviour prior to cracking. From Mohr’s circle:

tan(2𝜃𝑘) =
2𝜎𝑥𝑦,𝑘

𝜎𝑥𝑥,𝑘 − 𝜎𝑦𝑦,𝑘
=

𝛾𝑥𝑦
𝜖𝑥𝑥 − 𝜖𝑦𝑦

(8)

where the stresses and strains prior to crack formation are used. As the stiffness 𝐸𝑛,𝑘 is completely lost, the Poisson’s ratio 𝜈𝑡𝑛 reduces
according to Eq. (4) to 0. The crack is completely developed, meaning that no shear stresses are transmitted within the cracking
plane. Eq. (5) gives 𝐺𝑟𝑒𝑑 = 0, meaning that zero shear retention is obtained. Hence, the orthotropic fixed smeared crack formulation
f Eq. (6) reduces to

⎡

⎢

⎢

⎣

𝜎𝑛𝑛
𝜎𝑡𝑡
𝜎𝑛𝑡

⎤
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⎥
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=
⎡

⎢

⎢

⎣

0 0 0
0 𝐸𝑡,𝑘 0
0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜖𝑛𝑛
𝜖𝑡𝑡
𝛾𝑛𝑡

⎤

⎥

⎥

⎦𝑘

(9)

The strain vector now includes index 𝑘, as the axes of orthotropy 𝑛𝑘 and 𝑡𝑘 differ per fraction. Once the tangential stress 𝜎𝑡𝑡,𝑘
eaches the compressive or tensile strength of the fraction, a secondary crack is allowed to form. After the formation of this second
rack, the complete capacity of the considered fraction is lost. The stresses on element level, which is represented by Fig. 2(A), are
ound by superposition of the stresses in the individual fractions. In this way, the element stress vector 𝝈 is obtained by

𝝈(𝝐) = 1
𝑡

𝑁
∑

𝑘=1
𝝈𝒌(𝝐)𝛥𝑡𝑘 with 𝑡 =

𝑁
∑

𝑘=1
𝛥𝑡𝑘 (10)

Likewise, the element stiffness matrix is also found by superposition over the parallel fractions. In summary, once a fraction
racks, it starts behaving orthotropic rather than isotropic and the crack direction of that fraction is fixed. The transition of a
raction from isotropic to orthotropic behaviour influences the stresses and strains on element level: the summation of cracks is
hanged due to the formation of another crack and eventually, the direction of the overall conceived crack on element level might
hange, hence mimicking a rotating crack.

.1.2. Defining the material properties of each fraction
In sequentially linear analysis, the constitutive continuum law is discretised to a saw-tooth or step-wise secant material law

for example Fig. 1). The Young’s modulus and tensile strength of each elastic-perfectly brittle fraction can be chosen such that
he superposition of fractions results in a specific saw-tooth curve, under the assumption of monotonically increasing proportional
oading.

For instance, if we envision a homogeneous uniaxial tension case, each individual elastic brittle fraction is characterised by its
hickness, Young’s modulus and tensile strength in order to represent the overall saw-tooth softening law. The remaining stress at
specific moment is the superposition of the stresses of the uncracked fractions. Starting from the last fraction to crack (with the

argest ultimate strain), the fraction properties can be determined in a backwards recursive manner, using the elements stress–strain
aw-tooth law as required for regular SLA. As the fraction properties are determined starting from the last layer (𝑖 = 𝑁), a new
ndex

𝑘 = 𝑁 − 𝑖 + 1 (11)

s introduced, which takes value 1 for 𝑖 = 𝑁 and 𝑁 for 𝑖 = 1. In this way, the fraction with the largest strain 𝜖𝑡∕𝑐,𝑖 has index 𝑘 = 1.
For the determination of the fraction properties, either the thickness 𝛥𝑡𝐿𝑘 or stiffness 𝐸𝐿

𝑘 should be predefined since the membrane
tiffness of a fraction is proportional to 𝛥𝑡𝐿𝑘𝐸

𝐿
𝑘 . In the following, it is assumed that all fractions have the same thickness 𝛥𝑡𝐿𝑘 = 𝑡∕𝑁 .

y doing so, the contribution of the stress of the considered fraction to the total element behaviour is 𝜎𝐿𝑘 ∕𝑁 . The stress is summed
ver the total element thickness 𝑡. The same holds for the fraction stiffness.
6
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Fig. 3. The task of determining the Young’s moduli and tensile strengths of individual elastic-brittle fractions (B) such that the superposition represents the
overall ripple band saw-tooth law (A).

Table 1
Example of transition from the saw-tooth curve (SLA) to elastic-brittle fraction properties corresponding to the fraction model
(FM), based on ripple band parameter 𝑝 = 0, 25.
SLA Ripple band FM ripple band

𝑖 𝐸𝑘 (N∕mm2) 𝑓𝑡,𝑘 (N∕mm2) 𝑘 𝐸𝐿
𝑘 (N∕mm2) 𝑓𝐿

𝑡,𝑘 (N∕mm2)

1 10000 1.17 4 17143 2.00
2 5714 0.93 3 12245 2.00
3 2653 0.61 2 8746 2.00
4 466 0.15 1 1866 0.60

The given collection of damaged stiffnesses 𝐸𝑘 from the saw-tooth curve are used to determine the fraction stiffnesses 𝐸𝐿
𝑘

according to Fig. 3. As both damaged stiffnesses 𝐸𝑘 and 𝐸𝑘−1 are known, and the difference between the both of them is the
stiffness contribution of fraction 𝑘 with respect to the complete element thickness 𝐸𝐿

𝑘 ∕𝑁 , the following equality can be set up

𝐸𝑘 =
𝐸𝐿
𝑘

𝑁
+ 𝐸𝑘−1 (12)

The physical meaning of Eq. (12) is visualised in Fig. 3; both the left hand side and right hand side should give the same total
stiffness. From Eq. (12) 𝐸𝐿

𝑘 is solved, giving

𝐸𝐿
𝑘 = 𝑁(𝐸𝑘 − 𝐸𝑘−1) (13)

With the aid of Eq. (13), the stiffness of a specific fraction 𝑘 can be derived from the damaged stiffnesses following from the saw-tooth
law. In Fig. 3, the two filled areas represent two separate fractions. The tensile strength 𝑓𝐿

𝑡,𝑘 of fraction 𝑘 is obtained by

𝑓𝐿
𝑡,𝑘

𝑁
=

𝐸𝐿
𝑘

𝑁
𝜖𝑡,𝑘 hence 𝑓𝐿

𝑡,𝑘 = 𝐸𝐿
𝑘 𝜖𝑡,𝑘 (14)

Invoking Eqs. (13) and (14), all properties of a fraction 𝑘 have been determined: thickness 𝛥𝑡𝐿𝑘 , stiffness 𝐸𝐿
𝑘 and tensile strength

𝑓𝐿
𝑡,𝑘. The fraction model, in principle, also allows for individual fractions to have different thicknesses but the young’s moduli may

have to be adapted accordingly.
The transition from an arbitrary saw-tooth curve to the fraction model is shown by the following example. A linear tension

softening constitutive law is considered with tensile strength 𝑓𝑡 = 1N∕mm2, stiffness 𝐸0 = 10,000N∕mm2, mode I fracture energy
𝐺𝑓 = 0.15 ⋅ 10−3 N∕mm and crack band width ℎ = 1 mm. Using the ripple band formulations from [14] with 𝑝 = 0.25, a saw-tooth
curve consisting of 4 saw-teeth is obtained. With the aid of Eqs. (13) and (14), whilst assuming the same thickness for all the
fractions, stiffness 𝐸𝐿

𝑘 and tensile strength 𝑓𝐿
𝑡,𝑘 are retrieved and listed in Table 1.

4.1.3. Elastic-brittle fraction model within the context of SLA
The elastic-brittle fraction model fits well within the framework of regular sequentially linear analysis. Fig. 4 presents the

flowchart of the model, where the additional step in the algorithm compared to regular SLA is highlighted. First, the saw-tooth
law(s) is (are) generated in step (1) based on for example the Ripple band approach and a specific continuum law. Based on the
saw-tooth curve, elastic-perfectly brittle fractions are generated in step (2) such that on element level the same constitutive material
behaviour is found. The output of this step are strength, stiffness and thickness properties for each of the fractions. Step (2) is an
7

extra step that is required for the fraction model compared to SLA. Next, a linear analysis is performed in step (3), the most critical
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integration point is traced in step (4) and the analysis results are scaled with the critical load multiplier in step (5). The SLA procedure
is stopped in step (6) once a specific user-defined damage state is reached (e.g. a maximum number of damage increments). If the
stop criteria is not fulfilled, a brittle damage increment is applied in step (7) and the stiffness perpendicular to the formed crack is
set to 0.

Within the flowchart of Fig. 4, steps (1) and (2) take place at an element level, steps (3) till (6) occur at a structural level
nd step (7) is performed on fraction level. On a structural level, a damage increment is applied to only 1 critical integration
oint at a time. Therefore, the crack direction can only rotate at the considered critical element and the other elements are forced
o follow a fixed cracking approach. When interpreting the fraction model as merely rotational cracking for the critical element,
imilarities with the approaches of Slobbe [33], taking a rotating crack as an event, and Vorel and Boshoff [27], updating the
rincipal directions of the critical integration point after each stress redistribution, become evident. Instead of updating the crack
otation on element level for a critical element like Slobbe, a damage increment on fraction level is performed, representing a crack
otation on the critical element level. While the approach of Slobbe considers damage increments and crack rotations separately, the
raction model simulates crack rotations by applying damage increments, marking a clear difference between the two approaches.
nstead of requiring an incremental iterative stress redistribution to redistribute stresses after a damage increment like Vorel and
oshoff, the fraction model is a purely sequentially linear approach, where redistribution takes place in the subsequent steps. On top
f that, crack directions are fixed upon initiation on fraction level, where Vorel and Boshoff update the crack directions on element
evel during the remainder of the analysis for the critical integration points.

The model also shows similarities with the approach of Cook et al. [31]. In the fraction model, fractions are predefined with
otentially each their own crack direction. Following the same line of thinking, the model of Cook et al. simulates a rotating crack
s a multi-directional crack with predefined cracking planes, having each their own predefined crack direction. The most critical
lane (instead of fraction) is sought for and a damage increment is performed. However, while the model of Cook et al. requires a
arge amount of predefined cracking planes on element level, each fraction of the fraction model is allowed to crack in any direction,
epending on the principal stress direction, and therefore, a wide spectrum of cracks can be simulated without the need to predefine
large amount of cracking planes apriori. Furthermore, similarities exist with the microplane model [35] in the sense that damage

an be obtained on planes of various orientations called microplanes.
The constitutive framework in use in SLA is the total strain based smeared cracking model. It has been established in literature

hat these models based on the crack band approach reproduce the size effect observed in brittle failures adequately using the
oftening laws. However, they have limitations with respect to mesh refinement, shear locking on zig-zag crack bands, and mesh
irectional bias [36]; all of which are associated with the FE mesh. These features are therefore expected to a certain extent in the
raction model as well. But investigations on this topic are out of the scope of this study and are reserved for future studies.

.2. 3-dimensional framework

SLA applied to 3D solid elements under proportional loading had been developed earlier [37]. A further elaboration to non-
roportional loading in 3D was recently published [25]. Furthermore, [24] incorporated shell elements in the framework of SLA.
n fact, the application of SLA to shell or solid elements is governed by the same principles as the 2-dimensional framework: upon
amage initiation, the axes of orthotropy are fixed, along which the stresses are monitored during the remainder of the analysis,
nd once the saw-tooth strength is reached, damage increments are performed along that specific axis according to the specified
aw-tooth law. In 2D, damage increments are allowed in 𝑛, 𝑡-directions and in 3D, damage can take place in 𝑛, 𝑠, 𝑡-directions. The

definition of the uniaxial saw-tooth laws does not change.
In 3D, in line with the 2D elastic-brittle fraction model, the total volume of the element (or volume corresponding to an

integration point) is split in elastic perfectly brittle overlay elements, each having their own stiffness, strength and fixed crack
direction. In this way, the 3D model utilises a fixed cracking model per fraction and mimicks a rotating crack on element level. For
2D, it was arbitrarily assumed that all fractions have the same thickness 𝑡0∕𝑁 . In 3D, all fraction elements are assumed to have a
volume that is equal to the total elements volume. In Fig. 5, solid fraction elements (A), (B) and (C) all have the same volume as
total element (D). Each of the fraction elements has its own fixed axes of orthotropy.

Upon crack initiation in a specific fraction, a transition is made from the undamaged isotropic stiffness matrix to the damaged
3D orthotropic stiffness matrix and a brittle damage increment is performed in the local 𝑛-direction of that fraction. Hence, the
stress–strain relation reduces to

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑛𝑛
𝜎𝑠𝑠
𝜎𝑡𝑡
𝜎𝑛𝑠
𝜎𝑠𝑡
𝜎𝑡𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1
1 − 𝜈𝑡𝑠𝜈𝑠𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 𝐸𝑠 𝜈𝑠𝑡𝐸𝑠 0 0 0
0 𝜈𝑡𝑠𝐸𝑡 𝐸𝑡 0 0 0
0 0 0 0 0 0
0 0 0 0

(

1 − 𝜈𝑡𝑠𝜈𝑠𝑡
)

𝐺𝑠𝑡 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜖𝑛𝑛
𝜖𝑠𝑠
𝜖𝑡𝑡
𝛾𝑛𝑠
𝛾𝑠𝑡
𝛾𝑡𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15)

In the 𝑠, 𝑡-plane, secondary and tertiary cracks can develop in the 𝑠 and 𝑡-directions respectively. Once the tensile strength of a
8

fraction is reached in either the 𝑠 or 𝑡-direction, a brittle damage increment is performed in the critical direction. For example,
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Fig. 4. Conceptual flowchart of the elastic-brittle fraction model within the framework of SLA. Compared to SLA, an additional step is required (step 2,
highlighted).

Fig. 5. Superposition of fraction elements (A), (B) and (C) with fixed cracking plane, leading to total element (D) with a multi-directional crack.

when the tensile strength is reached in the 𝑠-direction, 𝐸𝑠 = 0 and therefore 𝜈𝑛𝑠 = 𝜈𝑡𝑠 = 𝐺𝑠𝑡 = 0, such that

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝜎𝑛𝑛
𝜎𝑠𝑠
𝜎𝑡𝑡
𝜎𝑛𝑠
𝜎𝑠𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐸𝑡 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢
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𝜖𝑛𝑛
𝜖𝑠𝑠
𝜖𝑡𝑡
𝛾𝑛𝑠
𝛾𝑠𝑡
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(16)
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f

which is completely in line with the 2D fraction model after a brittle damage increment in the primary crack direction (see Eq. (9)).
Once the tensile strength is reached in the tertiary crack direction as well, the complete load carrying capacity of the fraction
vanishes.

The transition from SLA to the elastic-brittle fraction model requires some minor changes compared to the 2-dimensional
ramework. In the 2D model, it is assumed that all fractions have the same thickness 𝑡0∕𝑁 . For the 3D model, all fraction elements

have the same volume and thus the same dimensions as the total element. To that end, the derivation of Eqs. (13) and (14) slightly
changes: the contribution of a single fraction does not have to be scaled to the total element volume, since the fraction already has the
same dimensions as the total element. Therefore, the stiffness contribution of a single fraction to the total element behaviour changes
from 𝐸𝐿

𝑘 ∕𝑁 to 𝐸𝐿
𝑘 and the stress contribution changes accordingly. Hence, the fraction element properties in 3D are determined by

𝐸𝐿
𝑘 = 𝐸𝑘 − 𝐸𝑘−1 (17)

and

𝑓𝐿
𝑡,𝑘 = 𝐸𝐿

𝑘 𝜖𝑡,𝑘 (18)

Invoking Eqs. (17) and (18), all properties of the 3D fraction elements are determined: volume 𝑉0, stiffness 𝐸𝐿
𝑘 and tensile strength

𝑓𝐿
𝑡,𝑘. Apart from the aforementioned differences, the algorithm as schematised in Fig. 4 remains the same for the 3D-framework.

5. Validation studies

The presented elastic-brittle fraction model is validated in this section firstly at the single element level using a tension-shear
problem. Thereafter, three validation studies of structural case studies are presented: a notched beam and a shear notched beam
case study, both testing in three-point bending; and a concrete gravity dam subject to lateral loading. Finally, the 3D elastic brittle
fraction model is validated using an inclined notched beam case tested in three-point bending. Analyses using SLA with the fixed
crack model are hereon referred to as regular SLA or SLA as such.

5.1. Tension-shear problem

It is expected that for situations where the principal stress directions do not change, the presented elastic-brittle fraction model
will give exactly the same results as SLA. Therefore, a tension-shear model example is used here to study differences. This section
entails the analysis of a tension-shear problem proposed by William et al. [38], which is visualised in Fig. 6. A single four-node
quadrilateral isoparametric plane stress element with thickness 𝑡 = 1 mm and 1 integration point is considered, with material
parameters as listed in Table 2 and a crack band ℎ = 1 mm. The continuum law is described by a linear tension softening relation
with ultimate strain 𝜖𝑢 = 3.00 ⋅ 10−3. Two loading stages are prescribed:

• First, the element is loaded by tensile straining 𝛥𝜖𝑥𝑥 combined with vertical compressive straining 𝛥𝜖𝑦𝑦 = −𝜈0 𝛥𝜖𝑥𝑥 to simulate
Poisson’s effects in the 𝑦-direction, and a tensile crack perpendicular to the tensile load is formed.

• Second, at the onset of cracking, the loading is changed to a combined biaxial tension and shear loading according to:
𝛥𝜖𝑥𝑥 ∶ 𝛥𝜖𝑦𝑦 ∶ 𝛥𝛾𝑥𝑦 = 0.5 ∶ 0.75 ∶ 1, resulting in a rotating crack, as shown by Fig. 6. The loading of stage (A) remains on
the element during stage (B), and hence, non-proportional loading is obtained.

The displacements of the bottom left node are fixed to zero and the displacements of the other three nodes are prescribed such
that the element follows the applied strain fields for both loading stages. A very small ripple band parameter 𝑝 = 0.01 is applied,
leading to 𝑁 = 83 fractions, in order to approximate a continuous solution that allows for a one-to-one comparison. Three types of
analyses are performed: (1) NLFEA based on a rotating crack model with damage based reduction of the Poisson’s ratio, (2) Regular
SLA with variable shear retention according to Eq. (5) and 𝑝 = 0.01 and (3) the fraction model with elastic perfectly brittle fractions
and 𝑝 = 0.01. Fig. 6 entails a graphical representation of the cracking process using the fraction model. After damage initiation
in the first stage, the second load leads to a rotating crack in steps (B)–(E) due to the non-proportional loading. At step (E), for
𝛾𝑥𝑦 = 2.08 ⋅ 10−3, a primary crack is formed in all fractions and the ultimate strain is reached normal to the crack. From this point
on, secondary cracks form as the remaining uncracked part of the element is still capable of carrying some load. At any moment,
the primary crack angle of the critical fraction is equal to the principal strain direction and therefore, this specific fraction has the
same crack angle as a rotating crack in NLFEA.

The shear response 𝜎𝑥𝑦 − 𝛾𝑥𝑦 of all three analyses is plotted in Fig. 7. When comparing regular SLA with NLFEA results, clear
differences are observed in the shear behaviour as regular SLA is prone to significant stress locking effects. After damage initiation,
the crack angle of SLA is fixed vertically and a rotation of principal stresses is not followed. Stresses are only monitored within the
fixed cracking plane, while stresses exceeding the capacity might take place in a different direction and therefore, spurious stresses
are obtained. These also depend on the shear retention along the fixed crack, i.e. if a shear retention function 𝛽 = 0 were to be used
there would be no shear stresses across the crack plane. Since these spurious stresses exceed the capacity of the material, they are
often referred to as stress locking or stiffening effects. These stiffening effects are clearly observed in the shear stress response of
SLA. Contrarily, the fraction model entails much less pronounced stress locking effects and approximates the rotating crack NLFEA
better. No significant shear stress overshoot is obtained and a similar trend as the rotating crack model is followed. However, it
10
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Fig. 6. Loading stages of the tension-shear problem (1) tensile loading up until first damage and (2) tension-shear loading (left); and (A)–(E) crack development
for specific 𝛾𝑥𝑦 in the fraction model, mimicking a rotating crack with 𝐸𝑘𝑛𝑛 the normal strain in a crack (𝜖𝑢 = 3.00 ⋅ 10−4) (right).

Fig. 7. Tension-shear problem: shear stress 𝜎𝑥𝑦 versus shear strain 𝛾𝑥𝑦 for NLFEA, SLA and the elastic-brittle fraction model (FM).

is noted that some differences are still found due to the influence of earlier cracked fractions with crack directions deviating from
the current principal stress direction. Furthermore, on the structural level, interaction between adjacent elements takes place and
therefore, deviations and error propagation do not solely depend on the single elements crack angles, but on the structural behaviour
as a total, and this is investigated in the upcoming case studies.

5.2. Bending notched beam

The first structural case considered is a notched beam tested in three point bending, which is widely used as a benchmark
test [18,21] to study the performance of finite element models in regard to cracking and localisation behaviour in quasi-brittle
materials. For this study, the geometry as shown by Fig. 8 and experimental results are taken from the study performed by Zhao
et al. [39,40]. Beam specimen SG2-B1 of the mentioned experimental program is examined in this study, the thickness of which is
𝑡 = 120 mm. Material properties are as presented in Table 2, retrieved from Van de Graaf [18], who slightly adapted the material
properties as presented in [40] to better fit the experimental data. A mode–I tensile fracture mode is observed above the notch as
a result of tensile bending stresses. The size of the notch is taken to be equal to the size of a single finite element.

For both regular SLA and the fraction model, analysis is performed with 8-node quadrilateral isoparametric plane stress elements
of size 10 mm with 2 × 2 Gaussian integration. The linear tension softening law is used. A ripple band parameter 𝑝 = 0.1 is applied,
leading to 𝑁 = 25 fractions with crack bandwidth ℎ = 5 mm. The load–displacement graphs for both regular SLA and the fraction
11
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Table 2
Material parameters for the case studies.

Quantity Case study

Tension-shear Notched Shear Notched Reduced scale 3D Inclined
problem beam beam gravity dam Notched beam

Tensile Strength 𝑓𝑡 (N/mm2) 1.0 3.78 2.8 3.6 3.78
Initial Stiffness 𝐸0 (N/mm2) 10000 16000 24800 35700 16000
Poisson’s ratio 𝜈0 0.15 0.15 0.18 0.1 0.15
Mode-I fracture energy 𝐺𝑓

1 (N/mm) 0.15 ⋅ 10−3 0.30 0.15 0.184 0.30
Tension softening law Linear Linear Hordijk Linear Hordijk
Ripple band parameter 𝑝 0.01 0.1 0.115 0.12 , 0.13 0.2
Crack bandwidth ℎ (mm) 1 5 8 30 , 21.21 6

Fig. 8. Geometry of the notched beam case with all dimensions in mm.

model are presented in Fig. 9 (left). Furthermore, the corresponding crack patterns for regular SLA and the fraction model based
on linear tension softening for a mid-span displacement of 1.0 mm are depicted in Fig. 9 (right).

Spurious stresses obtained in FE simulations with smeared cracking models are primarily due to the stress-locking effects observed
in the single element tension-shear problem in the previous section, which appear to be significantly reduced by the fraction model.
However, when large localised deformations take place in a specific element, surrounding elements inherently are also subject to
deformations to some extent. This induces spurious stresses in the neighbouring elements resulting in their cracking, due to the
inability to follow the discontinuous nature of the displacement field across the crack in the smeared cracking concept (contrary to
discrete cracking) [2,32].

In Fig. 9 (right(A)–(B)), black lines represent fully developed cracks and grey lines depict cracks that are initiated but still in
development. Both regular SLA and the fraction model reveal the development of spurious stresses due to the inability to follow the
discontinuous displacement field across the crack. However, while an increasingly asymmetric state is observed for regular SLA, the
fraction model is able to correct its crack direction by sequential cracking of the different fractions with each of their own crack
directions. Hence, spurious stresses and cracks due to incorrect crack directions for the fraction model are limited and a slightly
narrower localisation band is observed in Fig. 9 (right(B)). In the same figure, significant crack rotations are observed at the top
of the crack, while Fig. 9 (right(A)) reveals an incorrect crack direction for SLA. It is understood that the unique advantage of
SLA to follow asymmetric failure modes and overcome bifurcations, as mentioned by Rots et al. [41], comes with the disadvantage
of potentially enforcing locally asymmetric failure modes for inherently symmetric problems. The fraction model is still able to
overcome bifurcations by following asymmetric failure modes, but is meanwhile able to correct itself when the asymmetric failure
mode is undesired (e.g. for symmetric cases). Due to the aforementioned reasons, differences between the load–deflection curves of
regular SLA and the fraction model are found in Fig. 9 (left): i.e. the reduction of spurious stresses results in less energy dissipation,
and therefore a less stiff response of the fraction model compared to regular SLA, especially in the post-peak regime.

Lastly, the crack localises within half of the element, which is included in the applied crack band. According to Slobbe [42],
when using higher order elements, stress fields become highly disturbed due to strain localisation within an element and an increase
of spurious stresses is expected. The crack plots support this statement: a wide band of spurious cracks is obtained. In a paper by
Slobbe et al. [21] on a delayed crack path fixation approach, so-called U-turns of the crack paths in the notched beam were observed
for quadratic (8-node) elements, manifesting themselves in sudden and unrealistic sharp changes of crack paths, as shown by Fig. 10.
The crack bends sideways and then turns around. Similar cracking paths are observed in this study in Fig. 9 (right-A) (crack strains
averaged over the element and at their respective centroids), as the crack also bends sideways and some near horizontal cracks are
found at the top of the crack. Contrarily, the fraction model seems to resolve the appearance of a U-turn: the crack path stays at the
center-line column of elements instead of diverging to a different column of elements, although significant crack rotation is required
in the top elements for this purpose. The reduction of spurious stresses indicates that the underlying reason for the occurrence of
U-turns must be sought for in the fixed crack assumption that is the basis for regular SLA. The latter statement is supported by
12

the load–deflections curve in Fig. 9 (left): very pronounced differences are found in the post-peak responses of regular SLA and the
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Fig. 9. Load versus displacement at mid-span for the notched beam case, based on linear tension softening (left), and the crack strain plots averaged over the
element for regular SLA (A) and that of the fraction model (B) of the notched beam for a mid-span deflection of 1.0 mm.

Fig. 10. The development of a so-called U-turn for quadratic (8-node) elements, where the crack path is marked in red and taken from Slobbe et al. [21].

fraction model as a result of the restrained U-turn and reduction of spurious stress development. Much stiffer behaviour is obtained
when using regular SLA, which is clearly not in line with the experimental results, while the fraction model shows a rather flexible
reduction to zero load bearing capacity.

5.3. Shear notched beam

The second case that is considered is the shear notched beam, also known as the four-point shear test. The curved crack pattern,
that is found right above the notch and propagates towards the load F, has been used by many authors [2,42–47] to study the
performance of a wide variety of smeared and discrete crack models in mixed-mode crack propagation. In this study, the geometry
and the experimental results of Series C of the research program performed by Arrea [48] are used. The beam specimens have a
thickness 𝑡 = 156 mm and a geometry as shown by Fig. 11. For series C, three beams were tested, of which only two were considered
to be valid. For that reason, some significant scatter is observed in the results as well as in the material properties of the specimens.
In the experimental program, only the compressive strength, stiffness and Poisson’s ratio were measured, and information on the
tensile strength and fracture energy is missing. In this study, the tensile strength 𝑓𝑡, stiffness 𝐸0 and Poisson’s ratio 𝜈0 are taken
from Rots [2], which are frequently used by other references as well. Regarding the fracture energy, values between 0.075 and 0.2
N/mm are found in the given references and 𝐺𝑓

1 = 0.15 N/mm is applied for this study to be somewhere in the middle. Table 2
lists the applied material properties.
13
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Fig. 11. Geometry of the Shear notched beam case with all dimensions in mm.

The shear notched beam case results in a combined mode I and mode II fracture. The case is mainly governed by mode I tensile
rack development above the notch, and the generation of mode II shear cracks is rather limited. According to Rots and De Borst [49],
he shear notched beam releases the mode I fracture energy much quicker than the mode II fracture energy. Although an analysis
onsidering only mode I fracture is therefore justified for the purpose of this study, it is noted that in reality pure mode I fracture
s not obtained and one should actually consider mode II shear fracture patterns as well for a complete description of this case.

The specimen is modelled using 8-node quadrilateral isoparametric plane stress elements of size 8 mm with 2 × 2 Gaussian
integration. Around the notch, nonlinear material behaviour following Hordijk tension softening [50] is assumed. A ripple band
parameter 𝑝 = 0.115 is applied, leading to 𝑁 = 19 fractions with crack bandwidth ℎ = 8 mm. Nonlinear material behaviour is only
allocated to the relevant part of the beam to reduce computational efforts. Furthermore, the outer 203 mm of the beam in Fig. 11
is not modelled for the same reasons. Around the notch, smaller elements are used compared to the rest of the beam, 8 mm and
16 mm respectively, to have a sufficient level of detail. The loading and support close to the notch are both modelled with an extra
row of elements, to prevent influence of stress concentrations due to the applied load. Crack bandwidth is chosen according to an
assumed zig-zag propagation pattern [2]. The width of the notch is taken equal to the size of a single element.

During the analyses, the crack mouth sliding displacement (CMSD) is monitored, defined as the difference in vertical displacement
between the two sides of the notch, considered at the height of the supports. The CMSD-load curves for all three cases and the
experimental results [48] are shown by Fig. 12 (top-left). The corresponding crack patterns for a CMSD of 0.20 mm for both regular
SLA and the fraction model are depicted by Fig. 12 (right(A)–(B)), and a comparison of the crack widths is made in Fig. 12 (bottom-
left) wherein the experimental crack band as reported by Cendon et al. [44] is used. The coordinate center is defined at the right
bottom corner of the notch.

The crack pattern that is found by the fraction model exhibits a smaller localisation band compared to regular SLA as observed in
Fig. 12 (bottom-left), indicating a reduction of spurious cracks and stresses. Crack rotations, as has been previously stated, influences
the structural response in two ways: on single element level and on structural level. Firstly, a more up-to-date crack angle is obtained
and less spurious stresses are observed within the element, as the stresses are monitored in a plane that is more in line with the
critical plane and the occurrence of stresses exceeding the elements capacity is reduced (which is not the case for the fixed crack
model). Secondly, over stiff behaviour on single element level induces the generation of spurious stresses in neighbouring elements
as well in regular SLA. Due to stiffening, larger stresses are accepted for the cracked element, causing surrounding elements to
crack while the considered element should crack, generating spurious cracks. Therefore, the observed smaller localisation band
on structural level for the fraction model is due to the more flexible behaviour on the element level as compared to regular SLA.
Fig. 12 (right(A)–(B)) further substantiates the smaller localisation band of the fraction model. Quite substantial deviations are
found compared to the experimental crack patterns, especially in the vertical branch of the crack, which is probably the result
of the mesh following tendency, better known as mesh directional bias. When comparing the CMSD-load curves of both methods,
more flexible behaviour is obtained using the fraction model in the post-peak regime, supporting previous findings. The results are
in good agreement with experimental results as well. According to Rots [2], in case of fracture, prediction of genuine separation and
softening down to zero load is desired, and it was observed that smeared crack approaches were not able to fulfil these requirements.
However, in this study, both regular SLA and the fraction model tend to predict an ultimate softening down to zero, although the
fraction model seems to reach this state quicker. In this case study, at a CMSD of 0.20 mm, the fraction model finds a load of 17.7
kN, while regular SLA results in 26.5 kN, being 49.7% higher compared to the fraction model. In conclusion, the elastic-brittle
fraction model again results in slightly sharper localisation bands, less stress locking, and a more flexible post peak response in line
with the findings of the studies of the previous sections.

5.4. Reduced scale gravity dam

Over the years, the experiments performed by Carpinteri et al. [51]; wherein two scaled down 1:40 models of a concrete gravity
dam, with geometry as shown in Fig. 13, were subjected to lateral loading representing a hydro-static pressure along the upstream
side of the dam; have been simulated by many authors [43,47,52,53]. Initially, the goal of the experimental program was to include
14

a certain multiplier of the self-weight (to account for scale-effects) as well in the loading. However, a test including simulation



Engineering Fracture Mechanics 277 (2023) 108953D. Bresser et al.
Fig. 12. Load on the shear notched beam versus crack mouth sliding displacement (CMSD) for the case considered using SLA and fraction models compared
against the experiment (top-left); comparison of crack paths of the SLA and fraction models with experimental bounds for a CMSD of 0.20 mm (bottom-left);
and crack strain plots for regular SLA (A) and the fraction model (B) for a CMSD of 0.20 mm.

of self-weight had to be stopped prematurely. Hence, the scaled concrete dam was loaded by a proportional load. In this study,
‘test 3’ with a notch/depth ratio of 0.2 is simulated. The specimen has a thickness of 30 cm and material properties are taken from
Carpinteri et al. [51] and listed in Table 2. During the experiment, a curved crack path propagating towards the downstream bottom
side of the dam was observed.

In line with the aforementioned references of numerical simulation of the case study, the hydro-static pressure at the dam is
simulated with the aid of 4 equivalent lateral point loads, such that F (see Fig. 13) equals the integrated hydro-static pressure
over the height of the dam. Lateral and vertical displacements are restrained at the bottom of the specimen. In order to reduce
computational efforts, nonlinear material behaviour is only assigned to the bottom part of the meshes. Two variations are made:
First, a mesh with 8-node quadrilateral isoparametric plane stress elements of size 30 mm with 2 × 2 Gaussian integration scheme. A
ripple band parameter 𝑝 = 0.12 is applied, leading to 𝑁 = 14 fractions with crack bandwidth ℎ = 30 mm. Second, a mesh with 6-node
triangular isoparametric plane stress elements of size 30 mm with a 3 point Gaussian integration scheme. A ripple band parameter
𝑝 = 0.13 is applied, leading to 𝑁 = 14 fractions with crack bandwidth ℎ = 21.21 mm. In an attempt to simulate the experiment as
accurately as possible, Hordijk tension softening [50] is assumed for both cases.

The crack mouth opening displacement (CMOD) is monitored and plotted against the lateral load F for quadrilateral and
triangular analyses in Fig. 14 (left) and Fig. 15 (left) respectively. In these figures, two bands of NLFEA solutions are also shown
for comparison: (1) the band of results by Ghrib and Tinawi [52], obtained with the aid of both isotropic and anisotropic damage
smeared crack formulations, and (2) the band of results by Roth et al. [53] obtained by XFEM analyses with a crack-tracking
algorithm. Both studies are based on the same material properties that are used in this study. Furthermore, the experimental results
are included as well [51]. The corresponding crack-strain plots for a CMOD of 2 mm for the SLA and fraction model analyses are
also found in the Figs. 14, 15 (right (A)–(B)).
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Fig. 13. Geometry of the reduced scale gravity dam with all dimensions in cm.

Fig. 14. Load F versus CMOD for the reduced scale gravity dam FE model using quadrilateral elements (left) and crack strain plots (right) for both regular SLA
(A) and the fraction model (B) at a crack mouth opening displacement (CMOD) of 2 mm.

For the fine mesh of quadrilaterals, significant differences are obtained between both methods. Regular SLA is able to reach the
downstream bottom of the dam, indicating that the influence of mesh-directional bias is reduced when making use of quadratic
elements [54]. However, as can be clearly seen in Fig. 14, the fraction model suffers from severe mesh-directional bias and hence,
the bottom of the concrete dam is not reached. Apparently, instead of propagating further downwards, the fractions correct the
crack direction to maintain mesh alignment. In a study by Bhattacharjee and Léger [43], two types of analyses were performed on
the scaled concrete dam: One with a fixed crack model with variable shear retention factor and second a coaxial rotating crack
model. Bhattacharjee and Léger concluded that the stress locking that is developed due to a fixed crack direction probably induces
16
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Fig. 15. Load F versus CMOD for the reduced scale gravity dam FE model using triangular elements (left) and crack strain plots (right) for both regular SLA
(A) and the fraction model (B) at a crack mouth opening displacement (CMOD) of 2 mm.

high internal forces that are able to overcome issues related to mesh-directional bias. With the aid of a rotating crack model, these
high internal forces do not develop since the crack direction is able to correct itself and hence, a straight crack path is obtained (for
a very rough mesh). Ghrib and Tinawi [52] came to the same conclusions: the rotating crack model follows the horizontal mesh
lines and does not suffice for this case. They advised to make use of a fixed crack model instead. Since the fraction model tries to
mimick a rotating crack model, the issues that are encountered for a rotating crack model in the aforementioned works [43,52]
are to a certain extent also found for the current fraction model study (possibly less severe issues, since on fraction level, the crack
is fixed). In summary, the advantage of the fraction model comes with the disadvantage of possibly having to correct the crack
direction to avoid a mesh-directional bias.

Next, the results obtained with triangular elements are presented in Fig. 15. Compared to quadrilateral elements, better agreement
with the experimental crack path is found since much less problems related to mesh-directional bias are observed. When comparing
the crack paths of regular SLA and the fraction model, less spurious stresses are found in the latter and therefore smaller localisation
bands are obtained.

Lastly, the load–CMOD curves of Figs. 14, 15 (left) are discussed. In line with the crack paths, best agreement with experimental
results is obtained with triangular elements. Quadrilateral elements result in a lower peak load, which can be possibly attributed to
the incorrect crack band assumption: a zig-zag crack path is assumed, while the actual crack path is directed more or less in line
with the mesh. All curves reveal that a more flexible response is obtained for the fraction model compared to regular SLA, in line
with previous case studies. For triangular elements, the load–CMOD curves of the fraction model better suit the NLFEA solutions of
previous works in Refs. [52,53], indicating that the more flexible response is desirable. The curves for quadrilateral elements are
difficult to compare: the fraction model gives a more flexible response, but the crack patterns that are found by regular SLA are
more correct for these cases.

5.5. 3D: inclined notched beam

Finally, the application of the 3D elastic-brittle fraction model is verified on structural level. In the previous case studies, it has
been observed that differences between regular SLA and the fraction model are found for curved crack propagation (e.g. for the
shear notched beam in Section 5.3). Therefore, 3D non-planar curved crack propagation is considered in this section with the aid
of the skew-notched beam in a three-point bending test. The skew-notched beam has been used by others as a benchmark test to
verify 3D (often XFEM related) numerical algorithms [25,55,56]. The geometry, as shown by Fig. 16(left), is in line with the 2D
notched beam of Section 5.2, although the notch has a height of only 30 mm and is applied under an angle of 45 degrees, such
that the front and rear notches are 60 mm apart. The geometry is taken from the study of Pari et al. [25]. For the purpose of this
study, the loading is restricted to a proportional vertical mid-span line load f = F/t, where t = 120 mm, and seems justified, since
non-planar crack propagation is also expected for proportional loading. Applied material properties of the specimen are listed in
Table 2 and are exactly equal to Section 5.2. Linear tension softening is assumed.

As can be seen in Fig. 16(right), the nonlinear material zone (light grey) with the notch width of 10 mm and element size of
12 mm, and the linear material zone (dark grey) with element size 30 mm is made to reduce computational efforts as against a
finer mesh of the same case used previously in the work of Ref. [25]. 4-noded three-side isoparametric solid tetrahedron element
with single integration point are applied, such that constant strain distributions are found over the entire element. A ripple band
parameter 𝑝 = 0.2 is applied, leading to 𝑁 = 12 fractions with crack bandwidth ℎ = 6 mm.
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Fig. 16. Geometry of the skew-notched beam in a three-point bending test with all dimensions in mm (left), and the finite element model (right) with nonlinear
material behaviour assigned to the light grey area.

Fig. 17. Load F versus mid-span displacement for the skew-notched beam for regular SLA, the fraction model and NLFEA.

Five types of simulations are run. The first two are with the regular SLA and fraction models, and the rest are all nonlinear finite
element analyses (NLFEA). All NLFEA simulations invoke a Newton–Raphson iteration scheme with displacement steps of 0.012 mm
and an energy norm of 0.0001 as convergence criteria. The three NLFEA simulations are: (1) NLFEA based on a fixed crack model
(FCM) with damage based reduction of the Poisson’s ratio and variable shear retention, being the counterpart of regular SLA; (2)
NLFEA based on a fixed crack model (FCM) with no damage based reduction of Poisson’s ration, such that a constant Poisson’s ratio
is applied alongside a variable shear retention; (3) NLFEA based on a rotating crack model (RCM) with damage based reduction of
Poisson’s ratio and shear retention based on the principle of coaxiality.

The force–displacement curves of the simulations are shown in Fig. 17. NLFEA with the fixed crack model and damage based
Poisson’s ratio and shear reduction shows very good agreement with regular SLA. Considering the second NLFEA case, the constant
Poisson’s ratio is not in line with the theoretical framework of regular SLA and therefore clear differences are found between both
NLFEA and SLA. Since Poisson’s ratio is not reduced during damage increments, larger spurious stresses develop within the crack
plane, ensuring quicker application of damage increments and therefore, the post-peak load reduces relatively fast as well. In the
NLFEA with the rotating crack model, a more flexible response is found compared to regular SLA. The load displacement curve
is qualitatively similar to the curve of the fraction model: the same peak load is predicted and both analyses seem to converge to
approximately the same load. However, as has already been discussed in previous case studies, the fraction model is not able to
exactly match with the rotating crack model due to previously cracked fractions (with outdated crack angles) contributing to the
total behaviour. To that end, it is a remarkable finding that the fraction model for this case results in an even more flexible response
than the rotating crack model, indicating the presence of even less spurious stresses, where one would contrarily expect a somewhat
18
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Fig. 18. Crack strain plots in vertical planes at 1 mm and 119 mm from front (0 mm) to rear (120 mm) of the model (i.e Front views A, B, E, F), and Crack
strain plots in horizontal planes at 31 mm and 120 mm from bottom (0 mm) to top (150 mm) of the model (i.e Top views C, D, G, H); for regular SLA and
the fraction models at a mid-span displacement of 1.2 mm.

Fig. 19. Comparison of crack paths for regular SLA and fraction models in the horizontal planes 90 mm and 120 mm from the bottom of the FE Model.

stiffer response. This observation is substantiated in the following paragraph. It can however be concluded that better agreement
with the rotating crack model is encountered by invoking the 3D implementation of the fraction model as compared to regular SLA.

With the aid of so-called cutting planes, on which all crossed elements project their cracks, crack strain plots are generated
from the front side to the rear side and from the bottom to the top in Fig. 18. A curved 3-dimensional crack pattern is observed
for both methods. Starting from the front side, the straight vertically directed crack gradually transfers to an inclined curved crack
at the rear side of the beam. Furthermore, starting from the bottom side of the beam, the crack gradually straightens towards the
top, rotating from the notch direction towards the direction of the line load. In this way, a non-planar 3-dimensional crack path is
obtained above the inclined notch. In line with the U-turns that were found for the notched beam of Section 5.2, the crack paths
corresponding to regular SLA in Fig. 18 (left) seem to be lost near the top, i.e. the crack directions at the crack tip start to deviate
from the direction of crack propagation, such that ultimately, almost horizontally aligned cracks are found at the crack tip. Crack
directions in regular SLA are fixed and hence, further crack propagation is arrested near the top. In this way, spurious stresses
enforce the crack path to be lost. To correct for this horizontally aligned crack, the fraction model exhibits crack rotations at this
location, such that further crack propagation is possible. To this end, further propagated fully developed cracks are observed for
the fraction model. Furthermore, slightly bigger bands of spurious stresses near the top are found for regular SLA as a result of the
lost crack path. The latter statement is supported by Fig. 18 (right) and Fig. 19 in which differences are found in the width of the
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Fig. 20. Comparison of crack paths FCM and RCM NLFEA with regular SLA and the fraction model in vertical planes at 1 and 119 mm from front side for a
mid-span displacement of 1.2 mm.

localisation band, especially at height of 90 and 120 mm from bottom. Fig. 19 gives an overlay of the crack paths for these two
specific heights. Based on this overlay, it is concluded that the amount of spurious stresses is significantly reduced by the fraction
model. Combined with the more correct crack path at the top, this results in a less stiff response with less spurious energy dissipation
compared to regular SLA, as can be observed in the load–displacement curve in Fig. 18.

Finally, the crack strain plots of NLFEA fixed crack model (FCM) and regular SLA are very similar as shown in Fig. 20. Although
FCM results in a slightly wider localisation band, both exhibit the same main crack path and a U-turn type of behaviour at the top,
troubling further crack propagation. The similarity also explains the excellent agreement between the load–displacement curves of
FCM and regular SLA. The crack strain plots of NLFEA rotating crack model (RCM) and the fraction model also show similarities.
The fully developed crack paths show an almost one-to-one agreement. Also, the additional crack zone next to the notch is similarly
captured by both analyses. However, as becomes clear from sub figures (B) and (F) in Fig. 20, RCM results in a wider band of cracks
due to spurious stresses compared to the fraction model. Apparently, the SLA-type of procedure restricts the development of spurious
crack paths, explaining the even more flexible behaviour that is obtained by the fraction model in the load–displacement curve. A
possible cause of this observation might be that for SLA-type of procedures, only a single damage increment is performed at a time,
potentially allowing for a certain degree of self-correction in the next steps, while for NLFEA, damage increments are performed in
any step anywhere throughout the structure, such that a complete zone of integration points can enter the spurious regime and thus
spurious cracks occur simultaneously. To this end, it is less likely for SLA-type of procedures that large zones of spurious stresses
develop. Although a more thorough study on the generation of spurious stresses in RCM and FCM would be interesting, especially
compared to SLA-type of analyses, such a study is beyond the scope of this article.

6. Discussion

The differences between regular SLA and the fraction model, in general can lead to smoothening of crack paths as observed
in all case studies. This is due to the crack rotation on an element level, since the stresses are monitored in a plane that is more
in line with the principal stress direction resulting in less over-stiff behaviour. Spurious stresses and cracks, and therefore crack
paths, are observed in surrounding elements with regular SLA due to stress locking at the element level. However, the fraction
model implicitly allows for correction due to the said flexible behaviour at the element level thereby counteracting the further
development of spurious stresses in surrounding elements. In summary, over all case studies more flexible post peak behaviour
in the load–displacement responses and sharper localisation bands are obtained with the fraction model which is in line with the
structural behaviour. Furthermore, the performance of the fraction model yields some interesting insights which are described in
the following.

Comparison with other constitutive models: Rots [2] mentions that fixed smeared cracking approaches are observed to
suffer from excessive orthogonal cracking. As a fixed crack is not able to co-rotate with the principal stresses, orthogonal cracking
is the only way for an element to ‘compensate’ for the crack direction. This effect is also observed for regular SLA in all case
studies. Contrarily, since crack rotation is simulated by the fraction model, the effects of orthogonal secondary cracking are much
less pronounced, resulting in a better approximation of the rotating crack as in NLFEA observed in the tension-shear problem
(Section 5.1). In the fraction model, shear retention occurs implicitly as a consequence of the rotating crack plane over the different
fractions, since previously cracked fractions generate shear stresses not along their cracking planes. Varying 𝛽 does not lead to a
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notable variance of the stress state, indicating that only small shear stresses are found within the cracking planes [54]. As a matter
of fact, when comparing the fraction model with the different smeared cracking approaches i.e. fixed/rotating/multi-directional
fixed crack, similarities are found with the multi-directional fixed cracking model which allows for multiple cracks to form within
one integration point, where the angle between two consecutive cracks is controlled by a threshold angle 𝛼. The superposition of
fraction cracks can be interpreted as a multi-directional fixed crack. Furthermore, in line with the multi-directional fixed crack model,
coaxiality between principal strains and stresses is not maintained for the fraction model. The previously cracked fractions are the
reason that the element’s principal stress direction does not match the principal strain direction. The model also shows similarities
with the approach of Cook et al. [31] which is also a multi-directional crack model with cracking planes, having each their own
predefined crack direction. As opposed to the large amount of predefined cracking planes on element level in this approach, each
fraction of the fraction model is allowed to crack in any direction, depending on the principal stress direction, and therefore, a
wide spectrum of cracks can be simulated without the need to apriori define a large amount of cracking planes. The authors see
similarities with the microplane model [35] where tensorial stress strain relations are obtained from stress and strain vectors on
planes of various orientations, called microplanes, wherein damage is enforced. But the applicability of the microplane model in
the SLA solution framework is to be investigated.

Influence of the mesh: element type, order and integration schemes: Sensitivity studies on the case studies in this article
were also carried out, with respect to integration schemes and order/interpolation scheme of the elements [54] which are not
presented herein considering constraints on the length of the article. The studies on integration schemes reveal that the influence
of spurious stresses is less severe for reduced integration scheme (1-point) or in some cases hardly any [54]. This is because for
regular integration schemes like 2 × 2 or higher, a large part of the area belonging to an integration point closer to an adjacent
cracked is subjected to severe straining resulting in spurious stresses. In case of the single-point integration scheme, the spurious
behaviour is in fact averaged over the complete element. Furthermore, it was also concluded that using regular 2 × 2 integration,
a non-stable process of increasing asymmetry was initiated and spurious stresses due to incorrect crack directions are formed as
a result of asymmetric generation of spurious stresses. This was in-turn was due to the inability of the elements to follow the
discontinuous nature of the displacement field. The studies on interpolation schemes reveal that for simple straight crack paths like
the notched beam (Section 5.2), linear elements are most suitable, especially when making use of reduced integration. For straight
cracks, quadratic elements are too sophisticated and additional spurious stresses are observed. However, quadratic elements are
recommended for all curved and diffuse crack paths, since the elements interpolation scheme allows for a more accurate and realistic
description of curved crack paths, which becomes especially clear for the shear-notched beam (Section 5.3). As an alternative, linear
elements with reduced integration can be used for simple curved crack cases, although the obtained crack path is more or less the
collection of piece-wise straight cracks. For the concrete dam cases, linear elements with reduced integration are too simplistic,
and no satisfying results can be obtained. Especially for quadratic triangular elements in case of the concrete dam (Section 5.4),
mesh-directional bias was observed to reduce, although the issues are not completely solved. Potentially, the influence of mesh-
directional bias can be reduced by using random triangular meshes. Further research is required to substantiate the latter statement.
It can however be concluded that quadratic-order elements, triangular or quadrilateral, could yield asymmetric and localised cracks
within elements suitable for some specific cases but linear elements would be best suited for application in engineering practice for
larger cases due to the constant strain distribution within the element. With the aid of the fraction model, the general performance
of different elements relatively to each other does not change, and in general, element-related issues are maintained. Furthermore,
mesh sensitivity is indeed an important aspect, as the fraction model is based on the total strain based smeared cracking approach.
It has previously been shown that results are mesh objective with regular fixed crack SLA [13] and this is expected to follow in the
fraction model as well. However, this aspect has not been investigated in this work. The mesh directional bias is indeed an issue as
is observed in the case studies presented herein.

Crack direction tracking: In the delayed crack path fixation approach of Slobbe et al. [21], the crack-path is fixed once a certain
mount of damage has taken place. In this way, the occurrence of U-turns as shown in Fig. 10 is resolved. Following this line of
hinking, the fraction model can in fact also be seen as a type of delayed crack path fixation, since the crack path direction is not
irectly fixed after initiation, but is gradually fixed once damage increases and more fractions are cracked, which can be interpreted
s a ‘delayed’ type of crack path fixation.
Events and snap-backs: Furthermore, when looking in more detail to force–displacement curves, it is to be noted that the

snaps herein are not the global snap-back type equilibrium paths but rather the load-unload type spikes typical of SLA. In order to
understand this difference, it is first explained why snap-backs occur for regular SLA [18,57,58]. Stress jumps occur when multiple
neighbouring elements are almost loaded up to their tensile strength. In this case, a damage increment can only be performed
for the most critical integration point, after which a stress distribution takes place that relieves the critical integration point. The
surrounding elements are not able to take over the released stress and the only way to distribute these stresses is by reducing the
load factor, thereby causing a snap-back. This process is repeated several times until the surrounding elements allow for recovery
of the load factor. The large snapbacks of both regular SLA and the fraction model are found at roughly the same places in the load-
displacement curves, meaning that the underlying cause for snap-backs is the same for the fraction model. However, the snap-backs
are bigger for the fraction model compared to regular SLA, which is most likely the result of a fundamental difference between the
two models. For regular SLA, the critical integration points are often already cracked and therefore considered in the fixed crack
direction, meaning that not by definition the direction with the highest stresses is monitored. For the fraction model with brittle
damage increments, the critical fraction is most often uncracked (except for perpendicular cracking) and stresses are considered in
the maximum direction. As a result, the monitored stresses in the surrounding elements are potentially closer to the tensile strength
21
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Since the surrounding elements have higher stresses, the released stress after a damage increment becomes even more difficult to
distribute and the loading should be reduced even further, causing bigger snap-backs to occur for the fraction model compared to
regular SLA.

Moreover, the results in SLA i.e. the load–displacement curves are dependent on the fineness of the saw-tooth law. In other
ords, more the number of secant branches in the material law, smoother the force–displacement response and equivalent to a
onlinear analysis with the regular constitutive law [13,19]. Since the fraction model draws its characteristics from these saw-tooth
aws in SLA, it can be extended that more the number of fractions, a smoother force–displacement response would be expected.

. Conclusions and outlook

In this article, the framework of regular sequentially linear analysis (SLA) has been extended towards the fraction model (both
D and 3D), which subdivides each element into a parallel set of elastic-perfectly brittle fractions, each having their own Young’s
odulus, strength and fixed crack direction. The superposition of fractions, in an overall sense, results in a rotating crack on element

evel and therefore, the fraction model is observed to mimick a rotating crack. It represents the progressive loss of cross section in
ow the micro-cracking eventually leads to macro cracking, resulting in a more realistic description of damage propagation in
uasi-brittle concrete structures.

A single element case and 4 structural case studies have been presented herein, illustrating the performance of the fraction model
n comparison to regular SLA (using the fixed crack approach) and additionally, some NLFEA. It has been consistently shown that
he fraction model is better able to approximate a rotating crack model compared to regular fixed crack SLA, such that the effects
f stress locking are reduced, less wide bands of spurious stresses are obtained around the main crack path leading to less energy
issipation; and therefore, more flexible post-peak responses are observed.

Some improvements to the fraction model, i.e a tapered ripple band formulation, tension-compression interaction effects for
oth primary and secondary crack initiation, and crack-closure have been proposed already [54]. These extensions would further
mprove the model in its applications in the realm of concrete structures. It is also recommended to perform a variation study
o further understand and optimise the selection of the ripple band parameter 𝑝. It might be useful to develop guidelines that

describe the relation between the ripple band parameter and the obtained level of accuracy. Also, further research is recommended
on how to reduce issues related to mesh-directional bias for the fraction model. Throughout this study, it has been consistently
observed that the crack path tried to follow the mesh lines, which became especially prevailing for linear quadrilateral elements
with regular integration. Potentially, random triangular meshes might reduce these effects. On top of that, the fraction model can
be combined with crack tracking algorithms, in line with the works of Slobbe [21] and Cook et al. [31], within the framework of
regular SLA. With regard to the presented 3D case study, although the results are very promising and in line with the findings of
the 2D cases, the computation efforts that come along with SLA-type of procedures for 3D problems are a drawback. On top of
that, additional computational efforts are required for the fraction model, in which multiple overlay volume elements are applied.
Although the current theoretical framework of the fraction model is restricted to 2D membrane and 3D solid elements, application
to shell elements is also possible following the same principles as discussed in this article—extending on work of DeJong for SLA
with shell elements [24].

With regard to the sequentially linear approach in general, several extensions can still be made to extend its applicability mainly
in relation to loading or stress history related nonlinear problems. The approach is currently being used for monotonic applications,
but cyclic loading studies are possible in an incremental approach with non-secant saw-tooth laws [58], in conjunction with a stress-
reversal algorithm [54,58]. The approach also needs to be extended to large-deformation applications i.e for geometric nonlinear
cases. Furthermore, the suitability of the incremental sequentially linear approaches for plasticity rather than brittle problems needs
investigation.
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