

Delft University of Technology

Direct and continuous conversion of flue gas CO₂ into green fuels using dual function materials in a circulating fluidized bed system

Kosaka, Fumihiro; Sasayama, Tomone; Liu, Yanyong; Chen, Shih Yuan; Mochizuki, Takehisa; Matsuoka, Koichi; Urakawa, Atsushi; Kuramoto, Koji

DOI

[10.1016/j.cej.2022.138055](https://doi.org/10.1016/j.cej.2022.138055)

Publication date

2022

Document Version

Final published version

Published in

Chemical Engineering Journal

Citation (APA)

Kosaka, F., Sasayama, T., Liu, Y., Chen, S. Y., Mochizuki, T., Matsuoka, K., Urakawa, A., & Kuramoto, K. (2022). Direct and continuous conversion of flue gas CO₂ into green fuels using dual function materials in a circulating fluidized bed system. *Chemical Engineering Journal*, 450, Article 138055.

<https://doi.org/10.1016/j.cej.2022.138055>

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.

We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

<https://www.openaccess.nl/en/you-share-we-take-care>

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Direct and continuous conversion of flue gas CO₂ into green fuels using dual function materials in a circulating fluidized bed system

Fumihiko Kosaka ^{a,*}, Tomone Sasayama ^a, Yanyong Liu ^a, Shih-Yuan Chen ^a, Takehisa Mochizuki ^a, Koichi Matsuoka ^a, Atsushi Urakawa ^b, Koji Kuramoto ^a

^a National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

^b Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands

ARTICLE INFO

Keywords:
CO₂ hydrogenation
CO₂ utilization
CO₂ capture
Methanation
Fluidized bed
Dual function material

ABSTRACT

Carbon capture and utilization (CCU) technologies, such as CO₂ methanation, generally require energy-intensive CO₂ capture and separation processes prior to catalytic CO₂ conversion. In contrast, integrated CO₂ capture and reduction (CCR) technologies that use dual function materials (DFM) can directly convert low-concentration CO₂ in flue gas or atmosphere into high-concentration CH₄ or CO. In this study, we demonstrate a circulating fluidized bed (CFB) approach to enable continuous operation of CCR. In the CFB approach, the DFM (Na/Ni/Al₂O₃) circulates between two bubbling fluidized beds to enable steady-state cyclic operation of (1) selective capture of CO₂ in flue gas/air and (2) hydrogenation of the captured CO₂. We succeeded in the continuous synthesis of CH₄ with high CO₂ capture efficiency (>88 %) and high H₂ conversion (>85 %) yielding mainly CH₄ (selectivity > 99 %) as the product at high concentration (>20 % CH₄) using 2 % CO₂/N₂ as the model flue gas.

1. Introduction

Carbon capture and utilization (CCU), such as CO₂ hydrogenation to gaseous and liquid fuels and value-added chemicals, has attracted significant attention as an efficient technology towards a carbon neutral society[1–3]. In addition, CO₂ methanation (Eq. (1)) has gained attention as a CCU technology to produce synthetic natural gas from CO₂ and H₂[4–7].

To produce CH₄ from CO₂ contained in flue gas or air, low-concentration CO₂ often coexisting with O₂ and N₂ needs to be first treated to obtain high-purity CO₂ using CO₂ capture and separation technology such as amine absorption. Subsequently, CH₄ is synthesized from high-purity CO₂ and H₂ using a solid catalyst[4–7]. However, amine absorption and other CO₂ purification technologies are energy-intensive because of the significant thermal energy required for CO₂ desorption in a temperature swing process[8].

To reduce the overall energy requirement of CCU, integrated CO₂ capture and reduction using dual function materials (DFM) has been proposed[9,10]. The process has been called as CO₂ capture and reduction (CCR) or integrated CO₂ capture and utilization (ICCU), which

has the advantage of not requiring energy-intensive CO₂ capture processes such as amine absorption. DFM includes alkaline or alkaline earth components for CO₂ capture (e.g., Na or Ca) and CO₂ hydrogenation (e.g., Ni or Ru for methanation). The two reaction steps involved are (i) selective CO₂ capture inside or on DFM from low-concentration CO₂ and (ii) hydrogenation of the captured CO₂, which are performed alternately.

where, A = e.g. Li, Na, K, Ca, or Mg; and n = 1 or 2. The CCR concept was proposed by Farrauto group[9] and Urakawa group[10]. They demonstrated selective CO₂ capture from low-concentration CO₂ and its conversion into CH₄[9] and CO[10] in a fixed bed reactor using Ru/Ca/Al₂O₃[9] and FeCrCu/K/MgO-Al₂O₃[10] as DFM, respectively. Later, different research groups reported the development of various CCR catalysts[11–21], including several review papers in recent years [22–26]. To date, all studies have focused on evaluating the initial potential of DFMs and on the development of novel DFMs using small amounts of catalysts (approximately 50–1000 mg).

As a practical application of CCR using DFM, an alternating gas

* Corresponding author.

E-mail address: f.kosaka@aist.go.jp (F. Kosaka).

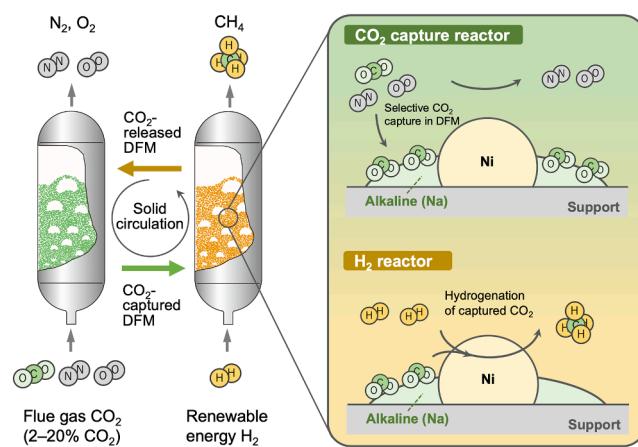


Fig. 1. Schematic for integrated dilute CO_2 capture and reduction into CH_4 using DFM and CFB reactors.

switching system using two (or more than two) packed bed reactors has been proposed (Figure S1(a)) [10,27,28]. Very recently, Li *et al.* performed continuous CO synthesis from low concentrations of CO_2 using two fixed-bed reactors, but the concentration of produced CO was still low (approximately 0.3 % CO) which was lower than that of the supplied CO_2 (0.5 %) [28]. In addition, in this mode of operation there are some intrinsic drawbacks such as the inevitable influence of residual gas

during the gas switching and the unsteady distribution of product concentration and temperature in the reactors.

Herein, we demonstrate a circulating fluidized bed (CFB) approach as a practical CCR process using nearly 1 kg of $\text{Na}/\text{Ni}/\text{Al}_2\text{O}_3$ particles as DFM (Figs. 1 and S1(b)). Low-concentration CO_2 and pure H_2 are supplied at a constant flow rate into the two reactors, namely a CO_2 capture reactor and a H_2 reactor, respectively. DFM particles are fluidized by these gases and circulated between these reactors. Since no gas switching is required, the process can be operated under steady-state to enable continuous CO_2 capture and CH_4 production and no fluctuations in gaseous concentration and temperature distribution in the reactors are expected.

2. Results and discussions

The $\text{Na}/\text{Ni}/\text{Al}_2\text{O}_3$ (DFM) efficient for CCR was prepared by the same method as reported previously [29]. In addition, $\text{Ni}/\text{Al}_2\text{O}_3$ (a conventional CO_2 methanation catalyst) was prepared as a reference using the same method. Figures S2–S5 and Table S1 show the characterization of the samples using X-ray diffraction (XRD), N_2 -adsorption, H_2 temperature programmed reduction (H_2 -TPR), and CO_2 temperature programmed detection (CO_2 -TPD). As shown in the CCR experiments using a fixed bed reactor (i.e. gas switching mode, Figures S6 and S7), the DFM ($\text{Na}/\text{Ni}/\text{Al}_2\text{O}_3$) can selectively capture CO_2 from low-concentration CO_2 at the Na site and synthesize CH_4 with high selectivity in H_2 atmosphere.

Fig. 2(a) and S9 show a scheme of the CFB setup for continuous CO_2 capture and CH_4 production experiments using DFM. Two bubbling fluidized beds were used for the CO_2 capture reactor and H_2 reactor, and

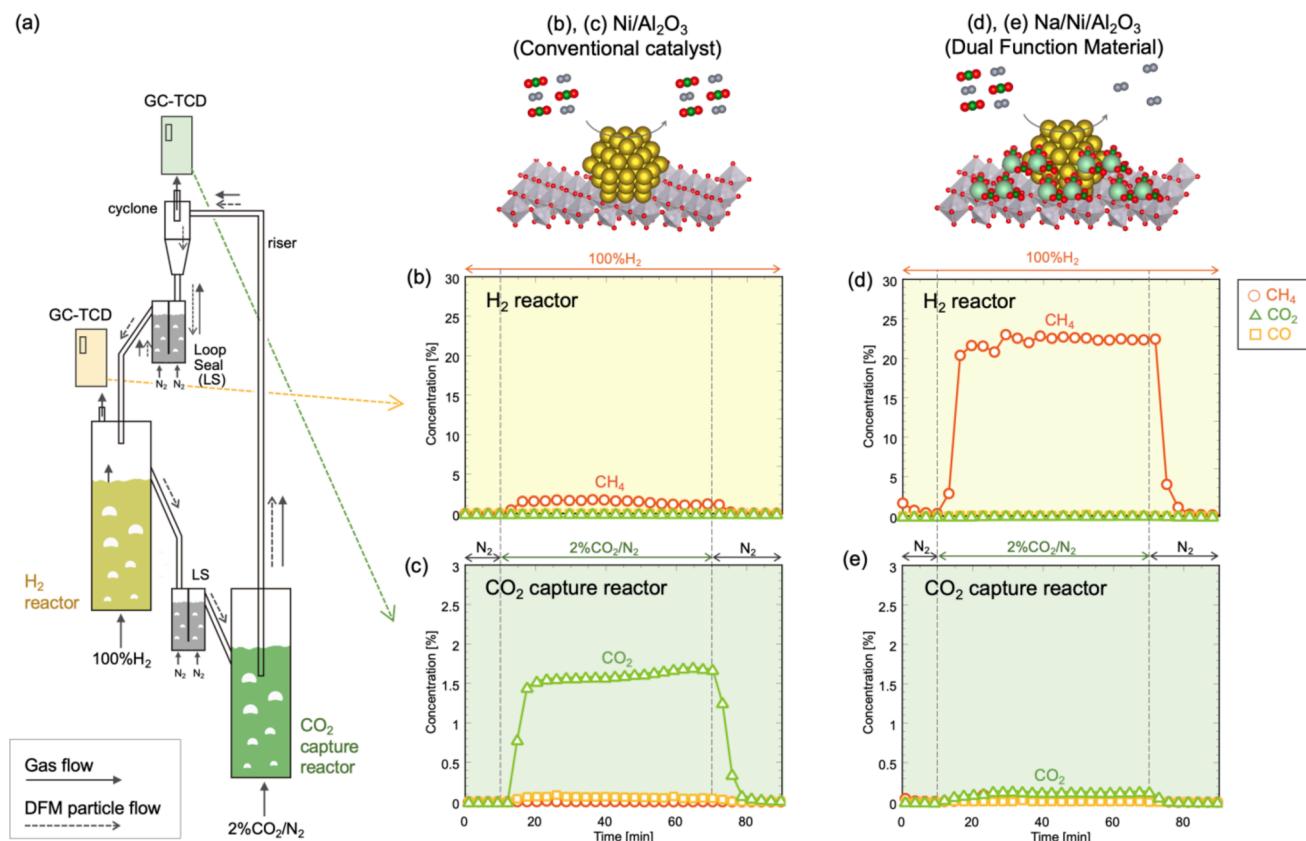
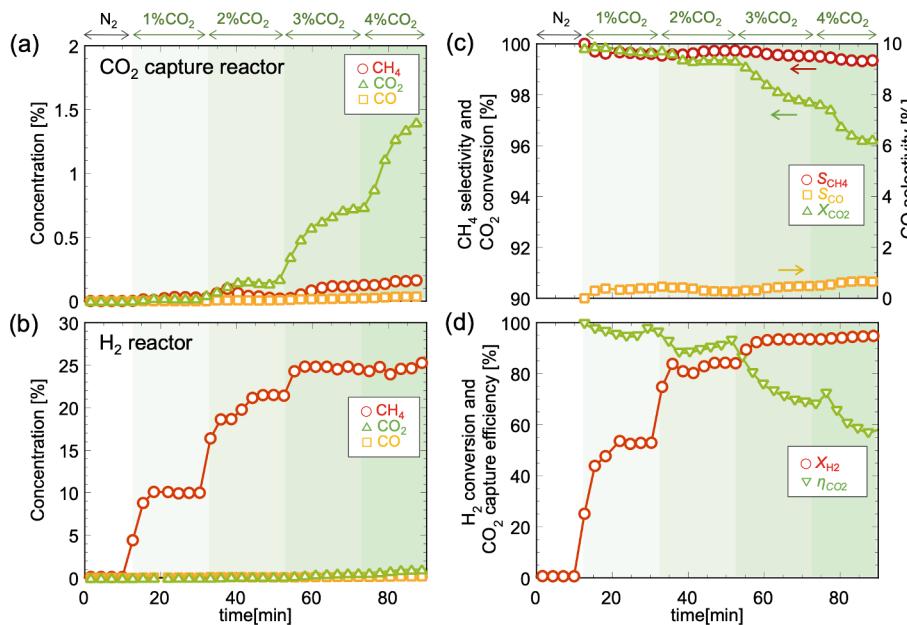
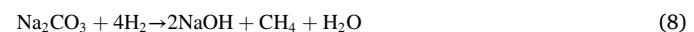
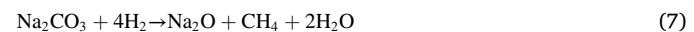



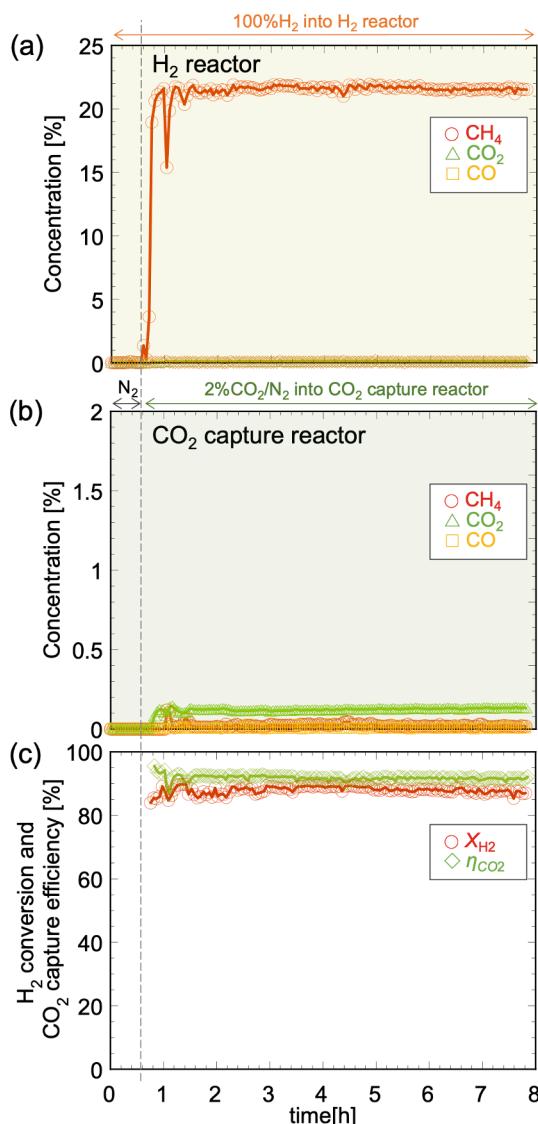
Fig. 2. (a) Scheme of continuous CH_4 production experiments using a CFB system with DFM($\text{Na}/\text{Ni}/\text{Al}_2\text{O}_3$). The LS is an important component that carries the DFM solids captured in the cyclone to the next reactor and avoids direct gas flow between the H_2 reactor and the CO_2 capture reactor. (b), (c) conventional CO_2 methanation catalyst ($\text{Ni}/\text{Al}_2\text{O}_3$) and (d), (e) DFM ($\text{Na}/\text{Ni}/\text{Al}_2\text{O}_3$). Reaction products in outlet gas from (b), (d) H_2 reactor at 450 °C and (c), (e) CO_2 capture reactor at 400 °C. 0.89 L min⁻¹ of 100 % H_2 and 8 L min⁻¹ of 2 % CO_2/N_2 were supplied into the H_2 reactor and the CO_2 capture reactor, respectively (from 10 to 70 min).

Fig. 3. Effects of CO₂ concentration (1 %–4% CO₂) for continuous CH₄ production using CFB reactors with Na/Ni/Al₂O₃. Reaction products in outlet gas from (a) CO₂ capture reactor at 400 °C and (b) H₂ reactor at 450 °C. 0.89 L min⁻¹ of 100 %H₂ and 8 L min⁻¹ of x%CO₂/N₂ (x = 1–4) were supplied into the H₂ reactor and the CO₂ capture reactor, respectively. (c) CH₄ and CO selectivities, and CO₂ conversion in the H₂ reactor, and (d) H₂ conversion in the H₂ reactor and CO₂ capture efficiency in the CO₂ reactor.

DFM particles were circulated between the reactors through a cyclone and loop seals. x%CO₂/N₂ (x = 1–4) and 100 % H₂ were supplied into the reactors from the bottom, respectively. The DFM selectively captures CO₂ from the x% CO₂/N₂ in the CO₂ capture reactor, and the CO₂-captured DFM flows upward through a riser. In the cyclone, the CO₂-lean gas is vented, and the DFM particles pass through a 1st loop seal (LS) to the H₂ reactor, where the captured CO₂ in the DFM and H₂ react to form CH₄. LS is an important component that carries the DFM solids captured in the cyclone to the next reactor and avoids direct gas flow from riser to the H₂ reactor. The DFM that released CO₂ returns to the CO₂ capture reactor through the 2nd LS and captures CO₂ again. By means of the catalyst circulation with CFB approach, CO₂ capture and its hydrogenation (Fig. 1) can be performed continuously and in a steady state without gas switching.



Fig. 2(b)–(e) show the reaction products (CO₂, CO, and CH₄) from the CO₂ capture reactor (Fig. 2(c) and (e)) and the H₂ reactor (Fig. 2(b) and (d)) using DFM (Na/Ni/Al₂O₃) and conventional catalyst (Ni/Al₂O₃). First, 100 % N₂ was fed to the CO₂ capture reactor and 100 % H₂ was fed to the H₂ reactor for a sufficient time until the reactor temperature and outlet gas concentration became stable. Thereafter, 2 % CO₂/N₂ was fed to the CO₂ capture reactor for 1 h. After 1 h, the CO₂ feed was stopped and N₂ was fed again. Meanwhile, the H₂ reactor was continuously supplied with 100 % H₂. In Figure S10, H₂ and N₂ concentrations are shown.

First, when Ni/Al₂O₃ was used (Fig. 2(c)), a rapid increase in the CO₂ concentration (up to 1.7 % CO₂) was observed after the CO₂-containing gas was supplied into the CO₂ capture reactor. Since a small amount of CO₂ can be adsorbed on Ni/Al₂O₃, most of the supplied CO₂ passes through the catalyst and is detected in the outlet gas stream. In contrast, when Na/Ni/Al₂O₃ was used (Fig. 2(e)), most entering CO₂ to the reactor was captured and only 0.15 % CO₂ was uncaptured and found in the outlet stream. The results clearly indicate that the following reactions between DFM and CO₂ occur at the Na site, and a significant amount of CO₂ was captured inside the DFM particles.



Figures S10(c) and S10(g) show the CO₂ capture efficiency and CO₂ capture amount of Ni/Al₂O₃ and Na/Ni/Al₂O₃, respectively. The CO₂ capture efficiency was >88 % with Na/Ni/Al₂O₃. The CO₂ capture amount in CFB was approximately 23–25 $\mu\text{mol g-DFM}^{-1}$ (Figure S10(g)), while the maximum CO₂ capture capacity evaluated in a fixed bed (Figure S7) was several times higher. This is likely due to the lower contact time of the DFM with the CO₂ containing gas under the used conditions in the CFB mode of operation and shows that the CO₂ capture is a kinetically driven process as expected.

On the other hand, employing Na/Ni/Al₂O₃ (Fig. 2(d)), a rapid CH₄ formation was observed after the H₂ reactor when CO₂ was supplied to the CO₂ capture reactor. The CH₄ formation continued stably throughout 1 h of the CO₂ supply. The concentration of produced CH₄ was >20 %. Considering that no gaseous CO₂ was supplied to the H₂ reactor and the concentration of supplied CO₂ into the CO₂ capture reactor was 2 %, it is clear that a high concentration of CH₄ was produced by one or more of the following reactions.

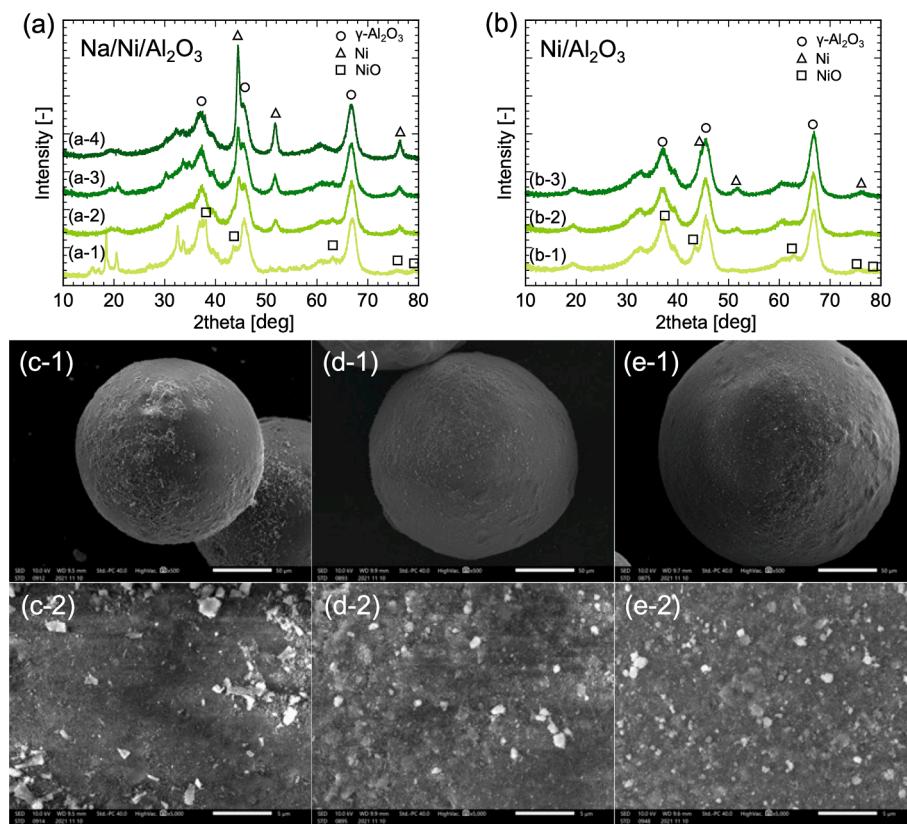
In contrast, when Ni/Al₂O₃ was used, the amount of captured CO₂ carried by the catalyst to the H₂ reactor was very small. The supplied H₂ passed through the reactor and mostly remained unreacted, and a low CH₄ concentration of less than 2 % was observed. As the reaction

Fig. 4. Reaction products in outlet gas during 7 h stability test for continuous CH₄ production using CFB reactors with Na/Ni/Al₂O₃ from (a) CO₂ capture reactor at 400 °C, (b) H₂ reactor at 450 °C. H₂ was fed into the H₂ reactor at a rate of 0.89 L min⁻¹ and 2 %CO₂/N₂ was fed into the CO₂ capture reactor at a rate of 8 L min⁻¹. (c) H₂ conversion and CO₂ capture efficiency.

products of the H₂ reactor with Na/Ni/Al₂O₃, the concentrations of CO₂ and CO were very low (less than 0.15 %), while the CH₄ selectivity was over 99 %, and almost all the CO₂ released from the DFM was converted to CH₄. As shown in Figure S10(e), the H₂ concentration in the outlet gas of the H₂ reactor was low, less than 15 %, indicating that H₂ conversion in the H₂ reactor was very high (Figure S10(g)) in comparison with the previous continuous CCR study using fixed bed reactors and gas switching [28]. These results indicate that by optimizing the H₂ and CO₂ feeds, CFB can be used to perform efficient and continuous CO₂ capture and hydrogenation with high CO₂ capture efficiency and H₂ utilization. Although a relatively large amount of N₂ was detected from H₂ reactor in

this lab-scale test due to the N₂ contamination from the LS (Figure S10(a) and S10(e)), the N₂ contamination can be reduced to a very small level on a practical scale by optimizing the LS and improving the catalyst performance (i.e., CO₂ capture capacity of DFM). Note that O₂ was not added to 2 % CO₂/N₂ considering the safety aspects in the initial demonstration phase of CFB. Nevertheless, the stability of the catalyst in the presence of O₂ was investigated using a fixed bed reactor. In the presence of O₂, Na/Ni/Al₂O₃ showed relatively high CO₂ capture and CH₄ formation performance for 50 cycles at 400 °C (Figure S8). In the future, with a construction of a safely designed system, we aim at evaluating the effects of O₂ on CCR performance using CFB.

Fig. 3 shows the effects of the CO₂ concentration (1–4 %) on CCR performance using CFB.


With a CO₂ feed of less than 2 % (Fig. 3a), the CO₂ concentration at the outlet of the reactor was low (>0.2 %), indicating that most of the supplied CO₂ was captured by the DFM. In contrast, when the CO₂ feed was >3 %, the CO₂ concentration from the outlet gas increased, showing a decline in the CO₂ capture efficiency, indicating that the rate of CO₂ capture by the DFM was not sufficient in comparison with the CO₂ supply rate. This once again highlights the importance of kinetics in the CO₂ capture process and condition optimization. As for the products from the H₂ reactor, CH₄ formation was selective (Fig. 3(c)) and the CH₄ concentration increased with an increase in supplied CO₂ concentration (Fig. 3(b)) because the amount of CO₂ carried by DFM from the CO₂ capture reactor increased, at higher molar flow rate of CO₂ or indicating the pressure dependency on the CO₂ capture rate. On the other hand, at higher CO₂ feed concentration the H₂ concentration decreased and the H₂ conversion increased monotonically (Fig. 3(d)). However, there was a gradual increase in the amount of unreacted CO₂. These results indicate that the delicate balance among the DFM circulation rate, capture and reduction rates, H₂ and CO₂ flow rates is important for efficient CO₂ capture and conversion. The development of high-performance DFM and fully optimized operating conditions of the CFB such as gas flow rate, operating pressure, and solid circulation likely lead to even greater success in the direct and continuous conversion of dilute CO₂.

Finally, the stability of steady-state CO₂ capture and CH₄ production with CFB was studied by performing a continuous CCR test for 7 h, and the DFM before and after the reaction was characterized. Considering the DFM circulation rate of 320 cm³ min⁻¹ (approximately 3 min for one cycle), CO₂ capture and hydrogenation were repeated for approximately 140 cycles for 7 h. Fig. 4 shows the outlet gas concentrations from the CO₂ and H₂ reactors, H₂ conversion, and CO₂ capture efficiency.

Rapid CH₄ production was observed with the CO₂ supply, followed by stable CH₄ production for the next 7 h without any indication of deactivation. CH₄ was produced with high selectivity at CO₂ conversion. The H₂ conversion and CO₂ capture efficiency were both above 85 %. Fig. 5 shows the XRD patterns and scanning electron microscope (SEM) images of DFM before and after the reaction. The XRD patterns show that the Ni peak became sharper (coarsening of Ni particles) as the reaction time increased, but the change was not significant enough to affect the CH₄ selectivity. No change in the appearance of the DFM particles was observed from the SEM images. Although the circulation of the DFM particles in the CFB may cause attrition and cracking, no obvious changes were observed in this study, probably because of the high mechanical strength of the Al₂O₃ particles.

3. Conclusion

We demonstrated the CFB approach, where DFM is circulated between two bubbling fluidized beds to enable continuous CO₂ capture and CH₄ production with CO₂ capture efficiencies and H₂ conversion of

Fig. 5. Wide-angle XRD patterns of (a) Na/Ni/Al₂O₃, and (b) Ni/Al₂O₃. (a-1) fresh Na/Ni/Al₂O₃, (a-2) after reduction (and before reaction), (a-3) after 3 h of CFB reaction, (a-4) after >20 h of CFB reaction. (b-1) fresh Ni/Al₂O₃, (b-2) after reduction (and before reaction), (b-3) after 1 h of CFB reaction. (c)-(e) SEM images of Na/Ni/Al₂O₃. (c) before reaction (after reduction), (d) after 3 h of CFB operation, (e) after >20 h of CFB operation.

over 85 %. This approach may provide promising technological solutions to directly utilize CO₂ contained in flue gas or air for CCU with minimized CAPEX and OPEX by combining CO₂ capture and conversion processes operated under a steady-state manner.

Author contributions

F. K., A.U., and K. K. conceived the project. F. K., M. K., and K. K. designed the CFB setup. F. K. conducted the experiments and analysed the data. S. C. helped to characterize the DFM. A.U. and K. K. guided the work and edited the manuscript. T. S., Y. L., S. C., T. M., and M. K. contributed to discussions and manuscript. All authors have given approval to the final version of the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.cej.2022.138055>.

References

- [1] E.I. Koitsoumpa, C. Bergins, E. Kakaras, The CO₂ economy: Review of CO₂ capture and reuse technologies, *J. Supercrit. Fluids*. 132 (2018) 3–16.
- [2] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review, *Renew. Energy*. 85 (2016) 1371–1390.
- [3] A. Rafiee, K. Rajab Khalilpour, D. Milani, M. Panahi, Trends in CO₂ conversion and utilization: A review from process systems perspective, *J. Environ. Chem. Eng.* 6 (2018) 5771–5794.
- [4] K. Ghaib, F.-Z. Ben-Fares, Fatima-Zahrae Ben-Fares, Power-to-Methane: A state-of-the-art review, *Renew. Sustain. Energy Rev.* 81 (2018) 433–446.
- [5] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Review on methanation - From fundamentals to current projects, *Fuel*. 166 (2016) 276–296.
- [6] X. Su, J. Xu, B. Liang, H. Duan, B. Hou, Y. Huang, Catalytic carbon dioxide hydrogenation to methane : A review of recent studies, *J. Energy Chem.* 25 (2016) 553–565.
- [7] M.A.A. Aziz, A.A. Jalil, S. Triwahyono, A. Ahmad, CO₂ methanation over heterogeneous catalysts: Recent progress and future prospects, *Green Chem.* 17 (2015) 2647–2663.
- [8] F. Vega, F.M. Baena-Moreno, L.M. Gallego Fernández, E. Portillo, B. Navarrete, Z. Zhang, Current status of CO₂ chemical absorption research applied to CCS: Towards full deployment at industrial scale, *Appl. Energy*. 260 (2020), 114313.
- [9] M.S. Duyar, M.A.A. Treviño, R.J. Farrauto, Dual function materials for CO₂ capture and conversion using renewable H₂, *Appl. Catal. B Environ.* 168–169 (2015) 370–376.
- [10] L.F. Bobadilla, J.M. Riesco-García, G. Penelás-Pérez, A. Urakawa, Enabling continuous capture and catalytic conversion of flue gas CO₂ to syngas in one process, *J. CO₂ Util.* 14 (2016) 106–111.

[11] L. Hu, A. Urakawa, Continuous CO₂ capture and reduction in one process: CO₂ methanation over unpromoted and promoted Ni/ZrO₂, *J. CO₂ Util.* 25 (2018) 323–329.

[12] S.M. Kim, P.M. Abdala, M. Broda, D. Hosseini, C. Copéret, C. Müller, Integrated CO₂ Capture and Conversion as an Efficient Process for Fuels from Greenhouse Gases, *ACS Catal.* 8 (4) (2018) 2815–2823.

[13] A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Ni loading effects on dual function materials for capture and in-situ conversion of CO₂ to CH₄ using CaO or Na₂CO₃, *J. CO₂ Util.* 34 (2019) 576–587.

[14] S.J. Park, M.P. Bukhovko, C.W. Jones, Integrated capture and conversion of CO₂ into methane using NaNO₃/MgO + Ru/Al₂O₃ as a catalytic sorbent, *Chem. Eng. J.* 420 (2021), 130369.

[15] A. Porta, C.G. Visconti, L. Castoldi, R. Matarrese, C. Jeong-Potter, R. Farrauto, L. Lietti, Ru-Ba synergistic effect in dual functioning materials for cyclic CO₂ capture and methanation, *Appl. Catal. B Environ.* 283 (2021), 119654.

[16] J. Hu, P. Hongmanorom, V.V. Galvita, Z. Li, S. Kawi, Bifunctional Ni-Ca based material for integrated CO₂ capture and conversion via calcium-looping dry reforming, *Appl. Catal. B Environ.* 284 (2021), 119734.

[17] S. Cimino, R. Russo, L. Lisi, Insights into the cyclic CO₂ capture and catalytic methanation over highly performing Li-Ru/Al₂O₃ dual function materials, *Chem. Eng. J.* 428 (2022), 131275.

[18] T. Hyakutake, W. van Beek, A. Urakawa, Unravelling the nature, evolution and spatial gradients of active species and active sites in the catalyst bed of unpromoted and K/Ba-promoted Cu/Al₂O₃ during CO₂ capture-reduction, *J. Mater. Chem. A* 4 (18) (2016) 6878–6885.

[19] C. Jeong-Potter, R. Farrauto, Feasibility Study of Combining Direct Air Capture of CO₂ and Methanation at Isothermal Conditions with Dual Function Materials, *Appl. Catal. B Environ.* 282 (2021) 119416.

[20] H. Sun, Y. Zhang, S. Guan, J. Huang, C. Wu, Direct and highly selective conversion of captured CO₂ into methane through integrated carbon capture and utilization over dual functional materials, *J. CO₂ Util.* 38 (2020) 262–272.

[21] B. Shao, G. Hu, K.A.M. Alkebsi, G. Ye, X. Lin, W. Du, J. Hu, M. Wang, H. Liu, F. Qian, Heterojunction-redox catalysts of Fe_xCo_yMg₁₀CaO for high-temperature CO₂ capture and in situ conversion in the context of green manufacturing, *Energy Environ. Sci.* 14 (4) (2021) 2291–2301.

[22] L.-P. Merkouri, T.R. Reina, M.S. Duyar, Closing the Carbon Cycle with Dual Function Materials, *Energy and Fuels.* 35 (24) (2021) 19859–19880.

[23] S. Sun, H. Sun, P.T. Williams, C. Wu, Recent advances in integrated CO₂ capture and utilization: a review, *Sustain. Energy Fuels.* 5 (18) (2021) 4546–4559.

[24] P. Melo Bravo, D.P. Debecker, Combining CO₂ capture and catalytic conversion to methane, *Waste Dispos. Sustain. Energy.* 1 (1) (2019) 53–65.

[25] B. Shao, Y. Zhang, Z. Sun, J. Li, Z. Gao, Z. Xie, J. Hu, H. Liu, CO₂ capture and in-situ conversion: recent progresses and perspectives, *Green Chemical Engineering* 3 (3) (2022) 189–198.

[26] I.S. Omodolor, H.O. Otor, J.A. Andonegui, B.J. Allen, A.C. Alba-Rubio, Dual-Function Materials for CO₂ Capture and Conversion: A Review, *Ind. Eng. Chem. Res.* 59 (40) (2020) 17612–17631.

[27] A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Simulation-based optimization of cycle timing for CO₂ capture and hydrogenation with dual function catalyst, *Catalysis Today* 394–396 (2022) 314–324.

[28] L. Li, S. Miyazaki, S. Yasumura, K.W. Ting, T. Toyao, Z. Maeno, K.-I. Shimizu, Continuous CO₂ Capture and Selective Hydrogenation to CO over Na-Promoted Pt Nanoparticles on Al₂O₃, *ACS Catal.* 12 (4) (2022) 2639–2650.

[29] F. Kosaka, Y. Liu, S.-Y. Chen, T. Mochizuki, H. Takagi, A. Urakawa, K. Kuramoto, Enhanced Activity of Integrated CO₂ Capture and Reduction to CH₄ under Pressurized Conditions toward Atmospheric CO₂ Utilization, *ACS Sustain. Chem. Eng.* 9 (9) (2021) 3452–3463.