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Abstract
Virtual agents have demonstrated remarkable
progress in both competitive and cooperative en-
vironments. Embodied agents, which enhance AI
interactions with the physical world, show great
promise for a variety of use cases in both virtual
and non-virtual settings. This literature review ex-
amines the intersection of embodied virtual agents
with cognitive and social frameworks derived from
human behavior, focusing on open-ended learning
and intrinsic motivation. These paradigms, inspired
by human learning and adaptability, offer a path to-
wards addressing the limitations of current artificial
systems. The literature survey provides a thorough
analysis of the research landscape, discussing the
definitions, applications, and benefits of embodied
agents in virtual settings. Furthermore, it evaluates
the methods and benchmarks used to assess the ca-
pabilities of these systems, while offering possible
solutions for developing the next generation of em-
bodied agents.

1 Introduction
Following the emergence of deep learning in 2012 [1], virtual
agents have experienced a significant increase in capabilities
in both zero-sum games [2] [3] and cooperative settings [4]
across multiple environments. Moreover, embodied agents
represent a promising approach towards enhancing artificial
intelligence (AI) interaction with the physical world, opening
the path to numerous economically viable applications. One
of the limiting factors in real-world usage of embodied agents
powered by deep learning is the massive amounts of data
required for training deep architectures [5]. Collecting data
in real environments is often expensive and extremely time
consuming, diminishing the usability and feasibility of any
embodied agents by both researchers and practitioners.

Embodied virtual agents provide a possible solution to the data
bottleneck by combining embodiment and virtual systems,
operating in simulated environments where data collection
is no longer an issue [6]. Furthermore, these methods are
used to understand autonomous intelligent behaviour as a
powerful synergy between the agent and the environment
[7], providing an alternative view towards learning and
intelligence compared to the static learning paradigm specific
to supervised and self-supervised learning.

Despite the success of deep learning algorithms across a wide
range of tasks, current AI systems lack the reasoning and
generalization capabilities specific to humans [8], hinting
towards possible limitations in the road to human-level AI
[9]. For example, DreamerV3 [10] introduces an algorithm
capable of performing tasks across a wide range of environ-
ments and types of agents. However, the model requires
explicit reward signals from the environment and can only
achieve mastery of a single task. To combat these issues and
develop more autonomous and generalizable agents, scientists

try to find inspiration in theoretical neuroscience by taking
ideas from the inner workings of the human brain. This
connection between neuroscience and AI has been beneficial
for both fields, with famous examples like the perceptron
[11], Convolutional Neural Networks (CNN) [12] or Dropout
regularization [13].

The aim of this literature review is to explore how current re-
search on embodied virtual agents leverages the cognitive and
social frameworks derived from humans, with an emphasis
on open-ended learning [14] and intrinsic motivation [15].
Open-ended learning is a learning paradigm where agents
continuously adapt to new environments and tasks, without
any predefined goals and termination conditions. On the other
hand, intrinsic motivation deals with the ability of an agent
to explore the environment without any external or explicit
reward signals. These concepts stem from an animal’s ability
to learn and generalize to new environments with sparse or
absent rewards. Thus, these two methods provide a promising
approach towards the future of virtual and non-virtual agents,
tackling the innate problems of the current systems [10].

In order to provide a comprehensive analysis on current
literature, together with possible directions for future research,
the survey will consider different viewpoints and highlight
their limitations. More specifically, we cover various
definitions of embodied agents, and explore how open-ended
learning and intrinsic motivation have been applied in the
context of embodied virtual agents. Moreover, we study the
gap between virtual and non-virtual agents to quantify the
advantages and disadvantages of constraining agents inside a
virtual setting. Lastly, we analyze the literature corresponding
to the current benchmarks and evaluation methods considered
when assessing an embodied agent’s capabilities.

Below we highlight the main questions we aim to answer
throughout the literature review:

Question 1. How has open-ended learning and intrin-
sic motivation been applied in the context of embodied
virtual agents?

Question 2. What kind of benchmarks are used to as-
sess an agent’s open-endedness and intrinsic motivation
capabilities?

Question 3. What are the limitations of the current meth-
ods in the field and what are the possible directions for
future research?

The structure of the survey is as follows. Section 2 provides
a comprehensive analysis on the methodology used to filter
the relevant literature based on the objectives of the survey.
Section 3 provides the reader the necessary background on
the topics presented in Section 4. In turn, Section 4 provides
an overview on the current literature concerning open-ended
learning and intrinsic motivation in the context of embodied
virtual agents, while also considering the current benchmarks
specific to these methods. Section 5 introduces a discussion
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based on the findings in the previous two sections, followed
by Section 6 which proposes future research directions based
on current trends in generalizable agents.

2 Methodology
In order to minimize potential conflicts or ambiguity in the
selection of the scientific articles considered in this survey,
we follow as close as possible the standardized Preferred
Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) [16] guidelines to provide transparency and repro-
ducibility to the reader. The following subsections describe
in detail the retrieval, selection and inclusion criteria used to
filter the papers considered in the study, enabling full repro-
ducibility and transparency. Figure 1 provides an overview of
the methodology, highlighting both the selection procedure
and the results.

2.1 Literature search
Taking in consideration the aim of this survey and its inter-
section with multiple fields such as neuroscience, machine
learning and robotics, we mainly consider scientific articles
from multiple databases, encompassing different perspectives
and viewpoints. With this objective in mind, we choose the
following databases: IEEE Xplore 1, Scopus 2, Nature 3 and
ACM Digital Library 4.

The aforementioned databases consist of millions of records,
most of which are not in the scope of this literature review.
Thus, we search for relevant articles using keywords, boolean
operators and regex patterns. By using keywords related to
the research questions highlighted in Section 1, we restrict
our search exclusively to a small subset of articles, concen-
trated around the goal of the analysis. Moreover, using the
boolean operators AND, NOT, OR, we construct more fine-
grained search queries, reducing the solution domain even
further. Figure 2 features the final search query used across all
databases.

("intrinsic motivation*" OR "inherent
motivation*" OR "open-endedness" OR

"open-ended learning") AND ("embodied"
OR "embodiment" OR "robot*") AND

("agent*" OR "multi-agent*" OR "multi
agent*") AND NOT "psychology"

Figure 2: Search query used for database filtering. The relational
operators are highlighted with blue.

1https://ieeexplore.ieee.org
2https://www.scopus.com
3https://www.nature.com
4https://dl.acm.org

2.2 Literature filtering
Once a search query is determined, the next procedure consists
of filtering all the articles found based on the title and the
abstract, effectively eliminating any duplicates or irrelevant
articles found. Furthermore, we showcase the inclusion and
exclusion criteria used to filter out the scientific articles during
the full-text retrieval stage.

Inclusion criteria
• Journal article/Conference proceedings written in the En-

glish language

• Focus on intrinsic motivation or open-ended learning

• Focus on benchmarks or evaluations for embodied virtual
agents

Exclusion criteria
• Full-study not available

• Journal article/Conference proceedings written in other
language than English

• Other focus than open-ended learning/intrinsic motiva-
tion and emboied virtual agents

Lastly, to showcase an overview of the results from the liter-
ature search, Figure 3 dissects the list of articles, by grouping
them into specific categories that directly relate to Question 1,
2 and 3.

204

27

open-ended learning

intrinsic motivation

benchmarks

Figure 3: Number of papers covering each focus point. Each color
highlights one of the three key concepts discussed throughout the
literature review.

2.3 Citation chaining & Other sources
In order to broaden the scope of the articles considered after
the literature filtering, we use citation chaining to select highly
relevant papers that might have not been included in the origi-
nal search due to the choice of keywords. Citation chaining,
also known as backward chaining, considers the cited articles
in the already selected papers as a proxy for their relevance
to the subject and credibility. In the context of this literature
review, citation chaining contributed with five papers to the
final number of studies included for synthesis. Furthermore,
we enhance the set of studies included in this paper with ad-
ditional articles found on Google Scholar 5. To encourage
transparency, the complete list of articles from Google Scholar
can be found in the Appendix A.

5https://scholar.google.com
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Database extraction

Identification

Screening

Included

Records identified
from databases:

ACM DL: 174
Nature: 21
Scopus: 128

IEEE Xplore: 116

Records screened: 
401

Studies included in
review:

74

Reports sought for retrieval:
65

Reports assessed for
eligibility: 

62

Records removed
before screening:

Duplicate records
removed:

38

Records excluded: 
336

Reports not retrieved:
3

Reports excluded:
11

Records identified
from:

Citation chaining:
5

Google Scholar:
18

Figure 1: PRISMA diagram visualization. Provides a high-level overview of the literature search conducted for this survey. Sections highlighed
with green correspond to different stages of the search.

3 Background
The purpose of this section is to introduce the reader to the
core concepts related to the literature considered in this review.
Specifically, each of the following three subsections briefly
present the background and motivation behind these ideas,
while providing a clear definition to assist the reader for the
rest of the review.

3.1 Embodied virtual agent
For the scope of this survey, we define a virtual agent as
a software-based system that operates in a virtual setting,
capable of executing actions dependent on the state of the
environment. For example, a primary use case of virtual
agents are chatbot applications, where the agent responds
according to a query formulated by a user.

Embodiment on the other hand, bridges the gap between vir-
tual agents and physical reality by providing agents with means
of perceiving the world through sensory and physical experi-
ences. Thus, embodied virtual agents leverage the synthesis
with the physical world to perform a wide range of tasks and
real-world applications, such as navigation [17] [18], visual
exploration [19] or embodied question answering [20].
The idea of embodied agents comes mostly from the
concept of embodied cognition, which states that cognition
requires acting with a physical body in an environment.
Thus, understanding the underlying cognitive processes

requires knowledge about their relationship with the agent’s
embodiment and the sensory signals coming from the
environment. Furthermore, the concept of embodied cognition
is also prevelant in social contexts [21], where non-verbal
information such as body language or face expressions
become a good indicator of the other’s agent state.

Considering prior literature and different schools of thought
in embodiment, for the purpose of this survey, we formally
define an embodied virtual agent in Definition 1.

Definition 1. An embodied virtual agent is an au-
tonomous intelligent agent that interacts with the envi-
ronment through a form of physical embodiment that can
perceive sensory inputs.

3.2 Open-Endedness
The concept of an open-ended system has been widely
discussed through the years, having plenty of proposed
definitions [22] [23] [24] [25]. While their interpretation
widely varies, they all share an overarching theme where an
open-ended system endlessly produces novel and interesting
artifacts with respect to an external observer.

The majority of formal definitions for open-endedness come in
the context of evolutionary systems [24] [25] [22], where the
complexity of the systems increases in time as a result of evolu-
tion. Subsequently, the steady increase in complexity is trans-
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lated into novel behavioural artifacts. On the other hand, there
is an increasing body of research, defining open-endedness
in terms of an external observer [23] [26]. Compared to the
evolutionary perspective, open-endedness is now seen through
the ”eyes” of the observer, which quantifies the increase in
novelty of the system through time, based on its own measure
of interestingness. Definition 2 provides a general yet quantifi-
able formulation for open-endedness in the context of virtual
agents, which combines both schools of thought mentioned in
the beginning.

Definition 2. Open-endedness is the ability of an agent
to improve and adapt over time, being able to constantly
generate novel behaviour with respect to an external
observer.

3.3 Intrinsic motivation
Intrinsic motivation (IR) is closely linked with open-ended
learning, and has its roots in psychology [27] [28], where it
provides a framework for understanding animal behaviour
in the absence of any major external stimuli [29]. This per-
spective becomes attractive from a computational perspective,
by providing a way of inducing exploration and learning in
virtual agents, without relying on predefined learning signals.

Besides psychology, intrinsic motivations are also present in
theoretical neuroscience, where it is considered to be responsi-
ble for generating learning signals in the brain if the organism
is acquiring new skills [30]. Thus, by combining the psy-
chology and theoretical neuroscience research we formalize
intrinsic motivation in Definition 3.

Definition 3. Intrinsic motivations are mechanisms that
drive learning of new skills and knowledge, without the
need for any homeostatic rewards.

As stated in the beginning of the section, open-ended learn-
ing and intrinsic motivation are intertwined concepts, that can-
not exist in complete separation. This synergy allows agents
to demonstrate continuous self-driven growth and adaptation.

4 Results
We now analyze the current literature landscape for both open-
ended learning and intrinsic motivation. More specifically,
we focus on scientific work which relates to the questions
specified in Section 1, combining the two paradigms with the
concept of embodied virtual agents. Thus, Section 4.1 sum-
marizes scientific works related to open-endedness and open-
ended learning, while Section 4.2 focuses on intrinsic motiva-
tion research. Finally, Section 4.3 dissects current available
benchmarks that quantify motivations and open-endedness in
embodied virtual agents.

4.1 Open-ended learning
Based on the methodology described in Section 2, we separate
open-ended research in four categories: social learning, evolu-
tionary methods and curriculum learning approaches. While
this grouping is not disjoint, we choose this configuration in

order to focus on accuately presenting the main paradigms in
open-ended learning.

Social learning
An important area of research in open-ended learning
involves multi-agent settings, where similarly capable actors
communicate with each other to exhibit more complex
behaviors [31] [32] [33] [34] [35]. Inspired by theories stating
that social interaction is a necessary component of intelligent
behaviour [36], social learning provides a promising path
towards open-endedness, by leveraging cooperation between
multiple embodied entities.

Current research on vanilla model-free or model-based
RL methods do not naturally utilize social learning for
acquiring new skills or improving existing ones [10] [37]. As
highlighted by [34], in order for social learning to emerge,
certain environment conditions and agent architectures are
required. For example, [34] states that the characteristics of
either the environment or the agent, can influence the reward
structure. On the other hand, [32] draws inspiration from
psychology and associates social learning as a teacher-student
scenario, where a more capable agent aids a weaker actor
to acquire a skill faster. Moreover, [31] finds that equipping
social agents with a conversational memory can drastically
improve goal attainment and learning efficiency.

Once social learning occurs, it enables agents to learn complex
behaviours, ultimately surpassing the expert agents. This
cooperative improvement can be seen as a variant of self-play
or self-improvement, found in algorithms like AlphaGo
[38] or MuZero [3]. With respect to open-endedness, social
learning improves generalization across a multitude of tasks
in the presence of experts, which can be represented either
by humans or more capable agents. Moreover, the student
benefits from the interaction with the expert even in its
absence, thus managing to outperform individually trained
agents.

Another important concept related to social learning is cultural
transmission [35]. The research paper associate few-shot
learning with the same phenomenon found in human culture,
where humans accumulate and refine their skills across
multiple generations, with only limited interactions. The
agent manages to achieve real-time imitation of a human
counterpart with only a handful of examples, showcasing the
potential of the method.

While social learning can promote cooperation, it also in-
creases the risk of deception where agents manipulate other
entities into adopting policies not in their best interest, as
shown by CICERO [39]. While CICERO does not involve any
social learning, it provides an example of possible adversarial
social learning scenarios, and its possible implications. In
this case, expert agents can deliberately hamper the learning
capabilities of other agents for personal or group incentives.

Evolutionary methods
As described in Section 3.2, open-ended learning systems
are not constrained to a fixed set of goals or tasks, but can
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autonomously produce new behaviors, skills, or solutions
over time without any constraints. Evolutionary algorithms
[40], which simulate the processes of mutation, selection, and
recombination found and studied in natural evolution, are a
promising approach for realizing open-endedness in virtual
and non-virtual agents [41] [42] [43] [44]. In this scenario,
learning can emerge by iteratively generating novel variations
while keeping desired attributes, leading to out-of-distribution
behaviours and capabilities.

There are several evolutionary techniques being explored
for open-endedness including novelty search [43] [45],
minimal criterion coevolution [42], and quality diversity
algorithms [46]. Novelty-based search works by rewarding
novel behaviours rather than incentivizing progress towards
a fixed goal. On the other hand, coevolution focuses on
the interaction between two coevolving populations. At
the same time, quality diversity algorithms aim to generate
multiple near-optimal solutions rather than a single optimal
candidate, optimizing for both performance and diversity in
their candidate set.

While evolutionary algorithms are established in literature for
a long time, the combination between evolutionary methods
and open-ended settings represent a relatively new research
direction. Thus, the careful combination of evolutionary op-
erators with open-endedness would allow future agents to
continuously adapt to new environments and tasks.

Curriculum learning
Lastly, we look at curriculum learning, a technique that trains
a machine learning model by exposing it to increasingly
more difficult training data [47] [48]. In case of embodied
virtual agents, curriculum learning translates to a method
which allows the agent to progressively learn to solve tasks
of increasing complexity by interacting with an environment.
Plenty of research has been conducted at the intersection of
open-endedness and curriculum learning, showing promising
results in complex environments [49] [50] [48].

Firstly, [49] proposes a domain-independent goal generation
mechanism to generate goals at different levels of complexity.
The method is validated using a virtual mobile robot, which
manages to produce compound goals by combining previously
experienced states. Moreover, [48] presents the Intrinsically
Motivated Goal Exploration Processes (IMGEP) algorithm
to mimic developmental learning inspired from children
behaviour into machines. IMGEP aims to generate its own
goals and explore the environment with an incremental
goal policy augmented with information reuse for better
generalization. Lastly, Voyager [50] showcases an open-ended
embodied agent guided by Large Language Models (LLMs).
Voyager uses automatic curriculum learning (ACL) to achieve
impressive generalization and adaptability results in the
Minecraft environment [51].

As highlighted by the articles presented above, the potential
role of curriculum learning in open-ended learning is two
fold. Firstly, by using a curriculum, the agent is only ex-

posed to novel tasks that are within cognitive reach. Secondly,
curriculum learning helps break complex tasks in sequential
milestones, guiding the exploration of the agent.

4.2 Intrinsic motivation
Similar to Section 4.1, we categorize the scientific literature
in intrinsic motivation based on how they quantify motivation
and exploration. For the purpose of this survey, we focus on
methods that leverage computation and can be employed by a
virtual agent. Lastly, we take a look at the difference between
intrinsic and extrinsic motivation, and provide an overview of
interactional motivation.

Knowledge-based methods
Knowledge-based methods of intrinsic motivation can be clas-
sified in two categories: novelty-based and prediction-based
models. Novelty-based models [52] perform learning by
comparing new experiences with old ones, shaping the reward
signal to match the novelty of the situation. For example,
exploring an unknown section of a maze would result in a
high intrinsic reward, while moving in the same static area
would not give any positive reward signal, due to the lack of
novelty. On the other hand, prediction-based models [53] use
the prediction error as a guide for the intrinsic reward signal.
The prediction error is calculated between predictions made
by the agent and the true observations from the environment.
In this context, a high prediction error corresponds to a new or
difficult to predict situation which translates in a high reward
signal, guiding the exploration of the agent.

An example of novelty-based intrinsic learning includes the
operation of service robots [54]. The authors take inspiration
from biology and explore the concept of habituation 6 as a
novelty detector. Similarly, [55] proposes a new intrinsic moti-
vation mechanism Group Intrinsic Curiosity Module (GICM)
that encourages the agent to pursue novel situations. Further-
more, [56] presents a novel algorithm for intrinsic motivation
based on boredom and chaos theory. Specifically, boredom is
encoded within the model using a chaotic element that gener-
ates conditions for exploring routes with no reward. Finally,
Continual Curiosity driven Skill Acquisition (CCSA) [57]
avoids dealing with high-dimensional spaces, and manages to
define novelty in a compact low-dimensional space.

Competence-based models
Compared to knowledge-based models which leverage
novelty and surprise to provide intrinsic reward signals
instantaneously, competence-based models measure the
capabilities of the agent over extended periods of time [58]
[59] [60]. The intrinsic motivation reward signal comes from
a significant shift in performance for the agent, regardless if
the error is decreasing or increasing.

GRAIL [60] is an embodied robotic architecture designed for
open-ended goal-discovering. GRAIL uses intrinsic motiva-
tion based on competence-based models to autonomously
drive learning towards easy or achievable goals, by leveraging

6revisiting past experiences with the hope of finding something
new.
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changes in the environment over a specific time window.
By only tracking changes in a finite time window, the
robot is intrinsically discouraged to pursue too complex
or out of reach tasks. Furthermore, its newest variation,
C-GRAIL (Context GRAIL)[61] is able to assign different
values to different goals, depending on the context of the agent.

Another research direction related to competence-based moti-
vations is goal-directed empowerment [59]. Empowerment is
defined as an information-theoretical measure related to the
capacity of the agent to influence its environment. Formally,
empowerment can be defined as the maximum amount of
information that an agent can transmit to its future sensory
perception system. If the future consists of multiple possible
states, corresponding to a high entropy system, then the agent
is incentivized to continue the exploration.

Current research in intrinsic motivation largely focuses on
competence-based models, demonstrating better performance
than knowledge-based methods. In terms of embodiment,
the majority of work leverages robot virtual environments to
assess the capabilities of the agents.

Interactional motivation
The other side on the motivation spectrum that drive virtual
and non-virtual agents is extrinsic motivation. As a concept,
extrinsic motivation can be best understood in comparison
with intrinsic motivation, where there is usually non-existant
or episodic reward signals. In contrast, extrinsic motivation
refers to the ability of the agent to be guided by a series of
reward signals given by virtual or non-virtual environments.
Extrinsic motivation is predominantely used in virtual settings,
where reward signals are considerably easier to model.

Interactional motivation [62] provides a method to induce
self-motivation in artificial agents, combining ideas from both
intrinsic and extrinsic motivation. Formally, interactional mo-
tivation is a mechanism that associates a value function with
possible interactions between the agent and the environment,
using an unsupervised learning mechanism to learn to max-
imize the value function over time. The difference between
interactional and intrinsic motivation relies in the fact that the
value function is explicitly defined.

4.3 Benchmarks
The purpose of this section is to provide the reader a
comprehensive analysis on benchmarks and environments
commonly used to assess the performance of intrinsic
motivation and open-ended approaches in embodied virtual
agents. Benchmarks play an important role in scientific
research by providing standardized metrics for evaluating and
comparing the performance of different methods, models, and
algorithms, while promoting transparency. We emphasize that
Reinforcement Learning (RL) is known for its stochasticity
during evaluations [63], due to the finite number of training
runs reported.

Open-ended learning and intrinsic motivation research spans
a wide number of embodied environments and benchmarks

[64] [65] [66] [67] [68] [69] [70] [71]. These studies
demonstrate the broad applicability as well as the maturity
of the field towards generalizable agents. For instance, [64]
uses the Poppy humanoid robot to develop an active learning
architecture that learns the most efficient data collection
technique, leveraging intrinsic motivation algorithms.

Shifting towards virtual environments, [65] proposes the
Open-ended Physics Environment (OPEn) to benchmark
the ability of intelligent agents to perform downstream
physical reasoning tasks using their model of the world,
which translates in the open-endedness capabilities of the
agent. Besides proposing the benchmark, the authors find
that all the models fail in terms of sample efficiency on
any downstream tasks, uncovering the limitations of the
current algorithms. Furthermore, [66] introduces the Robot
open-Ended Autonomous Learning (REAL) benchmark to
promote open-ended learning research in developmental
robotics. The benchmark consists of 2 phases, the first being
skill acquisition through open-ended learning and intrinsic
motivation in a virtual robot-arm environment, while the
second one focuses on testing the capabilities of the robots
on unknown tasks. On the other hand, [67] and NeuralMMO
[68] propose multi-agent environments for both collaboration
and competition scenarios. Specifically, [67] focuses on
multi-agent continuous control, while NeuralMMO focuses on
multi-agent competition in a finite resource environment. In
terms of embodiment, NeuralMMO uses a three dimensional
animated character and a toolbox, such that the agent can
successfully interact with the environment. Another popular
setting for testing embodied virtual agent is Minecraft
[69]. Due to the design of the environment, as well as the
incremental difficulty of tasks an agent needs to perform,
Minecarft represents an ideal setting for open-ended research.

Lastly, we look at a relatively new benchmark for open-
endedness in minimal criterion coevolution [70], described
in Section 4.1. The paper introduces a maze environment
that allows for infinite expansion in size and complexity, ideal
for open-ended learning. The mazes have a two dimensional
structure and are procedurally generated.

5 Discussion

We now analyze the information extracted in Section 4 and
come up with a series of findings we believe are representative
for the scope of the literature review. The goal is to bring into
attention current advantages and limitations in order to guide
the reader in the right direction.

One of the key insights drawn from the reviewed literature
is the importance of social multi-agent cooperation as high-
lighted in Finding 1. Leveraging cooperation between agents
can result in a more sample efficient convergence towards
completing complex tasks and adaptation to new scenarios.
Moreover, social interaction and cooperation can result in
emergent behaviour, exceeding the initial capabilities of the
agents.

6



Finding 1. Social interaction and cooperation provide a
mechanism of recursive collaborative improvement, en-
hancing adaptability and efficiency.

While mostly overlooked by current literature, the choice of
embodiment significantly alters the capabilities of the agent.
This phenomenon is present in both single and multi-agent
setting, having implications in collaborative settings and in the
agent-environment interaction. More specifically, less embod-
iment capabilities results in fewer communication channels
and fewer ways to interact with the virtual environment, as
stated in Finding 2. In social environments, the correct choice
of embodiment can convey more information than standard
communication, exploiting non-verbal information such as
posture, facial or body expressions.

Finding 2. Agent’s embodiment choice directly influences
its synergy with the environment, and possibly hampering
its adaptability.

The Sim2Real gap, a significant challenge in the deployment
of embodied virtual agents to the real world, refers to the dis-
crepancy between simulations and real-world environments.
The majority of virtual agents trained in simulated environ-
ments tend to underperform when transferred to real-world
settings, due to the inherent complexity of reality. In the con-
text of open-ended learning, the Sim2Real gap becomes more
evident, as current methods in open-ended learning require
large amount of training data and tasks. Currently, these re-
quirements are rarely met when deploying an agent in the
real world, limiting the usability of open-endedness in arti-
ficial agents. Thus, following the current line of research,
we highlight the need for more sample efficient solutions to
open-ended learning in Finding 3.

Finding 3. Deploying open-ended agents in the real
world, requires the development of more sample efficient
learning algorithms.

Another limitation of the current research landscape is the ab-
sence of established benchmarks and environments for testing
the capabilities of embodied virtual agents. While Section 4.3
covers a multitude of existing environments, there is almost no
intersection between experiments conducted and published by
different research groups. Without clear consensus on standard
de-facto benchmarks, similar to ImageNet [72] or COCO [73]
in Computer Vision, tracking progress in the field becomes
increasingly harder. This leads us to Finding 4.

Finding 4. Both open-ended learning and intrinsic mo-
tivation research suffer from the lack of standardized
benchmarks.

Lastly, we highlight the characteristics of open-ended learning
and intrinsic motivation and their importance towards achiev-
ing generally capable and intelligent agents. Firstly, intrinsic
motivation in an agent enables autonomous behaviour, fa-
voring unbounded exploration and improvement. Secondly,
open-ended learning enables the generalization and adaptabil-
ity required by agents in the real world. Thus, we advocate

for the necessity of both open-endedness and intrinsic motiva-
tions for creating generally capable agents, as highlighted in
Finding 5.

Finding 5. Open-endedness and intrinsic motivation are
necessary for emergence of generally capable agents.

6 Future directions
By examining the limitations of the current research landscape
described in Section 5, we highlight what we believe to be the
most promising directions for the next generation of embodied
virtual agents.

The Bitter Lesson 7 states that methods that leverage
computation most effectively usually perform the best. Thus,
given the current state of the art paradigms in deep learning,
the quality of the models is expected to increase over time.
Thus, large pretrained models such as Large Language Models
[74], Vision-Language Models [75] or World Simulators [76]
could theoretically solve both the data bottleneck problem as
well as the Sim2Real gap.

There is an increasing body of research for leveraging the
general knowledge of large pretrained models to guide the
embodied agent through both learning and exploration [50].
Moreover, recent work like Genie [77] could solve the data
required for open-ended learning by leveraging a world simu-
lator, capable of generating training data for the agent. Besides
generating additional training data, these models can also be
used to guide the agent using preferences [78]. For instance,
Vision-Language Models could be used to assist the embodied
agent in choosing between two different trajectories based on
some predefined goal. Furthermore, natural language could be
used to increase the efficiency of deep RL [79] by steering the
agent in the right direction. Lastly, the Sim2Real gap might
disappear completely once pretrained models are used for low-
level robotic control. Recent work like RT-2 [80] already hints
towards the advantages of using Vision-Language Models for
robotics.

7 Conclusion
In conclusion, across this literature review we highlighted the
significant advancements and ongoing challenges in the field
of embodied virtual agents, focusing on open-ended learning
and intrinsic motivation techniques. We emphasize how
the integration of different cognitive and social frameworks
inspired by human behaviour provide promising results
towards a new generation of embodied agents. Furthermore,
we underlined the benchmarks and environments used to
assess the capabilities and shortcomings of these algorithms,
where we find a lack of standards which could potentially
create confusion in the research community.

Despite the notable progress, there are significant bottlenecks
towards achieving autonomous and generalizable AI systems

7http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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in both virtual and non-virtual settings. The data and computa-
tional resources required by current methods make the transfer
between virtual and non-virtual environment impossible. To
this end, we proposed the usage of large pretrained models to
bridge the generalization gap and increase sample efficiency.
Overall, this review underscores the importance of continued
exploration into open-ended learning and intrinsic motivation
to push the boundaries of what embodied virtual agents can
achieve, moving us closer to the goal of creating truly intelli-
gent and adaptable AI systems.

8 Limitations
In this section we highlight the main limitations of the survey
considering the timeline of the project and paper constraints.
While the literature review covers the main topics in both
open-ended learning and intrinsic motivation, some areas are
partially or completely overlooked. Specifically, by focusing
on computational methods, we do not fully cover the literature
on open-ended learning and intrinsic motivation in psychology
and neuroscience. Moreover, we only briefly mention about
the importance of embodiment in the performance and adapt-
ability of a virtual agent, which turns out to be a crucial factor
especially in social and multi-agent settings. Despite these
shortcomings, the literature review contains enough informa-
tion about these topics to guide the reader for a more in-depth
analysis. Finally, due to space constraints, we do not have
the necessary space to provide a mathematical background to
the algorithms related to intrinsic motivation and open-ended
learning.

9 Responsible Research
Responsible research, especially in the context of a literature
review, involves the meticulous and ethical synthesis of ex-
isting knowledge, ensuring accuracy, reliability, and integrity
throughout the process. To this end, we made all possible
efforts to make the methodology as transparent as possible
for full reproducibility. Moreover, we follow the established
PRISMA workflow to ensure the selection process and filter-
ing decisions are well understood. Finally, in Appendix B we
fully disclose the usage of Large Language Models to perform
this literature review.

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-

genet classification with deep convolutional neural net-
works,” Advances in neural information processing sys-
tems, vol. 25, 2012.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot et al., “Mastering the
game of go with deep neural networks and tree search,”
nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan,
L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis,
T. Graepel et al., “Mastering atari, go, chess and shogi
by planning with a learned model,” Nature, vol. 588, no.
7839, pp. 604–609, 2020.

[4] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang,
and M. S. Bernstein, “Generative agents: Interactive
simulacra of human behavior,” in Proceedings of the 36th
Annual ACM Symposium on User Interface Software and
Technology, 2023, pp. 1–22.

[5] Y. Duan and M. J. Wainwright, “Taming” data-hungry”
reinforcement learning? stability in continuous state-
action spaces,” arXiv preprint arXiv:2401.05233, 2024.

[6] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun, “Carla: An open urban driving simulator,” in
Conference on robot learning. PMLR, 2017, pp. 1–16.

[7] R. Chrisley, “Embodied artificial intelligence,” Artificial
intelligence, vol. 149, no. 1, pp. 131–150, 2003.

[8] Y. LeCun, “A path towards autonomous machine intelli-
gence version 0.9. 2, 2022-06-27,” Open Review, vol. 62,
no. 1, 2022.
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A Google Scholar articles

Table 1: Grouping of Google Scholar papers based on primary focus.

Category Source
Intrinsic motivation [58] [52] [53] [19] [81] [82]

Open-ended learning [50] [47] [26] [27] [14] [18] [23]

Benchmarks and datasets [69] [68] [83] [71] [63]

B Usage of Large Language Models
In the context of this literature review, GPT-3.58 has been used to analyze and summarize different scientific articles. No
Language Model has been used for writing the manuscript.

8https://chatgpt.com/
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