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Abstract

This paper investigates the effect of temperature and hybridization on the impact damage 

evolution and post-impact residual strength of hemp/epoxy, basalt/epoxy and their hybrid 

laminates, using mechanical and acoustic emission (AE) based analysis. To start with, the 

specimens were impacted by a drop weight impact tower machine at two temperatures of 30˚C 

and 65˚C and then they were subjected to a three-point bending test for the assessment of their 

residual strength, while online AE signals were recorded during the test. The mechanical 

behavior of the laminates was evaluated through measurement of the impact force and absorbed 

energy. AE response of the slope of cumulative rise angle (RA) was used for identification of the 

severity of the impact-induced damage in the laminates. In addition, the sentry function was 

computed on the basis of the correlation between the mechanical strain energy stored in the 

materials and the acoustic energy propagates by fracture events, enabled evaluation of the 

amount of impact-induced damage. These results showed the hybridized laminates having a 

better resistance to impact damage at the elevated temperature (65oC) compared with the non-

hybridized laminates, whereas, in the case of the ambient temperature (30oC), basalt/epoxy 

laminates had a higher impact damage resistance than other configurations. This study reveals 
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the capability of the proposed AE-based methods to investigate the effect of temperature and 

hybridization of composite laminates.

Keywords: Hybrid composites, Impact damage, Elevated temperature, Residual strength,                   
Acoustic emission, Rise angle, Sentry function.
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1. Introduction

Composite materials are widely used in aircraft, spacecraft, ship, automotive and other 

light-weight structural components due to their superior properties such as higher specific 

strength, stiffness, long-term durability, better corrosion resistance and excellent fatigue 

properties. However, laminated composite materials are vulnerable to low velocity impact (LVI) 

induced damage and this damage may cause their catastrophic failure [1]. During their service 

life, composites are subjected to various impact loading conditions such as the likelihood of the 

tool being dropped on the structures during maintenance, strike of a foreign object during takeoff 

and impact of debris, hailstones or projectiles. Many researchers have attempted the investigation 

of LVI behavior of composite laminates. In most studies, the effect of various parameters like 

fibre architecture [2,3], impact velocity and impact geometry [4] have been investigated. 

Nevertheless, many studies have not reported on the effect of temperature and residual strength 

estimation of natural fibre hybrid composite laminates under LVI. 

Assessment of the effect of temperature on LVI and residual strength of composite 

laminates are very important, in that their use in load tolerance capability of components exposes 

them during maintenance operations at relatively higher than ambient temperature. Temperature 

is one of the key environmental parameters which have a significant effect on the impact 

response of laminated composite materials [5]. The LVI can notably reduce the stiffness of the 

composite laminates [6,7] and this LVI gives rise to damages such as interlaminar cracks, matrix 

cracking, intra-ply crack, delamination and fibre failure [8]. Caprino et al [9] have reported the 

dependence of residual strength on the extent of delamination and other micro failure that 

occurred during impact. The effect of temperature ranging from 40oC to 80oC on impact damage 

resistance of glass/epoxy was investigated by Kang et al [10]. They found temperature having a 

very small effect on impact damage of laminated composites. Boominathan et al [11] conducted 
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LVI on carbon/epoxy laminates at elevated (50oC, 75oC and 90oC) and ambient temperatures. 

They concluded that the residual flexural strength was increased upto 75oC and reduced at 90oC 

which was close to the glass transition (Tg) temperature. However, there are only a few studies 

[12] on the effect of temperature on impact-induced damage and evaluation of residual flexural 

strength for natural fibre hybrid of hemp-basalt composite laminates subjected to impact loading.

Hemp is a naturally ecologically friendly fibre and, after sisal, it is the most widely used 

natural fibre as reinforcement in composites [13,14]. This natural fibre has acceptable strength 

and stiffness for use as reinforcement in composite materials. Some advantages and applications 

of hemp fibre and its composites have been reported by Shahzad [15]. Hemp fibre composites 

have improved tensile strength, young modulus and better impact performance [16]. Basalt fibre 

is a natural material composed from volcanic rocks. Continuous basalt fibres can be used as 

reinforcement in new ranges of concrete and plastic matrix composites. Basalt fibres and basalt-

based composites have good thermal properties and can be used in high temperature 

environments like pipes, bars, fittings, frictional materials, etc. [17]. A number of studies 

performed, indicate the superiority of the mechanical properties of basalt fibre to glass fibre 

composites in terms of linear stiffness, young modulus, flexural strength, compressive strength 

and toughness [18,19] which provides the hybrid composite laminates, the ability to resist higher 

impact damage than glass fibre laminates [20,21].

Hybridization of different fibres is one of the successful approaches to help increase in 

the resistance of composite materials against impact damage. Hybrid composites are usually 

fabricated from two or more different types of fibre reinforced in the same matrix. Petrucci et al 

[22] have reported the superiority of the flexural modulus of glass/flax/basalt hybrid 

configuration by 8% and 36% to flax/hemp/basalt and glass/hemp/basalt respectively. In hybrid 

laminates, optimum mechanical properties were obtained by placing high strength fibres as skin 

layers [23].  De Rosa et al [24] experimentally found the most favorable degradation pattern for 

the laminates configuration of lower strength material (glass) as a core and high strength material 

(basalt) as a skin and slightly less favorable result was obtained using basalt as a core. The poor 

damage resistance of glass fibre laminates was improved by the hybridization with basalt layers 

[25]. Better impact strength was obtained for basalt/jute/basalt among different hybrid 

configurations of basalt and jute fibres [26]. The hybrid effect of hemp and basalt fibre on the 

flexural and impact strength was investigated for various ratio of hemp/basalt fibre loading [27]. 



The total fibre loading of the hybrid composites was 40% vol, maximum flexural strength and 

impact strength was obtained for 0.52:0.48 and 0.68:0.32 hemp/basalt fibre ratios respectively. 

However, more research studies are still needed for investigation of impact damage progression 

in natural fibre hybrid composite laminates at elevated temperature.

Nondestructive testing methods have been widely used for the improvement of the 

damage evolution in laminated composite materials [28]. Acoustic Emission (AE) is a non-

destructive testing technique that has good potential for monitoring the damage evolution of 

composite materials [29-32]. AE signal is the result of transient elastic strain waves generated 

inside materials as they undergo fracture or deformation. Therefore, this technique is capable of 

detecting in-situ information relating to the damage mechanisms that occur during loading of 

composite materials. 

Evaluation of the residual tensile strength following the impact of glass/epoxy laminates 

has been done by AE [33,34] and a damage threshold level was established to identify when  

mechanical properties of the material started to decreasing. There are also some studies on 

damage characterization of hybrid composite materials using the AE technique [35-37], showing 

the potential of this technique for hybrid configurations. Suresh Kumar et al [38] used AE 

amplitude, duration, counts, energy, rise angle (RA) and peak frequency for characterizing 

failure modes in hybrid composite laminates. The amount of indentation-induced damage was 

evaluated in different configurations of carbon, basalt and glass fibres using Sentry function (SF) 

and Felicity ratio (FR) and RA [39]. A visual correlation was done between the glass/carbon 

hybrid failure mechanisms in thin-ply composites and the associated AE signals [36]. The 

cumulative number of AE activity, AE energy, RA and damage indices were used for the 

assessment of damage progression in glass fibre composites [40]. AE monitoring was used for 

the identification of the level of damage in hybrid jute/glass-polyester composites during the 

post-impact flexural tests [41]. AE-based damage characterization in hybrid composites is a 

challenging task due to the complexity of the damage mechanisms.

A comprehensive damage characterization can be carried out by combining mechanical 

and acoustical parameters. The sentry function [39,42] which combines both the mechanical and 

acoustic energy information is a useful tool for this purpose. This function was successfully used 

for the investigation of fracture energy release rate and damage progression of composite 



laminates. Nonetheless, impact damage evolution and post-impact residual properties in natural 

fibre reinforced composites has only a poor coverage and the impact of their hybrid 

configurations at different temperatures has been observed. This paper fills the aforementioned 

gap in literature by applying efficient AE-based characterization methods for the evaluation of 

the effect of temperature on impact-induced damage and residual strength of hemp/epoxy, 

basalt/epoxy and their hybrid (hemp/basalt)/epoxy laminates. For that reason, three different 

status of hemp/epoxy, basalt/epoxy and their hybrid/epoxy composite laminates, with non-

impacted and impacted at two different temperatures of 30°C and 65°C, were subjected to a 

three-point bending load until their failure, alongside on-line monitoring by AE sensors. Later 

the mechanical data, the AE data and their combination were utilized for the improvement of our 

understanding about the damage evolution and residual strength estimation of the investigated 

laminates as shown in Fig.1.

2. Experimental procedures

2.1 Materials

Non-woven hemp fibre mat of 450 g/m2 and uni-directional basalt fibre of 200 g/m2 areal 

weight were used as reinforcement for composite laminate preparations. The thickness as of each 

layer of hemp fibre and basalt fibre were 0.80±0.05 and 0.19±0.03 mm respectively. Epoxy resin 

(LY556) i.e., diglycidyl ether of bisphenol-A (DGEBA) with hardener (HY 951) in the ratio of 

10:1 was used as the matrix materials. 

2.2 Laminates fabrication

The composite laminates were fabricated using hand-layup method. In the case of 

hemp/epoxy laminate preparation, 4 layers of hemp fibre were heated upto 80oC in an oven prior 

to laminate preparation for removing the moisture content that helped the bonding between the 

resin and the fibre system. For the preparation of basalt/epoxy laminates, 12 layers of basalt 

fibres were aligned in a cross ply orientation of [0/90/90/0]3S. In the case of the hybrid laminate, 

alternate layers of hemp fibre and basalt fibre configuration of [B/H/B/H/B/H/B]. The fibres 

were placed on the mold of 50 kN compression molding machine and the resin hardner mix was 

applied evenly on the fibres by hand-layup process and allowed to cure under a compression 

pressure of 55 kg/cm2 at ambient temperature (30oC) for 24 hours. The nominal thickness of all 

the laminates was maintained as 3.8±0.045 mm. Post curing was performed to ensure a good 



adhesion between the fibre and resin. After removal of laminates from the compression molding, 

they were placed in an oven at a temperature of 65oC for 3 hours. The specimens were cut from 

the fabricated laminates using a power saw. The dimensions of the specimens were kept as 60 x 

60 mm2 for conducting impact and flexural testing. The fibre weight fraction was 47±3% and the 

void content was 2.25±0.5% for all laminates. The contents were calculated using a procedure in 

accordance with ASTM D2734-94 standard. 

2.3 Impact testing

The specimens were impacted with an impact velocity of 1.5m/s at two different 

temperatures of 30oC and 65oC. These values were chosen for the simulation of two different 

working conditions, 30oC which was around the room temperature and 65oC to simulate a higher 

temperature which is not higher than the glass transition temperature of the epoxy. For this non-

penetrating LVI, Fractovis drop weight impact machine with an environmental chamber was 

used for conducting the impact test on the specimens as shown in Fig.2. The impacting plunger 

has a cross-head mass of 1.926kg and the diameter of the hemispherical steel tup was 12.7mm 

with a clamping force of 1000N. The specimens were impacted with nominal impact energy of 

2.17J. This energy level was chosen for causing barely visible impact damage, which is a bigger 

challenge than a visible impact-induced damage in high-energy levels, due to the difficulty in 

inspection. Parameters such as impact force, impact energy and deformation were recorded 

during the conduct of impact tests. Five specimens in each category were used for the test and 

the average of the results was considered for interpretation. 

2.4 Flexural test with AE monitoring

AE software AEWin and an 8 channel AE data acquisition system supplied by Physical 

Acoustics Corporation (PAC) were used for recording the AE events. Post impact studies were 

carried out and were assisted by AE monitoring. The sampling rate and pre-amplification were 

fixed as 3 MSPS and 60 dB respectively. The amplitude threshold was fixed to 45 dB and 

amplitude distribution covered the range 0-100dB. Nano band piezoelectric sensors (NANO30 

PAC sensor) were used as AE sensors for signal accumulation along with high vacuum silicon 

grease that provided good acoustic coupling between the laminate and the sensor. The sensors S1 

& S2 were placed on the laminate 20mm apart from the cross head for signal accumulation as 

shown in Fig.3. The data acquisition system was calibrated for each kind of laminates. Typical 



pencil break test was conducted for the determination of the wave generation at the composite 

laminate surface and calibration of the sensors. The average wave velocity in the hemp/epoxy 

was found to be 3020 m/s, the basalt/epoxy to be 3450 m/s and the hybrid (hemp-basalt)/epoxy 

to be 3200 m/s.  The timing parameters were fixed on the basis of the wave velocity obtained. 

Peak definition time (PDT) for the hemp/epoxy, the basalt/epoxy, and the hybrid (hemp-

basalt)/epoxy was determined as 19µs, 17µs and 18µs, respectively. The hit definition time 

(HDT) is set to 150µs and the hit lock out time (HLT) to 300µs.

3. Results and discussion

3.1 Mechanical Results

The impact force-deformation curves of the laminates are shown in Fig.4. The 

basalt/epoxy laminates exhibited the highest contact force followed by the hybrid/epoxy and 

hemp/epoxy laminates. It can be clearly seen that the shapes of the force-deformation histories 

for the impact test conducted on the basalt/epoxy and the hybrid/epoxy laminates were similar. 

This was due to the addition of basalt fibre to hemp that improved mechanical strength and 

therefore the basalt fibre behavior had influence on hybrid/epoxy laminates.  The permanent 

deformation for the basalt/epoxy and hybrid/epoxy laminates was about 0.5 mm and the 

maximum force occurred at around 2 mm. In the case of hemp/epoxy laminates, the permanent 

deformation was about 1 mm and the maximum force occurred at around 2.5 mm. The peak 

force has small reduction for the hemp/epoxy laminates impacted at 65oC compared with 30oC, 

but negligible changes are observed in the peak force for the basalt/epoxy and hybrid/epoxy 

laminates. This can be attributed to a significant presence of plasticization or ductile nature of the 

matrix increasing with temperature.

The absorbed energies for the laminates are shown in Fig.5. It is evident that the absorbed 

energy has the lowest value for the basalt/epoxy laminates and the highest value for the 

hemp/epoxy laminates, whereas the hybrid/epoxy laminates have the middle values. Energy 

absorption in composite materials works through damage creation; therefore, the highest level of 

absorbed energy in the hemp/epoxy laminates reflects the highest damage creation in these 

laminates. This is also seen in Fig.4. A noticeable gradient change (non-linearity) and the highest 

permanent deformation are visible for the hemp/epoxy laminates, which reflect the higher level 

of damage in this laminate compared to the other laminates.



The impacted and non-impacted laminates were subjected to a three point bending test in 

the investigation of the effect of temperature and hybridization on flexural after impact strength 

of the laminates. The resulting flexural strength versus deformation for the investigated samples 

is shown in Fig.6. The percentage reduction in the residual strength of the laminates impacted at 

30oC and 65oC, compared to the non-impacted laminates, is illustrated in Fig.7. The results show 

a decrease in the residual strength in all the laminates with an increase in the impact temperature. 

The highest percentage of decrease occurred in the hemp/epoxy laminates, due to the highest 

impact-induced damage, while lowest one occurred in the hybrid/epoxy laminates. This reveals 

the hybrid/epoxy laminates having the least impact-induced damage, showing the impact damage 

resistance of the hybrid composite.

3.2 AE results

Rise angle (RA) value was derived from the division of AE rise time per AE amplitude 

and has been denoted in “ms/V” unit. Effective performance of RA for identifying the 

progression stages of damage in the reinforced concrete materials has been reported in [43,44]. 

Applying a similar concept in this paper; Figs.8, 9 and 10 show stress-deformation and 

cumulative RA value-deformation curves of the investigated laminates. A comparison of 

cumulative RA for non-impacted and impacted at different temperatures is also shown in Fig.11. 

Based on the damage evolution, three different regions with different slopes can be identified in 

the cumulative RA curves. These slopes were chosen based only on the significant visible 

changes in the rate of the cumulative RA curves.

In Region I, RA curve has the lowest slope and with no significant active source for AE 

signals. Therefore it does not have a considerable activated damage mechanism due to the 

applied load. This region correlates with the linear part of the load-deformation curve and 

reflects the absence of any change in the stiffness of the laminate. Region II is accordance with 

appearance of the some significant AE signals that originated from the active damage 

mechanisms which were responsible for the non-linear behavior of the load-deformation graphs. 

Region III had the biggest slope, where catastrophic failure occurred in the material through 

accumulation of the induced damage mechanisms during the tests.

The cumulative RA curve shows different trends for various combinations of layups 

materials and temperatures that show different forms of failure behaviors in the laminates. For 



the hemp/epoxy and basalt/epoxy laminates, trend of the cumulative RA value was increase from 

the beginning of the load until the final fracture. However, there was no significant increase in 

the cumulative RA value in Regions I and II. There was a smooth trend (Parabolic shape), 

making it hard to distinguish Regions I and II from each other. It indicated the failure for the 

hemp/epoxy and basalt/epoxy laminates having a catastrophic nature and the damage 

mechanisms appeared mainly in the final stage of the loading, causing sudden and continuous 

rise in the cumulative RA value trends in Region III. However, in the case of the hybrid/epoxy 

laminates, significant changes in the trend of cumulative RA value in Region II, which were the 

result of complex active failure modes in these laminates, due to the effect of the mixed presence 

of basalt and hemp fibres. For the hybrid/epoxy laminates, the failure had a progressive behavior 

and it started from the earlier stage of the loading. 

For the hybrid laminates, the significant rise in the cumulative RA value is associated 

with stress levels that are close to the maximum stress levels experienced by the hemp laminates. 

This shows the presence of some damages in the hybrid configuration, most probably due to the 

failure of the hemp fibres, when the applied stress in the hybrid configuration reached the failure 

stress level of the hemp fibres. However the hybrid laminate can tolerate these failure modes 

unless the stress level reaches a higher value and the basalt fibre starts to fail, which then causes 

the final failure of the hybrid laminate. The maximum cumulative RA value in the hemp 

laminates is less than 3000 (ms/V). This value corresponds very well with the cumulative RA 

value in Region II of the hybrid laminates, supporting the fact that initially the hemp fibres 

started to fail in the hybrid laminate. This damage mechanism is happening gradually causing 

stress concentration that leads to failure of the basalt fibres in the hybrid laminates. This can be 

one reason for slightly lower maximum flexural stress in the hybrid laminates compared with the 

basalt laminates at which the basalt fibres do not experience any stress concentration and 

therefore are stronger than the basalt fibres in the hybrid laminates.

Effect of temperature on impact damage was observed from the cumulative RA value 

trends. The extent of damage to the introduced regions and their trend were different for various 

combinations of layups materials and test conditions. These differences showed different types 

of failures in the investigated laminates. Photography of the investigated laminates, taken from 

the rear side of the non-impacted and impacted surface of the laminates at the temperature of 

30oC and 65oC prior to conducting flexural test, is shown in Fig.12. The damage area showed 



increase for the case of impacted hemp/epoxy laminates, due to tensile matrix crack, interlaminar 

crack and fibre fracture. The damage propagation was observed in both the longitudinal and 

transverse directions which might be due to the lower interlaminar shear strength and impact 

resistance of hemp fibres. These results were obtained from the lowest cumulative RA and the 

highest absorbed energy for all the cases of hemp/epoxy laminates compared to other tested 

configurations.

In the case of basalt/epoxy laminates, only a few localized matrix cracks were found on 

the rear side faces experienced tension, which initiated an interlaminar crack. This localized 

matrix crack did not cause any significant reduction in stiffness at 30oC. The initiated 

interlaminar crack was propagated to barely visible damage for increasing impact force. The 

absorbed energy showed an increasing trend with respect to increase in impact temperature as 

depicted in Fig.12. The magnitude of the absorbed energy was at the lower side in comparison 

with hemp/epoxy and hybrid/epoxy and therefore basalt/epoxy had the highest toughness at 

30oC. This result was also evident from the highest cumulative RA value followed by 

hybrid/epoxy and hemp/epoxy laminates. The failure mechanisms for the basalt/epoxy and 

hybrid/epoxy laminates were quite similar and had localized matrix cracking and barely visible 

delamination. Nevertheless, the hybrid/epoxy laminates exhibited a better performance at 65oC 

which might be due to the polymerization of the matrix. The highest cumulative RA value was 

obtained for hybrid/epoxy laminates impacted at 65oC.  The hybridized system showed a 

palpable difference in the size of rear surface damage indicating better impact damage resistance 

at elevated temperature compared to non-hybridized laminates. The susceptibility to impact 

damage was seen as slightly higher for the investigated laminates impacted at the elevated 

temperature. 

3.3 Damage evaluation using Sentry function

Sentry function provides a comprehensive analysis of the damage evolution, as it 

combines AE and mechanical results. This function is defined in the logarithm form of the ratio 

between the mechanical and acoustical energies [30,39,42], as equation 1. 
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       where x, ES(x) and Ea(x) are the displacement, the strain energy and the AE energy 

respectively. 

Based on progress of the damages in the laminates, see Figs.13, 14 and 15, Sentry function has 

four trends which are as follow: 

a) PI function which is related to the increase in strain energy. Increase in the load 

caused increase in the mechanical energy and consequently an increase in sentry 

function. This trend occurs during the first stages of the loading where AE energy is 

negligible and no significant damage occurs in the laminate. 

b) PII function which is related to instantaneous increase of the AE energy and can be 

seen as a sudden drop trend. The increase in the AE energy is due to a macroscopic 

damage that occurred in the laminate.

c) PIII function is a constant trend and appears when the mechanical energy and the AE 

energy have equilibrium state. 

d) PIV function is a decreasing trend and may happen when the laminate degraded and 

the damages growth continuously.

Based on the above description, consideration of small PII type function as the occurrence of 

micro damage in the material, may lead to the consideration of the big PII type functions (big 

falls) as the macro damage initiation. This is due to the fact that the initiation of the macro 

damage is a significant internal material damage and as result there is an immediate release of 

the stored energy which causes an AE signal with high energy content. It can be seen from 

Figs.13, 14 and 15 that the initiation of macro damage in the laminates has a good correlation 

with the RA results. 

The laminates have different trends in the sentry function curve. For the non-impacted 

laminates, PIII type function appears more than the impacted laminates. But, for the impacted 

laminates, PIV type function is the dominant type in the sentry function curve. It implies the 

resistance against evolution of damages more than the impacted laminates following the 

occurrence of the micro and macro damages within the non-impacted laminate. For the hemp 

laminates, sentry function trend has almost decreasing trend, PIV type function, which indicates 

the inability of the laminates to resist against impact-induced damage progression and the 



continuous degradation of the laminates and growth of damage. For non-impacted basalt and 

hybrid laminates, after big fall, PIII functions appeared with positive slope showing the capacity 

of the laminates to tolerate additional strain energy before the final failure. In the impacted 

laminates and by increasing the temperature, the trend indicated was less observable and there 

was mostly a decreasing trend after the big fall. A comparison of the basalt and hybrid laminates 

impacted in 30oC and 65oC, showed some PIII functions in the hybrid laminate which meant that 

the AE energy and the mechanical energy have an equilibrium state. But, for the basalt 

laminates, PIV functions appear and there is no PIII function. 

Another interesting result is related to the length of the big fall in sentry function trends. 

Big falls in the hybrid laminates are clearly larger than the other laminates and length of big fall 

in the basalt/epoxy laminates is higher than the hemp/epoxy laminates. This indicates the 

appearance of significant macro failures in the hybrid/epoxy laminates and nonetheless, it has a 

gradual type of failure occurred in the laminates. Even though the big fall of the hybrid laminates 

produce a stronger AE signal, but there is still a gradual loss of the strain energy in the laminates 

due to gradual failure exhibiting the damage tolerant nature of the laminates against impact. But 

the failures of the hemp/epoxy and basalt/epoxy laminates occur suddenly and they are more 

susceptible to the impact damage.

Conclusion

This study is meant for the investigation of the influence of temperature and 

hybridization on impact damage evolution and post-impact residual strength of the hemp/epoxy, 

basalt/epoxy and their hybrid/epoxy laminates. The investigated laminates were subjected to a 

three-point bending test and were monitored using AE technique. The mechanical results showed 

the occurrence of the highest reduction of the residual strength in the impacted hemp/epoxy 

laminates and the lowest one in the hybrid laminates. In addition, hybrid laminates showed better 

resistance against impact damage at the elevated temperature compared with the non-hybridized 

laminates. Different AE trends were observed for each configuration and the AE based methods, 

sentry function and cumulative RA value, were sensitive enough for the detection of the gradual 

failure and damage tolerant nature of the hybridized laminates. The conclusion is that 

hybridization of basalt-hemp fibres improves the resistance to impact and causes a gradual 

damage evolution. And also this study concluded the sensitivity of AE in the investigation of the 



effect of temperature and hybridization on the impact damage resistance of natural fibre 

reinforced polymer composite laminates. 
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Figure Captions

Fig. 1: Summary of the damage characterization and residual strength measurement procedures

Fig. 2: (a) Fractovis instrumented impact tester (b) Impact striker with load cell (c) Specimen held in 

circular holder and is clamped in environment chamber during impact

Fig. 3: Specimen under flexural loading with AE sensors

Fig. 4: Impacted force versus deformation for hemp, basalt and hybrid/epoxy specimens (a) Impacted 

at 30oC and (b) Impacted at 65oC

Fig. 5: Absorbed energy for hemp, basalt and hybrid/epoxy specimens, impacted at 30oC, and 65oC

Fig. 6: Flexural Stress versus deformation for hemp, basalt and hybrid/epoxy specimens, non-

impacted, impacted at 30oC and impacted at 65oC

Fig. 7: Residual flexural strength reduction percentage in the laminates

Fig. 8: Stress-deformation and cumulative RA-deformation curves of the non-impacted specimens

Fig. 9: Stress-deformation and cumulative RA-deformation curves of the impacted specimens at 30°C

Fig. 10: Stress-deformation and cumulative RA-deformation curves of the impacted specimens at 

65°C

Fig. 11: Comparison of cumulative RA for non-impacted and impacted samples at different 

temperatures

Fig. 12: Rear side photography of (a) hemp/epoxy (b) basalt/epoxy (c) hybrid/epoxy specimens

Fig. 13: Stress-deformation and Sentry function-deformation curves of the non-impacted specimens

Fig. 14: Stress-deformation and Sentry function-deformation curves of the impacted specimens at 

30°C

Fig. 15: Stress-deformation and Sentry function-deformation curves of the impacted specimens at 

65°C



Fig. 1: Summary of the damage characterization and residual strength measurement procedures.

Fig. 2: (a) Fractovis instrumented impact tester (b) Impact striker with load cell (c) Specimen held in 

circular holder and is clamped in environment chamber during impact



Fig. 3: Specimen under flexural loading with AE sensors

Fig. 4: Impacted force versus deformation for hemp, basalt and hybrid/epoxy specimens (a) Impacted 

at 30oC and (b) Impacted at 65oC



Fig 5: Absorbed energy for hemp, basalt and hybrid/epoxy specimens, impacted at 30oC, and 

65oC

Fig. 6: Flexural Stress versus deformation for hemp, basalt and hybrid/epoxy specimens, non-

impacted, impacted at 30oC and impacted at 65oC



Fig. 7: Residual flexural strength reduction percentage in the laminates

Fig. 8: Stress-deformation and cumulative RA-deformation curves of the non-impacted specimens



Fig. 9: Stress-deformation and cumulative RA-deformation curves of the impacted specimens at 30°C

Fig. 10: Stress-deformation and cumulative RA-deformation curves of the impacted specimens at 

65°C



Fig. 11: Comparison of cumulative RA for non-impacted and impacted samples at different 

temperatures

Fig. 11: Rear side photography of (a) hemp/epoxy (b) basalt/epoxy (c) hybrid/epoxy specimens



Fig. 13: Stress-deformation and Sentry function-deformation curves of the non-impacted specimens

Fig. 14: Stress-deformation and Sentry function-deformation curves of the impacted specimens at 

30°C



Fig. 15: Stress-deformation and Sentry function-deformation curves of the impacted specimens at 

65°C

   




