

Delft University of Technology

Rocket: A System-Level Fuzz-Testing Framework for the XRPL Consensus Algorithm

 Kanhai, Wishaal; van Loon, Ivar ; Mangalgi, Yuraj ; van der Valk, Thijs ; Witte, Lucas ; Panichella, Annibale;
Olsthoorn, Mitchell; Ozkan, Burcu
DOI
10.1109/ICST62969.2025.10988979
Publication date
2025
Document Version
Final published version
Published in
2025 IEEE Conference on Software Testing, Verification and Validation, ICST 2025

Citation (APA)
Kanhai, W., van Loon, I., Mangalgi, Y., van der Valk, T., Witte, L., Panichella, A., Olsthoorn, M., & Ozkan, B.
(2025). Rocket: A System-Level Fuzz-Testing Framework for the XRPL Consensus Algorithm. In A. R.
Fasolino, S. Panichella, A. Aleti, & A. Mesbah (Eds.), 2025 IEEE Conference on Software Testing,
Verification and Validation, ICST 2025 (pp. 737-741). (2025 IEEE Conference on Software Testing,
Verification and Validation, ICST 2025). IEEE. https://doi.org/10.1109/ICST62969.2025.10988979
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICST62969.2025.10988979
https://doi.org/10.1109/ICST62969.2025.10988979

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the

author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

Rocket: A System-Level Fuzz-Testing Framework
for the XRPL Consensus Algorithm

Wishaal Kanhai∗, Ivar van Loon∗, Yuraj Mangalgi∗, Thijs van der Valk∗, Lucas Witte∗,
Annibale Panichella†, Mitchell Olsthoorn†, and Burcu Kulahcioglu Ozkan†

Delft University of Technology, Delft, The Netherlands
∗Email: {W.R.Kanhai, I.S.vanLoon, Y.Mangalgi, T.C.J.vanderValk, L.C.Witte}@student.tudelft.nl

†Email: {A.Panichella, M.J.G.Olsthoorn, B.Ozkan}@tudelft.nl

Abstract—Byzantine fault tolerant algorithms are critical for
achieving consistency and reliability in distributed systems, es-
pecially in the presence of faults or adversarial behavior. The
consensus algorithm used by the XRP Ledger falls into this
category. In practice, the implementation of these algorithms is
prone to errors, which can lead to undesired behavior in the
system. This paper introduces Rocket, a fuzz-testing framework
designed for the XRPL consensus algorithm. Rocket enables
researchers and developers to automatically inject network and
process faults into a locally simulated network of XRPL validator
nodes to test if the system behaves as expected. This technique has
previously been shown to be effective in finding implementation
errors. Rocket has been designed to focus on extensibility and ease
of use, enabling users to run complex test scenarios with minimal
setup. Video: https://www.youtube.com/watch?v=O7Z3ufRa51Y

Index Terms—Byzantine fault-tolerance, Consensus algo-
rithms, XRP Ledger

I. INTRODUCTION

Byzantine fault tolerant algorithms, often referred to as
protocols, are essential for enabling distributed systems to
reach an agreement on a correct value, even when a subset
of processes behaves maliciously or unpredictably [1]. The
XRP Ledger (XRPL) consensus algorithm [2], [3], which is
the foundation of the XRPL and its XRP cryptocurrency, is
designed to be Byzantine fault tolerant (BFT). XRPL is an
enterprise global payment network with millions of transac-
tions per day across 40+ countries1. While the protocol is
theoretically robust, its practical implementation might contain
errors [4], which can result in vulnerabilities within the XRPL
network. Such errors can cause the XRPL network to deviate
from its intended consensus behavior under certain conditions.
For example, attackers might validate invalid transactions or
disrupt the network’s progress entirely. Ensuring consistent
and reliable outputs in these critical systems is imperative.

The XRPL comprises a network of validator nodes, each
having a copy of the ledger history. The validators run the
XRPL consensus protocol to agree on which transactions to
commit in the decentralized ledger. This protocol operates
in multiple phases: validators collect and propose a set of
transactions during the open phase. In the proposal round, each
validator sends its set of proposed transactions to the other
validators in the network. The validators can add or remove
certain transactions from their ledger based on the proposal

1https://xrpl.org/

sets of the other validators. Once a predefined agreement
on the transaction set is met, the protocol continues with
the validation round, where validators finalize and exchange
the proposed ledger. The ledger is validated if consensus is
achieved with a sufficient quorum; otherwise, an empty ledger
is generated.

Given the complexity of the XRPL consensus algorithm
and the variety of possible adverse execution scenarios, rig-
orous and thorough testing is critical. Seemingly small im-
plementation errors may lead to catastrophic results, such as
validating a malicious transaction in the existence of certain
network and timing configurations. Therefore, it is crucial to
test whether the system behaves as expected under adverse
execution scenarios. Manual testing is particularly difficult
and time-consuming [3], [5], [6] for complex systems like
XRPL due to the intricacy of the consensus process. This
process comprises concurrent message exchanges, strict time
constraints, and fault-tolerant design, making exploring all
possible corner-case scenarios challenging. Various automated
testing frameworks for distributed systems have been proposed
in the literature [7]–[11]. However, they do not support the
network and process behaviors and trust configurations of
XPRL and cannot be extended by implementing different test-
ing algorithms (e.g., evolutionary and randomized algorithms).

To address these challenges, this paper introduces Rocket,
an extensible fuzz-testing framework for the XRPL consensus
algorithm. The Rocket framework allows researchers to de-
sign, implement, and benchmark testing algorithms on a dedi-
cated, local XRPL network where its topology can be config-
ured dynamically. Our tool generates test scenarios, including
controlling message concurrency, network fault injection (e.g.,
delaying a message), and process fault injection. Rocket im-
plements a network interception layer, which supports various
features that can be used to generate test cases. Regarding
process faults, it supports both benign and Byzantine faults.
It injects benign faults by crashing or restarting a process
and injects Byzantine faults by mutating the content of the
messages sent over the network. Overall, Rocket offers system-
level fuzz-testing functionality, where each test case executes
the protocol on a cluster of processes with specific concurrency
scenarios of message delivery, network, and process faults. It
also automates the setup and teardown of the cluster, ensuring
each test begins with a clean network environment.

979-8-3315-0814-2/25/$31.00 © 2025 IEEE ICST 2025, Naples, Italy
Testing Tools and Data Showcase Track737

20
25

 IE
EE

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

Va
lid

at
io

n
(IC

ST
) |

 9
79

-8
-3

31
5-

08
14

-2
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

ST
62

96
9.

20
25

.1
09

88
97

9

Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2025 at 11:10:38 UTC from IEEE Xplore. Restrictions apply.

Rocket is designed with extensibility and adaptability in
mind. It supports the integration of new testing algorithms,
such as evolutionary concurrency exploration algorithms [12]
for the XRP Ledger, and the ByzzFuzz algorithm [4] for
testing Byzantine fault tolerant algorithms, which have been
shown to be successful at discovering errors using a fuzzing
approach. Moreover, the architectural design of the Rocket
framework involves two separate modules, namely the in-
terceptor and the controller, decoupling the execution of the
network of validators and the execution of the fuzz tester for
scenario generation. The interceptor manages the execution
of the network of XRPL validator nodes. The controller
decides how to handle (e.g., drop, delay, modify) the messages
distributed on the network. This module contains the logic re-
quired to construct automated test case scenarios and contains
the algorithms for creating and mutating testing scenarios.

Rocket can be used by researchers who are interested in
designing more effective and efficient testing and fuzzing
algorithms, as well as developers interested in validating and
thoroughly testing the implementation of their protocols. Al-
though Rocket focuses on the XRPL, its modular architecture
allows testers and researchers to extend it to other blockchain
and distributed systems by implementing new interceptors.

II. THE ROCKET TESTING FRAMEWORK

Rocket is a system-level fuzz testing framework designed to
explore different concurrency and fault scenarios, specifically
built for the XRPL consensus algorithm. The implementation
of our tool is publicly available on GitHub2 and Zenodo [13].
This section covers Rocket’s architecture (II-A), outlines its
testing approach for the XRPL consensus algorithm (II-B),
describes its workflow (II-C), highlights its key features (II-D),
and provides extension points (II-E).

A. Rocket’s Architecture

Figure 1 illustrates the high-level architecture of Rocket,
which consists of two main components: the network inter-
ceptor and the controller. The network interceptor intercepts
the messages exchanged between the validators in the net-
work, forwarding them to the controller for processing. The
controller decides the actions to take based on the testing algo-
rithm and returns the message (potentially after mutating them
to simulate malicious behaviors) to the network interceptor.
During test execution, the controller collects an enriched set of
operation logs, including the exchanged messages and network
and process faults of an execution. At the end of the test
execution, the collected logs are analyzed by the specification
checker module to check the correctness properties of the con-
sensus. This modular architecture separates the responsibilities
of configuring and managing the distributed network under test
(handled by the interceptor) from the logic for fuzzing and test
generation (handled by the controller). This architecture allows
us to implement additional interceptors for different distributed
systems (e.g., Ethereum) in the future without re-implementing
the fuzzers and test generation logic.

2https://github.com/diseb-lab/rocket

Node 2

Node 1

Node n

Network
Packet

Interceptor
Controller

Specification
Checker

Results Logs

Send every
message to
interceptor

Send
processed
messages

Send intercepted
messages

Send actions
to take

Fig. 1. Rocket tool architecture

As the XRPL consensus has strict time requirements for its
different phases, the low latency of message delivery between
the modules and the high throughput of the messages are
crucial not to disrupt the network’s behavior. Rocket uses
Remote Procedure Calls (RPC) for communication between
the interceptor and controller components, as it offers low
latency and high throughput for small messages. We developed
the interceptor module using Rust and the controller module
in Python. Rust is particularly suitable for low-level net-
work tasks [14], while Python has an extensive collection of
machine learning and optimization libraries (e.g., evolutionary
algorithms [15]). Such libraries are essential for optimizing
users’ algorithmic strategies.

B. Approach to Testing the XRPL Consensus Algorithm

The consensus algorithm of the XRP Ledger guarantees that
all nodes in the underlying distributed system agree on an
identical set of validated transactions in a ledger, even in the
presence of faulty or malicious validators. Although network
faults may temporarily isolate nodes or partition the network,
the protocol guarantees that nodes synchronize and agree on
the same sequence of transactions and ledger states once the
network recovers.

Unlike traditional distributed consensus algorithms or other
blockchain protocols, the XRPL consensus protocol offers a
unique approach to trust, supporting subjective, asymmetric
trust relationships [16]. While in traditional networks, nodes
process messages and votes from all other nodes to achieve
consensus, the XRPL consensus protocol allows validator
nodes to specify a trusted subset of validators, known as the
Unique Node List (UNL). During consensus, the validators
consider only the messages from nodes in their UNL.

In each XRPL consensus proposal round, the validators
propose their version of the ledger to the other validators.
A ledger version contains the current state of all balances
and objects stored in the ledger, the set of new transactions
compared to the previous ledger, and additional metadata, such
as a ledger index. Eventually, through consensus, validators
finalize and store a new ledger version once at least eighty
percent of them agree on its set of transactions.

A node is considered faulty if it does not behave accordingly
to the consensus algorithm, regardless of its intentions. On the
other hand, a node is considered correct if it consistently ad-
heres to the protocol and behaves without error. The consensus

738
Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2025 at 11:10:38 UTC from IEEE Xplore. Restrictions apply.

halts when more than twenty, but less than eighty percent of
the validators are faulty [17], [18].

To fuzz-test the XRPL consensus algorithm, Rocket sim-
ulates attacks (faulty or malicious behaviors of the network
and processes) on a local XRPL network. Rocket can simulate
both network and process faults through its actions on the in-
tercepted messages. Network faults are simulated by delaying
or dropping messages. Our tool can also simulate dynamic
partitioning of the network, disconnecting node pairs, and cre-
ating partitions of validator nodes that can only communicate
with each other. Such conditions are particularly challenging
for distributed systems [7], [19], as they can lead to split-
brain scenarios, where partitions make conflicting decisions.
Recovering from the partitions requires a correct logic of
synchronization with the rest of the network. Rocket’s ability
to combine multiple faults allows for larger-scale testing using
approaches like evolutionary-based testing [12], which has
proven highly effective against consensus algorithms.

Rocket also simulates process faults, including benign
crashes and malicious behaviors, by mutating intercepted mes-
sages. Mutating messages alters their contents and, with that,
their purposes. Mutations can be as simple as altering arbitrary
bits in the messages or high-level semantic modifications,
such as altering protocol fields with syntactically valid but
semantically invalid content. For example, strategic mutations
—like reusing previously sent messages or corrupting critical
fields— have been shown to uncover subtle vulnerabilities in
protocol implementations [4].

After executing each test, Rocket checks the correctness
properties of consensus protocols [20]:

1) Termination: Each correct process in the network de-
cides on a value eventually.

2) Validity: Correct processes in the network may only
decide values that were proposed by other correct pro-
cesses.

3) Integrity: No correct process in the network decides on
a value more than once at a time.

4) Agreement: Correct processes in the network decide
identically.

Rocket verifies the safety properties of agreement, validity,
integrity and bounded termination of consensus. To verify
these properties, Rocket fetches the ledger info at each node
after every validated ledger. To verify the termination property,
it will check if the ledger sequence reached its user-configured
goal ledger sequence. To verify agreement, it checks that all
validators have identical ledger hashes and indexes.

C. Rocket’s Workflow

Rocket’s workflow, illustrated in Figure 2, comprises three
phases: initialization, execution, and evaluation. This work-
flow represents a single test iteration (e.g., execution of a test
case), with the number of iterations configurable by the user.

During the initialization phase, the interceptor and the con-
troller modules first establish a gRPC connection for commu-
nication. The interceptor then sets up the XRPL network with

Network
config-
uration

Establish
gRPC

connection

Setup
configured

network

Select
action

User-
defined
strategy

Intercept
sent

messages

Execute
action on
network

Check
consensus
properties

Log
results

Initialization Execution Evaluation

Fig. 2. Rocket tool workflow

the user-specified configuration of validator nodes, preparing
the environment for testing.

Once initialization is completed, the execution phase starts.
The interceptor captures all messages sent between the valida-
tor nodes and forwards them to the controller. The controller
then takes action on each intercepted message according to the
user-defined testing strategy, e.g., a fuzz testing algorithm. The
testing algorithm steers the execution by selecting the actions
to run in the execution. Rocket offers functionality to perform
the following actions for each message:

1) Drop: The interceptor does not forward the message to
the designated node.

2) Delay: The interceptor will deliver the message to the
designated node after a specified delay.

3) Send: The interceptor delivers the message to the desig-
nated node immediately, simulating a well-functioning
network.

4) Duplicate: The interceptor sends multiple copies of the
message to the designated node.

5) Mutate: The interceptor mutates the message contents
before sending it to the designated node.

Actions like duplicate and mutate simulate process faults,
while message interception allows the controller to inject
transactions into the network. The execution phase ends when
the user-defined stopping condition is met, such as a target
number of validated ledgers or a maximum testing duration.

In the evaluation phase, Rocket verifies the bounded termi-
nation and agreement properties, as described in Section II-B.

At the end of each iteration, Rocket resets the entire network
state, terminating all validator nodes. A new test iteration then
starts with a fresh network setup, ensuring complete isolation
between test iterations and preventing carry-over effects from
previous runs. For tests configured with multiple iterations,
Rocket aggregates the evaluation results across all iterations
to provide a comprehensive report.

D. Key Features

Network Partitioning: Rocket enables the simulation of
network faults by dynamically partitioning the XRPL network.
This is achieved by disconnecting specific node pairs or inject-
ing artificial delays into their communication. Users can define
connectivity rules, specifying which nodes should remain con-
nected and allowing the controller module to reconfigure the

739
Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2025 at 11:10:38 UTC from IEEE Xplore. Restrictions apply.

network topology during execution. This capability is essential
for creating controlled fault scenarios that test the resilience
of the XRPL network under degraded communication, partial
outages, or other adverse conditions.

Processing Intercepted Messages: Rocket simplifies han-
dling intercepted messages through a streamlined pipeline.
Users can easily decode raw byte messages into struc-
tured types, such as TMProposeSet (ledger proposals) or
TMValidation (validations), using Ripple’s official Proto-
col Buffer definitions. Within this pipeline, users can analyze
the message type, modify its contents, and decide on the
appropriate action. Rocket also provides methods for signing
and encoding messages after modification. At the end of the
pipeline, the potentially mutated message and its correspond-
ing action are returned to the interceptor for execution.

Enriched Execution Logging: Rocket incorporates a log-
ging system for traceability, reproducibility, and analysis of
test execution results. The logging framework categorizes data
into iteration and test-wide logs. Iteration logs are generated
in each test iteration and are divided into three categories:

1) Action Log: Records detailed information about all inter-
cepted messages, including their source and destination
node IDs and the actions performed.

2) Node-Info Log: Contains the configuration details of all
validator nodes, documenting their initial state for each
iteration.

3) Ledger Results Log: Captures the ledger information for
all nodes after each validated ledger, providing insights
into the consensus process and final outcomes.

In addition to the iteration logs, Rocket generates test-wide
logs that span the entire test case:

1) Spec-Check Log: Records the results of the termination
and agreement property checks, indicating whether the
properties passed or failed for each iteration.

2) Aggregated Spec-Check Log: Provides a comprehensive
summary of all spec-check results across iterations in a
JSON format, facilitating high-level analysis.

Rocket’s logging mechanism captures detailed logs of the
test executions and stores them in a structured format. Specif-
ically, it logs each exchanged or dropped message in the net-
work along with their timestamps, maintains the logs for each
node in the network, and records the operations on the ledger.
This enables users to conduct detailed post-test analyses and
evaluate the behavior of the XRPL consensus algorithm. There
is currently no built-in functionality to reproduce a test execu-
tion. However, the detailed logs provide sufficient information
for users to replicate previous test scenarios. Our tool can
also be extended to add strategies or implement additional
functionality for test reproduction and replay.

Flexible Configuration Options: Rocket offers a highly
flexible configuration system, allowing users to tailor the
network setup and fuzzing strategies to their testing needs. The
tool provides two configuration files: one for network settings
and another for strategy parameters. The network configuration
allows users to define the XRPL network topology and nodes:

1) Number of Nodes: Users can specify the number of
validator nodes to simulate.

2) Port Assignments: Users can define the ports on which
the validators are hosted.

3) Network Partitions: This enables users to configure
custom network topologies, specifying how nodes are
grouped and connected.

4) Nodes’ UNLs: This allows users to define a UNL of
trusted validators for each validator.

The strategy configuration defines the parameters for the
fuzzing strategies used during execution. For user-defined
strategies, users can specify the test parameters specific to their
testing algorithms. For example, they can set probability values
for certain actions or specify ranges for message delays.

To enhance usability, Rocket supports configuration over-
rides through the command-line interface. Users can override
default settings without modifying the base configuration
files, making it easier to experiment with different setups or
strategies during development.

E. Extension Points

Rocket offers a robust foundation for fuzz-testing the XRPL
consensus algorithm, with several extension points that devel-
opers can explore to further enhance its capabilities:

Processing delays: Every intercepted message incurs a nat-
ural processing delay. For simple strategies, such as selecting
an action naively at random, the delay is negligible. However,
computationally intensive strategies, especially those involv-
ing machine learning, may increase message latency, which
developers should account for when designing such strategies.

Message drops as delays: Rocket simulates message drops
by introducing delays of 30 seconds. Developers should be
aware that if an iteration runs longer than 30 seconds, these
”drops” might still result in delayed messages rather than true
drops. This design choice avoids errors in validator nodes that
would otherwise halt execution.

Dynamic partitioning: Dynamic partitioning in Rocket op-
erates by simulating disconnections through message drops
rather than physically severing links. While reconnections
can be simulated by ceasing message drops, new connections
between validators initially configured as disconnected cannot
be established dynamically. This behavior could be extended
by introducing dynamic topology reconfiguration, enabling
more flexible partitioning scenarios during runtime.

Distributed systems support: Currently, Rocket exclusively
focuses on the XRPL; however, our modular architecture al-
lows developers to extend Rocket to other distributed systems
by switching the interceptor that is used.

III. VALIDATION

The effectiveness of Rocket’s key features in discovering
erroneous executions of the XRPL consensus protocol has
been validated by recently published research that discovered
buggy executions in the existence of message delays [12] and
Byzantine process faults [4]. Rocket supports the development
of these algorithms with its support for message delays,

740
Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2025 at 11:10:38 UTC from IEEE Xplore. Restrictions apply.

reorderings, network partitions, and injecting Byzantine faults
by processing intercepted messages in a flexible set of config-
urations network configurations and trust assumptions.

The evolutionary approach for concurrency testing of the
XRPL consensus algorithm [12] highlights the need for gen-
erating test cases that delay the delivery of certain protocol
messages to uncover some problematic executions. The work
has shown that blockchain systems such as XRPL are prone
to concurrency bugs that manifest under message delays and
reorderings that do not match the developer’s assumptions
about message delivery and trigger consensus violations.

The ByzzFuzz [4] randomized testing algorithm demon-
strates that stimulating Byzantine process faults by mutating
the content of the correct protocol messages is effective in
discovering Byzantine fault tolerance bugs in blockchain im-
plementations. It demonstrated that injecting Byzantine faults
through small-scale message mutations and network partitions
can create subtle execution scenarios that might be overlooked
during protocol design or implementation, leading to erro-
neous executions. These errors may arise from insufficient
trust assumptions in the network’s UNLs as well as from
implementation bugs, such as a recently discovered critical
bug that was quickly fixed after its discovery.

We provide Rocket as an open-source framework that can
be extended with other testing algorithms to explore the exe-
cutions of the XRPL consensus algorithm. Users can extend
Rocket by implementing new complex algorithms or extending
the framework with more utility methods.

IV. CONCLUSION AND FUTURE WORK

This paper introduced Rocket, a system-level fuzz testing
framework specifically built for testing the XRPL consensus
algorithm. Rocket addresses the need for an extensible and
practical fuzz-testing framework for the XRPL that supports
key features demonstrated to discover erroneous executions in
blockchains. Moreover, it is equipped with flexible configu-
ration and enriched logging functionalities to explore various
configuration settings and assist in diagnosing test executions.

Rocket is designed for extensibility, practicality, and quality,
enabling a rigorous testing framework of the XRP Ledger.
Rocket currently provides an in-built blackbox random fuzzer,
which can be extended with evolutionary and search-based al-
gorithms, making Rocket a competitive testing framework for
developers. Rocket can also be extended with additional utility
methods to develop more sophisticated testing strategies.

Our future work will use Rocket to design and develop a
more comprehensive set of algorithms for testing the XRPL.
Moreover, the open and flexible design of Rocket encourages
collaboration and extension of the framework within the
research community. Furthermore, the developed ideas can be
transferred to testing other blockchain systems, enhancing the
reliability of the XRPL as well as other blockchain systems.

ACKNOWLEDGMENTS

This work was conducted as part of the University
Blockchain Research Initiative (UBRI), funded by Ripple.

REFERENCES

[1] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982.

[2] D. Schwartz, N. Youngs, A. Britto, et al., “The Ripple Protocol Con-
sensus Algorithm,” Ripple Labs Inc White Paper, vol. 5, no. 8, p. 151,
2014.

[3] B. Chase and E. MacBrough, “Analysis of the XRP ledger consensus
protocol,” CoRR, vol. abs/1802.07242, 2018.

[4] L. Winter, F. Buşe, D. de Graaf, K. von Gleissenthall, and B. Kulahcioglu
Ozkan, “Randomized testing of byzantine fault tolerant algorithms,”
PACMPL, vol. 7, no. OOPSLA(1), pp. 757–788, 2023.

[5] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in Trust and Trustworthy Computing -
8th International Conference, TRUST 2015, Heraklion, Greece, August
24-26, 2015, Proceedings (M. Conti, M. Schunter, and I. G. Askoxylakis,
eds.), vol. 9229 of Lecture Notes in Computer Science, pp. 163–180,
Springer, 2015.

[6] I. Amores-Sesar, C. Cachin, and J. Mićić, “Security Analysis of Rip-
ple Consensus,” in 24th International Conference on Principles of
Distributed Systems (OPODIS 2020) (Q. Bramas, R. Oshman, and
P. Romano, eds.), vol. 184 of Leibniz International Proceedings in
Informatics (LIPIcs), (Dagstuhl, Germany), pp. 10:1–10:16, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[7] K. Kingsbury., “Jepsen,” 2022. http://jepsen.io/.
[8] GitHub, “Namazu: Programmable fuzzy scheduler for testing distributed

systems.” https://github.com/osrg/namazu.
[9] J. Soares, R. Fernandez, M. Silva, T. Freitas, and R. Martins, “ZERMIA -

A fault injector framework for testing byzantine fault tolerant protocols,”
in Network and System Security - 15th International Conference, NSS
2021, Tianjin, China, October 23, 2021, Proceedings (M. Yang, C. Chen,
and Y. Liu, eds.), vol. 13041 of Lecture Notes in Computer Science,
pp. 38–60, Springer, 2021.

[10] C. Dragoi, S. Nagendra, and M. Srivas, “A domain specific language
for testing distributed protocol implementations,” in Networked Systems
- 12th International Conference, NETYS 2024, Rabat, Morocco, May
29-31, 2024, Proceedings (A. Castañeda, C. Enea, and N. Gupta, eds.),
vol. 14783 of Lecture Notes in Computer Science, pp. 100–117, Springer,
2024.

[11] E. B. Gulcan, J. Neto, and B. K. Ozkan, “Generalized concurrency
testing tool for distributed systems,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2024, Vienna, Austria, September 16-20, 2024 (M. Christakis and
M. Pradel, eds.), pp. 1861–1865, ACM, 2024.

[12] M. van Meerten, B. K. Ozkan, and A. Panichella, “Evolutionary ap-
proach for concurrency testing of ripple blockchain consensus algo-
rithm,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 36–47,
2023.

[13] W. Kanhai, I. van Loon, Y. Mangalgi, T. van der Valk, L. Witte,
A. Panichella, M. Olsthoorn, and B. Kulahcioglu Ozkan, “diseb-
lab/rocket: v1.0.0,” Feb. 2025.

[14] A. Chanda, Network Programming with Rust: Build fast and resilient
network servers and clients by leveraging Rust’s memory-safety and
concurrency features. Packt Publishing Ltd, 2018.

[15] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,”
Ieee access, vol. 8, pp. 89497–89509, 2020.

[16] C. Cachin and B. Tackmann, “Asymmetric distributed trust,” in 23rd
International Conference on Principles of Distributed Systems, OPODIS
2019, December 17-19, 2019, Neuchâtel, Switzerland (P. Felber,
R. Friedman, S. Gilbert, and A. Miller, eds.), vol. 153 of LIPIcs, pp. 7:1–
7:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[17] XRP Ledger Foundation, “Consensus protocol,” 2024.
https://xrpl.org/docs/concepts/consensus-protocol/.

[18] B. Chase and E. MacBrough, “Analysis of the xrp ledger consensus
protocol,” 2018.

[19] R. Majumdar and F. Niksic, “Why is random testing effective for
partition tolerance bugs?,” Proc. ACM Program. Lang., vol. 2, no. POPL,
pp. 46:1–46:24, 2018.

[20] C. Cachin, R. Guerraoui, and L. E. T. Rodrigues, Introduction to Reliable
and Secure Distributed Programming (2. ed.). Springer, 2011.

741
Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2025 at 11:10:38 UTC from IEEE Xplore. Restrictions apply.

