
i

Design of Human Computer
Interface for blind children to
learn programming languages

Master Thesis
Krishna Thiruvengadam Rajagopal

CuriO
A multi-sensory approach
to accessible programming

ii

Design of Human Computer
Interface for blind children to
learn programming languages

Master Thesis
Krishna Thiruvengadam Rajagopal

CuriO
A multi-sensory approach
to accessible programming

iii

Master’s Thesis
November 2019

Krishna Thiruvengadam Rajagopal

Master of Science
Integrated Product Design
Annotation in Entrepreneurship
Faculty of Industrial Design
Engineering
Delft University of Technology

Chair
Prof. dr. Ianus Keller
Department of Industrial Design
Delft University of Technology

Mentor
Prof. dr. Wilfred van der Vegte
Department of Design Engineering
Delft University of Technology

External Mentor
Prof. dr. Felienne Hermans
Head of Programming
Education Research Lab
Leiden University

iv

Executive Summary

As the modern world progressing towards digital
technologies, there is an increasing need for school
students to learn programming skills so that they fit
into the labor market now and in the future. Tangible
programming toys and block-based languages are
popular among younger children to learn to code.
Students in middle and high school in several countries
have begun to learn textual programming education
as a step towards successful careers and educational
opportunities. However, due to the visual nature of
these materials and tools, they are inaccessible to blind
students. Also, the accessibility aids used for interacting
with computers in the first place are not accessible
when it comes to programming. Braille displays are not
accessible by most blind users as the braille literacy
rates are falling, while screen readers do not read source
code. Also, attempts to teach code using screen readers
despite challenges kills the student’s enthusiasm. The
project proposes a design approach to multi-modal
human-computer interaction to reduce sensory and
cognitive overload to enhance learning outcomes for
this user group. The design goal was to develop an
affordable audio-tactile interface, to help blind high
school students to learn textual programming languages.
Research insights were gathered from literature research,
surveys, interviews, observation studies, and co-
creation sessions with blind students. The insights were
synthesized to form ideas, and concepts were explored.
The final concept was then taken to a level of functional
prototype and was validated in simulated tests. A
sustainable business model was also developed to take
the project forward as an open-source hardware venture.

v

Acknowledgement

The work was made possible due to the support and
contributions of many and I would like to thank every
one of them

To my supervisors, Ianus and Wilfred, for guiding
me throughout this project and allowing me to stay
ambitious and at the same time practical.

To my external mentor Felienne Hermans, for letting me
work as part of the amazing research group at PERL and
providing feedback.

To Anna van der Meulen in helping me with research and
putting me in touch with experts in the Netherlands

To Parham, Santiago, Yuma and Pawal for providing
valuable insights about your life and work

To Richard Bekking, for his time, motivation and technical
contributions to this project and be more than a teacher
to me.

To Venkatagiri Ramesh and Shashank Roy Choudhary
to stay up days and nights and lend their technical
expertise.

To my friend Jose Carlos Urra for guiding me throughout
the Open Hardware exploration

To my partner in crime, Shreyas Prakash, who was all
ready for all world changing ideas to work on

To my mother Vasuki Rajagopal, sister Madhura
Rajagopal and father Rajagopal Thiruvengadam for
supporting me through tough testing times

To my friends Naveen Rajasekhran, Vinayak Krishnan,
Prasad Gonugunta, and Pranav Suvarna for being there
always like a second family in Delft to fall back on.

vi

Contents
Executive Summary iv

Acknowledgement v

Introduction 1

1. Research 2
Research . 3

1.1 Literature Research 3

1.2 Expert Interviews 6

1.3 User Interviews 7

1.4. User Observation 8

1.5. Co-creation session 10

2. Synthesis 12
Synthesis 13

2.1 Design Goal. .13

2.2 List of requirements 14

Conclusion 15

3. Ideation 16
Ideation .17

3.1 Functional Analysis 18

3.2 Creative Session 19

3.3 Morphological Chart 20

3.4 Concept Development 21

3.5 Final Concept 23

4. Detailing 24
Detailing 25

4.1 Detailed Design: A quick preview . . . 26

4.2 Aesthetic Exploration 27

4.3. Embodiment 29

4.4 Control System: 34

vii

4.5 System Architecture 36

5. Validation 39
Introduction 40

5.1 Usability Test 41

5.2 Aesthetic Perception 42

Conclusion 43

6. Business Model 44
Introduction 45

6.2. Customer Segmentation 46

6.3. Open Source Hardware model 46

6.1. Market Analysis 46

6.4. Revenue Model 47

6.5. Cost Structure 48

6.6.Promotional Strategy 48

6.7. Financial Plan 48

7. Conclusion 49
7.1 Recommendations 50

7. 2. Next Steps 51

7.3 Reflections 53

7.4 Conclusion 54

References 55

Appendix 60

1

Last winter, I had the opportunity to attend SPLASH
2018, a conference on programming education in Boston
(USA), along with Dr. Felienne Hermans, Head of PERL
and associate professor at Leiden University. One of
the talks about Audio Programming Languages for the
blind, really fascinated me. Never, I had imagined that
visually impaired people took up programming as much
as sighted people do. During discussion with some
of the participants, I realised the pressing challenges
in accessible programming such as navigation and
skimming. Little did I know then that this fascination and
inquistiveness, will lead me to complete a thesis on this
topic. But I must say the whole journey has been fulfilling
so far. A genuine concern and desire to contribute to the
visually impaired community, has motivated and kept
me going through the ups and down.

 I started the project, as a part of the Programming
Education Research Lab (PERL) within the topic of
‘Inclusive Programming Education: The accessibility of
existing programming materials for visually impaired
children’. Though initially, the proposal was to investigate
programming materials for primary education, I realized
how important was it for high school blind students as well,
to get access to tools to help in learning programming skills
for their prospects in the job market. This way, my journey
into developing the project, dubbed as ‘CuriO’ started.

Introduction

2

1. Research
1.1. Literature Review
1.2. Expert Interviews
1.3. User Interviews
1.4. User Observation
1.5. Co creation session

3

India) revealed how he wished he could
learn programming languages, while his
friends can code fluently. Around the same
time, incidentally an email was circulating
in DevCreative, a google group in India,
from Youth4Jobs, a training institute that
was seeking candidates to teach HTML
to blind youngsters in New Delhi (India).
A skype meeting with its co-founder,
Ankit Bansal gave new insights on how
programming education could positively
impact visually impaired youngsters in a
developing country like India.

This early exploration helped formulate
the following research question:

Despite the fact that some visually
impaired programmers exist, what are
the major challenges that still makes
programming education inaccessible to
larger population of students, towards
mainstream career opportunity?

1.1 Literature Research
To get a deeper understanding of the
challenges in programming education,
for a visually impaired user, literature
research was done. First the inaccessibility
problems of existing programming
education materials for primary and
middle school children were explored,
followed by the challenges with learning
textual programming languages (for
employability).

According to the World Health Organization
(WHO, 2014), there are 2.2 Billion people
with some form of visual impairment (VI)
and blindness globally. Of these, 30 million
are in geographical Europe and 320,000
visually impaired and 45, 000 blind in the
Netherlands alone. (Vision 2020, 2005).

Research

The project started with an early
exploration, starting with Dr. Felienne
Hermans’ proposal ‘Inclusive programming
education: The accessibility of existing
programming materials for visually
impaired children’, that her team at the
Programming Education Research Lab
(PERL) have been researching. The
proposal explains about the relevance
of programming education for visually
impaired children and how most of the
current materials are only oriented towards
sighted children. Further reading online,
out of inquistiveness, led to blog posts
by blind programmers and quora articles,
where a number of people had queried
how is it even possible for a blind person
to code. A blog written by an Amazon
professional (Foranzo, 2018), gave the
first insights on how a blind person can
not only code, but become a professional
programmer.

Eager to get to know more about the
life of a blind person and to understand
where the gap lies, friends were reached
out. This led to a casual skype call with
Kailash Tandal, a blind PhD (economics)
student at the Tata Institute of Social
Sciences (TISS), who explained about the
aspirations to feel normal among his peers,
the various challenges a visually impaired
person faces in everyday life, right from
inaccessible restaurant menus, to having
to depend totally on others while travelling
around. When asked about braille letters
written in public commute places, the first
surprise came, that not all blind people can
read braille, which challenged the earlier
understanding or personal ‘assumption’
that every blind person can read braille.
Another family friend, Dr. Sriram from the
Aravind Eye Hospital, put me in touch
directly with blind schools in India. A
talk with Gopi, a blind computer science
student at the American College (Madurai,

4

With the modern world progressing
towards digital technologies, there
is an increasing need for students to
learn programming skills so that they
fit into the labor market now and in the
future. Tangible programming education
materials like LEGO Mindstorms and BBC
Micro: bit and programming languages
like Scratch and Blockly are mostly block-
based (Glinert, 1986) and popular among
younger children, to learn programming
concepts. Textual programming languages
like Python and Java are introduced at high
school. Several countries have already
begun to incorporate programming
education as part of their mainstream
school curriculum. The programming
skills they learn enable them to get
employment opportunities or pursue
higher education in computer science.

However, due to the visual nature of
these programming tools and materials,
it is mostly inaccessible by the visually
impaired and blind students. Most of
these materials use visual information to
convey cues about problems in execution
(Zuckerman et al., 2006) and program
output. In the current scenario, these
students are largely underrepresented
in computer science education (Stefik
et al., 2011). Computer programming is
an accessible career path for the blind
(Siegfried, 2006) because they enable a
blind person to work from home. Despite
the rapid rise in the number of job vacancies
that require programming skills in recent
years (Codingjojo, 2019), the employment
of visually impaired is far lesser than the
sighted population (Goertz et al., 2010).

Education materials like Microsoft Torino
Project (Vilar et al., 2019) and Royal
National Institute of Blind People’s
adaptation of Apple’s Swift Playgrounds
(AppleVis, 2019) are working towards
making a difference in teaching coding
basics to young blind students. However,
a transition to textual programming

languages as part of programming
education materials is essential (Moors,
Denny, Reilly, 2018) for high school and
vocational training students for gearing
up for the job market. Accessible textual
programming languages like Quorum
(Stefik, 2017) and Bootstrap (Schanzer,
2013), are primarily designed for students
with visual disabilities. They use audio
feedback and belong to the family of
Audio Programming Languages (APL).
However, these languages act as a starting
point for blind individuals to learn textual
programming but are not (yet) used in
professional development environments.
(Quorum, personal communication, 2019).
Although large corporations like Google,
IBM, and Microsoft employ visually impaired
programmers, they do not represent a
subpopulation but are the few who have
managed to code despite challenges.
Many modern IDEs are based on Graphical
User Interfaces (GUIs) and include tools
like syntax highlighting, variable watch
windows, and ability to execute program
forward and backward, to improve the
productivity of the user (Pothier et al.,
2007). Due to the visual nature of such
features, they are completely inaccessible
to a blind programmer.

To be able to interact with a computer in
the first place, visually impaired individuals
depend on braille displays and screen
reading software. Due to increasing braille
illiteracy, screen readers are gaining
prominence among the blind community,
as the most preferred Human-computer
accessibility tool. For instance, of the 1.3
million legally blind people in the United
States, fewer than 10% are braille readers
(National Federation for Blind, 2009). The
primary reason attributed to high braille
illiteracy levels is the difficulty faced by
any adventitious (late) blind individual
to comprehend subtle tactile information
as in Braille (Rex, 1989; Schroeder, 1989;
Stephens, 1989). Also, reading speeds
matters. The students who manage to

5

learn to read braille (born blind and some
late blind) mostly do not attain the reading
speeds that are required for employment
(Ferrel, Mason, Young & Cooney, 2006).

For instance, a sighted user scrolls through
the code to get an overview, but the blind
user needs to read the whole content line
by line, with a screen reader. This forces
blind programmers to keep track of details
such as current brace levels (Armaly,
2016). Also, in programs like Python, the
blind user listens to sounds that indicate
the number of whitespaces to perceive
indentations in a code structure (Potluri,
2018). Screen readers are designed to
read natural language, that is words
and sentences. Not source code. Blind
programmers still find it better to use text-
based editors and compile their code using
the command line, than using GUIs (Potluri,
2018). However, to work in organizations
along with sighted colleagues requires a
visually impaired user to use Integrated
Development Environment (IDEs).

In recent years, there is an increasing interest
in making mainstream environments
accessible to visually impaired users.
StructJumper, an Eclipse plugin, enables
users to access a tree-view structure with
respect to a line and help them understand
the context of that line (Baker et al., 2015).
Another Eclipse plugin features usable
forms of tree-view structures, as a non-
visual means to navigate through code
(Smith et al., 2004). Sodbeans is a plugin
that adds audio feedback to the NetBeans
environment (Stefik et al., 2009). The
Wicked Audio Debugger (WAD) is a
debugging tool for Visual Studio, which
helps users to comprehend the dynamic
program behavior like control flow (Stefik
et al., 2007). Musical Layers have been
used to represent program structures
using metaphorical sounds through an
approach called Layered Auralization
(Stefik et al., 2006). InfoSound, an
auralizer program, features everyday

sounds and speech to indicate abstract
events in parallel processing within a
program (Sonnenwald et al., 1990).

However, using only a single modality
such as audio-based feedback have their
share of challenges, especially when it
comes to blind students who are new to
learning to code. A user receiving sensory
information from only one modality and
cognitively process it, can overload that
modality (auditory), because of the
limited working memory of the human
brain (Lay-Ekuakille et al., 2010). After
a while, users may be limited in the
perception of acoustical signals coming
from assistive devices. As Cognitive Load
Theory suggests, learners should be able
to process information elements and their
interactions simultaneously before they
begin to learn a new concept. (Paas, Renkl
and Sweller 2003; Sweller 1988, 1999). The
human information processing works by
storing new incoming information in their
short term working memory and encoding
it to permanent memory for problem-
solving. However, the short term memory
is limited to 7 (+/- 2) chunks of information
(Baddeley, 1994) before forgetting the
information perceived (Miller, 1956).
Since screen readers linearize content
(WebAim, 2019), they do not help users
to chunk information like phonemes,
graphemes, morphemes, and syntactic
structures and semantic interpretations
of code, making it difficult for the user
to comprehend the information. (Sweller,
1988). As cognitive load increases, the
user’s working proficiency breaks (Moreno
& Mayer, 2000), resulting in frustration
in learning a new textual programming
language. Multi-modal interactions, such
as Audio-Haptic feedback, help users
better perceive spatial information and
aid in their cognitive processing (Rice et
al., 2005). The ability of a user to know
where the tactile exploration should be
directed to when moving through a large
piece of text has been shown to increase

6

with peripheral attention to physical
features. (Rayner, Foorman, Perfetti,
Pesetsky, & Seidenberg, 2001). Audio
guided Tactile maps to teach geography
(Brock et al., 2005) and Audio Supported
Reading (ASR) of Braille (Jackson,
2012) have successfully incorporated
Audio- tactile information processing in
educational materials. Hence in order to
facilitate a blind student to learn textual
programming languages, it becomes
essential to represent code structures
as audio-haptic tangible interactions.

Insights:
From the literature research, the
major challenges in learning a textual
programming language were found not
only due to a lack of accessible software
tools but that there was also a need for
a new approach to Human-Computer
Interface, in order to faciliate programming
education. Some main insights were:

1. Need to switch to a textual programming
language is essential for high school
blind students to get higher education or
employment opportunities

2. Blind users, including professional
programmers, find it hard to skim through
code, navigate using a screen reader or
a refreshable braille display as the only
accessibility interfaces

3. Multi-modal (Audio- tactile) interaction
is essential for blind users to acquire new
information (like a new programming
language) without overloading sensory
and cognitive modalities.

1.2 Expert Interviews
With thbachelor’sre research insights as
to the starting point, more insights were
gained from two experts working with
visually impaired children. It was decided
to interview them with an understanding
that teachers will have first hand

experience in using existing accessibility
products to teach students, and their
insights could be useful in furthering
the research. The experts were from the
Royal Visio and Bartimeus, the largest two
umbrella organizations in the Netherlands,
under whom many special schools for the
visually impaired operate. Anna van der
Meulen, a postdoctoral researcher with Dr.
Felienne Hermans (PERL), was supportive
and helped me set up interviews with
the experts. A semi-structured interview
in Dutch was undertaken, with the
support of Benjamin Bosdijk, a then
bachelor’s student in the PERL group.

The first interview was of Don van Dijk, a
teacher at the Visio school in Grave. The
entire transcript can be found in appendix
1.3. In his words, “The school introduces
programming concepts at Kindergarten
in the form of block-based programming
with micro bits. However, it is difficult to
visualize for blind students using such
toys. When blind children come to middle
and high school, they are taught python
language. Some investment is required, but
it is accessible to some level. Navigation
is still missing. Students can always have
workaround strategies, but it kills their
enthusiasm. The most common challenge
is navigating from one place to another
in a coding language.” Taking about the
behavior of children towards learning, he
said they are very eager to explore new
technologies, once they are taught where
the buttons are and how to get started. He
said that the visually impaired community
is happy to have so many technologies
to provide assistance to them,
compared to what existed ten years ago.

The second expert interviewed was with
Ms. Maaike Meerlo, an Innovator and
Consultant at the Bartimeus Fablab in
Verbrede School (Doorn, Netherlands).
She revealed how often design solutions.

Maaike Meerlo:

Don van Dijk

7

do not fulfill user needs as many visually
impaired students usually have other
(multiple) disabilities as well, and how
narrowing down to one type of visual
impairment was necessary, as people with
different types of visual impairments have
entirely different needs. She also explained
about the different opportunities for blind
students, as the municipalities provide
incentives to the employers. She also gave
me a tour of the school infrastructure
to give an understanding of how it was
adapted to needs of a visually impaired
child.

Upon observation of how children in
that school live their everyday life, it
was observed that every place within
the premises had been modified to
be accessible by all types of visual
impairment. Each room was fitted with
tiles with different textures to indicate it
was a classroom, bathroom, or kitchen.
The entire hallway fitted with wooden
railings to guide along the path. Doors
were opened with an access card and not
keys.

Insights:

1. Navigation is a major challenge in textual
languages like python, in high schools.
Though students managed to find coping
strategies, it killed their enthusiasm.

2. Students are open to new technologies
and learn them quickly

3. It was essential to narrow down from
visually impaired, which is a broader
spectrum to design for. So from this point,
it was decided to focus only on complete
blindness.

1.3 User Interviews

Right from the start of the project, user

interviews were considered necessary as
it will reveal the more in-depth challenges
and needs of a blind individual. This was
a necessary step to make the design
solution as human-centered as possible.

Professional blind programmers were
reached out specifically to gain more an
understanding of how they manage to
code in a professional setting despite
accessibility challenges, and because their
strategies could inspire creative solutions
for latter design processes. Though their
needs, aspirations, and behavior towards
programming would be different from that
of high school children, it was assumed
that they would still represent the blind
community and have similar challenges.

The participants were contacted through
blogs, LinkedIn, and through personal
connections. Four blind programmers from
Poland, Australia, and India, participated
in the interviews. All interviews were
carried out through skype and were
recorded for post-interview analysis. The
condensed interview transcripts can be
found in Appendix 1.1. The following are
quotes from the interviews:

“Braille is very useful for me, it helps me
feel specific information especially when
reading an e-book, but it takes a lot of
time to code with it” - Yuma Decaux, a
professional blind programmer (Australia)

“Did you just say skimming? It is not
possible in coding. I ask my peers or read,
line by line. Also, NVDA makes a different
tone of beeps for different indents. This
will drive you crazy, especially when you
are coding for like 10 hours.” - Pawel
Urbanski, professional blind programmer
and Employee consultant (Poland)

The user interviews revealed that blind
programmers did develop workarounds or
coping strategies, to learn programming
languages with accessibility aids likeBraille

8

displays or screen readers. The challenges
did not make it impossible to learn a
new language, but made it harder to
believe for themselves that programming
is a good career path for the blind
community. One participant told how he
thinks programming education is just not
for the blind, and making them undergo
the challenges is making them only
frustated. This answers why professional
blind programmers exist, but still largely
inaccessible by other blind individuals.

Insights:
1. Users find a code abstract when a
screen reader, goes through it line by line,
without being able to skim.
2. When there are many classes and
functions in a program, it becomes
necessary for a blind user to mind map all
of them.

3. Another challenge with screen reader
is its incompatibility with many IDEs and
text editors. In IDEs it does not provide
live feedback, but only on compilation.

4. Braille displays are useful to feel the
code (tactually), but does not convey
information on hierarchies, making it
essential to create mind maps instead.

5. Because braille displays are expensive
it becomes difficult for users especially in
developing countries to access them.

1.4. User Observation
The literature research and the skype
interviews provided an understanding of
the challenges of a blind programmer.
However, to get a more in-depth and
holistic understanding of how they interact
with the tools and accessibility aids and its
usability problems, users were observed
in their context. The observation of their
interaction with other products like the
coffee machine, smartphone, vacuum
cleaners served as a design research tool
and as an inspiration for ideation later on.

Initially, Visio and Bartemeus schools
were reached out to perform observation
studies of blind high school students and
to set up interviews with the computer
science teachers. However, due to
time constraints and confidentiality
aspects of this vulnerable group of
children, the requests were turned down.

Parham Doutsdar, an Iranian blind
programmer, working at Booking.com in
Amsterdam, accepted the request for the
observation study. The different coping
strategies in everyday life were observed,
right from navigating around his home,
making coffee, filling hot water in a vessel,
cleaning the house, cutting vegetables,
and cooking. Tactile indicators such as
temperature, moisture, landmarks within
a room were used to identify its relative
distance from another object of reference.
The participant preferred to place objects
in the house in a specific place. This way,
the relative positions of other objects were
not missed. Other stimuli such as smell
were used to identify different rooms and
sound of cracking to determine if a piece
of bread has been toasted, for instance.

Then, the participant explained how
code is written using his accessibility
tools. Voice Over screen reader (in Mac)
was used to write code. During this,
the participant paused to check if any
WhatsApp messages had been received
and showed how smartphones are used.
The Voice Over app also worked on the
iPhone, apps were navigated with right
swipes, then double tapped to go into
the selected option. The app reads out
all the information on the screen. It was
observed how every line had to be read to
understand who had sent the messages.
It was interesting to see how he had his
laptop screen turned off initially before
starting the demonstration. The screen
reader sounded like gibberish. It was
too fast to comprehend. The reading

9

speed was then slowed so that it was
easier to understand what is going on.

A sample python program for Fibonacci
series was provided through a git
repository. The plan was to observe how
the participant uses a screen reader to
skim and navigate through the code to
get an overview. The file was cloned into
Emacspeak, a text editor with a speech
engine that reads out lines on the screen.
The participant was asked to read aloud
whenever the context of the line was
understood. Keyboard shortcuts were
used to navigate around the code, and the
lines read one by one. It was necessary
for the participant to go back and forth
to understand the whole logic. Six
minutes later, the logic behind the code
was explained. The key challenges in the
workplace as a professional programmer
was explained. Reading what other sighted
colleagues wrote was difficult to read. It
was necessary to remove camel casing and
abbreviations so that the screen reader
can read what function, for instance, is
written in the code. Since it is difficult to
skim through longer codes, assistance
is sought from other sighted colleagues
to explain to him what the code is about
and how the functions have been called.

Insights:
1. Reading others code is difficult, because
how others call the function, for instance is
too abstract for a blind user to understand,
or the screen reader is going to read it
strangely. For instance, nth term is difficult
to be read by a screen reader.

2. It is important to remove camelcasing
and abbreviations before a code can be
read by a screen reader.

3. It is difficult for a screen reader to read
code blocks from online platforms like
GitHub, where not all code is properly
documented, or written with a standard
coding style. This means it is difficult for

blind students to reuse code blocks from
the internet to learn a new programming
language or develop projects.

10

To get to know the nuances of how
blind people, especially adolescents and
young learners, process large pieces
of information cognitively, co-creation
session was conducted at a blind school
under the National Institute for Visually
Disabled (NIVD) in Chennai, India.
Co-design processes allow the end-
users (blind students) as the experts
of his/her own experiences and make
them key providers of knowledge for
a designer (Sanders, Stappers, 2008)

21 blind and low vision students
between the age group 16 to 22 years
participated in the session. This group
had intermediate experience in using
NVDA screen readers and basics in
HTML programming. A novice group in
programming experience was selected
to simulate the experiences of students
new to learning a programming language.

The session started with an ice-breaking
fun activity, and then the rules and
challenges of the game were introduced.
They were grouped into five teams and
were given board each per team. Each
board had 121(11 x 11) tactile alphabet tiles
(see figure 1), with a chamfer on each
tile (for orientation of up-side). The tiles
were pre-arranged to form a jumbled
word puzzle. To gamify the session, the
word puzzle game was timed, and the
teams competed against each other.

The session was divided into two phases-
In the first phase, it was observed how blind
students skimmed through large amounts

of characters to find the words (see figure
2). The rationale behind the word puzzle
was to mimic the way blind users have to
scan through code (with many characters)
with braille displays or screen readers,
on a computer. The task was to find
sensible character combinations (words)
among the 121 character word puzzle.

In the second phase, each team rearranges
the tiles to form its own puzzle. The new
puzzle is passed onto their neighbor. The
teams now had to quickly skim through
the puzzle and find the words, competing
against each other. They were encouraged
to come up with new ideas or strategies
to complete the puzzle faster. A box of
assorted (safe to use) materials were
kept, for them to build mockup tools.

The second phase also acted as a co-
creation method to derive inspiration
from the prototypes participants built.
Team C completed the puzzle first
followed by Team A. When asked to
reflect and demonstrate their prototype,
participants from team C explained their
idea, which was to fix one end of a string
to one of the corners of the board and
then with the other string end tied to a
braille pointer (commonly used to punch
braille paper), read braille character, and
with the length of the string (slack or in
tension) measure the relative distance.
This helped their team to read relative

1.5. Co-creation session

Figure 2 A participant skimming through the word
puzzle

Figure 1 Foam Tactile tiles with embossed braille
alphabets (Left to Right: B, A, G)

Co-creation Results

11

distances faster than just (cognitively)
perceiving the distances using two hands/
Their mockup was also tested with other
teams, and the rate of task completion
was found to be more or less similar.

Another team came up with the idea of
using physical markers while reading
quickly through the tiles. In her words
(translated from Tamil), “ It is very
difficult to remember what words I read
previously as I move to other words,
and then I had to read from the start.”
So their team came up with an idea to
place foam blocks every time they read
a word and then formed a story as they
read each new word. So they remember
the logic rather than individual words.

Insights:
1. Blind participants found it essential
to use Physical Markers as cognitive
landmarks while solving a problem.

2. It was important for an user to perceive
the relative distances (corelations
between physical representations)
between the last read information and
upcoming information to increase their
comprehension rates. This is referred to
as Allocentric Processing of Haptic space
(Kappers, 2007)

3. Metaphors for information was needed
to help in working memory, while reading
through large amounts of information

12

Conclusion

The research phase provided insights
into the challenges provided by the
current accessibility aids like braille
displays and screen readers. The
reasons why programming is not yet
accessible as a mainstream career
opportunity were also gained. From this
point, two major decision was taken,

1. The scope of the project will be
about blind students and not cover the
entire spectrum of visual impairment.

2. Since only a fraction of the blind
population read braille in the current
scenario, the further design solution
exploration will be independent of braille

13

2. Synthesis
2.1 Design Goal
2.2 List of Requirements

14

Synthesis
The insights from the research phase were synthesized
to form definitive design goals and a list of requirements.
The design goal acted as an overarching guide for the
whole design process, while all the design decisions
were based on the list of requirements. A Technology
Readiness Matrix (Appendix 2.2) was also developed to
set the scope of the project in terms of what level of
functionality needs to be achieved. A fully functional
prototype in a simulated environment (Level 6) was
aimed for, as this would allow user testing and take the
insights forward for research purposes. It was based
on factors like time limitations, work complexity, and
relevant skills required to achieve the design goals.
However, later, during the design process, real-time
interfacing had to be developed to the level of proof of
concept to facilitate the test demonstration skimming
and navigation.

2.1 Design Goal
To enable high school blind students to acquire the
necessary skills, so that they find successful mainstream
programming careers, it is essential to provide accessible
tools. In order to facilitate in this learning process,
it is important to consider a multi-modal interaction
device. Hence the design goal was formulated as:

To develop an affordable audio-tactile human-
computer interface, to help blind users to learn textual
programming languages.

Focus Areas:
Three areas were defined to be the scope of the project.
It was defined based on what was found as the major
challenges in programming from research insights:

F1: Skimming: Ability to get an overview of code
structures and program logic, by glancing through

F2: Navigation: Ability to move the read of a desired line,
word or character and also to move the cursor there

F3: Scalable and Affordable: Ability of the solution to be
affordable, inclusive of people in developing countries
and develop a go-to-market strategy that allows larger
scalability and market accessibility to the end user.

15

2.2 List of requirements

The list was continually iterated based on
the learnings from the different design
phases. The requirements were consulted
every time a design decision was made.
Through the design process, the list was
also updates whenever new insights was
found. Requirements such as safety and
reliability were added, in addition to
insights from the research phase as they
were considered important for the end
users.

R1. Safety
R1.1 The forces of any moving part
should be less enough not to cause
any physical injury to the user.

R1.2 The product should not have sharp
edges and holes/ grooves more than
10mm (Kima 1993), to avoid finger injury
when the user interacts with the product

R2. Reliability
R2.1 Housing should be robust- internal
components should not be affected by
environmental factors such as temperature
and dust

R2.2 Tethering with external devices
should be based on physical wiring, than
using Bluetooth to avoid unexpected
connectivity problems

R2.3 The overall product experiece should
reflect reliability and trust. This means
there should be no failures in functionality.

R3. Functionality
R3.1 The product should be able to convey
code structures through different sensory
modalities.

R3.2 The product should allow users to
move to a specific character in the code

R4. Interaction
The requirements for interaction was
based on a combination of Nielsen
Heuristics (1994) and Tognazzi’s Principles
of Interaction Design.

R4.1 The elements of the product should
be positioned in such a way that it allows
the user to perceive the relative distances
from a fixed point of reference
to seek the position of any other element

R4.2 Interaction models should mimic
physical interactions that users are familiar
with (Skeumorphic)

R4.3 Navigational buttons or keys in the
product should be metaphorically related
to reading styles. eg. reading from left to
right

R4.4 The product should have physical
buttons and interface outlets in the
standard positions that follow the mental
models of a user. Eg. power switches in
the top
right

R4.5 The product should allow users
to know if their interaction was successful,
through some means of sensory indication
during the product operation, that it is
working.

R4.6 The product should allow recognition
and not recall of information.

R4.7 The product should have perceptual
cues (markers) so that the user can pause
his activity and get back without losing on
the activity.

R4.8 The product should allow clear
indication which are the areas of
interaction.

16

Conclusion
The points mentioned in this chapter
were revisited back and forth throughout
the design process. The next chapter
deals with how ideas and concepts were
generated using the above goal and
requirements.

17

3. Ideation
3.1 Functional Analysis
3.2 Creative Session
3.3 Morphological Analysis
3.4 Concept Development
3.5 Final Concept

18

Ideation

The ideation phase resulted in a final
concept that was taken to the next stage
of detailing. First, the insights from the
observation session were used to form
functions required in the product to be
designed using the functional analysis
method. Then, these functions were used
as starting points for a creative session,
where various ideas were generated and
segregated using ideation techniques. The
feasible ideas were then taken as solutions
(component) to each of the functions
defined earlier, and different concepts
were created using the morphological
chart method. Simple Wizard of Oz
prototypes were made to validate and
evaluate these concepts quickly. Finally, a
concept was selected using the Weighted
Evaluation method. Every decision made
was reflected back and forth with the
design goal in consideration.

Ideation
Process

Design Goal

Co-creationCreative session

Functional Analysis of
screen readers

Morphological Chart

5 concepts

Evaluation

Final Concept

Observation Study

Functions

Components

Components

Goals Insights on how
users interact with

products

Figure 3 Ideation Process

19

Code using a
screen reader

Write new code

Debug
existing code

Function Use Process
Tree

Identification of supporting
function for user task

Load file in text
editor

Compile code in IDE

Rewrite functions

Remove camelcasing

Understand the logic

Learn how functions
and classes are used

Search for
syntax errors

Go to error line

Verify logic

Write code

Open new file in
text editor

Read character by
characters to debug

Compile in IDE

Go to error line

Allow reading by
word or character

Provide overview
of code

Allow navigating to
specific location

Written by sighted users

Allow text input

Figure 4 Functional Analysis of screen reader usage by blind professonals to code

3.1 Functional Analysis

The user observation and online survey
of blind programmers (Appendix 1.3) led
to insights on how a screen reader was
used as a means to work on a code. The
process of writing and reading code was
mapped as a process tree (Roozenburg,
1995) (see figure 4). Functions required to
enable this usage process were identified.
These were taken as the starting points for
the creative session and morphological
charts.

20

3.2 Creative Session

A creative facilitation (Tassoul, 2005)
session aimed at generating a large
number of divergent ideas was
undertaken. Design factors identified
from the functional analysis (Appendix
3.1) (Roozenburg, 1995) of existing screen
reader use in textual programming
languages; these functions were taken as
the starting point for the creative session.
Analogies, metaphors, and random
stimuli were used.

Six TU Delft students from different study
backgrounds volunteered towards the 90
minute session (see figure 6) (Appendix
3.4). The session generated 30 ideas
out of which 17 ideas were dot voted
and analyzed using the C-box method
(Tassoul, 2006)(See figure 5).

Familiar Innovative

F
ea

si
b

le
N

o
t

F
ea

si
b

le

Figure 5 Ideas organized into a C-box

Figure 6 Creative session at TU Delft

21

Allow text
input

Provide code
overview

Allow reading
by character/
word

Allow
navigating
to specific
loction

T9 Keypad T9 Glove Tap E-pen

Ultrasonic
3D audio

Joystick

Haptic
feedback
to palm

Wii
controller

Speech
recognition
“ Go to “

Moving
blocks

Haptic
Controller

Ball with
haptic
feedback

Acoustic
Temperature

Di�erent
shapes for
di�erent
functions

Magnetic
blocks

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5

Figure 7 Clustering of components for conceptualization

3.3 Morphological Chart
The ideas generated from the creative
session and the functions defined earlier
were used to form a morphological
chart. This helped to combine different
ideas and components to serve each of
the defined functions (see figure 7). The
components were arranged in the X-axis
while the functions were placed in the
Y-axis.

22

3.4 Concept
Development

The combined ideas from the morphological
chart were further detailed, and concepts
were defined. Early prototypes were
made to check their feasibility and
usability problems (Appendix 3.3). The
focus was on developing concepts for
multiple sensory representations of
code structures, similar to how they are
displayed for a sighted user. Five concepts
were defined, prototyped, and evaluated.

Concept 1

Clip-on ultrasonic sensors to detect the
relative position of the user’s fingers
pointing on the screen (see Figure 8),
inspired by Finger Reader technology. Then
the device gives audio feedback on the level
of the indentation of that particular line. This
would work without requiring any firmware/
Human interface Device (HID) drivers on the
host computer.

Concept 2

A handheld device strapped (see figure 9)
onto the wrists, with input and feedback
systems. The input is based on the T9
dictionary (predictive) text. Each of the
eight fingertips would have flex sensors
that return an alphabet based on frequency.
Haptic feedback regarding code structures
is provided in the form of vibrations onto the
palm, while gestures like swaying hands from
left to right, would read out aloud (voice
synthesizer) the text for user feedback or
navigate between the words.

Figure 9 A pair of hand-strapped devices
for text input, haptic and audio feedback

Figure 8 Ultrasonic senors to track finger positions

23

Concept 3

Inspired by magnetophoretic displays
commonly found in children’s magnetic
drawing toys, concept three is a grid of
electromagnets, and buttons on each of
them, to align iron filings into bumps on the
surface (see figure 10). A microcontroller
reads code structures on the computer
through firmware and magnetizes and
demagnetizes these magnets. These iron
filing bumps would provide information
on code structures such as indentation.
On pressing a bump, the user would listen
to a synthesized voice of that code line.

Concept 4

Rows of tactile tiles (see figure 11) that move
sideways along a conveyor like belts. The
position of the tiles would be controlled
by servo motors and a microcontroller.
A firmware would translate indentation
levels from a text editor on the computer
into their positions. A group of belt and
rollers, with varying types of tactile texture
materials, stuck on the belt. Each texture
means a class or function. In this way,
users can feel the logic of the code using
real-time positions of the tactile tiles.

Concept 5

Building upon concept 4, this concept
(see figure 12) is inspired by abacus
and MIDI sound mixers. It would feature
button sliders that move as per the
code hierarchies. Similar to the previous
concept, a firmware would interface
the device with the computer. Musical
strings would be used to differentiate
between different indentation levels, such
that when a blind user would move his
fingers across these strings, it would give
different notes across different strings.
These strings were inspired by guitar frets
and strings. Figure 12 Rows of buttons sliders that would

move according to code hierarchies

Figure 11 Different tactile surfaces on their respective
conveyer belts, that represent code hierarchies

Figure 10 Concept 3: Electromagnetic grid to
form tactile bumps on the surface

24

Conclusion

Concept 5 was selected as the final concept
based on the weighted evaluation (Appendix 3.4).
The selected concept scored higher in the ability
to skim and navigate, technological feasibility,
and a possibility for a failure-proof design. The
participants who were blindfolded and asked to
read a sample python code also expressed their
comfort and sense of playfulness while interacting
with the mockup, as it was familiar them to use
sliding motion to understand levels (e.g., abacus,
music mixers, etc.). The next chapters explain how
this concept was further developed and evaluated
with users in simulated tests.

Figure 13 Final Concept

25

4. Detailing
4.1 Final design: Quick preview
4.2 Aesthetics Exploration
4.2 Product Interaction
4.3 Embodiment
4.4 Control System
4.5 System Architecture

26

4. Detailing

As seen from the earlier chapter, concept
five was chosen to be developed further,
as it scored higher (than other concepts)
in addressing the skimming and navigation
challenges. The concept detailing phase
resulted in a fully functional prototype to
meet the technology readiness level 6, as
intended in the synthesis phase. The goal
of this phase was to enable the device
to perform skimming, code navigation,
and code folding functionalities.

Initially, an extensive effort was invested
in developing a functional algorithm
that can enable the device to read any
given code (across all platforms and
languages), for a more realistic data
from the validation phase. But due
to time constraints, the efforts were
stopped, and the work was moved to
future scope. The detailing process
started with an aesthetic exploration,
followed by embodiment design, and
then technical aspects were developed.

The final design featured a tabletop
device that has an in-built processor, to
read code and represent it in the form of
moving buttons in different rows. When
clicked on one of the buttons, the device
reads out aloud (or through headphones)
the contents of the line. It can be thought
of as a screen reader that gives the
freedom to the user, what he/she wants
to read by organizing the information
feedback and splitting it between different
sensory modalities (Tactile and Audio).
The design was made to help users with
problem-solving, to feel like an extension
as one’s own cognitive self (Hutchins et
al., 2000) instead of the user feeling the
effort of using a tool to accomplish the
task. The working surface was defined
and etched with tactile marking to
differentiate different hierarchy levels.

A navigation joystick at the bottom of the
interface helps the user to move across
characters or words (x-axis) or across
pages (y-axis). The joystick motion was
Skeumorphically designed so that users
follow familiar mental models of scrolling
up and down (for different pages like in a
smartphone) and reading left to right. The
interface as a whole was designed to be
clutter-free, and only essential information
was conveyed, and also enough to perform
programming operations.

27

Large curve to indicate top
side and the orientation of
device

Work window with tactile
edge

Tactile etches to indicate
hierarchy levels

Button sliders which can
be also pressed

Function button, to allow
customization

Volume controls

Joystick for character
and page navigation

4.1 Detailed Design:
A quick preview

Figure 16 Skimming and ComprehensionFigure 15 Navigation

Figure 14 Final detailed concept

28

4.2 Aesthetic
Exploration
Aesthetically pleasing products are not
only desired by sighted people. It is also
important for a blind user. An interview
conducted by Shinohara and Wobbrock
(2011) reveals how they feel, “As a blind
person, yeah. Maybe I do not see it, but
other people see it, and I want it to be,
you know, as glamorous as the next
guy”. Since the product is intended for
students starting from adolescence
and up, at this age, teenagers want to
feel trendy among their peer group.

In addition to the emotion it evokes, a
vision for aesthetics was formulated: ‘A
device that portrays reliability and trust’.
As one of the interview participants
revealed, “I do not get to use my
expensive braille device, as it feels fragile
and would break anytime soon. The
The Nine Moments of Product Experience
(9MoPE) method (see figure 17) was

AESTHETICS

MEANING

EMOTION

MICRO MACRO META

UNITY IN FORM

- Avoid confusion
during operation
- Monotonous

STURDY

Sense of reliability
against failures

TYPICALITY

Easy to learn to use
a new device

 INCLUSIVE

User feels ‘special
and trendy’ using an
assistive device

COLLABORATIVE
LEARNING

Audio feedback to
individuals make it
harder to participate
in class

 AUTONOMITY

 Sense of freedom

 COGNITIVE LOAD

User feels the device
as an extension to his
thinking process

TACTILE FEEDBACK

Sense of relief in
locating recently
typed character

I CAN ATTITUDE

Be part of digital
world and in tune
with trends

Figure 17 Product experience vision matrix

used to map the micro, macro, and meta
aspects of the human-product interaction,
based on which different forms were 3D
modeled. The aesthetic perception was
then evaluated, which will be explained
in chapter 4.2, and based on the insights
gained about object handling by blind
users, the final aesthetic design was
decided. The key aspects to be considered
were:

1. A tactile reference point to help users
orient the product properly

2. Clutter-free with fewer buttons as
possible

3. Clear demarcation of hierarchy levels
on the surface

29

Visual mood boards (see figure 18)
(McDonagh, 2001) were developed
to provide visual reference of what
the product should look and feel like.
Inspiration was taken from accessible
products as well as other gadgets that
gave a safe and reliable emotion. The
images compiled using Adobe Spark.

Figure 18 Moodboard for
visual reference

30

4.3. Embodiment
The physical detailing started with
embodiment design. It was started first
because, to build prototypes and iterate it,
a physical unit was required. It consisted
of two components- Housing and chassis.
The housing was designed to suit the final
aesthetic form, while still being able to
support the different components within
and allow the intended functionality.
The chassis held all mechanical drive
components together. The chassis was
first built in the process, as it helped to
test the electronics and programs to run it.
To build a quick prototype of the chassis,
medium density fiber (MDF) boards were
used, using laser cutting. The first version
supported only one stepper motor. This
served as a validation and optimization
tool towards the development of the
mechanical drive (more in chapter 3.4).

Figure One motor version to optimize screw design

The second version, was capable of
supporting five stepper motors.

Figure Chassis with five motors

Embodiment Challenges

First, the known and speculative challenges,
in embodiment, were realized. This helped
to better plan the development process.

1. Need to ensure a minimum linear velocity
of 25mm/s for the tactile elements, for
low latency between the elements and
refreshing pages or lines in the computer

2. Ensure a way to convey row and column
numbers without using numerical braille

3. Need to make the chassis support all
components and at the same time allow
easy replacement of components during
prototyping.

4. Need to find a way to effectively
interface hardware and code development
software.

5. Need to make the housing as compact
as possible, though it was not a top
priority within the project scope. However,
it was considered, so as to provide an
experience to validation participants as
close to reality as possible

31

It was observed that the MDF joints, when
slightly deflected, when the steppers
moved out of control and damaged these
joints, the mechanical drive got stuck and
overheating the motors. Hence, a 3D printed
chassis was fabricated. It was sturdier
than the MDF version, and the joints were
glued with epoxy adhesive. But such an
arrangement was not allowing changes to
modify the chassis in any way for iterations.

Figure 3D printed chassis for mechanical drive

The housing was developed in parallel,
and provisions were given in the chassis so
that it can align itself within the housing.

Initially, the chassis was also built using
MDF material, for Wizard of Oz type
of prototyping, that included popsicle
sticks which move buttons attached to
it, when pushing or pulling these sticks.
The interaction surface had rubber bands
stretched and suspended at some height
kept in different levels of tension, to make
different sound tones. The idea was to
mimic guitar frets, and while a user moves
across these rubber bands, they can
quickly recognize at which indentation he
or she is in.

Figure Button prototypes

Button concepts (see figure 19, 20)
were also explored. It was difficult in the
beginning to indicate to the user about

Figure 19 Scroll button concept, to navigate through
words

Figure 20 Curved edges to facilitate skimming

Figure 21 Using numerical braille on the side to
indicate row numbers

32

the row numbers. Column numbers were
identified with the stretched rubber
bands as explained above. But it was
difficult to denote row numbers without
using numerical braille.

Different ideas were explored to convey
row numbers, including dots on the top
or sides, which does not necessarily
mean braille but to denote row numbers
corresponding to the number of dots on
the button. It was then decided just to use
double tap interaction using electronics
to say out aloud what row number it is.

A scroll button concept was explored to
enable code folding functionality. It had
a mouse encoder within a PLA casing,
which would also slide along in the
mechanical drive.

Figure PLA enclosure for mouse encoder

The scroll was assumed to be useful,
but in reality, was hard to scroll and
since it was a narrow width wheel with
a metallic frame, it also hurt the fingers
while scrolling for long. Then it was
decided just to use push buttons and
manage to make the code folding feature
possible with the control system design.

Top Panel

The top panel was designed to be the
working space with clear demarcation
of edges and also had tactile markers
to indicate the indentation level. These

markers mimicked the surface tiles
in blind schools (Skeumorphic) as
per the requirement R4.2. Slot width
was also made optimum as per R1.2.

Figure Top panel

Another variant of the housing was
developed as a means to fulfill focus area
F3: Ensuring affordable products with
more reach to end-users. Since it was
initially planned to perform user tests
remotely with a blind school in India, this
variant was developed. Although later the
remote testing plan was dropped due to
time constraints, the DIY (Do-It-Yourself)
variant was useful for quick iterations,
which will be explained on the next page.

The goal of embodiment design was to
provide a clutter free interface for the
user. The interface design (see figure-
interactions) decisions followed the
Principles of Interaction Design (see
Appendix 4.8 and R4).

Tactile markers

33

The DIY variant was built entirely of
MDF material (including chassis). Laser
etching was considered as a means
of differentiating surface textures
and communicate indentation levels.

To help the primary and secondary
customers (see chapter 5.2) to assemble
product on their own like IKEA model
products, for higher product scalability
and lower packaging costs, a Do-it-
Yourself (DIY) approach was used.
Following the principles of Design for

Figure 24 45mm radius lattice joint
patter

Figure 23 Lattice Joint in poplar wood

Do-It-Yourself Variant

Figure 22 Assembled DIYvariant (without buttons on
the sliders

Figure 21 Exploded View of DIY variant

Work window

Base Layer

Chassis support

Lattice Joint

Mechanical Drive
Chassis

Slider layer

Assembly and Manufacturing (DFMA), the
parts were designed to be in layers (see
figure 13), which can be easily aligned
using puzzle-like joints, so that users
cannot misalign them (see figure 21).

The layered approach was also useful
in terms of modularity, which allowed
continuous iteration without having the
change the entire design. This served the
requirement R2.3, and when something
failed it was easy to change the part design

As per Requirement R4.1, the top left
corner was designed to have a 45mm fillet
(see figure 23, 24). The fillet was achieved
using a lattice joint in Poplar wood.

34

Understand code
hierarchy and logic

Quickly skim
through the lines

Double click a specific
line to move cursor
there and use key-
board input

Figure 24 Interaction
features

35

4.4 Control System:

The control system was developed to precise
position the buttons sliders and represent
code structures tactually, with the least
lag possible between digital information
and mechanical motion. The control
system consists of two main elements-
Mechanical drive and electronic controls.

A pinboard (see figure 26) was an inspiration
to create a tactile map for code structures.
However, it was declined as actuating each
pin would be not a cost-effective idea.

The leadscrew based slider mechanism
was chosen, as the main requirement from
the drive mechanism was that the tactile
representation should be as instantly as
possible whenever the lines or pages on
the computer refreshes. This meant the
displacement of the moving part should
1) Have large displacement per unit time,
2) Have fewer slips, 3) More positional
control.

In the early stages of this development,
off the shelf drives such as motorized
pot sliders (see figure) were considered.
These were used in MIDI sound mixers,
and because of this standard application,
these spares were expensive for this
product case. So linear actuators based on
lead screws were fabricated. The number
of positions of tabs was considered to

Mechanical Drive

be 4, with each indentation level spaced
at 25mm apart, so that there is enough
differentiation between each level.

Lead Scew Design

Different materials were used to
experiment pitch and displacement time,
between each indentation level. M4 steel
screws with milled aluminum coupling
were used while the traveling nut was
embedded in a laser-cut MDF housing.

But since the standard M4 nut had a
single start pitch of 0.7mm, it took 35
seconds to traverse a distance of 25mm
(across a single indentation level). The
stepper motor used here was 28BYJ-28,
which had 15 RPM. The speeds at different
pitches and the number of starts were
calculated (table). The slow-motion meant
significant latency between change in
digital information, and it’s reflection in the
position of the slider buttons. To increase
the rate of displacement of travelling nut
per revolution, a lead screw with a large
pitch was needed.

Table 1 List of lead screws with
timetaken to cover 25mm

Part Screw
diameter
(mm)

Thread pitch
(mm)

Stepper
RPM

Time
Taken
(s)

Standard 4 0.7 15 31

Standard 8 1.25 15 18

Standard 12 1.75 15 14

Custom 4 25 (1 start) 15 8

Custom 4 25 (2 start) 15 4

Figure 26 Pinboard

Figure 27 Slider Pot

Figure 28 Lead screw assmebly

36

Custom 4 35 (1 start) 15 5

Custom 4 35 (2 start) 15 2

crews up to M12 had a pitch standard
of up to 1,75 mm, meaning it would
still take 14 seconds. Also, screws
with larger diameter meant more
weight, and this would require higher
powered and expensive stepper motors.

Since metal lead screws tend to become
weaker when creating a pitch of more
than 0.8mm on an M4 or M6 screw, 3D
printing was considered to fabricate the
lead screws. For the ease of material
availability, PLA was chosen as the
material, while fabricating the screws in
metal required tooling, which was again
expensive. However, it is recommended to
use ABS or POM (for its self-lubricating
properties). Since the 3D printing
at the Industrial Design Faculty (TU
Delft) did not allow POM/ABS printing,
PLA was considered for prototyping.

A standard one start and two start
bottle thread screws (see figure 29)
were fabricated. Since it still had lower
displacement rates, the custom design of
the lead screw was made. After several
iterations (see figure), two-start lead
screws and corresponding traveling nuts
were fabricated with a 35 mm pitch, using
PLA plastic. It was found to be the most
optimum for the indentation levels. The
motor couplers were designed to be in-built
within the plastic screw part. Two starts
made it possible for a faster displacement
of the traveling nut, for a given pitch. It
was post-processed with PTFE lubricant
and housed in a laser-cut chassis. They
were assembled into the internal chassis
and coupled to steppers (see figure 31).

Push-button sub-assemblies were placed
over the traveling nut, and each of these
sub-assemblies was given a provision to
couple the buttons (external) to it.

Cap screw

Cap screw

Custom pitch

Custom: 25mm thread pitch

Custom: 35mm thread pitch

Figure 29 Evolution of lead screw and their corre-
sponding travelling nut design

Figure 31 All the lead screws assembled in the inter-
nal chassis

Figure 30 Push button sub-assem-
bly

37

4.5 System Architecture
The most important part of the control
system and even the whole detailing
chapter is the electronics and its
interfacing with the computer software.
Extensive efforts were taken to ensure
the least latency as possible between the
hardware (sliders) and the software (like
text editors or IDEs). Real-time interfacing
was developed during the course of the
project, but could not be completed
entirely within the graduation time.
However, it is being developed further
by the Open source community, since
the project has been open-sourced (see
chapter 5.3). Some of the code developed
can be found in appendix 4.6. Despite the
fact that this part was beyond the scope
of the project, it was still attempted at
because 1). There was a need to make a

Microcontroller
32u4

Line Selection
Push Buttons

Joystick

Go to line (ASCII)
USB

Read words/ Characters
 (ASCII)

Virtual
CDC Port

Read words/ Characters
 (X- axis)

Wait for
ASCII

Load text in
eSpeak

GPIO
Control

Navigate pages
(Y- axis)

Mechanical
Drive

Keyboard Input

Speech Output

Raspberry Pi

Arduino

 Retrieve
txt file to

tmp

User opens file
in txt editor /

IDE

Retrieve line
/ character

Figure 32 System Architecture showing the fore-end and backend processes

38

real-time functional prototype so as to
validate the interactions and make it feel
as close to the real product for getting
realistic usability test results, 2) It was
considered that by making it to this level
of functionality, the feasibility of the
approach would be validated.

Main challenges

1. Many text editors and IDEs are not
accessible with voice synthesizers and
screen readers

2. Screen readers are also dependant on
the operating system (OS).

3. So the question was how to create a
system that is as independent of platforms
(OS and software tools like editors and
IDEs).

4. There was a need for a simpler
approach to integrate software or the
operating systems with the hardware
(stepper motors) without having to write
specialized driver software. Another
disadvantage of drivers could bring more
incompatibility bugs.

Electronics

The electronics of the control system (see
figure 20) used a Raspberry pi 3B+ and
an Arduino Leonardo. The ULN2003a
type of stepper driver was considered
for its ease of spare part availability and
the maximum torque. It has a holding
torque of 34.3mN.m, which is low enough
to cause any physical injury to the blind
user (as per requirement R1.1) even in the
case of product misuse and high enough
to drive the lead screw without any slip.

The system consisted of both Arduino
(Leonardo) and Raspberry Pi, both of
which have their individual computing
power. The reason why both were
selected was that only a processor with

32u4 architecture (in Leonardo) can act
as a programmable USB- HID (Human
Interface Device). Hence, the leonardo is
programmed to send ASCII (American
Standard Code for Information Exchange)
with respect to the iser interaction (eg.
using joystick to move between pages or
navigate to specific character or word)
Another advantage in this approach is
that the active cursor in the text editor
can also be moved to a desired position,
from where the user can enter or edit text
using a regular keyboard.

Raspberry nor any other microcontrollers
have this functionality. On the other hand,
it was decided to use a raspberry pi as
the main computation device, instead of
tethering to an external device because
of the following considerations:

1. Including raspberry pi as a main
computation device allowed the product
to be a standalone and not affected by
tethering failures (Requirement R2.2)

2. Using python scripts was easier in
raspberry pi to control GPIO (general
Input and Output) pins to directly
interface with the stepper motors.

PCB Design

To minimize hardware errors during
prototyping and user testing, and to help
focus more on software integration, a
PCB was designed (see figure 58. 59) and
fabricated (see figure 22). The PCB also
helped to resolve critical issues in terms of
system architecture and the components
required in the final embodiment of the
concept, when the designs were open-
sourced, and the project gained traction.

Hardware- software integration

As it can be seen from figure, the points of
user interaction like buttons and joystick
were interfaced with Leonardo, while

39

the stepper motors, audio output was
interfaced with the raspberry pi. As per
the expert interview from Visio (appendix
1.3) students use Keyboards as the primary
input device. Hence it was decided to use
a keyboard as the input for raspberry pi
as well. As mentioned above, Leonardo
acted as an HID, and corresponding ASCII
values were sent to the raspberry pi.

The product launches a boot script as the
device starts in the raspberry pi. When
the user loads a text file in an editor or
IDE, the script reads the file location and
retrieves it to a TMP (temporary) folder.
The script accesses this file whenever the
user presses the function button. Upon
access, the file is read line by line, as per the
user input (through ASCII codes sent from
the Leonardo), if the file has to be read
by words or character (Joystick X-axis)
or by lines and page (Joystick Y-axis).
The buttons on each slider also indicate
Go to Line function, and the Leonardo
sends a corresponding ASCII value to the
Raspberry Pi. In this way, the user can
tactually feel the code and move the cursor
to a specific location just by tapping twice.
 To make the integration as independent

Figure 34 Functional Prototype with electronics

Figure 33 Assembled electronics

as possible from platforms, the eSpeak
engine was selected as the speech server.
It allowed the script to load the words or
characters to be loaded into the eSpeak
server, which then talks it aloud through
synthesized speech. This way, real-time
integration of the tactile feedback and the
audio output was achieved.

40

Conclusion

The detailing phase allowed the concept
to be developed up to a level of a
functional prototype, and allow user tests
in a simulated environment. Although all
features were not functional by this phase,
the intended Technology Readiness
Level was achieved. The lessons learned
in this chapter was compiled into the
recommendation section (chapter 7.1).

41

5. Validation
5.1 Usability Test
5.2 Aesthetics Perception

42

Introduction

Validation was essential and useful
to find if the design decisions made
during the process had been reflected
in the final design. The validation was
undertaken to measure System Usability
and the aesthetic perception and to see
if the design has fulfilled the intended
requirements and design goal.

43

5.1 Usability Test
System usability System (SUS) (Brooke,
1986) was used to determine how
interaction friendly the detailed concept
is and how much it serves the design
goal. Six TU Delft students from different
study backgrounds and one professional
blind programmer volunteered in the
test. The blind programmer was a
professional at Booking.com, Mr. Parham
Doutsdar participated. The students were
blindfolded with a sleeping mask.

A form prototype was placed in front of
the participant (see figure 23, 24), and they
were asked to perceive the logic of two
sample python program (Fibonacci Series
and Singly Lists), whose indentation levels
were preset for the participant before
the start of the test, with slider popsicle
sticks. Synthesized screen reader voices
were pre-recorded and played at every
instance the participant interacted with
the prototype. A Minimum Viable Testing
approach was undertaken (Appendix 6.2).

Figure 36 A blindfolded participant interacting with
the prototype

Feedback:
“It is playful and I like the feel of exploring.
It responds to my interactions and I get
excited to feel how my code is written”-
Shreyas Prakash, Masters student- IO

“It is easy to reach and simple to use “-
Vinayak Krishnan, Masters student- 3ME

“Because its a new product than the ones I
am used to, maybe I need training to learn
all the features”- Parham Doutsdar

Figure 35 The blind programmer interacting with the
prototype

Figure System usability Results

44

5.2 Aesthetic Perception
A buyer’s perception of aesthetics and end
user’s tactile perception was evaluated to
determine if the product experience vision
of reliability and trust is reflected in its
form. The test participants were students
from TU Delft, from different disciplines in
the age group of 21- 29 years old and one
blind user. It was ensured to have an equal
proportion of male and female participants.

They were shown a rendered image (see
figure 12) of the product on a computer
screen and presented a questionnaire with
5 points Likert scale. The haptic aesthetic
(see figure 25) helped gain insights on
whether a blind end-user would prefer
to buy the product after experiencing its
aesthetics and the emotions it conveys.

Figure 38 3D printed form prototype presented to a blind programmer, for tactile perception of the product.

Robust

Playful

Intuitive

Accessible

Ergonomic

Gender
Neutral

1

2

3

4

5

Figure 37 Radar chart showing the average score for
each aesthetic criteria

Feedback:
“I like the interaction of it with a lot of
buttons and I get invited to play with it “ -
Parham (Blind programmer, Almere)

“I feel it does not break, even when i drop
it. I can imagine this is important for the
blind”- Vinayak Krishnan (3ME, TU Delft)

45

Conclusion
Using the methods used in this chapter,
it was realized that ergonomics and
intuitiveness could be improved in the
future. As one of the participants said, “It
is playful to use at this angle, but I think
it might force me to reach out forward,
causing strain in my back.” A possible
solution could be to remove the 30-degree
inclination and lay the product flat on the
table, like in the MDF variant (figure 36).
Due to time constraints and the scope of
the project, these iterations could not be
fulfilled. But it was worth noting that the
general system usability was scored high,
in terms of ability to skim and navigate
through code and understand the logic of
it.

46

6. Business Model
6.1 Market Analysis
6.2 Customer segmentation
6.3 Open source Hardware Model
6.4 Revenue Model
6.5 Cost Structure
6.6 Promotional Strategy
6.7 Financial Plan

47

Introduction

Also, as an approach to find design
solutions to improve the accessibility
of programming education, the project
also focussed on the ways to make the
approach accessible the end-users.
This chapter explores the potential of
the design solution as a sustainable
business proposition. On the contrary to
conventional models, the business model
was based on the Open Source Hardware
approach. The guiding question for most
of this chapter is,

How can an Open Source Hardware model
be sustainable?

The first question that is asked about the
Open Source hardware model is, “ Where
does the money come from if the designs
are open-sourced?” This chapter answers
this critical question. It was realized
during a number of conversations with
the Delft Open Hardware Community that
it was essential to develop a sustainable
business model that can make a venture
sustainable as any other business, but at
the same time promote the spirit of Open
Source- Freedom.

48

Market Segmentation
Though the product was initially developed
for blind users, on market segmentation
studies, it was found that with minor
adjustments, the product can also serve
those users who have uncorrectable low
vision and those who have Dyspraxia.
Dyspraxia is a condition in which a person
has an affected excellent motor control
and unable to use a mouse or a regular
keyboard.

Market Size
For the first two years, we are aiming to
target blind users from middle and high
economic classes from Netherlands and
India, for which the Total Addressable
Market(TAM) is 64 Mn Eur, and our
Serviceable Obtainable Market(SOM) at
the rate of 1% market share is 640,000 Eur.

6.2. Customer
Segmentation

Economic Buyer
Families and friends of blind
people (retail e-commerce)
Municipalities wanting to fulfill employment
opportunities for blind people, adhering to
the Dutch Participation (Participatiewet)
Act Employers who can accommodate
a blind programmer and benefit from

6.1. Market Analysis

schemes like Wage Cost-Benefit, LKV, LIV
and Employee Insurance contribution.
High schools in the Netherlands who have
a dedicated programming track as part
of their curriculum. Such schools at the
moment are limited. For instance, the Metis
Montessori Lyceum is the only high school
offering coding lessons as part of their
main curriculum

End User
High school children (14 to 17 years)
Professional programmers (workplace),
adult users (18 to 30 years)

Secondary Customer
Makers, Tinkerers, researchers, educators

Early Adopters
Established blind schools were engaged
during product development, further
testing, and validation. The network was
established based on personal connections
and from previous startup experience in the
education domain. The plan is to engage
them for Influencer based marketing
while seeing if they will be interested in
becoming Early Adopters. Some of them
could be Bartemeus Zeist (NL), Royal Visio
(NL), Technology Centre for Blind (India),
and National Institute for Visually Impaired
(India).

6.3. Open Source
Hardware model
The secret sauce is in open-sourcing
the hardware designs and yet having
a sustainable business model. The
decision was taken to make it Open
Source, in adherence to the Design
Goal (ii), for two more main reasons:

Figure 39 Market Analysis

49

Innovation Bootcamps.

6.4. Revenue Model
The inspiration is from the sales of
Arduino. It is open-sourced, yet have
a successful and sustainable revenue
model. Their brand name is Trademarked,
and in spite of competition from the low-
cost Chinese clones, the Italian company
is able to sustain due to the quality they
provide. Likewise, the major revenue
stream for CuriO is through sales of the
finished products. The pricing is based on
a contribution-based discount model. The
designs are released under MIT Licence
as open-source hardware, wherein the
primary consumers of the design are
computer engineers/ scientists, makers,
accessibility testers and researchers.
The various issues and feedback
from the end-users, as well as further
development work, are posted as issues
on the webshop page. Anyone (primarily
the design consumers) who contribute
to these issues, get a discount based on
the level of the solution provided. This
model ensures an incentive for R&D while
cutting down costs for the same (hiring
developers, researchers, and engineers).

On the other hand, if one does not want
to opt for discounts or does not possess
the necessary skills to contribute, they
have the option to buy the finished goods.
This way, revenue is generated positively

- Successful implementation of this
project on external dependencies,
such as educational research and
content development, software
integration and hardware improvements,
before it could hit the markets

- The niche market and its reach cannot
follow conventional promotion strategies.
There is a heavy need to follow influencer
based and word of mouth outreach.

From a business point of view, Open
sourcing the design also enables
community-based product development
while cutting down costs on R&D. The
case of Arduino inspired the business
model. Their reference designs are open-
sourced and continue to be replicated
globally. However, their trademarked
brand name ‘Arduino’ gives them the
mark of trust in manufacturing. Also,
makers and tinkers cannot compete in
terms of cost of production and sales,
when it comes to mass manufacturing
advantages (such as mold and die costs
and PCB printing) and sales through a first-
in-market approach to customer base.

The design files were published in the
Github repo, and since then, several issues
have been fixed. Contribution guidelines,
code of conduct, and license documents
were also published. Gitkraken was used to
visualize and manage contributions. The
traction was achieved through pitching
the project at forums like the Delft Open
Hardware and within connections of MIT

Figure 40 Guest talk at Delft Open Hardware,
TU Delft Library, brought new collaborators

Table 2 Revenue Model

50

through open sourcing while promoting
the spirit of it. According to my qualitative
study, the researchers and developers
fall into the tertiary consumers, while the
blind end-user (primary) and economic
buyer (secondary) still preferred to buy
the finished goods, without opting for
discounts.

A potential risk of this model could
be in the form of a big company like
Microsoft or Google, with higher resources
manufacturing the finished good after
taking in the improved designs. This risk
could be mitigated by partnering with
them and not have them as competitors.
According to the MIT Licence, the designs
and those derived from the original
design should still attribute to the original
innovator and license shall remain open
source. In this case, since giants prefer
acquisition rather than developing a similar
product in-house, the developments by
such big companies could also help back
my team in improving product sales.

Popup Workshops
The secondary revenue stream shall be
conducting training workshops, in special
schools, mainstream schools, coding clubs,
pop up spaces, and after school learning
spaces. This also acts as one of the main
promotion strategies for publicizing the
work while generating revenue. Partnering
with Laboratia, an organization that trains
women in Latin America in coding skills
and empower them with job opportunities,
can help Curio to reach media attention
and tech giants like Google and Facebook.

6.5. Cost Structure
The finished product would be priced at
425 EUR. More on the cost of goods sold
can be found in Appendix 7.3.

6.6.Promotional
Strategy

Firstly, the plan is to do digital advertising
through a combination of Pay Per
Click (PPC) to gain actual clicks to our
online stores (partner) and Pay Per
Impression (PPM) to gain brand
visibility. Also, to use display and affiliate
marketing, SEO, and SEM to reach as
many targeted digital users as possible.

Influencer Based Marketing: Product
reviews by blind programmers and
educators on their own Youtube channels
are becoming increasingly popular for
others in the target group and blind
communities willing to buy a product.
We plan to reach out to a few such
influencers to cover our product in their
next video, which can get us the brand
and product visibility to thousands
of youtube channel subscribers.

6.7. Financial Plan
The plan is to build three more prototypes
for testing and validation with blind
schools and programmers, after
graduation. The insights and reviews from
these validation sessions will be used
to raise the initial funding of €200,000
through the Kickstarter campaign to
bring the prototype to a low volume
production phase for the first 100 early
adopters. Kickstarter levies a fee of 5% of
total funds raised. To scale up production
and penetrate the market, venture capital
investment will be sought.

Figure 41 cost structure

51

Conclusion

The chapter allowed to explore the
different business potential of the design
solution developed. Since the project
was open sourced, the impetus for
further development was developed.
Towards the end of the project, two more
contributors have shown interest. When
the visually impaired community, as part
of the end user, starts to engage in further
development within the Open Hardware
model, that is when the business approach
will be regarded as successful.

52

7. Conclusion
7.1. Recommendations
7.2. Next Steps
7.3. Reflections
7.4 Conclusion

53

7.1 Recommendations
A list of recommendations were developed
based on the learnings throughout
the project. It could be useful for the
researchers who are willing to take up this
approach into programming education
The list has been divided into software,
user testing, embodiment and control
system.

Software
1. Make product training/ tutorial like a
tangible gaming experience, for lesser
learning curve

2. Create audio based startup messages
when loggin on to the system, for easier
navigability

3. Create a landing page for market analysis
and willingness to buy the product

User Testing
1. More SUS tests have to be conducted
with the target age group (14 to 17 year
old) blind students

2. Perform playful evaluations such as PLEX
framework and safety- risk evaluation for
possible use and misuse of the product

Embodiment
1. Support lattice joints with an internal
chassis framework, so that it survives a fall
or any other mechanical damage to the
housing

2. Remove the 15 degree tilt, as user tests
revealed that it is not ergonomical to
always lean forward and interact with the
product with hands suspended in the air

Control System
1. Use of micro stepper motors will reduce
the height of the product by 38mm.

2. Use auto-indent scripts to include
indentations to curly bracket languages
so that the product becomes functional in
other languages other than python.

3. Make a pypi installer to easily deploy
scripts in a Raspberry Pi

4. Replace Raspberry Pi 3B+ with a
Raspberry Pi Zero W to cut down costs
and complexity (but include a mics hat)

5. Print lead screws and travelling nut using
Nylon 12 filament for its self lubricating
and mechanical strength

6. Create more resolution (slider rows) for
better interaction experience.

54

7. 2. Next Steps
The personal intention of the project is not
only to fulfill the academic requirements
of the master’s program but take it
forward towards community impact.
The interest shown by the enthusiasts
at the Delft Open Hardware movement
has given the momentum for the project
to evolve forward. The next step would
be to adapt the approach to explore
programming education materials further
with Programming Education Research
Lab (PERL), as it is one of their main
research areas. It could be followed by
developing the next version (see appendix
6.4) before it can be tested with the
actual target audience- high school blind
children and perform more experiments
with them. There is also a plan to take
the project forward as a startup, having
learned the methods and principles of
entrepreneurship at TU Delft.

55

Alpha Pro
to

type re
ady

20
19

20
20

Ro
ad

m
ap

Ph
as

e
1

Pr
od

uc
t D

ev
el

op
m

en
t

Ph
as

e
2

Re
se

ar
ch

 a
nd

 P
ed

ag
og

y
de

ve
lo

pm
en

t
Se

pt
em

be
r

O
ct

ob
er

N
ov

em
be

r
D

ec
em

be
r

Contro
l c

ode ite
ratio

n

Beta Pro
to

type re
ady

Usa
bilit

y te
st

Versi
on 2 co

mmence
s

G
ra

du
at

io
n

Adapt t
o lo

w visi
on

Adapt t
o younger k

ids

Te
st:

 blin
d child

ren

F
ig

ur
e

4
1

R
o

ad
m

ap
 f

o
r

fu
tu

re
 v

er
si

o
n

56

7.3 Reflections

It has been a fulfilling journey to have
worked on this project. When I visited
blind schools in India for the co-creation
session, the innovation officers were really
motivated to help me in every possible
way, and I could see their deep aspirations
and desires to get better opportunities
in life. I could empathize how progress in
this domain could actually impact their
lives, and this is what drove me to push
my limits, and whenever I broke down,
the emotion is what motivated me to
move forward, despite the fact that it was
challenging more than my capabilities.
There have been several learnings
academic and person along the way,
which I would like to share in this section.

The complexity of the project, with some
of its aspects being very new to me, such
as programming in itself, made it hard at
times to make decisions. But it was this
complexity that motivated me to learn
and use research methods that were
totally new to me and different methods
to analyze the information collected.

I could now say, with contentment, that I
have learned what it takes to be a product
designer. Having a background (Bachelor’s)
in Mechanical engineering, I often slipped
into the engineering way of solving a
problem. I would like to thank my mentors,
who advised me at the right moments.

Although my mentors suggested me
not to become very ambitious, at times
I spent most of my time developing
the approaches in hardware-software
integration, I could not come up with a
simpler and dirty way of validating the
concept without really making it work.
Though it took away a lot of time, I am glad
when I reflect on how this actually proved
the feasibility and spark enthusiasm among
the Delft Open Hardware community.

57

7.4 Conclusion

Looking back, what started out of
inquisitiveness and a personal desire
to contribute to the visually impaired
community, has led to the design of
an approach, if not towards a finalized
design product. There is so much more to
learn and fail and learn from that. There
are many unexplored questions within the
scope of this project, and with that, a true
conclusion would be to say that it is just
the beginning.

58

References

59

Limburg, H., & Keunen, J. E. (2009).
Blindness and low vision in the Nether-
lands from 2000 to 2020—modeling as
a tool for focused intervention. Ophthal-
mic epidemiology, 16(6), 362-369.

Vision impairment and blindness. (n.d.).
Retrieved November 6, 2019, from
[http://www.who.int/mediacentre/fact-
sheets/fs282/en/](http://www.who.int/
mediacentre/factsheets/fs282/en/).

E. Glinert (1986). Towards “Second
Generation” Interactive, Graphical
Programming Environments, Proceed-
ings of the IEEE Workshop on Visual
Languages.

O. Zuckerman, T. Grotzer and K. Leahy
(2006) Flow blocks as a conceptu-
al bridge between understanding the
structure and behaviour of a com-
plex causal system. In Proceedings
of the 7th international conference on
Learning sciences (ICLS ‘06). Interna-
tional Society of the Learning Sciences,
880-886

A. Stefik, C Hundhausen and D. Smith
(2011). On the Design of an Educational
Infrastructure for the Blind and Visually
Impaired in Computer Science. In Pro-
ceedings of the 42nd ACM Technical
symposium on Computer science educa-
tion, 571-576

The 7 Most In-Demand Programming
Languages of 2019 ... (n.d.). Retrieved
November 5, 2019, from [https://www.
codingdojo.com/blog/the-7-most-in-de-
mand-programming-languages-of-2019]
(https://www.codingdojo.com/blog/the-
7-most-in-demand-programming-lan-
guages-of-2019)

Y. Goertz, B. van Lierop, I. Houkes and F.
Nijhuis. (2010). Factors related to
the employment ofvisually impaired
persons: A systematic literature review.
Journal of Visual Impairment and

Blindness, 104(7), 404

Villar, N., Morrison, C., Cletheroe, D.,
Regan, T., Thieme, A., & Saul, G. (2019,
April). Physical Programming for Blind
and Low Vision Children at Scale. In Ex-
tended Abstracts of the 2019 CHI Con-
ference on Human Factors in Computing
Systems (p. INT003). ACM.

Apple Partners with RNIB to Bring its
Everyone Can Code Curricula to Blind
and Low Vision Students in the UK.
(n.d.). Retrieved November 5, 2019,
from [https://www.applevis.com/blog/
apple-partners-rnib-bring-its-everyone-
can-code-curricula-blind-and-low-vi-
sion-students-uk](https://www.applevis.
com/blog/apple-partners-rnib-bring-its-
everyone-can-code-curricula-blind-and-
low-vision-students-uk).

Moors, L., Luxton-Reilly, A., & Denny, P.
(2018, April). Transitioning from Block-
Based to Text-Based Programming Lan-
guages. In 2018 International Conference
on Learning and Teaching in Computing
and Engineering (LaTICE) (pp. 57-64).

Stefik, A., & Ladner, R. (2017, March). The
quorum programming language. In Pro-
ceedings of the 2017 ACM SIGCSE Tech-
nical Symposium on Computer Science
Education (pp. 641-641). ACM.

Schanzer, E., Fisler, K., & Krishnamurthi,
S. (2013). Bootstrap: Going beyond pro-
gramming in after-school computer sci-
ence. In SPLASH Education Symposium.

Guillaume Pothier, Éric Tanter, and José
Piquer. 2007.Scalable omniscient de-
bugging. ACM - SIGPLANNotices 42, 10
(2007), 535–552.

National Federation of the Blind. 2009.
The Braille Literacy Crisis in America:
Facing the truth, Reversing the Trend,
Empowering the Blind. Jernigan Insti-
tute.

60

Rex, E. J. (1989). Issues related to literacy
of legally blind learners. Journal of Visual
Impairment & Blindness.

Schroeder, F. (1989). Literacy: The key to
opportunity. Journal of Visual Impairment
& Blindness.

Stephens, O. (1989). Braille—implications
for living. Journal of Visual Impairment &
Blindness.

Ferrell, K. A., Mason, L., Young, J., &
Cooney, J. (2006). Forty years of literacy
research in blindness and visual impair-
ment. Retrieved from University of North-
ern Colorado, National Center on Severe
and Sensory Disabilities website: [http://
www](http://www/). unco. edu/ncssd/re-
search/literacy_meta_analyses. shtml.

Potluri, V., Vaithilingam, P., Iyengar, S.,
Vidya, Y., Swaminathan, M., & Srinivasa,
G. (2018, April). CodeTalk: Improving
Programming Environment Accessibility
for Visually Impaired Developers. In Pro-
ceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (p.
618). ACM.

Baker, C. M., Milne, L. R., & Ladner, R. E.
(2015, April). Structjumper: A tool to help
blind programmers navigate and under-
stand the structure of code. In Proceed-
ings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems
(pp. 3043-3052). ACM.

Ann C Smith, Justin S Cook, Joan M Fran-
cioni, AsifHossain, Mohd Anwar, and M
Fayezur Rahman. 2004.Nonvisual tool for
navigating hierarchical structures. In ACM
SIGACCESS Accessibility and Computing.
ACM,133–139.

Andreas Stefik, Andrew Haywood,
Shahzada Mansoor,Brock Dunda, and
Daniel Garcia. 2009. Sodbeans. InPro-
gram Comprehension, 2009. ICPC’09.

IEEE 17thInternational Conference on.
IEEE, 293–294

Andreas Stefik, Roger Alexander, Robert
Patterson,and Jonathan Brown. 2007.
WAD: A feasibility studyusing the wicked
audio debugger. In ProgramComprehen-
sion, 2007. ICPC’07. 15th IEEEInternation-
al Conference on. IEEE, 69–80.

Stefik, A., Fitz, K., & Alexander, R. (2006,
June). Layered program auralization:
Using music to increase runtime pro-
gram comprehension and debugging
effectiveness. In 14th IEEE International
Conference on Program Comprehension
(ICPC’06) (pp. 89-93). IEEE.

Diane H. Sonnenwald, B. Gopinath, Gary
O. Haberman, William M. Keese III, and
John.S.Myers. Infosound: an audio aid
to program comprehension. In System
Sciences, 1990.,Proceedings of the Twen-
ty-Third Annual Hawaii International
Conference on, volume 2,pages 541–546,
jan 1990.

Lay-Ekuakille, A., & Mukhopadhyay, S. C.
(2010). Wearable and autonomous bio-
medical devices and systems for smart
environment. Springer.

Sanders, E. B. N., & Stappers, P. J. (2008).
Co-creation and the new landscapes of
design. Co-design, 4(1), 5-18.

Paas, F., Renkl, A., & Sweller, J. (2003).
Cognitive load theory and instructional
design: Recent developments. Education-
al psychologist, 38(1), 1-4.

Tuovinen, J. E., & Sweller, J. (1999). A
comparison of cognitive load associated
with discovery learning and worked ex-
amples. Journal of educational psycholo-
gy, 91(2), 334.

Sweller, J. (1988). Cognitive load during
problem solving: Effects on learning.

61

Cognitive science, 12(2), 257-285.

Baddeley, A. D., & Hitch, G. J. (1994).
Developments in the concept of working
memory. Neuropsychology, 8(4), 485.

Designing for Screen Reader Compatibil-
ity. (n.d.). Retrieved November 6, 2019,
from [https://webaim.org/techniques/
screenreader/#linearization](https://we-
baim.org/techniques/screenreader/#lin-
earization).

Moreno, R., & Mayer, R. E. (2000). A
learner-centered approach to multime-
dia explanations: Deriving instructional
design principles from cognitive theory.
Interactive multimedia electronic journal
of computer-enhanced learning, 2(2),
12-20.

Rayner, K., Foorman, B. R., Perfetti, C. A.,
Pesetsky, D., & Seidenberg, M. S. (2001).
How psychological science informs the
teaching of reading. Psychological sci-
ence in the public interest, 2(2), 31-74.

Siegfried, R. M. (2006). Visual program-
ming and the blind. ACM SIGCSE Bulle-
tin, 38(1), 275. doi: 10.1145/1124706.112142

Jackson, R. M. (2012). Audio-supported
reading for students who are blind or
visually impaired. Wakefield, MA: Na-
tional Center on Accessible Instructional
Materials.

Choi, K. Y., Sumini, V., & Ishii, H. (2019,
June). reSpire: Self-awareness and In-
terpersonal Connectedness through
Shape-changing Fabric Dispaly. In Pro-
ceedings of the 2019 on Creativity and
Cognition (pp. 449-454). ACM.

Tung, M. J., Ko, W. S., Huang, Y. T., &
Yang, M. D. (2013). U.S. Patent Applica-
tion No. 13/710,465.

Shilkrot, R., Huber, J., Meng Ee, W., Maes,

P., & Nanayakkara, S. C. (2015, April). Fin-
gerReader: a wearable device to explore
printed text on the go. In Proceedings of
the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems (pp.
2363-2372). ACM.

Carter, T., Seah, S. A., Long, B., Drinkwa-
ter, B., & Subramanian, S. (2013, Octo-
ber). UltraHaptics: multi-point mid-air
haptic feedback for touch surfaces. In
Proceedings of the 26th annual ACM
symposium on User interface software
and technology (pp. 505-514). ACM.

Koh, J. T. K. V., Karunanayaka, K., & Na-
katsu, R. (2013, September). Linetic:
Technical, usability and aesthetic im-
plications of a ferrofluid-based organic
user interface. In IFIP Conference on Hu-
man-Computer Interaction (pp. 180-195).
Springer, Berlin, Heidelberg.

Sodhi, R., Glisson, M., & Poupyrev, I.
(2013, October). AIRREAL: tactile inter-
active experiences in free air. In Proceed-
ings of the adjunct publication of the
26th annual ACM symposium on User
interface software and technology (pp.
25-26). ACM.

Nakagaki, K., Fitzgerald, D., Ma, Z. J.,
Vink, L., Levine, D., & Ishii, H. (2019,
March). inFORCE: Bi-directional-
Force’Shape Display for Haptic Interac-
tion. In Proceedings of the Thirteenth
International Conference on Tangible,
Embedded, and Embodied Interaction
(pp. 615-623). ACM.

Schneider, O., Shigeyama, J., Kovacs, R.,
Roumen, T. J., Marwecki, S., Boeckhoff,
N., ... & Baudisch, P. (2018, October).
DualPanto: A Haptic Device that Enables
Blind Users to Continuously Interact with
Virtual Worlds. In The 31st Annual ACM
Symposium on User Interface Software
and Technology (pp. 877-887). ACM.

62

Tassoul, M. (2005). Creative facilitation: a
Delft approach. VSSD.

Tassoul, M. (2006) Creative Facilitation:
a Delft Approach,Delft: VSSD.

Shinohara, K., & Wobbrock, J. O. (2011,
May). In the shadow of misperception:
assistive technology use and social in-
teractions. In Proceedings of the SIGCHI
Conference on Human Factors in Com-
puting Systems (pp. 705-714). ACM.

Nielsen, J. (1994b). Enhancing the ex-
planatory power of usability heuristics.
Proc. ACM CHI’94 Conf. (Boston, MA,
April 24-28), 152-158.

(George Lakoff and Mark Johnson. 2003.
Metaphors We Live By. University of Chi-
cago Press

Guiard, Y., & Beaudouin-Lafon, M.
(2004). Fitts’ law 50 years later: Ap-
plications and contributions from hu-
man-computer interaction. International
Journal of Human-Computer Studies,
61(6), 747-750.

Garner, S., & McDonagh Philp, D. (2001).
Problem interpretation and resolution via
visual stimuli: the use of ‘mood boards’
in design education. Journal of Art & De-
sign Education, 20(1), 57-64.

Brooke, J. (1996). SUS-A quick and dirty
usability scale. Usability evaluation in
industry, 189(194), 4-7.

Hart, S. G. (1986). NASA Task load In-
dex (TLX). Volume 1.0; Paper and pencil
package.

Roozenburg, N.F.M. and Eekels, J. (1995)
Product Design:Fundamentals and Meth-
ods, Utrecht: Lemma

Kappers, A. M. (2007). Haptic space
processing--Allocentric and egocentric

reference frames. Canadian Journal of
Experimental Psychology/Revue cana-
dienne de psychologie expérimentale,
61(3), 208.

Hollan, J., Hutchins, E., & Kirsh, D. (2000).
Distributed cognition: toward a new
foundation for human-computer interac-
tion research. ACM Transactions on Com-
puter-Human Interaction (TOCHI), 7(2),
174-196.

63

Appendix

71

Appendix 1
1.1 User Interviews

Participants

Initially, it was planned to do observation
studies with blind high school children and
setup interviews with the computer science
teachers. But due to time constraints
requests were made to interact with
blind children at their respective schools.
However due to confidentiality aspects
of this vulnerable group of children, the
requests were turned down. So, adult blind
programmers from outside of Netherlands
were contacted to gain more insights
on their challenges. Hence, adult blind
programmers were interviewed. Though
their needs, aspirations and behaviour
towards programming would be different
from that of high school children, it was
assumed that they would still represent
the blind community. Also, their coping
strategies to circumvent the current
challenges in textual programming could
inspire creative ideations.

The participants were reached out through
blogs, linkedIn and through personal
connections. Four blind programmers from
Poland, Australia and India participated in
the interviews. Two blind non-programmers
were also contacted, to gain insights on
how new learners (without coding skills)
interact with the computer.

Method

The semi-structured (qualitative) interviews
were conducted through skype and their
conversation were recorded (audio).

Questionnaire- Programmers

1. Can you tell me a little about yourself,
educational background and what kind of
visual impairment you have?

2. When it comes to screen readers, what
is your favourite? What are their limitation
in your experience?

3. What accessibility aid like screen
readers, braille displays etc do you use
and why?

4. Is Braille going obsolete? Do you use
braille note takers, how has been your
experience with it so far?

5. Do you code? What languages and
what are the major issues you have had in
coding?

6. How do you navigate and skim through
code? Any personal strategies?

Condensed Transcript
Participant 1
1. I was born with 2 to 3 % visual ability
in the right eye and complete blindness in
the left eye. I could see shape and colours
vaguely in the right but nothing in the left.

2. I use voice over. But it doesn’t read
paranthesis that allows me to format what
I write.

3. I use braille displays together with
screen readers. Braille displays are good
because they allow me to feel the code.
But I cannot read things like hierarchies. I
have to mind map them in my head.

4. Braille is very useful. But people find it
difficult to access it. For example, braille
books are heavy to carry and

72

not all places print braille versions. In terms
of computer use, notetakers (displays)
are very expensive and the braille in it is
not the same as printed braille. Anything
to touch and feel are really useful when
inexpensive. Also, braille helps to utilise
muscle memory rather than having to
focus only on what the screen reader says.

5. Yes, I code. I learnt to code when I was
in grade 8. I now use Xcode in my Mac and
C++. I use only command line to code.

6. To skim through code, I read line by line,
word by word to get a gist of it and this
takes a lot of time.

Participant 2
1. I am totally blind from birth and I did my
Ph.D in Computer Science from the Polish
Academy of Sciences

2. I use NVDA for screen reading. The
difficult part is read all the content line
by line and understand abstractly what is
happening.

3, 4. I use both screen readers and braille
displays. Braille displays are useful to bring
the cursor to a specific location. But it is
not possible for me to do parallel tasks,
like using braille and listening to screen
reader at the same time and because I
do not read braille so well. Screen reader
is fast reading, while braille display is for
specificity.

5, 6. I like F# because it uses one third
of the number of lines that are normally
used, to write a program. HTML is good
for start as it has quick feedback by
refreshing. Screen readers often work
without any incompatibility issues with
Visual Basic. Python is bad for blind
people, because it comes with white
spaces. NVDA makes different tone of
beeps for different indents. This will drive
you crazy especially when you are coding
for like 10 hours. Languages that use curly

brackets are also not good. As a blind
person, I cannot differentiate which code
block is closing which one is opening,
nor I can understand which block does a
certain code is located.

6. Did you just say skimming, that is not
possible for someone who is blind. I will
have to read by line. To navigate, I see
how certain functions are coded and use
find function or class or get parameters
to navigate around. In terms of syntax
feedback, since I use visual studio it gives
me sound alerts which are short and clear.
For debugging, I use IRcons, that make a
pecuilar sound when I am on a line with
warnings or errors.
Participant 3
1. I lost my vision due to an explosion. I did
my bachelors in Computer Science and
a masters in mathematics and Artificial
Intelligence.

2. I mostly use NVDA. The major drawback
I see in screen readers and coding with
it, is not being able to have an overview.
When there are hundred’s of classes,
I have to mind map them. So I always
have text editors open. Though I can only
sequentially process sensory information
(tactile and listening to screen reader), I
can parallely process in my head.

3. I use only screen readers, as I do not
read braille. I lost sight later in life and so
it is hard to learn braille now. Also, when I
tried to learn to code using braille, I found
it to slow down my work.

4. I do not know much about if braille is
going obsolete or not. But I do not read
braille.

5. I like python, as it gives freedom. I also
use PHP and Swift.

6. I use a software that produces 3D spatial
sound that I developed myself. This helps
me feel where I am in the

73

code. To navigate, I use find and replace
feature in some tools, but this applies
only after I read the whole code line by
line and I know what function or class
has been called, to find it later.

Participant 4
1. I am blind since birth, and have been
working.

2. I use NVDA. But it does not work
properly with text editors. Also with
some IDEs with which it is compatible, it
doesn not give live feedback, but only on
compilation. I really do not mind listening
for a long time, as long as it can provide
correct feedback.

3, 4. I prefer audio feedback over braille.
For me learning braille takes more
time. Also it takes a lot of time to read
technical or complex details with braille.
Speed of comprehension is important.
Also braille displays are very expensive
and inaccessible in India, that I have only
seen them in some recognised blind
instituitions.

5, 6. Yes I code. HTML is my favourite as it
allows me to jump between header tags.
IDEs tells me where the error is.

1.3 Expert Interviews

Goal of the interviews was to understand
aspects of education to blind high school
students, in programming education
using screen readers.

Participants
High school teachers specializing in
inclusion of visually impaired children
in regular schools, were interviewed
from Visio and Bartmeus organizations.
Interviews were in-depth semi-structured
and was carried out in Dutch and
was helped by Benjamin Bosdijk, a
bachelors student from PERL. Purposive-
Homogenous sampling was used.

Transcript- Visio (English)

Q: so to start off with, what is your
function within this school and what do
you primarily do?

Originally I am a mathematics teacher,
but quite rapidly that evolved into ICT
business and primarily on ‘how visually
impaired children (low to high visual
ability? can operate a computer’. You
have different aspects for instance what
kind of training is necessary. What kind
of aid is necessary. What do the teachers
need to know to continue working with
the children. These are the aspects that im
working on at the moment. It used to be a
big range of visually impaired children but
now it’s really focused on braille students.

Q: is the use of braille in this scenario
increasing or does it decrease?
It seemed to be decreasing because of
the speech synthesis that came to the
foreground. But if you look at the current
situation.. we ran into some difficulties, and
a study emmerged in which it was found
that braille was actually quite important.
And now we are actually directing our
vision towards incorporating more braille.
And for this reason braille is an important
component, within our school other
visually impaired Schools. more and more
is paid to braille.

Q: what type of visual impairment do the
children have at this school?

in between seen everything and seeing
nothing is a lot and you have a wide
range of diseases, people with a brain
tumor, people who have it since birth,
some people might have a mental illness,
people who become blind at a later age.
there are so many types of diseases. and
there’s also a wide variety in what they can
see. some students I have seen putting a
thread through a needle, and you wonder
to yourself how is it possible?

74

Q: Are there in general any things that
have been altered in their surroundings
to adapt to them?
are you speaking specifically about
technology? Mobility: different colors for
doors. white= toiler, yellow=meeting room,
red=class room. Every door has a different
feeling infront of the floor. Development of
last 7 years in technology have not been
major. wit hthe coming of iphone ipas it
was really big. The accessibility of the
visually impaired was certainly enlarged
through these items.

Q: Is it difficult for kids to switch to new
assistive technologies ?
A: Acutally no. A boy who started to
work with the ipad (completely blind) has
no experience before. he though it was
important to look for games, he wanted
to search the internet. What is important?
He needs to put the device on, the braille
machine should be connected to the ipad.
he needs to know where all the buttons
on the screen are. In 45 minutes you can
get a far way, he knows where all the
apps are. The learning time is fast. It is far
easier than ‘how to send an email with an
extra attachment’. In the approachability/
accessibility of new products there is
more consideration for visually impaired
compared to 25 years ago. in those days
the products were really made for ‘us’ but
in these digital devices it is a standard to
have tools for the visually impaired.

Q: how do the physical or other restrictions
influence the use of computers and
learning?
There are a couple of multiple disordered
children, which have some difficulties
in the use of computers. They do use it
but far less than the children who have
more ability. Good apps can assist them,
compared to 10 years, there was a lot less
to offer these children. It can help them
communicate with their family, such as
whatsapp..

Curriculum
What sort of computer education is
given?
Biggest problem, not being able to read.
Blind people need to use brialle. Bad
sighted: vergrootglas. We try to get them
behind the computer as fast as possible.
Where all the setting s can be changed:
color, size. Teach them how to use the
computer. To do their homework. Cursus
teaches, how to do the tests, how to open
the documents and how to open the
word. Internet is not easy. And depends
per website. Internet easier on hand held/
iphone/ipad than computer. On website
you have multiple tabs, and not really on
ipad.
Educational: You need to learn english,
dutch, other courses. Use of educational
software is also tough.

Do all students with different kinds of
visual impairment follow the same kind
of computer lessons?
Everybody has the same hardware, laptop.
Some children might need assistive
technology, depending on the program.
Such as scan software.
What types of software are used in coding
education?
Programming is started to be thought
at the kindergarden with programmable
robot kits. And then later python to
control a drone.

Which pogramming language is first
taught?
Microbits kits are used in general at the
beginning, but can be difficult because it
is so difficult to visualize. Can be difficult
with the colors. Though you can zoom in.
Some investment is needed for python to
teach children, but it is more accessible.
Navigation of the screen is difficult.
Program for navigation is still missing.
(use of notes then copy into a python
runner, is difficult) We can make our way
to do it, but it hinders enthusiasm.

75

Q: What is the most important difficulties
in textual programming languages?
Navigation from place to place, with the
use of anchors or headers, but this is
missing in coding language. Reading is
ok, but a lot of energy is used to make
the code itself.

Computer use:
Now we want to elaborate further on the
use of assistive technologies in computer
education. We
are mainly interested the effect of screen
readers.

Q: Which screenreaders are used?
NVDA is for the hardcores. Supernova is
not used anymore
Reminding some code-names is hard.
JAWS software is good, but its licensed.

Q:How does the screenreader influence
the education?
Teachers incorporate headers to put
in their documents so children can
easily navigate. Bold italica colors and
underscore their can read. Teacher of jaws
knows these things regular teachers can
have some difficulty to understand jaws.
You need to know what you can expect
from children.
There is a learning line, for each child,
to show at what age they will learn
something, and who teaches this.
The internet opens up a lot of information
for children of the current day and age.

Q: When purchasing assistive technology,
where is this taken into account?
What considerations play a role? E.g.
standards, costs.
There is not alot of choice. For braille
reading there are only a 8 machines
suitable for our target group, the prices
are close to each other. Quality is similar.
When one is broken, and i give a child
a different brand they easily adapt to it.
Braille reading guides and braille printers.
Everything they read they can digitally

understand. And for a presentation they
like to have a paper. (printed with braille
printer).
Some people have speech synthesiser.
And zooming in software, can be in jaws.
Supernova nad windows enlargement,
quite stable. Also speech and they can be
put int brail reading.

Q: Educational software, does it support
this system?
No that is one of the biggest problems,
the publishers make math/economy
books and those are used. These books
sometimes now rely on external websites
for exercises, using a login code. Then the
website is badly made. They use visual
langauge, They cannot see the image and
then they cannot understand that they
have to click, not java but CSS. It is not
the case that the speech software cannot
read the website but it is not recognised
as text. For instance, i cannot read the
images, they need a TAG. Pictures need
readable captions. (NEXT images are not
labelled as NEXT but as picture 9192 - not
understandable) Some pages are with
pictures with colors too close in contrast.
Some questions want drag and drop.
Accessibiility can be improved.
Typing lessons are specially made.
Some software packages are completely
unusable, some schools still use them but
then these children have to move to other
schools, or will go to the visually impaired
schools. The publishers are not doing a
good job. Treaty of Marrakesh: publishers
will try better. They have been around the
table often. Some publishers, change the
version of that time, but wont remember
it in the future.
Technology is there but not implemented.
Extra external keyboards are necessary for
inputting the code. The cursor could not
be moved with the braille reading guide.
With a programmer, they can change this.

76

Is the same difficulty there with a normal
computer?
The most easy would be text-based
software. If something is not perfect,
children cannot continue.

Q: What do you think of the future of
braille?
It is improtant, speech tries to come into
the situation, and it is really helpful but for
mathematics and stuff it can be difficult.
When reading in braille it becomes easier
to understand. With increase complexity,
the person switching to braille understands
more than the one relying on speech
(study done). Problem, row of text with a
place to put an answer. You can’t put the
cursor there.

Demonstration of Braille Notetaker

Guy: you should try to use these python
programs, and understand what the
child can read. It can be that everything
is readable. If you can’t put a pointer, to
dictate, in between these pointers you
should copy the text. There are only two
possibilities, change the source file or ask
Mr. Jobs to write a script for this program.
But rather have it fixed at the source, so
that every new version of the software is
supported. These small things inhibit the
progress.

It is not the case that they lose the point
where they are working in the code, but
the problem is the tuning of the program
with their aiding tool.

Exact: accounting program, very much
difficulty. Sat down with Jaws and them
to finish it. They have their own icons,
not window-scompliant. Most windows-
compliant programs are usable, but
already if only the lay-out changes it is a
problem.

All the buttons are specific actions.
Tab is very important, Alt cntrl windows

and shift are usable and have specific
functions.
Most people use a keyboard, it is faster
than braille? (he says ‘this way’)
‘There is a mouse cursor’

Within 1 line of 120 characters and 3 braille
lines of 40 characters, how do i move?
You need to use “this button” for the next
40 characters.

They read a bit slower than us, but the
speech control they can understand very
fast what is said. It is generally learned
how to hear speech very fast. If they dont
understand the speech (dictation), they
dont reduce the speed but read instead.

There is a button that edits the
configuration?

From 7-8 they use a keyboard.

Most of the young people at this school
are born blind. These children are taught
braille. If you cant read with your eyes, you
need to use braille. Some student who are
not blind, still use braille. With braille they
can react fast.
Sometimes its hard to convince the
children to change to braille, because
they keep wanting to read on the screen.
Sometimes it takes years. First with
zooming in, then with speech dictator.
And then finally they want to use braille.
Some braille readers are faster than than
even “i” am with the mouse.

Because of the speech dictator, most
parents give their children an expensive
Iphone.
Jaws only works with windows.

Some people have the speech commands
off, and they have the screen off. But then
for a regular person, understanding how
to turn on the screen again is very difficult.

77

If you understand these codes of swiping
etc on the smart phone, it makes a world of
different. You can type with the numbers
on iphone using the braille system.

How can they memorize 15 orders to go
back?
You can always go back to the home
screen, and apps you can save. Many
tricks.

Being able to ask where you are in the code
is important. Bridge between software
and screen. It should be able convey all
the info we can see, such as color. As a
programer you need to understand how
jaws does that.

Alfa, hired blind people to work on the
product. They made a product that didn’t
actually catch on and are now backrupt.
Alfa starter blind himself. Alfa made ???

Jaws has wide range of actions.
Commands can be made to read the text
that has certain Colors, bold, italic. There
are many types for braille within any
language. Computer braille and literary
braille... Jaws

Mathematical language is just now being
translated to the spoken method in
speech dictation

Your report is important to us. And any
prototype too.

78

1.3 Online Survey of blind programmers
An online survey was made to learn about
the preferences, pain points and needs of
professional blind programmers. This also
helped in functional analysis of existing
tools. Although the needs of a high
school blind student would be different
from that of a professional, mostly adult
participants were selected assuming they
would represent the needs of a blind
person irrespective of age. The survey was
structured such that questions appear
based on the previous answer, in a logical
manner. The questions were designed
The sections were divided primarily
based on whether the participant used a
screen reader or a braille display to code.

Participants

11 blind programmers voluntarily
contributed to the survey. They were
reached out through Program-I, an
online community of visually impaired
programmers. Out of the 11 respondents,
9 were programming professionals and
2 were high school students. Not all
questions were mandatory.

Survey Results

Figure 30 Chart showing preference for kind of accessibility products

79

Figure 33 List of strategies used for getting feedback on syntax

Figure 32 List of strategies to skim through code (using braille displays)

Figure 31 list of strategies to skim through code (using screen readers only)

80

Figure 35 Chart showing most preferred IDE

Figure 34 Chart showing the reasons why braile displays are not
used

Figure 36 Chart showing the preference to reeive a discount on contribution

81

Figure 37 Chart showing the preferred programming languages

82

Appendix 2
2.1 Technology Readiness Level

Technology Readiness Level (TRL) (ESTEC, 2009) is a metric
to measure the maturity of a new technology-based product,
see fig 38. The scope of the project, and aspects that require
improvement before it can reach the market was defined using
the TRL method (see figure 1). Level 6 was aimed for, as this
would allow user testing and take the insights forward for
research purposes. It was based on factors like time limitations,
work complexity, and relevant skills required to achieve the
design goals As shown in figure 1, the planned scope of the
project was in developing skimming and navigation capabilities
of the product to be able to demonstrate on the field. However,
during the design process, real-time interfacing had to be
developed to the level of proof of concept to facilitate the
field demonstration skimming and navigation. The TRL was
continuously visited and reflected upon, while taking design
decisions, especially in the concept detailing phase.

Figure 38 Technology Readiness Level

83

2.3 Functional Analysis

Introduction
An abstract model of the product and
its intended functionality was developed.
The supporting functions identified
using functional analysis (see figure
39) (Roozenburg, 1995) was used as
starting point for creative ideation and as
parameters for morphological analysis.

A process tree about using a screen reader
to code was first developed. It was based
on the observations (appendix 1) of how
blind programmers use screen readers to
do so currently.

Code using a
screen reader

Write new code

Debug
existing code

Function Use Process
Tree

Identification of supporting
function for user task

Load file in text
editor

Compile code in IDE

Rewrite functions

Remove camelcasing

Understand the logic

Learn how functions
and classes are used

Search for
syntax errors

Go to error line

Verify logic

Write code

Open new file in
text editor

Read character by
characters to debug

Compile in IDE

Go to error line

Allow reading by
word or character

Provide overview
of code

Allow navigating to
specific location

Written by sighted users

Allow text input

Figure 39 Functional Analysis of screen reader usage by blind professonals to code

84

Appendix 3
3.1 Group Brainstorming Session

A creative facilitation (Tassoul, M., 2006)
session aimed at generating large number
of divergent ideas. Design factors
identified from the functional analysis
(Appendix 3.3) of existing screen reader
use in textual programming languages,
these functions were taken as the starting
point for the creative session. Analogies,
metaphors and random stimuli were used.

Participants

Six Students (aged 23 to 29 years) the
TU Delft from multi-disciplinary study
programs participated voluntarily. The
diversity in background was to ensure
diversity in perspectives. The basic criteria
was novice to intermediary experience in
textual programming.

Methodology
The session started with a 10 minute
introduction to the problem at hand,
session schedule and the design goals. The
functions identified from the functional
analysis were taken as the design goals of
the session:

- To provide overview of code (skimming)
- Allow navigating to specific locations
inside the code
- Allow text input

The brainstorming was divided into three
parts:

I. Shoe Box: 20 mins
1. A shoe box with a slit at the top was
placed on the table. Each participant
was asked to sketch 20 ideas onto sticky
notes in 20 minutes and drop it through
the slit. They were encouraged to think of
metaphors of everyday objects and create
analogies.

2. As ideas slow down, random sticky
notes were taken out of the box to spark
new directions or combine with existing
and put back to box

II. Dot Voting:
1. The sticky notes were taken out of the
box and put on a board.

2. The ideas were clustered theme wise.
Each participant was given three sticky
dots that they can use to vote the ideas
that fit into the design goals.

Braindrawing:
1. The ideas with atleast 2 dots were
selected and were drawn on to a bigger
paper.

2. Each of these papers were passed
around one by one and each participant
was given five minutes to add details on
top of what is there already.

3. The faciliator (me) kept asking
provocative questions using the SCAMPER
method (Roozenburg, 1995)

SCAMPER:
Can it be? (provocative questioning)
- Substituted by something else?
- Combined
- Adapted
- Modified
- Put to other use
- Eliminated
- Rearranged or Reversed

4. The iterated ideas were written on a
seperate paper

5. The iterated ideas were then evaluated
using the C-box method

85

Results:

The most feasible Ideas were added as component
domains for the morphological analysis

Evaluation:

The various ideas were evaluated
using the C-box method (Tassoul,
2006) (See figure 40)

Familiar Innovative

F
ea

si
b

le
N

o
t

F
ea

si
b

le

Figure 40 Brainstormed Ideas organized into a C-box

86

3.2 Morphological Analysis

Allow text
input

Provide code
overview

Allow reading
by character/
word

Allow
navigating
to specific
loction

T9 Keypad T9 Glove Tap E-pen

3D audio

Joystick

Haptic
feedback
to palm

Wii
controller

Speech
recognition
“ Go to “

Moving
blocks

Haptic
Controller

Ball with
haptic
feedback

Haptic
feedback
to palm

Di�erent
shapes for
di�erent
functions

Magnetic
blocks

Ultrasonic

Figure 41 Morphological analysis

Allow text
input

Provide code
overview

Allow reading
by character/
word

Allow
navigating
to specific
loction

T9 Keypad T9 Glove Tap E-pen

Ultrasonic
3D audio

Joystick

Haptic
feedback
to palm

Wii
controller

Speech
recognition
“ Go to “

Moving
blocks

Haptic
Controller

Ball with
haptic
feedback

Acoustic
Temperature

Di�erent
shapes for
di�erent
functions

Magnetic
blocks

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5

Figure 41 Clustering of components for conceptualization

87

3.3 Conceptualization and early prototyping

Feasible principle ideas from the creative
ideation session were taken towards
concept development, after morphological
analysis. The ideas were detailed further
to form concepts. The focus was on
developing concepts for tactile display of

Concept 1
Clip-on ultrasonic sensors to detect the
relative position of the user’s
fingers pointing on the screen (see Figure
42), inspired by Finger Reader technology.
The device gives audio feedback on the

Figure 43 Foam mockup used in test interaction

Figure 42 Concept 1: Using ultrasonic senors to track finger positions

level of the indentation of that particular
line. This would work without requiring
any firmware/ Human interface Device
(HID) drivers on the host computer. A
foam mockup was made to assess the
ergonomics of the concept (see figure
43).

code structures, similar to how they are
displayed for a sighted user. Five concepts
were defined, prototyped and evaluated.
The common task was to identify code
hierarchies in a given test program using
the mockups.

88

Concept 2
A hand held device strapped (see figure
44) onto the wrists, with input and
feedback systems. The input is based
on the T9 dictionary (predictive) text.
Each of the 8 fingertips would have flex
sensors which returns an alphabet based
on frequency. Haptic feedback regarding
code structures is provided in the form of
vibrations onto the palm, while gestures
like swaying hands from left to right,
would read out aloud (voice synthesizer)
the text for user feedback or navigate
between the words.

Figure 44 A pair of hand-strapped devic-
es for text input, haptic and audio feed-
back

89

Concept 3
Inspired by magnetophoretic displays commonly
found in children’s magnetic drawing toys (see figure
45) , concept 3 is a grid of electromagnets, and buttos
on each of them, to align iron filings into bumps
on the surface (see figure 46). A microcontroller
reads code structures on the computer through a
firmware and magnetizes and demagnetizes these
magnets. These iron filing bumps would provide
information on code structural information such as
indentation. On pressing a bump, the user would
listen to a synthesized voice of that code line. A
functional prototype was developed (see figure 47).
The iron filing bumps formed (see figure 48), but the
electromagnets used did not have enough holding
force and the filings dispersed when touched

Figure 45 Erasable magnetic drawing boards
for children

Figure 46 Concept 3: Electromagnetic grid to form tactile bumps on the surface

Figure 47 A functional mockup built using six grove
electromagnetic modules controlled by an arduino

Figure 48 Testing formation of tactile bumps using iron filings

90

Concept 4
Rows of tactile tiles (see figure 49) that
move sideways along a conveyor like
belts. The position of the tiles would be
controlled by servo motors and a micro
controller. A firmware would translate
indentation levels from a text editor on
the computer into their positions. A group
of belt and rollers, with varying types of
tactile texture materials stuck on the belt.
Each texture means a class or function.

Figure 49 Different tactile surfaces on their respective conveyer belts, that represent code hierarchies

Figure 50 A foam mockup with sanding paper tiles, of different grit sizes stuck.

In this way, users can feel the logic of
the code using real time positions of the
tactile tiles.

A foam mockup (see figure 50) was built
to evaluate the concept. Sanding paper
pieces were stuck to the foam board at
positions mimicking the indentation levels
of each line in the test program.

91

Concept 5
Building upon concept 4, this concept
(see figure 1) is inspired by abacus and
MIDI sound mixers. It would feature
button sliders that move as per the
code hierarchies. Similar to the previous
concept, a firmware would interfaces the
device with the computer. Musical strings
would be used to differentiate between
different indentation levels, such that when
a blind user would move his fingers across
these strings, it would give different notes
across different strings. These strings were
inspired from guitar strings and frets.

A foam mock up was made (see figure
1), fitted with sliders underneath using

Figure 52 Foam mockup with buttons for play-
back of pre-recorded sounds

Figure 53 A participant interacting with mockup

Figure 51 Rows of buttons sliders that would move according to code hierarchies

popsicle sticks. For evaluation tests (see
figure 1), the positions of each slider
buttons were preset by pulling and
pushing these popsicle sticks. Then the
participant could listen to pre-recorded
synthesized voices as he/she pushed
buttons corresponding to each of the
buttons. Non-visual Desktop Access
(NVDA) software was used to synthesize
the voices and were recorded into a SD
card. An ardafruit MP3 shield was used
with arduino to playback the respective
voices as and when the buttons were
pressed.

92

3.4 Concept Evaluation

The concepts were evaluated using
the Weighted Objectives method
(Roozenburg, 1995). The participants were
blindfolded (with a sleeping mask) TU
Delft students. First, they were blindfolded
and were given the prototype to touch
and get a feel of it. The final application
nor the concept was explained to them, to
reduce bias. Though they cannot replace
the actual blind user entirely. For reasons
of practicality and lack of access to actual
end-users, students were blindfolded for
the tests.

Method

Table 2 Weighted Objectives evaluation

22

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5

Score
Weight
Score Score Score Score Score

Ability to
skim code

5

Ability to
navigate to

specific
locations

4

Cost
E�ective 1

Technologically
Feasible

3

Failure proof
(Robust Design)

4

Minimal
Risk in

operation
5

Comparison
Criteria

Weight Weight
Score

Weight
Score

Weight
Score

Weight
Score

2

1

3

4

4

5

4

1

2

4

3

2

4 5

5

5

4

2

3

3

4

4

2

3

4

1

4

2

3

34

12

12

4

25

20

12

8

12

1

10

10

16

8

12

3

20

15

12

8

12

4

15

5

20

16

15

2

25

15

77 53 74 56 93

Results

Concept 5 was chosen based on
the evaluation table above.

93

Figure 54 Aesthetic analysis of buttons from existing products having accessibility features

Appendix 4
4.1 Aesthetic Form Exploration

The button concepts were derived from
an analysis of existing designs (see figure
54) used in products with an approach to
accessibility.

94

4.2 DIY Assembly

To facilitate assembly by secondary
customers, a DIY version of the housing
was developed. Lasercutting was chosen to
be optimum manufacturing process, given
its widespread technology availability. Self
mating parts were designed, that could be
cut out of a single sheet (600mm x 800mm)
of poplar wood or Medium Density Fibre
(MDF) board. The part design followed the
following Design for Assembly principles
(DFA), to reduce errors during self assembly
by low skilled people. The assembly
instructions can be found in Appendix 5.6

95

4.3 DIY Assembly Guide

1 2 3

4
5

6

7 8

96

9 10

12

11

13 14

15
16

17 18

97

19 20

21 22

23 24

98

25

26

27

28

99

Figure 55 Final assembled of the MDF version

100

4.4 Bill of Materials - MDF

101

Table 3 Bill of materials

102

Figure 56 System Architecture showing the fore-end and backend processes

4.5 System Architecture

The electronics control system uses a Raspberry pi 3B+ and
Arduino Leonardo, with ULN2003a stepper drivers. 28BYJ-
28 stepper motors were considered for its ease of spare part
availability and the maximum torque. It has a holding torque of
34.3mN.m, which is low enough to cause any physical injury to
the blind user, even in the case of product misuse. A Leonardo
version of Arduino was selected as only chips with 32u4
architecture can send ASCII keystrokes through their native
USB port.

Microcontroller
32u4

Line Selection
Push Buttons

Joystick

Go to line (ASCII)
USB

Read words/ Characters
 (ASCII)

Virtual
CDC Port

Read words/ Characters
 (X- axis)

Wait for
ASCII

Load text in
eSpeak

GPIO
Control

Navigate pages
(Y- axis)

Mechanical
Drive

Keyboard Input

Speech Output

Raspberry Pi

Arduino

 Retrieve
txt file to

tmp

User opens file
in txt editor /

IDE

Retrieve line
/ character

103

4.6 Python code for stepper control

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)

motor_control_pins = [
 ([11, 7, 15, 13], “Alice”),
 ([16, 18, 22, 32], “Bob”),
 ([33, 31, 29, 35], “Charlie”),
 ([36, 37, 38, 40], “Derek”),
 ([23, 21, 19, 10], “Eddie”)]

for motor in motor_control_pins:
 for pin in motor[0]:
 GPIO.setup(pin, GPIO.OUT)
 GPIO.output(pin, 0)

halfstep_seq = [
 [1, 0, 0, 0],
 [1, 1, 0, 0],
 [0, 1, 0, 0],
 [0, 1, 1, 0],
 [0, 0, 1, 0],
 [0, 0, 1, 1],
 [0, 0, 0, 1],
 [1, 0, 0, 1]]

def static_vars(**kwargs):
 “””
 Custom decorator to allow declaration of static variables like
this:\n
 @static_var(variable = 0)\n
 def foo(parameters):\n
 foo.variable += 1
 “””
def decorate(func):
 for k in kwargs:
 setattr(func, k, kwargs[k])
 return func
 return decorate
end def def reverse_motor(motor):
 return [motor[2], motor[1], motor[0], motor[3]]
end def

def set_5_indents(levels):
 steps_per_level = 512
 motor_steps = [0] * 5

 for i in range(len(levels)):
 motor_steps[i] = levels[i] * steps_per_level

 for current_full_step in range(max(levels) *
steps_per_level):
 for halfstep in range(8):
 i = 0
 for motor in motor_control_pins:
 if (i + 1) > len(levels):
 break

 print(i)
 for pin in range(4):
 if (current_full_step < motor_
steps[i]):
 if (levels[i] < 0):
 GPIO.output(reverse_mo-
tor(motor[0])[
 pin], halfstep_seq[half-
step][pin])
 elif (levels[i] > 0):

 GPIO.output(motor[0][pin],
 halfstep_seq[halfstep]
[pin])
 i = i + 1

 time.sleep(0.001)
end def

def load_indents_from_file(filename):
 “””
 Load all indent information from the file and
returns a list of
 indentations
 “””
 filehandle = open(filename, ‘r’)
 ind = []

 while True:
 line = filehandle.readline()
 if (not line):
 break
 else:
 # asuming 4 spaces per indent level
 ind.append((len(line) - len(line.lstrip()))
>> 2)

104

 filehandle.close()
 return ind
end def

def get_5_indent_values(in_buffer, start_line):
 “ Returns five lines from the input buffer “
 return in_buffer[start_line:start_line+5]
end def

def get_5_indent_deltas(old, new):
 return [(new[i] - old[i]) for i in range(5) if (i < len(new))
and (i < len(old))]
end def

@static_vars(page=[0] * 5)
@static_vars(previous_page=[0] * 5)
def update_interface(start_line, visible_lines):
 “ Calculates the new state of the interface “
 print(“Showing lines: %d - %d” %
 (start_line + 1, start_line + visible_lines))
 update_interface.page = get_5_indent_values(indents,
active_line)

 print(“prev\tnext\t|\tdifference”)
 for p1, p2 in zip(update_interface.previous_page, up-
date_interface.page):
 print(p1, p2, “|”, p2 - p1, sep=”\t”)

 update_interface.previous_page = update_interface.page
end def

indents = load_indents_from_file(“mock_stepper_control.
py”)

active_line = 0
display_lines = 5
total_lines = len(indents) + 1
userinput = “”

if total_lines <= 5:
 update_interface(0, total_lines)
 print(“Showing lines: 1 - %d” % (total_lines))
else:
 while True:
 # User selected Next page
 if (userinput.upper() == “N”) and ((active_line + 5)
<= total_lines):
 active_line = active_line + 5
 display_lines = 5

 # User selected Previous page
 elif (userinput.upper() == “P”) and ((ac-
tive_line - 5) >= 0):
 active_line = active_line - 5
 display_lines = 5

 # User selected Quit program
 elif userinput.upper() == “Q”:
 break

 # User entered invalid character
 else:
 pass

 if active_line + display_lines > total_
lines:
 display_lines = total_lines - active_line

 update_interface(active_line, display_
lines)
 userinput = input(“(N)ext | (P)revious |
(Q)uit > “)
 # end while

GPIO.cleanup()

Leonardo code to send ASCII
values

// Declare the pins for the Button and the
LED
int buttonPin = 12;
#include <Keyboard.h>

int button1 = 12;
int button2 = 11;
int button3 = 10;
int button4 = 9;
int button5 = 8;

int VRx = A2;
int xPosition = 0;
int mapX = 0;

void setup() {
 // Define pin #12 as input and activate the
internal pull-up resistor

105

 Serial.begin(9600);
 pinMode(VRx, INPUT);

 pinMode(button1, INPUT_PULLUP);
 pinMode(button2, INPUT_PULLUP);
 pinMode(button3, INPUT_PULLUP);
 pinMode(button4, INPUT_PULLUP);
 pinMode(button5, INPUT_PULLUP);

 Keyboard.begin();
}
void loop(){

 xPosition = analogRead(VRx);
 //mapX = map(xPosition, 0, 1023, -512, 512);

//Read words Backward
 if (xPosition < 200) {
 Keyboard.press(130);
 Keyboard.write(98);
 Serial.println(“Words reading backward”);

 }

 //Read words Forward
 else if (xPosition > 337){
 Keyboard.press(130);
 Keyboard.write(102);
 Serial.println(“Words reading Forward”);
 }

 delay(1000);
 Keyboard.releaseAll();

// Read the value of the input. It can either be 1 or
0
 int buttonValue1 = digitalRead(button1);
 int buttonValue2 = digitalRead(button2);
 int buttonValue3 = digitalRead(button3);
 int buttonValue4 = digitalRead(button4);
 int buttonValue5 = digitalRead(button5);

 //For multiple key presses use Keyboard.press()

 if (buttonValue1 == LOW){
 // If button pushed, turn LED on
 //Serial.println(“Button 1 is pressed”);

//M-g
 Keyboard.press(130);

 Keyboard.press(103);
 //delay(50);

Keyboard.press(103);
 Keyboard.releaseAll();
 delay(50);

 //M-g
 Keyboard.press(130);
 Keyboard.press(103);
 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(1000);

 //line number
 Keyboard.write(49);
 Keyboard.release(49);
 delay(200);

 //Return
 Keyboard.write(176);
 Keyboard.releaseAll();
 }

if (buttonValue2 == LOW){
 // If button pushed, turn LED on
 //Serial.println(“Button 1 is pressed”);

 //M-g
 Keyboard.press(130);
 Keyboard.press(103);
 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(50);

//M-g
 Keyboard.press(130);
 Keyboard.press(103);
 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(1000);

 //line number
 Keyboard.write(50);
 Keyboard.release(50);
 delay(200);

106

 //Return
 Keyboard.write(176);
 Keyboard.releaseAll();

 }

 else if (buttonValue3 == LOW){

 //M-g
 Keyboard.press(130);
 Keyboard.press(103);
 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(50);

 //M-g
 Keyboard.press(130);
 Keyboard.press(103);
 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(1000);

//line number
 Keyboard.write(51);
 Keyboard.release(51);
 delay(200);

 //Return
 Keyboard.write(176);
 Keyboard.releaseAll();

 }

else if (buttonValue4 == LOW){
 //Serial.println(“Button 4 is pressed”);

 //M-g
 Keyboard.press(130);
 Keyboard.press(103);
 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(50);

 //M-g
 Keyboard.press(130);
 Keyboard.press(103);

 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(1000);

 //line number
 Keyboard.write(52);
 Keyboard.release(52);
 delay(200);

 //Return
 Keyboard.write(176);
 Keyboard.releaseAll();
 }

else if (buttonValue5 == LOW){
 //Serial.println(“Button 5 is pressed”);
 //Keyboard.write(69);

 //M-g
 Keyboard.press(130);
 Keyboard.press(103);
 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(50);

 //M-g
 Keyboard.press(130);
 Keyboard.press(103);
 //delay(50);
 Keyboard.press(103);
 Keyboard.releaseAll();
 delay(1000);

 //line number
 Keyboard.write(53);
 Keyboard.release(53);
 delay(200);

 //Return
 Keyboard.write(176);
 Keyboard.releaseAll();
 }

}

107

Arduino Mega Code used for
quick tests

#include <Stepper.h>
//#include <Keyboard.h>

// steps value is 360 / degree angle of motor
#define STEPS 200

// create a stepper object on pins 4, 5, 6 and 7
Stepper stepper1(STEPS, 17, 15, 16, 14);
Stepper stepper2(STEPS, 18, 20, 19, 21);
Stepper stepper3(STEPS, 7, 5, 6, 4);
Stepper stepper4(STEPS, 11, 9, 10, 8);
Stepper stepper5(STEPS, 0, 2, 1, 3);

//initialise button - pins configuration
int button1 = 11;
int button2 = 12;
int button3 = 13;
int button4 = 14;
int button5 = 15;

int VRx = A1;
int VRy = A3;

int xPosition = 0;
int yPosition = 0;
int mapX = 0;
int mapY = 0;

//variables to denote live page number tracking
int pg = 1;

void StepperReset()
{
 int i;
 int reset=0;

 Serial.println(“Resetting to 0”);
 stepper1.setSpeed(120);
 stepper1.step(-1200);

 stepper2.setSpeed(120);
 stepper2.step(-1200);

 stepper3.setSpeed(120);
 stepper3.step(-1200);

 stepper4.setSpeed(120);
 stepper4.step(-1200);

 stepper5.setSpeed(120);
 stepper5.step(-1200);
 delay (1000);
 }

int StepperPg1()
{
 Serial.println(“Page 1”);
 stepper1.setSpeed(120);
 stepper1.step(-240);

 stepper2.setSpeed(120);
 stepper2.step(640);

 stepper3.setSpeed(120);
 stepper3.step(600);

 stepper4.setSpeed(120);
 stepper4.step(640);

 stepper5.setSpeed(120);
 stepper5.step(420);

 return 1;
 //delay (100);
 }

int StepperPg2()
 {
 Serial.println(“Page 2”);
 stepper1.setSpeed(120);
 stepper1.step(640);

 stepper2.setSpeed(120);
 stepper2.step(800);

 stepper3.setSpeed(120);
 stepper3.step(640);

 stepper4.setSpeed(120);
 stepper4.step(-400);

stepper5.setSpeed(120);
 stepper5.step(640);
 return 2;

108

 //delay (100);
 }

void setup()
{
 Serial.begin(9600);
 //Keyboard.begin();
pinMode(VRx, INPUT);
 pinMode(VRy, INPUT);
 StepperReset();
}

void loop()

{

 xPosition = analogRead(VRx);
 yPosition = analogRead(VRy);
 //mapX = map(xPosition, 0, 1023, -512,
512);
 //mapY = map(yPosition, 0, 1023, 0,
1023);

 if (yPosition < 201)
 {
 //Call for StepperPg1 function
 StepperReset();
 pg = StepperPg1();
 }
 else if (yPosition > 201)
 {
 //Call for StepperPg2 function
 StepperReset();
 pg = StepperPg2();
 }
 delay(1000);
}

109

4.7 PCB Design
To minimize hardware errors during prototyping and user testing, and to help
focus more on the software integration, a PCB was designed (see figure 58.
59) and fabricated (see figure 61). The PCB also helped to resolve critical
issues in terms of system architecture and the components required in the
final embodiment of the concept, when the designs were open-sourced, and
the project gained traction. The PCB was designed using KiCad software.
First a schematic was developed (see figure 57), based on which components
footprint and the PCB layout were created. It was decided to use off the shelf
components as much as possible, such as mounting arduino and Pi from the
market, to simplify PCB design

F
ig

ur
e

57
 S

ch
em

at
ic

s
fo

r
th

e
co

nt
ro

l s
ys

te
m

 e
le

ct
ro

ni
cs

110

Table 4 List of through hole components for PCB assembly, along with their designators

Figure 58 Top copper layer of the PCB layout Figure 59 Bottom copper layer of the PCB layout

111

Figure 60 PCB fabricated using the Eurocircuits online service.

Figure 61 Assembled PCB ready for use

112

4.8 Product Interaction
The overall product experience vision was
to give a sense of trust and reliability. At
the same time, it increases productivity
and playfulness of programming. The
interaction design of the product was based
on a combination of Nielsen Heuristics and
Tognazzi’s Principles of Interaction Design.

Comfort in familiarity, in designing motion-
based interaction of the sliders and buttons.
Moving beads to count in an abacus was an
inspiration. During the shadowing session,
it was observed how blind users interact
with everyday things like smartphones,
coffee machines, and kitchen knives. They
use Allocentric processing of their haptic
Space, which means they measure relative
distances from a fixed point of reference
to seek the position of any object.

Skeuomorphic Design: Users translate
experiences in the physical world to cyber-
physical interactions. The top panel and
the surface etching to indicate different
indentation levels were inspired by
textured tiles used to indicate different
rooms, as observed from the Visio school.

Use of metaphors in designing directional
buttons or joystick movement. The vertical
positioning of the joystick allowed to
indicate pushing away from the user
as the previous page and towards the
user (+Y) as next page. Also, the right
and left (X-axis) was metaphorically
related to reading from left to right.

Use of consistency and standards:
Placement of physical buttons and
interface outlets, in the positions that
follow the mental models of a user. So that
they know where to find different points
of interaction, to find them, such as the
function button in the top left, like in game
consoles and power switches in the top
right, as in iphones and other smartphones.

User Control: To help users leave an
unwanted state immediately without facing

a long procedure or roundabout to do so.

Visibility of system status: To allow users
to know if their interaction was successful
through vibration based feedback.
This allows them to feel in control and
translate into better decision making
and create trust. The vibration of the
mechanical drive served as the feedback
that the system was in operation.

Recognition, not Recall, in the type of
information being provided as feedback
(tactile and audio) to users. Tactile
feedback provides quick recognition of
how the code is structured per page or
per block, while information is recalled
while tapping on the button.

Recognition is easier because it involves
less number of cues, and the user does
not have to remember previous lines.
used interactions. He or she can quickly
recognize the position of the slider
and the relative information readout.

Discoverability of features: If a user cannot
find an interaction feature of the product,
it equals to him/ her that it does not exist.
Use of perceptual cues: Dependable tactile
landmarks that help users to navigate
around the product. For instance, blind
users find their lockers easily by locating
how many lockers is it away from the
edge. This was taken as an inspiration to
include a workspace with tactile edges so
that the user knows where he/ she can
find the sliders and the joystick. Also, the
buttons onto the sides were marked with
tactile edges, to indicate it was a button.

Fitt’s Law: Use of bigger buttons for
frequently used interactions and smaller
ones for less. The function button
was designed to be bigger than other
controls such as volume and joystick,
more prominent (placing it at a distance
from the surface) to indicate interaction
priority. Also, according to Fitt’s law, the

113

most accessed points by a user are
the corners of the interface. Hence, to
position essential elements of interaction
at these positions.

Figure 63 Skimming and ComprehensionFigure 62 Navigation

114

5.2 System Usability

System usability System (SUS)
(Brooke, 1986) was used to determine
how interaction friendly the detailed
concept is and how much it serves the
design goal. The plan was to test the
concept with one real blind person
and two blindfolded participants.

Participants
Six TU Delft students from different study
backgrounds volunteered in the test.

The participants were blindfolded with
a sleeping mask prior to the start of the
test. A form prototype was placed in front
of the participant, and they were asked to
perceive the logic of the program.

Since by then a real time interface was
not developed yet, the slider buttons
were manually moved to positions as
per the indentations in the code. Here,
two programs were used- Fibonacci
series and Singly Lists. The task for the
participant was to interact with the
product, comprehend the code logic,
and draw the logic diagram after the
task. Each row in the prototype was
mapped onto sprites (see figure 64) in
a scratch program (see figure1). When
the participant (acted) tapped the slider
buttons on the prototype to simulate
real interaction, recorded screen reader
sounds were played from a separate
computer at the same instance, from the
scratch program.

Method

Figure 67 A blindfolded participant interacting with
the prototype

Figure 64 Scratch program to play
pre-recorded sounds when sprites are
clicked

Figure 65 sprite buttons, each corre-
sponding to each code row

Figure 68 MDF variant prototype was used
in the study

115

System Usability Questionnaire

Researcher: KT Rajagopal Date: 28/09/2019

Table 5 System usability Questionnaire
adapted from Brooke, 1986

Evaluation
The questionnaire (see figure 1) consisted
of six questions, three of which were
positive, and the other three are negative.
All of them have a 1-5 point for the
judgment (from strongly disagree at 1
to strongly agree at 5). For questions 1,
3, 5, the score is subtracted by one. For
questions 2, 4, 6, the score is subtracted
from five statements. For the total score,
the sum of scores is multiplied with the
4.5 to get an overall value for 100 points

SUS Score Adjective Rating

> 80.3 Excellent

68 - 80.3 Good

68 Okay

51- 68 Poor

< 51 Awful

Table 6 System usability Scoring

116

5.4 Aesthetic Perception

A buyer’s perception of aesthetics was
evaluated to determine if the product
experience vision of reliability and trust
is reflected in its form. Also, since the primary
channel of procurement of assistive aids is
through e-commerce (appendix 7.2), it is
important what meaning is conveyed to a
customer (not the
end user) so that he/ she thinks its a good
fit for the end user. The economic buyer or
customer here can be a friend, family
member or an special needs educator in a
blind instituition.

Introduction

Participants
The test participants were students from TU
Delft, from different disciplines in the age
group of 21- 29 years old. It was ensured to
have an equal proportion of male and female
participants.

Method

They were shown a rendered image (see
figure 1) of the
product on a computer screen, and presented
a questionnaire with 5 point Likert scale. The
task was to look at the picture and grade
the different visual criteria based on the first
impression.
The participants were provided with very little
information on what the product is about and
its features, so as to reduce any bias during
the evaluation. One blind programmer was
also included as a participant (see figure 1),
to test the haptic aesthetic of the product.
The haptic aesthetic helped gain insights
on whether a blind end user would prefer
to buy the product after the experiencing
its aesthetics and the emotions it conveys.
After each grading, the participants were
asked to explain the rationale behind their
scores. Their answers were voice recorded
for post-evaluation research.

Figure 69 Rendered picture of the final product,
shown to participants during the Aesthetic perception
test

Figure 70 3D printed form prototype presented to a
blind programmer, for tactile perception of the prod-
uct.

117

Figure 71 Radar chart showing the average score for each aesthetic criteria

Robust

Playful

Intuitive

Accessible

Ergonomic

Gender
Neutral

1

2

3

4

5

Evaluation

Robust

Playful

Intuitive

Ergonomic

Reliable

Safe to
use

Gender
Neutral

1 2 3 4 5

Results

Table 7 Evaluation table used to evaluate the aesthetic perception

118

Appendix 6
6.1 Assumptions and Validations

Coding education is growing
slow in accessibility domain

User’s preference to use
Braille based products in

spite of alternatives that use
voice synthesizing

Buyer’s preference
to pay for a soft-
ware instead of

buying a physical
product

User’s preference to
work at o�ce instead of

work from home jobs

User’s preference to keep
using existing products

because learning to use new
ones is di�cult

Perception of employers that blind
people cannot code

High Risk

Medium Risk

Low Risk

Proof of concent
reviewed by blind

programmers
(Appendix 6.5)

Insights from from survey
results with professional

programers
(Appendix 7.2)

Insights from from
semi-structured user

interviews
(Appendix 1.1)

Assumptions in terms of perceptions, market
trends and general preferences, according to their
impact to the business model were mapped. They
were validated through the different stages of
the project, through user interviews, and reviews
from blind professional prgrammers

Figure 72 Risky Assumptions Pyramid

119

6.2 Costing and Pricing

Table 8 Overview of Cost of Goods Sold (COGS)

Table 9 Cost of electronic components

120

Table 10 Cost of manufacturing various components and embodiment

Table 11 Shipping and Logistics Costs

121

Ta
b

le
 1

2
R

ev
en

ue
 m

o
d

el
 f

o
r

D
is

co
un

t
b

as
ed

 o
n

co
nt

ri
b

ut
io

ns

6.3 Revenue Model

122

VersionPhases

1 Product
Development

V1

V2

Interation
 Haptic Skimming: 5 lines
 Read line number
 Move cursor to speci�c line
 Read indentations
 Continuous scrolling

Chassis
 Organic Hinges for orientation
 Material variants - MDF & PLA
 Glued joints
 DFMA design for easy DIY

Electronics
 Assembled on protoboard
 Powered with battery bank to
 handle current �uctuations

Features

Interaction
 Higher resolution: 10 lines
 Haptic motor feedback for
 debugging on speci�c line
 Fast scrolling: Wait for user
 joystick input release to read
 lines

Chassis
 Internal supports for living
 hinges
 Lead screws printed with self
 lubricating Nylon 12 using SLS
 printing
 Screwable joints in both variants

Electronics
 Assembled on PCB
 Micro stepper drive

Issues

User has to wait for the time delay
before he can skim to next 5 lines
User can only skim through 5 lines
at a time

Glued joints does not allow easy
repairability
Living hinges tend to break under
perpendicular forces. Need internal
reinforcements

Protoboard can pose wiring failures
and is di�cult to assemble
Battery bank needs to be switched
on, opening the backcover

SLS 3D printing may be not availa-
ble as commonly as FDM printing
Lead screws for Micro steppers
may be weak with perpendicular
loads from user’s touch and push
switching

Micro stepper may not have
enough holding torque for han-
dling user’s touch

Version Map

Last updated
16 September 2019

6.4 Features and Issues

The features included in the final
concept were mapped along with its
corresponding issues. The plan is to
solve the issues in the next version after
graduation.

Table 13 List of issues in the current version and its possible solution

