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Abstract

The relation between graph theory and max-plus algebra has been well studied since the
inception of max-plus algebra. It has been shown that any square matrix over the max-
plus semiring can be represented as a weighted directed graph. Furthermore, properties
of these matrices, such as irreducibility and its (unique) eigenvalue, can be determined
by its graph-theoretical interpretation. However, this graph-theoretical interpretation
has not yet been extended to SMPL systems.
Switching max-plus-linear (SMPL) systems are an extension of max-plus-linear systems
(MPL) for modelling discrete-event systems. While for MPL systems the system is de-
scribed by one max-plus-linear state equation and one max-plus-linear output equation,
for SMPL systems the system is described by more than one mode of operation, each
consisting of its own unique max-plus-linear state equation and max-plus-linear out-
put equation. The different modes allow for more efficient modelling of changes to the
structure of the system. The switching between the different modes of operation can be
deterministic, stochastic or a combination of the two.
Due to the fact that max-plus algebra is an idempotent algebra and there is no opposite
operation to max-plus addition, vectors spaces in max-plus algebra cannot be defined in
the same way as for conventional algebra. As a result, determining the span of matrices
has to be performed in a different way than for matrices in conventional algebra as ma-
trix ranks are also defined in a different way. Determining the span of matrices in both
max-plus algebra and conventional algebra is important as it allows for the calculation
of the set of states that can be accessed (reached) by MPL systems and LTI systems
respectively.
The purpose of this thesis is three-fold: firstly, a method is developed for accurately
determining the span of max-plus matrices, secondly, this method is applied to MPL
systems with the purpose of determining the set of accessible states for autonomous
and non-autonomous MPL systems and establishing the necessary conditions for struc-
tural controllability by making use of its graphical representation and thirdly, to model
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SMPL systems and also establish properties such as structural controllability by means
of a graph-theoretic framework.
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Chapter 1

Introduction

1-1 Motivation

Plato said that knowledge is certain and infallible and thus, knowledge is the only thing
true and beautiful. For something to be true, he continues, it must be a product of reason
and not perception. Such a product of reason is mathematics. With the intention of
finding truth in this world, humans have always attempted to express the physical world
through a mathematical lens. Even though Plato’s statement is open to argument,
there is no denying that mathematical modelling of the physical world has been of great
benefit.

Mathematical modelling (or simply modelling) offers a road map for a better under-
standing of the world. To the present day, a great amount of effort is being afforded to
developing more efficient and more realistic models. Graphs are a mathematical mod-
elling tool that have risen to prominence due to their natural, visual representation and
the powerful combinatorial properties [1] they possess.

Graph theory, the study of graphs, has been applied to a wide range of applications
over the years. Social systems, physical systems, biochemistry, computer science and
scheduling are some examples of fields where graph theory has been applied. Scheduling,
in particular, will be the application of interest with regards to this thesis.

In the present day where automation is an integral part of everyday life, scheduling
has become an increasingly popular field of research. Scheduling can be defined as
the allocation of limited resources to a set of jobs with the purpose of meeting certain
criteria. Jobs are sequences of operations, where each operation is performed on a
particular resource. To further illustrate this point, think of a railway network. A train
that begins at station A, stops at stations B and C and terminates at station D, can
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2 Introduction

be thought of as a job. The tracks between the stations are the resources, as no two
trains can operate on the same track for safety reasons. Travelling from one station to
another can be thought of as the operation. So, the job of going from A to D consists of
performing the three operations A→ B,B → C,C → D. If more trains were introduced
to the network, performing the same or different jobs, then conflicts could arise due to
competing for the same resource at the same time. By designing and implementing a
schedule the objective is to have an optimized system with no conflicts.

Such systems where progression is reliant upon completion of distinct operations that
are asynchronous in regards to each other, are called discrete event systems (DES). In
contrast to discrete time systems where the difference in time between two consecutive
time steps is always the same, in DES the evolution of the state is dependent on previous
events. Consequently, two consecutive time steps of the system may not have the same
time difference. The main obstacle that is encountered when trying to model such
systems is that usually they are nonlinear in conventional algebra. Nonetheless, a certain
class of DES can become linear when modelled in the max-plus algebra. Linear systems
in max-plus algebra are called Max-Plus-Linear (MPL) systems.

Max-plus algebra has been used for the analysis and modelling of DES since the landmark
book by Baccelli et al. [2]. The main advantage is that when this class of DES is
modeled in max-plus algebra, it becomes linear. In addition to this, various results from
conventional linear system theory have been adapted to max-plus algebra, thus providing
a mathematical framework for an in-depth analysis of these systems. A disadvantage
of MPL systems, however, is that a change in the structure of the system cannot be
modelled, as the structure is fixed. With the purpose of overcoming this, Switching
Max-Plus-Linear (SMPL) systems were introduced by van den Boom and De Schutter
[3]. SMPL systems are a collection of MPL systems, called modes, where switching is
allowed between different modes. By using different modes of operation for modelling,
it is possible to model potential changes in the structure of the system.

Hence, the introduction of graph theory. Graphs are an efficient and powerful tool
for analyzing structural properties of systems. They have been used extensively [4, 5,
6, 7, 8] for the structural analysis of conventional linear systems. It has been shown
that properties like controllability and observability can be established through a graph-
theoretical approach.

In addition to this, graphs already play a prominent role in spectral theory of max-plus
matrices. The eigenvalue of a square matrix and whether a matrix is irreducible or
not can be determined directly through the graphical representation of the matrices.
Subsequently, it would be of interest to enhance the graph-theoretical approach to MPL
and SMPL systems by investigating whether a framework could be developed with the
purpose of establishing properties such as controllability in the max-plus setting.
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1-2 Contribution 3

1-2 Contribution

Among the contributions of this thesis is the use of a graphical representation for the
modelling of SMPL systems and the use of a graph-theoretical approach for the estab-
lishment of structural controllability for MPL and SMPL systems. Conditions for estab-
lishing controllability of MPL systems through timed event graphs already exist [2]. In
this thesis they are translated to a different type of graph, namely directed graphs. Addi-
tionally, the dynamic graph is employed for the purpose of modelling SMPL systems and
establishing controllability of such systems. To our knowledge, no such graph-theoretical
representation of SMPL systems exists. Finally, a method is developed for determining
the span of max-plus matrices and is applied on MPL systems, for the purpose of es-
tablishing the set of values that can be achieved by the system. A distinction is made
between MPL systems in which a control input is present and for systems that do not
include a control input.

1-3 Outline

Chapter 2 provides an introduction to graph theory and all the relevant concepts that
will be used. Different types of graphs, such as the weighted directed graph, the bipartite
graph, the signal-flow graph and the dynamic graph will all be presented. In Chapter 3
an overview of how graph-theoretical concepts have been used for the structural analysis
of conventional linear system will be given. Max-plus algebra and its connection to
graph theory will be introduced in Chapter 4. Moreover, in Section 4-4 a method will
be presented for establishing the span of max-plus matrices. While, in Chapter 5 the
focus will shift to MPL and SMPL systems. Examples of such models will be given and
sufficient conditions for them to be stabilizable will also be presented. Furthermore, a
graph-theoretic representation of SMPL systems will be defined. Finally, in Chapter
6 sufficient conditions for controllability of MPL and SMPL systems will be derived
through a graph-theoretical point of view, and the method presented in Section 4-4 will
be applied to MPL systems.
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Chapter 2

Graph Theory

2-1 Introduction

Graph theory is a branch of mathematics that studies graphs. Graphs are formed by
vertices (also called nodes) and edges (also called arcs) connecting the vertices. More
formally, a graph is a pair of sets (V,E), where V (G) is the set of vertices and E(G) is
the set of edges for the graph G. Some basic concepts for normal (undirected) graphs
are defined below [9].

• The two vertices u and v are end vertices of the edge (u, v).

• An edge e = (u, v) is incident with the vertices u and v.

• An edge of the form (v,v) is a loop.

• A graph with no edges is called null.

• A graph with no vertices is called an empty graph.

• Edges are adjacent if they share a common end vertex.

• Vertices have degrees, d(v), defined as the number of edges with v as an end vertex.

• A vertex that has no edges is called isolated.

• The number of vertices contained in a vertex set is termed the cardinality of the
vertex set and is denoted by |.|.

Master of Science Thesis Vangelis Peter Kalamboukis



6 Graph Theory

1

2

3

4

Figure 2-1: An example of an undirected graph with four nodes and six edges.

A sequence of edges that begins from node u and ends at node v is termed a walk from u
to v, an example of this in Figure 2-1 would be {(1, 2), (2, 4), (4, 1), (1, 3)} being a walk
from 1 to 4. If moreover, a walk from u to v does not pass through any vertex more than
once it is called a path. By definition a path is always a walk, although the opposite
is not always true. Returning to Figure 2-1, a path from 1 to 3 could be {(1, 2), (2, 3)}
or {(1, 2), (2, 4), (4, 3)} (of different lenghts) but not {(1, 2), (2, 4), (4, 1), (1, 3)} as node
1 is traversed twice. If a path exists from a node u to a node v, we say these nodes are
connected. The number of edges in the path that are required in order to reach v from
u is the length of the path. A path will be written as p(u, v, k) with u being the starting
vertex, v the end vertex and k the length of the path, k may be omitted depending on
the circumstances. Additionally, if the initial vertex is also the terminal vertex of the
path then the path is called a cycle or circuit. Furthermore, a cycle family is a set of
cycles that do not have any vertices in common, they are also termed vertex disjoint
cycles. The number of edges contained in this family is the length of the family. Finally,
a connected graph is defined by the following property. Any vertex u ∈ V (G) can be
reached by any vertex v ∈ V (G), i.e. there is a path (sequence of edges) connecting any
vertex in the vertex set to any other in the same set. Graphs that contain no circuits
are also called a tree. A tree is a connected forest.

2-2 Directed Weighted Graphs

Directed graphs (or digraphs) are a category of graphs where the edges are ordered. This
means that the edges (u, v) and (v, u) are different, they have the opposite orientation.
Therefore, for an edge (u, v) ∈ E(G), while v can be reached from u, the opposite is not
also true unless, (v, u) ∈ E(G). A directed graph is called a weighted directed graph (or
weighted digraph) if a weight w(u, v) ∈ R is associated with all edges (u, v) ∈ E(G) .
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2-2 Directed Weighted Graphs 7

1

2

3

4

Figure 2-2: An example of a directed graph.

Below, some of the concepts defined above for normal graphs will be extended to directed
graphs.

• For the edge (u, v) ∈ E(G), we call (u, v) an outgoing edge at u and an incoming
edge at v.

• Vertices have outgoing and incoming degrees denoted od(v) and id(v) respectively.
The outgoing degree of a vertex v ∈ V (G) is defined as the number of outgoing
edges from v, while the incoming degree is defined as the number of incoming edges
at v.

• A vertex that has no outgoing edges is called isolated.

• Because edges are directed, if a path exists from a vertex u to a vertex v the
opposite, unlike undirected graphs, may not be true. A path may not exist from
v to u.

• If a path exists from vertex u to vertex v, we say v can be reached by u.

• Differently to undirected graphs, two vertices u, v ∈ V (G) are strongly connected
if u can be reached by v and v can be reached by u.

• A cycle is termed elementary if, limited to the cycle, each of its vertices has an
outgoing and incoming degree equal to one.

• Graph G is strongly connected if every pair of vertices is strongly connected.

Graphs that are not strongly connected can be partitioned into subgraphs that are
strongly connected. All the vertices that belong to subgraphs (V1, E1), . . . , (Vg, Eg)
that are strongly connected, are also strongly connected. Any subgraph (Vj , Ej), j ∈
{1, 2, . . . , g}, forms a strongly connected graph. Additionally, the partition of a graph
into strongly connected subgraphs covers all the vertices of the graph G, isolated vertices
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8 Graph Theory

form a class of their own (i.e. they are connected only with themselves). Subsequently,
according to this partition of the graph into subgraphs, no two vertices that belong to
different subgraphs (classes) can be strongly connected. That is, for

u, v ∈ V (G), u ∈ (Vu), v ∈ (Vv), Vu, Vv ⊂ V (G)

where Vu, Vv are the node sets of different strongly connected subgraphs, as defined
above, then either

(u, v) ∈ E(G) or (v, u) ∈ E(G) or (u, v), (v, u) /∈ E(G)

we call the subgraphs that arise from such partitions of a graph maximally strongly
connected subgraphs (m.s.c.s.).

Furthermore, the notion of the cyclicity of a graph is now defined. The cyclicity of a
graph is defined differently for strongly connected graphs and not strongly connected
graphs. If a graph is strongly connected then the cyclicity is defined as the greatest
common divisor of the lengths of all (elementary) cycles in the graph. On the other
hand, if the graph is not strongly connected then the cyclicity of the graph is equal to
the least common multiple of the cyclicities of all maximal strongly connected subgraphs.

Following on, we will call the direct predecessors of a vertex u ∈ V (G), the vertices that
have outgoing edges that end at u,

π(u) def= {v ∈ V (G) : (v, u) ∈ E(G)}

while, predecessors will be the term used for the set of vertices that have paths which
reach u,

π+(u) def= {v ∈ V (G) : p(v, u) 6= ∅}

with p(v, u) being the set of paths from v to u.

In a similar way we denote the set for the direct successors of vertex u ∈ V (G),

ξ(u) def= {v ∈ V (G) : (u, v) ∈ E(G)}

and the successors as,

ξ+(u) def= {v ∈ V (G) : p(u, v) 6= ∅}

The notion of Menger-type linking’s will now be presented [6]. Consider a directed graph
G = (V,E;U, Y ) with its vertex set V a union of three distinct vertex sets. More formally,
V = (U ∪ X ∪ Y ), where X = {x1, · · · , xn}, U = {u1, · · · , um} and Y = {y1, · · · , yo}.
In this case it is assumed that there are no incoming edges for any vertex ui ∈ U or
any outgoing edges for a vertices yi ∈ Y . The vertex set U will be called entrance and
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2-3 Bipartite Graphs 9

the set Y exit. A Menger-type linking from U to Y is a set of pairwise vertex-disjoint
directed paths from a vertex in U to a vertex in Y . The amount of directed paths that
are included in this linking are the size of the linking. If the size of the linking is maximal
then it is a maximum linking furthermore, if |U | = |Y |, a linking of size |U | is called a
complete linking. Finally, a separator of (U, Y ) is such a subset of V that intersects any
directed path from a vertex in U to a vertex in Y .

2-3 Bipartite Graphs

A bipartite graph, Gb = (V +, V −;E) is a graph consisting of two disjoint vertex sets V +

and V − with edge set E. In a bipartite graph, vertices belonging to the same vertex set
can not be adjacent, i.e. vertices in edge set V + can only be adjacent to vertices in V −
and vice versa. A subset of edges is a matching if any two edges of the subset do not
have a common vertex. The number of edges is named cardinality of the matching while,
a matching with maximal cardinality is a maximum matching. The size of a maximum
matching is denoted by m(G). If the maximum matching includes all the vertices of
both sets (V + and V −) then it is called a perfect matching. For a perfect matching to
exist the two vertex sets must contain the same number of vertices.

V + V −

Figure 2-3: An example of a bipartite graph.

Bipartite graphs are of interest as any matrix can be represented as a bipartite graph.
By defining Col(A) = V +, Row(A) = V −, for A ∈ Rn×n and E = ((j, i)|Aij 6= 0).
This is of interest due to the fact that algebraic properties of a matrix can be directly
deducted from the bipartite representation of it. Murota [6] proves that the term-rank
of a matrix is equal to the maximum matching of its bipartite graph representation. The
matching on the bipartite graph of a matrix shows the position of elements in a matrix.
If the bipartite graph has a perfect matching then no row or columns is equal to zero.
In particular the rank of matrix where only the position of the elements in the matrix
is considered and not their values, is termed the term-rank of a matrix. Note that, by
definition the term-rank is always greater or equal to the generic-rank of a matrix.

Master of Science Thesis Vangelis Peter Kalamboukis



10 Graph Theory

2-4 Signal-Flow Graph

The signal-flow graph is the graphical representation of the state-space of systems that
have the following form

ẋ = Ax+Bu, (2-1)
y = Cx (2-2)

where A ∈ Rn×n is the state matrix, B ∈ Rn×m the input matrix and C ∈ Ro×n the
output matrix.

The signal-flow graph provides an efficient way to model the structure of the system and
to derive properties such as structural controllability and structural observability. We
will denote by G(A,B,C) the signal-flow graph that represents all of the state space and
by G(A,B) we will denote the signal-flow graph that models only Equation (2-1).

The signal-flow graph G(A,B,C) is a directed graph with vertex set V (G) = VA ∪
VB ∪ VC and edge set E(G) = EA ∪ EB ∪ EC . The vertex set is partitioned into
three distinct subsets, the state vertices corresponding to the the states of the system
VA = {v1, · · · , vn}, the input vertices that correspond to the inputs of the system VB =
{u1, · · · , um} and the output vertices corresponding to the outputs of the system VC =
{y1, · · · , yo}. The edges set, is partitioned in a similar way with EA = {(xj , xi)|aij 6= 0}
being the set of edges between state vertices, EB = {(uj , xi)|bij 6= 0} being the set of
edges from input vertices to state vertices and EC = {(xj , yi)|cij 6= 0} being the set of
edges from state vertices to output vertices. It is evident that no edges exist from state
vertices to input vertices, from input vertices to output vertices or from output vertices
to any other vertex set. The signal-flow graph representation G(A,B) of Equation (2-1)
omits the output vertices VC , in addition to edge set EC .

Graph-theoretical properties of the signal-flow graph that will play a vital role in the next
chapter will now be discussed. We will call a state vertex xj in the signal-flow graph
G(A,B) reachable if it can be reached via a directed path originating from an input
vertex. If no such path exists then the vertex will be termed unreachable. Furthermore,
a directed path that begins from an input vertex will be called a stem. The first vertex
of a stem is the root, while the final vertex is the top of the stem. A bud is an elementary
cycle with an additional edge (i, j) where j is a vertex of the cycle and i is not. The
added edge (i, j) is named the distinguished edge of the bud. Should a graph be spanned
by a specific arrangement of buds and stems, then such a graph can be called a cactus.
The formal definition of a cactus as given in [5] follows

Definition 2.1. A cactus is a subgraph defined successively in the following way. A
stem is a cactus. Given a stem S0 and buds B1, B2, · · · , Bβ, then S0∪B1∪B2∪ · · ·∪Bβ
is a cactus if for every j (1 ≤ j ≤ β) the first vertex of the distinguished edge of Bj is not
the top of S0 and is the only vertex belonging to both Bj and S0 ∪B1 ∪B2 ∪ · · · ∪Bi−1.
We will say a graph is spanned by a cactus if all vertices are part of the cactus. A set of
disjoint cactuses is termed a cacti.
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u x1

x2

x3

x4

Figure 2-4: An example of a signal-flow graph that is spanned by a cactus.

Figure 2-4 depicts a signal flow graph that is spanned by a cactus. The corresponding
matrices A and B for this signal-flow graph are given below.

A =


0 0 0 0
x21 0 x23 0
0 x32 0 0
x41 0 0 0

 , B =


u1
0
0
0

 (2-3)

We will see in the next chapter that if the signal-flow graph of a system that has the
form of (2-1) is spanned by a cacti, then we can infer a specific property (structural
controllability) of this system.

2-5 Dynamic Graph

The dynamic graph is the graphical representation of the evolution of a discrete-time
system over a certain period. Discrete-time systems are systems whose evolution depends
on events that may or may not have an equal timing between them. The dynamic graph
was first introduced by Kazuo Murota [6, 10] as an alternative graphical representation
to the signal-flow graph for linear control systems. Because the dynamic graph models
the system over a period of time, it also allows for modeling potential changes in the
structure of the system. This property differentiates the dynamic graph representation
from the signal-flow graph representation, as it is possible to model potential changes in
the structure of the system and thus, provides more flexibility. Thus, the dynamic graph
can be used to model both systems with fixed structure and switching systems (will be
introduced in Chapter 5). More formally, the dynamic graph is defined as follows.

For k ≥ 1 the dynamic graph of time-span k for a state-space system is defined to be
Gk0 = (Xk

0 ∪ Uk1 , Ek−1
0 ) with,

Xk
0 = ∪kt=0X

t, Xt = {xti|i = 1, ..., n}(t = 0, 1, ..., k),
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Uk1 = ∪k1U t, U t = {utj |j = 1, ...,m}(t = 1, ..., k),

Ek−1
0 = {(xtj , xt+1

i )|Atij 6= 0; t = 0, 1, ..., k − 1} ∪ {(utj , xt+1
i )|Bt

ij 6= 0; t = 1, ..., k}

The state and input matrices A and B respectively, are denoted as At and Bt for the
purpose of also including systems whose structure may change over time. Examples of
such systems are switching systems or systems where the stochasticity is associated with
the structure of the system (i.e. the edges of the signal flow graph and not the weights).

An example of a dynamic graph for a time span of k = 3 can be seen in Figure 2-5 for
the matrices A and B of (2-3). The edges that exist between the state vertices (denoted
by x) are the entries of the A matrix while the edges originating at an input vertex
(denoted by u) are the edges associated with the input matrix B.

u(1)

x1(0)

x2(0)

x3(0)

x4(0)

u(2)

x1(1)

x2(1)

x3(1)

x4(1)

u(3)

x1(2)

x2(2)

x3(2)

x4(2)

x1(3)

x2(3)

x3(3)

x4(3)

Figure 2-5: A dynamic graph for the A and B matrices of (2-3).

In the next chapter we will see how the dynamic graph can be used to derive structural
properties of a linear system.

2-5-1 Coloured Dynamic Graph

The coloured dynamic graph is a dynamic graph in which vertices are associated with
one or more colours. By a colour we mean a subset of the vertex set which contains
vertices that share a common property. For the case of this thesis, this property will
be whether vertices of the dynamic graph are part of a path originating from an input
vertex.
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2-5 Dynamic Graph 13

Definition 2.2. A colour of a dynamic graph, denoted coli,k, i, k ∈ N+, is a subset of the
state vertex set of the dynamic graph that is, coli ⊆ Xk. Each colour, coli,k, is a set that
contains all the state vertices at time event k that can be reached by a path originating
from an input from time event i. Any vertex can be associated with more than one colour
or with no colours. More formally,

coli,k = {xj(k) ∈ coli,k | P(ui, xj) 6= ∅, j ∈ {1, ..., n}, i ∈ {1, ..., k}} (2-4)

To be more specific, take the coloured dynamic graph depicted in Figure 2-6. This figure
depicts a dynamic graph of a switching system. In a switching system the structure of
the system may change over time. We will associate with the set col1,2 all the (state)
vertices at time event 2 that can be reached by a path(s) originating from an input
vertex (or vertices generally) at time event 1. For this that would be {x1}; highlighted
in orange. We can also define more colours, like col2,2 for vertices that belong to a path
originating from the input at time event 2, this set would be {x2}; highlighted in blue.
Coloured dynamic graphs will prove useful for the modeling of SMPL systems. The
concept will become more clear in chapters 5 and 6.

u(1)

x1(0)

x2(0)

u(2)

x1(1)

x2(1)

x1(2)

x2(2)

Figure 2-6: An example of a coloured dynamic graph.
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Chapter 3

Graph Theory in Linear System
Theory

Graph theory has been widely applied for modelling different systems. What is of par-
ticular interest however, is the use of a graph-theoretic approach for the derivation of
properties in linear systems, more specifically, of structural controllability and observ-
ability. This provides sufficient motivation for approaching similar problems encountered
in the max-plus semiring (to be defined in Chapter 4) in a similar way. In this chapter
the graph-theoretic approach to linear control systems will be presented. In Section
3-1 a brief overview of linear systems and the property of controllability will be given,
Section 3-2 will overview the notion of structural controllability as given by Lin [4] and
in the end, in Section 3-3, similar definitions of controllability will be presented as given
by Murota [6]. Although structural controllability is the main subject of this Chapter,
these notions can be further extended to observability through the duality theorem.

3-1 Introduction

Consider a linear time-invariant (LTI) system described by the following equations

ẋ = Ax+Bu, x(0) = x0, (3-1)

y = Cx, (3-2)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Ro×n.

Controllability of a system refers to the property of the system to steer any initial state
x0 ∈ Rn at time zero to any final state xf ∈ Rn in a finite amount of time T > 0.
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16 Graph Theory in Linear System Theory

The reachable set of a system RT at time T > 0 is the set of all states x(T ) that
can be reached from initial state zero by any control input. The system is said to be
controllable if the reachable set is equal to the set of real numbers, that is RT = Rn.
Obviously, controllability is a very fundamental property of a system as it shows whether
a system can be brought to a desirable state within a finite amount of time. Moreover,
Kalman [11] showed that a system defined by (A,B) is controllable if and only if the
controllability matrix

K = (B AB A2B · · · An−1B) (3-3)

has full row rank. Showing that matrix K has full row rank is equivalent to showing
that the range of the matrix is equal to Rn. If this is the case, one can steer any initial
state x0 ∈ Rn at time 0 to any final state xf ∈ Rn at time T > 0.

3-2 Structural Controllability

Structural controllability is a graph-theoretic concept first introduced by Lin [4] in 1974
for LTI systems with one input. It has since been extended to systems with multiple
inputs [8]. Even though it is a graph-theoretic concept it has clear algebraic implications.
To begin with, for structural controllability, the system matrices (A,B), as defined in
Equation (3-1), are considered to be structured matrices. What is meant by this is that
the elements of these matrices are either taken as independent parameters over the field
of real numbers or they are set to zero. In other words, this means we know the structure
of the system (i.e. the elements which are equal to zero). The physical meaning of this
can be interpreted in the following way, we know whether connections between different
parameters exist, even if they cannot be precisely measured and we also have knowledge
of the absence of connection between other parameters. In reality this is often the case
for well defined physical systems.

If a system is considered to be structurally controllable then it is possible to select the
independent parameters (A,B) in such a way that the system is considered controllable
in the traditional sense (Equation 3-3). Structural controllability is a generic property
of the system and most often implies controllability. A potential loss of controllability
can only materialize in rare circumstances - such a case can arise when the parameters
of the system are not independently defined [5]. Two examples borrowed from this paper
will further illustrate the notion of structural controllability.

Example 3.1. Consider the systemẋ1(t)
ẋ2(t)
ẋ3(t)

 =

 0 0 0
α21 0 0
0 α32 0

 ·
x1(t)
x2(t)
x3(t)

+

b1
0
0

u(t)
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3-2 Structural Controllability 17

the controllability matrix is

K = [B AB A2B] = b1

1 0 0
0 α21 0
0 0 α32α21


has rank(K) = 3 = n and the system is controllable. This will always be the case if the
weights α21, α32 and b1 are non-zero. Hence, controllability is invariant under different
values for the elements as long as they are not zero.

u1

x3

x2

x1

α21

α32

b1

Figure 3-1: The signal flow graph of Example 3.2.1.

Example 3.2. For the second example consider the systemẋ1(t)
ẋ2(t)
ẋ3(t)

 =

 0 0 0
α21 0 0
α31 0 0

 ·
x1(t)
x2(t)
x3(t)

+

b1
0
0

u(t)

the controllability matrix is

K = [B AB A2B] = b1

1 0 0
0 α21 0
0 α31 0


and has rank(K) = 2 < n. This shows the system is uncontrollable regardless of the
values of α21, α31 and b1.

Now that the notion of structural controllability has been explained, the formal theorem
for establishing structural controllability of a system is given below.

Theorem 3.1. (Lin’s Structural Controllability Theorem)
The following three statements are equivalent:

1. An LTI system (A,B) is structurally controllable.
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2. (a) The signal-flow graph G(A,B) has no unreachable vertices.
(b) The signal-flow graph G(A,B) is spanned by disjoint cycles and stems in such

a way that all vertices of the graph belong to either a stem or a cycle.

3. The signal-flow graph G(A,B) is spanned by a cacti.

The first condition (2a) that the signal-flow graph has no unreachable vertices has a
straightforward interpretation. If a vertex is not accessible from an input vertex then it
cannot be influenced by the input and as a result it cannot be controlled. The second
condition 2(b) that the signal-flow graph is spanned by disjoint cycles and stems guaran-
tees that the structured matrix [A;B], A ∈ Rn×n, B ∈ Rn×m has generic rank equal
to n. By generic rank of a structured matrix we mean the maximum rank that can be
attained for this matrix as a function of its independent parameters.

3-3 Structural Controllability in terms of the Dynamic Graph

Murota in his book [6] establishes a connection between the structural controllability of
discrete LTI systems and the number of Menger-type linkings contained in the dynamic
graph of the system. The discrete version of the LTI system of (3-1) is given by

ẋ(k) = Ax(k) +Bu(k), x(0) = x0, (3-4)

y(k) = Cx(k),

And the connection established between Menger-type linkings and structural controlla-
bility is given by the following Theorem.
Theorem 3.2. A discrete system in the standard form (3-4) is structurally controllable
if and only if there exists in the dynamic graph Gn0 of time-span n a Menger-type vertex-
disjoint linking of size n from Un−1

0 to Xn.

A direct consequence of this theorem is that the controllability matrix of the system
has full generic rank. If it did not the system would not be structurally controllable.
Another important point of interest is the fact that if the controllability matrix has full
generic rank it also has full term-rank [6]. Recall from Section 2-3 that the term-rank of a
matrix is equal to the maximum matching of its bipartite representation. It is important
to note that the opposite is not true, i.e. if a system could have full term-rank this does
not guarantee that it would also have full generic-rank.
Being able to establish structural controllability by means of the dynamic graph is of
particular interest in the scope of this thesis. This is due to the fact that the modelling
framework of dynamic graphs makes it feasible to model potential changes in the struc-
ture of the system over time. As will be seen in Chapter 5 this is exactly the case for
Switching Max-Plus Linear systems where the structure of the system changes over time
making it impossible to model the system or derive its structural properties through the
signal-flow graph.

Vangelis Peter Kalamboukis Master of Science Thesis



Chapter 4

Max-Plus Algebra

Discrete event systems (DESs) in which there is synchronisation but no concurrency
or choice are traditionally nonlinear in conventional algebra. However, these systems
can be described by models that are linear in max-plus algebra. Max-plus algebra is
an algebra with maximisation and addition as its basic operations over the idempotent
semiring Rmax, that is, the union of real numbers with minus infinity. The chapter is
mainly based on [12]. Section 4-1 goes over the basic definitions and notions related
to max-plus algebra succeeding this is Section 4-2 which gives an overview of spectral
theory for max-plus algebra. Section 4-3 introduces the notion of the asymptotic growth
rate and the cycle-time vector while, Section 4-4 provides an overview of vector spaces
for max-plus algebra in addition to developing a method for determining the span of
max-plus and min-plus matrices.

4-1 Basic Definitions

Max-plus algebra has been developed for the description and evaluation of discrete-event
systems. It is the semi-ring over the union of real numbers and minus infinity. More
formally, let εdef= −∞, edef= 0 and Rmax

def= R∪{ε}. For a, b ∈ Rmax the max-plus addition
⊕ and multiplication ⊗ are defined as:

a⊕ bdef= max(a, b) and a⊗ bdef= a+ b (4-1)

For any a ∈ Rmax

(4-2)
a⊕ ε = ε⊕ a = a and a⊗ ε = ε⊗ a = ε (4-3)
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20 Max-Plus Algebra

Powers in max-plus algebra are similar to conventional algebra. For a ∈ Rmax and n ∈ N:

x⊗n
def= x⊗ x⊗ ...⊗ x, n ≥ 1

Which in conventional algebra is

x⊗k = x+ x+ ...+ x︸ ︷︷ ︸
k times

= k × x

.
The aforementioned concepts can be further extended to matrices. For any A ∈ Rn×mmax

and B ∈ Rn×mmax we have:

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

While, for matrices C ∈ Rn×pmax and D ∈ Rp×mmax the matrix product is defined as

[C ⊗D]ik =
p⊕
j=1

cij ⊗ djk = max
1≤j≤p

(cij + djk)

For A ∈ Rn×nmax, the matrix powers are defined by

A⊗k = A⊗A⊗ ...⊗A︸ ︷︷ ︸
k times

In addition to this, a matrix is called regular if it has at least one entry different than ε
in every row. Finally, the max-plus-algebraic zero matrix E is defined as [E ]i,j = ε, while
the max-plus-algebraic identity matrix is

[Eij ] =
{
e i = j

ε i 6= j

Many algebraic properties of conventional algebra also extend to the premises of max-
plus algebra. The main difference is the fact that, in contrast to conventional algebra,
max-plus algebra is idempotent. This and the other algebraic properties of max-plus
algebra are presented in the following list.

• Associativity:

∀a, b, c ∈ Rmax : a⊕ (b⊕ c) = (a⊕ b)⊕ c
∀a, b, c ∈ Rmax : a⊗ (b⊗ c) = (a⊗ b)⊗ c

• Commutativity:

∀a, b ∈ Rmax : a⊕ b = b⊕ a and a⊗ b = b⊗ a
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• Distributivity of ⊗ and ⊕:

∀a, b, c ∈ Rmax : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

• Presence of a zero element:

∀a ∈ Rmax : a⊕ ε = ε⊕ a = a

• Presence of a unit element:

∀a ∈ Rmax : a⊗ e = e⊗ a = a

• Zero is absorbing for ⊗:

∀a ∈ Rmax : a⊗ ε = ε⊗ a = ε

• Idempotency:

∀a ∈ Rmax : a⊕ a = a

Max-plus algebra is not the only idempotent algebra that exists. Min-plus , max-times
and min-max, to name a few, are some of the most prominent idempotent algebras,
other than max-plus. In min-plus algebra the max operator is substituted with the min
operator for addition. Min-plus algebra and max-plus algebra are isomorphic. Due to
the two algebras being isomorphic, all notions, theorems and lemmas of max-plus algebra
can be extended to min-plus algebra. The min-plus algebra is a semiring over the union
of real numbers and infinity, Rmin = R∪{∞}. The neutral element is now ε− =∞ while
the identity element remains the same as in max-plus algebra e = 0. By convention,
ε ⊗ ε− = ε and ε− ⊗ ε = ε−. For a, b ∈ Rmin min-plus addition ⊕′ and multiplication
⊗′ are defined as:

a⊕′ bdef= min(a, b) and a⊗′ bdef= a+ b (4-4)

Multiplications and addition can be extended to vectors and matrices in a similar manner
as in max-plus. Lastly the set R̄, will denote the union of real numbers with infinity and
minus infinity. That is, R̄ = R ∪ {±∞}.

4-2 Spectral Theory

Any square matrix A ∈ Rn×nmax can also be represented as a weighted directed graph,
named the communication graph and defined as G(A) = (V (A), E(A)) where V (A)def=
{1, ..., n} is the set of vertices (i.e. the number of vertices is equal to the order of the
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matrix A) and E(A)def= {u, v ∈ V (A), (u, v) ∈ E(A)|avu 6= ε} is the set of edges where
each edge is associated with a weight equal to the value of that parameter in the matrix
A (i.e. if avu = 2 then there exists an edge from u to v with weight 2). This is of
particular interest as a lot of underlying properties of the matrix A can be revealed
through its graph structure.
Such a property is whether the matrix A ∈ Rn×nmax is reducible or irreducible. If the
communication graph of the matrix is strongly connected then matrix A is said to be
irreducible. On the other hand, if not, then it is called reducible. As a result an
irreducible matrix is a strongly connected graph and all vertices in this graph belong to
the same m.s.c.s. However, if A is reducible then it contains more than one m.s.c.s., and
the matrix can be written, after a possible relabeling of the vertices, in its normal form
with respect to its m.s.c.s.’s. 

A11 A12 · · · A1p
E A22 · · · A2p
...

... . . . ...
E E · · · App

 (4-5)

Here each diagonal block matrix Ajj corresponds to the vertices of the same m.s.c.s. and
p is the number of m.s.c.s.’s contained in the communication graph of A. Since blocks
Ajj correspond to a m.s.c.s. all diagonal blocks are also irreducible. The remaining
matrices Aij correspond to edges that connect vertices that belong to the m.s.c.s. [j],
[j] denoting the jth m.s.c.s., to vertices that belong to [i].
Another close relation exists between the powers of A and its communication graph
G(A). More precisely, elements of the kth power of A yield the maximal weight of a
path of length k, should that exist, between the vertices of those elements. That is, if
the element [A⊗k]ji is not ε, then this element represents the maximal weight of a path
of length k from vertex i to vertex j.
In accordance to the preceding property, for A ∈ Rn×nmax, let

A+def=
∞⊕
k=1

A⊗k (4-6)

where any element [A+]ij represents the maximal weight of any path from j to i.
Furthermore, one of the most important properties that can be derived from graphs
is the existence of an eigenvalue if a circuit exists in the communication graph of the
matrix. The main theorems and lemmas will be introduced below, for proofs and more
information, the reader is referred to [12]. Firstly, the definition of an eigenvalue and
eigenvector will be given in max-plus algebra and secondly, a lemma to show that average
circuit weights are potential eigenvalue(s).
Definition 4.1. Let A ∈ Rn×nmax be a square matrix. If µ ∈ Rmax is a scalar and v ∈ Rnmax
is a vector that contains at least one finite element such that

A⊗ v = µ⊗ v
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then µ is called an eigenvalue of A and v an eigenvector of A associated with eigenvalue
µ

Lemma 4.2. Let A ∈ Rn×nmax have finite eigenvalue µ. Then, a circuit γ exists in G(A)
such that

µ = |γ|w
|γ|l

where, |γ|w is the sum of weights of the circuit and |γ|l is the length of the circuit.

According to this lemma possible eigenvalues can be found from the average weight
of circuits. However, this lemma does not provide any further information on which
circuit(s) weight(s) are equal to the eigenvalue. With this in mind the following concepts
are defined.
A critical circuit is defined as the circuit that has the maximal average weight. Conse-
quently, the critical graph, designated by Gc(A) = (V c(A), Ec(A)) of a matrix (A), is
the graph consisting of those vertices and edges that belong to the critical circuits of
G(A). By combining these two concepts and the previous lemma, the following lemma
can be proved.

Lemma 4.3. Let A ∈ Rn×nmax have finite maximal average circuit weight λ. Then, λ is
an eigenvalue of A and for any vertex v in Gc(A) it holds that [A∗λ].η is an eigenvector
associated with λ.

Where,

[Aλ]uv = auv − λ (4-7)

A∗λ
def= E ⊕A+

λ =
⊕
k≥0

A⊗kλ ↔ [A∗λ].η = [E ⊕A+
λ ].v (4-8)

Aλ is also called the normalized matrix, while the operator (∗) is called the Kleene star.
The Kleene star of a matrix exists only if all cycles of the communication graph of the
matrix have non-positive weights.
The above lemma is of great importance as it establishes the existence of an eigenvalue
and its corresponding eigenvector, provided that the maximal average circuit weight
exists and is finite. Moreover, irreducibility of A already establishes that the maximal
average circuit weight is finite. Consequently, the eigenvalue of irreducible matrices al-
ways exists and is also unique. Finally, we call the set of vertices of G(A) that correspond
to finite entries of v (the eigenvector) the support of v. In general the support of a vector,
corresponds to its the indices of its elements that are finite.
The aforementioned definitions and lemmas show the important correlation that ex-
ists between max-plus algebra and graph theory. Underlying structural properties of
a matrix such as the eigenvalue and eigenvector can be directly determined from the
communication of the matrix. In the following section a new concept will be introduced
and its relationship to graph theory will be analysed.
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4-3 Asymptotic Growth Rate and Cycle-Time Vector

The asymptotic growth rate or cycle-time vector of x(k) is the quantitative asymptotic
behaviour of x(k), when generated by a sequence such as

x(k + 1) = A⊗ x(k) (4-9)

for all k ≥ 0, A ∈ Rn×nmax and x(0) = x0 ∈ Rnmax. It is formally defined as

Definition 4.4. Let {x(k) : k ∈ N} be a sequence in Rnmax, and assume that for all
j ∈ V (A) the quantity ηj, defined by

lim
k→∞

xj(k)
k

exists. The vector η = (η1, η2, · · · , ηn)T is called the cycle time vector of the sequence
x(k). If all ηj’s have the same value, this value is also called the asymptotic growth rate
of the sequence x(k).

The asymptotic growth rate of each state (or the cycle-time vector of the whole system)
describes the limiting behaviour of each state (or the whole system). What is of most
importance is to quantify the effect of the initial condition on the evolution of x(k) and
what this evolution is in the case when A is reducible and as a result there is no common
eigenvalue for all states. The dependency of the asymptotic growth rate on the initial
condition is examined in Theorem 4.5.

Theorem 4.5. Consider the recurrence relation x(k + 1) = A ⊗ x(k) for k ≥ 0, with
A ∈ Rn×nmax a square regular matrix and x0 as initial condition. If x0 ∈ Rn is a particular
initial condition such that the asymptotic growth rate exists, then the asymptotic growth
rate exists and has the same value for any initial condition y ∈ Rn

As a result, should the limit exist, its value has no dependence on the initial condition,
regardless of whether A is irreducible or not. This shows that after a finite period of
time the effect of the initial condition will fade away and the evolution of the states can
be completely described by the eigenvector of A. In the ensuing lemma the conditions
for the existence of the asymptotic growth rate for irreducible matrices are established.

Lemma 4.6. Consider the recurrence relation x(k + 1) = A ⊗ x(k) for k ≥ 0 and
A ∈ Rn×nmax a square irreducible matrix with eigenvalue λ ∈ R. Then

lim
k→∞

xv(k)
k

= λ,

for any initial condition x(0) = x0 ∈ Rn and for all v ∈ V (A).
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A direct consequence of the above lemma is the fact that should the eigenvalue of an
irreducible matrix exist and be finite,then it is equal to the asymptotic growth rate,
something that can be established and calculated from the communication graph of A.
The asymptotic growth rate may also be referred to in literature as max-plus exponent
or Lyapunov exponent.

With the purpose of showing that the cycle-time vector exists for regular reducible
matrices, the normal form of A is considered as shown in Equation 4-5. Then let x(k)
be partitioned according to the normal form of A


x1(k)
x2(k)

...
xp(k)


where each xj(k) for j ∈ p is a vector of appropriate size. Having partitioned the state
vector in this way, it allows for the evolution of each state of Equation 4-9 to be described
by the following recurrence relation

xj(k + 1) = Ajj ⊗ xj(k)⊕
p⊕

i=j+1
Aji ⊗ xj(k) (4-10)

Each block matrix Ajj is either irreducible and describes a m.s.c.s. of A or it is equal to
the max-plus zero matrix.

The asymptotic growth rate of irreducible matrices has been defined and proved to exist,
it follows that each m.s.c.s. of a graph, since it is irreducible, also has an asymptotic
growth rate. Furthermore, all the vertices that belong to the same m.s.c.s. have the same
asymptotic growth rate. The asymptotic growth rate of a m.s.c.s. can be obtained by
finding the maximum eigenvalue among that m.s.c.s. and the preceding m.s.c.s. of the
graph (i.e. the m.s.c.s.’s for which (a) path(s) exists that reach the m.s.c.s. in question).

The cycle-time vector then is the vector that contains the asymptotic growth rates of all
states. In other words, in a regular reducible matrix each state evolves with respect to
the m.s.c.s. and as a result not all states evolve with the same rate. As can be deduced,
it is possible through the communication graph of A, G(A), to analyse and evaluate the
limiting behaviour of each state as the irreducibility, eigenvalue and cycle-time vector
(or asymptotic growth rate in the case when A is irreducible) can be determined directly
from it.

The cycle-time vector is one of the most important properties for control of max-plus
linear (MPL) or switching max-plus linear (SMPL) systems and its importance will be
shown in the next chapter when MPL and SMPL systems will be presented.
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4-4 Max-Plus Geometry

In this section, an overview of the basic notions of max-plus geometry will be presented.
Following this, a method will be introduced with the objective of adequately representing
the span of max-plus matrices. As will be shown, the span of max-plus matrices can
be represented as the union of polyhedral sets. This method will be further used in
Chapter 6 with the intention of accurately determining the set of accessible states for
MPL systems.

Due to the lack of an opposite operation to max-plus addition and the fact that max-plus
algebra is idempotent, vector spaces cannot be defined in a similar way to conventional
algebra. The subspaces created by a vector, or the addition of two or more vectors are
referred to as semimodules or max-plus convex cones or max-plus polyhedra. Both terms
(semimodules and convex cones) will be used interchangeably for the internal represen-
tation, while the term max-plus polyhedra will be used for the external representation.
What internal and external representations are will be explained in due course and once
some preliminaries have first been introduced. For now the terms convex cones and
semimodules will be used interchangeably. They are the equivalent of vector spaces for
max-plus algebra.

Consider a subset S ⊆ Rnmax. Then this subset is a max-plus convex cone if

α⊗ u⊕ β ⊗ v ∈ S

∀u, v ∈ S and α, β ∈ R. A max-plus convex cone (hereafter, we will omit ”max-plus”
as a convex cone will always refer to a max-plus convex cone) is finitely generated if for
any x ∈ S, x can be expressed as x =

⊕s
i=1 αi ⊗ vi. The set of vectors {v1, . . . , vs} is

the generating set of S and α1, . . . , αs ∈ Rmax. A generating set is called minimal if any
vector vi belonging to the generating set cannot be expressed as a linear combination of
the other generators, that is for some αj , j 6= i

vi 6=
⊕
j 6=i

αj ⊗ vj

The set of minimal generators is also called bases. Vectors that are not a linear combi-
nation of each other are called (weakly) independent. All vectors contained in a minimal
generating set are therefore independent.

The set of all max-plus linear combinations of a set of vectors V will be denoted as
span(V ). Furthermore, if span(V ) = S then V is a generating set of S. It is therefore
evident that the column span of a max-plus matrix V ∈ Rn×mmax (this is also true for
square matrices) is a convex cone, if all the vectors are linearly dependent then the
cone generated is just the scalar multiples of these vectors. The generators of a convex
cone are unique up to a scalar multiplication (in the max-plus sense) of the vectors or a
reordering of the vectors [13]. The minimal number of generating vectors for a convex
cone is called the dimension of the cone [13]. A method for determining whether the
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columns of a matrix or the vectors of a generating set are linearly independent, and thus
the dimension of the cone, was given by [14] and is presented below in the form of a
theorem.

Theorem 4.7. Let V ∈ Rn×m (R defined in page 21) be a matrix with columns (v.1, . . . , v.m)
and V be the matrix produced by −V T ⊗′ V after changing the diagonal elements to ε.
Then for all i ∈ [1, . . . ,m] the column v.i is equal to the ith column of V ⊗V if and only
if v.i is a combination (in the max-plus sense) of other columns of V . The elements of
the ith column of V then provide the coefficients to express the max-combination.

The advantage presented by Theorem 4.7 is that it allows us to determine the minimal
generating set of the cone generated by the columns of any matrix V ∈ Rn×mmax . This
is particularly useful when considering large rectangular matrices (m >> n) due to the
fact that, the columns of a matrix that are not part of the minimal generating set of the
cone can be eliminated. This may be the case for the controllability matrix introduced
in Chapter 6. Theorem 4.7 will be illustrated by an example taken from [13] (Example
3.4.3)

Example 4.1. Consider,

V =

1 1 2 ε 5
1 0 4 1 5
1 ε −1 1 0


then

−V T ⊗′ V =


−1 −1 −1
−1 0 −ε
−2 −4 1
−ε −1 −1
−5 −5 0

⊗
′

1 1 2 ε 5
1 0 4 1 5
1 ε −1 1 0



=


0 −1 −2 0 −1
0 ε 1 ε 4
−3 ε 0 ε 1
0 ε −2 ε −1
−4 ε −3 ε 0


So,

V ⊗ V =

1 0 2 1 5
1 0 2 1 5
1 0 −1 1 0
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As a result,

v.1 = 0⊗ v.2 ⊕−3⊗ v.3 ⊕ 0⊗ v.4
v.5 = 4⊗ v.2 ⊕ 1⊗ v.3 ⊕−1⊗ v.4

and the generating set is v.2, v.3, v.4

This is also one of the definitions for the column rank of a matrix however, unlike
conventional algebra, many definitions of rank exist in max-plus algebra. For more
information on linear dependence and matrix ranks over the max-plus semiring the
reader is referred to [15]. Generators are also referred to as extreme points and the
formal definition follows [16].

Definition 4.8. Let S ⊂ Rnmax be a cone. A vector x ∈ S is an extreme point of S if
the following property holds

x = u⊕ v, u, v ∈ S =⇒ x = u or x = v.

If x is an extreme point of S, then the set x = {λ⊗x|λ ∈ Rmax} is an extreme ray of S.

A direct consequence is that the extreme rays are also the generating set of a convex
cone. It is now evident why it is required for generating vectors to be independent, as
scaled and dependent vectors already belong to the convex cone and therefore do not
”augment” the cone.

In a similar way to conventional convex cones, max-plus convex cones can either be
represented internally, in terms of their extreme points and rays, or externally, in terms
of the intersection of (closed) max-plus half-spaces. A max-plus half-space is a set defined
in the following way

H = {x ∈ Rnmax| ⊕1≤i≤n αi ⊗ xi ≤ ⊕1≤j≤nβj ⊗ xj} (4-11)

α, β ∈ Rnmax, and a max-plus affine half-space is a set of the form

H = {x ∈ Rnmax|(⊕1≤i≤nαi ⊗ xi)⊕ c ≤ (⊕1≤j≤nβj ⊗ xj)⊕ d} (4-12)

with α, β ∈ Rnmax, c, d ∈ Rmax. Half-spaces are max-plus cones [17]. In other words,
max-plus cone can be externally represented as a set of linear inequalities (in the con-
ventional sense) or as a set of linear inequalities in the max-plus sense. This set of linear
inequalities determines the span of the matrix as well as what values can be achieved by
x(k) in a sequence of the form (4-9).

Our objective is to represent the span of max-plus matrices as sets of linear inequalities
(in the conventional sense). This is equivalent to representing the span of max-plus
matrices as the union of non-overlapping polyhedral sets (in the conventional sense).
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Polyhedral sets, Γ, are the solutions to systems of linear inequalities. Note that equalities
can also be represented as two inequalities.

Γ = {Mx � b} (4-13)

x being a n × 1 vector, M a q × n matrix and b a q × 1 vector, and with � being a
vector operator that serves as either < or ≤. A method for representing the span of
max-plus matrices as a union of non-overlapping polyhedral sets is introduced in the
sequel. However, some necessary notions and operations will be first introduced.

A rearrangement of the columns of a matrix is called a column-permutation of the
columns. A permutation can also be applied to the rows of a matrix (called row per-
mutation. When the terms row or column are omitted then a permutation will refer to
a permutation of both the rows and columns. A permutation of a matrix V ∈ Rn×nmax

will be denoted as $, $ being the new arrangement. A weight can be associated with
a permutation and is calculated in the following way

w($,V ) =
⊗

i∈{1,...,n}
vi,$(i) (4-14)

The permutation(s) with the greatest weight is also referred to as maximal permutation.
A maximal permutation is not necessarily unique. The maximal permutation of a matrix
V can be found in O(n3) time using the Hungarian method [13, 18].

The focus will now shift to column-permutations and some of their properties. A column-
permutation does not alter the span of the matrix. A column-permutation of a matrix
V will be denoted as V {vi,...,vj} with {vi, . . . , vj} being the new arrangement of the
columns with respect to the original arrangement. Moreover, multiplying a vector by a
scalar λ ∈ R does not alter the span of the vector as a scalar multiple of a vector belongs
to the same extreme ray and as a result has the same contribution in regards to the
generation of a cone. This leads to the question whether there exist a permutation and
multiplication of the columns of a matrix that reveals information about the max-plus
polyhedra defined by the span of the columns of a matrix.

A matrix will be referred to as being in definite form if all its diagonal entries are equal
to e (zero) and the maximal cycle mean (eigenvalue) of the matrix is not greater than
e. Note that for all matrices in definite form the Kleene star exists. Furthermore, for all
matrices that have at least one element in every row and column not equal to ε there
exists a permutation and scaling of the columns that brings the matrix to definite form.
As can be deducted by the definition of the definite form, only square matrices can be
brought to this form. The case for rectangular matrices will also be presented later on.
Furthermore, only regular square matrices (at least one element in every row is not
ε) are considered. Although this may seem like a limitation it is not, as real systems
modelled in max-plus algebra nearly always are regular.
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Example 4.2. Consider the matrix V and its permutation (312)

V =

0 0 0
1 3 −1
2 6 −2

 , V {312} =

 0 0 0
−1 1 3
−2 2 6


the second and third column can now be scaled by subtracting 1 and 6 respectively to
obtain

V ′ =

 0 −1 −6
−1 0 −3
−2 1 0


The matrix V ′ is the definite form of V . All its diagonal entries are equal to zero and
the maximal cycle mean is also equal to zero.

The column permutation(s) that bring a matrix V to definite form are the same as the
maximal permutation(s) of the matrix. However, instead of permuting both the rows and
columns, as is the case with the maximal permutation, only the columns are rearranged.
As a result, in order to obtain the feasible column-permutations for bringing a matrix to
definite form, one has to first calculate the maximal permutation (as shown in (4-14))
and then apply that permutation as a column-permutation.

The method for obtaining the span of square matrices will now be presented. It was ini-
tially inspired by the work of Butkovic [19] and Sergeev [20]. In their papers they show
that the eigenspace of definite matrices can be represented by a set of linear inequalities
obtained from the Kleene star of the matrix. However, they are interested only in the
eigenspace of definite matrices. We extend this method in a way that allows for the com-
plete calculation of the span of any square matrix. Furthermore, we extend this method
to rectangular matrices and also present a way for obtaining an over-approximation of
the span of any matrix. Finally, we represent the span of any max-plus matrix as the
union of polyhedral sets.

The definite form of a matrix may not be unique that is to say, that more than one
column-permutation (and therefore scaling) may exist that brings a matrix to definite
form. This form is of interest due to the fact that entries of this form that are equal
to entries of its Kleene star define the inequalities of the closure of the span of the
original matrix. By closure, we refer to the area of the span that is generated by linear
combinations of all vectors of the generating set. Edges with the same orientation and
same weight in the communication graphs of the definite form and its Kleene star define
inequalities of the following form

{u, v ∈ V (G), (u, v) ∈ E(G) & E(G∗), w(u, v) = w∗(u, v)} → v − u ≥ w(u, v) (4-15)

The set of inequalities defined from the communication graphs of the definite form and
its Kleene star are the external representation of the closure of a max-plus cone. In
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addition to this, an important result from [20] (Proposition 10) shows that the closures
of all definite forms of any matrix, with at least one permutation of finite weight, are
the same. Consequently, it makes no difference which permutation is chosen if more
than one permutation exists that brings a matrix to definite form. The inequalities that
define the closure of a matrix also form one of the polyhedral sets that describe the span
of the matrix.

Nonetheless, the polyhedral defined by the inequalities of the closure does not express
the whole span of a matrix, which is the objective. Unless the definite form is equal to its
Kleene star then the inequalities will not include at least one of the extreme points and
its connection to the closure. As explained in the prequel, the extreme points are the
generators of the cone and their connection to the closure is the combination of at most
n − 1 generators (assuming a matrix V ∈ Rn×nmax). While the extreme points and their
connection are part of the span of the matrix they are not included in the inequalities
of the closure. However, this can be overcome with the method presented in the sequel.

Assume that for a square matrix V ∈ Rn×nmax the inequalities of its closure have been
obtained by bringing it to definite form, calculating its Kleene star and identifying the
common elements. Furthermore, assume that the definite form of the matrix is not equal
to its Kleene star as this would mean that all the extreme points (or generators) are
included in the closure. The next step is to compare the generators to the inequalities
of the closure. Recall that it does not matter whether we take the generators of the
original matrix or its definite form as they lie on the same extreme ray and subsequently
will violate the same inequalities. After comparing the generators with the inequalities,
some of the inequalities will be violated. The inequality(ies) that are violated can then
be augmented to include the extreme points. However, these inequalities are not just
augmented arbitrarily as they lie on the line(s)(or a plane in a higher dimension than
2) that connect the extreme point to the closure. These lines(or planes) are obtained
by setting the inequalities of the closure to equalities and finding which are satisfied for
the generator in hand. As a result, the union of the inequalities of the closure with the
augmented inequalities that lie on the lines defined above, fully characterize the span of
the matrix. Every extreme point and its connection to the closure can be characterized
by a (conventional) polyhedral set. Consequently, the union of the polyhedral sets
defined by the extreme points and their connections with the polyhedral set defined by
the closure of the matrix fully describe the span of the matrix. This will be further
illustrated in the example presented in the sequel.

Example 4.3. The Kleene star of the matrix V ′ of example 4.2 is equal to

V ∗ =

 0 −1 −4
−1 0 −3
0 1 0


The elements of a vector v are denoted as v = (v1, v2, v3)T . The definite form V ′ and
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the Kleene star V ∗ of V have four equal edges that provide the following inequalities

v2 − v1 ≥ −1
v1 − v2 ≥ −1
v3 − v2 ≥ 1
v2 − v3 ≥ −3

which define the closure of the matrix V . Therefore, the closure can be described by the
polyhedral set Γ1 = {M1v < b1}, where

M1 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , b1 =


1
1
−1
3



The next step is to compare the generators to the inequalities obtained above. The first
generators considered is (0,−1,−2)T . This generator violated the inequality v3− v2 ≥ 1
as v3 − v2 = −1. Additionally, the generator satisfies the equality v2 − v1 = −1. So the
span is augmented by adding the inequality −1 ≤ v3 − v2 ≤ 1 for v2 − v1 = −1. Now
the next generator is considered (−1, 0, 1)T , this generator satisfies all the inequalities
of the closure so it does not augment the span. Finally, the third generator (−6,−3, 0)
violated the inequality v2 − v1 ≥ 1 and satisfies the equality v2 − v3 = −3, so the span
is augmented by adding the inequality 1 ≤ v2 − v1 ≤ 3 for v2 − v3 = −3. So the
two polyhedral sets, Γ2 and Γ3, that are obtained from the two extreme points that lie
outside the closure and their connections to the closure are given by Γ2 = {M2v ≤ b2}
and Γ3 = {M3v ≤ b3} respectively, with

M2 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , b2 =


1
−1
1
1



M3 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , b3 =


−1
3
−3
3



So, in total the span of the matrix V can be characterized by Γ = ∪3
i=1Γi. The cross

section of the span of the matrix for v3 = 0 is depicted in Figure 4-1. The Figure depicts
all the values that the elements v1 and v2 can attain when v3 = 0.
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Figure 4-1: span(V) of Example 4.3 for v3 = 0.
Closure (cyan): Polyhedral set Γ1 described by {(−1 ≤ v2−v1 ≤ 1)∧ ((1 ≤ v3−v2 ≤ 3))}
Connections & extreme points: Polyhedral sets Γ2,Γ3 {((1 ≤ v2 − v1 ≤ 3) ∧ (v2 − v3 =
−3)) ∨ ((−1 ≤ v3 − v2 ≤ 1) ∧ (v2 − v1 = −1))}

Calculating the min-plus span of a square matrix, span−(A), can be done in the same
way as for max-plus matrices. The two modifications that need to be made in order to
account for the min operation instead of the max operation, are follows. Firstly, instead
of requiring the smallest (in contrast to max-plus) eigenvalue of the definite form to
be negative or zero, now it is required to be zero or positive. This occurs because the
Kleene star for min-plus matrices is only defined for matrices that have cycle weights
positive or equal to zero. Secondly, the inequalities defined by the edges of the min-plus
Kleene star of the min-plus definite form of a matrix have an opposite orientation to the
max-plus case. More specifically,

{u, v ∈ V (G), (u, v) ∈ E(G) & E(G∗), w(u, v) = w∗(u, v)} → v − u ≤ w(u, v) (4-16)

instead of, v − u ≥ w(u, v) (4-15), as is the max-plus case.

Before considering the case of non-square matrices an important result from Prou [21]
(Proposition 3.3) will be presented. Let V ∈ Rn×mmax , then define V ♣ ∈ R̄n×n as V ♣ =
V ⊗−V T . The proposition then states that

span(V ♣) ⊂ span(V ) ⊂ span−(V ♣) (4-17)

Moreover, since only regular matrices are considered, the diagonal entries of V ♣ will
be equal to zero since the diagonal entries are the max-plus multiplication of the same
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vector with opposite sign (i.e. vT ⊗−v). As it is regular each row (and thus column of
−V T ) will have at least one finite element. Another important property of this matrix
is that V ♣ = V ♣∗∗ [21] (V ∗∗ denoting the min-plus Kleene star). As a result, V ♣ is
already in min-plus definite form and its span generates a closure that includes the span
of V .

In essence only the second part of relation (4-16), span(V ) ⊂ span−(V ♣), will be used.
The reason for this is that the matrix V ♣ may contain elements equal to∞, as it belongs
to R̄ and not Rmax, thus rendering it impossible to bring it to definite form and calculate
its (max-plus) span with the methodology presented above. However, the second part
of the relation provides advantages. Such an advantage is that it allows us to obtain an
upper bound on the span of a rectangular matrix by calculating the min-plus span of
a square matrix. As will be indicated in the next subsection, this is particularly useful
for matrices V ∈ Rn×mmax , where m >> n. For a better understanding of the second part
of relation (4-16), Figure 4-2 depicts the min-plus span of V ♣, for V of Example 4.3,
in comparison to the actual span (the actual span is included in the min-plus span, it
is depicted in cyan for the purpose of creating a contrast between the actual span and
min-plus span of V ♣).
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Figure 4-2: span(V) (cyan,black) and span(V ♣) (blue) of Example 4.3 for v3 = 0.

4-4-1 Obtaining the span of non-square matrices.

The case for non-square matrices will now be considered. As can be deducted, only
square matrices can be brought to definite form. Rectangular matrices do not possess
a main diagonal and therefore the methodology presented above has to be adjusted. A

Vangelis Peter Kalamboukis Master of Science Thesis



4-4 Max-Plus Geometry 35

distinction will be made for matrices that have less columns than rows and matrices that
have more columns than rows.
Case 1 (m > n). The method for precisely calculating the span of a matrix A ∈
Rn×mmax ,m > n, is to calculate the span of all square submatrices with linearly independent
columns of A. The overall span is then the union of these spans. In this thesis the term
submatrix will refer to a matrix that is obtained from the original matrix after an erasure
of a number of columns. A submatrix will be denoted as, A[i1,...,ij ], i ∈ [1, . . . ,m], j ∈ N+

, ij symbolizing the column(s) of the original matrix that have been omitted.
As was seen above, since the subspace created by the columns of a matrix is a convex-
cone, it is generated by its extreme rays (i.e. the linearly independent columns of the
matrix). By considering the span of all linearly independent square submatrices of a
matrix, it is possible to obtain all the closures, extreme points and connections gener-
ated by the linearly independent columns. Because some combinations of columns are
the same between the different submatrices, some of the closures, extreme points and
connections defined by the spans overlap. In addition to this, unlike square matrices, for
rectangular matrices the closure of the span may be defined by more than one polyhe-
dral set. This is occurs because the overall closure of a rectangular matrices is the union
of the polyhedral sets that define the closure for every square submatrix. An example
follows to better demonstrate the process.
Example 4.4. Consider the matrix V

V =

0 0 0 0
1 2 3 4
2 4 6 8


The objective is to determine the span generated by its columns. In this case it is easy
to see that the columns of the matrix are linearly independent. For more complex cases
Theorem 4.7 can be used to determine the linearly independent columns. Since this
matrix has four linearly independent columns it also has 4 square submatrices. The first
submatrix to be considered is

V[1] =

0 0 0
2 3 4
4 6 8


where the first column has been omitted. The definite form and its Kleene star then are

V
′

[1] =

0 −3 −8
2 0 −4
4 3 0

 , V
′

[1]
∗ =

0 −3 −7
2 0 −4
5 3 0


The span of this submatrix is then given by the following polyhedral sets

span(V[1]) =


((2 ≤ v2 − v1 ≤ 3) ∨ (−4 ≤ v2 − v3 ≤ −3))
∨((3 ≤ v2 − v1 ≤ 4) ∧ (v2 − v3 = −4))
∨((−3 ≤ v2 − v3 ≤ −2) ∧ (v2 − v1 = 2)
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or in polyhedral form Γ[1],1,Γ[1],2,Γ[1],3, with the polyhedral sets defined as follows

M[1],1 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , b[1],1 =


−2
3
−3
4



M[1],2 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , b[1],2 =


−3
4
−4
4



M[1],3 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , b[1],3 =


−2
2
−2
3



In a similar manner the spans for submatrices V[2], V[3], V[4] are obtained to be

span(V[2]) =


((1 ≤ v2 − v1 ≤ 3) ∧ (−4 ≤ v2 − v3 ≤ −3))
∨((3 ≤ v2 − v1 ≤ 4) ∧ (v2 − v3 = −4))
∨((−1 ≤ v2 − v3 ≤ −3) ∧ (v2 − v1 = 1))

span(V[3]) =


((1 ≤ v2 − v1 ≤ 2) ∧ (−4 ≤ v2 − v3 ≤ −2))
∨((2 ≤ v2 − v1 ≤ 4) ∧ (v2 − v3 = −4))
∨((−2 ≤ v2 − v3 ≤ −1) ∧ (v2 − v1 = 1))

span(V[4]) =


((1 ≤ v2 − v1 ≤ 2) ∨ (−3 ≤ v2 − v3 ≤ −2))
∨((2 ≤ v2 − v1 ≤ 3) ∧ (v2 − v3 = −3))
∨((−2 ≤ v2 − v3 ≤ −1) ∧ (v2 − v1 = 1))

Obviously some of the spans defined overlap. To begin with, only the polyhedral sets
that define the closure(s) are considered. Notice that, the closures obtained from V[1] and
V[4] are already included in the closures of V[2] and V[3] respectively. Correspondingly,
the closure of the overall matrix V is obtained from taking the union of the closures
defined by V[2] and V[3]. So for the closure we have

clo(V ) =
{

((1 ≤ v2 − v1 ≤ 3) ∧ (−4 ≤ v2 − v3 ≤ −3))
∨((1 ≤ v2 − v1 ≤ 2) ∧ (−3 ≤ v2 − v3 ≤ −2))
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or in polyhedral form Γclo = ∪2
i=1Γclo,i

Mclo,1 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , bclo,1 =


−1
3
−3
4



Mclo,2 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , bclo,2 =


−1
2
−2
3



The next step now is to consider all the boundary rays defined by the submatrices.
These boundary rays are checked against the inequalities of the closure (above). If the
boundary rays do not violate these inequalities then no modification is made to the span
of the matrix. If however this is not the case, then the boundary rays of the submatrices
are added as boundary rays to the span of the overall matrix. We finally obtain

span(V ) =


((1 ≤ v2 − v1 ≤ 3) ∧ (−4 ≤ v2 − v3 ≤ −3))
∨((1 ≤ v2 − v1 ≤ 2) ∧ (−3 ≤ v2 − v3 ≤ −2))
∨((3 ≤ v2 − v1 ≤ 4) ∧ (v2 − v3 = −4))
∨((−2 ≤ v2 − v3 ≤ −1) ∧ (v2 − v1 = 1))

or in polyhedral form Γ = Γclo ∪ Γcon, where Γcon = ∪2
i=1Γcon,i and the polyhedral sets

Γcon,1, Γcon,2 are given by

Mcon,1 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , bcon,1 =


−3
4
−4
4



Mcon,2 =


1 −1 0
−1 1 0
0 1 −1
0 −1 1

 , bcon,2 =


−1
1
−1
2



span(V ) is depicted in Figure 4-3.
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Figure 4-3: span(V) of Example 4.4 for v3 = 0.

Although it is possible with this method to precisely determine the span of a rectangular
matrix, it may become computationally inefficient for matrices of a large order or for
matrices with m >> n. By using the property of relation (4-17) it is possible to compute
an over-approximation of the span of a rectangular matrix with a one-shot computation.
Another benefit is that the min-plus span of V ♣ can always be expressed as one poly-
hedral set. This may be of particular interest when the goal is to determine whether all
the state vertices remain bounded with respect to each other. However, if precision is of
greater importance it is preferable to use the method of Example 4.4. Which method is
used depends on whether the objective is precision or specific information regarding the
span of a matrix. The example in the sequel demonstrates how the min-plus method
can be used for rectangular matrices.

Example 4.5. Consider again the matrix V of Example 4.4

V =

0 0 0 0
1 2 3 4
2 4 6 8


The next step is to calculate V ♣

V ♣ =

0 −1 −2
4 0 −1
8 4 0
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as was stated above this matrix coincides with its min-plus Kleene star. So its min-plus
span is given by

span−(V ♣) =


1 ≤ v2 − v1 ≤ 4
1 ≤ v3 − v2 ≤ 4
2 ≤ v3 − v1 ≤ 8

or in polyhedral form, Γ♣

M♣ =



1 −1 0
−1 1 0
0 1 −1
0 −1 1
1 0 −1
−1 0 1


, b♣ =



−1
4
−1
4
−2
8


The min-plus span of V ♣ in comparison to the exact span of the matrix is depicted in
Figure 4-4.
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Figure 4-4: span−(V ♣) in comparison to span(V ) of Example 4.4.

Even though the min-plus span defines a closure that contains the span of the original
matrix and does not precisely calculate it, it is computationally less expensive. Further-
more, if a state vertex is unbounded in the original matrix, it will remain unbounded in
min-span of the ♣ matrix, and vice versa.
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Case 2 (m<n). The difference between this case and the previous one is that matrices
of this type do not have square submatrices. Nonetheless, this can be overcome by
augmenting the matrix with max-plus multiples of the linearly independent columns of
the matrix. Adding columns that are max-plus multiples of the already existing columns
of a matrix does not alter the span of the matrix, because both vectors are part of the
same extreme ray and as a result do not contribute to the span of the matrix. The min-
plus method can be also applied to matrices of this type. Although, as in the previous,
the span obtained by the min-plus method could be an over approximation of the actual
span of the matrix.

Example 4.6. Consider the matrix V ,

V =


0 ε ε ε
ε 1 ε ε
2 ε ε ε
ε 1 ε ε


the two columns that are equal to ε are replaces by max-plus multiples of the existing
columns

Vaug =


0 ε 1 ε
ε 1 ε 2
2 ε 3 ε
ε 1 ε 2


its definite form and its respective Kleene star are

V
′ = V

′∗ =


0 ε −2 ε
ε 0 ε 0
2 ε 0 ε
ε 0 ε 0



Finally, the inequalities defining the span are

span(V ) =
{

2 ≤ x3 − x1 ≤ 2
0 ≤ x4 − x2 ≤ 0

or in polyhedral form

M♣ =


1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1

 , b♣ =


−2
2
0
0



Vangelis Peter Kalamboukis Master of Science Thesis



Chapter 5

Max-Plus-Linear (MPL) Systems &
Switching Max-Plus-Linear (SMPL)

Systems

Railway networks, production system with fixed routing and communication networks
are just some examples of systems that can be modelled with the use of max-plus algebra.
These systems are all discrete event systems (DES) in which there is no concurrency or
choice but, there is synchronization. Even though these systems are inherently nonlinear
in conventional algebra, they become linear when modeled within the max-plus semiring.

5-1 Max-plus linear (MPL) systems

Scheduling has been defined as ‘the allocation of resources over time to perform a collec-
tion of tasks’ [22]. The processing of a job on a machine is called operation and each job
consists of a set of operations and an order of operations. The most common objective
is to minimize the time required for the completion of all jobs, subject to retaining the
order of operations.

DES that have a fixed schedule can be characterized by an MPL model. These systems
have no concurrency or choice but synchronization is possible. By no concurrency we
mean that no two operations can take place simultaneously on the same machine, or in
terms of a railway network example, two trains would not be able to occupy the same
block of a track simultaneously. What is meant by synchronization is that machines
wait for the previous operation to finish before beginning their new operation. In a
production system this could be interpreted as a machine having to finish processing
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on its current product in order to begin processing on a new product. Moreover, the
implication of no choice is that the order of operations for a job is fixed and cannot
change. In a railway network example this would mean that a train follows a fixed route
and does not alter its sequence of stations except for unforeseeable circumstances. Such
DES can be modeled by an MPL system of the form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (5-1)
y(k) = C ⊗ x(k) (5-2)

with A ∈ Rn×nmax, B ∈ Rn×mmax and C ∈ Ro×nmax. The number of states is equal to n, of
inputs to m, of outputs to o and the event counter is k. At this point it is important to
note that usually the state, input and output vectors (x(k), u(k), y(k)) represent time
instants at which events occur for the kth time. The output is often the state of the
system and as a result it is a common theme to exclude the output equation (5-2) and
describe a system only by its state equation (5-1). Systems that do not have an input
are called autonomous systems. In order for the concept of MPL systems to be better
understood we will provide an example taken from [23].

Figure 5-1: A simple production system.

Example 5.1. Consider the system depicted in Figure 5-1. Three processing units, P1,
P2 and P3 comprise this production system. Raw material is fed and then split, to P1
and P2 where it is processed. Once the process has finished the processed material of P1
and P2 respectively is assembled at P3. The processing times for each processing unit
are depicted on the figure by the letter d and the respective subscript. Additionally, the
transportation time between the processing units is also represented on the figure by
the letter t. Only once the previous product on a processing unit has been completed,
can the processing unit begin working on a new product. The state, input and output
variables are defined as follows.
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• xi(k): time instant at which the ith processing unit start working for the kth time.

• u(k): time instant at which raw material is fed into the system for the kth time.

• y(k): time instant at which the kth product leaves the system.

In order for P1 to begin working on a product for the kth time it needs to have raw
material available and to have finished working on the product of the previous time
instant (k − 1). This can be expressed as

x1(k) = max(x1(k − 1) + 5, u(k) + 2)

The other states can be expressed in a similar way.

x2(k) = max(x2(k − 1) + 6, u(k) + 0)
x3(k) = max(x1(k) + 5 + 1, x2(k) + 6 + 0, x3(k − 1) + 3)

= max(x1(k − 1) + 11, x2(k − 1) + 12, x3(k − 1) + 3, u(k) + 8)
y(k) = x3(k) + 3 + 0

Notice for x3(k), that the constraint of the processed material from unit P1 being avail-
able before P3 can begin the processing, is expressed as max(x1(k) + 5 + 1). This is
due to the fact that, x1(k) represents the instant that unit P1 begins its operations.As
a result, we must also add the time value for the processing time of P1 (d1) in addition
to the transportation time (t3). The same is also true for the constraint corresponding
to unit P2. The MPL system can then be expressed in the form of (5-1)-(5-2) in the
following way

x(k) =

 5 ε ε
ε 6 ε
11 12 3

⊗ x(k − 1)⊕

2
0
8

⊗ u(k)

y(k) =
(
ε ε 3

)
⊗ x(k)

where x(k) =
(
x1(k) x2(k) x3(k)

)T
.

In MPL systems the eigenvalue of the state matrix A can be regarded as the minimum
period required for a schedule in order for it to be stable. In other words, the eigen-
value indicates the period it takes for each node to become active while the eigenvector
indicates the order of activation of each node associated with it. Going again back to
the production system example, if a production system is represented by a max-plus
model, such as the one in the example above, and the eigenvalue is equal to λ then, any
schedule with a period shorter than λ (< λ) will be unstable. However, it is common
practice to have a period a bit larger than the eigenvalue with the purpose of enhancing
the robustness properties of the system.
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An important aspect for systems of the form (5-1)-(5-2), is whether they are stable and
if not, whether they can be stabilized. A system is stable, as stated above, if the period
of the system is greater than the eigenvalue. If this is the case then the buffer levels of
the system will remain bounded. Lets assume that a reference signal r(k) exists for the
system, describing the due dates of the finished product for the example above. The
buffer levels of an MPL system are then expressed as follows

y(k)− r(k) ≤Myr (5-3)
r(k)− y(k) ≤Mry (5-4)
y(k)− u(k) ≤Myu (5-5)

Alternatively, a definition of stability can be given with regards to the boundedness of
the internal buffer levels [24]. By boundedness of the internal buffer levels we refer to
the fact that the state trajectory remains bounded. That is to say, there exists a finite
δ > 0 for which the number of material/train/parts (depending on the system being
modelled) in the buffer is always less than δ. More formally,

∃δ such that |xi(k)− xj(k)| ≤ δ, ∀i, j, k (5-6)

Condition (5-3) indicates that the delay between the output and the due date remains
bounded, condition (5-4) shows that the amount of parts in the output will remain
bounded and lastly, condition (5-5) guarantees that the time between the starting date
u(k) and the output date y(k) also remains bounded. A direct consequence of this
is that max-plus linear systems are not inherently stable or unstable but rather, the
stability of these systems is also a function of the input and reference signal. For the
example given above this can be interpreted in the following way. In order for the system
to be stable the asymptotic slope of the reference signal needs to be greater than the
eigenvalue of the system. For a production line this can be interpreted as not having
more requests for completed products than the amount of products the production line
can produce. Additionally, the input must be chosen in such a way that the overall
period of the system is greater than the eigenvalue, while at the same time, guaranteeing
that the products are finished before the due dates. This ensures firstly, that the due
dates are met meaning there is no delay and secondly, that the buffers of the system
remain bounded. With respect to the previous example, an unbounded buffer would
constitute feeding in material every second. Then the amount of raw material waiting to
be processed would tend to infinity as time tends to infinity. If all the previous conditions
hold true simultaneously then the system is stable. However, how can we determine a
priori whether a system is stabilizable. The answer to this question is given in [2] by the
following theorem.

Theorem 5.1. Any structurally controllable and structurally observable system can be
made internally stable by output feedback.

Consequently, we can determine whether a MPL system is feedback stabilizable by check-
ing whether it is structurally controllable and observable. The notions of structural
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controllability and observability and how they can be derived for MPL systems will be
discussed in detail in the next chapter, where an overall overview of the notion of control-
lability for MPL systems will be given. For now it is important to note that for a system
to be feedback stabilizable it is sufficient to show that it is structurally controllable and
observable. For structurally controllable and observable systems condition (5-6) already
entails that the output and input remain bounded [24].
Nevertheless, the fixed structure of MPL systems renders the modeling of a large variety
of DES impossible. This is due to the fact that, the fixed structure of a MPL system does
not allow for a variation in the order of events to be modeled or for the termination of
a synchronization. This provides challenges in many real life applications. For example,
it would not be possible to model the scheduling of a printer that needs to change from
printing A4 size of paper to A3 by a MPL system. This occurs because the structure of
the system and the amount of time it would take to print varies depending on the size of
paper that needs to be printed. In the interest of overcoming such challenges switching
max-plus linear (SMPL) systems were introduced [3]. These systems will be presented
in the next section.

5-2 Switching max-plus linear (SMPL) systems

With the purpose of modeling a change in structure, order or a break in the synchroniza-
tion SMPL systems were introduced by van den Boom and De Schutter [3]. Such systems
allow for switching between different modes of operation. Each mode is a separate MPL
system described by its own state, input and output matrices. The switching between
different modes of operation can be either deterministic, stochastic or a combination of
the two [25].
As opposed to conventional switched systems which are most commonly used in hybrid
theory to describe a combination of continuous and discrete dynamics, SMPL systems
are DESs. The max-plus linear state space model that describes such systems in mode
l(k) ∈ {1, · · · , L}, L denoting the number of modes, is given by Equations (5-7)-(5-8)

x(k) = Al(k) ⊗ x(k − 1)⊕Bl(k) ⊗ u(k) (5-7)
y(k) = C l(k) ⊗ x(k) (5-8)

where matrices Al(k), Bl(k) and C l(k) are the system matrices for mode l(k). From this
point on, when referring to SMPL systems, only SMPL systems with state matrices of
equal order will be considered. That is, Al(k) ∈ Rn×nmax, ∀l(k) ∈ {1, · · · , L}. The number
of inputs and outputs may vary between different modes.
By switching between different modes it is possible to model a wider range of DESs and
to incorporate the potential modeling changes in the structure of the system, in the order
of events or in the synchronization requirements. As was the case with MPL systems an
example will be presented, taken from [3], for a better understanding of the concept of
SMPL systems.
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Figure 5-2: A simple production system.

Example 5.2. Consider the production system depicted in Figure 5-2. There are five
processing units denoted M1, M2, M3, M4 and M5. The raw material is fed into M1
and M2 where it is processed. The processed material can now be fed into either M3
or M4, which perform the same operation with different processing times (that is both
machines can process the material provided from M1 or M2). As a result, the processed
products exiting M1 and M2 are driven to a switching mechanism Sw, that directs the
first product received to the slower machine M3 and the second product to M4. The
states and inputs are defined in a similar way to the previous example. A system such
as this can me modelled as a SMPL system with two modes, one mode for when M1
finishes first and one mode for when M2 finishes first. If M1 finishes first (which will be
mode - 1 in this example) then the material of M1 will be fed to M3 and the material of
M2 to M4. As a result, in order for M3 to begin its operation M1 needs to have finished
processing and for M3 to have finished its previous operation so we have (we neglect the
transportation times as they are zero from the machine to the switching mechanism),

x3(k) = max(x1(k) + d1, x3(k − 1) + d3)

where,

x1(k) = max(x1(k − 1) + d1, u(k) + t1)

so we substitute to obtain,

x3(k) = max(x1(k − 1) + 2d1, x3(k − 1) + d3, u(k) + d1 + t1)
= max(x1(k − 1) + 2, x3(k − 1) + 6, u(k) + 5)
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The second mode is also modeled in the same way. The SMPL system is then

x(k) =


1 ε ε ε ε
ε 3 ε ε ε
2 ε 6 ε ε
ε 6 ε 4 ε
8 11 12 9 ε

⊗ x(k − 1)⊕


4
1
5
4
11

⊗ u(k) (mode− 1) (5-9)

x(k) =


1 ε ε ε ε
ε 3 ε ε ε
ε 6 6 ε ε
2 ε ε 4 ε
7 11 12 9 ε

⊗ x(k − 1)⊕


4
1
5
4
10

⊗ u(k) (mode− 2) (5-10)

And the switching mechanism is defined as(
z1(k)
z2(k)

)
=
(
x1(k) + d1
x2(k) + d2

)
(5-11)

=
(

max(x1(k − 1) + 2, u(k) + 5)
max(x2(k − 1) + 6, u(k) + 4)

)
(5-12)

and the sets

L1 = {z ∈ R2
max|z1 ≤ z2} (5-13)

L2 = {z ∈ R2
max|z1 > z2} (5-14)

The variables z1 and z2 are the time instant at which machinesM1 andM2, respectively,
complete their product for the kth time. So for the first mode, the set L1 corresponds
to when z1 ≤ z2 or in other words, when the processed material from M1 reached the
switching mechanism first. Conversely, the second set L2 is associated with when M2
finishes processing first, when z2 > z1.

The switching between the different modes, as mentioned above, can either be determin-
istic or stochastic or a combination of the two (for the example above it is deterministic).
If the switching is deterministic then it depends on deterministic variables such as the
previous state x(k−1), the input variable u(k), and(or) a (complementary) control vari-
able v(k). In contrast, if the switching is stochastic it will depend on stochastic variables.
The switching can also be a combination of deterministic and stochastic variables. In
this case the switching may depend on the previous state, input variable and control
variable in addition to stochastic variables. Even when the switching purely depends on
deterministic variables, a switching sequence can be implemented because it optimizes
certain parameters of interest or because it was forced by the situation.

As SMPL systems are not wholly characterized by one state matrix, the concept of
maximum autonomous growth rate is used as a substitute to the max-plus eigenvalue.
The definition of the maximum autonomous growth rate is given below [25]
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Definition 5.2. Consider an SMPL system of the form (5-7)-(5-8) with system matrices
A(l), l ∈ {1, · · · , L}. Define the matrices A(l)

α with [A(l)
α ]ij = [A(l)]ij − α. Define the

set Sfin,n of all n × n max-plus permutation matrices with finite diagonal entries, so
Sfin,n = {S|S = diag⊕(s1, · · · , sn), si is finite}. The maximum autonomous growth rate
ζ is defined by

ζ = min{α|∃S ∈ Sfin,n such that [S ⊗A(l)
α ⊗ S⊗−1]ij ≤ 0 ∀i, j, l} (5-15)

The maximum autonomous growth rate can be seen as the equivalent of choosing the
largest max-plus eigenvalue of a system matrix in MPL systems. Moreover, the maximum
autonomous growth rate exists and is finite for any SMPL system.

As is the case with the max-plus eigenvalue for MPL systems, the maximum autonomous
growth rate plays an important role in the control of SMPL systems. As shown in [25]
an SMPL can be stabilized if it fulfills the three conditions which are presented below.
Note that, as for MPL systems, the structural controllability and observability have not
yet been defined as a more comprehensive review of the notion (for SMPL systems also)
will be given in the next chapter.

Theorem 5.3. Consider an SMPL system with maximum autonomous growth rate ζ and
consider a reference signal with growth rate ρ. Define the matrices A(l)

ρ with [A(l)
ρ ]i,j =

[A(l)]i,j − ρ. Now if

1. ρ > ζ

2. the system is structurally controllable. and

3. the system is structurally observable,

then any input signal

u(k) = ρk + µ(k), where µi(k) ≤ µmax,∀i,∀k

for a finite value µmax, will stabilize the SMPL system.

A direct consequence of Theorem 5.3 is that for an SMPL system to be stabilizable it
is sufficient to show conditions (1-3) above. Additionally, it is shown that structural
controllability and observability are sufficient conditions for the feedback stabilizability
of MPL systems. This partly motivates the subject of the next chapter.

5-2-1 Annotation of switching sequences

A brief description of how switching sequences will be annotated will be presented here.
A switching sequence will be denoted by the vector

s(σ) = {[s1, . . . , st]T |sk ∈ {l1, . . . , lL}, k = {1, . . . , t}}, σ ∈ {1, . . . , F}
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where F is the number of all feasible successive sequences, L recall is the number of
modes of the system and t is the time-span of the sequence. The parameter s(σ)

k denotes
the active mode of sequence σ at step k. The time-span of each sequence may vary.
However, we can say that tmin ≤ t ≤ tmax, with tmin being the smallest time-span
among all switching sequences and tmax being the largest time-span among switching
sequences.

Finally we define the set F , as the set of all feasible switching sequences for a given
SMPL system.

F = {s(σ) ∈ F , if and only if, s(σ)is a feasible switching sequence of the SMPL system.}
(5-16)

Whether a switching sequence is feasible or not depends on the system being modelled.
Consequently, it is not always possible to determine whether a switching sequence is
feasible or not without information about the system being modelled.

5-2-2 Graphical Representation of SMPL systems

Due to the fact that the structure changes over time, SMPL systems cannot be asso-
ciated with signal-flow graphs. This obstacle can be overcome by using the dynamic
graph or the coloured dynamic graph (introduced in Section 2-5). For a given switch-
ing sequence over a number of steps k the SMPL system can be modelled as a dynamic
graph. For a switching sequence of modes s(σ) = {{s1, · · · , st}, sk ∈ {l1, · · · , lL}, k ∈
{1, · · · , t}}, over a number of steps k > 0, the dynamic graph of the SMPL system is
G̃(A(s(σ)), B(s(σ))),

V (G̃(A)) = Xt+1
0 = ∪t+1

k=0X
k, Xk = {xki |i = 1, ..., n}(k = 0, 1, ..., t+ 1),

V (G̃(B)) = U t1 = ∪t1Uk, Uk = {ukj |j = 1, ...,m}(k = 1, ..., t),

E(G̃(A,B)) = Et0 = {(xkj , xk+1
i )|A(sk)

ij 6= 0; k = 0, 1, ..., t}∪{(ukj , xk+1
i )|B(sk)

ij 6= 0; k = 1, ..., t}

Consider an SMPL system with two modes and system matrices

A(1) =
[
1 ε
ε 1

]
, B(1) =

[
0
ε

]
(5-17)

A(2) =
[
1 ε
1 ε

]
, B(2) =

[
ε
0

]
(5-18)

The dynamic graph of this system for a sequence s = {l1, l2, l1} is depicted in Figure
5-3.
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u(3)
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Figure 5-3: A dynamic graph for the SMPL system of (6-20)-(6-21).
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Chapter 6

Structural Controllability for MPL
and SMPL systems.

We have seen in Chapter 3 that directed graphs have been used in conventional linear
system theory for the purpose of defining and deriving the property of structural control-
lability. In Section 6-1 an overview of the current definitions that exist for controllability
in MPL systems will be given. In Section 6-2 controllability will be defined for max-plus
linear systems and then the notion will be further extended to SMPL systems in Section
6-3.

6-1 Introduction

As was seen in the previous chapter, being able to determine whether a system is struc-
turally controllable and/or observable is of great importance as they are sufficient con-
ditions for a system to be stabilizable. However, due to the very nature of MPL systems
it is not possible to define controllability in the same way as for conventional linear sys-
tems. Controllability in conventional algebra implies that one can steer any state to any
value within the vector space of the controllability matrix. However, due to the nature of
max-plus algebra it is impossible for the vector space of a max-plus matrix (semimodule)
to include all of Rnmax. In fact, semimodules of the controllability matrix of max-plus
linear systems can be associated with a cone structure over the Rmax semiring, as was
seen in 4-4 as, due to the lack of an inverse operation for max-plus addition, it is unfea-
sible to decrease the values of states. This can be seen to have a clear physical meaning,
the states of max-plus linear systems represent event timings making it impossible for a
state to decrease in value as that would represent going back in time.
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This created the need to define controllability and structural controllability in a different
way for MPL and SMPL systems. Baccelli et all [2] defined structural controllability
and observability in terms of a timed event graph, while Cofer [26] defines states to be
controllable if they can be arbitrarily delayed. Gaubert [27] said that a state is reachable
only if it belongs to the semimodule of the controllability matrix. However, computing
whether a state belongs to the semimodule of a matrix is a computationally difficult
task.

The definitions for structural controllability of Baccelli et all. and controllability of
Cofer are in fact the same, but stated differently. In contrast, Gaubert’s definition of
controllability is more relevant to specific states than the whole system and is more in
line with a geometric approach. In the sequel we will focus more on the definition of
controllability as given by Baccelli et all and Cofer while, in subsections 6-2-1 and 6-2-2
we will focus more on Gaubert’s definition of controllability by making use of the method
described in 4-4 for obtaining the span of matrices.

6-2 Controllability and Structural Controllability for MPL sys-
tems.

Baccelli et all. defined controllability in terms of a timed event graph and required that
every internal transition (equivalent to a state vertex) can be reached by a path from at
least one input transition (equivalent to an input vertex). The consequence of this is that
the synchronization constraints imposed on all states are a function of the input. If all
the synchronization constraints of all the states are a function of the input (or inputs)
then they can be influenced by the input and thus they can be arbitrarily delayed,
which is the definition of controllability given for MPL systems by Cofer. Notice that
no distinction is made based on whether these states can be influenced independently.
These two definitions also have an algebraic interpretation. By defining the reachability
matrix for the kth event as,

Kk = [B A⊗B · · · A⊗k−1 ⊗B], k ∈ N+ (6-1)

the states of the MPL system at the kth event can be expressed as

x(k) = A⊗k ⊗ x(0)⊕Kk ⊗ Uk (6-2)

where, Uk = [uT (k) uT (k − 1) · · ·uT (1)]T . Another important differentiation of MPL
systems compared to LTI systems is the fact that, unlike conventional systems, the
semimodule of the reachability matrix Kk, k = n − 1, for a system with state matrix
A ∈ Rn×nmax, may not actually represent the whole semimodule that can be achieved. The
cause of this is that if the columns of the B matrix do not enter the eigenspace of the
A matrix, then they will enter a period which could infinitely increase the semimodule
as k → ∞. The meaning of this is that if a certain state x(k) does not belong to the
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semimodule at Kk, this does not mean it will not belong to the semimodule Kk+c, c ≥ 1.
Consequently, unlike LTI systems where controllability is a property of the system, for
MPL systems it is a property of the state.

The definition of structural controllability has a clear implication on the reachability ma-
trix. If every state vertex can be reached by an input vertex then the reachability matrix
is row-finite. A matrix is termed row-finite if there exists at least one finite element in
every row. That is, for a matrix V ∈ Rn×mmax for each row i = 1, 2, · · ·n,

⊕m
j=1 vij ∈ R.

Subsequently, a system is structurally controllable, if and only if, the reachability matrix
is row-finite.

Row-finiteness of the reachability matrix has a direct implication on the signal-flow graph
of the MPL system. If the reachability matrix is row finite then every state vertex of
the system can be reached by a path originating in an input vertex. Recall that the
max-plus power of a matrix A⊗k, shows the max weight of paths of length k that exist
in the communication graph of A. Furthermore, by definition the communication graph
of A is a subgraph of the signal-flow graph of the MPL system. As a result, one can
now deduct that if [A⊗k ⊗B]1m has a finite value in the first row, then a path of length
(k + 1) exists from an input vertex u to the first state of the system x1.

Definition 6.1. A MPL system of the form (5-1) is termed to be structurally controllable
if every state xi, i ∈ {1, ..., n} can be influenced by at least one input uj , j ∈ {1, ...,m}.

Accordingly, Theorem 6.2 in the sequel will provide sufficient conditions for structural
controllability of a MPL system.

Theorem 6.2. For an MPL system of the form (5-1), the following three conditions
(1-3) are equivalent

1. The MPL system (5-1) is structurally controllable.

2. The reachability matrix Kn is row-finite.

3. In the signal-flow graph of (5-1), each state vertex can be reached from a path
originating at an input vertex.

Theorem 6.2 allows us to express structural controllability in terms of the signal-flow
graph. Structural controllability, as is the case with LTI systems, is an inherent property
of the system and thus does not depend on the initial condition or the weights of the
edges. It only depends on the structure of the system or, in other words, what is
of importance in terms of structural controllability is whether an edge or path exists
between two vertices and not the weight of that path or edge. Therefore, the property
of structural controllability can also be applied to stochastic MPL systems, as long as
the stochasticity is associated with the weights of the edges (or values of the A and B
matrices) and not with the structure of the system.
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Moreover, an important point worth mentioning is that structural controllability does
not provide information on whether we can achieve a certain value for the states given
an initial condition but, on whether we can influence the states regardless of the initial
condition. This is a very important distinction to make. The problem of deriving the
set of states over Rmax that can be achieved given an initial condition (or a set of
initial conditions) has been tackled by Katz and Gaubert [28, 29] and more recently by
Adzkiya et al [30, 31, 32]. Katz implements a geometric approach with the purpose of
determining the maximal set of initial conditions for which the states always stay in
that semimodule, while Adzikya makes use of the one to one correspondence between
MPL systems and Piece-wise Affine (PWA) models to calculate both the forwards and
backwards reachability sets.

The next point of interest with regards to this thesis is to determine the set of accessible
states. The term accessible states refers to the values the elements of a state vector
x can achieve. For example, it would be beneficial to determine whether a certain
desirable state xdes = (x1, . . . , xn) can be accessed (achieved). This can be determined
by checking whether the desirable state belongs to the semimodule of the reachability
matrix. Deciding whether a state is accessible differs between autonomous and non-
autonomous systems so a distinction will be made.

6-2-1 Accessibility for Autonomous Systems

The evolution of the state for autonomous systems is described by the following equation.

x(k) = A⊗ x(k − 1) (6-3)

with A ∈ Rn×nmax.

Determining the set of accessible states for autonomous systems is significantly easier
than for non-autonomous systems. This occurs because for a square matrix the semi-
module can be efficiently determined by the method described in Section 4-4. As a result,
determining whether a desired state is accessible is equivalent to determining whether
the desired state belongs to span(A). The only requirement for the application of the
method is that the state matrix A is row-finite which is nearly always the case for real
life systems.

In addition to this, it does not matter whether the columns of the A matrix are linearly
independent. Even if all the columns belong to the same extreme ray, the method will
still determine the semimodule generated by that ray. Subsequently, for the purpose of
determining the set of accessible states it is sufficient to calculate the polyhedra produced
by the columns of the state matrix. Some examples follow for clarification.
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Example 6.1. Consider the autonomous system described by the following state matrix
A,

A =

1 3 3
2 1 2
3 2 3


It can be observed that the third column is just the max-plus addition of the first and
second column. The permutation A{2,1,3} is applied and then the matrix is brought to
definite form.

A
′ =

 0 −1 0
−2 0 −1
−1 1 0



with the Kleene star being

A
′∗ =

 0 1 0
−2 0 −1
−1 1 0


Therefore, the closure of the matrix is defined by,

−2 ≤ x2 − x1 (6-4)
−1 ≤ x3 − x1≤ 0 (6-5)

1 ≤ x3 − x2≤ 1 (6-6)

The second column (of A or A′ , recall that the columns of both matrices belong to the
the same extreme ray) violates inequality (6-5), as x3−x1 = 2, and satisfies the equality
x3 − x2 = 1 (which for this particular example is always the case as x3 − x2 is always
equal to one). So, overall the set of accessible states and the span of the system matrix
are given by

span(A) =


−2 ≤ x2 − x1

−1 ≤ x3 − x1 ≤ 2
1 ≤ x3 − x2 ≤ 1

Example 6.2. Consider the autonomous system described by the following state matrix
A,

A =

1 2 3
2 3 4
3 4 5
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It can be easily seen that all the columns are max-plus multiples of each other. There
is no need for a permutation and the definite form of the matrix and its Kleene star are

A
′ =

0 −1 −2
1 0 −1
2 1 0


A
′∗ =

0 −1 −2
1 0 −1
2 1 0


The inequalities defining the span are,

span(A) =


1 ≤ x2 − x1 ≤ 1
2 ≤ x3 − x1 ≤ 2
1 ≤ x3 − x2 ≤ 1

The fact that in this case the inequalities are in fact equalities is attributed to the fact
that the cone of the matrix A is of dimension one.

The main benefit of this method is that it enables a one-shot computation of the span
of a matrix and therefore, its set of accessible states. Moreover, it may also provide
information on the lower and upper bound of the qualitative difference between differ-
ent state vertices. This is not to say that if no bound exists the difference will grow
asymptotically. However, if a bound does exist then the divergence between distinct
state vertices remains bounded. Concluding a priori whether or not the state vertices
remain bounded with respect to each other is of particular interest, as systems in which
one state vertex grows infinitely larger than the other state vertices are unstable. The
following lemma provides a condition under which all state vertices remain bounded with
respect to each other.

Lemma 6.3. All state vertices, x1, . . . , xn, of a matrix A ∈ Rn×nmax remain bounded with
respect to one another if and only if the directed graph defined by the common edges of the
definite form and its Kleene star is strongly connected. That is, the graph G(A′ ∪A′∗) =
(V (A), E(A′ ∪ A′∗)), E(A′ ∪ A′∗) = {(i, j) ∈ E(A′), E(A′∗)|w(i, j)′ = w(i, j)′∗} is
strongly connected

Proof. If the directed graph is strongly connected then a path exists from any state
vertex to any other state vertex. Recall that edges in the communication graph of the
definite form define an inequality of the following form xj −xi ≥ wji. So if a path exists
xi → xi+1 → xi+2 a relation of the following form holds, xi+2 ≥ xi + w(i, i + 2). Since
the graph is strongly connected such a relation holds for all state vertices. As a result a
bound exists between all state vertices. Even though these inequalities only define the
closure of the span and not the span in its entirety, it does not alter the result. This
is due to the fact that only the closure can remain unbounded, as extreme points with
coordinates at −∞ cannot by definition contribute to the closure.
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Nonetheless, it is important to again highlight that the difference between the state
vertices will not necessarily grow to infinity if the graph is not strongly connected. This
depends on the initial condition and the eigenspace of the matrix among other things.

Another important benefit of the method is that it may allow for a computation of the
range of values for certain state vectors, if a desired value is wanted for a specific state
vertex. Consider for instance, that in Example 6.1 x2 = 1 is desired. A computation
will show that if x2 = 1 then x3 will be equal to 2 and x1 will range between zero and
three x1 ∈ [0, 3]. If furthermore, a set of constraints for a given system was expressed
as a polyhedra or square matrix, then it is attainable to decide whether the system can
comply with the constraints.

6-2-2 Accessibility for Non-Autonomous Systems

The evolution of the state of the system for non-autonomous systems is described by an
equation of the form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (6-7)

with A ∈ Rn×nmax and B ∈ Rn×mmax . Moreover, it will be assumed that the system is always
structurally controllable and subsequently the reachability matrix is row-finite.

As stated in the sequel the matrix Kk (6-1) is called the reachability matrix. If the initial
condition is equal to ε, x(0) = ε, then the set of accessible states for an event k ∈ N+ is
equal to the span of the reachability matrix Kk for that event step [27]. Nevertheless, if
the initial condition is not ε then depending on the choice of control the states may lie in
a region between the span of the state matrix A and the span of the reachability matrix.
If no control is applied then the set of accessible states is characterized by the span of
the state matrix. If control is applied then, depending on the system and the control,
some state vertices may be influenced, all state vertices may be influenced or no state
may be influenced. State vertices that are influenced by a control input tend towards
the span of the reachability matrix. What is meant by influence is not that the states
vertices can be reached by an input vertex, but that the control input alters the value of
the state vertex in some next time step. More practically, that for xi(k), i ∈ V (A) the
following relationship holds,

ai. ⊗ xi(k − 1) < bi. ⊗ u (6-8)

ai. and bi. denoting the ith row of the A and B matrix respectively.

Another challenge with regards to determining the set of accessible states for non-
autonomous systems is that the dimension of the cone generated by the columns of
the reachability matrix may grow with every time event. Consequently, it could be the
case that in order to determine the set of accessible state for every time event, the span
of the reachability matrix has to also be calculated at every time event. The reachabil-
ity matrix can be interpreted as a set of autonomous systems with state matrix A and
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initial conditions the columns of the input matrix B. In fact, for every initial condi-
tion of a sequence of the form (6-3) one of two things may happen. Either the starting
vector enters the eigenspace, the semimodule defined by the eigenvectors of a matrix,
of span(A), or it enters a periodic regime [12]. A periodic regime is a set of vectors
x1, . . . , xl ∈ Rnmax, l ≥ 1 such that for a scalar α ∈ R the following relation holds

α⊗ x1 = A⊗ xl and xi+1 = A⊗ xi, i ∈ [1, l − 1] (6-9)

Determining whether a vector enters the eigenspace or a periodic regime is a compu-
tationally difficult task, especially for large order systems, and it is associated with
the cyclicity of the critical graph of a matrix and the number of strongly connected
components of a matrix [33]. Furthermore, there is a significant difference associated
with whether the initial condition reaches the eigenspace or not. If it does reach the
eigenspace, then all the vectors thereafter will be max-plus multiples of the eigenvec-
tor and thus the dimension of the cone is equal to the number of events it takes for
the starting vector to reach the eigenspace. However, should the initial condition enter
a periodic regime, depending on the periodic regime, the dimension of the cone could
continue increasing. Nevertheless, note that if span(A) remains bounded (if Lemma 6.3
holds for A) then there is no periodic regime for any initial condition that keeps in-
creasing the dimension of the cone, as the differences between the elements are bounded.
This is not to say that if span(A) is not bounded a periodic regime exists that increases
the dimension of the cone. Rather, if span(A) is bounded then it is guaranteed that no
periodic regime exists that increases the dimension. This is an important distinction to
make.

So, if the initial condition is x(0) = ε, the set of accessible states is determined by
the span of the reachability matrix. If the dimension of the semimodule defined by the
columns of the reachability matrix does not grow indefinitely, i.e. if the columns of B
either enter the eigenspace of A or enter a periodic regime that does not augment the
cone or if A satisfies Lemma 6.3, then the set of accessible states is solely determined by
the span of the reachability matrix Kκ+1, for all k ≥ κ. In this case κ signifies the time
event after which the dimension of the cone remains unchanging. For all matrices and
for any initial condition the following relation holds

κ ≤ s(A) (6-10)

s(A) signifying the cyclicity of the critical graph of A.

As a consequence, in order to determine the set of accessible states for a system of the
form (6-7) with initial condition x(0) = ε, and with a reachability matrix that has a fixed
dimension as k →∞, one has to calculate the span of the matrix Ks(A)+1. A method for
obtaining the span of such matrices was presented in Section 4-4-1. Again, depending on
whether the objective is to show that the buffer levels remain bounded or if the objective
is to determine the range of values for the state vertices at a given time event, the min-
plus method can be used or the submatrix method can be used respectively. Since, it
is highly unlikely that systems of this kind will fulfill the condition m >> n (due to
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the reasons explained in the prequel), for systems of this kind it is preferable and less
computationally expensive to determine the exact span of the reachability matrix as it
provides more information than the min-plus span.

However, if the case is that a(the) column(s) of B enters a periodic regime that keeps
augmenting the cone then the set of accessible state for time event k is determined only
by span(Kk). Hence, as k keeps increasing so does the size of the reachability matrix. So
in contrast to the previous case, for k large it could be preferable to only approximate
its span by using the min-plus method. Obviously, this depends on the system, its
properties (such as the order of the system) and the objective in hand.

Example 6.3. Consider the MPL system described in Example 5.1

x(k) =

 5 ε ε
ε 6 ε
11 12 3

⊗ x(k − 1)⊕

2
0
8

⊗ u(k)

The span of matrix A is given by

x3 − x1 ≥ 6
x3 − x2 ≥ 6

Since, G(A′∗) is not strongly connected the closure of the span is unbounded and a
periodic regime may exist that keeps augmenting the dimension of the cone. In fact, as-
suming no control and initial condition x(0) = [0 10 0]T , we have x(100) = (500 610 616)T
and x(200) = (1000 1210 1216)T . As can be seen even though the difference between x2
and x3 remains bounded they both diverge from x1 as k grows larger. We now consider
the reachability matrix,

K8 =

2 7 12 17 22 27 32 37 42
0 6 12 18 24 30 36 42 48
8 13 18 24 30 36 42 48 54


It is evident that the after k = 2 the column of B enters a periodic regime with α =
(5 6 6)T . Consequently, it is not possible to determine a global set of accessible states
as this set depends on each time event and is not an inherent property of the system.
Nonetheless, after calculating span−(K♣8 ) we obtain

span−(K♣8 ) =


−2 ≤ x2 − x1 ≤ 6
6 ≤ x3 − x1 ≤ 12
6 ≤ x3 − x2 ≤ 8

Which shows that the span of the reachability matrix remains bounded, even though the
bounds change with every time event. So, if for instance the objective of the designer is
for x2−x1 ≤ 4 (i.e. processing unit 2 starts working at most 4 time units after processing
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unit 1) one can deduct that a control input must be applied at least every 6 time events
(assuming x(0) = ε) as

span−(K♣6 ) =


−2 ≤ x2 − x1 ≤ 4
6 ≤ x3 − x1 ≤ 10
6 ≤ x3 − x2 ≤ 8

Because the bounds change with every time event, for Kκκ > 6, the bounded region will
exceed x2 − x1 ≤ 4 (e.g. for span−(K♣8 ) we have x2 − x1 ≤ 6) and thus the possibility
will exist that the objective cannot be met. However, since the boundary of span−(K♣6 )
is x2 − x1 ≤ 4, the objective of x2 − x1 will always be met if a control input is applied
at least every six time events.

The case where the initial condition is x(0) 6= ε is a bit more complicated than when
the initial condition is equal to ε. As stated previously, this occurs because the state
vertices may be in span(A) or span(Kk) depending on whether (6-8) is satisfied for each
state vertex. Accordingly, the state x(k) only belongs to the span of the reachabilitty
matrix if condition (6-8) is satisfied for all state vertices xi(k). Therefore, if (6-8) holds
for all state vertices the set of accessible states can be determined in the same way as
for x(0) = ε, by calculating the span of the reachability matrix Kk. If condition (6-8)
is not satisfied for all state vertices then the set of accessible states is determined by
calculating span(KA), where

KA = [A B] (6-11)

The reason for only considering the input matrix B and not the reachability matrix
Kk is because, with the exception of the columns of B, all the other columns of the
reachability matrix already belong to span(A) as they are max-plus multiples of A
([A ⊗ B . . . A⊗k ⊗ B]). As a result, span(KA) includes not only the spans of A and B
but also all the linear combinations between the columns of B and the columns of A.
This regions has to be considered as it may be the case that x(k) belongs to neither
span(A) or span(B) but to span(KA). This will be illustrated in the following example.
Example 6.4. Consider an MPL system with state and input matrix as given below

A =

0 0 0
0 0 0
0 0 0

 , B =

0
1
2


It is fairly straightforward to see that span(A) = {x1 = x2 = x3} (as the cone is of
dimension one) and that span(B) = {x1 = x2− 1, x2 = x3− 1, x1 = x3− 2} (as the cone
is again of dimension 1).
Now, assume initial condition x(0) = (1 1 1)T and control input u(1) = 0. The state
at time-event one is then

x(1) =

1
1
2
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It can be immediately deducted that x(1) violates both span(A) and span(B). The
matrix KA is now taken into consideration.

KA =

0 0 0 0
0 0 0 1
0 0 0 2


In this particular case, since the first three columns of the matrix are the same we can
ommit one column to obtain

KA =

0 0 0
0 0 1
0 0 2


The span is calculated in a similar way as in the previous examples and we obtain

span(KA) =


(0 ≤ x2 − x1 ≤ 0) ∨ ((0 ≤ x2 − x1 ≤ 1) ∧ (x3 − x2 = 1)
0 ≤ x3 − x2 ≤ 1
0 ≤ x3 − x1

It can be seen that indeed x(1) belongs to span(KA).

By considering the span of matrix KA it is possible to determine the set of accessible
states of the system regardless of the initial condition. This is particularly useful when
no information is provided with regard to whether (6-8) is satisfied.

In conclusion, the method described in Section 4-4 can be applied to autonomous sys-
tems and non-autonomous with the purpose of determining the set of accessible states,
regardless of the initial condition. Accurately describing the set of accessible states de-
pends on the structure of the system, the initial condition and the weights of the edges
associated with input vertices. Nevertheless, it is always possible to determine the set of
inaccessible states. Subsequently, this method is more suited to modelling MPL systems
for which the designer may have a choice over the selection of certain parameters, and
can thus modify them if necessary to fit some constraints or desired dynamics. Further-
more, for non-autonomous systems this methodology can provide information on the
time events where control inputs have to be applied with the purpose of satisfying some
constraints. On a final note, it is also worth mentioning that this method also shows
whether the difference between the elements remains bounded and whether they will re-
main bounded after a control input has been applied. Recall that systems in which the
difference between the elements of the state vector grow asymptotically are unstable. By
determining whether the span of the matrix is bounded or not, it is possible to conclude
that the system will remain stable with respect to the buffer zones between the state
vertices.
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6-3 Structural Controllability for SMPL systems

Switching max-plus linear systems provide an added level of complexity as the structure
of the system changes over time. Moreover, it could be the case that even though the
modes of the system are uncontrollable as stand alone MPL systems, the overall SMPL
system is controllable for a certain switching sequence. Consequently, it is meaningless
to study the controllability properties of each individual mode as they do not provide
any information with regards to the overall SMPL system. The idea behind structural
controllability for SMPL systems is similar to MPL systems. A SMPL system is struc-
turally controllable if all state vertices of the last mode of a sequence can be reached
by a path originating at an input vertex (not necessarily an input vertex of the same
mode).

Before proceeding further we will have to distinguish between structural controllability
for finite SMPL systems and for non finite SMPL systems. A structurally finite system
is a system with the following property [25].

Lemma 6.4. An SMPL system of the form (5-7)-(5-8) is structurally finite if and only
if the matrix

H(l) =
[
A(l) B(l) ε

ε ε C(l)

]
(6-12)

is row-finite for all modes, ∀l ∈ {1, ..., L}.

It is important to remark that usually physical systems are structurally finite [25]. Nev-
ertheless, the case of non-structurally finite systems will still be considered. Whether a
SMPL system is structurally finite or not has implications on its dynamic graph and as
a result, also on its controllability.

6-3-1 Structurally finite SMPL systems.

Boom and De Schutter [25] define structurally finite SMPL systems to be structurally
controllable in the following way. For all feasible successive switching sequences, namely
∀s(σ) ∈ F , σ ∈ {1, ..., F}, the matrices

∆(σ)(s(σ)) = [A(s(σ)
t ) ⊗A(s(σ)

t−1) ⊗ · · · ⊗A(s(σ)
2 ) ⊗B(s(σ)

1 ) · · · A(s(σ)
t ) ⊗B(s(σ)

t−1) B(s(σ)
t )]

(6-13)

are row-finite. If this is case then the system is termed structurally controllable.

The fact that a system is structurally finite has a direct consequence on the dynamic
graph of the system. From Lemma 6.4 it is obvious that, for the system to be structurally
finite, the matrix [Al(k), Bl(k)] must be row-finite for all modes. If all the matrices
[Al(k), Bl(k)] are row-finite, then all the state vertices of the dynamic graph (with the
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exception of the initial state vertices x(0)) have an incoming arc from either a state
vertex of the previous time event or from an input vertex. Subsequently, one can infer
that if after a certain number of events k > 0 all the state vertices can be reached by
some input vertex, then all the state vertices for time events κ ≥ k can always be reached
by a path originating from an input vertex. Because the system is structurally finite,
all state vertices for events κ ≥ k will always have incoming paths from either a state
vertex, for which it is already known that it can be reached from an input vertex, or
from an input vertex of that time event.

Furthermore, the switching sequence must also be accounted for. As the switching se-
quence determines how the structure of the system changes over time it plays a vital
role in determining whether the system is structurally controllable. Therefore, for struc-
turally finite SMPL systems we will define two types of structural controllability. The
first type of structural controllability will determine whether a system is structurally
controllable for a given switching sequence and the second type of structural control-
lability will determine whether a system is structurally controllable for all switching
sequences.

Definition 6.5. An SMPL system of the form (5-7) is said to be sequentially struc-
turally controllable if for a given feasible switching sequence of the modes s(σ) =
{[s(σ)

1 , · · · , s(σ)
t ]T | s

(σ)
k ∈ [l1, · · · , lL], k = {1, · · · , t(σ)}}, all state vertices at t = k

can be reached by a path originating at an input vertex.

Definition 6.6. An SMPL system is structurally controllable if it is sequentially
structurally controllable for all feasible switching sequences. That is, it is sequentially
structurally controllable ∀s(σ) ∈ F .

Since the system is structurally finite, if it is sequentially structurally controllable for a
given switching sequence, then it will remain structurally controllable for all time events
κ ≥ t.

The coloured dynamic graph will be used with the purpose of giving a sufficient condition
for structural controllability of structurally finite SMPL systems. With the coloured
dynamic graph, as opposed to the signal-flow graph, we are able to model the change of
structure in a system over time. This is very advantageous as it grants the opportunity
to check whether all states are reachable after a finite amount of time. As shown, this
is equivalent to showing that the sequence is structurally controllable.

In the coloured dynamic graph the colours are associated with the input(s) of each
mode. For example, the set col(σ)

1,t (colour 1 of switching sequence σ) includes all the
state vertices of mode st (the last mode of the sequence) that can be reached by a path
originating from an input vertex of mode s1. In the same way the rest of the colours are
defined

col
(σ)
i,t = {xj(t) ∈ col(σ)

i,t | P(ui, xj) 6= ∅, j ∈ {1, ..., n}, i ∈ {1, ..., t(σ)}} (6-14)
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where P(ui, xj) denotes the set of paths beginning from input vertices of the active mode
at the kth time event and terminating at a state vertex xj . The number of colours is
equal to the time-span of the sequence. We can now say that

Theorem 6.7. For an SMPL system of the form (5-7) and a given switching sequence
s(σ) ∈ F , the following conditions (1) to (3) are equivalent:

1. The system (5-7) is sequentially structurally controllable for sequence s(σ).

2. The union of the sets of all colours associated with the coloured dynamic graph
G̃(As

(σ)
t+1 , Bs

(σ)
t ) of (5-7), includes all state vertices.

col(σ) = col
(σ)
1,t ∪ col

(σ)
2,t ∪ · · · ∪ col

(σ)
t,t = {1, · · · , n} (6-15)

3. The matrix

∆(s(σ)) = [A(s(σ)
t ) ⊗A(s(σ)

t−1) ⊗ · · · ⊗A(s(σ)
2 ) ⊗B(s(σ)

1 ) · · · A(s(σ)
t ) ⊗B(s(σ)

t−1) B(s(σ)
t )]

(6-16)

is row-finite.

Proof Conditions (1) and (3) are equivalent from [25]. As a result we only need to show
that conditions (2) and (3) are also equivalent.

If the union of the colour sets contains all the vertices, then each state vertex xj(t) can
be reached by a path originating from an input vertex. Assume the set col1,t (indicating
all the state vertices at time event t that can be reached by an input from s1) contains
only one state vertex, xj , then state vertex, xj , can be reached from the input of the
first mode. This means that for a time span t the state vertex, xj , can be influenced
from the input of the first mode. This in turn implies that the vector

[A(s(σ)
t ) ⊗A(s(σ)

t−1) ⊗ · · · ⊗A(s(σ)
2 ) ⊗B(s(σ)

1 )]

has a finite entry at the jth position, [A(s(σ)
t ) ⊗A(s(σ)

t−1) ⊗ · · · ⊗A(s(σ)
2 ) ⊗B(s(σ)

1 )]j. 6= ε.

Subsequently, if all state vertices can be reached from an input vertex of some mode
over a time span t then the matrix

[A(s(σ)
t ) ⊗A(s(σ)

t−1) ⊗ · · · ⊗A(s(σ)
2 ) ⊗B(s(σ)

1 ) · · · A(s(σ)
t ) ⊗B(s(σ)

t−1) B(s(σ)
t )]

will be row-finite, which is equivalent to (1).

The Lemma in the sequel, comes as a natural extension of Theorem 6.7.

Lemma 6.8. For an SMPL system of the form (5-7) and the set F = {{s(1), ..., s(F )}|σ ∈
{1, · · · , F}}, being the set of all feasible successive switching sequences of the system, the
following conditions (1) to (3) are equivalent:
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1. The system (5-7) is structurally controllable.

2. The intersection of the sets of colours associated with every feasible switching se-
quence covers all state vertices.

col1 ∩ col2 ∩ · · · ∩ colF = {1, · · · , n} (6-17)

3. For all feasible successive switching sequence, ∀σ ∈ {1, · · · , F}, the matrices

∆(σ)(s(σ)) = [A(s(σ)
t ) ⊗A(s(σ)

t−1) ⊗ · · · ⊗A(s(σ)
2 ) ⊗B(s(σ)

1 ) · · · A(s(σ)
t ) ⊗B(s(σ)

t−1) B(s(σ)
t )]

(6-18)

are row-finite ∀σ.

Proof The proof comes as a direct consequence of Theorem 6.7. The equivalence of
conditions (1) and (3) is shown in [25]. So, as for the proof of Theorem 6.7, we only
need to show the equivalence of conditions (2) and (3).

If the intersection of the sets of all colours covers all the vertices, then the union of
the colour sets of all switching sequences will cover all the vertices. This means that,
col(σ) = {1, · · · , n}, ∀σ. So, as a consequence of Theorem 6.7, the matrices

∆(σ)(s(σ)) = [A(s(σ)
t ) ⊗A(s(σ)

t−1) ⊗ · · · ⊗A(s(σ)
2 ) ⊗B(s(σ)

1 ) · · · A(s(σ)
t ) ⊗B(s(σ)

t−1) B(s(σ)
t )]

(6-19)

will be row-finite for all feasible switching sequences, ∀σ. Which is condition (3).

Example 6.5. Consider an SMPL system with two modes and system matrices

A(1) =
[
1 ε
ε 1

]
, B(1) =

[
0
ε

]
(6-20)

A(2) =
[
ε 1
1 ε

]
, B(2) =

[
0
ε

]
(6-21)

Assume we have two feasible switching sequences, namely σ1 = {l1, l2, l1} and σ2 =
{l2, l1, l2}. The coloured dynamic graph for switching sequence σ1 is depicted in Figure
6-1
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u(1)

x1(0)

x2(0)

u(2)

x1(1)

x2(1)

x1(2)

x2(2)

u(3)

x1(3)

x2(3)

Figure 6-1: An example of a coloured dynamic graph.

We have the following colours, colσ1
1,3 = {x2} (highlighted in blue on the Figure), colσ1

2,3 =
{x1} (highlighted in green) and finally colσ1

3,3 = {x1} (highlighted in red). As a result,
we have

colσ1 = colσ1
1,3 ∪ col

σ1
2,3 ∪ col

σ1
3,3 = {x1, x2}

and the switching sequence σ1 is sequentially structurally controllable. Doing the same
for σ2 we obtain

colσ2 = colσ2
1,3 ∪ col

σ2
2,3 ∪ col

σ2
3,3 = {x1, x2}

so, switching sequence σ2 is also sequentially structurally controllable. Finally, from
Lemma 6.8 we have

colσ1 ∩ colσ2 = {x1, x2}

so the overall SMPL system is structurally controllable.

Theorem 6.7 and Lemma 6.8 allow for determining whether a SMPL system is struc-
turally controllable or not from a graph-theoretic point of view. The coloured dynamic
graph comes as a natural modelling tool for structurally finite SMPL systems. However,
for non-structurally finite SMPL systems the normal dynamic graph must be used.

6-3-2 Non-structurally finite SMPL systems

When an SMPL system is not structurally finite then the matrices [Al(k), Bl(k)] will not
be row-finite for all modes. The interpretation of this, in contrast to structurally finite
systems, is that even if a system is structurally controllable after a finite number of
steps k > 0, this does not guarantee that it will remain structurally controllable for time
events κ > k. Because not all matrices [Al(k), Bl(k)] are row-finite, some state vertices
do not have an incoming arc. If a state vertex does not have an incoming arc, then
it is unreachable and cannot be influenced. This in turn implies that the system is
not structurally controllable. Subsequently, for non-structurally finite SMPL systems,
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6-3 Structural Controllability for SMPL systems 67

structural controllability is not an inherent property of the system but rather a property
indicative of a single time event. With this in mind, structural controllability for non-
structurally finite SMPL systems is defined in the following ways.

Definition 6.9. A non-structurally finite SMPL system of the form (5-7) is struc-
turally controllable at event step k, if all states xj(k), j ∈ {1, · · · , n} can be influenced
by the inputs.

Definition 6.10. A non-structurally finite SMPL system of the form (5-7) is struc-
turally controllable for a period τ , if for a certain interval of events τ = {{k1, ..., kτ}, ki ∈
N+, i ∈ {1, · · · , τ}} all states xj(ki) can be influenced by the input.

Due to the properties of non-structurally finite SMPL system it is preferential to model
them by normal dynamic graphs. This makes it possible to give sufficient conditions for
the structural controllability of the system.

Theorem 6.11. For a non-structurally finite SMPL system of the form (5-7), and a
feasible switching sequence σ the following conditions are equivalent:

1. The system (5-7) is structurally controllable at time event k of switching sequence
σ.

2. On the dynamic graph G̃(As
(σ)
k , Bs

(σ)
k ) of the SMPL system at time event k, all

state vertices xj(k) can be reached by a path originating at an input vertex.

Proof If at time event k all state vertices can be reached by a path originating at an
input vertex, then they can be influenced by the input. Thus at time event k the system
is structurally controllable.

With the purpose of giving sufficient conditions for structural controllability over a period
of events, the following Lemma is given.

Lemma 6.12. For a non-structurally finite SMPL system of the form (5-7), a feasible
switching sequence σ and a period τ = [k1, · · · , kτ ], the following conditions are equiva-
lent:

1. The system (5-7) is structurally controllable for period τ of switching sequence σ.

2. On the dynamic graph G̃(As
(σ)
k , Bs

(σ)
k ) of the SMPL system, all state vertices xj(k),∀k ∈

{k1, · · · , kτ} can be reached by a path originating at an input vertex.

Proof This lemma is a direct consequence of Theorem 6.11

Remark Notice that Theorem 6.11 and Lemma 6.12 can also be applied to structurally
finite systems. This is because they are generalizations of Theorem 6.7 and Lemma 6.8.
Nevertheless, for structurally finite SMPL systems with a large order and a large number

Master of Science Thesis Vangelis Peter Kalamboukis



68 Structural Controllability for MPL and SMPL systems.

of modes Theorem 6.7 and Lemma 6.8 are preferred as they are computationally less
demanding.

Since non-structurally finite systems imply that either the state matrix or the reachabil-
lity matrix of a mode are not regular matrices, they nearly never occur in practice. The
framework described above however, could also be applied to stochastic SMPL systems
where the stochasticity can be associated with the edges of the system.

Vangelis Peter Kalamboukis Master of Science Thesis



Chapter 7

Conclusion and Future Work

This thesis began with an overview of some important concepts in graph theory and
how they are applied to conventional LTI systems. Following this, max-plus algebra was
presented and a graph-theoretical approach was implemented for determining whether
MPL and SMPL are structurally controllable. In addition to this, a method was devel-
oped for determining the span of max-plus matrices and then applied to autonomous
and non-autonomous systems with the purpose of obtaining the set of accessible states.
Section 7-1 is centered around the conclusions of this thesis, while Section 7-2 discusses
suggestions for future work.

7-1 Conclusion

All in all, throughout this thesis it has been shown that graphs provide for a simple and
efficient way to model MPL and SMPL systems. Moreover, as was seen in the case of
LTI systems, structural properties of the underlying systems can be extracted from the
graph-theoretical models of these systems. Unlike conventional systems, the notion of
structural controllability does not provide rank information for the reachability matrices
of MPL and SMPL systems, it does however guarantee that these matrices are row-finite.
This condition is adequate for the structural controllability of systems over the max-plus
semiring.

Furthermore, a method was presented for expressing the span of square matrices as a set
of linear inequalities in the conventional sense. For square matrices this was achieved by
bringing the matrix to definite form and obtaining its closure in addition to implementing
the part of the span that is associated with the generators of the semimodule and their
connection to the closure. For non-square matrices the span was obtained by calculating
the span of all submatrices associated with the linearly independent columns of the
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original matrix. This method is simple and efficient for square matrices but becomes
more complex for rectangular matrices that have a large number of columns. This can
be potentially overcome by calculating an approximation of the span. This is achieved
by making use of the min-plus method presented in Section 4-4.

In addition to this, a framework was developed, in conjuction with the method of Section
4-4, for establishing the set of accessible states for autonomous and non-autonomous
MPL systems. By using this framework, it is possible to establish the range of values
the state vectors can achieve, as well as determining through a graph-theoretic notion
whether the qualitative difference between elements of the state vector remain bounded
with respect to one another.

7-2 Future Work

Based on the work done in this thesis, recommendations for future work are presented
below :

• Accessible states of SMPL systems. Accurately obtaining the set of accessi-
ble states for SMPL systems is much harder than for MPL systems. This is due
to the fact that SMPL systems may not have a fixed reachability matrix, as the
reachability matrix in SMPL systems depends on the switching sequence. As a
result the set of accessible states varies if the switching sequence also changes. An
additional challenge that is present in SMPL systems is the fact that prior knowl-
edge is required regarding the amount of time the system remains in each mode.
This is the case because, like for non-autonomous systems, the span associated
with the reachability matrix of each mode may vary depending on the number of
time events the system remains in that mode. An efficient method for determining
the set of accessible states for SMPL systems has not, to our knowledge, yet been
developed.

• Graphical representation of SMPL systems. In this thesis, the dynamic
graph was used for representing SMPL systems in a graph-theoretic manner. It
was then used for establishing the property of structural controllability for SMPL
systems and can be further extented in the same way for structural observability.
However, the edges of the dynamic graph were not weighted. It would be of partic-
ular interest if it was possible to determine properties of the SMPL system, such as
the maximum autonomous growth rate, through the dynamic graph representation
of the SMPL system.

• Set of observable states. Another point of potential interest, could be translat-
ing the method of Section 4-4, with the purpose of attaining the set of observable
states. In such a case, the set of the observable states would be represented as a
set of conventional linear inequalities, as was done for the controllable case.
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Glossary

List of Acronyms

MPL Max-Plus-Linear

SMPL Switching Max-Plus-Linear

DES Discrete Event Systems
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