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predictive architecture for self-
supervised pretraining on polymer molecular
graphs

Francesco Piccoli,†‡ Gabriel Vogel † and Jana M. Weber *

Recent advances in machine learning (ML) have shown promise in accelerating the discovery of polymers

with desired properties by aiding in tasks such as virtual screening via property prediction. However,

progress in polymer ML is hampered by the scarcity of high-quality labeled datasets, which are necessary

for training supervised ML models. In this work, we study the use of the very recent ‘Joint Embedding

Predictive Architecture’ (JEPA), a type of architecture developed for self-supervised learning (SSL), on

polymer molecular graphs to understand whether pretraining with the proposed SSL strategy improves

downstream performance when labeled data is scarce. We first pretrain our polymer-JEPA model on

a large dataset of conjugated copolymer photocatalysts. The pretrained model is then fine-tuned on two

distinct downstream tasks: predicting electron affinity in the same chemical space and classifying phase

behavior in diblock copolymers, a different chemical space. Our results indicate that JEPA-based self-

supervised pretraining enhances downstream performance, particularly when labeled data is very scarce,

achieving improvements across both tested datasets. The method provides performance gains in cross-

domain fine-tuning, highlighting its potential to extract general knowledge across different classes of

polymers. By leveraging large amounts of unlabeled polymer structures for pretraining, the proposed

strategy can further reduce the dependence on extensive labeled datasets.
1 Introduction

Synthetic polymers are one of the most widespread classes of
materials, constituting an essential component of numerous
commodities in everyday life and industry.1–4 The large diversity
of the chemical space of polymers provides an opportunity to
design polymers whose properties match the demands of the
application.3,5 However, the high number of combinations of
monomer compositions, higher-order topologies, and process-
ing methods brings challenges in the effective navigation of this
large search space.3,4

In recent years, machine learning (ML) has shown potential
in the discovery of new materials, including polymers.6,7 ML
methods are increasingly applied in polymer science, particu-
larly in two key areas: virtual screening of predened candidate
structures to predict properties and inverse polymer design to
generate novel structures with desired properties.5,8,9

However, the application of ML in polymer science is still in
its infancy, primarily due to the scarcity of high-quality, large,
publicly available labeled datasets. This limitation arises from
the time- and cost-intensive procedure of generating labeled
versity of Technology, Del, 2629 HZ, The

g.vogel@tudel.nl

is work.

efore joining Amazon.

y the Royal Society of Chemistry
polymer data (via experimental synthesis and testing or accu-
rate molecular simulations).4,6,10 To overcome the problem of
limited labeled data, several common strategies have been
applied in the polymer domain. Transfer learning involves
pretraining models on polymer properties with abundant
labeled data and ne-tuning them for properties with limited
data.11,12 Multitask learning is an effective approach to train
predictive models on multiple properties with varying levels of
labeled data, leveraging interdependencies between these
properties.2,13,14 Lastly, self-supervised learning (SSL) makes it
possible to pretrain models on large volumes of unlabeled data
through tasks dened directly on the input data. The learned
representations can then be ne-tuned on smaller labeled
datasets.3,12,15–17

Among these strategies, SSL has been particularly trans-
formative across different data structures such as images,18–21

natural language,22,23 and graphs.24–26 In the molecular domain,
graph-based SSL has shown considerable success with small
molecules.27–29

In the context of polymers, the focus has largely been on text-
based SSL, learning representations through tasks derived from
the textual pSMILES representation,3,12,16,17 with limited explo-
ration of graph-based SSL approaches. Polymer graphs beyond
the polymer repeat unit graph, including weighted edges that
describe monomer ensembles, their topology and their sto-
chasticity, as proposed in ref. 1, present unique structural
Digital Discovery
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characteristics that distinguish them from small molecular
graphs, posing challenges for directly applying SSL techniques
developed for small molecular graphs. A recent study proposed
a self-supervised graph neural network for such polymer
graphs.15 The authors employ two SSL tasks: one at the node/
edge level, masking nodes and edges and learning to predict
them, and the other at the graph level, predicting a pseudolabel
corresponding to the molecular weight of the polymer, derived
from the monomers' weights. They test both tasks separately
and together, and they discover that pretraining via both tasks
proves to be the most effective. This result aligns with ndings
in the literature30 that SSL on graphs works better when using
both node-level and graph-level tasks together.

In this work, we study a new architecture family, called Joint
Embedding Predictive Architecture (JEPA),31 which was devel-
oped for self-supervised representation learning of images.
Unlike traditional graph-based SSL methods, such as node or
edge masking, which focus on reconstructing masked features
directly in the input graph space, JEPAs operate in an embed-
ding space. Predicting in the embedding space facilitates the
learning of semantically-rich representations, avoiding the need
to predict and reconstruct every (potentially noisy and hard to
predict) detail of the input space, that in high-dimensional
domains oen leads to overtting.31,32 The way JEPAs learn, is
by predicting the embedding of a “target view” of the graph
based on the embedding of a “context view”, typically by
employing two encoders. We apply this architecture for self-
supervised pretraining on stochastic polymer graphs to
improve the accuracy in downstream tasks (e.g. property
prediction) in label-scarce data scenarios.

We rst use the proposed method for pretraining on a larger
unlabeled corpus of data, and then netune the model on
available labeled data in a supervised fashion. While some
aspects of our analysis apply broadly to JEPAs across various
types of graphs (i.e. in different domains) and extend the study
Fig. 1 Polymer graph representation as introduced in ref. 1. The repr
probabilities between monomers, i.e. reflecting the stochastic nature an

Digital Discovery
of JEPAs for graphs initiated in ref. 32, other results and
experiments are specic to JEPAs in the molecular graph
domain, specically for stochastic polymer graphs.
2 Methods
2.1 Polymer representation and datasets

We represent polymers as stochastic graphs, as proposed in ref.
1. The graph representation, visualized in Fig. 1, connects
monomer graphs through weighted edges indicating the prob-
abilities of connections, representing the polymer chain archi-
tecture. We use the dataset of conjugated copolymer
photocatalysts for hydrogen production,1 that is built upon the
polymer space dened in ref. 33. As shown in Fig. 2a, the dataset
contains 42 966 polymers, composed of nine A monomers and
862 B monomers. The polymers are created by combining each
A monomer with each B monomer in three distinct chain
architectures: alternating, random, and block. Additionally,
they are further distinguished by three stoichiometry ratios: 1 :
1, 1 : 3, and 3 : 1. While this is a useful and extensive dataset, the
variety of it is somewhat limited by the combinatorial approach
to build the polymers. Aldeghi and Coley1 further performed
oligomer DFT calculations to provide estimations for two
properties, the electron affinity (EA) and ionization potential
(IP), for each of the copolymers.1 While this provides a valuable
resource for benchmarking polymer informatics, it potentially
inherits biases from DFT approximations. We use this dataset
for pretraining and keep aside a part of the dataset for
netuning.

We test our approach on two distinct downstream tasks,
both starting from a model pretrained on the aforementioned
dataset. Firstly, we netune on data from the same dataset (but
different split). Secondly, we netune on a different down-
stream task using a dataset of diblock copolymers.34 The dataset
provides labels of the phase behavior (lamellae, hexagonal-
esentation uses stochastic edges (dashed) reflecting the connection
d chain architecture.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Conjugated copolymer photocatalyst dataset1 with different stoichiometries and chain architectures. (b) Diblock copolymer dataset
compiled by Arora et al.,34 reporting experimentally observed phase behavior (e.g., lamellae, cylinders, gyroid) for 50 diblock copolymers across
varying stoichiometries and chain architectures.
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packed cylinders, body-centred cubic spheres, a cubic gyroid, or
disordered) of 49 diblock copolymers across various relative
volume fractions, totaling 4780 labeled polymer samples (see
Fig. 2b). Both datasets were downloaded from the open-source
repository https://github.com/coleygroup/polymer-chemprop-
data/, accessed on Jan. 30th, 2024.
2.2 Model

The idea of JEPAs for graphs is to rst partition the graphs into
patches (i.e. subgraphs) and dene larger context subgraph x
and smaller target subgraphs y. Secondly, the goal is to predict
(reconstruct) the embedding sy of a target subgraph, from the
embedding sx of the context subgraph, operating in the
embedding space (see Fig. 3).

2.2.1 Subgraphing. Before training the JEPA architecture,
the polymer graphs need to be partitioned into a context
© 2026 The Author(s). Published by the Royal Society of Chemistry
subgraph and one or more target subgraphs. To achieve this, we
rst partition a polymer graph G into a set of subgraphs {G1, G2,
., Gn}, respecting the requirements outlined in Appendix A. For
this task, we explored three different subgraphing algorithms,
i.e. random walk subgraphing, motif-based subgraphing and
the METIS algorithm.35 Context and target subgraphs are then
selected (or created by combining subgraphs) from the set {G1,
G2, ., Gn}. In Section 3.5, we show the effect of different sub-
graphing algorithms, varying context and target subgraph size
in percent of the whole polymer graph, and the number of
targets on the model's performance. Each subgraphing algo-
rithm has its own advantages and disadvantages:

� Motif-based subgraphing is a domain-specic approach to
generate chemically meaningful subgraphs, such as functional
groups or molecular subunits. We build on the BRICS (Breaking
of Retrosynthetically Interesting Chemical Substructures) algo-
rithm,36 specically using the implementation in ref. 37. The
Digital Discovery
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Fig. 3 The polymer-JEPA model architecture. The model learns to reconstruct the embedding sy(i) of a target subgraph Gtargeti from the
embedded context graph sx, using a predictor network that is conditioned the positional encoding ~pi~T to facilitate prediction. The loss is
measured as the L2 loss between the embedding sy(i) and the predicted embedding ŝy(i).
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motif-based subgraphing method ensures meaningful
subgraphs but potentially limits the variability of subgraphs
due to its deterministic nature.

� METIS35 is a popular subgraphing algorithm, using a clus-
tering-based method, that partitions graphs into clusters while
minimizing edge cuts and maximizing within-cluster links. Its
widespread use is due to its low computational cost and the
quality of the produced subgraphs. Despite being computa-
tionally efficient, METIS-based subgraphs lack chemical
meaning compared to motif-based subgraphing.

� Random-walk subgraphing uses a stochastic approach to
generate diverse subgraphs. It ensures greater exibility and
control over subgraph sizes while producing varying subgraphs
at each training iteration. This method aligns well with the
requirements for JEPA, particularly the need for dynamic
changes to prevent overtting.

2.2.2 JEPA architecture for polymer graphs. We tested two
conceptually different JEPA model and provide a detailed
comparison in Appendix C. This section and the results in the
main manuscript are based on the model architecture that per-
formed best, depicted in Fig. 3. It consists of two GNNs, the
context and target encoders. As GNN architecture, we adopt
a variant of the weighted directed message passing neural
network (wD-MPNN).1 Unlike the original formulation, which
performs edge-centered message passing, our variant performs
node-centeredmessage passing. In Appendix B, we show that this
change does not change the performance signicantly. The
context encoder takes as input the context subgraph, which
captures relevant local information. The target encoder, on the
other hand, takes as input the entire polymer graph, allowing for
an effective exchange of global information during the node
Digital Discovery
embeddings generation via message passing, enabling effective
contextualization of target embeddings. Given the modest size of
the polymer graphs (20–30 nodes), the model can achieve this
contextualization efficiently without relying on self-attention
mechanisms. To obtain the context subgraph embedding sx,
the context encoder pools all the obtained node embeddings. To
obtain the target subgraph embedding sy, the target encoder
pools the node embeddings learned from the target encoder for
the nodes that belong to the target subgraph. Importantly, the
subgraphs used to create the context subgraph cannot be selected
as targets, which preserves the integrity of the prediction task.

The next step focuses on the prediction of the target
subgraph embeddings through a multi-layer perceptron (MLP)
from the context embedding and positional information of the
target. We employed positional encoding (PE) via random-walk
structural encoding (RWSE)38,39 at two levels: at the node level
and at the subgraph (patch) level. The node-level PE allows us to
maintain node positional information when working with
subgraphs. The subgraph (patch)-level positional encoding
contains information about the connectivity of two subgraphs,
here the context and target subgraph. Given the output of the
context encoder, sx, we wish to predict the m target subgraphs
representations sy(1), ., sy(m). To that end, for a given target
subgraph embedding sy(i), the predictor hf takes as input sx
summed with the linearly transformed target subgraph posi-
tional token ~pi:

ŝy(i) = hf(sx + ~pi~T) (1)

with ~T ˛ R
~k×d, where ~k is the dimension of the positional

encoding token and d is the embedding dimension. The
© 2026 The Author(s). Published by the Royal Society of Chemistry
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predictor outputs the predicted target embedding ŝy(i). Since we
wish to make predictions for m target blocks, we apply our
predictor m times, obtaining predictions ŝy(1), ., ŝy(m). In
practice, the predictor hf is implemented via a MLP. For each
data point, the loss is the average L2 distance (Mean Square
Error (MSE)) between the m predicted target subgraph repre-
sentations and the m true target subgraph representations. The
MSE loss in the embedding space can lead to uctuating or
increasing loss values, e.g., with changing magnitudes of
embedding vectors over epochs. In Appendix E, we investigate
the effect of layer normalization on training stability and
convergence of JEPA pretraining.
2.3 Training procedure

We split the full conjugated copolymer dataset1 in three parts:
40% for pretraining, 40% for the different netuning scenarios,
and the remaining 20% for testing the property prediction
performance. We use random splits with a ve-fold cross vali-
dation and three repetitions for different netuning scenarios.
Moreover, we provide an additional analysis on a scaffold-based
data split scenario in Appendix F, performing a nine-fold cross
validation where always one A-monomer is held out as a test set.

The pretraining phase always entails training the JEPA
architecture on 40% (17 186 entries) of the conjugated copol-
ymer dataset.1 Aer pretraining, only the trained target encoder
is utilized in the netuning step to obtain the polymer graph
embedding. For the downstream task (e.g. polymer property
prediction), an MLP is employed on top of the polymer graph
embedding obtained from the target encoder. Finetuning is
done end-to-end, wherein not only the MLP but also the target
encoder weights are updated during the optimization process.
This allows the polymer graph embeddings to also netune to
the specic downstream task. As mentioned in Section 2.1, we
perform the netuning on the two different datasets to inves-
tigate the difference between using the same chemical space for
pretraining and netuning in contrast to using two different
polymer chemical spaces. The results for this study are pre-
sented in Sections 3.1 and 3.2.
Fig. 4 Pretrainingwith the additional pseudolabel objective. In the left,
faded out, part, the embeddings from the target encoder Etarget are
used to calculate the L2 loss with the predicted target embeddings in
the JEPA architecture. In the right part the polymer graph embedding
is used as input for the MLP that predicts the pseudolabel (polymer
molecular weight Mw).

© 2026 The Author(s). Published by the Royal Society of Chemistry
2.4 Additional pseudolabel objective

As mentioned in the introduction, a rst study on self-supervised
learning on the stochastic polymer graph representation1 used
both node and edge masking and prediction of a pseudolabel as
self-supervised tasks. The study found that transferring not only
the pretrained weights of the wD-MPNN encoder (equivalent to
our target encoder), but also the weights of the pseudolabel
predictor (an MLP used to predict molecular weight during pre-
training) improved downstream performance. These pseudolabel
predictor weights of the MLP were reused for downstream tasks,
such as predicting electron affinity (EA) in the conjugated
copolymer dataset.1 Motivated by these results, we decided to
adopt the pseudolabel objective also with our architecture. We do
so by predicting the molecular weight from the polymer nger-
print learned through the target encoder, as visible in Fig. 4.
Unlike the sequential training approach in ref. 15, which rst
trains on node-level tasks and then on the pseudolabel task, we
jointly train the encoder with both the JEPA objective and the
pseudolabel prediction task. The total training loss is calculated
as the sumof the JEPA lossLEmb and the pseudolabel lossLpseudo,
aggregated with equal weights:

Ltotal ¼ LJEPA þ Lpseudo:

The pseudolabel loss was computed as a mean squared error
(MSE) between the predicted and target pseudolabels,

Lpseudo ¼ 1

N

XN

i¼1

ðŷi � yiÞ2;

where N is the batch size, ŷi is the model prediction, and yi is the
molecular-weight pseudolabel, calculated as the weighted
(monomer stoichiometry) sum of the molecular weights of the
monomers.
3 Results and discussion

In this section, we analyze the performance of our JEPA-based
self-supervised pretraining strategy on polymer graphs.
Section 3.1 evaluates the model's performance on downstream
Fig. 5 Effectiveness of our pretraining strategy for different finetune
dataset sizes. The performance is evaluated on predicting the electron
affinity of test data from the conjugated copolymer dataset1 with the
performance measured as R2.

Digital Discovery
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Fig. 6 Effectiveness of our pretraining strategy for transfer learning
and different finetune dataset sizes. Self-supervised pretraining is
performed on data from the conjugated copolymer dataset1 and
finetuning is performed on test data from the diblock copolymer
dataset.34 The classification performance for predicting the phase
behavior is measured as AUPRC (area under the precision–recall
curve).

Fig. 7 Comparison between our pretraining strategy and the best
performing SSL model from ref. 15. For different finetune dataset sizes
we compare the R2 for prediction of EA of the conjugated copolymer
test data.1
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tasks under varying labeled data availability scenarios. As
indicated in Section 2.1, we test the effectiveness of the self-
supervised pretraining for predicting the electron affinity (EA)
(regression) of the conjugated copolymer dataset (Section 3.1)
and the phase behavior (classication) of diblock copolymers
(Section 3.2). The latter task is based on a different polymer
chemical space than the self-supervised pretraining, and thus
evaluates the model's cross-domain generalization capability.
Further, Section 3.3 compares our approach with an alternative
self-supervised learning (SSL) method for polymer graphs, while
Section 3.4 shows the performance against a simple baseline
random forest model. Finally, we present an ablation study of
subgraphing hyperparameters in Section 3.5, which provides
general insights for JEPA-based graph machine learning.

3.1 Downstream performance on data set of conjugated
copolymers

For the task of predicting the electron affinity (EA) of conjugated
copolymers, our pretraining approach improves the perfor-
mance especially in low labeled data scenarios as shown in
Fig. 5. We test from a data scenario of 0.4% (192 polymers)
labeled data points to a scenario of 24% (10 311 polymers)
labeled data points. In Fig. 5 we report results only up to the 8%
scenario to better visualize the impact in low data regimes. The
pretrained model especially demonstrates performance
improvements in scenarios up to a data size of 4% (1728 poly-
mers) labeled data points. However, beyond this threshold, the
benets of pretraining plateau. This suggest that the available
labeled data is sufficient for supervised learning, rendering the
transferred pretraining knowledge redundant. In practice,
a small change in the R2 value (e.g. ±0.01) does not signicantly
impact molecular design task, however, in the low labeled data
scenarios (i.e. 0.4% and 0.8%), pretraining leads to a signicant
improvement of the property prediction performance.

3.2 Self-supervised pretraining and transfer across chemical
spaces

For the task of predicting the diblock copolymer phase behavior,
pretraining on the dataset of conjugated copolymers consistently
improves the classication performance (between around 0.02 and
0.1 in AUPRC), even in higher labeled data scenarios, as illustrated
in Fig. 6. We test from a training data scenario of 191 data points
(4%) to 3824 data points (80%). The latter scenario corresponds to
netuning on the full dataset, retaining 20% for testing, as done in
ref. 1. Since the pretraining dataset represents a different polymer
chemical space compared to the netuning dataset, we conclude
that the knowledge acquired during pretraining is not overtting
or memorizing the training distribution (i.e. chemical space) but
rather learning general chemical knowledge about polymers. This
indicates the potential opportunity to utilise this strategy more
broadly across different polymer data sets.

We see particular promise in scenarios, where a model pre-
trained on a large, unlabeled polymer space is ne-tuned across
domains on a smaller, labeled dataset from another polymer
space. We expect this to be especially advantageous for small
datasets with complex structure–property relationships.
Digital Discovery
3.3 Comparison to input space SSL

We compare the effectiveness of our pretraining strategy to the
SSL pretrainingmethod by Gao et al.,15which uses node and edge
masking in the input spaces as described in the introduction.
Due to the small netune dataset size, we run bothmethods with
a 5-fold cross validation and three repetitions with different splits
to ensure a robust comparison. The size of the wD-MPNN is set to
three layers a hidden dimension of 300 for both methods.

Overall, the performance increase using input space self-
supervised pretraining and embedding space self-supervised
pretraining (JEPA, our method) is comparable. Fig. 7 reveals
that our method is slightly better in the very low data scenarios,
and Gao et al.'s method15 performs better with more available
labelled data.

Using an additional pseudolabel objective as described in
Section 2.4 leads to a consistent improvement in ref. 15.While we
observed signicant improvements in single scenarios, overall
the performance improvements attributed to using an additional
pseudolabel objective are smaller for our method than for the
input-space SSL approach as shown in Fig. 8. This suggests that
© 2026 The Author(s). Published by the Royal Society of Chemistry
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our strategy potentially already captures relevant information
related to the polymer molecular weight pseudolabel.

3.4 Comparison to tree-based baseline models

We also compare the performance of our model to a random
forest and XGBoost model trained on ngerprints generated
from polymer sequences as inputs. Typically, simpler ML
models outperform complex ones in data-scarce scenarios. The
wD-MPNN generates a polymer representation (ngerprint)
through pooling node embeddings learned during training,
which is then used as input for the MLP predictor. In contrast,
the tree-based models are trained on handcraed ngerprints
as inputs. We follow the approach in ref. 1, utilizing count-
vector Extended-Connectivity Fingerprints (ECFP)40 of size
2048 and radius 2, computed with RDKit.41 The polymer
ngerprints are obtained by averaging across an ensemble of 32
oligomer sequence ngerprints.

While the polymer-JEPA demonstrated improvements over
our baseline model without pretraining in low-data regimes, we
Fig. 9 (a) Comparison between our pretraining-finetuning strategy and
conjugated copolymer dataset,1 predicting the EA property, for different
performance between our pretraining–finetuning strategy and two tree
copolymer dataset,34 for different finetune dataset sizes.

Fig. 8 The effect of using an additional pseudolabel objective in input
space SSL15 and embedding space SSL (ours). For different finetune
dataset sizes we compare the R2 for prediction of EA of the conjugated
copolymer test data.1 We include both the scenarios when only the
wD-MPNN encoder weights are transferred (no PL), and the scenario
when also the pseudolabel (molecular weight) predictor weights are
transferred (PL).

© 2026 The Author(s). Published by the Royal Society of Chemistry
observed that the tree-based models outperform the pretrained
wD-MPNN in the very low labeled data regimes. This trend is
evident in Fig. 9a, where the random forest and XGBoost model
exhibited an advantage over the pretrained wD-MPNN when
using 0.4% (192 points) and 0.8% (384 points) of the dataset for
nteuning. The advantage of the RF model vanishes as the
dataset size increases to 1.6% and the advantage of the XGBoost
model vanishes as the size increases to 4%. In practice, only for
a small regime around 4.0% netune data, we observe that the
pretrained model outperforms both the random forest and the
wD-MPNN without pretraining. There is no scenario in which
the pretrained wD-MPNNmodel outperforms both the XGBoost
model and the baseline wD-MPNN without pretraining.

For the smaller diblock dataset (Fig. 9b), we observed that the
tree-based baseline models outperform our model throughout all
data scenarios. This may be due to highly informative nger-
prints, that correlate with the classication label. As Aldeghi and
Coley1 point out, simply the mole fraction, correlated with the
volume fractions of the two blocks is highly informative for
determining the copolymer phase. They trained a RF model on
mole fractions only which outperformed the wD-MPNN (no data
scarce scenarios) without providing information about the
chemistry. However, in many polymer systems the structure-to-
property relationships are more complex and cannot be
captured by a single, easily computed feature. While polymer
ngerprinting combined with smaller (e.g. tree-based) models
remains a strong baseline, several studies have demonstrated
that learned representations and deep neural networks surpass
classical models across a variety of molecular and polymer
property prediction tasks.42–44 We anticipate that as polymer-
specic representations mature – better encoding higher-order
structural features such as branching, molecular-weight distri-
butions, and sequence heterogeneity—representation learning
approaches will deliver even greater performance gains.

Based on the results in our study, we advise to consider also
the application of simpler models for small labeled datasets
with relatively simple structure to property relationships.
However, one key advantage of our proposed method lies in its
ability to eliminate the reliance on handcraed descriptors. By
learning directly from the polymer graph structure, JEPA offers
two tree-based baseline models (random forest and XGBoost) on the
finetune dataset sizes. (b) Comparison of phase behavior classification
-based baseline models (random forest and XGBoost) on the diblock
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Table 1 Impact of context subgraph size on property prediction
performance evaluated for the electron affinity in the conjugated
copolymer dataset1

Context size R2 [ RMSE Y

No pretraining 0.46� 0.15 0.44� 0.06
20% 0.56 � 0.07 0.39 � 0.03
40% 0.60 � 0.06 0.37 � 0.03
60% 0.65 � 0.03 0.35 � 0.02
80% 0.62 � 0.07 0.37 � 0.03
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greater adaptability to new datasets without the need to tune
ngerprints for specic polymer structures. Specically, the
used ngerprinting1 which involves the generation of oligomer
ensembles and averaging their ngerprint, requires thoughtful
engineering by experts and signicant computation time.

Lastly, we hypothesize that more diverse pretraining datasets
and more netune data could further elevate the performance
of our JEPA (wD-MPNN) pretrained model, beyond the two tasks
covered in this study.
95% 0.61 � 0.05 0.37 � 0.02

Table 2 Impact of target subgraph size on property prediction
performance evaluated for the electron affinity in the conjugated
copolymer dataset1

Target size R2 [ RMSE Y

No pretraining 0.46� 0.15 0.44� 0.06
5% 0.61 � 0.07 0.37 � 0.03
10% 0.66 � 0.02 0.35 � 0.01
15% 0.65 � 0.03 0.35 � 0.02
20% 0.63 � 0.03 0.36 � 0.02

Table 3 Impact of the number of predicted target subgraphs on
property prediction performance evaluated for the electron affinity in
the conjugated copolymer dataset1

Number of targets R2 [ RMSE Y

No pretraining 0.46 � 0.15 0.44 � 0.06
1 0.67 �0.01 0.34 �0.01
2 0.64 � 0.03 0.36 � 0.01
3 0.66 � 0.02 0.35 � 0.01
4 0.65 � 0.05 0.35 � 0.02
5 0.61 � 0.04 0.37 � 0.02
3.5 Evaluation of subgraphing strategies

This section presents an ablation study on subgraphing
hyperparameters, including context and target subgraph size,
the number of targets, and the subgraphing algorithm. These
results explore the sensitivity of each parameter by varying them
individually while keeping others xed. Note, that we report
suitable ranges and trends in this section. The ablation study
itself is inherently stochastic as we utilise random initialization
with stochastic subgraph generation and test the model under
limited netuning data availability. Further, pretraining effec-
tively replaces random initialization of the wD-MPNN weights,
while netuning remains an end-to-end setup. Thus, the re-
ported metrics reect the integrated effect of pretraining and
netuning for this specic downstream task.

Each experiment involved pretraining the model on 40% of
the conjugated copolymer dataset (Section 2.3) and netuning
on 0.4% (192 data points) to simulate a label-scarce scenario.
Overall, across ablation experiments, self-supervised pretrain-
ing with our model consistently improved downstream property
prediction performance. For the ablation experiments related to
context subgraph size, target subgraph size and number of
targets, we used the random-walk algorithm for subgraph
creation due to its direct control over subgraph size.

Within the searched subgraphing settings, we observe the
highest performance increase using random walk subgraphing,
a context size of 60% and one target with a subgraph size of 10%
of the polymer graph. Yet, the model's sensitivity to subgraph-
ing hyperparameters is comparatively low, indicating that (i) the
resulting parameters should be interpreted as one out of many
suitable congurations and that (ii), in the tested parameter
space, JEPA pretraining provides performance improvements
irrespective of the hyperparameter conguration.

3.5.1 Context subgraph size. As shown in Table 1, we
identify an optimal context size of 60% (relative to the full graph)
for predictive tasks, balancing informativeness and overlap with
the target. This corresponds to around 10–15 atoms of the full
polymer graph (20–25 atoms). The model is robust to context size
changes, with larger performance drops only at smaller sizes (e.g.,
20%). Even in the less optimal settings, there is still a perfor-
mance improvement compared to the baseline model without
pretraining. Based on our results, a context size of 50–80% is
suggested to be broadly effective across different size of molec-
ular graphs. In this experiment we use three target subgraphs,
sized approximately 15% of the total graph.

3.5.2 Target subgraph size. Further, in our setup, we nd
an optimal target subgraph size of 10% of the total graph, which
Digital Discovery
corresponds to two to three atoms in the considered polymer
graphs (Table 2). Note, that due to one-hop expansion in the
random walk subgraphing, the actual target size is slightly
larger (see Appendix D). We hypothesize that the ideal range
ensures effective learning without oversimplifying (too small
targets) or overcomplicating (too large targets) the prediction
task. When applying this method to other polymer datasets with
graphs of different sizes, the optimal rangemight differ slightly.
We hypothesize that a target size range of 10% to 20% should be
effective across different molecular sizes. For smaller polymer
graphs, the target size might lean towards 20%, while for larger
molecules, it might be closer to 10%. This should avoid the
extreme cases where the target is either too small (a single node)
or too large (several molecular substructures together).

3.5.3 Number of target subgraphs. For random walk sub-
graphing, the model is not highly sensitive to the number of
targets (see Table 3). A single target provides the best perfor-
mance, but we do not record a large drop if more targets are
included. Here, we use the optimal conguration of 60% context
size and 10% target size as identied as suitable previously. We
reason that fewer targets increase exposure to diverse subgraphs
per epoch, improving generalization, while more targets risk
overtting by repeatedly predicting similar subgraphs.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Impact of different subgraphing algorithms on property
prediction performance evaluated for the electron affinity in the
conjugated copolymer dataset1

Subgraphing R2 [ RMSE Y

No pretraining 0.46 � 0.15 0.44 � 0.06
Motif-based 0.63 � 0.05 0.36 � 0.02
Metis 0.67 � 0.04 0.34 � 0.02
Random walk (RW) 0.67 �0.01 0.34 �0.01
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3.5.4 Subgraphing type. For the tested setting of one target,
context size of 60% and target size of 10%, we observe (Table 4)
that all algorithms perform similarly, with a slight advantage for
the random-walk subgraphing, demonstrating the best perfor-
mance and stability. Overall, we nd that subgraph variability
and subgraph sizes play a more crucial role in determining
model performance than the chemical meaningfulness of the
subgraphs themselves.

Using a xed context size of 60% and target size of 10% (single
target), we compared the random-walk, motif-based, and METIS
subgraphing. Interestingly, the motif-based method, which
leverages domain knowledge to produce chemically meaningful
subgraphs, exhibits slightly lower performance than the other
two algorithms. While motif-based subgraphing generates
chemically meaningful subgraphs, it tends to produce a relatively
small number of subgraphs, in a deterministic fashion, poten-
tially limiting model generalization by increasing the likelihood
of encountering similar or identical subgraphs (both context and
target ones) throughout training. On the other hand, the METIS
algorithm, while also producing consistent subgraphs at each
epoch, generates on average a higher number of subgraphs
compared to the motif-based approach, introducing more vari-
ability across epochs. Finally, random-walk subgraphing gener-
ates different subgraphs at every epoch, thanks to the stochastic
nature of the subgraphing process. Beyond the factor of vari-
ability, we investigated the adherence of these methods to the
specied subgraph size. In Appendix D we provide a detailed
analysis on the subgraph sizes for the different subgraphing
types given the desired specication. While all methods system-
atically overshoot the specied subgraph size due to imple-
mentation constraints (chemical validity, connectivity
preservation, and meaningfulness of partitions), the adherence
to the specied size of the extracted subgraphs differs. The
random-walk approach provided the best adherence to the
desired context size (close to 60%). Conversely, METIS achieved
the closest adherence to the specied target size (10%). In the
previous sections, we identied a too small context subgraph size
to be the main driver of performance drops. Since our imple-
mentation leads to larger subgraphs than specied for all
methods, we naturally prevent too small context subgraphs.

While we observe the best performance for the random-walk
approach, other subgraphing methods remain competitive and
may favor slightly different optimal congurations (e.g., context
size, target size, or number of targets). The analysis indicates
that for our dataset the pretraining effect is consistently
signicant across most settings, whereas further hyper-
parameter tuning offers only minor improvements.
© 2026 The Author(s). Published by the Royal Society of Chemistry
4 Conclusion

This study introduces a novel self-supervised pretraining
strategy for the polymer domain, where labeled data is oen
scarce. The presented method operates on polymer molecular
graphs, leveraging the concept of JEPAs. Our study stands as
one of the initial efforts in exploring JEPAs for molecular graph-
related tasks, thus enriching the understanding and analysis of
this new architectural family in the molecular domain. We
provide guidance for the exploration of hyperparameters for
subgraphing; in particular on size and algorithm selection.
While the exact optimal conguration likely depends on the
considered dataset and ne-tune scenario, Section 3.5 reveals
that, across all tested settings, pretraining consistently
increased the performance in the tested downstream task, with
limited sensitivity to subgraphing hyperparameter choices.

Our experiments show that self-supervised pretraining on
conjugated copolymer data consistently improves the down-
stream prediction accuracy for a dataset that describes a different
polymer space (diblock copolymers), showcasing the ability of
transferring general knowledge across polymer datasets of
different applications. When pretraining and netuning on the
same polymer space of conjugated copolymers our method helps
in label-scarce data scenarios up to up to around 8% (ca. 3440
polymers) of labeled data availability. The performance
improvement (in R2) varies from 39.8% in the smallest labeled
data scenario to 0.4% in the scenario with 8% labelled data.

Comparing our polymer-JEPA self-supervised model
(embedding space) with node/edge-masking self-supervised
learning (input space), we observe that we achieve comparable
performance on the tested downstream task. Further, both
methods benet from including a pseudotask prediction
(molecular weight), with the benet being less pronounced in
our embedding space self-supervised pretraining strategy.
Additionally, we showed that simple tree-based baselines like
a random forest or XGBoost model outperform our deep
learning models in certain scenarios in the two downstream
tasks considered, especially when labelled data is very scarce.
However, these methods rely on expert-engineered polymer
ngerprints, which is not necessary with our method that learns
from the polymer graph directly.

Looking ahead, the embedding-based nature of JEPA offers
promising opportunities for integrating multimodal data and
utilizing a variety of different experimental and synthetic data-
sets for pretraining. Generally, we hypothesize that more
diverse pretraining datasets could contribute to further
increasing the performance of our JEPA (wD-MPNN) model
compared to not using a pretrained model, also beyond the two
tasks covered in this study.
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Data availability

The used data and code are provided in the Github repository
https://github.com/Intelligent-molecular-systems/Polymer-
JEPA, with the archived version at time of publication at https://
doi.org/10.5281/zenodo.17640709. Additionally, data splits,
preprocessed data to train the JEPA models, and polymer
ngerprints to train tree-based models are provided on
Zenodo: https://doi.org/10.5281/zenodo.17630815.
Appendix A: Additional subgraphing
requirements

The subgraphs used as inputs to our model comply with the
following requirements:
Table 5 Comparing the performance of the node-centred and the
edge-centred message passing model on prediction of the electron
affinity

wD-MPNN R2 [ RMSE Y

Edge-centred 0.998 � 0.0003 0.029 � 0.002
Node-centred 0.998 � 0.0002 0.027 � 0.001

Table 6 Comparing the performance of the node-centred and the
edge-centred message passing model on prediction of the ionization
potential

wD-MPNN R2 [ RMSE Y

Edge-centred 0.998 � 0.0007 0.022 � 0.004
Node-centred 0.997 � 0.0004 0.025 � 0.003

Fig. 10 Model version I.

Digital Discovery
(1) In the case of a copolymer, the context subgraph should
include elements from both monomers: predicting a part of
monomer B, if monomer B is missing from the context is not
possible.

(2) Every edge and every node should be in at least one
subgraph32,39 to include full global information and full input
representation.

(3) The context patch (subgraph) should be larger, hence
more informative, than the targets patches (subgraphs) we are
trying to predict from the context.45

(4) The target subgraphs should have minimal overlap with
the context subgraph32,45 to make the prediction task less trivial.

(5) The context and targets subgraphs should change at every
training loop to prevent overtting.32,45

(6) For every directed edge evu in a subgraph, include also the
edge euv, to comply with encoder architecture (wD-MPNN1).
Appendix B: Node-centred and edge-
centred message passing with wD-
MPNN

The choice of edge-centred convolutions differs from most
common GNNs, which use node-centred message passing. The
motivation behind this design, explained in ref. 43 is to prevent
totters, that is, to avoid messages being passed along any path of
the form v1v2.vn where vi = vi+2 for some i, which are thought to
introduce noise into the graph representation by creating
unnecessary loops in the message passing trajectory. However,
we hypothesize that such loops are not less relevant for the
dataset considered, as the polymer graphs utilized are unlikely to
contain such small cyclic patterns. Working with edge-centred
convolutions requires big and sparse adjacency matrices of
shape Ae×e and Ae×n, which makes the training process more
cumbersome, also due to the edge-centred convolution not being
well supported in Pytorch Geometric. We compare the perfor-
mance of the convolution methods predicting the EA and IP of
the conjugated copolymer dataset in Tables 5 and 6 respectively.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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The results were obtained in the scenario where we train end-to-
end on 80% of the data, and test on 20%. As visible in the tables,
bothmethods achieve the same results, making the node-centred
convolution a good solution, given the ease of implementation.

Appendix C: Additional notes on model
variants

In addition to the JEPAmodel variant presented in the main text
(Model II, Fig. 3), we also experimented with an alternative
architecture (Model I, Fig. 10). Model I is conceptually closer to
Graph-JEPA,32 but was ultimately less effective in our setting. We
include it here for the sake of completeness, along with
a comparison between the two approaches.

Architectural differences

Model I adopts a hybrid design, where an initial GNN encoder
(wD-MPNN) processes all subgraphs obtained from the
Fig. 11 Comparison of downstream performance for Model I (red),
Model II (green), and the baseline wD-MPNN without pretraining
(blue). Model II consistently benefits from pretraining across all dataset
sizes, while Model I shows improvements only in the most data-scarce
scenarios.

Fig. 12 JEPA pretraining L2 (embedding) loss evolution with and without
the apparent convergence behavior, whereas removing it yields noisier
sentational flexibility. (a) With normalization layer. Both training and valid
Without normalization layer. Loss magnitude changes due to drifting em

© 2026 The Author(s). Published by the Royal Society of Chemistry
partitioning algorithm. The resulting subgraph embeddings are
subsequently contextualized through a transformer-based
target encoder Etarget, allowing global information exchange
via self-attention. A symmetric context encoder Econtext is
required when using momentum updates or weight sharing to
prevent trivial information leakage.

Model II (in the mainmanuscript), in contrast, simplies the
architecture by replacing the transformer encoders with wD-
MPNNs for both context and target encoding, while removing
the initial GNN stage. Here, Econtext operates on the context
subgraph, and Etarget directly processes the full graph, from
which target subgraph embeddings are pooled. This design
yields a more parameter-efficient model, avoids intermediate
subgraph embeddings, and naturally preserves positional
information.
Performance comparison

Fig. 11 reports the predictive performance of bothmodels under
the conguration of 60% context size, 10% target size, one
predicted target, and random-walk subgraphing.

Model II clearly outperforms Model I, demonstrating better
stability and accuracy, particularly in low-data regimes. Several
factors may explain this: (i) Model I is more complex, combining
wD-MPNN and transformer encoders, and likely requires more
data to converge effectively. (ii) Model I contextualizes targets
only through small subgraphs, which may discard positional
cues critical for polymer graphs composed of multiple mono-
mer units. In contrast, Model II trains the target encoder on the
full graph, preserving this information. (iii) All hyperparameters
(subgraph sizes, target number, and partitioning strategy) were
tuned for Model II, potentially biasing results in its favor.

Regarding pretraining, the two variants behave differently.
Model II benets consistently from pretraining across all ne-
tuning dataset sizes. In contrast, Model I shows improvement
only in the most data-scarce scenarios; as the amount of ne-
tuning data increases, the effect of pretraining becomes
normalization in the predictor head. The normalization layer stabilizes
loss curves yet better downstream performance via increased repre-
ation L2 losses decrease smoothly, indicating stable convergence. (b)
bedding scales.

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00308c


Fig. 13 MSE loss curves for node/edge masking and pseudolabel prediction, as introduced by Gao et al.15 (a) MSE loss curve for masked node/
edge prediction. (b) MSE loss curve for pseudolabel prediction.

Table 7 Distribution of subgraph sizes for context and target subgraphs across different partitioning algorithms (mean ± std, in number of
nodes). Ratios are context-to-target. Percentages are relative to the full graph size (21.3 ± 4.3 nodes)

Method Context Target Ratio Adherence

Motif-based 14.6 � 2.8 (69.2%) 4.8 � 0.9 (23.2%) 3.1 : 1 Context 115%, target 232%
METIS 14.6 � 3.2 (68.5%) 3.1 � 0.7 (14.6%) 4.7 : 1 Context 114%, target 146%
Random walk 13.4 � 2.6 (62.9%) 3.8 � 1.4 (18.6%) 3.5 : 1 Context 105%, target 186%
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redundant or even slightly detrimental, suggesting that noise
may dominate the learned representations in this
conguration.
Appendix D: Subgraph size distribution
analysis

We analyzed the distribution of context and target subgraph sizes
across the three partitioning algorithms (motif-based, METIS,
and random walk) under the parameter setting of 60% context
size and 10% target size and one target subgraph. Table 7 reports
the average number of nodes per subgraph, the resulting
context–target ratios, and adherence to the specied parameters.

We observe that all methods produce larger-than-expected
targets due to implementation constraints (chemical validity,
connectivity preservation, and meaningfulness of partitions).
Nevertheless, the methods differ in how closely they approxi-
mate the intended proportions: random walk adheres most
closely to the context size, METIS yields the most accurate sizes
for targets, and motif-based partitions result in the largest
context and targets compared to desired sizes.
Fig. 14 R2 performance under the monomer-holdout split for
wD-MPNN without and with JEPA-based pretraining, tree-based
baselines, and input-space SSL (Gao et al.15). Higher is better.
Appendix E: Pretraining dynamics of
JEPA

Fig. 12a and b show representative training and validation L2
(embedding) loss trajectories during JEPA pretraining, with and
without a normalization layer aer the graph pooling layer in
context and target encoder.

With the normalization layer, JEPA shows the expected
smooth decline of both training and validation losses,
Digital Discovery
indicating numerically stable optimization. In contrast, when
the normalization layer is removed, the loss curves uctuate
and generally increase with increasing epochs. This behavior
arises because the magnitude of latent embeddings can dri
during training, leading to apparent divergence in the raw L2
loss scale.Despite this, we found the variant without normali-
zation (closer to original JEPA implementation) to achieve
superior downstream performance. We attribute this to
increased representational exibility: normalization constrains
the embedding space and may reduce expressiveness. More-
over, in JEPA-style objectives, context–target pairs are resampled
each epoch via random-walk subgraphing, so the prediction
targets continually change, preventing the loss from attening
to a stationary minimum. Similar patterns have been reported
in recent JEPA implementations (e.g., C-JEPA), and reect the
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 RMSE performance under the monomer-holdout split for the
same models. Lower is better.
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stochastic nature of the training dynamics rather than
instability.

As a reference, we also provide the learning curves for self-
supervised pretraining using node/edge masking (Fig. 13a)
Fig. 16 Monomer-specific RMSE curves for JEPA pretraining, input-spa
ability in generalization across monomer types. The titles of the subfigure

© 2026 The Author(s). Published by the Royal Society of Chemistry
and pseudolabel prediction (Fig. 13b) of polymer graphs, as
introduced by Gao et al.15
Appendix F: Monomer-based data split

To evaluate out-of-distribution (OOD) generalization, we perform
a monomer-based data split in which all polymers containing
a specic A-monomer are excluded from training and used as test
set. This setup imposes a stronger distribution shi than random
splits, requiringmodels to generalize to unseen chemical scaffolds.

We conduct a nine-fold cross validation, each fold holding out
one A-monomer. The compared models include the JEPA-
pretrained wD-MPNN, the same model ne-tuned only, the
input-space SSL model of Gao et al.,15 and tree-based baselines
random forest and XGBoost trained on oligomer ngerprints, as
described in the main manuscript. Because the monomer-holdout
setup induces substantial variability between folds, results are
summarized as boxplots across all folds and random seeds in
Fig. 14 and 15. Additionally, we provide per-monomer RMSE
curves for the different netune dataset size, shown in Fig. 16.
ce SSL (Gao et al.15), and the non-pretrained baseline, illustrating vari-
s are the respective monomer SMILES of the held out test A-monomer.
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Fig. 17 RMSE performance under the random split for wD-MPNN
without and with JEPA-based pretraining, tree-based baselines, and
input-space SSL (Gao et al.15). Lower is better.
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Aggregated results

Embedding-space JEPA pretraining improves median perfor-
mance and reduces variance across test monomer folds,
though less strongly than input-space SSL. As shown in Fig. 14
and 15, JEPA pretraining generally increases the median R2

and lowers RMSE relative to training from scratch, while
narrowing fold-to-fold variability. These gains are smaller
than those obtained under random splits (Fig. 17). The input-
space SSL approach (node/edge masking with a pseudolabel
objective) yields larger median improvements, suggesting
stronger OOD generalization than our embedding-based SSL
strategy.

The tree-based baselines random forest and XGBoost trained
on handcraed ngerprints are less competitive under the
monomer-holdout split compared to the random split scenario.
This indicates that ngerprint-based models tend to be more
sensitive to distribution shis than graph-based methods that
learn directly from molecular structure.
Per-monomer analysis

Fig. 16 reveals strong monomer-specic variation in perfor-
mance, reected by differing RMSE scales on the y-axes. This
aligns with the large variance in Fig. 15 compared to the more
uniform results under random splits (Fig. 17).

Interestingly, JEPA-based and input-space SSL models excel
on different monomers. For instance, JEPA performs better for
(*)c1ccc(*)cc1, whereas input-space SSL performs better for (*)
c1cc2cc3sc(*)cc3cc2s1. For each held-out monomer, the plots
also report the maximum Tanimoto similarity to any training-
set monomer (upper-right corner). However, we observe no
consistent relationship between similarity, RMSE magnitude,
and the relative benet of pretraining.
Appendix G: Additional plots

In Fig. 17, we show an additional boxplot for the RMSE in the
random split scenario to illustrate the different fold-to-fold
variances compared to the results in Appendix F.
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