
Master
Graduation
Thesis
Design of a data collector for
HEMS crew during OHCA

Yu Zhang 4363515

2

Table of
Contents
04 1. Introduction

06 2. Concept summary

10 3. Design brief
 3.1 Overall context
	 	 	 3.2		 Problem	definition
	 	 	 3.3	 Assignment
 3.4 Personal	ambitions	
 3.5 Method and plan

17 4. Cycle 1
 4.1	 Design	criteria	setting
 4.2	 Ideation
 4.3 Concepts
	 	 	 4.4		 Evaluation
	 	 	 4.5	 Conclusion
 62 5. Cycle 2
 5.1	 Electronics	analysis
	 	 	 5.2	 Electronic	prototypes	building
 5.3 Data	transfer	system	building
 5.4 Evaluation
	 	 	 5.5		 Conclusion

84 6. Cycle 3
 6.1 Use	process	analysis
 6.2 Electronics	housing	ideation
	 	 	 6.3	 Housing	models	building
	 	 	 6.4	 Evaluation
	 	 	 6.5	 Conclusion

102 7. Cycle 4
 7.1 Working	prototype	elaboration
	 	 	 7.2	 User	tests	with	the	working	prototype
	 	 	 7.3	 Final	concept	elaboration
	 	 	 7.4	 Final	concept	evaluation
	 	 	 7.5	 Implementation

119 8. Reflection

121 9. References

125 10. Appendix

3

List of abbreviations

CA - Cardiac arrest

CPR - Cardiopulmonary resuscitation

ECPR - Extracorporeal cardiopulmonary resuscitation

ECMO - Extracorporeal membrane oxygenation

HEMS - Helicopter emergency medical service

IMU - Inertial measurement unit

OHCA - Out of hospital cardiac arrest

PEA/Asytole - 2 types of unshockable rhythms

RTC - Real-Time Clock

ROSC - Return of spontaneous circulation

VF/pVT - 2 types of shockable rhythms

4

01
Introduction

5

Introduction

 The HEMS crew is planning to conduct research on implementing
ECPR treatment during OHCA cases. A data collector that collects
time and chest compression data is needed for the research. Thus,
this graduation project is focused on the design of a data collector for
HEMS crew during OHCA.

 This report describes the whole process of developing the design
of the data collector. The process starts with a design brief that
elaborates the design assignment. Then four cycles of project
development are carried out: the first cycle is focused on context
analysis and exploration on possible solutions; the second cycle
is focused on the electronics prototype and data transfer system
building; the third cycle is focused on the housing design of the
collector; the last cycle is concluded with a validated final design and
recommendations on implementation.

 This project collaborates with Dr. Dinis Reis Miranda from the
HEMS lifeliner 2 and Erasmus MC - University Medical Center.

6

02
Concept

Summary

				The	CPR	data	collector	is	designed	for	the	HEMS	team	to	
collect	the	chest	compression	data	during	OHCA	cases.	It	is	
connected	to	the	CorPatch	-	a	medical	sensor	brought	by	
the	HEMS	team,	to	collect	and	store	data,	and	upload	data	
directly	to	Google	Sheets	via	Wifi.	For	each	HEMS	team,	three	
data	collectors	are	prepared:	red	for	backup,	blue	for	the	
automobile	rescue	backpack,	and	yellow	for	the	helicopter	
rescue	backpack.	The	CPR	data	collector	is	accurate	in	data	
collection,	fast	to	set	up,	durable	in	OHCA	rescues.

The CPR Data Collector

25237A - Automobile

FFC907 - Helicopter

A91B1F - Backup

7

Arduino MKR 1010 Wifi

DS3231 RTC module

Micro SD card module

4 x AA batteries

Velcro band

Base

Cover

Record	current	time

Save	sensor	data

Receive	sensor	data
Calculate sensor data

Transfer	sensor	data	to	micro	SD	card
Upload	data	via	Wifi

Power	supply	for	one	week
Exchangeable

Hold	electronics	and	batteries

Fasten	the	cover	and	base	together
Can	be	untied	to	open	the	housing

Cover	the	electronics

Main Components

User scenarios

1.	Take	out	the	plug	and	connect	
with	CorPatch

2. Place the CorPatch on
Patient’s	center	chest

3. Data collector starts collect
CPR data

4.	Review	data	direclty	on	
Google	Sheets

5.	Data	is	saved	as	table	and	
summarized	in	charts

8

Working prototype

				A	working	prototype	is	built	to	validate	the	design.	It	is	tested	with	a	HEMS	team	member	on	a	
manikin.	It	requires	a	battery	exchange	once	a	week.	The	whole	electronics	can	be	disassembled	
from	the	housing	for	maintenance	and	program	updates.

9

CPR data collected
at patient’s chest
by CorPtach

Data is saved in the
data collector by
micro SD card

Data is attached in an
HTTPS URL generated by
the data collector. The
URL is then accessed by
the data collector

The data collector
connects to the
Wifi

The URL activates
the Script. The Script
extracts the data from
the URL

The Script fills the
Sheets’ cells with
extracted data and
calculated results

The data is stored and can be reviewed
in the Google Sheets

Data transfer system

				A	data	transfer	system	is	built	to	upload	the	data	from	the	collector	directly	to	the	Google	Sheets.	
It	uploads	the	data	from	the	collector	via	HTTPS	calls	to	the	Google	Script.	The	Google	Script	then	
transfers	the	data	to	the	Google	Sheets.

10

03
Design

brief

11

3.1 Overall context

				The	helicopter	emergency	medical	services	
(HEMS)	involves	teams	of	highly	specialized	
personnel,	which	are	deployed	very	quickly.	
The	HEMS	are	active	over	a	wide	area	and	
are	still	able	to	deploy	teams	to	the	scene	
within	11	min	of	the	initial	emergency	call.	
One	HEMS	crew	is	composited	by	one	pilot,	
one	doctor,	and	one	HEMS	crew	member,	as	
shown	in	figure	3.1.

3.1.1 Target group: HEMS crew

				Neurological	recovery	after	out-of-hospital	
cardiac	arrest	(OHCA)	is	mainly	dependent	
on	the	duration	of	the	arrest.	Some	hospitals	
restore	circulation	with	extracorporeal	
cardiopulmonary	resuscitation	(ECPR)	
administered	on	a	patient’s	arrival	at	the	
hospital	during	refractory	OHCA.	Pappalardo	
(2017)60	defined	that	ECPR	as	an	implantation	
of	veno-arterial	extracorporeal	membrane	
oxygenation	(VA-ECMO	in	figure	3.2)	in	a	
patient	who	experienced	a	sudden	and	
unexpected	pulseless	condition	attributable	
to	cessation	of	cardiac	mechanical	activity.	In	
ECPR,	a	miniaturized	cardiopulmonary	bypass	
system	(similar	to	that	used	in	open-heart	
surgery)	replaces	cardiac	and	pulmonary	
function	and	provides	full	adequate	
circulatory	support	to	the	body.	To	this	end,	
large-bore	cannulas	are	inserted	into	the	
inguinal	artery	and	vein	and	are	connected	
to	the	bypass	system.	Transporting	patients	
in	cardiac	arrest	to	the	hospital	for	applying	
ECPR	can	be	very	time	consuming,	decreasing	
the	chance	of	neurological	recovery.

				As	the	HEMS	crew	are	at	the	scene	very	
rapidly	and	consist	of	a	team	of	highly	
trained	specialists,	equipping	the	HEMS	with	
portable	ECPR	-	Cardiohelp	ECMO	(figure	
3.3)	may	potentially	significantly	reduce	the	
time	till	restoration	of	adequate	circulation	in	
patients	with	persistent	arrest	of	circulation.	
To	study	this,	we	plan	a	large	nationwide	
study	covering	all	OHCA	patients	younger	
than	50	years	by	all	four	HEMS	stations,	
comparing	deployment	of	HEMS	without	
ECPR	with	deployment	of	HEMS	with	ECPR	
capabilities.

Figure	3.1	HEMS	crew’s	composition80

Figure	3.2	VA-ECMO	and	VV-ECMO63

3.1.2 OHCA cases and ECPR

3.1.3 HEMS ECPR

Figure	3.3	Cardiohelp	ECMO	36

12

3.2 Problem definition

				As	described	above,	the	neurological	outcome	is	mainly	dependent	on	time	in	cardiac	arrest.	
As	shown	in	figure	2,	the	time	record	on	phases	of	OHCA	and	patients’	situation	is	vital	for	the	
comparison	study	(ECPR	vs	non-ECPR).	However,	due	to	the	“hectic”	setting	during	OHCA,	with	a	
few	staff,	time	in	cardiac	arrest	is	very	difficult	to	measure	adequately.	In	addition,	at	the	end	of	
the	resuscitation,	the	collection	of	data	is	also	difficult	as	the	HEMS	often	is	dispatched	to	another	
assignment.	However,	for	the	study,	adequate	registration	of	time	in	cardiac	arrest	is	of	paramount	
importance.	Thus,	the	major	problem	of	this	project	would	be:	How	to	design	a	data	collector,	that	
requires	as	little	action	and	attention	as	possible	(or	automatic)	from	the	HEMS	crew,	to	record	current	
situation	and	register	time	precisely?	The	challenge	is	not	only	about	implementing	technologies	
on	data	collectors	but	also	about	how	to	design	the	interaction	between	users	(HEMS	crew)	and	the	
device	(data	collector)	in	an	emergency	circumstance	(OHCA).	Therefore,	research	on	the	following	2	
topics	should	be	carried	out:

	 1.	What	kinds	of	data	can	be	retracted	from	HEMS	crew	(e.g.	physical	inputs)	and	the	patient	
during	the	whole	OHCA	process	for	time	registration	on	each	OHCA	phase	(CPR	--	shocks	--	ECMO	--	
heartbeats/ECMO	runs/death)?	For	this	research,	timelines	and	scenarios	of	each	participant	during	
OHCA	should	be	drawn	out	and	analyzed.	Plus,	an	observational	study	on	the	actual	OHCA	case	might	
be	conducted	if	possible.

	 2.	What	kind	of	interaction	should	be	designed	for	the	HEMS	crew	while	using	the	data	
collector	in	emergency	situations?	Should	it	be	a	passive	automatic	way,	or	a	proactive	way	that	
requires	inputs?	To	find	out	the	solution,	similar	emergency	cases	from	other	fields	(e.g.	divers,	
skydivers,	climbers)	can	be	collected	and	analyzed.	Based	on	this	and	results	from	the	first	research,	
simple	prototypes	can	be	built	for	user	tests	to	seek	the	most	suitable	interaction	between	the	HEMS	
crew and the data collector.

Figure	3.4	Survival	rate	comparing	to	time	in	cardiac	arrest	(Appendix	B)

13

3.3 Assignment
				The	design	assignment	is	formulated	as	following:

				To	design	a	data	collector,	carried	by	the	HEMS	personnel,	which	can	register	and	store	time	in	
cardiac	arrest	in	a	very	easy,	practical,	and	low-time-consuming	way.

				The	expected	outcome	of	the	project	would	be	a	design	concept	along	with	a	functionally	working	
prototype,	which	can	be	easily	brought	along	with	the	HEMS	crew,	collect	necessary	medical	data	
(mainly	time	of	phases	during	OHCA),	and	send	the	data	to	a	database	(online/phone/PC).	The	
collected	data	can	be	further	retracted	from	the	database	for	the	HEMS	team’s	further	research.

3.4 Personal ambitions

				First,	I	want	to	graduate	with	a	Medesign	project.	In	AED,	I	experienced	the	whole	process	of	
electronic	product	development.	During	electives,	I	have	finished	Prototype	Connected	Product	
course,	which	illustrates	the	process	of	prototyping	connected	prototypes.	In	the	Machine	learning	
course,	I	gained	knowledge	of	using	machine	learning	algorithms	to	analyze	data.	In	the	JMP	project,	I	
even	went	to	India	to	conduct	researches	and	user	tests.	All	these	experiences	are	prepared	for	me	to	
start	a	Medesign	project	includes	connected	product	development,	data	analysis	and	actual	field	tests.	
So	this	project	suits	me	well.	I	have	following	ambitions	for	this	project:

					-	In-depth	knowledge	on	Intensive	care	area
					-	Whole	process	of	building	working	connected	product,	from	electronics	to	online	platform	or	app
					-	Whole	process	of	data	analysis,	from	data	collection,	data	transform	to	data	analysis

14

3.5 Method and Plan
3.5.1 Method - Basic design cycle

1
Criteria

2
Provisional

Design

3
Expected
Properties

4
Value of the

Design

5
Approved

Design

Values

Needs

Functions

Analyze

Synthesize

Simulate

Evaluate

DecideIterate

Basic
Design
Cycle

Figure	3.5	Basic	design	cycle	106

				The	design	process	follows	a	basic	design	cycle	shown	in	figure	3.5.	Within	one	cycle,	the	designer	
starts	with	analysis	on	multiple	aspects	(e.g.	values,	needs,	and	functions)	of	the	assignment,	which	
leads	to	a	list	of	design	criteria.	Then	the	designer	moves	on	to	the	second	stage	and	generates	
provisional	designs.	In	stage	3,	the	designer	makes	simulations	(e.g.	drawing	scenarios,	clay	models,	
etc.)	of	his	provisional	designs.	Then	he	evaluates	his	designs	by	conducting	tests	based	on	the	design	
criteria.	At	the	end	of	the	cycle,	he	decides	what	part	of	the	design	needs	to	be	improved	and	starts	
another	round	of	the	cycle.

15

Cycle 1

Cycle 2

Cycle 3

Cycle 4

1.	Analyze	electronics

Design case that holds
the electronics

Set design criteria and
direction

Design electronics and
data transfer system

2.	Choose	feasible	combination

3.	Build	electronic	prototype

3.	Build	data	transfer	system

4.	Electronic	and	system	test

5.	Validate	final	electronics	and	system

1.	Analyze	context

5.	Decide	design	direction

4.	Evaluate	ideas

2.	Do	ideation

1.	Analyze	electronics	placements

3.	Model	possible	shapes

4. Evaluate models

5.	Decide	final	shape

3.	Build	models

2.	Draw	possible	shapes

1.	User	tests	with	working	prototypes

2.	Evaluate	working	prototypes

3.	List	necessary	adjustments

4.	Make	feasible	adjustments

5.	Draw	out	production	plan

User tests in simulated
context

Design brief

Production

(May)

(June)

(July)

(August)

Figure	3.6	Project	plan

3.5.2 Plan - 4 cycles

				For	this	100-working-day	project,	4	design	cycles	are	planned.	Each	cycle	takes	one	month	and	
focuses	on	one	major	aspect	of	the	design	process:	cycle	1	focuses	on	analysis	on	context	and	
preliminary	ideations.	It	ends	with	a	list	of	design	criteria	and	a	clear	design	direction.	Cycle	2	focuses	
on	electronic	design	and	data	transfer	system	building.	It	involves	more	electronic	prototyping	and	
programming	to	build	a	functionally	working	data	transfer	system	(both	hardware	and	software).	Cycle	
3	focuses	on	the	case	design	for	the	data	collector	electronics.	It	involves	Solidworks	model	building	
and	3D	printing.	In	Cycle	4,	simulated	user	tests	are	conducted	with	the	working	prototype.	The	
final	design	concept	is	validated	and	necessary	elaboration	is	documented	(e.g.	renderings,	photos,	
assembly,	production	methods,	etc.).	The	whole	graduation	project	ends	with	a	full	graduation	report,	
a	showcase,	and	a	final	presentation.

Midterm meeti ng

Electronics test in helico
pter

 st
ati

 o
n

Greenlight meeti ng

Graduati on prese
nt

ati
 o

n

16

04
Cycle 1

17

				An	analysis	overview	is	made	to	show	the	structure	of	the	research	topics	during	
the	analysis	phase.	First,	the	overall	context	of	the	HEMS	crew	in	OHCA	rescue	cases	is	
explored.	Then	the	analysis	perspective	is	zoomed	into	the	CPR	treatment	process	during	
OHCA	cases,	where	further	relative	technologies,	user	interaction	examples,	ergonomics	
examples,	and	hygiene	topics	are	covered.	In	the	end,	the	analysis	phase	is	concluded	by	
a	list	of	requirements	and	wishes	on	the	expected	data	collector	design,	which	is	then	
prioritized	based	on	the	goal	of	the	design	assignment	by	following	MoSCoW	87 method.

4.1 Design criteria setting
4.1.1 Analysis overview

Figure	4.1	Analysis	overview

				In	cycle	1,	analysis	of	the	relative	topics	of	the	project	is	conducted	and	design	criteria	are	set	up	based	on	the	
analysis	conclusion.	Primary	ideations	are	generated	by	following	the	design	criteria.	Evaluation	of	these	ideas	are	
taken	during	the	midterm	meeting	and	design	direction	is	decided	in	the	end.

Context

User
Interaction

CPR

Analysis
overview

Technology

Hygiene

Design
criteria

Ergonomics

Devices	activity

Interview

HEMS	crew

Protocol Criteria

Data	collection

Upload	&	Storage

Battery

Same	domain

Other	domain

Same	domain

Other	domain

Disposal	usage

List	of	requirements	and	wishes

MoSCoW	prioritization

Collages

18

HEMS crew activity scenarios and timeline

Introduction
					In	this	section,	the	overall	context	of	the	HEMS	crew	working	in	an	OHCA	rescue	is	explored.	In	order	to	find	
which	timestamp	is	necessary	to	record	during	the	rescue,	both	HEMS	crew’s	activities	and	their	carrying	devices’	
activities	are	drawn	out	in	timelines	and	scenarios.	An	interview	with	the	client	is	taken	for	a	better	understanding	
of	the	process.	In	the	end,	this	chapter	is	concluded	that	the	chest	compression	stop	time	is	important	to	record	
for	the	data	collector	because	when	chest	compression	stops,	it	normally	means	that	the	patient	is	either	put	on	
ECMO,	or	has	a	ROSC,	or	is	dead.

				In	figure	4.2,	the	scenarios	of	the	HEMS	crew’s	activities	during	an	OHCA	rescue	is	given.	As	shown,	at	least	2	staff	
is	needed	for	performing	manual/mechanical	CPR	and	cannulation	for	ECMO.	Throughout	the	process,	a	bag	valve	
mask,	a	defibrillator,	a	mechanical	chest	compressor,	and	a	portable	ECMO	machine	are	used.

				In	the	next	page,	figure	4.3	shows	the	timeline	(detailed	version	in	appendix	C)	corresponding	to	the	scenarios,	
based	on	the	On-Scene	ECPR	Study	research	protocol	provided	by	Dr.Dinis	(Appendix	B).	First,	the	patient	should	
fulfill	the	inclusion	criteria	for	dispatching	the	HEMS	crew.	Then	the	arrival	time	of	the	HEMS	crew	needs	to	be	
recorded.	After	20min	of	 refractory	CA	 (no	ROSC	and	no	death),	 if	 the	HEMS	crew	 is	 the	ECPR	group	which	 is	
equipped	with	ECMO,	cannulation	should	start	and	be	finished	in	15min.	CPR	continues	during	the	cannulation	for	
ECMO,	and	stopped	before	running	the	ECMO,	where	the	time	needs	also	be	recorded.	If	the	HEMS	crew	is	the	
control	group,	the	patient	will	be	sent	to	the	nearest	ECMO	facility	while	CPR	continues.

Get dispatch call Crew on board Fly to scene

Check patientManual CPRAttach chest compressor

Attach defibrillator Make dilation for cannulation Start ECMO

2min 15min

1min1min

5min 10min

Figure	4.2	HEMS	crew	activity	scenarios

4.1.2 Context

19

Patient inclusion criteria:

-	Age	between	18	and	50	years

-	Witnessed	arrest	(last	seen	well	<5	min),	
or	signs	of	life	(gasping,	movement)

-	Initial	rhythm	is	VF/pVT	or	suspected	of	
having	a	pulmonary	embolism

-	Refractory	cardiac	arrest	lasting	longer	
than	20	minutes	and	shorter	than	45	min

Patient exclusion criteria:

-	CO2	et<1.2	kPa	(10	mmHg)	during	CPR

-	No	clear	echo-graphic	visualization	of	
either	the	femoral	artery	or	the	femoral	
vein	for	cannulation.

-	Expected	time	from	collapse	to	arrival	
at	an	ECPR	center	with	a	direct	available	
ECPR	team	is	less	than	30	min.

Dispatch

Arrival

HEMS team Ambulance team

112 call

Dispatcher assesses patient‘s
criteria for the study

Dispatch

ArrivalAvg. 10min

Within
criteria?

Start manual/
mechanical CPR

Attach
defibrillator

Shock

Epinephrine/Amiodarone
injection every 3 - 5min

Rhythm
shockable?

Time count

Refractory CA >
20min?

Send to nearest
ECMO facility by
HEMS physician

VF/pVT

PEA/Asytole

ROSC? Post cardiac arrest
care

Pause CPR

No

Yes

Yes

No

Yes

With
ECMO?No

Yes

Resume CPR

Start cannulation

Run ECMO

Stop CPR

Record
(Avg. 11min)

Resume CPR for 2min

Record
(max. 35min)

20min

Max. 60min

Patient
collapses

Bystander
gives CPR

Max. 5min

Figure	4.3	HEMS	crew	activity	timeline

20

Used devices activity scenarios and timeline

				Table	4.1	shows	the	activity	scenarios	and	timeline	of	the	used	devices.	The	patient’s	reactions	to	his	or	her	nose	and	
chest	are	also	included.	At	the	preparation	phase,	manual	CPR	is	first	applied.	Then	if	an	automatic	chest	compressor	
is	available,	chest	compression	will	be	paused	normally	within	10s	for	implementing	the	compressor	on	the	patient.	
Then	CPR	is	resumed.	During	the	CPR	cycle	phase,	chest	compression	and	ventilation	are	interrupted	for	maximal	10s	
every	2min	because	of	rhythm	checks	and	shock	deliveries.	After	the	shock	delivery,	chest	compression	immediately	
resumes.	During	the	ECMO	phase,	chest	compression	continues	during	cannulation	and	stops	right	before	ECMO	starts	
running.

Scenarios

OHCA Devices Patient

Timeline Phases Actions
Bag

valve
mask

Automatic
chest

compressor
Defibrillator ECMO Nose Chest

00:00

Preparation

Start	manual	
CPR - - - - - +

00:10 Attach	bag	valve	
mask / - - - - +

00:30

Attach	
Automatic	chest	

compressor
(If	available)

+ / - - + -

00:40

Start	automatic	
chest

compressing	
(If	possible)

+ + - - + +

01:00 Attach	
defibrillator + + / - + +

01:10

CPR	cycle

Stop	manual	
CPR/automatic	

chest
compressor

- - + - - -

01:15 Check	rhythm - - + - - -

01:20 Deliver	shock - - + - - -

01:20

Resume
manual CPR/

automatic	chest	
compressor

+ + + - + +

03:20

Manual CPR/
automatic	chest	
compressor for

2min

+ + + - + +

20:00

ECMO

Start	cannulation + + + - + +

35:00

Stop	manual	
CPR/automatic	

chest
compressor

+ - + / + -

35:00 Run ECMO + - + + + -

+ On - Off / Switch

Table	4.1	Used	devices	activity	scenario’s	and	timeline

21

Interview

				An	interview	(Appendix	D)	is	carried	out	with	Dr.	Dinis	to	have	a	deeper	understanding	of	the	actual	situation	
during	the	rescue.	Following	is	the	important	take-away	from	the	interview:

				Regarding	their	used	devices:
	 -	The	HEMS	teams	normally	don’t	bring	defibrillator	95%	of	the	time.
	 -	Ambulance	team	is	always	equipped	with	defibrillators,	but	different	teams	use	different	brands.
	 -	The	defibrillator	normally	provides	a	time	counting	function	for	performing	CPR	cycles.	However,	it	needs	
human	 input	 to	 reset	after	every	cycle	 (2min)	and	does	not	give	warning	on	overtime	 interruption	 (max.	10s)	
between	cycles.	
	 -	The	HEMS	teams	never	bring	automatic	chest	compressor.	For	ambulance	teams,	some	are	equipped	
with	automatic	chest	compressor,	some	are	not,	and	brands	are	also	different.
	 -	The	ECPR	groups	of	HEMS	teams	are	equipped	with	Cardiohelp	ECMOs	and	control	groups	do	not	have	
ECMO.

				Regarding	their	team	members:
	 -	The	pilot	of	the	helicopter	needs	to	guard	helicopter,	so	normally	he	does	not	participate	the	rescue.

				Regarding	data	collection:
	 -	Time	of	112	calls,	arrival	time	of	ambulance,	patient	arrival	time	in	hospital,	the	outcome	of	the	patient	
can	be	easily	retracted	from	the	hospital	database.
	 -	It	is	possible	to	retract	CPR	data	from	automatic	chest	compressors,	defibrillators,	and	ECMO.	But	as	said,	
different	teams	use	different	brands,	and	data	retraction	from	these	devices	need	to	be	manually	conducted.	Plus,	
these	devices	normally	delete	previous	cases	when	new	case	starts,	so	data	retraction	has	to	be	performed	before	
a new case happens.

22

Conclusion

 Following	is	a	list	of	facts	that	is	concluded	from	the	context	analysis,	corresponding	reflections	on	the	data	
collector	design	is	listed	in blue Italic style:

 -	The	arrival	time	of	HEMS	crew	to	scene	and	the	ECMO	start	time	needs	to	be	recorded	by	the	data	
collector.
 The arrival time could be recorded by the pilot, since normally pilot stands by the helicopter and has
access to the transport data of the helicopter.

 -	Stop	of	chest	compression	means	one	of	3	outcomes	of	the	patient:	ROSC,	ECMO	on,	or	death.
 The stop time is meaningful and important to record for the research, and the data collector should also
record the patient’s result from one of these three.

 -	The	stop	time	of	manual	or	mechanical	chest	compression	could	be	considered	as	the	ECMO	start	time.
 The forces on and the movements from the patient’s chest can be used to record chest compression data
and define when chest compression stops.

 -	One	CPR	cycle	consists	of	2min	chest	compressions,	and	maximal	10s	rhythm	check	and	shock	delivery.
 If the chest compression stops for a short time (threshold not defined) but then resumes, that moment
shouldn’t be considered as ECMO start time, because it could be a long rhythm evaluation phase and does not
mean ECMO starts running.

 -	The	time	counter	of	defibrillator	does	not	give	proper	guidance	to	the	team	during	the	CPR	process.
 A time counter function that can guide the team to perform well CPR cycles is needed.

 -	During	CPR	cycles,	both	manual	and	mechanical	chest	compressions	could	be	given	to	the	patients	
based	on	the	team’s	equipped	devices.
 The data collector should perform along with different devices in both manual and mechanical CPR
process.

 -	Data	retraction	from	currently	used	devices	among	different	rescue	teams	is	difficult	and	hard	to	
organize.
 If the data collector can also collect other devices data such as CPR data, ECMO data, it would be easier
and more helpful for the study.

 -	95%	of	the	time	HEMS	crew	only	brings	ECMO	if	needed,	and	does	not	bring	defibrillator	or	automatic	
chest compressors.
 If the HEMS crew brings the data collector to the scene, normally the HEMS team will face 2 situations:
manual CPR is performing, or mechanical CPR is ongoing. So the way to set up the data collector into the CPR
process while interrupt the ongoing action as little as possible needs to be considered.

23

				In	the	previous	section,	an	understanding	of	the	overall	context	of	the	HEMS	crew	in	OHCA	is	established.	As	
shown	from	the	conclusion	of	the	context	analysis,	the	data	generated	from	the	CPR	process	offers	opportunities	
to	determine	the	ECMO	start	time,	and	CPR	data	are	also	important	for	the	study.	So	the	analysis	is	zoomed	in	to	
focus	on	the	CPR	cycle	in	this	section.

	 	 	 	Figure	4.4	shows	the	CPR	protocol	timeline	according	 to	 the	European	Resuscitation	Council	Guidelines	 for	
Resuscitation	2015	61.	Chest	compression	is	paused	every	2min,	then	there	is	a	maximal	10s	period	for	rhythm	check	
and	shock	delivery.	Chest	compression	is	resumed	immediately,	if	there	is	no	sign	of	ROSC	or	death,	epinephrine	
or	amiodarone	injection	can	be	performed	every	2	cycles;	else	if	the	is	a	sign	of	ROSC	or	death,	pulse	check	needs	
to be performed.

Figure	4.4		CPR	protocol	timeline

Start manual/
mechanical CPR

Attach
defibrillator

Shock

Epinephrine/Amiodarone
injection every 2 cycles

Rhythm
shockable?

Death?

VF/pVT

PEA/Asytole

ROSC?
Post cardiac arrest

care

Pause chest
compression

No

Yes

No

Resume chest compression
for 2min

Record patient’s
informationYes

Max. 10s

4.1.3 CPR cycle

Introduction

CPR protocol

24

Figure	4.5	Manual	CPR	scenarios

Figure	4.6	Mechanical	CPR	scenarios

Check	the	patient’s	pulse Start	chest	compression

Attach	defibrillator	and	give	ventilationPause	chest	compression,	check	rhythm	
and	deliver	shock

Pause	chest	compression,	check	rhythm	
and	deliver	shock

Set	up	the	automatic	chest	compressor Start	chest	compression

Attach	defibrillator	and	give	ventilation

25

				Figure	4.5	and	4.6	shows	the	overall	scenario’s	of	manual	and	
mechanical	CPR.	During	manual	CPR,	rescue	person	needs	to	stack	
his	or	her	hand	on	top	of	another	one	and	lace	the	fingers	of	both	
hands	together,	then	place	the	heel	of	bottom	hand	on	the	patient’s	
central	chest	and	push	the	chest	with	all	upper	body	fixed	and	down.	
Figure	4.7	shows	how	the	rescuer’s	upper	body	rotates	up	and	down	
within	an	angle.	From	the	scenarios,	it	is	shown	that	the	up	and	
down	movements	of	the	vertical	arms	and	hands	are	consistent	with	
the	patient’s	chest,	so	does	the	piston	from	the	automatic	chest	
compressor.	Furthermore,	during	shock	delivery,	no	person	should	
have	physical	contact	with	the	patient.	The	defibrillator	and	the	chest	
compressor	are	designed	specifically	to	withstand	or	insulate	electric	
currents.

Figure	4.7		Manual	chest	compression	posture5

				Table	4.2	summarized	the	overall	criteria	to	evaluate	CPR	performance,	based	on	America	Heart	Association	
Guideline	201552.	Chest	compression	depth	and	rate	are	the	most	fundamental	and	important	criteria	to	give	a	high-
quality	CPR.	Chest	compression	fraction	is	the	proportion	of	chest	compression	time	during	the	whole	rescue	time,	
which	for	professional	emergency	teams,	they	always	try	to	keep	a	92%	(120s/130s)	proportion	in	each	CPR	cycle,	
according	to	Dr.	Dinis.	Higher	release	velocity	helps	chest	recoil	faster,	study	(Cheskes	et	al.,	2015,	p.	134)	shows	that	
faster	release	velocity	corresponds	to	a	higher	survival	rate	in	adult	OHCA	cases.	Leaning	is	also	another	factor	that	
causes	incomplete	chest	recoil,	and	hard	to	be	noticed	by	the	rescuer.	

Chest compression
factors Definition Criteria

Depth Compression	displacement Between	50mm	to	60mm

Rate Compression	frequency	per	minute Between	100	to	120	per	minute

Fraction Compression	time/Total	rescue	time At	least	60%

Release velocity The	velocity	when	chest	recoil	from	a	
compression No	exact	threshold	defined

Leaning
Rescuer exerts a constant pressure on

patient’s	chest	due	to	leaning,	that	causes	
incomplete	recoil	of	the	chest

Rescuer	should	avoid	leaning	and	allow	
full	recoil	of	patient’s	chest

Fatigue and injury Rescuer	encounters	fatigue	or	feels	
uncomfortable	to	continue	CPR

When	basic	chest	compression	quality	is	
not	meet,	rescuer	should	be	replaced	if	

possible	

Table	4.2	CPR	performance	criteria

CPR performance criteria

26

Following	is	a	list	of	facts	that	is	concluded	from	the	CPR	cycle	analysis,	corresponding	reflections	on	the	
data	collector	design	is	listed	in	blue Italic style:

 -	Same	from	previous	conclusion:	One	CPR	cycle	is	2min	chest	compressions,	plus	maximal	10s	
rhythm	check	and	shock	delivery.
 The time counter function should be designed based on this rule.

 -	During	chest	compression,	movements	of	the	vertical	arms	and	hands,	and	the	pistons	of	the	
automatic	chest	compressor	are	consistent	with	the	patient’s	chest.
 Movement sensor that attached to the rescuer’s hand or arm, or on automatic chest compressor’s
piston, can also record chest compression data. So the data collector could be designed as a wearable.

 -	During	shock	delivery,	no	person	should	have	direct	physical	contact	with	the	patient.
 The data collector should withstand the electric shock if it has physical contact with the patient
during shock delivery.

 -	CPR	performance	criteria	include	chest	compression	depth,	rate,	fraction,	release	velocity,	leaning	
and	rescuer’s	fatigue	and	injury.
 The data collector should record depth data precisely, because rate, fraction, release velocity
and leaning can be calculated based on it. Rescuer’s fatigue and injury caused by chest compression is an
interesting field to look up, see if there are any ergonomic solution to ease the problem.

Conclusion

27

				The	last	2	sections	conclude	that	the	data	collector	should	record:	ECMO	start	time	(CPR	stop	time),	the	
result	of	the	patient	(ROSC,	ECMO,	or	death),	chest	compression	depth.	This	section	is	focused	on	available	
technologies	of	collecting,	uploading,	and	storing	data.

Real-Time Clock (RTC) module for time record

				A	real-time	clock	(RTC)	module	can	keep	track	of	the	current	time	
that	starts	from	a	setup	time27.	To	keep	the	RTC	module	running,	it	is	
necessary	to	keep	the	board	powered.	However,	a	button-sized	lithium	
battery	placed	in	the	module	as	shown	in	figure	4.7	can	keep	the	RTC	
module	running	for	years55.	Besides,	RTC	can	continue	to	operate	in	any	
sleep	mode	of	the	Arduino	boards,	and	can	also	wake	up	the	boards	
from	sleep	mode	in	a	programmed	way27.	This	module	is	the	only	
solution	to	keep	track	of	time	without	internet	access.

Figure	4.7	RTC	module	with	cell	battery

Chest compression depth

				Chest	compression	depth	can	be	reflected	by	applied	force	on	the	
chest.	A	study	indicates	that	the	relation	between	compression	force	
and	depth	is	non-linear,	as	shown	in	figure	4.	The	stiffness	of	the	chest	
differs	a	lot	from	people	to	people,	and	that	makes	it	difficult	to	estimate	
compression	depth	based	on	compression	forces.	So	measuring	pressure	
on	the	chest	is	not	a	good	solution	to	measure	chest	compression	depth.	

Figure	4.8	Compression	force	vs.	Depth4

				Normally,	a	double	integration	on	the	acceleration	of	the	chest	or	the	
hands	can	calculate	the	displacement,	also	the	depth:	first	integral	of	
the	acceleration	over	time	is	velocity,	second	integral	of	velocity	over	
time	is	displacement	(figure	4.9).	However,	in	reality,	double	integration	
on	acceleration	data	from	an	accelerometer	always	amplifies	noises	and	
offsets	from	the	sensor.	This	makes	the	result	drift	away	from	the	correct	
result.	So	a	simple	double	integration	on	acceleration	is	not	enough	to	
estimate	a	correct	displacement.	

				2	studies	indicates	that	by	applying	more	complex	algorithms	and	
filters,	the	errors	generated	during	double	integration	can	be	fixed	38,	72.
One	study	applies	the	Trapezoidal	method	72 and another one uses Fast
Fourier	Transform	38.

Figure	4.9	Integration	of	acceleration	72

4.1.4 Technology exploration

Introduction

Data collection

28

Trapezoidal method

				As	shown	in	figure	4.10,	the	key	solution	of	this	method	
is	to	eliminate	the	area	errors	from	integration	by	applying	
trapezoidal	approximation,	so	half	of	the	area	errors	can	be	
subtracted.	Plus,	as	shown	in	figure	4.11,	a	low	pass	filter	
can	be	applied	to	eliminate	noises	from	the	sensor.	In	this	
way,	most	 errors	 from	 double	 integration	 are	 subtracted	
and	the	displacement	results	would	be	more	accurate.

Figure	4.10	Eliminate	area	errors	with	trapezoidal	
approximation	72

Figure	4.11	Apply	low	pass	filter	72

Fast Fourier Transform (FFT) method

	 	 	 	 Figure	4.12	 shows	 the	flowchart	 of	 the	 FFT	 algorithm.	 First,	 a	time	window	of	 2s	 is	 selected.	 Then	a	 low	pass	
filter	is	applied	to	filter	out	noises.	After	that,	the	acceleration-time	wave	is	transformed	into	a	frequency	function	by	
FFT.	Finally,	the	frequency	function	is	reconstructed	into	a	sine	wave	that	indicates	the	depth	and	rate	during	this	2s	
window.	This	method	has	been	proven	with	actual	chest	compression	data	in	its	research	(González-Otero	et	al.,	2018).

Figure	4.12	FFT	application	38

29

Data upload and storage methods

				Figure	4.13	shows	4	ways	to	upload	collected	data	from	the	data	collector	to	the	user’s	computer.	The	first	
method	is	saving	the	data	locally	to	a	micro	SD	card	equipped	in	the	data	collector,	then	manually	upload	it	to	
the	user’s	PC.	This	method	is	conventional	and	requires	no	wireless	technology,	which	makes	it	more	reliable.	
The	 second	method	 is	 the	 collector	 transferring	 the	 data	 to	 the	 user’s	 smartphone	 via	 Bluetooth,	 then	 the	
smartphone	will	upload	the	data	to	a	cloud	dataset	for	later	downloading	to	the	PC.	This	method	requires	the	
device	being	Bluetooth	connected	to	the	phone	while	working,	which	may	require	extra	configuration	action	on	
the	phone	side.	The	third	one	is	implementing	a	3G	sim	card	to	the	data	collector,	so	it	constantly	has	access	to	
the	Internet	to	upload	data	to	the	cloud.	It	needs	a	monthly	subscription	for	the	3G	service.	Instead	of	using	3G,	
the	last	method	uses	Wifi	for	Internet	access.	However,	Wifi	is	not	always	available,	so	the	device	needs	to	save	
collected	data	locally	first,	and	once	it	connects	to	a	Wifi,	it	uploads	the	data	to	the	cloud.

Figure	4.13	4	data	upload	and	storage	methods

				All	4	ways	have	their	own	limits,	either	on	autonomy,	reliability,	cost,	or	consistency.	Combining	some	of	their	
features	can	make	up	for	the	shortcomings	among	them.	The	micro	SD	card	keeps	the	collected	data	in	the	device	
from	possible	data	loss.	So	if	any	wireless	technology	is	not	working,	data	can	still	be	saved	in	the	memory	card.	
However,	the	SD	card	has	a	limited	memory.	So	it	is	necessary	to	make	sure	the	card	will	be	emptied	for	the	new	
incoming	data	after	all	old	data	is	uploaded.	One	good	choice	is	combining	the	first	method	and	the	fourth	one,	
the	data	stay	in	the	micro	SD	card	until	Wifi	is	available	for	data	transfer.	Another	good	choice	is	combining	the	
first	and	the	second	because	smartphones	can	provide	not	only	 Internet	access	but	also	real-time	audio	and	
visual	feedback	from	the	data.	It	could	provide	an	assistive	feature	for	the	data	collector.

Data upload and storage

30

3 Arduino board choices

				Figure	4.14	shows	3	Arduino	boards	15,		16,		17	that	have	both	wifi	and	Bluetooth	features	implemented	on	the	
board.	Plus,	all	of	them	possess	an	RTC	feature	and	can	synchronize	time	via	the	Internet.	

				The	left	board	is	Arduino	MKR	Wifi	1010,	despite	the	mentioned	features,	it	has	a	Li-Po	charging	circuit	
implemented	so	no	extra	power	management	circuit	is	needed.	It	is	middle-sized	but	relatively	heavy.	It	does	not	
have	an	IMU	for	acceleration	sensing.	Extra	implementation	of	IMU	is	needed.	Overall,	it	is	a	good	function	and	
price	combination.

				The	middle	one	is	Arduino	Nano	33	IoT.	It	is	cheaper,	smaller	and	lightweight.	It	possesses	a	6	axis	IMU	(3	axis	
accelerometer	+	3	axis	gyroscope),	which	is	needed	for	collecting	acceleration	data	as	mentioned	in	the	data	
collection	topic.	However,	it	does	not	have	a	power	management	circuit.	So	a	charging	circuit	might	be	needed,	
which	increases	the	size	and	weight.	All	in	all,	this	is	also	a	good	choice,	if	the	data	collector	is	expected	to	be	
lightweight	and	small.

				The	last	one	is	Arduino	MKR	GSM	1400.	It	is	the	largest	among	the	three.	It	has	a	slot	for	a	3G	sim	card,	so	it	
has	3G	service	if	there	is	a	subscription.	It	also	possesses	a	charging	circuit	but	no	IMU.	This	is	the	ideal	choice	if	
the	3G	network	is	needed.

				All	3	boards	have	their	own	advantages	and	shortcomings.	But	they	provide	enough	functions	for	later	
ideation	phase.

Arduino MKR Wifi 1010 16

Wifi + Bluetooth
3.3V circuit operating voltage

5V power supply
61.5mm x 25mm

32g
28 euro

+ Li-Po charging circuit
- No IMU

- No 3G network

Arduino Nano 33 IoT 17

Wifi + Bluetooth
3.3V circuit operating voltage

5V power supply
45mm x 18mm

5g
16 euro

+ 6 axis IMU
+ Small and lightweight

- No charging cirsuit
- No 3G network

Arduino MKR GSM 1400 15

3GS + Wifi + Bluetooth
3.3V circuit operating voltage

5V power supply
64.64mm x 25mm

32g
60 euro

+ 3G network
+ 90 days free trial

+ Li-Po charging circuit
- 1.5USD per 5MB subscription

- No IMU

Figure 4.14 3 Arduino board choices

31

Name

Arduino IoT
Cloud 8

Blynk 18 Azure 33 Google
Firebase 58

SMTP2GO 7 IFTTT 75

+

+	Arduino’s	own	
platform

+ Examples
available

+	Simple	and	clear	
interfaces

+	Associates	with	
Google	sheets

+	IOS	and	Android	
app	available

+	Customizable	
GUI	of	app,	
showing	data	
visualization

+ Free cloud data
storage

+	First	12	months	
free on most
service

+	200USD	credit

+	Professional	
interfaces

+	High	quality	
services

+	Familiar	
platform

+	Generous	
free	plan	(10GB	
storage)

+	Email	service

+	1000	emails/
month for free

+ Examples
available

+	Brings	all	
platform	together,	
and can perform
instructions	
among	platforms

+	Voice	control	
with	Google	
assistant	and	
Alexa

- /

-	Limited	
examples to learn
from

- Complex
implementation

/ /

-	200	USD	per	
year

Conclusion

Good	choice,	
worth	a	try	
because data
will	be	stored	as	
a	Google	sheets	
for download and
further	analysis.	
The	price	is	not	
clear on the
website.

Good	choice	if	
a	real	time	data	
visualization	is	
needed	and	it	
saves	data	in	the	
phone	which	
provides	a	second	
secure.

Not	a	good	choice	
because	available	
example	is	not	a	
lot	to	learn	from,	
which	increase	
the	difficulty	of	
implementation.

Good	choice,	
all the expected
function	can	be	
fulfilled

Good	choice,	
if	receiving	
collected	data	in	a	
form	of	Emails	is	
preferred.

Not	a	good	choice	
due	to	its	high	
price.

Table	4.3	Available	cloud	platforms	for	data	storage

Available cloud platforms for data storage

 Table	 4.3	 shows	 an	overview	of	 available	 cloud	
platforms	 for	 data	 storage	 that	 is	 applicable	 in	
Arduino	boards.

	 	 	 	 Different	 platforms	 have	 different	 advantages	
and	 limits.	 To	 conclude,	 Arduino	 IoT	 cloud	 would	
be	a	good	choice	 if	data	stored	 in	Google	sheets	 is	
the	 expected	 outcome;	 Blynk	 is	 the	 go-to	 app	 for	
connecting	 the	 data	 connector	 to	 a	 smartphone	
(second	method	in	data	upload	topic);	Firebase	is	the	
least	 cost	 choice	 if	 only	 fundamental	 data	 transfer	
feature	is	needed;	SMTP2GO	is	ideal	if	sending	data	
in	Email	format	is	expected.

32

				Table	4.4	shows	an	overview	of	available	battery	choices	for	Arduino	boards.

				Li-Po	battery	can	be	widely	served	as	an	external	power	for	all	types	of	Arduino	boards,	because	of	its	
compact	size,	lightweight	and	feature	of	recharging.	Two	of	the	three	mentioned	Arduino	boards	have	already	
Li-Po	charging	circuit	implemented.	It	is	the	perfect	solution	is	a	recharging	feature	is	needed	for	the	device.

				AAA	battery	is	mostly	for	one-time	use.	For	the	users,	sometimes	it	is	more	convenient	because	they	won’t	
worry	about	constantly	recharging	the	device.	Preparation	for	backup	batteries	might	suit	certain	scenario’s	
better,	such	as	emergency	lighting,	

				Cell	battery	is	the	smallest	and	lightest	choice,	but	with	least	capacity.	It	is	also	for	one-time	use.	As	
mentioned,	it	would	be	enough	to	run	the	RTC	module	for	almost	a	year,	but	not	enough	to	run	the	board	for	
a	relatively	long	period.

				Eco	200	energy	harvester	can	convert	linear	motion	into	electric	energy.	It	can	collect	the	energy	during	the	
CPR	process	and	store	as	extra	power.	However,	its	size	is	relatively	large,	and	its	efficiency	needs	to	be	further	
tested.

Name

Li-Po battery Alkaline AAA battery Lithium cell battery Eco 200 energy harvester69

Extra accessories

A power boost module
may	be	needed	to	mange	

charging

AAA	battery	case	is	
needed	for	connection

Arduino	cell	battery	
holder	is	needed

Extra	charging	circuit	might	
needed

Parameters

1200mAh
35mm x 60mm x 5mm

24g
3V

Rechargeable
Around 12 euro

1000mAh

ø10.5mm x 44.5 mm
15g
1.5V

One	time	use
Around 0.85 euro

200mAh
ø20mm x 3.2mm

2.6g
1.5V

One	time	use
Around 0.25 euro

120	to	210	micro	Joule
29.3mm	x	19.5mm	x	7mm

N/A
Output	in	2V
Constant use

Around 6.65 euro

Pros and cons

+	Rechargeable,	durable	
and	operates	in	3	-	5V

-	Expensive

+	Durable,	one	time	use,	
lighter	and	cheap

-	Large	size,	need	
openings	for	change	and	
need	2	in	combination	to	
output	3V

+	Lightest,	small	size,	one	
time	use	and	cheap

-	Small	capacity	(not	
durable),	need	openings	
for	change	and	need	2	in	
combination	to	output	3V	

+	Convert	linear	motion	
into	electric	energy

-	Charging	efficiency	is	
relatively	low

Table	4.4.	Available	battery	choices	comparison

Battery supply

33

 Following	is	a	list	of	facts	that	is	concluded	from	the	technology	exploration,	corresponding	reflections	on	
the	data	collector	design	is	listed	in blue Italic style:

 -	Real-Time	Clock	function	is	needed	for	time	records.
 All 2 mentioned Arduino boards are implemented with RTC. To keep track of real-time, constant
power is needed, if the module is switched off, Internet access is needed to reset time.

 -	Accelerometer	is	a	more	accurate	measurement	than	Force-sensitive	resistor.
 IMU (including a 3 axis accelerometer) should be implemented to measure chest compression depth.
2 algorithms are available for calculating depth.

 -	Micro	SD	card	can	secure	the	data	before	uploading	it	to	the	cloud/PC.
 Micro SD card should be implemented to the data collector. Saved data can be cleared for new
incoming data after uploading it to the cloud/PC.

 -	A	smartphone	is	a	good	access	to	the	Internet	for	the	data	collector.
 The data collector can access the Internet by connecting to a smartphone via Bluetooth.

 -	Arduino	MKR	Wifi	1010,	Nano	33	IoT,	and	MKR	GSM	1400	have	wifi,	Bluetooth	implemented.	Each	
board	also	has	its	own	features.
 These 3 boards can be chosen for prototyping the data collector based on later developed ideas.

 -	Arduino	IoT	cloud	platform	can	associate	with	Google	sheets.	Blynk	app	connects	the	Arduino	
device	to	the	smartphone	via	Bluetooth.	Firebase	provides	free	data	transfer	and	storage	services.	
SMTP2GO	can	send	data	in	Email	format	to	the	user	automatically.	These	4	platforms	are	available	for	
prototyping	data	transfer	and	storage	features	based	on	later	developed	ideas.

 -	Li-Po	battery,	AAA	battery	are	2	available	options	to	power	the	board.	Cell	battery	can	power	the	
RTC	module	for	a	year.	Eco	200	can	convert	linear	motion	to	electric	energy.
 Both Li-Po and AAA are good power sources for the board, but their recharging ways (recharge
vs. backup battery) are different, the choice between these two is based on the user scenario’s from
later ideation. Cell battery could be implemented just for RTC, but it occupies space too. Eco 200 collects
energy when the device is moving, but its efficiency needs to be tested, and it also requires space for
implementation.

Conclusion

34

Figure	4.15	Intuitive	interaction	model	23

		Blackler	and	Popovic	(2006,	p.9)	introduced	a	design	
methodology	for	applying	intuitive	interaction.	As	
shown	in	figure	4.15,	the	interactive	interaction	
mode	guides	designers	to	look	at	a	certain	product	or	
system	at	a	body	reflectors,	population	stereotypes,	
familiar	features	from	the	same	domain,	familiar	
features	from	other	domains	and	metaphors	from	
other	domains	level	respectively,	and	at	each	
level,	categorize	collected	features	into	function,	
appearance,	and	location.	Then	the	collection	serves	
as	inspirations	or	examples	to	design	their	own	
interaction	product	or	system.	

				Body	reflectors:	these	are	the	simplest	forms	
of	intuitive	interactions.	Examples	are:	headsets,	
glasses,	shoes,	and	gloves.	These	forms	are	self-
evident	to	people.	

				Population	stereotypes:	these	are	at	a	more	
complex	level	that	people	learned	these	interactions	
at	a	young	age.	They	are	highly	dependent	on	
people’s	areas,	professional	backgrounds.	For	
example,	most	Europeans	won’t	know	how	to	use	
chopsticks	but	east	Asians	normally	knows	it	at	a	
young	age.	These	forms	are	less	universal	than	the	
body	reflectors.

				Familiar	features	from	the	same	domain:	these	
interactions	are	at	a	more	concrete	level.	Products	
tend	to	have	similar	user	interaction	under	the	same	
product	category:	smart	electronics	usually	consists	
of	a	display	section	and	a	hand	input	section,	two-
section	normally	are	next	to	each	other.

				Familiar	features	from	other	domains:	these	are	
at	the	same	level	as	the	former	one,	but	look	at	
other	product	categories.	One	example	could	be	the	
interfaces	of	the	calculator	in	smartphone	adopts	the	
similar	forms	of	an	actual	calculator.	Features	from	
other	relative	domain	can	also	be	good	examples	to	
learn from.

				Metaphors	from	other	domains:	metaphors	
retrieve	useful	analogies	from	memory	or	elements	
of	a	know	situation,	to	explain	a	completely	new	
concept	or	function.	For	example,	the	curvy	form	
of	the	Philips	Senseo	coffee	machine	metaphors	a	
bending	servant	who	pours	coffee	to	you.

				The	article	also	mentions	that	familiar	features	
from	the	same	and	different	domains	would	be	
the	main	mechanism	for	designers	to	use	to	apply	
intuitive	interaction.

				This	model	is	applied	in	both	interaction	and	

ergonomics	analysis,	to	generate	an	inspiring	collection	
of	features	that	later	ideation	phase	can	benefit	
from.	Only	familiar	features	in	the	same	and	different	
domains	are	applied	as	this	level	is	the	most	influential	
one	for	the	later	ideation	phase.

4.1.5 User interaction examples

Intuitive interaction model

35

				Figure	4.16	is	a	collage	that	collects	different	
interfaces	of	different	devices	that	are	designed	
for OHCA.

Function
				The	major	function	feature	is	giving	audio	and	
visual	feedback	to	the	rescuers.	Most	feedbacks	
shows	whether	the	compression	depth	and	rate	
meet	the	standard,	or	simply	showing	the	number	
of	depth	and	rate.	The	devices	are	designed	to	
passively	react	to	rescuers’	actions.

Appearance
				For	dynamic	feedbacks,	numbers	are	mostly	
used	to	show	rate,	depth,	and	time.	Columnar	
shapes	are	used	to	indicate	the	dynamic	change	
of	depth,	force,	and	release	velocity.	About	the	
color	use,	green	and	blue	are	widely	used.	Red	is	
only	used	for	important	buttons	and	indicating	
important	signals.	There	is	only	one	red	button	
or	signal	in	one	device.	Texts	are	used	more	than	

icons.	Drawings	are	used	to	describe	procedures,	
not	delivering	feedbacks.

Location
				The	information	placements	on	the	display	
follows	normal	reading	orders	(left	to	right,	top	
to	bottom)	based	on	its	importance.	For	small	
devices	with	only	one	or	two	visual	feedbacks,	the	
important	information	is	put	in	the	center	of	the	
display,	others	information	will	show	in	a	smaller	
size.

Figure	4.16	Familiar	features	from	devices	designed	for		OHCA

Familiar features from same domain

36

				Figure	4.17	is	a	collage	that	collects	familiar	
interfaces	from	other	domains	that	serve	for	the	
similar	interactions	like	the	medical	devices	used	
in	OHCA.

Function
				The	interfaces	include	timers,	metronomes,	
and	music	games.	Music	game	interfaces	offer	
multiple	types	of	visuals	to	guide	the	players’	
actions.	This	is	a	more	proactive	interaction	
between	devices	and	users.

Appearance
				For	timers,	circle	is	a	commonly	used	feature,	
indicating	a	population	stereotype	that	clock	is	
round.	For	metronomes,	a	swinging	pointer	is	
the	major	feature	to	show	the	tempo.	In	music	
games,	moving	units	towards	a	threshold	line	is	
applied	to	tell	the	player	when	to	take	an	action.

Location
				For	timers,	a	large	circular	visualization	
indicating	remaining	time	typically	sits	at	the	
middle	of	the	interfaces,	and	the	exact	numbers	
of	the	time	are	shown	in	the	center	of	the	
circular	clock	or	around	it.	In	music	games,	
the	moving	unit	moves	in	either	horizontal	
or	vertical	direction.	If	the	units	move	in	a	
horizontal	direction,	the	animation	is	normally	in	
perspective.

Figure	4.17	Familiar	features	from	other	domain

Familiar features from other domains

37

 Following	is	a	list	of	facts	that	is	concluded	from	the	interaction	analysis,	corresponding	reflections	on	the	data	
collector	design	is	listed	in blue Italic style:

 -	The	medical	devices	are	designed	to	passively	react	to	rescuers’	actions,	while	music	games	proactively	
try	to	guide	users	to	react	with	correct	actions.
 The way how music game guides the player worth to learn from for designing the interaction of CPR
guidance.

 -	Numbers	and	texts	are	commonly	used	as	visual	feedback
 For complex devices like ECMO and defibrillator, exact numbers with a clear indication of text are
important for doctors to make decisions. But for simple chest compression feedback devices, it is more important
to give clear instructions to guide the rescuer operating correctly. Clear visualization and audio indication could
be more helpful than plain numbers and texts.

 -	Columnar	shapes	are	widely	used	to	display	the	dynamic	change	of	depth,	force,	and	release	velocity.
 Adapting the music game interaction to design interactive columnar shapes to guide rescuers could be an
interesting direction.

 -	Circular	shapes	are	usually	used	for	showing	remaining	times.
 Timer app interfaces are good examples to learn from to implement the time counter feature for the data
collector.

 -	Both	in	the	medical	domain	or	other	domains,	for	a	small	display,	important	information	is	put	in	the	
center	and	other	information	is	sized	down.
 For the data collector, time and chest compression feedbacks are both important, how to position these 2
feedbacks in one small display needs to be thought through.

Conclusion

38

				Figure	4.18	is	a	collage	that	collects	familiar	
ergonomic	features	from	the	medical	domain.

Function
					There	are	usually	hand	bars	on	large	medical	
devices	for	rescuers	to	carry	around.	2	CPR	
devices	are	designed	into	ergonomic	shapes	
that	are	easy	to	hold	on	for	the	rescuers,	which	
changes	the	hand	positions,	but	they	are	proved	
to	improve	the	rescuer’s	CPR	performance	41,	53.

Appearance
				The	appearance	of	most	medical	devices	gives	

a	reliable,	robust,	and	durable	impression.	Matte	
plastic	is	widely	used	to	establish	a	professional	
look.

Location
				All	the	CPR	devices	operate	on	the	patient’s	
chest.	Pocket-sized	CPR	devices	stay	between	the	
chest and hands.

Figure	4.18	Familiar	ergonomic	features	from	medical	devices	in	OHCA

4.1.6 Ergonomic shape examples

Familiar features from same domain

39

				Figure	4.19	is	a	collage	that	collects	familiar	
ergonomic	features	from	other	domains.

Function
				One	ergonomic	features	of	a	hand	plunger	is	
similar	to	one	CPR	device,	implemented	with	a	
suction	cup	to	generate	an	up-forward	force	when	
retracting	the	compression.	Another	ergonomic	
feature	is	the	wrist	protector,	which	keeps	the	
wrist	movement	from	hyperextension	57. The
push-up	grip	is	also	designed	to	straighten	the	
wrist	and	avoid	exerting	too	much	pressure	on	
the	wrist	during	push-ups.	

Appearance
				As	shown,	the	appearance	of	these	products	
guided	the	users	to	hold	in	the	correct	ergonomic	
positions,	in	order	to	maximize	efficiency	or	to	
protect	the	user’s	joints.

Location
 The collected products are all handheld
products.

Figure	4.19	Familiar	ergonomic	features	from	other	domains

Familiar features from other domains

40

Following	is	a	list	of	facts	are	concluded	from	the	ergonomics	analysis,	corresponding	reflections	on	the	data	
collector	design	is	listed	in blue Italian style:

	 -	Ergonomic	shapes	that	change	the	hold	position	during	chest	compression	may	improve	the	
performance.
 If the data collector can be designed as an ergonomic shape and might help the rescuer’s CPR
performance.

	 -	Wrist	protector	restrain	wrist	movement	to	avoid	hyperextension	and	potential	injury.	Push	up	
bars	straighten	the	user’s	wrist	to	avoid	pressure	on	the	wrist.	
 These two structures can be learned from for ideation on the shape of the data collector.

	 -	The	appearance	of	most	medical	devices	gives	a	reliable,	robust,	and	durable	impression.	
 The appearance of the data collector should give the same feelings as these medical devices to the
user.

	 -	All	pocket-sized	CPR	devices	stay	between	the	chest	and	hands.
 The data collector should be a wearable or a handheld device, which size should not be too large to
bring with. Dr.Dinis indicates that they have a bag for all equipment and the data collector should fit in.

Conclusion

41

				This	analysis	area	is	conducted	after	the	midterm	evaluation.	During	the	evaluation,	hygiene	needs	such	as	keeping	
the	device	clean,	keeping	the	patients’	wounds	away	from	devices,	usage	of	disposal	products	are	discussed.	Thus,	
additional	analysis	on	used	devices	during	OHCA	and	how	these	devices	are	treated	to	keep	both	the	patient	and	
themselves	clean	is	conducted.

				The	first	collage	is	made	to	understand	more	how	the	OHCA	scenes	look	like	in	reality.	Some	simulation	scenes	and	
real	scenes	are	collected	in	the	collage.	As	shown	in	figure	4.20,	in	most	cases,	the	rescuers	wear	disposable	rubber	
gloves	when	they	have	contact	with	patients.	Patients	normally	lie	on	the	ground	or	on	the	emergency	beds.	In	some	
cases,	patients	may	have	bloodstains	on	their	bodies	or	clothes.	The	medical	devices	and	rescue	bags	are	usually	
placed	on	the	ground.

4.1.7 Hygiene problems in scene

Introduction

Collages

Figure	4.20	Collage	of	OHCA	rescue	scenes

42

Figure	4.21	Collage	of	cannulation	scenes	during	ECMO	implementation

				The	second	collage	gathers	some	simulated	and	real	cannulation	scenes.	As	mentioned	in	the	context	analysis,	
cannulation	is	a	necessary	treatment	to	implement	ECMO	on	patients.	As	shown	in	figure	4.21,	in	all	cases,	
the	patients	are	covered	with	a	disposable	sheet	with	an	opening	at	the	cannulation	location.	All	the	doctors	
wear	disposable	clothes,	masks,	gloves,	and	hats,	while	conducting	cannulation.	During	cannulation,	the	chest	
compression	continues.	Blood	may	splash	out	around	the	cannulation	location.	Surgical	instruments	are	placed	on	
the	sheet	near	the	surgeons.

Disposal usage

				Table	4.5	summarizes	some	devices	that	are	used	by	rescuers	during	OHCA.	As	it	shows,	the	part	of	the	devices	
which	directly	have	skin	contact	with	the	patients	are	designed	to	be	disposable	or	cleanable.	Rest	parts	of	the	device	
usually	can	be	cleaned	with	mild	detergent.

43

Category Product Disposal part Usage

Defibrillator
Corpuls 3 42 Corpatch

- Sense chest motion
- Send compression data
to defibrillator
- Patch is one time use

Zoll Defibrillator 105 Zoll AED plus pads 108

- Sense chest motion
- Send compression data
to defibrillator
- Conduct electricity for
defibrillation
- Pad is one time use

Automatic
chest

compressor

Corpuls CPR 26 Stamp

- Compress chest
- Stamp can be sterilized
and reused

Zoll Autopulse 107 Liveband

- Compress chest
- Liveband is one time use
- Spills with a disinfectant
or bactericidal wipe to
clean the body surfaces

Lucas device 62 Suction cup

- Compress chest
- Suction cup is one time
use
- Main body can be
cleaned with soft cloth
and warm water with soft
detergent

Manual
chest

compressor

Zoll ResQ 3 Suction cup

- Compress chest
- Can be disposed
or cleaned with mild
detergent and tap water

Zoll PocketCPR 64

None

- Compress chest
- Sense chest motion
- Give compression
feedback
- Wipe with mild detergent
and water after use

Table	4.5	Summary	of	disposal	usage	of	used	devices	during	OHCA

44

Following	is	a	list	of	facts	are	concluded	from	the	ergonomics	analysis,	corresponding	reflections	on	the	data	
collector	design	is	listed	in blue Italian style:

	 -	In	most	cases,	the	in-use	medical	devices	and	rescue	bags	are	lay	on	the	ground	around	the	rescuers.
 The data collector should withstand the outdoor environment.

	 -	The	part	of	the	devices	which	directly	has	skin	contact	with	the	patients	are	usually	designed	to	be	
disposable	or	cleanable.
 In order to keep the device clean and ready for every use, the part of the data collector that has direct
skin contact with the patient should also be disposable or cleanable.

	 -The	disposable	part	of	the	device	can	be	easily	removed	and	replaced	with	a	new	one	for	the	next	
session.
 The disposable part of the data collector should be also removable.

Conclusion

45

1.1	The	data	collector	needs	to	collect	following	data	precisely:	
ECMO	start	time,	chest	compression	depth	and	rate.

1.2	The	data	collector	can	be	set	up	within	10s	without	
interrupting	other	running	devices.

1.3	The	data	collector	can	save	the	data	locally	before	upload	to	
cloud.

1.4	The	data	collector	can	upload	the	data	to	a	cloud	platform,	
Google	drive,	or	Email	automatically.

1.5	Using	data	collector	will	not	affect	hygiene	standard	during	
OHCA rescue.

1.6 The data collector can guide the rescuers to follow proper
CPR cycles with its timer feature.

1.7	The	data	collector	can	improve	rescuer’s	chest	compression	
performance.

2.1	The	data	collector	can	function	under	compression	forces	
during	both	the	manual	CPR	and	mechanical	CPR	process.

2.2	The	data	collector	should	withstand	electric	shock	from	
defibrillator.

2.3	The	data	collector	can	be	used	both	in	day	and	night.

3.1 FIX.

3.2	The	data	collector	can	be	easily	cleaned	(by	detergent)	after	
use.

4.1	Software	updates	for	the	data	collector	should	be	available.

4.2	The	data	collector	can	be	disassembled	for	maintenance.

5.1	The	production	cost	and	of	the	data	collector,	data	upload	
and	storage	cost	should	be	as	cheap	as	possible.	

6.1	At	least	3	data	collectors	should	be	made	for	one	HEMS	
station.

7.1	The	data	collector	is	producible	based	on	Arduino	by	the	

1. Performance

2. Environment

3. Life in service

4. Maintenance

5. Product cost

6. Quantity

 As a conclusion of the analysis phase, a list of requirements and wishes for the data collector design is
formulated, based on the checklist by Pugh 106.

4.1.8 Design criteria

List of requirements and wishes

46

7. Production

8. Size and weight

9. Aesthetic, appearance and finish

10. Interaction

11. Ergonomics

12. Reliability

13. Storage

14. Testing

15. Safety

16. Reuse, recycling

designer.

8.1	The	data	collector	should	fit	in	HEMS	crew’s	bag	and	be	as	
light	as	possible.

9.1	The	data	collector	should	have	a	reliable,	robust	and	durable	
look.

10.1	The	HEMS	team	can	understand	how	to	use	the	data	
collector	within	a	10min	demonstration	session.

10.2	The	audio	and	visual	feedback	of	the	data	collector	guide	
the	rescuer	to	perform	better	chest	compression.

11.1	The	data	collector	is	ergonomically	comfortable	to	use.

11.2	The	data	collector	can	relief	fatigue	or	the	wrist	pain	of	the	
rescuers	during	chest	compression.

12.1	The	data	collector	sends	notification	to	user	if	it	needs	a	
recharge	or	exchange	of	battery.

12.2	The	data	collector	can	secure	collected	data	locally	when	
encounter	sudden	powering	off.

13.1	The	data	collector	can	be	stored	in	HEMS	crews’	rescue	bag.

14.1	Test	on	the	precision	of	the	collected	data	should	be	carried	
out.

14.2	Test	on	the	data	upload	and	storage	to	dataset	(Cloud,	
Google	drive	or	Email)	should	be	carried	out.

14.3	Test	the	performance	of	the	data	collector	running	on	a	
simulated	CPR	scene	with	a	manikin	should	be	carried	out.

14.4	Test	the	performance	of	the	data	collector	running	on	
simulated	manual	and	mechanical	CPR	scenes	with	real	person	
should	be	carried	out.

15.1 The data collector does not harm the rescuers and the
patients	under	proper	usage.

16.1	The	electronic	parts	of	the	data	collector	can	be	reused	for	
other purposes.

47

MoSCoW prioritization

				The	end	goal	of	this	project	is	not	only	to	provide	a	concept	design	as	a	solution,	but	also	a	working	prototype	
is	expected	to	be	tested	in	real	OHCA	cases.	Within	this	100-working-day	project	timeframe,	the	progress	of	
building	a	working	prototype	is	hard	to	predict.	So	it	is	necessary	to	prioritize	the	list	of	design	requirements	
more	specifically	within	a	working	prototype	scenario.	Hereby	MoSCoW	87	prioritization	method	is	introduced.	
The	list	of	requirements	is	divided	into	4	priorities:	Must	have,	should	have,	could	have,	will	not	have,	as	must-
have	requirements	will	be	definitely	fulfilled	within	this	project’s	timeframe.	While	should-have	and	could-have	
features	will	be	considered	to	add	to	the	working	prototype	if	time	is	proficient.

Must have
Non-negotiable	

features that must be
fulfilled	within	given	

timeframe

Should have
Important features
that	are	not	vital,	but	
add	significant	value

Could have
Features	that	are	nice	
to have but have small

impact	if	left	out

Won’t have
Not	a	priority	for	given	

timeframe

1.1,	1.3,	1.4
The	working	prototype	of	the	data	collector	must	be	able	to	collect	
ECMO	start	time	and	chest	compression	rate	data,	store	it	locally,	and	
uploads	it	to	an	online	dataset.

1.2,	1.5,	
The	working	prototype	should	be	able	to	be	set	up	within	10s,	not	
affect	the	hygiene	standard	of	the	scene.

1.6,	1.7,	10.1,	10.2,	11.1,	11.2
The	working	prototype	could	be	able	to	guide	rescuers	and	improve	
their	rescue	performance	by	giving	audio	and	visual	feedback	and	
ergonomic	shapes.

All	other	requirements	and	wishes	are	not	a	priority	for	working	
prototype	development	in	this	project’s	timeframe.

48

4.1.1 Clay models

Model 1

4.2 Ideation

Model 2

				Before	starting	the	ideation	phase,	a	CPR	
training	manikin	is	used	to	experience	the	chest	
compression	maneuver.	After	3	rounds	of	chest	
compression	with	each	rounds	lasting	2	minutes,	
sore	pain	on	tester’s	palm,	wrist	and	back	is	
felt	strongly.	Based	on	this	experience	and	by	
following	requirement	11.1	and	wish	11.2,	4	
clay	models	are	developed	to	explore	if	the	data	
collector’s	shape	can	be	designed	to	relieve	
the	rescuer’s	pain	from	chest	compression	and	
therefore	improve	efficiency.

Figure	4.23	Clay	model	1

Figure	4.22	4	clay	models	build	upon	manikin

				Figure	4.23	shows	the	first	built	clay	model.	
It	has	an	ergonomic	shape	that	its	upside	is	
dented	to	follow	the	shape	of	the	human’s	
palm	and	wrist,	and	its	downside’s	shape	fills	
the	middle	chest	shape.	This	shape	fills	up	
the	hollow	space	between	the	rescuer’s	palm	
and	the	patient’s	chest	to	reduce	the	friction	
between	them	during	chest	compression,	
therefore	gives	a	more	comfortable	
experience	to	rescuers.

				Based	on	the	model	1	and	inspired	by	Philips	Q-CPR	67

measurement	and	feedback	tool,	model	2	is	built,	as	shown	
in	figure	4.24.	It	possesses	an	ergonomic	shape	at	the	
compression	area	like	model	1,	but	gets	an	extensive	part	out	
of	the	compression	area,	which	is	a	screen	that	gives	feedback	
to	the	rescuer	during	chest	compression,	like	the	Q-CPR.

Figure	4.24	Clay	model	2

49

Model 3

Figure	4.25	Clay	model	3

				Model	3	in	figure	4.25	is	a	smaller	circular	version	of	
the	model	1.	Its	compact	round	shape	is	easy	to	fit	in	
the	rescuer’s	pocket.	It	totally	lies	under	the	palm	so	
no	visual	feedback	can	be	given.

Model 4

Figure	4.26	Clay	model	4

				Model	4	in	figure	4.26	is	developed	to	relieve	the	
wrist	stress	during	chest	compression	by	changing	
the	hand	position.	As	shown,	by	giving	hand	bars	
to	hold	on,	the	rescuer’s	wrists	are	not	excessively	
bending.	When	the	wrists	are	straightened,	no	
hyperextension	57	occurs,	which	may	cause	wrist	
pain.	This	model	is	inspired	by	the	push-up	bars	
that	are	used	for	fitness.	In	the	middle	between	
the	two	bars,	there	are	also	spaces	left	to	place	
visual	feedback	on	the	model	for	the	rescuers	to	
review	during	chest	compression.

50

4.1.2 Electronics

Force Sensitive Resistor (FSR)

CorPatch

				The	Force	Sensitive	Resistor	(FSR)	is	first	being	explored	on	Arduino	because	it	can	measure	the	
compression	force	exerted	on	it.	As	shown	in	figure	4.27,	FSR	can	continuously	detect	how	much	
for	the	fingers	are	pressing	on	it.	The	recorded	compression	force	can	be	used	to	evaluate	the	
compression	rate,	depth	by	following	the	CPR	criteria.	

Figure	4.27	FSR	on	Arduino

 CorPatch 25	is	a	product	used	by	Dr.Dinis’	HEMS	crew	during	OHCA	rescue.	It	is	a	patch	that	one	
side	is	connected	to	a	Corpuls	defibrillator,	another	side	is	placed	on	the	center	of	the	patient’s	
chest.	It	is	used	to	collect	chest	compression	data	for	the	defibrillator.	It	is	also	disposable.	As	shown	
in	figure	4.28,	the	CorPatch	uses	a	9-pins	male	D-Sub	94	to	connect	to	the	defibrillator.	Inside	the	
CorPatch,	there	is	an	ADXL335 30	3-axis	accelerometer,	which	is	validated	by	reading	the	prints	on	the	
electronic	components.	The	CorPatch	could	be	a	possible	disposal	component	for	the	data	collector.	
If	the	data	collector	can	be	connected	to	the	CorPatch,	it	can	stay	away	from	the	patient	to	keep	itself	
clean.	Then	CorPatch	can	collect	acceleration	data	and	send	them	to	the	data	collector.

Figure	4.28	CorPatch	disassemble

51

				Figure	4.29	shows	how	the	CorPatch’s	output	value	can	be	read	on	Arduino.	To	find	out	
which	pin	value	outputs	the	acceleration	data,	a	pinout	sheet	of	CorPatch	is	provided	by	
the	company	(Appendix	E).	However,	it	shows	that	the	CorPatch	uses	the	I2C	98	interface	
to	transfer	data	and	the	company	does	not	have	detailed	I2C	addresses	to	read	the	actual	
acceleration	value	from	the	sensor	(ADXL335).	It	also	takes	a	lot	of	effort	to	reverse-
engineer	the	chip,	according	to	an	expert	from	Applied	Labs.

Figure	4.29	CorPatch	on	Arduino

GND

VDD ACC

				As	reading	values	from	the	sensor	via	I2C	
interface	is	impossible,	every	pin	from	the	
D-Sub	is	tested	on	Arduino	by	connecting	
to	A0	(analog	read	pin)	to	see	what	value	it	
outputs	(Appendix	E).	The	result	is	shown	
in	figure	4.30,	pin	4	and	8	acts	as	ground	
and	power	supply	pin	90,	pin	6	outputs	
values that reacts to the movement of the
CorPatch	(reading	in	figure	4.29).	Figure	
4.31	shows	how	the	values	from	pin	6	
changes	along	with	the	turning	angle	of	the	
CorPatch.	The	pin	6	output	value	is	possibly	
associated	with	an	angular	acceleration	of	
one	axis	from	the	sensor,	but	it	is	uncertain	
what	this	value	exactly	means,	as	again	
reverse-engineer	it	takes	huge	amount	of	
time.

Figure	4.30	Useful	pins

Figure	4.31	Pin	6	relation	to	CorPatch	angles

				To	conclude,	it	is	feasible	to	receive	values	from	pin	6	of	the	CorPatch,	which	is	related	
to	the	movement	of	the	CorPatch.	The	meaning	of	the	value	is	unknown.	But	during	the	
test	with	Arduino,	it	is	clearly	shown	that	the	value	pulses	along	with	the	linear	movement	
of	the	CorPatch	in	figure	4.29.	So	the	pin	values	can	still	be	used	to	calculate	the	chest	
compression	rate,	but	not	the	compression	depth.	

52

Realtime
feedback

Internet
available?

Start

Save to SD

Time, depth,
rate, force

No FSR, IMU >
Threshold?

Yes

No

Upload to
database

Yes

Time1 =
2min?

Yes

Notify evalua-
tion

FSR, IMU <
Threshold?

10s countdown

Time2 >
10s?

FSR, IMU >
Threshold? Notify resume

Yes

Yes

Yes No Time3 >
5min?

Record CPR stop
time

Basic logic flowchart

Figure	4.32	Arduino	MKR	Wifi	1010	to	micro	SD	card	module

				A	basic	logic	flowchart	(Figure	4.32)	is	built	for	the	data	transfer	system	to	sort	out	different	duties	
that	the	codes	and	electronics	need	to	finish	at	different	stages.	Also,	it	shows	where	a	threshold	
needs	to	be	set	for	stage	changing.	The	following	electronic	prototype	is	built	to	fulfill	the	must-have	
duties	(inside	the	yellow	rectangle)	-	read	data,	save	data	to	SD,	and	upload	data	to	the	database.

53

12

3V

GND

VCC

GND

SD Arduino

CS

11DI

12DO

11CLK

Arduino IOT Cloud

				From	former	technology	analysis	on	data	upload	and	storage,	Arduino	MKR	Wifi	1010	is	chosen	as	
the	prototyping	board.	A	micro	SD	card	module	54	is	added	(figure	4.32)	first	because	the	ability	to	
save	data	locally	is	a	must-have.	In	this	electronic	prototype,	acceleration	data	from	an	accelerometer	
(MPU6050)	and	time	data	is	recorded	per	second	and	saved	in	the	micro	SD	card.	

Figure	4.33	Arduino	MKR	Wifi	1010	to	micro	SD	card	module

Figure	4.34	CorPatch	disassemble

				Arduino	IOT	cloud	13 is	the	first	explored	cloud	platform	because	it	is	developed	for	Arduino	boards	
and	offers	useful	examples.	The	Arduino	MKR	Wifi	1010	first	accesses	the	Internet	via	Wifi.	Then	
upload	the	saved	data	from	the	micro	SD	card	to	the	Arduino	IOT	cloud	(codes	in	appendix	F).	As	
shown	in	figure	4.33,	the	current	date,	time,	and	acceleration	value	is	shown	on	the	dashboard.	Users	
can	download	historic	data	from	Arduino	IOT	cloud	as	a	csv	file.	However,	for	free	account	users,	the	
historic	data	is	only	saved	for	a	day	in	the	cloud.	For	subscription	users,	the	historic	data	is	kept	for	a	
week	after	upload.

54

4.3 Concepts

Sense

FSR IMU

Feedback

Visual Audio Haptic

Collect

From patient From rescuer From device

Upload

USB 3G/4G Bluetooth Wifi

Store

Memory card Smartphone PC Cloud Email

Power

Rechargeable Disposable

Figure	4.35	Morphological	chart	106

Morphological chart

				To	generate	principal	solutions	in	an	analytical	and	systematic	way,	the	morphological	chart	106
method	is	used.	As	shown	in	figure	4.32,	the	main	required	functions	of	the	data	collector	are	listed	
on	the	left	in	the	chart.	The	possible	electronic	solutions	for	each	function	are	listed	on	the	right.	
These	solutions	are	generated	from	the	former	technology	analysis.	The	chart	let	the	designer	to	
combine	these	solutions	to	form	a	complete	workable	concept.

				The	following	concepts	are	all	generated	based	on	this	morphological	chart,	clay	models,	and	
electronic	prototypes.

55

Concept 1 - Steer wheel

				Concept	1	-	steer	wheel	adopts	clay	model	4	as	
the	overall	shape.	The	main	electronics	are	placed	
inside	the	removable	cylinder	part,	which	contains	
the	Arduino	board,	sensors,	and	batteries.	This	part	
is	Bluetooth	connected	to	the	rescuer’s	smartphone	
and send collected data to the app on the phone. The
phone	can	be	placed	in	the	middle	of	the	steer.	The	
App	receives	data	from	the	cylinder	and	present	them	
on	the	screen	to	give	rescuers	guidance.

				This	concept	uses	a	modular	design	to	fit	both	
2	scenarios:	manual	CPR	and	mechanical	CPR.	It	
changes	the	hand	position	of	chest	compressing	to	
reduce	the	rescuer’s	fatigue	and	wrist	pain.	It	uses	
phone	to	save	data.	On	the	other	hand,	it	is	large	in	
size,	it	needs	phone	to	show	visual	feedback	and	data	
storage.	It	needs	to	be	designed	to	fit	with	different	
phones. Figure	4.36	Morphological	chart	of	concept	1	

Figure	4.37	User	scenarios	of	concept	1	

56

Concept 2 - Phone
				Concept	2	-	Phone	is	based	on	clay	model	2,	
which	is	inspired	by	Philips	Q-CPR	67. It has an
ergonomic	shape	that	fits	the	rescuer’s	palm	in	a	
compression	position.	It	has	an	extensive	screen	
to	show	the	status	of	compression.	It	saves	data	
to	a	micro	SD	card	and	uploads	data	to	the	cloud	
via	Wifi.	It	is	pocket-size	and	can	be	recharged.

				Due	to	its	compact	size,	the	visual	feedback	it	
gives	is	limited.	Uploading	data	is	also	dependent	
on	Wifi	availability.

Figure	4.38	Morphological	chart	of	concept	2

Figure	4.39	User	scenarios	of	concept	2	

57

Concept 3 - Pebble
 Concept 3 - Pebble adopts the shape of
clay	model	3.	This	is	the	smallest	design	of	all	
concepts.	It	only	gives	haptic	(vibration)	feedback	
to	the	user	in	a	manual	CPR	scenario.	It	saves	
data	in	micro	SD	card	and	uploads	data	via	Wifi.

Figure	4.40	Morphological	chart	of	concept	3

Figure	4.41	User	scenarios	of	concept	3

58

Concept 4 - Watch
				Concept	4	-	Watch	is	a	wearable	design.	
According	to	the	study	from	González-Otero	et	al.	
(2018)	38,	the	rescuer’s	Arm	movement	tracked	
by	the	accelerometer	is	also	accurate	to	evaluate	
compression	depth	and	rate.	The	watch	can	give	
audio	and	visual	feedback	to	the	rescuer	during	
chest	compression.	It	can	also	be	placed	on	
patient’s	chest	for	mechanical	chest	compression.	
It	is	rechargeable	and	can	be	worn	by	the	rescuer	
during	the	on-duty	period.	It	saves	data	to	a	
micro	SD	card	and	uploads	it	to	a	smartphone	via	
Bluetooth.

Figure	4.42	Morphological	chart	of	concept	4

Figure	4.43	User	scenarios	of	concept	4

59

Concept 5 - CorPatch combination

Figure	4.44	Morphological	chart	of	concept	4

Figure	4.45	User	scenarios	of	concept	5

				Concept	5	is	generated	after	the	midterm	
evaluation.	During	midterm	evaluation,	it	is	reflected	
that	the	hygiene	problem	is	not	well	considered	in	
the	mentioned	4	concepts.	As	additional	research	
on	hygiene	problems,	implementing	the	disposable	
part	into	the	design	is	a	widely	adopted	solution	by	
professional	medical	devices.	Thus,	Dr.Dinis	suggests	
combining	the	CorPatch	with	the	data	collector	design	
to	solve	hygiene	problems.

				Concept	5	demonstrates	that	the	data	collector	is	
placed	on	the	rescuer’s	arm,	with	a	cable	connected	
to	the	CorPatch,	which	is	placed	on	the	patient’s	
chest.	In	this	way,	the	data	collector	stays	around	the	
rescuers	and	also	keeps	a	distance	from	the	patient.	It	
provides	visual	and	audio	feedback.

60

4.4 Evaluation

Table	4.6	Evaluation	table	of	first	4	concepts

				Table	4.6	shows	the	result	of	the	evaluation	of	the	first	4	concepts	before	midterm	by	using	
weighted	objectives	method	106.	The	evaluation	criteria	are	defined	based	on	the	result	of	the	
MoSCoW	prioritization.	The	steer	wheel	concept	scores	the	highest	among	4.	However,	as	
discussed	in	the	midterm	meeting,	hygiene	problems	are	not	well	considered	with	these	concepts.	
Concept	5	is	also	discussed	with	Dr.Dinis	after	midterm	that	placing	data	collector	on	rescuers	is	
also	not	ideal,	as	the	collector	is	also	connected	with	the	CorPatch,	which	is	fixed	on	the	patient,	
and	this	will	restrict	rescuer’s	movement.

61

4.5 Conclusion

				As	demonstrated	in	the	midterm	meeting,	the	Arduino	IOT	cloud	works	well	with	Arduino	MKR	Wifi	1010,	
the	data	from	SD	card	can	be	all	uploaded	to	the	cloud	via	Wifi.	However,	the	Arduino	IOT	cloud	only	keeps	
uploaded	data	for	a	week	even	for	subscribed	users	(7	USD	per	month),	which	means	every	week	the	HEMS	
team	should	download	historic	data	to	their	local	computers.	Plus,	the	given	data	storage	on	the	cloud	with	
subscription	is	200MB,	which	is	minimal	comparing	to	other	platforms	such	as	Google	Drive	(10GB).	

Electronics

Shapes

				The	generated	shapes	and	their	interaction	ways	and	setups	around	the	user	are	not	ideal,	as	concluded	
from	the	midterm	meeting.	As	for	now,	what	is	validated	as	a	feasible	idea	is	using	CorPatch	as	a	disposable	
part	and	connecting	it	to	the	data	collector.	The	data	collector	therefore	just	receives	output	values	from	the	
CorPatch,	stores	them,	and	uploads	them	to	the	cloud	via	Wifi.	However,	using	CorPatch	as	the	sensor	to	
collect	compression	data	means	that	the	data	cannot	be	used	to	calculate	compression	depth,	only	rates,	as	
explained	in	the	CorPatch	section.

Next cycle

				The	next	cycle	will	be	focused	on	the	electronics	development	and	data	transfer	system	building.	Because	
once	the	electronics	setup	is	defined,	the	shape	of	the	housing	design	can	follow.	The	electronics	will	be	built	
based	on	the	CorPatch.	More	methods	to	upload	and	store	data	on	the	cloud	platforms	will	be	explored.	

62

05
Cycle 2

63

5.1 Electronics analysis

				In	cycle	2,	the	focus	is	moved	to	building	electronics	prototype	and	the	data	transfer	system.	Extended	from	the	
former	cycle,	a	detailed	analysis	of	potentially	suited	electronics	choices	is	conducted.	Cloud	platforms	are	tested	
with	Arduino.	At	the	end	of	this	cycle,	the	electronic	setup	for	the	data	collector	is	validated	and	a	working	data	
transfer	system	is	built.

5.1.1 CorPatch

Circuit

A1

GND

ACC

10kΩ

Figure	5.1	CorPatch	to	Arduino	circuit

GNDGND

VDDVDD ACCACC

ACC A1

VDD

GND

VCC

GND

CorPatch Arduino

Male	(CorPatch	side) Female

				In	cycle	1,	CorPatch’s	pinout	is	studied.	As	shown	in	figure	5.1,	the	
D-Sub	male	plug	from	the	CorPatch	needs	to	connect	to	the	GND	
(ground),	VDD	(3.3V	power	supply),	and	A1(analog	read	1)	of	the	
Arduino	MKR	Wifi	1010.	The	ACC	pin	of	the	CorPatch	outputs	reactive	
values	to	its	movements	and	is	connected	to	A1	for	the	Arduino	to	
read	the	values.	Plus,	the	ACC	pin	of	the	CorPatch	is	connected	in	
parallel	with	a	10k	Ohm	resistor	to	A1.	This	resistor	in	parallel	is	used	
to	identify	if	the	CorPatch	is	plugged	in	or	not.	When	the	CorPatch	
is	not	connected	to	the	Arduino,	A1	gets	values	below	10	because	it	
reads	analog	voltage	values	from	the	resistor.	If	CorPatch	is	plugged	
in,	the	value	of	CorPatch	will	be	over	600,	which	this	threshold	will	
be	explained	in	the	next	paragraph.	If	this	parallel	resistor	is	not	
implemented	in	the	circuit,	the	A1	reading	will	be	random	between	0	
and	1023	when	CorPatch	is	not	plugged	in.

Figure	5.2	Parallel	connected	resistor

64

Reading values from ACC

Figure	5.3	ACC	pin	values	in	5V	supply	regarding	to	placement	angle

Figure	5.4	ACC	pin	values	plot	with	300ms	window

				As	mentioned	in	cycle	1,	every	pin	is	tested	on	
Arduino	with	analog	read.	ACC	pin	(pin	6)	is	the	
only	responsive	pin	to	CorPatch	movement.	Figure	
5.3	illustrates	the	relationship	between	the	ACC	pin	
value	and	the	placement	angle	of	CorPatch	when	
the	CorPatch	is	connected	to	5V	power	supply	from	
Arduino	Uno.	When	the	CorPatch	lies	on	the	ground	(0	
degree),	the	value	maintains	at	around	626	(±5).	At	90	
degrees,	the	value	drops	to	563±5.	When	it	is	flipped	
down,	the	value	is	at	its	lowest	503±5.

				But	how	the	value	
changes	in	a	chest	
compression	scenario?	In	
figure	5.4,	the	CorPatch	
is	placed	on	the	CPR	
manikin	and	tested	on	
Arduino	Uno	with	a	5V	
power	supply.	On	the	
right	of	the	figure,	a	plot	
shows	the	CorPatch’s	
readings	during	the	chest	
compression	maneuver.	
The	sample	window	is	
300	milliseconds.	At	the	

beginning	of	the	plot,	when	the	CorPatch	is	placed	on	the	center	chest	of	the	manikin,	the	value	stays	at	around	626,	
same	as	tested	before.	When	the	compression	starts,	the	value	fluctuates	between	720	and	500.	The	value	stays	at	
626	again	when	the	compression	stops.	This	shows	that	the	minimum	value	is	around	500,	same	as	tested	before.	
The	maximum	value	can	go	up	to	around	720.	From	this	plot,	it	is	concluded	that	the	peaks	of	the	value	could	be	
used	to	calculate	the	compression	rate,	and	the	range	of	the	value	is	fixed.

5.1.2 Mircro SD card module

7

3V

GND

VCC

GND

SD Arduino

CS

8DI

10DO

9CLK

Figure	5.5	Micro	SD	card	module	to	Arduino	circuit

				A	micro	SD	card	module 54	bridges	the	micro	SD	
card	and	the	Arduino.	Figure	5.5	shows	a	circuit	
that	connects	the	module	to	an	Arduino	MKR	Wifi	
1010.	The	module	communicates	with	the	Arduino	
via	Serial	Peripheral	Interface	(SPI) 104.	With	this	
module,	Arduino	can	save	the	data	as	CSV	(comma-
separated	values) 92	file	collected	from	the	sensor	
to	an	inserted	micro	SD	card,	and	also	read	the	files	
from the card.

65

12

VDD

GND

VCC

GND

RTC Arduino

SCL

11SDA

5.1.3 Real-Time Clock (RTC) module

				As	researched	in	cycle	1,	an	RTC	module 55
is	used	to	record	the	current	time	in	seconds.	
It	communicates	with	the	Arduino	via	Inter-
Integrated	Circuit	(I2C)fix	interface.	The	RTC	
module	needs	a	cell	battery	to	power	so	it	can	still	
record	the	current	time	when	the	Arduino	board	is	
turned	off.

Figure	5.6	Real-Time	Clock	module	to	Arduino	circuit

5.1.4 NeoPixel LED ring

6

PWR

GND

VCC

GND

NeoPixel Arduino

IN

Figure	5.7	NeoPixel	ring	to	Arduino	circuit

				A	NeoPixel	LED	ring	2	is	chosen	to	explore	the	visual	
feedback	of	the	data	collector	because	it	is	easy	to	
implement	to	Arduino	comparing	to	a	screen,	which	
normally	needs	an	SPI	connection.	As	shown	in	figure	
5.7,	besides	regular	ground	and	power	connection,	
one	digital	pin	connecting	to	the	NeoPixel’s	input	
is	able	to	control	all	12	LEDs	on	the	ring.	Figure	5.8	
shows	the	visual	feedback	given	by	the	NeoPixel	
in	different	stages.	During	the	chest	compression	
stage,	the	NeoPixel	blink	2	halves	of	the	ring	back	
and	forth	in	green	in	100bpm	(beats	per	minute)	to	
show	the	correct	compression	rate	to	the	rescuers.	
100bpm	compression	rate	is	validated	as	a	suitable	
rate	for	chest	compression	in	cycle	1.	When	the	
chest	compression	stops,	the	NeoPixel	switches	
to	10s	countdown,	by	showing	10	LEDs	turning	off	
second	by	second.	After	the	10s	countdown,	if	chest	
compression	does	not	resume,	the	NeoPixel	will	
start	to	blink	in	red	to	warn	the	rescuers	it	is	time	to	
resume	compression.	(Arduino	code	in	appendix	G)

Figure	5.8	Visual	feedback	in	3	stages

Chest	compression	stage

Warning	stage

10s	countdown	stage

66

5.1.5 Buzzer
				A	piezo	buzzer	83	is	firstly	chosen	to	prototype	
with	Arduino	in	exploring	audio	feedback	of	the	
data	collector.	It	is	simple	to	implement	and	
it	can	produce	beep	sound	in	different	notes	
(frequencies)	and	form	a	melody.	In	this	electronic	
prototype,	the	buzzer	beeps	in	note	C4	at	100bpm	
pace	during	the	chest	compression	stage.	In	the	10s	
countdown	stage,	it	beeps	in	C5	once	per	second	
for	10s.	In	the	warning	stage,	it	beeps	in	C6	on	per	
second.	The	buzzer	produces	3	different	tones	in	
2	different	rates	to	let	the	rescuers	identify	which	
stage	they	are	in	now.	(Arduino	code	in	appendix	G)

Figure	5.9	Buzzer	to	Arduino	circuit

+

-

5

GND

Buzzer Arduino

+

-

+

-

Speaker Amplifier

V+

GND

VCC

GND

Amplifier Arduino

OUT

GND

5

GND

Figure	5.10	Speaker	to	amplifier	to	Arduino	circuit

5.1.6 Mini speaker + amplifier

				Because	buzzer	only	beeps	and	cannot	play	audio	
files.	A	mini	speaker	86	is	chosen	for	playing	audio	
files	on	Arduino.	An	amplifier	45	is	used	to	amplify	
the	sound	of	the	mini	speaker	up	to	around	80	
dB	(decibels).	In	the	chest	compression	stage,	the	
speaker	beeps	in	C4	at	100	bpm	pace	to	indicated	
the	ideal	compression	rate.	In	the	10s	countdown	
stage,	the	speaker	plays	an	audio	file	that	counts	10	
seconds	down	in	the	human	voice.	This	audio	file	is	
kept	in	the	micro	SD	card.	In	the	warning	stage,	the	
speaker	repeatedly	plays	“Time	to	resume	CPR!”	
until	compression	is	resumed.	(Arduino	code	in	
appendix	G)

67

5.1.7 Battery
				According	to	Arduino	16,	MKR	1010	Wifi	requires	
at	least	3.7V	power	supply.	For	disposal	batteries	
such as AAA and AA 97,	each	piece	provides	1.5V.	
So	in	principle,	three	AAA	or	AA	batteries	in	series	
connection	can	provide	4.5V	which	should	be	
enough	to	run	MKR	1010.	As	interviewed	with	
Dr.Dinis,	The	HEMS	team	routinely	changes	the	
batteries	of	all	devices	once	a	week.	This	means	
that	the	data	collector	should	stand	by	at	least	a	
week	and	can	still	be	used	for	OHCA	cases,	which	
normally	takes	one	to	two	hours.	The	MKR	1010	
operates	in	a	3.3V	or	5V	circuit.	Here	3.3V	is	chosen	
because	less	operation	voltage	consumes	less	
energy	91.	As	the	circuit	and	electronic	parts	are	not	
defined	yet,	Arduino	Uno	in	5V	circuit	is	taken	as	a	
reference	here,	which	draws	about	50mA	35	when	it	
runs	an	empty	sketch	(doing	nothing).	This	means	
it	needs	8400mAh	(50mA	x	24h	x	7d)	of	battery	
capacity	to	maintain	working	for	a	week.	An	AA	
battery	normally	holds	2400	-	2500	mAh	capacity20

with	a	compact	size	(ø7mm	x	50mm).	Thus,	4	AA	
batteries	in	series	setup	with	9600	to	10000mAh	in	
total	is	enough	for	powering	the	circuit	for	a	week.Figure	5.11	Speaker	to	amplifier	to	Arduino	circuit

+

-

+

-

Battery Arduino

5.1.8 Google script app

				In	cycle	1,	the	Arduino	IOT	cloud	platform	is	used	as	an	online	data	storage	method.	But	it	limits	user’s	storage	
size	and	upload	times,	even	with	a	subscription.	In	this	cycle,	during	the	research	on	the	possibility	of	combining	
Arduino	IOT	cloud	and	Google	sheets	in	one	tutorial	14,	Google	Apps	Script	shows	the	potential	to	handle	
data	transfer	and	pre-analysis	with	Google	sheets.	In	another	tutorial	73,	it	suggests	using	an	API	(Pushingbox6
to	upload	data	from	Arduino	directly	to	Google	sheet.	If	data	can	be	uploaded	and	stored	directly	in	Google	
sheets,	the	free	given	storage	by	the	Google	drive	is	10GB,	which	is	more	than	enough	for	this	study.	However,	
pushingbox	still	has	limitations	on	1000	uploading	times	per	day.	From	another	github	page	29,	a	way	to	directly	
send	data	to	Google	sheet	via	Google	Script	App32	is	found.	It	uses	HTTPS	89	request	from	Arduino	to	upload	
data	to	Google	sheets,	with	no	API	needed.	Along	with	this	github	example29	and	http	request	example	11 from
Arduino,	this	method	becomes	feasible	and	it	solves	both	the	storage	size	and	upload	times	limitations.	More	
details	will	be	explained	in	the	next	section.

Figure	5.12	Google	App	script

5.1.9 Conclusion
				In	this	analysis	section	of	cycle	2,	different	electronic	parts	for	the	expected	functions	of	the	data	collector	are	
explored	and	prototyped.	A	new	method	that	can	associate	Arduino	directly	with	Google	sheets	is	found.	The	
next	step	is	combining	these	outcomes	and	testing	its	feasibility	and	functions.

68

5.2 Electronic prototype building
5.2.1 Circuit

Figure	5.13	Full	circuit	setup

				Figure	5.13	shows	the	full	circuit	of	the	built	electronic	prototype	that	includes	Arduino	MKR	1010	Wifi	
(processor	and	Wifi	connection),	CorPatch	(Accelerometer	sensor),	micro	SD	card	module	(data	storage	and	
upload),	RTC	module	(real-time	record),	mini	speaker	and	its	amplifier	(audio	feedback),	NeoPixel	ring	(visual	
feedback),	and	battery	(power	supply).	At	the	bottom	is	the	photo	of	the	whole	setup.	This	prototype	not	only	
fulfills	the	must-have	functions	(upload	and	collect	data)	from	the	MoSCoW	list,	but	also	realizes	one	should-
have	(set	up	within	10s)	and	some	could-have	functions	(audio	and	visual	feedback).

69

Overview

5.2.2 Code explanation

				Figure	5.14	illustrates	the	logic	flow	of	the	coding	of	the	Arduino	setup.	First,	Arduino	as	a	microcontroller	93,	
after	being	turned	on,	runs	first	the	setup	function	once,	then	loops	the	loop	function	until	it	is	turned	off.	This	
means	Arduino	only	runs	a	single	thread	95	operation,	and	it	cannot	run	multiple	functions	at	the	same	time.	
So	as	shown	in	the	flowchart,	after	starting	the	program,	there	are	multiple	conditions	that	need	to	be	defined	
to	execute	certain	functions,	after	execution,	everything	starts	from	the	beginning	again.	(Full	Arduino	code	in	
Appendix	G)

Start

Save	to	SD

Time,	rate

No
ACC	>	10?

Yes

Start data collection

Figure	5.15	Start	condition

				As	mentioned	in	5.1,	by	adding	a	resistor	parallel	to	the	CorPatch	ACC	pin,	
when	CorPatch	is	not	plugged	in,	the	ACC	value	is	smaller	than	10,	and	the	
Arduino	will	do	nothing	but	keeps	checking	the	ACC	value.	Once	the	ACC	value	
is	over	10,	the	loop	starts.

Pace	guidance

Internet
available?

Start

Save	to	SD

Time,	rate

No
ACC	>	10?

Yes

No

Upload to
database

Yes

CPR rate >
90?

10s countdown

Countdown
done?

Warning

Yes No

No Yes

Upload
done?

Yes

Figure	5.14	Logic	flowchart

No

70

				As	researched,	the	ACC	value	changes	in	reaction	to	its	own	motion	in	a	range.	Thus,	a	
maximum	threshold	and	a	minimum	threshold	is	set	based	on	this	range.	For	every	300	
milliseconds,	when	the	value	exceeds	the	maximum	threshold,	it	counts	as	a	valid	compression	
and	its	corresponding	time	is	recorded.	Then	if	another	valid	compression	time	is	also	recorded,	
the	in-between	period	is	a	subtraction	between	this	two	timestamps.	This	period	is	then	divided	
by	60	(seconds)	to	calculate	the	current	compression	rate.	If	the	ACC	value	is	smaller	than	the	
minimum	threshold	for	more	than	2	seconds,	the	compression	rate	is	set	to	be	0.

Figure	5.16	Calculate	the	compression	rate

				Current	time	data	is	calculated	by	a	function	provided	by	an	RTC	library.	It	is	then	formatted	
and	combined	to	one	string	of	text.

Figure	5.17	Calculate	current	time

				The	compression	rate	and	the	current	time	is	calculated	per	second.	After	the	first	calculation,	
the	Arduino	will	create	a	new	CSV	file	named	as	the	first	recorded	timestamp	in	the	SD	card.	
Then	all	the	data	will	be	combined	into	one	string	line	and	wrote	to	the	CSV	file.	Incoming	data	
lines	will	be	added	to	the	CSV	file	from	then	on	until	the	CorPatch	is	unplugged,	and	in	the	end,	
an	“END”	string	will	be	added	to	the	last	line	of	the	file	as	a	remark.	In	the	CSV	file,	per	100-line	
of	incoming	data	(100s	of	data)	form	a	row	in	the	CSV	file	in	order	to	upload	the	data	to	Google	
sheets	in	a	100-line	batch	per	time.	This	speeds	up	the	uploading	process	significantly.

Figure	5.18	Save	data	to	SD

71

				The	top	of	figure	5.19	shows	the	CSV	file	created	for	uploading	the	data.	As	it	shows,	it	
combines	100	lines	of	recorded	data	in	one	row	for	later	faster	uploading	to	Google	sheets.	On	
the	other	hand,	the	bottom	shows	a	backup	CSV	file	that	writes	the	collected	data	row	by	row.	
With	specification	of	date,	timestamp,	acceleration,	and	rate	in	each	column.	This	CSV	file	is	
named	CPR_DATA	and	every	recorded	data	is	also	saved	in	here,	in	case	if	the	upload	process	
does	not	succeed,	the	SD	card	still	has	the	complete	data	listed	in	a	formatted	way.

Figure	5.19	CSV	file	for	uploading	and	backup

Pace	guidance

CPR rate >
90?

Yes

				After	data	is	saved	on	SD	card,	if	the	calculated	chest	
compression	rate	is	over	90,	which	is	considered	as	a	suitable	rate	
(research	in	cycle	1),	the	pace	guidance	begins.	The	pace	guidance	
includes	audio	feedback	that	the	speaker	beeps	at	100bpm,	and	
visual	feedback	that	the	NeoPixel	blinks	in	green,	as	discussed	in	
section	5.1.

Figure	5.20	Pace	guidance

Figure	5.21	Pace	guidance	code

				Figure	5.21	shows	the	code	that	realizes	
the	audio	and	visual	feedback	of	the	pace	
guidance.	The	LEDs	are	first	set	to	green	and	
blinks	one	half	on	while	one	half	off	for	500	
milliseconds,	then	switch	side.	The	audio	file	
“compress.wav”	plays	a	metronome	sound	in	
100bpm	for	audio	guidance.	

Pace guidance

72

10s countdown

Did	countdown?

No

				If	the	compression	rate	is	smaller	than	90,	which	
shows	a	lack	of	compression,	the	Arduino	first	
checks	the	state	of	counting	down.	If	counting	down	
is	not	conducted	yet,	it	starts	to	play	the	count	down	
audio	file:	“	CPR	resumes	in	8,	7	……	1”.	After	the	
countdown,	if	the	rate	is	still	not	over	90,	warning	in	
“Resume	CPR	now!”	will	loop.Figure	5.22	10s	countdown	and	warning

				Because	audio	file	lasts	for	10	seconds,	which	
interrupts	the	loop.	If	the	compression	is	already	
resumed	within	10	seconds,	the	program	still	needs	
to	wait	for	the	audio	file	to	finish	to	move	on.	To	
solve	this	interruption,	the	audio	file	is	cut	into	5	
pieces	with	2	seconds	each.	So	2	seconds	of	audio	
is	played,	the	condition	of	compression	rate	is	
rechecked,	if	the	rate	goes	back	to	over	90	again,	the	
countdown	will	stop	and	the	pace	guidance	will	start	
immediately.

Figure	5.23	10s	countdown	code

Warning
Yes

Internet
available?

Yes Upload to
database

Upload
done?

No

Countdown and warning

Data upload

Figure	5.24	Data	upload

				After	one	session	ends,	Arduino	starts	to	find	
available	Wifi	to	connect	to	the	Internet	until	it	
succeeds.	After	connecting	the	Wifi,	it	starts	to	
upload	the	whole	newly	created	CSV	file	in	batches	
to	Google	sheets.	When	it	finishes	uploading,	it	goes	
back	to	the	standby	mode	of	checking	ACC	value.

73

Figure	5.25	Data	upload	code

				Figure	5.25	shows	the	code	that	uploads	the	data	to	Google	sheets	directly.	Arduino	first	opens	the	
CSV	file	and	retract	the	first	row	of	data,	which	includes	100	lines	of	data.	Then	it	assigns	the	data	as	
one	string	to	a	variable	CPRdata	as	highlighted	in	the	blue	frame.	After	that,	Arduino	tries	to	establish	a	
connection	to	the	server	and	sends	a	request	with	an	Http	address.	This	Http	address	contains	a	specific	
ID	of	the	Google	sheet	as	highlighted	in	the	yellow	frame.	At	the	end	of	the	address,	the	CPRdata	variable	
which	contains	the	data	is	added.	As	this	Http	address	is	requested,	the	Google	Script	App	will	read	
through	it	and	add	all	the	data	that	the	CPRdata	variable	brings	to	the	sheet.

5.2.3 Conclusion
				The	electronic	prototype	realizes	must-have	functions	(data	collection	and	upload),	and	offers	an	option	
for	the	could-have	function	(audio	and	visual	feedback).	It	will	be	further	tested	with	the	HEMS	team	to	
check	its	feasibility.

74

5.3 Data transfer system building
5.3.1 Google sheet

				Figure	5.26	shows	how	the	Google	sheet	looks	like	after	the	data	is	uploaded.	As	mentioned	in	the	last	
section,	the	Arduino	requests	the	Google	sheet’s	Http	address	to	upload	the	data.	When	it	starts	request,	
the	Google	Script	App	name	a	new	sheet	with	the	current	time,	as	shown	in	step	1	in	the	figure.	Then	
the	incoming	data	is	formatted	as	step	2	shows.	When	the	last	line	of	the	data	which	is	an	“END”	text	is	
uploaded,	the	Script	App	starts	to	read	the	data	line	by	line	and	calculate	the	start	time,	duration,	end	
time,	pause	interval,	and	average	rate	in	step	3.	At	last,	a	CPR	summary	plot	is	generated	in	step	4.	This	
plot	shows	the	changes	in	the	ACC	value	and	the	compression	rate	throughout	the	whole	OHCA	session.	
(Full	code	in	Appendix	H)

1

2 3
4

Figure	5.26	Google	sheets	overview

5.3.2 Code explanation

				Then	Arduino	tries	to	access	following	Https	89 URL 100	with	specific	script	ID	and	CPRdata	at	the	end:	
	 https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy903
8aIQ0/exec?CPRdata=”	+	CPRdata

	 “date,	time,	ACC,	rate,date,time,	ACC,rate......	date,	time,	ACC,	rate,	/n”	with	100	lines	of	date,	
time,	ACC	and	rate	combined	in	one	row.	So	the	CPRdata	variable	looks	like	this	in	Arduino:

	 CPRdata	=	“2020-08-06,12:53:21,	907,	98,	2020-08-06,	12:53:22,	558,	95,......	2020-08-06,	
13:15:06,	670,	0,	/n”

				Combined	together,	the	Https	URL	would	be	like:
	 https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9
038aIQ0/exec?CPRdata=2020-08-06,12:53:21,	907,	98,	2020-08-06,	12:53:22,	558,	95,......	2020-08-06,	
13:15:06,	670,	0,	

				How	to	automate	this	whole	process?	Google	Script	App	provides	the	access	to	manipulate	the	Google	
sheets	with	a	piece	of	code	running	in	the	background.	In	this	section,	the	Javascript	46	code	that	runs	in	
the	Script	App	is	explained.	But	first,	the	whole	process	of	the	data	transfer	needs	to	be	explained:

				First,	Arduino	saves	the	data	as	a	variable	CPRdata	as	formatted:

75

				As	shown	in	line	30	to	35,	the	100	lines	of	data	is	split	into	400	pieces	because	each	line	contains	
4	pieces	of	cell	data	(date,	time,	ACC,	rate).	All	these	400	pieces	are	assigned	to	the	CPRdata	array	as	
mentioned.	To	fill	in	all	400	pieces	in	each	of	their	own	cells	as	shown	in	figure	5.28,	a	loop	function	will	
take	too	long	to	finish.	Fortunately,	Google	sheet	can	set	values	to	multiple	cells	all	at	once.	So	In	the	
code,	by	manually	setting	values	to	each	cell	rather	than	using	loops,	the	upload	speed	is	20	times	faster	
(using	loops	to	add	each	row	per	loop	takes	about	5	seconds,	now	100	rows	are	added	in	5	seconds).

Figure	5.27	Google	Script	App

				The	Google	Script	App	identify	the	Https	request	based	on	the	ID	in	it:
		 “AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9038aIQ0”	
				This	ID	represents	the	specific	script	that	is	being	used	to	associate	with	Google	sheet	at	the	moment.

				The	linked	Google	sheet	that	should	be	manipulated	is	identified	in	the	first	line	of	the	code	in	the	
script.	This	ID	is	retracted	from	the	Google	sheet’s	own	Https	URL,	as	shown	in	figure	5.27.

				After	verification,	the	script	retracts	all	the blue part	after	“CPRdata=”	from	the	Http	address	with	the	
function	doGet(e)	in	line	5	of	figure	5.27:
	 https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9
038aIQ0/exec?CPRdata=2020-08-06,12:53:21,	907,	98,	2020-08-06,	12:53:22,	558,	95,......	2020-08-06,	
13:15:06,	670,	0,	

				So	the	100	lines	of	data	has	successfully	been	transferred	to	the	script	as	a	string	variable	‘e’.	

				After	that,	as	shown	in	lines	15	to	line	23,	the	variable	‘e’	that	holds	the	whole	data	is	split	by	comma	
and	assigned	into	a	variable	CPRdata.	This	CPRdata	variable	is	an	array	variable.	Then	the	CPRdata	array	
will	be	assigned	to	the	sheet’s	cells	in	batches:
	 CPRdata[0]=2020-08-06,	CPRdata[1]=	12:53:21,	CPRdata[2]=	907,	CPRdata[3]=	98

Figure	5.28	Fill	cells

76

Figure	5.29	Fill	400	cells	at	once

				Figure	5.29	shows	how	the	code	assigns	all	400	values	in	the	CPRdata	array	to	400	sheet	cells	at	once.

				Figure	5.30	shows	a	setValue()	function.	It	is	a	loop	function	that	reads	the	CPR	rate	value	row	by	
row,	and	retracts	the	values	that	are	over	90	(valid	compression	rate).	Based	on	that,	it	then	calculates	
the	compression	start	time,	the	duration	of	the	compression,	compression	end	time,	the	pause	interval	
between	two	compression	cycles	and	the	average	compression	rate	of	this	compression	cycle.	This	pre-
analysis	of	data	provides	a	clear	overview	for	the	HEMS	team	to	evaluate	their	CPR	performance	after	the	
rescue.

Figure	5.30	Calculation	in	step	3

77

Figure	5.31	Set	sheet	name	and	generate	plot

				Two	functions	are	presented	in	figure	5.31.	The	setName()	function	is	for	step	1	to	set	the	sheet	name	
to	the	current	time.	When	the	HEMS	team	tries	to	find	historic	data,	they	can	identify	the	sheets	by	the	
uploading	time.	Function	newChart()	is	for	step	4	to	generate	the	plot	of	the	ACC	value	and	compression	
rate	during	the	whole	session.

Figure	5.32	Create	new	sample	sheet	and	send	Email

Figure	5.33	Template	sheet

78

				In	figure	5.32,	a	newSheet()	function	is	called	after	the	whole	steps	of	the	current	sheet	is	finished,	a	
new	template	sheet	is	generated	and	ready	for	the	next	upload.	Figure	5.33	shows	the	sample	sheet,	it	is	
set	as	9999	rows	which	can	contain	9999	seconds	of	data.	This	size	is	big	enough	to	hold	data	generated	
by	a	2.5-hour	OHCA	case.	Also	in	the	template	sheet,	all	titles	are	formatted.				

				In	figure	5.32,	a	sendEmail()	function	is	written	to	prevent	potential	system	collapse.	There	are	certain	
limitations	for	the	Google	sheets	74,	one	of	them	is	that	one	spreadsheet	holds	maximal	200	sheets,	which	
means	this	spreadsheet	can	be	used	for	up	to	199	OHCA	cases	(the	last	one	is	for	the	template	sheet).	
As	mentioned	in	former	paragraphs,	the	script	only	associates	with	the	defined	Google	sheet	ID	in	the	
code.	If	the	current	spreadsheet	is	full	and	a	new	spreadsheet	is	created	for	future	cases,	a	new	script	that	
associates	with	it	needs	to	be	created	too,	and	the	ID	from	the	Http	address	that	Arduino	requests	also	
needs	to	be	changed.	In	order	to	avoid	all	of	these	renewal	processes,	those	199	sheets	in	the	current	
spreadsheet	should	be	deleted	so	another	round	of	collection	can	start	over	in	the	same	spreadsheet.	

				In	the	program,	when	199	OHCA	cases	are	uploaded	to	the	spreadsheet,	this	whole	spreadsheet	would	
be	copied	inside	the	same	Google	Drive	account.	Then	an	email	will	be	sent	to	the	HEMS	team	informing	
them	that	the	199	OHCA	cases	have	been	collected.	At	last,	these	199	OHCA	cases	are	deleted	so	this	
spreadsheet	is	ready	for	more	cases.

5.3.3 Conclusion

				The	data	transfer	system	is	built	based	on	using	Google	Script	App	as	a	bridge	to	connect	the	Arduino	
and	Google	sheets.	It	offers	10GB	free	storage	and	requires	no	in-between	API.	It	can	analyze	the	
uploaded	data	and	visualize	them	automatically.	It	also	arranges	the	storage	of	the	data.	The	users	
can	access	and	work	on	their	data	directly	in	Google	sheets.	Overall,	this	system	fulfills	the	must-have	
functions	and	also	brings	extra	functions	like	pre-analysis.	It	needs	to	be	tested	in	the	HEMS	station	to	see	
if	the	networks	there	suits	the	system.

79

5.4 Evaluation

5.4.1 Tests on manikin

Figure	5.34	Electronic	prototype

				Figure	5.34	shows	the	electronic	prototype	built	based	on	Arduino	MKR	1010	Wifi.	
This	prototype	is	built	on	a	breadboard	and	it	connects	to	the	CorPatch	via	female	
jumpers.	In	this	section,	multiple	tests	are	conducted	to	evaluate	the	electronic	setup	
and	the	data	transfer	system.

CorPatch placement test

				During	weekly	feedback	with	Dr.Dinis,	it	is	mentioned	
that	in	some	cases	the	CorPatch	may	not	be	able	to	be	
placed	on	the	center	chest	of	the	patient	as	it	should	be,	
due	to	that	the	patient	might	have	wound	on	his	chest.	
So	it	is	necessary	to	test	if	the	ACC	value	from	CorPatch	
is	still	valid	to	track	motion	if	it	is	placed	on	other	parts	
of	the	body	during	chest	compression.	Here	a	CPR	
training	manikin	is	used	to	test	with	the	CorPatch.	As	
shown	in	figure	5.35,	the	CorPatch	is	placed	in	different	
areas	around	the	center	chest	in	4	tests,	and	the	tester	
compress	the	chest	with	no	CorPatch	under	his	palm.	
The	result	is	that	the	CorPatch	can	still	output	values	that	
are	reactive	to	the	motion.	As	studied	in	section	5.1,	the	
ACC	value	is	reactive	to	the	angle	of	placement	of	the	
CorPatch.	When	the	CorPatch	is	placed	around	the	center	
chest	during	compression,	it	still	have	placement	angle	
changes	due	to	the	deformation	of	the	center	chest.	Thus,	
as	long	as	the	placement	of	CorPatch	is	around	the	center	
chest	area,	its	output	values	should	be	valid	for	later	
calculation.

Figure	5.35	4	placements	of	CorPatch	on	manikin

80

Uploading speed test

				Originally	the	Arduino	and	Google	sheets	are	programmed	
to	upload	data	line	by	line,	but	during	testing,	it	shows	that	the	
averagely	it	takes	5	seconds	for	the	Google	sheet	to	update	
one	Http	request	from	the	Arduino.	It	means	that	for	one	
second	of	data	(one	line)	it	needs	5	seconds	to	upload	to	the	
Google	sheets	if	the	line	by	line	uploading	method	is	used.	
To	speed	up	the	uploading	speed,	the	100-line	batch	upload	
method	is	introduced	as	mentioned	in	the	last	section.	This	
speed	test	is	conducted	to	check	how	much	time	is	used	at	
each	phase	of	uploading	during	the	whole	process.	In	figure	
5.36,	the	serial	COM	of	Arduino	is	used	to	inform	the	tester	
what	mission	the	Arduino	is	on	at	the	moment,	and	the	tester	
is	holding	a	timer	to	mark	timestamps	for	each	uploading	
phase.

				There	are	3	phases	during	the	whole	possess:	1.	Connecting	
to	Wifi,	2.	Uploading	to	Google	sheets,	3.	Pre-analysis	in	
Google	sheet.	

				Two	tests	are	conducted.	The	first	test	collects	in	total	1834	
seconds	of	data,	around	half	an	hour.	The	second	one	collects	
3653 seconds of data. Table 5.1 shows the result of the tests.
It	takes	around	4	seconds	for	the	Arduino	to	connect	to	a	
WPA2 99	protected	Wifi	network.	It	uploads	averagely	25	lines/
seconds	of	data	per	second	to	the	Google	sheets,	which	is	125	
times	faster	than	the	line-by-line	method.	For	the	pre-analysis	
phase,	it	handles	around	8	lines/seconds	of	data	per	second.

Figure	5.36	Serial	COM	of	Arduino	during	test

Data	size 1834s 3653s

Wifi	
connection 4.07s 4.26s

Upload to
Google 73.05s 143.79s

Pre-analysis 209.63s 463.02s

Figure	5.37	Speed	tests	result	(Appendix	J)

				Actually	a	third	test	with	a	2-hours	of	data	is	also	conducted	but	unfortunately,	the	original	record	is	lost.	The	
test	result	is	close	to	the	former	2	during	the	Wifi-connection	and	Upload	to	Google	phase,	but	one	problem	is	
discovered	during	the	pre-analysis.	As	calculated	in	the	last	paragraph,	a	2-hours	(7200s)	of	data	could	cost	the	
script	900	seconds	(7200/8)	to	go	through.	However,	this	time	the	pre-analysis	is	not	finished	and	the	system	also	
stopped.	After	digging	in,	the	main	reason	is	found:	Google	limits	the	Script	App	to	execute	a	function	for	no	more	
than	6	minutes	68	and	the	setValue()	function	needs	costs	15	minutes	(900	seconds)	to	go	through	every	line	of	the	
data	and	calculate	the	values.	The	reason	that	the	setValue()	function	runs	so	slow	in	the	loop	is	not	only	because	
the	amount	of	data	it	needs	to	handle,	but	also	because	within	one	loop,	setValue()	and	getValue()	function	are	
called	at	least	once	for	each,	and	these	two	functions	require	service	calls	to	Google	App,	which	takes	a	lot	of	time	
to	execute.	A	possible	solution	40	is	using	an	array	to	assign	values	all	in	one	batch.	This	would	make	the	loop	goes	
much	faster	and	possibly	finish	the	loop	within	6	minutes.	

81

Electronic prototype

5.4.2 Tests with HEMS team

Data transfer system

				The	electronic	prototype	is	also	shown	to	the	HEMS	team	for	their	opinions.	

				First,	they	like	that	the	device	does	not	require	any	action	to	turn	it	on.	All	they	need	to	do	is	plug	the	
CorPatch	in,	and	the	device	just	starts	to	collect	data	from	then	on	until	the	CorPatch	is	unplugged.

				For	the	audio	feedback,	the	main	problem	is	that	the	sound	is	not	loud	enough.	Even	the	mini	speaker	
is	applied	with	an	amplifier,	it	can	only	go	up	to	75dB,	which	is	not	enough	to	draw	the	rescuer’s	
attention	during	the	real	scene.	For	the	audio	itself,	they	prefer	a	human	voice	rather	than	a	buzzer	with	
tones.

				For	the	visual	feedback,	they	find	the	NeoPixel	shows	the	countdown	and	warning	notification	in	a	
universally	understandable	way.	For	the	pace	guidance	part,	they	think	it	is	also	understandable	if	being	
taught	before	use.	However,	they	are	not	sure	if	every	rescuer	will	notice	or	look	at	the	NeoPixel	ring	in	
the	emergency	scenes,	as	they	also	need	to	pay	attention	to	the	defibrillator	and	the	mechanical	chest	
compressor.	Plus,	they	are	not	sure	this	notification	send	out	by	NeoPixel	can	be	understandable	with	
other	different	rescue	teams	like	the	ambulance	team.	

				The	workflow	of	how	Arduino	sends	data	directly	to	Google	sheets	is	also	shown	to	the	team.

				At	the	very	beginning	of	the	test,	one	problem	is	revealed	when	Arduino	tries	to	connect	to	the	
station’s	Wifi.	In	the	station,	there	are	three	Wifi	networks:	the	Erasmus	MC,	the	Eduroam,	and	one	
for	the	Google	Map	tracking.	The	first	two	are	using	WPA2	enterprise	protection,	which	asks	for	a	
user	name	and	password	to	log	in.	A	personal	WPA2	network	requires	only	the	Wifi’s	password.	The	
electronic	prototype	can	only	connect	to	a	personal	WPA2	Wifi	signal	at	the	moment.	The	last	Wifi	
network	for	Google	Map	is	built	for	emergency	lines	and	requires	permission	to	use.	In	the	end,	the	data	
transfer	system	is	shown	with	connection	to	a	hotspot	from	a	smartphone.	

				After	the	test,	they	like	that	they	can	directly	access	the	data	in	Google	sheets,	which	is	a	simple	and	
familiar	platform.	Plus,	Google	Drive	provides	enough	storage	(10GB)	for	the	whole	project.	

				For	the	Wifi	connection,	Arduino	is	able	to	connect	to	WPA2	enterprise	network	10.	However,	as	tested	
with	TU	Delft’	Eduroam,	the	success	rate	is	quite	low	(two	out	of	ten	connections	made).	Detailed	
causes	of	the	low	success	rate	need	to	be	explored.	Another	choice	is	connecting	to	the	Google	Map	
Wifi	which	uses	personal	WPA2.	If	this	is	also	not	possible,	one	more	choice	is	to	use	a	Wifi	repeater	37
as	a	bridge	to	transfer	a	WPA2	enterprise	network	to	a	WPA2	personal	one.

82

5.5 Conclusion
Electronic prototype
				By	following	the	MoSCoW	prioritization,	during	the	tests,	the	electronic	prototype	fulfills	the	must-
have	function	of	collecting	and	uploading	data.	The	evaluation	result	of	the	audio	and	visual	feedback	is	
not	ideal	and	it	is	mainly	because	of	the	limitation	of	the	hardware.	But	these	features	are	could-have	
priority.	These	functions	could	be	omitted	in	the	next	cycle	and	only	brought	back	in	if	time	is	allowed.	
So	in	the	final	circuit	of	the	electronics,	the	NeoPixel	and	the	mini	speaker	is	left	out,	as	shown	in	figure	
5.38.	(Full	Arduino	code	in	Appendix	I)

Figure	5.38	Final	circuit

83

Data transfer system
				The	data	transfer	system	also	fulfills	its	must-have	function	of	storing	data	in	an	online	dataset.	
Moreover,	it	offers	pre-analysis	and	online	editing	functions.	Two	major	problems	are	the	time	limit	of	
executing	functions	of	Google	Script	and	the	WPA2	enterprise	Wifi	connection.	The	first	problem	may	
be	solved	by	better	coding.	The	second	one	needs	more	tests	in	the	HEMS	station	to	generate	a	working	
solution.	

Next cycle
				The	next	cycle	will	be	focused	on	the	housing	design	of	the	data	collector	based	on	the	electronics	
setup	confirmed	in	this	cycle.	

84

06
Cycle 3

85

6.1 Use process analysis

				In	cycle	3,	the	focus	is	on	designing	the	housing	for	the	electronics	based	on	the	electronic	circuit	defined	in	
the	former	cycle.	An	exploration	of	the	electronic	placement	is	first	conducted.	After	validation	of	the	electronic	
placement,	ideation	on	the	housing	design	is	carried	out.	Then	a	multiple	models	are	3D	printed	for	testing.	At	the	
end	of	this	cycle,	a	final	model	is	chosen	and	a	working	prototype	of	the	data	collector	is	built.	

6.1.1 Use Process tree
 A process tree 106	is	first	made	to	schematically	check	the	activities	that	the	data	collector	will	encounter	during	
its	life	cycle	based	on	the	defined	electronic	setup	and	data	transfer	system.	This	process	tree	helps	to	define	what	
functions	the	housing	design	needs	to	provide	for	the	expected	design.	It	contains	a	production	process,	a	use	during	
OHCA	process,	a	battery	exchange	process,	and	a	repair	process	because	the	user	needs	to	open	the	housing	to	
perform	these	four	processes,	which	affects	the	housing	design.	Following	shows	each	process:

 Production
	 Step	1.	Upload	the	program	to	the	Arduino	MKR	1010	Wifi
	 Step	2.	Solder	all	electronic	parts	together	based	on	the	defined	circuit	with	wires
 Step	3.	3D	print	the	housing	parts
	 Step	4.	Put	the	electronic	parts	onto	one	housing	part
	 Step	5.	Close	the	housing	with	another	part

 Use during OHCA
	 Step	1.	Open	the	rescue	backpack
 Step	2.	Take	the	plug	of	the	data	collector	out	of	the	backpack
	 Step	3.	Take	the	plug	of	the	CorPatch	out	of	the	backpack
	 Step	4.	Push	the	plugs	together
	 Step	5.	Take	the	package	of	the	CorPatch	off
	 Step	6.	Take	the	sticker	on	the	CorPatch	off
	 Step	7.	Place	the	CorPatch	on	the	center	chest	of	the	patient
	 Step	8.	Unplug	the	CorPatch	
	 Step	9.	Put	the	plug	of	the	data	collector	back	into	the	backpack
	 Step	10.	Close	the	rescue	backpack

 Battery exchange
	 Step	1.	Open	the	rescue	backpack
	 Step	2.	Take	the	data	collector	out
 Step	3.	Open	the	lid	of	the	data	collector
	 Step	4.	Take	the	old	4	batteries	out
	 Step	5.	Put	new	4	batteries	in
	 Step	6.	Check	if	one	red	light	of	the	electronic	parts	is	on
	 Step	7.	Put	the	lid	back
	 Step	8.	Put	the	data	collector	back	to	the	backpack
	 Step	9.	Close	the	rescue	backpack

 Repair
	 Step	1.	Open	the	lid	of	the	data	collector
	 Step	2.	Take	the	batteries	out	of	the	housing
 Step	3.	Take	whole	electronic	parts	out	of	the	housing
	 Step	4.	Connect	the	Arduino	MKR	1010	Wifi	to	a	laptop	with	a	micro	USB	cable
	 Step	9.	Check	possible	problems	from	the	electronic	parts,	the	Arduino	program	and	the	Google	sheets
	 Step	10.	Fix	problems
 Step	11.	Place	the	Electronics	back	to	the	housing
	 Step	12.	Place	the	batteries	back	to	the	housing
	 Step	13.	Put	the	lid	back	on	the	data	collector
	 Step	13.	Test	the	data	collector	with	connection	to	CorPatch
	 Step	14.	Put	the	data	collector	back	to	rescue	backpack

86

				In	the	production	process,	steps	in	blue	show	that	the	housing	design	should	be	3d	printable	and	leave	an	opening	
for	the	electronic	parts	to	be	assembled	on	the	housing	and	it	also	should	cover	the	whole	electronic	parts	inside.	
In	the	highlighted	part	of	the	use	during	OHCA	process,	it	indicates	that	the	housing	design	should	let	the	rescuer	
easily	find	the	plug	of	the	data	collector	inside	the	rescue	backpack.	In	the	battery	exchange	process,	the	housing	is	
able	to	be	opened	and	closed	for	battery	exchange,	and	offer	LED	feedback	to	the	user	if	batteries	are	successfully	
exchanged.	In	the	repair	process,	the	assembled	electronic	parts	can	also	be	taken	out	of	the	housing	and	put	
back	onto	it.	All	in	all,	these	four	processes	require	the	housing	design	to	be	3D	printable,	easily	disassembled	and	
reassembled,	covering	the	electronics	tight	and	well,	and	showing	indication	during	battery	exchange.

Figure	6.1	4	How-to’s	brainstorm

6.1.2 How to’s brainstorm

How	to	exchange	battery?

How	to	make	the	device	drop-proof?

How	to	plug	the	device	with	CorPatch?

How	to	manage	the	cable?

				Based	on	the	process	tree,	a	how-to’s	106	brainstorm	is	brought	out.	In	a	how-to’s	brainstorm,	how-to	problem	
statements	are	written	as	shown	below	for	idea	generation.	These	four	how-to’s	statements	are	focused	on:	battery	
exchange	(battery	exchange	process),	plugs	connection,	cable	management,	and	drop-proof	feature	(use	during	
OHCA	process).	Drop-proof	feature	is	added	because	the	data	collector	needs	to	be	taken	out	and	placed	on	the	
ground	in	some	cases	(e.g.	limited	space	for	placing	rescue	bag),	according	to	Dr.Dinis.	Because	in	this	cycle	a	working	
housing	model	is	also	expected	to	be	built,	useful	examples	on	these	4	topics	collected	and	analyzed.

87

6.1.3 Battery exchange

Battery cases

				In	this	test,	the	tester	performs	the	battery	changing	maneuver,	by	taking	all	4	AA	batteries	out	of	the	case	
and	then	place	4	AA	batteries	back.	The	whole	process	is	measured	by	a	timer.	Figure	6.2	shows	the	result	of	the	
test.	Type	1	case	needs	the	least	time	to	exchange	battery,	while	type	4	takes	almost	twice	the	time	to	finish	the	
maneuver.	Type	2	also	performs	well	with	only	35s	needed	for	battery	exchange.	However,	both	type	2	and	3	have	2	
sides	of	openings	for	the	batteries	to	pop	out.	This	will	give	difficulties	in	design	the	data	collector	since	2	sides	need	
to	be	left	open	for	battery	exchange.

Figure	6.2	4	types	of	battery	cases

				Four	types	of	4xAA	battery	cases	are	first	studied.	It	not	
only	provides	existing	case	designs	but	also	can	be	directly	
implemented	into	the	housing	of	the	data	collector	if	feasible.		
As	shown	in	figure	6.1,	4	types	of	4xAA	battery	cases	are	chosen	
because	of	their	hand-held	sizes.	As	the	HEMS	team	needs	to	
exchange	the	battery	of	the	data	collector	once	a	week	(chapter	
5,	cycle	2),	the	exchanging	battery	maneuver	becomes	one	
important	user	interaction	for	the	data	collector	design.	Thus,	a	
battery	exchanging	speed	test	is	carried	out.

Figure	6.3	Battery	exchanging	speed	test	result
30s 50s 59s35s

1 2
3 4

1 2 3

				The	reason	that	type	4	takes	the	longest	time	is	because,	in	its	battery	
placement,	two	batteries	in	one	slot	can	easily	pop	out	in	the	middle,	
as	shown	in	figure	6.3.	To	solve	this,	a	snap	cover	is	added	in	the	middle	
of	the	case,	which	restrain	the	batteries	from	popping	out.	But	it	is	also	
harder	to	take	batteries	out.	

Figure	6.4	Type	4	battery	case

Snap	cover

4

Figure	6.5	Type	1	battery	case

				The	type	1	case	in	figure	6.5	is	a	classic	setup	with	4	batteries	in	a	row.	It	
requires	much	less	time	to	exchange	because	it	does	not	contain	any	snap	
cover	constructions,	unlike	the	other	3.	Its	way	to	hold	batteries	tight	is	
by	using	a	slide	cover.	At	the	opening	side	of	the	slide	cover,	there	are	two	
snap-fit	constructions	which	can	be	easily	pushed	to	open.

88

Snap-fits

Figure	6.6	8	types	of	snap-fit	joints

				In	the	study	on	battery	cases,	snap-fit	construction	plays	an	important	role	to	hold	batteries	while	
offers	ways	to	take	the	batteries	off.	So	more	types	of	snap-fit	joints	are	studied.	

				“Snap-fit	joints	are	a	simple	and	rapid	way	of	joining	two	different	components.	All	types	of	snap	joints	
have	in	common	the	principle	that	a	protruding	part	of	one	component	(e.g.	a	hook,	stud,	or	bead)	is	
deflected	briefly	during	the	joining	operation	and	catches	in	a	depression	in	the	mating	component.	After	
the	joining	operation,	the	snap-fit	features	should	return	to	a	stress-free	condition.	The	joint	may	be	
separable	or	inseparable	depending	on	the	design”	(Bayer	Material	Science,	n.d.,	pp.	1–3)	21.

				In	figure	6.6,	8	types	of	snap-fit	joints	are	concluded,	which	can	be	reassembled	after	joining.	Except	
for	the	first	joint	(a),	others	are	all	two-way	joints	which	can	be	opened	and	closed	repeatedly.	These	
joints	are	later	used	as	references	during	ideation.

89

CorPatch plug

6.1.4 Plug connection

				The	CorPatch	plug	has	been	analyzed	
in	former	cycles,	but	they	are	more	
about	its	electronic	properties.	In	this	
cycle,	the	focus	is	on	its	shape.	As	
shown	in	the	left	of	figure	6.7,	because	
the	plug	is	a	9-pin	D-sub	type,	its	pin	
layout	is	in	a	trapezoid	shape	(5	pins	
on	the	long	base	side,	4	on	the	short	
base	side),	so	does	its	overall	shape.	
This	means	its	female	connector	should	
also	be	trapezoidal.	In	the	middle	of	
figure	6.7,	it	shows	a	grip	texture	on	the	sides	of	the	CorPatch.	This	is	designed	to	add	friction	between	
the	thumbs	and	the	plug	during	the	connecting	process.	On	the	right	of	figure	6.7,	an	arrow	in	the	
highlighted	yellow	circle	is	added	on	the	edge	of	the	longer	base	side	(5	pins	side)	of	the	CorPatch	to	
indicate	that	this	side	is	the	longer	base	side.	This	should	help	the	user	to	identify	the	base	side	of	the	
trapezoidal	plug	during	the	connecting	process.	But	the	arrow	is	not	really	noticeable.	In	emergency	
cases,	rescuers	will	not	pay	too	much	attention	during	plugging.	Fortunately,	the	trapezoidal	shape	itself	
can	already	be	felt	when	the	user	pinches	it.	It	might	be	enough	for	the	user	to	notice	which	side	should	
be	matched.	The	female	connector	from	the	data	collector	should	also	have	the	same	indication	so	the	
user	can	match	the	base	sides	of	two	plugs	easily.	

Figure	6.7	The	plug	of	CorPatch

Apple MagSafe plug

				One	good	example	would	be	the	Apple	
MagSafe	96	plug.	It	uses	magnetic	attraction	
to	connect	the	plug	and	the	socket.	In	this	
way,	even	the	user	does	not	precisely	align	
the	plug	to	the	socket,	the	magnetic	force	
will	do	it	for	him.	Plus,	it	blinks	LED	lights	
to	indicate	that	the	plug	is	successfully	
connected.	The	MagSafe	plug	is	symmetric,	
unlike	the	CorPatch	plug,	which	means	its	
side	does	not	need	to	match	the	socket.	

Figure	6.8	The	plug	of	CorPatch

				The	CorPatch	comes	with	an	0.8	meters	long	cable.	According	to	Dr.Dinis,	the	connected	cables	between	
the	CorPatch	and	the	data	collector	should	be	around	2	meters	long	because	this	is	the	usual	distance	
between	the	rescue	bag	and	the	patient.	This	distance	is	meant	to	keep	the	rescue	bag	clean.	Thus,	the	
cable	from	the	data	collector	side	(female	plug)	should	be	at	least	1.2	meters	long.	These	two	cables	are	
kept	inside	the	rescue	bag	during	transfer.	At	the	rescue	scene,	the	rescuer	needs	to	find	and	connect	the	
plugs	while	all	the	cables	need	to	be	sorted	out.	This	process	might	cause	chaos	in	the	bag	since	there	is	a	
1.2	meters	long	cable	wrapped	inside.	Thus,	analysis	on	cable	management	is	necessary	to	carry	out	to	see	
if	there	are	better	solutions	available	to	make	the	process	easier	for	the	rescuers.

6.1.5 Cable management

90

Cable retractor

				Figure	6.9	shows	a	USB	cable	retractor	39. A cable
retractor	uses	elastic	force	generated	by	a	circular	
spring	to	retract	the	cable	automatically.	This	structure	
is	widely	used	in	tape	measure,	vacuum,	etc.	It	is	really	
convenient	because	it	stores	the	cable	in	one	place	and	
retracts	the	cable	automatically.

Figure	6.9	Cable	retractor

				Figure	6.10	shows	a	SuperCalla	79	cable.	SuperCalla	
is	a	USB	cable	that	can	be	shaped	with	the	magnetic	
rings	on	it.	These	magnetic	rings	are	fixed	on	the	cable.	
They	snap	to	each	other	to	shape	the	cable	into	a	
shape	the	user	want.	In	this	way,	the	cable	will	not	be	
twined	in	the	bag	and	stay	stable	during	usage.

Figure	6.10	SuperCalla

SuperCalla

				Figure	6.11	shows	the	lineup	products	from	
Fuse Reel34,	which	is	a	company	focuses	on	cable	
management	tools.	In	their	lineup,	the	cables	are	all	
wrapped	around	an	object	for	compact	storage.	It	
offers	snap-fit	joints	or	spinning	caps	to	release	the	
wrapped cable for use.

Fuse Reel

Figure	6.11	Fuse	Reel	lineup

Figure	6.12	Velcro	band	on	cables

				Figure	6.12	shows	how	a	simple	Velcro	101 band can
be	used	to	manage	cable.	A	Velcro	band	has	one	hook	
side	and	one	loop	side.	The	hook	side	and	the	loop	
side	can	be	stuck	together	and	separated	by	hand.	
Both	sides	provide	considerable	force	to	stick	to	each	
other.	Velcro	material	is	useful	when	assemble	and	
disassemble	is	both	often	operated	on	a	product.

Velcro

91

6.1.6 Drop-proof

				In	figure	6.13,	a	phone	case	is	made	to	protect	the	
cellphone	from	being	scratched	and	damaged	after	
dropping	on	the	ground.	It	is	usually	made	by	soft	
elastomer	material	(e.g.	silicone	rubber	102	with	a	snap-fit	
construction.	It	mainly	wraps	around	a	cellphone’s	frame	to	
absorb shocks and endure scratches.

Phone case

Figure	6.13	Cable	retractor

Figure	6.14	Table	corner	protectors

Figure	6.15	Topology	optimization	application	44

				Figure	6.14	shows	the	table	corner	protectors.	They	are	
used	to	cover	the	solid	table	corners	with	soft	material,	
so	the	kids	will	not	get	injured	by	bumping	into	the	table	
corners.	They	are	cheap,	replaceable,	and	can	be	applied	to	
other	types	of	corner	protection	too.

Table corner protector

Topology optimized structure

				Figure	6.15	shows	how	topology	optimization	44	changes	the	strain	of	the	object	under	a	defined	
condition	by	optimizing	its	inner	structure.	Topology	optimization	can	be	used	to	reduce	weight	and	
material	while	keeping	the	whole	structure	under	deformation	limits.

				In	most	OHCA	cases,	the	data	collector	is	expected	to	be	placed	inside	the	rescue	bag,	while	its	cable	and	
the	connected	CorPatch	is	taken	out	to	collect	data.	However,	there	are	also	cases	that	the	rescue	scene	is	
located	in	a	rather	small	space	where	the	rescuers	cannot	bring	the	bags	in	and	the	distance	between	the	
bag	and	the	patient	is	more	than	2	meters.	In	these	cases,	the	data	collector	will	be	taken	out	of	the	bag	
along	with	the	CorPatch	and	be	placed	on	the	ground.

92

6.1.7 Conclusion of analysis
				In	this	analysis	phase,	4	areas	have	been	researched	and	useful	examples	are	collected.	For	the	battery	
exchange	process,	the	type	1	4xAA	battery	case	is	considered	as	the	best	setup	and	snap-fit	joints	are	the	
ideal	construction	to	make	a	two-way	housing.	For	the	plug,	indications	of	the	side	of	the	plug	should	be	
designed.	For	the	cable	management	and	drop-proof	feature,	the	examples	provide	different	solutions	that	
can	be	applied	in	housing	design	and	prototype	making.

6.2 Electronics housing ideation

6.2.1 Type 1 battery case ideation

Figure	6.16	Housing	ideation	on	type	1	

				After	analysis	of	the	use	process,	ideation	on	the	shape	of	the	housing	is	carried	out.	During	this	phase,	
the	electronics	placement	with	a	chosen	battery	case	is	explored	first,	so	a	basic	shape	of	the	housing	can	
be	built	based	on	that.	The	ideation	of	the	detailed	construction	of	the	housing	is	illustrated.	At	the	end	
of	this	phase,	one	electronics	placement	and	one	basic	housing	shape	is	chosen	for	working	prototype	
building.

93

				Figure	6.16	shows	the	ideations	based	on	the	type	1	battery	case.	On	the	left	of	the	first	row,	the	
electronic	components	of	the	defined	circuit	are	placed	around	the	type	1	battery	case	to	explore	possible	
setups.	This	setup	is	then	modeled	in	SolidWorks	as	shown	in	the	middle.	All	the	electronic	components	
are	modeled	following	the	actual	measurements.	A	new	setup	is	then	generated	in	SolidWorks	as	shown	
on	the	right,	all	the	electronic	components	are	stacked	together	and	placed	on	the	side	of	the	battery	case.	
It	reduces	the	thickness	of	the	housing	and	separates	the	battery	and	the	electronics.	In	this	way,	the	LED	
light	indication	can	also	be	shown	directly	to	the	user	during	battery	exchange.

			Based	on	this	setup,	sketches	are	made	to	explore	possible	detailed	shape	of	the	housing	in	figure	
6.16.	The	illustrated	idea	implements	the	snap-fit	joints	into	the	housing	construction.	Curves	are	added	
around	the	edges	of	the	shape	to	absorb	falling	shocks	and	make	it	more	comfortable	lying	on	hand.	
However,	this	slider	plus	snap-fit	combination	brings	difficulty	in	actual	3D	printing	based	prototyping.	
First,	the	electronic	components	are	hard	to	be	inserted	and	fixed	in	the	lid	part	because	the	opening	is	
small.	Second,	the	battery	case	needs	to	be	dragged	out	for	battery	exchange,	but	it	is	also	connected	to	
the	electronics	for	powering	via	wires.	So	in	this	setup,	the	battery	wires	need	to	be	long	enough	for	the	
battery	case	to	be	dragged	out.

6.2.2 Type 2 battery case ideation

Figure	6.17	Housing	ideation	on	type	2

				The	second	idea	is	generated	based	on	the	type	2	battery	case.	As	shown	in	figure	6.17,	the	electronic	
components	are	placed	on	the	batteries	in	a	narrow	way,	so	the	whole	setup	is	slim	and	long.	At	the	end	of	
the	setup,	a	cable	retractor	mechanism	is	added	to	manage	cable.	In	the	sketch,	the	batteries	are	covered	
by	a	lid	that	can	be	slid	out	for	battery	exchange.	The	lid	can	be	snapped	back	to	the	housing.	The	body	of	
the	housing	is	wavy	so	it	gives	the	user	more	grip	when	dragging	the	cable	out.	The	female	plug	has	grip	
textures	on	the	broadside,	and	the	narrow	side	is	curvy,	so	both	provide	enough	grip	when	the	user	drags	
the	plug.	

94

6.2.3 Type 3 battery case ideation

Figure	6.18	Housing	ideation	on	type	3

				As	shown	in	figure	6.18,	the	third	ideation	is	built	based	on	the	type	3	battery	case.	The	electronic	
components	are	piled	up	on	the	batteries	and	at	the	bottom,	a	cable	retractor	mechanism	is	added,	like	
ideation	2.	Here	the	housing	acts	like	a	bucket	for	the	battery.	During	battery	exchange,	the	user	takes	out	
the	whole	battery	case	to	access	batteries.	The	overall	shape	of	this	ideation	is	more	ergonomic,	that	lies	in	
the	hands	comfortable,	like	an	egg.	The	user	can	drag	the	cable	out	at	the	bottom.

6.2.4 Conclusion of ideation

				At	this	ending	phase	of	the	project,	and	the	end	goal	is	building	a	working	prototype,	the	feasibility	
of	building	a	working	prototype	by	3D	printing	is	the	decisive	factor.	With	this	standard,	ideation	1	that	
builds	on	type	1	battery	case	wins	because	its	overall	shape	is	more	suitable	for	3D	printing	(less	structural	
support	needed	during	printing),	and	the	type	1	case	is	also	the	fastest	in	battery	exchange.	The	next	step	
in	modeling	the	housing	is	based	on	ideation	1.

95

6.3 Housing models building

6.3.1 Model set 1

				In	this	section,	the	process	of	building	the	housing	model	is	shown.	Because	the	3D	printers	are	available	
in	the	faculty,	during	this	process,	Solidworks	models	are	made	and	printed	daily	for	evaluation,	then	
adjustments	will	be	made	for	the	next	day	printing.	This	daily	cycle	of	printing	-	evaluating	-	adjusting	
-	printing	improves	the	model	efficiently.	At	the	end	of	the	process,	a	housing	model	for	the	working	
prototype	is	made.	

				Figure	6.19	shows	the	
first	set	of	models	that	are	
built	based	on	ideation	1.	
All the 4 models borrow
the	construction	from	
the	type	1	battery	case	as	
shown	on	the	left	of	the	
figure.	They	adopt	the	
slide	and	snap-fit	features	

Figure	6.19	Model	set	1

from	the	battery	case,	and	extend	an	extra	room	for	placing	the	electronics,	like	ideation	1	did.	For	details	
of	how	each	model	is	evaluated	and	adjusted,	please	check	appendix	J.

Figure	6.20	Details	of	model	1.4

				Model	1.4	is	the	most	developed	model	in	this	set,	as	shown	in	figure	6.20.	The	electronic	components	
fit	well	inside	the	designed	slots	and	are	fixed	by	the	sticks.	Batteries	can	be	placed	inside	tightly.	There	are	
two	openings	left	to	connect	to	the	micro	USB	cable	and	insert	the	micro	SD	card.	

Figure	6.21	Failed	printed	snap-fit	joints

				However,	the	printed	snap-fit	joints	
in	all	four	models	are	not	usable.	Figure	
6.21	shows	the	failed	printed	snap	hooks	
(left)	and	lock	(right)	from	model	1.4.	This	
snap-fit	construction	fails	in	printing	with	
support/no	support,	and	also	in	printing	
with	0.15mm	accuracy	(normally	is	
0.2mm).	The	reason	could	be	that	the	tip	
of	the	hook	is	only	0.25mm	wide,	which	

96

6.3.2 Model set 2

				Figure	6.23	shows	two	survived	models	-	model	2.1	at	the	top	and	model	2.4	at	the	bottom.	The	snap	
cantilevers	of	model	2.1	can	snap	tightly	to	combine	two	housing	parts.	But	it	also	takes	some	effort	
to	open	the	housing.	Also	as	shown,	the	battery	housing	part	is	separated	from	the	electronic	housing	
part,	this	causes	trouble	during	battery	exchange	because	there	are	wires	between	them.	So	model	2.4	
is	developed	to	put	the	electronic	housing	and	battery	housing	together	in	one	part.	The	other	part	is	a	
sliding	lid	with	the	snap	cantilevers.	They	are	also	designed	to	be	thinner	and	longer	so	it	needs	less	force	
to	deform	them.	However,	slimmer	design	also	makes	it	less	durable,	it	can	be	easily	damaged	during	the	
taking	off	support	procedure,	and	also	if	the	user	is	not	careful	when	pressing	the	cantilever,	he	might	
break them.

requires	more	accuracy	from	the	3D	printer,	while	the	printing	nozzle	from	the	3D	printer	only	outputs	
0.15mm.	Also,	in	the	case	of	the	support	structure	being	generated	for	the	overhang	snap	joints,	the	
support	structure	needs	to	be	taken	off	after	printing.	But	the	snap	joints	are	too	thin	so	in	model	1.3,	they	
also	get	taken	off	along	with	the	support	structure.

Figure	6.22	Model	set	2

Figure	6.23	Model	2.1	and	2.4

				Since	the	snap	hook	is	not	compatible	with	3D	printing,	
another	type	of	snap	joints	is	implemented	and	4	new	
models	are	printed	as	shown	in	figure	6.22.	Model	2.1	
on	the	left	is	the	basic	model	that	uses	a	disassemble	
cantilever	structure	(chapter	6.1.3	-	snap-fits).	Model	2.2	
and	2.3	are	all	failed	because	of	same	problem	as	model	
1.3	and	1.4,	the	joints	are	damaged	during	taking	off	the	
support structure.

2.42.4

2.1 2.1

97

6.3.3 Model 3

				Figure	6.24	shows	model	3,	which	adopts	the	snap	structure	from	a	battery	cover	of	an	old	cellphone.	
This	snap	structure	does	not	require	any	support	during	printing	because	there	is	no	overhang	structure.	
However,	when	testing	the	printed	model,	the	snap	feature	requires	high	accuracy	on	matching	to	each	
other	that	the	printer	cannot	offer.	So	the	snap	feature	does	not	help	fix	the	lid	on	the	box.

Figure	6.24	Model	3

6.3.4 Model 4

Figure	6.25	Model	4.1

				After	trying	3	types	of	snap-fit	joints	with	9	models	printed,	no	models	can	ideally	fulfill	the	
requirements.	The	reason	might	be	that	two-way	snap-fit	joints	not	only	require	high	accuracy	in	
production,	but	also	materials	with	high	strain,	which	the	PLA	3D	printer	can	hardly	fulfill.	Thus,	the	fourth	
model	is	not	built	on	a	snap-fit	feature.	Instead,	the	Velcro	band	is	chosen	as	a	method	to	open	and	close	
the	housing	parts,	because	of	its	easiness	in	implementation.

				Figure	6.25	shows	model	4.1	which	is	built	with	a	Velcro	band	wrapped	around.	The	Velcro	band	is	a	
two-sided	band,	with	one	hook	side	and	one	loop	side.	So	it	can	stick	its	one	side	to	another	side	and	make	
a	wrap.	It	goes	through	the	body	of	one	housing	part	so	when	it	is	released,	it	stays	on	the	housing.	The	
Velcro	band	wraps	the	two	parts	tightly	and	it	can	be	easily	opened	for	battery	exchange.	So	this	model	is	
decided	as	the	final	shape	for	the	working	prototype.

98

6.3.5 Female plug

Figure	6.26	Printed	Plugs	and	purchased	plug

				As	shown	in	figure	6.26,	multiple	female	plugs	
are	modeled	and	printed	to	test	if	they	are	
compatible	with	the	CorPatch	male	plug.	Metal	
conductors	also	need	to	be	placed	inside	the	
printed	plug	for	transmitting	the	electricity.	On	
the	other	hand,	a	9-pin	female	D-Sub	plug	with	2	
meters	long	cable	is	also	purchased	for	testing.	

				The	3D	printed	plug	follows	the	measurement	of	
the	CorPatch	plug	as	shown	in	figure	6.27.	It	leaves	
holes	through	its	body	for	the	placement	of	female	
jumpers.	However,	it	is	difficult	to	fix	the	jumpers	
inside	the	holes	because	a	closing	structure	needs	

Figure	6.27	Printed	plug	with	jumper	wires

Figure	6.28	Purchased	plug

to	hold	the	jumpers	from	moving	
out.	Besides	this	drawback	from	the	
printed	plugs,	they	offer	possibilities	
to add usecues 48	on	the	plug.

				The	purchased	plug	shown	in	figure	
6.28	fits	with	the	CorPatch	tightly.	
The	plug	itself	is	bulky	and	symmetric,	
so	user	really	needs	to	look	at	the	pin	
layout	on	the	plug	to	identify	which	
side	is	matching	to	the	CorPtach	
plug	during	connection.	However,	
as	inspired	from	the	arrow	shape	
indication	from	CorPatch,	the	usecues	
can also be drawn on the purchased
plug	to	notify	the	user	which	side	he	
is	facing,	as	shown	in	the	figure,	a	
matching	arrow	is	drawn	on	the	plug.

99

6.4 Evaluation on model 4

				In	figure	6.30,	a	drop	test	is	carried	out	to	see	how	drop-proof	the	housing	design	is.	The	test	is	first	
performed	from	dropping	at	50	centimeters	height.	The	housing	survives	with	only	scratches	on	the	
surface.	Then	a	one-meter	dropping	is	performed,	the	outside	wall	of	the	cover	part	is	cracked,	but	only	
a	slit	is	shown,	so	the	housing	is	still	usable.	Then	the	drop	height	increases	to	around	1.8	meters	high	as	
shown	in	the	figure.	The	whole	side	wall	of	the	cracking	cover	part	is	fallen	off	and	a	visible	gap	is	shown,	
so	the	device	is	not	usable	and	needs	a	replacement	of	the	cover	part.

				How	tight	the	velcro	can	wrap	the	housing	parts	together	is	important	because	the	electronics	should	
be	fully	covered	when	the	data	collector	is	used	outdoor.	As	shown	in	figure	6.29,	the	velcro	wraps	the	
housing	parts	with	a	normal	tightness.	When	the	tester	forces	to	split	the	housing	parts,	an	inner	wall	
shows	in	the	gap.	This	3	millimeters	high	inner	wall	is	added	following	the	edge	of	the	housing.	It	provides	
several	functions:	First,	it	adds	friction	between	two	housing	parts,	so	they	will	not	easily	be	split.	Second,	
It	prevents	the	housing	part	from	moving	off	because	the	wall	is	blocking.	Third,	when	there	is	a	gap	
between	the	two	parts,	it	fills	the	gap	to	cover	the	inner	electronics.	For	the	Velcro	band,	in	a	normal	
tightness	condition,	it	can	already	hold	two	parts	tight	enough	that	even	external	force	cannot	split	them,	
and	also	no	electronics	are	exposed.

Figure	6.29	Velcro	tightness	test

Figure	6.30	Drop	test	1

6.4.1 Velcro band tightness test

6.4.2 Drop test

100

Figure	6.31	Bumper	version	and	drop	test	2

				On	the	second	drop	test,	8	bumpers	are	added	on	the	8	corners	of	the	housing,	as	shown	in	figure	6.31.	
These	bumpers	are	made	of	soft	rubber	and	are	used	initially	to	cover	the	corners	of	the	furniture.	They	
protect	the	housing	from	being	scratched	and	broken	even	from	a	2-meter	falling.	However,	the	bumpers	
add	up	the	size	of	the	housing,	and	they	easily	fall	from	the	housing	because	they	are	attached	to	the	
housing	only	by	double-sided	tapes.

				Overall	speaking,	the	Velcro	band	performs	well	on	wrapping	the	housing.	The	housing	is	quite	durable	
in	the	OHCA	cases	because	in	90%	of	the	cases,	according	to	Dr.	Dinis,	the	data	collector	only	needs	to	
stay	inside	the	bag,	while	for	the	rest	of	the	cases	it	is	also	rare	to	drop	it	from	more	than	one	meter	high	
because	the	rescue	bag	is	normally	placed	on	the	ground.	For	the	plug,	the	purchased	plug	suits	well	
with	the	CorPatch	plug	and	comes	with	a	2	meters	long	cable.	Usecues	can	also	be	added	by	drawing	and	
stickers.	For	a	working	prototype,	the	purchased	plug	is	good	enough.

101

6.5 Conclusion
				At	the	end	of	this	cycle,	the	housing	design	is	validated	and	the	plug	is	also	decided	to	use	the	market	
available	one	as	shown	in	figure	6.32.	Until	this	point,	a	working	prototype	of	the	data	collector	is	built.	

				In	the	next	and	last	cycle,	this	working	prototype	will	be	elaborated	and	tested	with	simulated	manikin	
with	a	HEMS	team	member.	Then	a	final	design	of	the	data	collector	will	be	carried	out	and	explained.	
Recommendations	on	further	development	of	the	project	will	be	listed	at	the	end.

Figure	6.32	The	working	prototype	setup

102

07
Cycle 4

103

7.1 Working prototype elaboration

				In	this	last	cycle,	the	working	prototype	is	elaborated	and	tested	by	me	and	the	HEMS	team.	Then	a	final	
design	of	the	data	collector	including	its	appearance,	its	functions,	user	scenarios,	production	method,	and	
assembly	process,	will	be	elaborated.	At	last,	recommendations	on	further	development	of	the	project	will	
be	listed.	

Figure	7.1	The	working	prototype	setup

				Figure	7.1	shows	the	whole	setup	of	the	working	prototype	of	the	data	collector.	The	CorPatch	is	
placed	on	the	patient’s	center	chest	for	data	collection.	It	is	connected	to	the	data	collector	by	a	2-meter	
long	cable.	The	data	collector	is	fastened	by	a	Velcro	band	and	can	be	opened	for	battery	exchange	and	
maintenance.	

104

				Figure	7.2	shows	3	details	of	the	working	prototype.	First,	white	duct	tape	is	wrapped	at	the	connection	
point	of	the	housing	and	the	cable.	The	duct	tape	is	durable	and	waterproof,	it	fills	up	the	gap	between	
the	cable	and	the	housing	and	also	provides	protection	at	this	connection	point,	which	is	usually	the	most	
vulnerable	part	of	a	cable.	Second,	at	each	side	of	the	raised	housing	part,	a	groove	is	added	to	make	it	
easier	to	buckle	off	the	housing.	Third,	the	Velcro	band	passes	through	the	housing	so	it	stays	attached	to	
the	housing	when	it	is	unfastened.

Figure	7.2	3	details	of	the	working	prototype

105

				Figure	7.3	shows	the	data	transfer	route	of	the	working	prototype.	The	CPR	data	is	first	generated	by	the	
chest	compression	motion	that	the	CorPatch	follows.	Then	the	data	collector	reads	the	sensor	values	from	
the	CorPatch	and	saves	them	with	their	corresponding	time	in	the	micro	SD	card.	When	the	data	collector	
connects	to	Wifi,	it	generates	an	HTTPS	address	with	the	data	attached	at	the	end	and	call	that	address	on	
the	Internet.	The	script	is	then	activated	because	the	address	always	contains	its	ID.	The	script	extracts	the	
data	from	the	address	and	fills	them	inside	it	corresponded	Google	sheet.	Based	on	the	uploaded	raw	data,	
the	script	calculates	the	analysis	results	and	generates	the	summary	chart	for	this	rescue	case.

CPR data collected
at patient’s chest
by CorPtach

Data is saved in the
data collector by
micro SD card

Data is attached in an
HTTPS address generated
by the data collector. The
HTTPS address is then
accessed by the data
collector

The data collector
connects to the
Wifi

The HTTPS address
activates the Script. The
Script extracts the data
from the HTTPS address

The Script fills the
Sheets’ cells with
extracted data and
calculated results

The data is saved and can be
reviewed in the Google Sheets
Figure	7.3	Data	transfer	route	of	the	working	prototype

106

7.2.1 Pilot test

7.2 User tests with the working prototype

7.2.2 User test

				The	pilot	test	is	conducted	by	the	designer	in	an	outdoor	environment.	The	test	videos	can	be	found	in	
the	appendix	FIXME.	Two	user	scenarios	are	tested:	usage	during	the	OHCA	case	and	battery	exchange,	
because	these	two	are	the	only	scenarios	that	the	user	has	direct	interaction	with	the	data	collector.

Figure	7.4	Velcro	band	usage	in	the	rescue	backpack

				The	result	of	the	pilot	test	is	positive.	The	prototype	collects	accurate	chest	compression	data	and	
uploads	it	to	the	Google	Sheets	via	home	Wifi	(WPA2	personal).	The	setup	time	of	the	data	collector	during	
OHCA	rescue	is	within	10	seconds.	One	outcome	is	that	in	order	to	improve	the	cable	management	inside	
the	rescue	backpack	to	shorten	the	setup	time,	Velcro	bands	can	be	implemented	on	the	plug	and	the	
inner	wall	of	the	backpack,	as	shown	in	figure	7.4.	So	the	rescuer	does	not	need	to	find	the	plug	in	the	
backpack,	instead,	he	can	directly	take	the	plug	off	from	the	collector	after	opening	the	backpack,	while	the	
collector	is	still	fixed	on	the	inner	wall.	

Figure	7.5	User	test	in	two	simulated	scenarios

				The	user	test	is	carried	out	with	a	HEMS	team	member	in	the	hangar	of	the	Rotterdam	HEMS	station.	A	
manikin	for	CPR	training	is	used	as	a	replacement	of	a	patient.	Two	scenarios	(rescue	and	battery	exchange)	
are	performed	by	the	user	with	the	working	prototype.

107

Figure	7.6	Rescue	backpack	and	the	data	collector	placement

				The	result	of	the	user	test	is	also	positive.	The	prototype	collects	data	correctly	during	OHCA	cases,	
it	cannot	upload	data	to	Google	Sheets	because	the	available	Wifi	in	the	station	are	WPA2	enterprise	
networks.	But	it	can	successfully	upload	data	via	smartphone’s	hotspot.	It	proves	that	if	the	Internet	is	
connected,	the	data	transfer	can	be	realized.	The	setup	time	of	the	data	collector	is	also	within	10	seconds.	

				During	this	test,	the	placement	of	the	data	collector	is	also	decided,	as	shown	in	figure	7.6.	On	the	side	
of	the	rescue	backpack,	there	is	a	net	bag	that	is	used	to	hold	small	accessories	available	for	placing	the	
collector.	It	holds	the	data	collector	tight.	The	cable	of	the	collector	can	be	placed	on	the	top	of	the	four	
inner	bags	(green,	blue,	red,	and	black)	so	it	is	available	when	the	backpack	is	opened.

				Besides	the	network	problem,	another	2	questions	are	raised	by	the	user.	First	is	the	durability	of	the	
housing	of	the	data	collector.	Another	question	is	about	the	waterproofness	of	the	data	collector	because	
when	there	is	rain	and	the	rescue	occurs	outdoor,	the	rain	will	splash	on	the	opened	backpack.	Both	two	
questions	are	reflected	in	the	recommendations	section	in	the	implementation	chapter.

108

7.3 Final concept elaboration
7.3.1 Appearance
				Figure	7.7	shows	the	renderings	of	the	final	concept	-	CPR data collector,	and	the	color	code	of	each	model.	
According	to	Dr.	Dinis,	each	HEMS	station	should	possess	three	data	collectors,	one	for	the	helicopter	rescue	
backpack,	one	for	the	automobile	rescue	backpack,	and	the	last	one	serves	as	the	backup.	The	main	colors	on	
the	emergency	vehicles	used	by	the	HEMS	team	are	yellow	(body),	blue	(pattern),	and	red	(pattern).	The	main	
color	yellow	assigns	to	the	helicopter	backpack	because	the	HEMS	team’s	preferred	vehicle	is	the	helicopter.	
Red	assigns	as	backup	because	it	shows	the	meaning	of	warning	and	tells	the	team	that	they	are	using	a	backup	
device,	which	means	the	original	one	is	broken	or	being	repaired.	Then	blue	is	assigned	to	the	automobile	
backpack.	Detailed	measurements	of	the	CPR	data	collector	can	be	found	in	appendix	J.

Figure	7.7	Final	concept	renderings

25237A - Automobile

FFC907 - Helicopter

A91B1F - Backup

109

Arduino MKR 1010 Wifi

DS3231 RTC module

Micro SD card module

4 x AA batteries

Velcro band

Base

Cover

Record	current	time

Save	sensor	data

Receive	sensor	data
Calculate sensor data

Transfer	sensor	data	to	micro	SD	card
Upload	data	via	Wifi

Power	supply	for	one	
week

Exchangeable

Hold	electronics	and	
batteries

Fasten	the	cover	and	base	together
Can	be	untied	to	open	the	housing

Cover	the	electronics

Figure	7.8	Exploaded	view

7.3.2 Main components
				Figure	7.8	shows	the	main	components	of	the	CPR	data	collector.

110

7.3.3 User scenarios

1.	Check	the	condition	of	the	
patient

2. Open the rescue backpack 3.	Plug	the	CorPatch	with	the	
data collector

4. Take out the CorPatch 5. Place the CorPatch on the
patient’s	center	chest

6.	Conduct	chest	compression

7.	Give	ventilation 8.	After	rescue,	unplug	the	
CorPatch

9.	Take	the	data	collector’s	
plug	back	to	backpack

10. Put the CorPatch back to
backpack

11. Close the backpack 12.	Ready	for	next	task

During OHCA rescue

111

1. Open the backpack 2. Take out the data collector

3.	Open	the	lid 4.	Exchange	the	batteries

5.	Check	if	the	LED	blinks 6.	Close	the	housing	of	the	device

7. Put the data collector back to the rescue backpack 8.	Review	collected	data	in	Google	Sheets

Battery exchange & data review

112

1.	Take	off	the	velcro	band 2.	Take	off	the	lid

3.	Take	out	the	batteries 4.	Take	out	the	electronics

5.	Connect	the	Arduino	to	a	micro	USB	cable 6.	Connect	the	cable	to	PC	and	check	the	electronics	
in	Arduino	IDE

Maintenance

113

7.3.4 Manufacture

Cost estimation

Item NO. Name QTY.	per	device Batch	size Total	price Bulk	price

1 Base 1 15	pieces €75 €5

2 Cover 1 15	pieces €75 €5

3 DS3231	RTC	
module 1 15	pieces €74.25 €4.95

4 Micro	SD	card	
module 1 15	pieces €127.50 €8.50

5 SanDisk	Micro	SD	
card	16GB 1 15	pieces €119.85 €7.99

6 Arduino	MKR	
1010	Wifi 1 15	pieces €334.80 €22.32

7 10kΩ	resistor 1 2 packs
	(20	pieces) €2 €1

8 AA	battery 4 1 pack
(72	pieces) €37.99 €2.11

9 CR2032 cell
battery 1 2 packs

(20	pieces) €14 €0.70

10 Velcro	band 25cm 500cm €7.29 €0.36

11 9	pins	D-Sub	
cable 2m 1 15	pieces €91.20 €6.08

12 Wires 40cm 1 pack
(6000cm) €13.95 €0.01

13 Contact plates 8 3 packs
(150	pieces) €34.14 €1.82

Total	material	price 65.84

				Table	7.1	shows	the	material	cost	estimation	of	the	CPR	data	collector.	The	seven	main	components	of	a	CPR	data	
collector	shown	before	in	the	exploded	view	are	a	base,	a	cover,	a	DS3231	RTC	module,	a	micro	SD	card	module,	
an	Arduino	MKR	1010	Wifi,	four	AA	batteries,	a	Velcro	band.	Besides	these	seven,	there	are	six	more	components	
needed	to	produce	a	fully	functional	device:	a	micro	SD	card,	a	10kΩ	resistor,	a	CR2032	cell	battery,	a	2-meter	long	
9-pin	D-Sub	cable,	wires	in	multiple	colors	for	circuit	connection,	and	eight	contact	plates	for	the	AA	batteries.

				According	to	Dr.	Dinis,	the	batch	size	for	production	is	15	CPR	data	collectors.	With	this	small	production	batch	size,	
the	base	and	cover	can	be	printed	by	3D	printers.	Based	on	the	working	prototype	building,	Ultimaker	2+	82	printing	
with	PLA	103	would	be	a	cost-effective	choice.	Because	the	printer	rent	price	and	PLA	filament	price	is	lower	compared	
to	other	choices	(appendix	K).	Plus,	PLA	is	recyclable	103	and	still	proved	to	be	durable	in	the	drop	tests.	Other	parts	of	
the	device	can	be	purchased	directly	from	the	market.

				All	in	all,	the	material	price	to	build	one	CPR	data	collector	is	65.84	euros.	To	see	the	details	of	the	calculation	of	
the	cost	estimation	and	the	purchase	links	of	the	listed	components,	please	check	appendix	K.

Table	7.1	Material	cost	estimation

114

1.	Solder	the	electronic	parts	
together	based	on	the	designed	

circuit

2.	Tape	the	exposing	areas	of	the	
wires	to	avoid	electric	contact	

between	wires

3.	Connect	the	electronics	to	the	
computer	to	upload	the	Arduino	

code.

4.	3D	print	the	housing	parts 5. Insert the contact plates for
batteries

6.	Place	the	electronics	inside	the	
base	housing

7.	Place	the	AA	batteries	inside	the	
base	housing

8.	Close	the	housing	with	the	cover 9.	Insert	the	velcro	band	on	the	
housing

10.	Fasten	the	housing	with	the	
velcro band

11. Connect the CorPatch sample
with	the	plug	and	test	if	the	data	

transfer	system	is	working

12.		Conduct	a	simulation	test	in	
the	helicopter	station	to	ensure	the	

device	is	ready	to	use

Assembly

Following	figures	shows	the	assembly	process	of	the	CPR	data	collector.

115

7.4 Final concept evaluation

Must have
Non-negotiable	

features that must be
fulfilled	within	given	

timeframe

Should have
Important features
that	are	not	vital,	but	
add	significant	value

1.1,	1.3,	1.4
The	working	prototype	of	the	data	collector	must	be	able	to	collect	
ECMO	start	time	and	chest	compression	rate	data,	store	it	locally,	and	
uploads	it	to	an	online	dataset.

1.2,	1.5,	
The	working	prototype	should	be	able	to	be	set	up	within	10s,	not	
affect	the	hygiene	standard	of	the	scene.

				To	evaluate	the	final	concept,	the	MoSCow	prioritization	made	in	cycle	1	is	set	as	the	standard.	As	shown	
in	figure	7.9,	the	final	concept	and	its	working	prototype	fulfills	the	must-have	requirements.	It	can	collect	
the	required	data,	store	it	locally	in	the	collector,	and	upload	it	to	an	online	dataset	-	the	Google	Sheets.	It	
also	fulfills	the	should-have	requirements,	that	it	can	be	set	up	within	ten	seconds,	its	2-meter	long	cable	
ensures	that	it	can	keep	a	distance	from	the	rescue	scene	and	will	not	affect	the	hygiene	of	the	scene.	It	
does	not	fulfill	the	could-have	requirements	because	of	the	limitation	of	the	hardware,	as	mentioned	in	
cycle	2.	In	general,	the	CPR	data	collector	is	proved	to	be	accurate	in	data	collection,	fast	to	set	up,	durable	
in	OHCA	rescues.

Could have
Features	that	are	nice	
to have but have small

impact	if	left	out

1.6,	1.7,	10.1,	10.2,	11.1,	11.2
The	working	prototype	could	be	able	to	guide	rescuers	and	improve	
their	rescue	performance	by	giving	audio	and	visual	feedback	and	
ergonomic	shapes.

Figure	7.9	MoSCoW	prioritization

116

7.5 Implementation
7.5.1 Recommendations

Wifi connection in HEMS station
				As	tested	in	cycle	2,	the	Arduino	cannot	connect	the	Wifi	networks	in	the	HEMS	station.	Two	of	the	networks	
(Eduroam	and	ErasmusMC)	use	WPA2	enterprise	network,	which	the	Arduino	cannot	connect	to	due	to	
hardware	reasons.	Another	one	for	GPS	tracking	uses	WPA2	personal	network,	which	can	be	connected.	But	as	
confirmed	by	Dr.	Dinis,	the	CPR	data	collector	is	not	allowed	to	connect	due	to	security	reasons.	

				In	order	to	create	a	WPA2	personal	Wifi	network	for	the	CPR	data	collector,	threemethods	are	suggested:

	 -	One	method	is	to	create	a	guest	Wifi	1	network	from	the	current	router	in	the	HEMS	station.	Currently,	
most	routers	can	create	a	guest	Wifi	network	that	runs	separately	from	the	primary	network.	In	this	way,	
information	from	the	main	network	is	secured	and	the	device	connected	to	the	guest	network	can	also	have	
access to the Internet.

	 -	Another	method	is	using	a	Wifi	repeater	88.	A	Wifi	repeater	can	extend	the	Wifi	signal	from	a	Wifi	
router,	and	it	is	also	possible	that	the	extended	Wifi	signal	can	be	set	as	a	WPA2	personal	network,	which	is	
usable	for	the	collector.	However,	transferring	the	WPA2	enterprise	signal	to	a	less	safe	personal	one	might	
violent	the	network	security	regulation.	

	 -	The	third	method	is	the	VirtualWifi	71	feature	from	the	Windows	system.	It	takes	a	PC	as	a	Wifi	
repeater,	and	other	devices	can	connect	to	the	Wifi	that	the	PC	distributes.	

				It	is	necessary	to	consult	the	IT	department	for	the	feasibility	of	each	method	and	specific	implementation	
should	also	be	conducted	under	its	guidance.

Google Script function execution time limit
				As	mentioned	in	cycle	2,	Google	Script	has	a	6-minute	limitation	68	on	function	execution	time.	However,	
when	the	collected	data	is	more	than	3600	lines	(1-hour	data),	one	function	that	calculates	the	CPR	cycles	(CPR	
start,	end	time,	period,	pause,	and	average	rate)	normally	needs	more	than	six	minutes	to	execute.	When	the	
execution	is	timeout,	the	Script	will	return	a	timeout	error	and	stops	working.	There	are	three	ways	to	deal	with	
this	limitation:

	 -	The	easiest	way	is	to	apply	for	a	G	Suite	for	Education	22	account.	G	Suite	for	Education	is	free	and	
extends	the	function	execution	time	to	30	minutes,	which	lets	the	function	handle	around	5-hour	data,	while	
the	data	collector	normally	collects	around	2-hour	data	in	an	OHCA	case.	If	G	Suite	for	Education	account	is	not	
accessible,	a	G	Suite	for	Business	account	22	costs	12	dollars	a	month	and	also	extends	the	execution	time	to	30	
minutes.

	 -	Batching	40.	The	reason	that	the	function	takes	so	long	time	to	finish	is	because	when	the	function	
extracts	and	fills	the	cells	in	Google	Sheets,	it	calls	the	Google	AppService	method,	which	takes	a	longer	time	
than	other	methods.	During	the	calculation,	instead	of	calling	AppService,	saving	the	results	in	an	array	will	be	
much	faster	principally.	Then	call	the	AppService	only	for	one	time	to	assign	all	values	from	the	array	to	the	
Google	Sheets.	This	will	save	a	lot	of	time	in	the	function	execution.	So	the	function	can	calculate	much	more	
data	while	not	breaking	the	time	limitation

 - Loop counter 40.	It	is	also	possible	to	set	up	a	loop	counter	in	the	code,	to	automatically	recall	the	
function	every	six	minutes,	so	it	will	not	exceed	the	time	limitation.

				In	this	section,	recommendations	on	improving	the	current	design	of	the	CPR	data	collector	are	listed	and	
elaborated.	The	feasibility	of	these	recommendations	needs	to	be	verified	by	prototyping	and	testing.

117

Interruption during data upload

2 or multiple OHCA cases in a row

Wifi RTC usage in Arduino MKR 1010 Wifi

Data upload speed

				The	Arduino	MKR	1010	Wifi	also	has	an	internal	Real-Time	Clock	12.	However,	as	the	device	may	be	turned	
off	from	time	to	time,	it	needs	the	Internet	to	sync	its	RTC,	that	is	why	an	external	RTC	module	is	added	to	
the	circuit.	The	final	concept	elaborates	that	the	device	will	be	always	on	until	battery	exchange,	which	also	
happens	in	the	HEMS	station.	So	the	collector	can	be	set	as	syncing	the	time	via	Wifi	after	it	is	turned	on,	and	
uses	the	internal	RTC	to	keep	track	of	current	time.	In	this	way,	the	external	RTC	can	be	eliminated	from	the	
circuit	and	saves	a	lot	of	space	for	the	device.	The	only	drawback	of	this	change	is	that	a	constant	time	tracking	
feature	is	also	eliminated,	and	the	collector	cannot	sync	time	if	the	Internet	access	is	not	available.

				Data	upload	speed	can	be	further	improved.	According	to	the	quotas	68	from	the	Google	Script,	the	maximum	
URL	Fetch	POST	size	is	50MB	per	call.	If	the	URL	100 call	is	handled	with	POST,	not	the	current	GET	request,	it	has	
no	limits	on	the	length	of	the	URL	43,	which	means	the	URL	can	be	as	long	as	the	Arduino’s	SRAM	16	memory	
can	hold,	which	is	32kB	9.	So	as	tested	in	cycle	2,	one	call	URL	call	takes	around	five	seconds,	theoretically,	the	
maximum	uploading	speed	would	be	around	6.4kB/s.	As	calculated,	one	second	of	data	is	27	bytes,	so	one	hour	
of	data	can	be	uploaded	within	16	seconds,	if	the	maximum	upload	speed	is	achieved.

				What	if	the	data	upload	is	interrupted	for	some	reason?	The	current	working	prototype	cannot	re-upload	
the	rest	of	the	data	after	Wifi	is	back,	due	to	that	the	code	does	not	track	the	upload	position	of	the	data.	It	
can	only	recognize	if	the	upload	is	done	or	not.	There	two	conditions	that	interrupt	the	upload.	One	is	that	the	
device	is	on	all	the	time,	but	the	Wifi	is	disconnected.	In	this	condition,	it	is	needed	to	add	a	variable	that	tracks	
the	position	of	the	last	uploaded	data	inside	the	upload	function	loop.	Another	condition	is	that	the	device	is	
turned	off	and	it	needs	to	re-upload	the	rest	of	the	data	after	being	turned	back	on.	After	being	turned	back	on,	
the	Arduino	needs	to	check	if	it	has	finished	the	former	upload	(state)	yet,	if	not,	it	goes	to	check	the	last	upload	
position	(mark)	and	starts	re-uploading.	All	these	state	and	mark	needs	to	be	saved	in	the	micro	SD	card	before	
turned	off,	so	the	Arduino	can	access	these	data	when	it	is	on.	This	does	make	the	code	really	complex	but	it	is	
possible	to	realize.

				What	if	there	are	2	or	more	OHCA	cases	happens	in	a	row?	The	current	working	prototype	will	record	all	
the	data	during	the	periods	that	the	CorPatch	is	plugged	in.	But	it	only	uploads	the	last	period	(OHCA	case)	to	
Google	Sheets,	because	the	current	code	does	not	label	saved	files.	To	make	sure	the	Arduino	uploads	all	the	
files	to	Google	Sheets,	the	code	needs	to	mark	the	saved	files	as	‘not	uploaded’	state,	and	then	change	it	to	
‘uploaded’	state	after	upload.	However,	this	means	that	the	code	needs	to	check	all	the	saved	files’	states	in	the	
SD	card	before	each	upload.	This	also	adds	up	complexity	in	the	code.

118

7.5.2 Implementation plan

3D printed bumpers for anti-drop and waterproof features
As	tested	in	cycle	3,	the	bumper	can	protect	the	device	and	enhance	the	device’s	durability.	It	is	cheap	and	
exchangeable.	However,	its	size	does	not	match	with	the	housing	completely.	Figure	7.X	on	the	left	shows	a	
simple	sketch	that	a	3D	printed	bumper	not	only	protects	the	housing,	but	also	replaces	the	Velcro	band	to	hold	
the	housing	parts	together.	The	bumper	can	be	printed	with	TPU	81 filament	so	it	is	flexible	and	can	be	taken	
on	or	off	anytime.	The	bumper	can	also	be	designed	to	wrap	the	whole	sides	of	the	housing	as	shown	on	the	
right	of	figure	7.10,	in	this	way,	the	gap	of	the	housing	is	covered	by	the	bumper	so	the	waterproofness	of	the	
collector	is	improved.

				Figure	7.11	shows	the	implementation	planof	the	CPR	data	collector.	According	to	the	ECPR	research	plan,	
the	first	research	starts	in	Q4	of	2020	and	it	is	conducted	by	HEMS	team	1.	Then	every	2	quarters,	a	new	HEMS	
team	will	join	in.	So	at	least	three	current	working	prototypes	(version	1)	of	the	CPR	data	collector	should	be	
produced,	tested,	and	got	ready	before	Q4	for	the	first	HEMS	team	to	use	in	the	OHCA	cases.	Drawbacks	of	the	
device	and	code	bugs	will	be	collected	and	fixed	in	the	version	2	of	the	collector.	The	version	2	should	operate	
the	whole	data	transfer	system	stably.	So	six	version	2	collector	will	be	produced	and	used	by	both	HEMS	team	
1	and	2	during	the	second	period.	Then	minor	improvements	can	be	applied	to	the	version	3	and	4	if	necessary,	
but	only	produced	for	the	HEMS	team	3	and	4.	In	total,	15	CPR	data	collectors	will	be	produced	throughout	the	
research	project.

Version Amount Deliver	date

1 3 Q4	2020

2 6 Q2	2021

2/3 3 Q4	2021

2/3/4 3 Q2	2022

Figure	7.11	Implementation	plan

Figure	7.10	Sketches	of	bumper	shapes

119

08
Reflection
				The	reflection	is	written	based	on	the	rubric	of	the	IDE	master	graduation	project.

Knowledge	(Collect	and	analysis,	generate	and	evaluate)
				Knowledge	over	OHCA	rescue,	HEMS	team,	relative	technologies	and	examples	are	collected	and	reflected	as	
design	criteria.	For	the	context	analysis,	the	rescue	process	of	the	HEMS	team	during	OHCA	is	analyzed.	However,	
the	midterm	meeting	revealed	that	the	hygiene	problem	is	not	considered	in	former	analysis	topics.	This	is	mainly	
because	all	the	scenarios	of	the	context	are	generated	based	on	the	videos	and	images	from	the	documentary,	TV	
shows	or	simulated	scenes,	where	some	actual	scenes	are	hidden	from	the	viewers.	The	designer	overlooked	that	
the	actual	scenes	could	be	more	bloody,	dirty	and	messy.	Due	to	the	Covid	situation,	field	observation	is	also	not	
available,	the	designer	should	have	asked	raw	video	clips	(Dr.	Dinis	once	showed	in	the	first	meeting)	to	do	more	
observation	on	the	context.	Fortunately	during	the	midterm	meeting,	this	fault	is	pointed	out	so	extra	research	on	
hygiene	problem	is	conducted.	All	the	research	topics	are	reflected	and	selected	to	form	the	preliminary	design	
criteria.

Methods	(Use	of	methods	and	tools,	dealing	with	project	complexity)
				In	general,	the	basic	design	cycle	is	the	main	guidance	in	this	project.	Four	cycles	are	carried	out	in	total.	Each	
cycle	contains	a	major	assignment/theme,	which	is	a	core	part	of	the	whole	design	process.	In	each	cycle,	different	
methods	are	used	to	conduct	analysis,	ideation,	prototyping	and	evaluation.	As	the	end	goal	of	this	project	is	building	
a	working	prototype	of	the	data	collector,	the	complexity	of	this	project	is	high.	So	the	complexity	is	broken	into	
4	cycles	(context,	electronics,	shapes,	finalize),	and	each	cycles’	result	is	built	on	the	former	cycle.	In	this	way,	the	
designer	is	more	focused	on	one	aspect	of	problem	in	each	cycle,	so	the	complexity	decreases.

Project result	(Feasibility,	desirability,	viability)
				The	feasibility	of	the	project	result	is	high,	as	the	working	prototype	has	proved.	The	Wifi	problem	from	the	station	
is	possible	to	be	solved.	The	production	serie	is	low	so	it	can	be	produced	with	products	in	the	market.	Even	though	
the	working	prototype	cannot	react	to	all	different	situations,	as	mentioned	in	recommendations,	but	the	current	
model	can	do	the	basic	jobs	in	actual	fields,	such	as	data	collection,	data	upload	(if	Wifi	is	fixed).	The	final	result	
meets	the	user’s	values	and	needs.	It	is	a	pity	that	the	audio	and	visual	feedback	and	time	counter	features	are	not	
implemented	in	the	final	concept.	But	it	fulfills	the	fundamental	need	-	data	collection	and	data	storage	in	online	
dataset.	Plus,	the	use	of	Google	Script	to	upload	data	and	make	the	Google	Sheets	as	the	online	dataset	is	not	a	
common	solution,	but	it	make	the	later	processes	such	as	data	mangement	and	analysis	easier,	more	user	friendly	
and	direct.

Communication	(Academic	level,	connecting	to	stakeholders)
				The	project	proposed	an	different	way	to	upload	and	store	data	directly	in	the	Google	Sheets.	It	also	introduces	
using	the	Google	Script	to	manage	and	analyze	data	in	Google	Sheets	automatically.	The	data	collector	can	be	used	
to	collect	chest	compression	data	with	time,	which	provides	important	information	to	the	HEMS	team	to	evaluate	
their	rescue	performance	and	the	effectiveness	of	implementing	ECPR	treatment	in	OHCA	cases.	Before	the	midterm,	
weekly	report	is	handed	for	updating	with	the	mentors	and	the	clients.	However,	after	midterm,	it	is	pointed	out	that	
more	communication	is	needed.	After	the	midterm,	weekly	Zoom	meeting	with	the	client	and	the	mentor	is	carried	
out,	while	week	report	is	also	handed	out	for	feedbacks.	This	is	proved	to	be	much	more	effective	than	only	updating	
with	the	week	report.	A	lot	of	valuable	and	effective	decisions	are	made	during	these	meetings.	Plus,	after	midterm,	

120

the	designer	also	visited	the	HEMS	station	twice	for	discussion	on	the	prototype	and	user	tests.

Project management and planning (Planning,	autonomy	&	initiative,	response	to	feedback,	time	
spent)
				According	to	the	original	plan,	the	graduation	date	should	be	around	20th	of	August,	at	present,	it	is	one	week	
delayed.	When	look	back	to	whole	process,	the	cycle	1	(context	analysis)	takes	almost	half	of	the	project	time	
to	conduct,	which	is	too	long,	comparing	to	the	rest	of	cycles	(each	cycle	takes	one	month).	One	of	the	reason	is	
because	the	Covid	situation	limits	the	possibility	to	do	prototype.	Another	one	is	because	in	cycle	1,	some	analysis	
topic	is	not	focused	on	data	collection	but	more	on	how	improve	chest	compression,	and	that	leads	to	ergonomic	
study,	which	is	not	a	necessary	feature	for	the	data	collector,	neither	it	is	the	needs	from	the	client.	Thus,	a	method	
that	evaluates	the	analysis	direction	for	the	designers	could	be	useful	in	a	time-tight	project	to	save	time	and	guide	
the	designer	to	focus	on	more	related	topics.	The	initiative	to	communicate	with	the	stakeholders	is	higher	after	
the	midterm,	because	the	designer	at	that	time	has	a	common	agreement	with	the	client	on	the	overall	form	of	
the	design.	Then	the	faculty	is	reopened	for	graduates,	the	designer	becomes	more	engaged	with	prototyping	
and	therefore	would	like	to	have	more	feedback	of	his	work,	the	communication	between	the	designer	and	the	
mentor	increases.	The	designer	is	reactive	to	the	feedback	from	the	supervisory	team	and	the	client.	Feedbacks	are	
evaluated	and	adopted	to	the	prototype	instantly.	There	are	certain	delays	comparing	to	the	original	plan,	but	overall	
the	time	spent	is	around	100	working	days.

Personal ambition
				When	I	look	back	the	whole	process	of	my	graduation	project,	I	am	satisfied	with	the	project	result.	I	have	
overcame	multiple	problems	that	I	think	I	am	not	able	to	solve	at	the	beginning.	I	am	satisfied	that	I	deepened	
my	knowledge	on	intensive	care	domain,	developed	my	prototyping	skills	on	connected	products	throughout	the	
project.	I	fulfilled	my	personal	ambitions	that	I	mentioned	in	the	project	brief.	I	sincerely	thanks	the	supervisory	team	
-	Prof.	Goossens,	Prof.	van	Heur	and	Dr.	Reis	Miranda	for	their	assistance,	guidance,	all	the	open	discussion	over	the	
project,	and	the	caring.	I	expect	to	grow	up	to	a	more	mature	and	professional	designer	in	the	future	and	make	more	
contribution	to	the	design	community	and	society.

24/08/2020
Yu	Zhang

121

09
References

1. A.	(2019a,	December	11).	Guest	WiFi:	What	is	it?	How	do	I	set	it	up?	|	Learn	More.	Actiontec.Com.	https://www.actiontec.
com/wifihelp/guest-wifi-what-is-it-why-do-i-want-it-how-to-use-it-how-to-get-it/

2. Adafruit	NeoPixel	Überguide.	(2013,	August	30).	Adafruit	NeoPixel	Überguide.	https://learn.adafruit.com/adafruit-neopixel-
uberguide/arduino-library-use

3. Advanced	Circulatory.	(n.d.).	ResQCPR	System	Instruction	For	Use.	Advanced	Circulatory.
4. A.E.	Tomlinson,	J.	Nysaether,	et	al.	(2006).	Compression	force—depth	relationship	during	out-of-hospital	cardiopulmonary	

resuscitation.	
5. American	Red	Cross	Training	Services.	(2020).	How	to	Perform	Hands-Only	CPR	|	Red	Cross.	Red	Cross	Training	&	

Certification,	and	Store.	https://www.redcross.org/take-a-class/cpr/performing-cpr/hands-only-cpr
6. API.	(n.d.).	Pushingbox.	https://www.pushingbox.com/api.php
7. Arduino.	(2020).	SMTP2GO.	https://www.smtp2go.com/setupguide/arduino/
8. Arduino	-	HomePage.	(2020).	Arduino.	https://www.arduino.cc/en/IoT/HomePage
9.	 Arduino	-	Memory.	(n.d.).	Arduino.	https://www.arduino.cc/en/tutorial/memory
10. Arduino	-	WiFiNINABeginEnterprise.	(n.d.).	Arduino.	https://www.arduino.cc/en/Reference/WiFiNINABeginEnterprise
11. Arduino	-	WiFiNINAWiFiWebClient.	(2018).	Arduino.	https://www.arduino.cc/en/Tutorial/WiFiNINAWiFiWebClient
12. Arduino	-	WiFiRTC.	(n.d.).	Arduino.	https://www.arduino.cc/en/Tutorial/WiFiRTC
13. Arduino	IoT	Cloud.	(2020).	Arduino.	https://www.arduino.cc/en/IoT/HomePage
14. Arduino	IoT	Cloud	Google	Sheets	Integration.	(n.d.).	Arduino	Project	Hub.	https://create.arduino.cc/projecthub/Arduino_

Genuino/arduino-iot-cloud-google-sheets-integration-71b6bc
15. Arduino	MKR	GSM	1400.	(2020).	Arduino.	https://store.arduino.cc/arduino-mkr-gsm-1400-1415
16. Arduino	MKR	WiFi	1010	|	Arduino	Official	Store.	(2020).	Arduino.	https://store.arduino.cc/arduino-mkr-wifi-1010
17. Arduino	Nano	33	IoT	|	Arduino	Official	Store.	(2020).	Arduino.	https://store.arduino.cc/arduino-nano-33-iot
18. Arduino_Genuino.	(2019,	April	3).	Control	Two	Relays	Over	the	Internet.	Hackster.Io.	https://www.hackster.io/Arduino_

Genuino/control-two-relays-over-the-internet-751138
19.	 AZDelivery	Real	Time	Clock	RTC	DS3231	I2C	Real	time	klok	voor	Arduino	met	eBook:	Amazon.nl.	(n.d.).	Amazon.Nl.	https://

www.amazon.nl/gp/product/B01M2B7HQB/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1
20. Battery	Capacity.	(n.d.).	Techlib.	http://www.techlib.com/reference/batteries.html
21. Bayer	Material	Science.	(n.d.).	Snap-fit	joints	for	plastics.	http://fab.cba.mit.edu/classes/S62.12/people/vernelle.noel/

Plastic_Snap_fit_design.pdf
22. Betalingsplannen	|	G	Suite.	(n.d.).	Google.	https://gsuite.google.com/pricing.html
23. Blackler,	A.,	&	Popovic,	V.	(2015).	Towards	Intuitive	Interaction	Theory.	Interacting	with	Computers,	27(3),	203–209.	https://

doi.org/10.1093/iwc/iwv011
24. Cheskes,	S.,	Schmicker,	R.	H.,	Rea,	T.,	Powell,	J.,	Drennan,	I.	R.,	Kudenchuk,	P.,	Vaillancourt,	C.,	Conway,	W.,	Stiell,	I.,	Stub,	

D.,	Davis,	D.,	Alexander,	N.,	&	Christenson,	J.	(2015).	Chest	compression	fraction:	A	time	dependent	variable	of	survival	in	
shockable	out-of-hospital	cardiac	arrest.	Resuscitation,	97,	129–135.	https://doi.org/10.1016/j.resuscitation.2015.07.003

25. Corpatch	-	CorPatch	is	the	solution	that	increases	the	quality	of	bystander	CPR	in	case	of	an	out	of	hospital	cardiac	arrest.	
(2020,	May	6).	Corpatch.	https://corpatch.com/

26. CORPULS	CPR.	(n.d.).	Https://Corpuls.World/En/Products/Corpuls-Cpr/.	https://corpuls.world/en/products/corpuls-cpr/
27. D.	(2019b,	December	15).	Arduino	and	DS3231	Real	Time	Clock	Tutorial.	HowToMechatronics.	https://howtomechatronics.

com/tutorials/arduino/arduino-ds3231-real-time-clock-tutorial/
28. Duracell	batterij	72	pack	AA.	(n.d.).	Bol.Com.	https://www.bol.com/nl/p/duracell-batterij-72-pack-aa/9200000074443115/?R

eferrer=ADVNLGOO002018-G-58263947517-S-493987207082-9200000074443115&gclid=Cj0KCQjw-O35BRDVARIsAJU5mQX
BfA8yNOgvndIxoUct4dugEVn16sWYt8vuOUcybdNWKqzj8Mq-bFMaAsUXEALw_wcB

122

29. E.	(2019c).	Embedotronics/Attendance-System-with-storing-Data-on-Google-Spreadsheet-using-RFID-and-Arduino-Ethernet-
Shield.	GitHub.	https://github.com/Embedotronics/Attendance-System-with-storing-Data-on-Google-Spreadsheet-using-
RFID-and-Arduino-Ethernet-Shield

30. Engineers,	L.	M.	(2019,	December	13).	How	Accelerometer	works?	Interface	ADXL335	with	Arduino.	Last	Minute	Engineers.
https://lastminuteengineers.com/adxl335-accelerometer-arduino-tutorial/

31. Executing	Functions	using	the	Apps	Script	API	|.	(n.d.).	Google	Developers.	https://developers.google.com/apps-script/api/
how-tos/execute

32. Extending	Google	Sheets	|	Apps	Script	|.	(2019).	Google	Developers.	https://developers.google.com/apps-script/guides/
sheets

33. F.	(2018a).	firedog1024/mkr1000-iotc.	GitHub.	https://github.com/firedog1024/mkr1000-iotc
34. Fuse	Reel	Innovative	Tools	For	Tech	and	Cable	Management.	(n.d.).	Fuse	Reels.	https://fusereel.com/
35. Gammon	Forum	:	Electronics	:	Microprocessors	:	Power	saving	techniques	for	microprocessors.	(2012).	Gammon.	https://

www.gammon.com.au/power
36. GETINGE.	(2019,	July).	Cardiohelp	System	Extracorporeal	life	support	wherever	you	need	it.	Maquet	Cardiopulmonary

GmbH.	https://www.getinge.com/dam/hospital/documents/marketing-sales/brochures/english/cardiohelp_system_
brochure-en-non_us_japan.pdf

37. GL.iNet	GL-AR150-3	Mini	Travel	Router,	wifi-converter,	OpenWrt	pre-installed,	Repeater	Bridge,	150	Mbps	High	Performance,
OpenVPN,	Wireguard,	Programable	IoT	Gateway:	Amazon.nl.	(n.d.).	Amazon.	https://www.amazon.nl/GL-iNet-wifi-
converter-pre-installed-Performance-Programable/dp/B015CYDVG8/ref=asc_df_B015CYDVG8/?tag=nlshogostdde-21&linkC
ode=df0&hvadid=430533494283&hvpos=&hvnetw=g&hvrand=4626464473184909334&hvpone=&hvptwo=&hvqmt=&hvde
v=c&hvdvcmdl=&hvlocint=&hvlocphy=1010704&hvtargid=pla-298850372584&psc=1

38. González-Otero,	D.	M.,	Ruiz,	J.	M.,	Ruiz	de	Gauna,	S.,	Gutiérrez,	J.	J.,	Daya,	M.,	Russell,	J.	K.,	Azcarate,	I.,	&	Leturiondo,
M. (2018).	Monitoring	chest	compression	quality	during	cardiopulmonary	resuscitation:	Proof-of-concept	of	a	single
accelerometer-based	feedback	algorithm.	PLOS	ONE,	13(2),	e0192810.	https://doi.org/10.1371/journal.pone.0192810

39. Goobay	45743	USB-kabel	1	m	2.0	USB	A	USB	C	Zwart.	(n.d.).	Bol.	https://www.bol.com/nl/p/goobay-45743-usb-kabel-1-m-2-
0-usb-a-usb-c-zwart/9200000104843023/?bltgh=ldBeO-iX6dkT5S95ZypFfQ.1_4.5.ProductTitle

40. Google	app	script	timeout	~	5	minutes?	(2013a,	January	22).	Stack	Overflow.	https://stackoverflow.com/
questions/14450819/google-app-script-timeout-5-minutes

41. Gruber,	J.,	Stumpf,	D.,	Zapletal,	B.,	Neuhold,	S.,	&	Fischer,	H.	(2012).	Real-time	feedback	systems	in	CPR.	Trends	in
Anaesthesia	and	Critical	Care,	2(6),	287–294.	https://doi.org/10.1016/j.tacc.2012.09.004

42. GS	Elektromedizinische	Geräte	G.	Stemple	GmbH.	(2020).	User	Manual	corpuls3.	GS	Elektromedizinische	Geräte	G.	Stemple
GmbH.

43. HTTP	Methods	GET	vs	POST.	(n.d.).	W3schools.	https://www.w3schools.com/tags/ref_httpmethods.asp
44. I.	(2011,	May	27).	Topology	Optimization	Guide	|	Your	source	for	Topology	Optimization	world	|	Page	6.	Topology-Opt.

http://www.topology-opt.com/page/6/
45. Industries,	A.	(n.d.).	Adafruit	Mono	2.5W	Class	D	Audio	Amplifier	-	PAM8302.	Adafruit.	https://www.adafruit.com/

product/2130
46. JavaScript.	(2020,	July	9).	MDN	Web	Docs.	https://developer.mozilla.org/en-US/docs/Web/

JavaScript#:%7E:text=JavaScript%20(JS)%20is%20a%20lightweight,Apache%20CouchDB%20and%20Adobe%20Acrobat.
47. KabelDirekt	-	klittenband	kabelbinders	hersluitbaar	-	20	mm	x	5	m	-	(rol	voor	kabels,	vrij	op	maat	te	snijden	&	herbruikbaar,

wit):	Amazon.nl.	(n.d.).	Amazon.Nl.	https://www.amazon.nl/gp/product/B07BYLY15R/ref=ppx_yo_dt_b_asin_title_o00_
s00?ie=UTF8&psc=1

48. Kanis,	H.,	Rooden,	MJ.,	&	Green,	WS.	(2000).	Usecues	in	the	Delft	design	course.	In	P.	T.	Mccabe,	M.	A.	Hanson,	&	S.	A.
Robertson	(Eds.),	Contemporary	ergonomics	2000	(pp.	365-369).	Taylor	&	Francis.

49. Kiwi	Electronics.	(n.d.-a).	Arduino	MKR	WiFi	1010.	https://www.kiwi-electronics.nl/arduino-mkr-wifi-1010?search=MKR1010
&description=true

50. Kiwi	Electronics.	(n.d.-b).	MicroSD	card	breakout	board+.	https://www.kiwi-electronics.nl/microsd-card-breakout-board-
plus?search=micro%20sd&description=true

51. Kiwi	Electronics.	(n.d.-c).	Weerstand	10K	Ohm	-	1/4	watt	-	5%	-	10	stuks.	https://www.kiwi-electronics.nl/Weerstand-10K-
ohm-1-4-watt-5-procent-10-stuks?search=resistor%2010k&description=true

52. Kleinman	ME,	Brennan	EE,	Goldberger	ZD,	Swor	RA,	Terry	M,	Bobrow	BJ,	et	al.	(2015).	Part	5:	adult	basic	life	support
and	cardiopulmonary	resuscitation	quality:	2015	American	Heart	Association	guidelines	update	for	cardiopulmonary
resuscitation	and	emergency	cardiovascular	care.	Circulation	2015;132(18	Suppl.	2):S414–35.

53. Kovic,	I.,	Lulic,	D.,	&	Lulic,	I.	(2013).	CPR	PRO®	Device	Reduces	Rescuer	Fatigue	during	Continuous	Chest	Compression
Cardiopulmonary	Resuscitation:	A	Randomized	Crossover	Trial	Using	a	Manikin	Model.	The	Journal	of	Emergency	Medicine,
45(4),	570–577.	https://doi.org/10.1016/j.jemermed.2013.04.021

54. Lady	ada.	(2020).	Micro	SD	Card	Breakout	Board	Tutorial.	Learn.Adafruit.Com.	https://learn.adafruit.com/adafruit-micro-sd-
breakout-board-card-tutorial/look-out

123

55. LastMinuteEngineers.	(2019a,	December	13).	Interface	DS3231	Precision	RTC	Module	with	Arduino.	LastMinuteEngineers.	
https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial/#:%7E:text=Assuming%20a%20fully%20charged%20
CR2032,an%20external%205V%20power%20supply.

56. Last	Minute	Engineers.	(2019b,	December	13).	How	Accelerometer	works?	Interface	ADXL335	with	Arduino.	Last	Minute	
Engineers.	https://lastminuteengineers.com/adxl335-accelerometer-arduino-tutorial/

57. LevelGloves.	(2017).	Biomex	Protection.	LevelGloves.	https://www.levelgloves.com/biomex-protection/
58. M.	(2018b).	mobizt/Firebase-Arduino-WiFiNINA.	GitHub.	https://github.com/mobizt/Firebase-Arduino-WiFiNINA
59.	 Oberhaching,	D.	K.	G.	E.	|.	|.	(2020).	EnOcean	for	Europe:	868	MHz	-	ECO	200.	EnOcean.	https://www.enocean.com/en/

products/enocean_modules/eco-200/
60. Pappalardo,	F.,	&	Montisci,	A.	(2017).	What	is	extracorporeal	cardiopulmonary	resuscitation?	Journal	of	Thoracic	Disease,	

9(6),	1415–1419.	https://doi.org/10.21037/jtd.2017.05.33
61. Perkins	GD,	Handley	AJ,	Koster	RW,	Castrén	M,	Smyth	MA,	Olasveengen	T,	et	al.	(2015).	European	Resuscitation	Council	

Guidelines	for	Resuscitation	2015:	Section	2.	Adult	basic	life	support	and	automated	external	defibrillation.	Resuscitation	
2015;95:81–99.

62. Physio	Control.	(2020).	LUCAS	3	Chest	Compression	System	Instruction	for	Use	(Physio	Control	ed.).	Physio	Control.
63. Pillai,	A.	K.,	Bhatti,	Z.,	Bosserman,	A.	J.,	Mathew,	M.	C.,	Vaidehi,	K.,	&	Kalva,	S.	P.	(2018).	Management	of	vascular	

complications	of	extra-corporeal	membrane	oxygenation.	Cardiovascular	Diagnosis	and	Therapy,	8(3),	372–377.	https://doi.
org/10.21037/cdt.2018.01.11

64. PocketCPR.	(n.d.).	Www.Baycomp.Com.	https://baycomp.com/pocketcpr/
65. Premium	seriële	RS232	kabel	9-pins	SUB-D	(m)	-	9-pins	SUB-D	(m)	/	gegoten	connectoren	-	2	meter	-	9-pin	SUB-D	(RS232/

RS485)	-	SUB-D	(9p/15p/25p)	-	Computer	|	Onlinekabelshop.nl.	(n.d.).	Onlinekabelshop.	https://www.onlinekabelshop.nl/
seriele-kabel-9pins-sub-d-mannelijk-9pins-sub-d-mannelijk-2-meter

66. Prijzen	–	Goedkoop	3D	printer	huren.	(n.d.).	Goedkoop3dprinterhuren.	http://goedkoop3dprinterhuren.nl/prijzen/
67. Q-CPR	measurement	and	feedback	tool	CPR	meter	|	Philips	Healthcare.	(2005).	Philips.	https://www.usa.philips.com/

healthcare/product/HCNOCTN89/qcpr-measurement-and-feedback-tool-cpr-meter
68. Quotas	for	Google	Services	|	Apps	Script	|.	(n.d.).	Google	Developers.	https://developers.google.com/apps-script/guides/

services/quotas
69.	 Oberhaching,	D.	K.	G.	E.	|.	|.	(2020).	EnOcean	for	Europe:	868	MHz	-	ECO	200.	EnOcean.	https://www.enocean.com/en/

products/enocean_modules/eco-200/
70. Sandisk	SDSDQM-016G-B35	flashgeheugen	16	GB	MicroSDHC.	(n.d.).	Bol.Com.	https://www.bol.com/nl/p/sandisk-sdsdqm-

016g-b35-flashgeheugen-16-gb-microsdhc/9000000012279555/?s2a=#productTitle
71. Sandler,	E.	(2020,	June	18).	How	to:	Create	Wireless	Hosted	Networks	in	Windows	7.	Wi-FiPlanet.Com.	https://www.wi-

fiplanet.com/how-to-create-wireless-hosted-networks-in-windows-7/
72. Seifert,	K.,	&	Camacho,	O.	(2007).	Implementing	Positioning	Algorithms	Using	Accelerometers.	Freescale	Semiconductor,	1.	

https://www.nxp.com/docs/en/application-note/AN3397.pdf
73. Send	MKR1000	Data	to	Google	Sheets.	(2016).	Arduino	Project	Hub.	https://create.arduino.cc/projecthub/detox/send-

mkr1000-data-to-google-sheets-1175ca
74. Sheets	Tips	-	Google	Sheets	Tips	and	Tricks	|	G	Suite	Tips.	(n.d.).	Gsuitetips.	https://gsuitetips.com/tips/sheets/google-

spreadsheet-limitations/
75. Smart	Plug	with	Arduino	MKR	WiFi	1010.	(2020).	Arduino.	https://create.arduino.cc/projecthub/Avilmaru/smart-plug-with-

arduino-mkr-wifi-1010-63cb25?ref=tag&ref_id=ifttt&offset=4
76. Snap	Fit	Design.	(n.d.).	Gotstogo.	http://www.gotstogo.com/misc/engineering_info/snap_design.htm
77. Spring	100st	Battery	Battery	Shrapnel	AA	of	AAA-batterij	Spring	7	No.	positieve	en	negatieve	Contact	Stukken	50pairs	

Drop	Ship	Easy	to	install:	Amazon.nl.	(n.d.).	Amazon.Nl.	https://www.amazon.nl/gp/product/B08DHRCCL6/ref=ox_sc_act_
title_2?smid=A2GWW94JYD74WR&psc=1

78. Strain	Reliefs	Selection	Guide	|	Engineering360.	(n.d.).	Globalspec.	https://www.globalspec.com/learnmore/electrical_
electronic_components/wires_cables_accessories/strain_reliefs#:%7E:text=Strain%20relief%20types%20include%20
cable,piece%20of%20equipment%20or%20device.

79.	 SuperCalla	|	Charging	/	Data	Cables	Redesigned.	(2020,	August	3).	Kickstarter.	https://www.kickstarter.com/
projects/1813437441/supercalla-charging-cables-redesigned?ref=project_link

80. Taylor,	E.	(2017,	July	18).	Turbocharge	your	HEMS	start-up	times.	AirMed&Rescue.	https://www.airmedandrescue.com/
latest/long-read/turbocharge-your-hems-start-times

81. TPU	filament	-	learn	everything	about	the	TPU	material	for	3D	printing.	(2020,	July	13).	Tractus3D.	https://tractus3d.com/
materials/tpu#:%7E:text=Thermoplastic%20Polyurethane%20(TPU%20material)%20is,a%20flexible%2C%20abrasion%20
resistant%20thermoplastic.&text=3D%20printed%20parts%20with%20TPU,is%20resistant%20to%20many%20chemicals.

82. Ultimaker	2+:	Robust	single	extrusion.	(n.d.).	Ultimaker.Com.	https://ultimaker.com/3d-printers/ultimaker-2-plus
83. USE	a	BUZZER	MODULE	(PIEZO	SPEAKER)	USING	ARDUINO	UNO.	(2018).	Arduino	Project	Hub.	https://create.arduino.cc/

projecthub/SURYATEJA/use-a-buzzer-module-piezo-speaker-using-arduino-uno-89df45

124

84. VARTA	CR2032	lithium	knoopcellen	3V	batterij	in	originele	blisterverpakking,	10-pack:	Amazon.nl.	(n.d.).	Amazon.Nl.	https://
www.amazon.nl/gp/product/B018S4PTNW/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1

85. VELLEMAN	-	K/MOWM	Schakeldraad-assortiment	-	10	kleuren	-	60	m	-	0,2	mm2	volledig	
materiaal	276230:	Amazon.nl.	(n.d.).	Amazon.Nl.	https://www.amazon.nl/VELLEMAN-
Schakeldraad-assortiment-kleuren-volledig-materiaal/dp/B001IRVDV4/ref=sr_1_2?__mk_nl_
NL=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=arduino+wire&qid=1597746429&sr=8-2

86. Visaton	0.5W	Miniature	Speaker	16mm	Dia.	(n.d.).	RS	Components.	https://nl.rs-online.com/web/p/
miniature-speakers/1218640?cm_mmc=NL-PLA-DS3A-_-google-_-CSS_NL_NL_Passive_Components_Whoop-_-
(NL:Whoop!)+Miniature+Speakers-_-1218640&matchtype=&aud-772940708119:pla-319119479250&gclid=CjwKCAjwsan5B
RAOEiwALzomX2mrePhLYdy2KP5R0x_ppf2b3V8Yd67z6p3hK0dFX05p6ygPrJrP1xoCb-8QAvD_BwE&gclsrc=aw.ds

87. What	is	MoSCoW	Prioritization?	|	Overview	of	the	MoSCoW	Method.	(2020,	July	10).	Productplan.	https://www.
productplan.com/glossary/moscow-prioritization/

88. What’s	the	difference:	WiFi	Booster,	Repeater	or	Extender?	(n.d.).	Waveform.	https://www.waveform.com/pages/wifi-
booster-repeater-extender-differences

89.	 Wikipedia	contributors.	(2001,	October	29).	Hypertext	Transfer	Protocol.	Wikipedia.	https://en.wikipedia.org/wiki/
Hypertext_Transfer_Protocol

90.	 Wikipedia	contributors.	(2020a,	January	19).	IC	power-supply	pin.	Wikipedia.	https://en.wikipedia.org/wiki/IC_power-
supply_pin

91.	 Wikipedia	contributors.	(2020b,	May	12).	Voltage	optimisation.	Wikipedia.	https://en.wikipedia.org/wiki/Voltage_
optimisation#:%7E:text=The%20higher%20the%20voltage%20the,job%20due%20to%20atmospheric%20losses.

92.	 Wikipedia	contributors.	(2020c,	May	31).	Comma-separated	values.	Wikipedia.	https://en.wikipedia.org/wiki/Comma-
separated_values

93.	 Wikipedia	contributors.	(2020d,	July	3).	Microcontroller.	Wikipedia.	https://en.wikipedia.org/wiki/Microcontroller
94.	 Wikipedia	contributors.	(2020e,	July	5).	D-subminiature.	Wikipedia.	https://en.wikipedia.org/wiki/D-subminiature
95.	 Wikipedia	contributors.	(2020f,	July	10).	Thread	(computing).	Wikipedia.	https://en.wikipedia.org/wiki/Thread_(computing)
96.	 Wikipedia	contributors.	(2020g,	July	15).	MagSafe.	Wikipedia.	https://en.wikipedia.org/wiki/MagSafe
97.	 Wikipedia	contributors.	(2020h,	July	23).	AA	battery.	Wikipedia.	https://en.wikipedia.org/wiki/AA_battery#:%7E:text=An%20

AA%20cell%20measures%2049.2,%E2%80%930.57%20in)%20in%20diameter.
98.	 Wikipedia	contributors.	(2020i,	July	23).	I2C.	Wikipedia.	https://en.wikipedia.org/wiki/I%C2%B2C
99.	 Wikipedia	contributors.	(2020j,	August	2).	Wi-Fi	Protected	Access.	Wikipedia.	https://en.wikipedia.org/wiki/Wi-Fi_

Protected_Access
100. Wikipedia	contributors.	(2020l,	August	4).	URL.	Wikipedia.	https://en.wikipedia.org/wiki/URL
101. Wikipedia	contributors.	(2020m,	August	6).	Velcro.	Wikipedia.	https://en.wikipedia.org/wiki/Velcro
102. Wikipedia	contributors.	(2020n,	August	9).	Silicone	rubber.	Wikipedia.	https://en.wikipedia.org/wiki/Silicone_rubber
103. Wikipedia	contributors.	(2020o,	August	12).	Polylactic	acid.	Wikipedia.	https://en.wikipedia.org/wiki/Polylactic_acid
104. Wikipedia	contributors.	(2020p,	August	4).	Serial	Peripheral	Interface.	Wikipedia.	https://en.wikipedia.org/wiki/Serial_

Peripheral_Interface
105. X	Series	Monitor/Defibrillator	for	EMS	-	ZOLL	Medical.	(n.d.).	Www.Zoll.Com.	https://www.zoll.com/products/defibrillators/

x-series-for-ems
106. Zijlstra,	J.	(2020).	Delft	Design	Guide	(revised	edition):	Perspectives	-	Models	-	Approaches	-	Methods	(Revised	ed.).	BIS	

Publishers.
107. Zoll.	(2018).	Zoll	AutoPulse	Resuscitation	System	Model	100	User	Guide.	Zoll.
108. ZOLL	CPR-D-padz	CPR	Electrodes	-	Automated	External	Defibrillator	Pads.	(n.d.).	Www.Zoll.Com.	https://www.zoll.com/

medical-products/defibrillator-electrodes/cpr-d-padz-aed

125

10
Appendix

List of appendices

A Graduation project brief

B ON-SCENE ECPR study RESEARCH PROTOCOL (March 2020) (Confidential)

C Full activity timeline of HEMS crew in OHCA

D Interview with Dr. Dinis Reis Miranda

E CorPatch plug pinout (Confidential)

F Arduino IoT cloud code

G Arduino code of NeoPixel, buzzer and mini speaker

H Final Google Script code

I Final Arduino code: WPA2 personal version and WPA2 enterprise version

J Solidworks assembly and parts drawings

K Purchase links of the cost estimation

L Final Solidworks model files

M 3D printed models and the working prototype

N User test videos

4027

- do not use abbreviations in title

Monique von Morgen 14-04-2020 MvM

126

Appendix B - Full activity timeline of HEMS crew in OHCA
Pilot DoctorHCMSituations

Presets
Set helicopter hot
1. Starting engines HEMS checklist
2. Pre-take-off checklist
3. Interior checks
4. Pre-starting checklist

1. Confirm call
2. Stand in front of helicopter to assist
3. Go in helicopter

1. Enter destination in navigation system (ipad)
2. Go in helicopter

Standby 1. Weather condition monitor
2. Air traffic control communication

Dispatch 1. Check weather
2. Go in helicopter
3. Communicate with ATC

1. Pre-take-off checklist
2. Take-off clearance obtained
3. Take off to destination

On air

1. Update information of the scene with control
center/emergency team/bystander at the scene
2. Plan rescue strategy
3. Identify exact location of the scene
4. Plan landing location
5. Plan route from landing location to scene

1. Fly the helicopter
2. Communicate with ATC
3. Perform all switches (except
radio)

1. Navigation
2. Read the checklist (normal challenge and respond
procedure)

1. Help watching the situation
2. Also has navigation system on ipad and help HCM
with situational awareness

After landing
1. Pack up devices
2. Run to the scene (sometimes need a drive from
police or other emergency team)

At scene Update condition of patient with bystanders/emergency team

Start manual CPR1. Put bag valve mask on patient’s
mouth
2. Squeeze the bag every 5 - 6sec
(Endotracheal intubation can be
performed if needed)

1. Bring out defibrillator
2. Put Patches of defibrillator on patient

CPR 1. Bring out automated chest compressor
2. Set it up around patient’s chest
3. Turn it on and start automated chest compressing

Rhythm check

VF pVT PEA/Asytole

Shock Sync rhythm
and shock

No shock

CPR 2min

Epinephrine/Amiodarone injection every 3 - 5min

ECPR As cannulator 2 As cannulator 1

Place sterile US probecover on US probe

1. Dons sterile down
2. Drape patient

1. Clean access area
2. Start u device

Place following on sterile field:
- micropuncture kit
- Dilator kit
- stiff guidewires x 2
- many towels
- clamps x 6
- heavy scissors
- bulb syringe
- sharp mgmt basin
- saline basin

1. Isolate femoral artery
2. Access femoral artery
3. Insert micropuncture guidewire
4. Insert micropuncture catheter and obturator
5. Remove guidewire and obturator
6. Insert stiff wire

1. Isolate femoral vein
2. Access femoral vein
3. Insert micropuncture guidewire
4. Insert micropuncture catheter and obturator
5. Remove guidewire and obturator
6. Insert stiff wire

1. Confirm guidewire placement with ultrasound
2. Administer 5000U heparin bolus
3. Remove micropuncture catheters

Begin arterial dilation
1. Make small skin incision
2. Dilation with 8, 12, 14, 16, then 20 French catheters
3. Load cannula obturator into canula through guidewire
4. Insert obturator/cannula combo
5. Remove stiff guidewire and obturator
6. Immediately clamp cannula

Begin venous dilation
1. Make small skin incision
2. Dilation with 8, 12, 14, 16, then 20 French catheters
3. Load cannula obturator into canula through guidewire
4. Insert obturator/cannula combo
5. Remove stiff guidewire and obturator
6. Immediately clamp cannula

Connect to ECMO
1. Maintain hold of both clamps
2. Cut between clamps
3. Unclamp distal clamp
4. Proximal clamp to cannula artery and vein

Drip water over connection 1. Connect arterial cannula to ECMO
2. Check for air bubbles

Unclamp all clamps
Maintain hold of cannulas
Start ECMO
Stop compressions
Secure cannula

2min

10 - 20min

1 - 5min

1min

10min

10 - 15min

ECMO running

127

Appendix D - Interview with Dr. Dinis Reis Miranda

-	Does	the	team	currently	has	a	time	counter	or	follow	the	defibrillator’s	counter?

				Normally	HEMS	team	doesn’t	bring	defibrillator,	unless	they	will	arrive	earlier	than	the	ambulance,	which	is	only	
5%	of	the	cases.	The	ambulance	team	always	brings	defibrillator	but	the	brands	are	different	for	different	regions/
teams.	For	the	time	counter	in	the	defibrillator,	which	counts	down	2min	after	every	reset.	But	the	team	hardly	do	
reset	it	because	it	requires	action	and	does	not	give	warning	about	the	chest	compression	time	and	rhythm	check	
time.

-	Does	the	HEMS	team	or	the	ambulance	team	use	any	type	of	automatic	chest	compressor?

				HEMS	teams	never	bring	automatic	chest	compressor.	For	the	ambulance	teams,	some	regions	use	some	not.		
Most	of	them	use	the	LUCAS	device,	Rotterdam	region	uses	Corpuls	CPR	(only	with	10	ambulances),	Amsterdam	uses	
Autopulse.

-	Does	the	ambulance	team	bring	ECMO?

				For	the	research,	the	HEMS	team	will	bring	one	Cardiohelp	ECMO.

-	Is	the	ECMO	Cardiohelp?	And	has	you	retracted	data	from	Cardiohelp	before?

				Yes.	You	can	only	retract	data	after	stopping	the	machine.	If	you	start	a	new	case,	old	case	will	be	automatically	
deleted.	And	if	you	want	to	record	the	data,	you	need	to	go	multiple	steps	through	the	menu	to	start	recording	
before	running	the	case,	which	is	not	ideal	to	require	the	team	to	do	that	in	critical	situations.	
But	the	data	from	ECMO	would	be	nice	to	have	but	not	necessary	to	have	(wish).

-	What	is	the	protocol/requirement	to	apply	ECMO	on	cardiac	arrest	patient?	After	how	long	CPR	will	the	team	switch	
to	ECMO?
				Yes	it	can	be	referred	to	the	research	protocol.	

-	Do	you	have	an	example	of	a	case	report	that	you	normally	need	to	formulate	after	each	rescue?

				Time	of	112	call,	arrival	time	of	ambulance,	arrival	time	in	hospital,	outcome	of	patients.	These	can	be	easily	
retracted	from	the	hospital	database	later.	The	time	when	CCPR	stops,	when	HEMS	team	arrives,	when	ECMO	starts.	
Time	of	death/ROSC.	When	chest	compression	stops,	only	three	results	left	for	the	patient:	ROSC/ECMO/Death.	For	
the	research	there	are	two	groups:	one	with	ECMO,	one	uses	CCPR	(also	want	the	whole	compression	data).

-	Does	the	pilot	join	the	rescue	or	he	will	wait	at	the	helicopter?

				The	pilot	normally	needs	to	guard	helicopter.	He	can	join	the	rescue	only	if	no	one	is	around	the	helicopter	or	the	
police	is	around	the	helicopter,	because	the	helicopter	always	need	official	staff	to	guard.

128

//MAIN CODE//

#include	<SPI.h>

#include	<SD.h>

#include<Wire.h>

#include	<WiFiNINA.h>

#include	<WiFiUdp.h>

#include	<RTCZero.h>

#include	“thingProperties.h”

const	int	MPU_addr	=	0x68;

const	int	GMT	=	2;	//change	this	to	adapt	it	to	your	time	zone

String	numString;

//String	casename;

File	sensorData;

RTCZero	real_tc;

void	setup()	{

		//SD.begin(4);

		Wire.begin();

		Wire.beginTransmission(MPU_addr);

		Wire.write(0x6B);		//	PWR_MGMT_1	register

		Wire.write(0);					//	set	to	zero	(wakes	up	the	MPU-6050)

		Wire.endTransmission(true);

		//pinMode(LED_BUILTIN,INPUT);

		//	Initialize	serial	and	wait	for	port	to	open:

		Serial.begin(115200);

		SD.begin(4);

		real_tc.begin();	//	initialize	RTC

		real_tc.setEpoch(WiFi.getTime()	+	7200);

		initProperties();

		//	Connect	to	Arduino	IoT	Cloud

		ArduinoCloud.begin(ArduinoIoTPreferredConnection);

		setDebugMessageLevel(2);

		ArduinoCloud.printDebugInfo();

}

void	loop()	{

		acc();

		currtime();

		dataString	=	timeString	+	“,”	+	String(AcZ);

		ArduinoCloud.update();

		savedata();

		delay(1000);

}

void	acc()	{

		Wire.beginTransmission(MPU_addr);

		Wire.write(0x3B);		//	starting	with	register	0x3B	(ACCEL_XOUT_H)

		Wire.endTransmission(false);

		Wire.requestFrom(MPU_addr,	14,	true);	//	request	a	total	of	14	registers

		//AcX	=	Wire.read()	<<	8	|	Wire.read();	//	0x3B	(ACCEL_XOUT_H)	&	0x3C	(ACCEL_XOUT_L)

		//AcY	=	Wire.read()	<<	8	|	Wire.read();	//	0x3D	(ACCEL_YOUT_H)	&	0x3E	(ACCEL_YOUT_L)

Appendix F - Arduino IoT cloud code

129

Appendix F - Arduino IoT cloud code 		AcZ	=	Wire.read()	<<	8	|	Wire.read();	//	0x3F	(ACCEL_ZOUT_H)	&	0x40	(ACCEL_ZOUT_L)

}

String	currtime()	{

		return	timeString	=	String(real_tc.getDay())	+	“/”	+	String(real_tc.getMonth())	+	“/”	+	“20”	+	String(real_tc.getYear())	+	“,”	+	print2digits(real_tc.getHours()	+	GMT)	+	“:”	+	

print2digits(real_tc.getMinutes())	+	“:”	+	print2digits(real_tc.getSeconds());

}

void	savedata()	{

		//casename	=	“case”	+	String(real_tc.getDay())	+	“/”	+	String(real_tc.getMonth())	+	“/”	+	String(real_tc.getYear())	+	“.csv”;

		sensorData	=	SD.open(“sddata.csv”,	FILE_WRITE);

		if	(sensorData)	{

				sensorData.println(dataString);

				sensorData.close();	//	close	the	file

				//digitalWrite(LED_BUILTIN,	LOW);

 }

		else	{

				//digitalWrite(LED_BUILTIN,	HIGH);

				Serial.println(“Error	writing	to	file	!”);

 }

}

String	print2digits(int	num)	{

		if	(num	<	10)	{

				return	numString	=	“0”	+	String(num);

		}	else	return	numString	=	String(num);

}

//arduino_secrets.h//
#define	SECRET_SSID	“”
#define	SECRET_PASS	“”

//thingProperties.h//
#include	<ArduinoIoTCloud.h>
#include	<Arduino_ConnectionHandler.h>
#include	“arduino_secrets.h”

const	char	THING_ID[]	=	“”;

const	char	SSID[]					=	SECRET_SSID;				//	Network	SSID	(name)
const	char	PASS[]					=	SECRET_PASS;				//	Network	password	(use	for	WPA,	or	use	as	key	for	WEP)

String	timeString;
int	AcZ;
String	dataString;

void	initProperties(){

		ArduinoCloud.setThingId(THING_ID);
		ArduinoCloud.addProperty(AcZ,	READ,	1	*	SECONDS,	NULL);
		ArduinoCloud.addProperty(timeString,	READ,	1	*	SECONDS,	NULL);
		ArduinoCloud.addProperty(dataString,	READ,	1	*	SECONDS,	NULL);

}

WiFiConnectionHandler	ArduinoIoTPreferredConnection(SSID,	PASS);

130

Appendix G - Arduino code of NeoPixel, buzzer and mini speaker

//	NeoPixel	Ring	simple	sketch	(c)	2013	Shae	Erisson

//	Released	under	the	GPLv3	license	to	match	the	rest	of	the

//	Adafruit	NeoPixel	library

#include	<Adafruit_NeoPixel.h>

#ifdef	__AVR__

#include	<avr/power.h>	//	Required	for	16	MHz	Adafruit	Trinket

#endif

//	Which	pin	on	the	Arduino	is	connected	to	the	NeoPixels?

#define	PIN								6	//	On	Trinket	or	Gemma,	suggest	changing	this	to	1

//	How	many	NeoPixels	are	attached	to	the	Arduino?

#define	NUMPIXELS	12	//	Popular	NeoPixel	ring	size

//	When	setting	up	the	NeoPixel	library,	we	tell	it	how	many	pixels,

//	and	which	pin	to	use	to	send	signals.	Note	that	for	older	NeoPixel

//	strips	you	might	need	to	change	the	third	parameter	--	see	the

//	strandtest	example	for	more	information	on	possible	values.

Adafruit_NeoPixel	pixels(NUMPIXELS,	PIN,	NEO_GRB	+	NEO_KHZ800);

#define	DELAYVAL	500	//	Time	(in	milliseconds)	to	pause	between	pixels

void	setup()	{

		pixels.begin();	//	INITIALIZE	NeoPixel	strip	object	(REQUIRED)

		pixels.setBrightness(6);

}

void	loop()	{

		//compress();

		//countdown();

		warn();

}

void	compress()	{

		for	(int	i	=	0;	i	<	6;	i++)	{	//	For	each	pixel...

				pixels.setPixelColor(i,	pixels.Color(150,	0,	0));

 }

		pixels.show();			//	Send	the	updated	pixel	colors	to	the	hardware.

		delay(600);	//	Pause	before	next	pass	through	loop

		pixels.clear();

		for	(int	i	=	6;	i	<	12;	i++)	{

				pixels.setPixelColor(i,	pixels.Color(150,	0,	0));

 }

		pixels.show();			//	Send	the	updated	pixel	colors	to	the	hardware.

		delay(600);	//	Pause	before	next	pass	through	loop

		pixels.clear();

}

void	countdown()	{

		for	(int	i	=	1;	i	<	11;	i++)	{	//	For	each	pixel...

				pixels.setPixelColor(i,	pixels.Color(150,	0,	0));

				pixels.show();

				delay(1000);

131

 }

		pixels.clear();

}

void	warn()	{

		for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

				pixels.setPixelColor(i,	pixels.Color(150,	0,	0));

 }

		pixels.show();

		delay(500);

		for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

				pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

		pixels.show();

		delay(500);

}

//	This	code	uses	a	neopixel	ring,	a	buzzer	to	give	audio	and	visual	feedback	to	the	rescuers.	The	rest	part	is	same	with	the	final	code,	like	saving	data	in	micro	SD	card,	uploading	data	

via	WPA2	personal	Wifi	network.

#include	<WiFiNINA.h>

#include	<WiFiUdp.h>

#include	“arduino_secrets.h”

char	server[]	=	“script.google.com”;

char	ssid[]	=	SECRET_SSID;

char	pass[]	=	SECRET_PASS;

int	status	=	WL_IDLE_STATUS;

WiFiSSLClient	client;

String	CPRdata	=	“”;

///////////////////////WIFI and IOT CLOUD////////////////////

#include	<Adafruit_NeoPixel.h>

#ifdef	__AVR__

#include	<avr/power.h>	//	Required	for	16	MHz	Adafruit	Trinket

#endif

#define	PIN								6	//	On	Trinket	or	Gemma,	suggest	changing	this	to	1

#define	NUMPIXELS	12	//	Popular	NeoPixel	ring	size

Adafruit_NeoPixel	pixels(NUMPIXELS,	PIN,	NEO_GRB	+	NEO_KHZ800);

#define	DELAYVAL	500	//	Time	(in	milliseconds)	to	pause	between	pixels

//////////////////////////NEOPIXEL	SETUP////////////////////////////////////

int	buzzerPin	=	5;

int	hertz1	=	262;	//C4

int	hertz2	=	523;	//C5

int	hertz3	=	1046;	//C6

//#include	<AudioZero.h>

long	onTime	=	300;

long	offTime	=	300;

long	onTime2	=	500;

long	offTime2	=	500;

long	onTime3	=	250;

long	offTime3	=	250;

long	onTime4	=	2000;

long	cycle	=	20000;	//130000s	=	2min	+	10s

int	state	=	LOW;

int	state2	=	LOW;

unsigned	long	previous;

132

unsigned	long	before;

unsigned	long	before2	=	0;

int	j	=	11;

/////////AUDIO//////////

#include	<Wire.h>

#define	DS3231_I2C_ADDRESS	0x68

String	monString;

String	dayString;

String	hourString;

String	minString;

String	secString;

String	dateString;

String	timeString;

String	dataString;

///////////RTC/////////////////////

byte	decToBcd(byte	val)	{

		return	((val	/	10	*	16)	+	(val	%	10));

}

byte	bcdToDec(byte	val)	{

		return	((val	/	16	*	10)	+	(val	%	16));

}

/////////////DECIMAL	TO	BINARY//////////////////////////////

#include	<SPI.h>

#include	<SD.h>

String	title	=	“Date,Timestamp,Acceleration,Rate”;

String	datetime;

String	starttime;

String	endtime;

String	filename;

int	SDPin	=	4;

bool	filenamed	=	false;

bool	uploaded	=	true;

bool	recorded	=	false;

//bool	reset	=	false;

File	sensorData;

//File	compress;

//File	countdown;

//File	warn;

/////////SD///////

int	accPin	=	A1;

int	acc;

int	c;

int	compressionRate;

int	maxThreshold	=	910;

int	minThreshold	=	865;

int	pinThreshold	=	10;

unsigned	long	t;

unsigned	long	t1;

unsigned	long	t2;

unsigned	long	t3;

unsigned	long	t4;

const	long	interval	=	300;

const	long	interval2	=	2000;

133

/////////ACCELERATION///////////

void	setup()	{

		Wire.begin();

		Serial.begin(115200);

		SD.begin(SDPin);

		//		Serial.print(“Initializing	SD	card...”);

		//		if	(!SD.begin(SDPin))	{

		//				Serial.println(“initialization	failed!”);

		//				while	(1);

 // }

		//		Serial.println(“initialization	done.”);

		////////////////SD	INITIALIZATION///////////////

		//		byte	second,	minute,	hour,	dayOfWeek,	dayOfMonth,	month,	year;

		//		readDS3231time(&second,	&minute,	&hour,	&dayOfWeek,	&dayOfMonth,	&month,	&year);

		//		//filename	=	“CPRdata.csv”;//monString	+	dayString	+	String(hour,	DEC)	+	“.csv”;

		//		sensorData	=	SD.open(filename,	FILE_WRITE);

		//		if	(sensorData)	{

		//				//sensorData.println(“Session	start”);

		//				sensorData.println(title);

		//				sensorData.close();	//	close	the	file

		//				//Serial.println(title);

 // }

		////////////////////////CREATE	CASE	FILE	IN	SD/////////////////////////////////////

		pixels.begin();

		pixels.setBrightness(5);

		///////////////////////INITIALIZE	NEOPIXEL///////////////////////////////////////

		//AudioZero.begin(2*44100);	//88200	SAMPLE	RATE

		///////////INITIALIZE	AUDIO//////////////////

}

void	loop()	{

		pixels.clear();

		acceleration();

		currtime();

		if	(analogRead(accPin)	>	pinThreshold)	{

				unsigned	long	present	=	millis();

				if	((present	-	before2)	<	cycle)	{	//120s	+	11s=131000

						if	((compressionRate	>	0	and	compressionRate	<=	90)	or	compressionRate	>=	120)	{

								j	=	11;

								compress();

 }

						else	if	(compressionRate	==	0)	{

								countdown();

 }

 }

				else	if	((present	-	before2)	>=	cycle)	{

						notify2min();

						if	(compressionRate	==	0)	{

								before2	=	present;

 }

 }

				if	(recorded	==	false)	{

						datetime	=	dateString	+	“,”;

						starttime	=	timeString	+	“,”;

134

						Serial.println(“Date:”	+	datetime);

						Serial.println(“Start:”	+	starttime);

						recorded	=	true;

 }

				if	((present	-	before)	>	999)	{

						savedata();

						before	=	present;

 }

				uploaded	=	false;

 }

		else	if	((analogRead(accPin)	<=	pinThreshold)	&&	uploaded	==	false)	{

				endtime	=	timeString	+	“,”;

				Serial.println(“End:”	+	endtime);

				while	(status	!=	WL_CONNECTED)	{

						Serial.println(“Connecting	to	wifi...”);

						status	=	WiFi.begin(ssid,	pass);

						if	(analogRead(accPin)	>	pinThreshold)	{

								break;

 }

						if	(uploaded	==	true)	{

								break;

 }

 }

				Serial.println(“Connected	to	wifi”);

				readdata();

				recorded	=	false;

				filenamed	=	false;

 }

		else	{

				recorded	=	false;

				filenamed	=	false;

				Serial.println(analogRead(accPin));

 }

}

void	acceleration()	{

		acc	=	analogRead(accPin);

		t1	=	millis();

		t	=	t1	-	t2;

		//t3	=	t1	-	t4;

		if	(acc	>	maxThreshold)	{

				if	(t	>	450)	{	//	calculate	compression	rate	every	300ms

						compressionRate	=	60000	/	t;	//so	maximal	rate	is	60s/0.3s=200pushes/min

						t2	=	t1;

 }

		}	else	if	(t	>	interval2	&&	acc	<	minThreshold)	{	//	if	no	force	sensed	longer	than	2s,	rate	is	0

				compressionRate	=	0;

 }

}

////////////////////////////////ACCELERATION///

void	savedata()	{

		if	(filenamed	==	false)	{

				filename	=	monString	+	dayString	+	hourString	+	“.csv”;

				sensorData	=	SD.open(filename,	FILE_WRITE);

135

				if	(sensorData)	{

						sensorData.println(title);

						sensorData.close();

 }

				else	{

						Serial.println(“fail	to	write”);

 }

				filenamed	=	true;

 }

		dataString	=	dateString	+	“,”	+	timeString	+	“,”	+	String(acc)	+	“,”	+	String(compressionRate);	//	convert	to	CSV

		sensorData	=	SD.open(filename,	FILE_WRITE);

		if	(sensorData)	{

				sensorData.println(dataString);

				sensorData.close();

				Serial.println(dataString);

 }

		else	{

				Serial.println(“fail	to	write”);

 }

}

void	readdata()	{

		String	avg	=	“112,”;

		if	(client.connectSSL(server,	443))	{

				Serial.println(“connected	to	server”);

				client.println(“GET	https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9038aIQ0/exec?Date=”	+	datetime+”,”+	

datetime+”&Timestamp=”+starttime+”,”+starttime+”&Acceleration=”+endtime+”,”+endtime+”&Rate=”+avg+”,”+avg);

				//client.println(“GET	https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9038aIQ0/exec?Date=”	+	datetime	+	datetime	+	datetime	+	

datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	datetime	+	

datetime	+	“&Start=”	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	

+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	starttime	+	“&End=”	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	

endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	endtime	+	“&Rate=”	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	

avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg	+	avg);

				client.println(“Host:	script.google.com”);

				client.println(“Connection:	close”);

				client.println();

				//uploaded	=	true;

		}	else	Serial.println(“fail”);

}

String	getValue(String	data,	char	separator,	int	index)

{

		int	found	=	0;

		int	strIndex[]	=	{0,	-1};

		int	maxIndex	=	data.length()	-	1;

		for	(int	i	=	0;	i	<=	maxIndex	&&	found	<=	index;	i++)	{

				if	(data.charAt(i)	==	separator	||	i	==	maxIndex)	{

						found++;

						strIndex[0]	=	strIndex[1]	+	1;

						strIndex[1]	=	(i	==	maxIndex)	?	i	+	1	:	i;

 }

 }

		return	found	>	index	?	data.substring(strIndex[0],	strIndex[1])	:	“”;

}

//////////////////////////SD//

void	compress()	{

136

		unsigned	long	current	=	millis();

		if	((state	==	HIGH)	&&	(current	-	previous)	>	onTime)	{

				state	=	LOW;

				previous	=	current;

				if	(state2	==	LOW)	{

						state2	=	HIGH;

						for	(int	i	=	0;	i	<	6;	i++)	{	//	For	each	pixel...

								pixels.setPixelColor(i,	pixels.Color(0,	150,	0));

 }

						for	(int	i	=	6;	i	<	12;	i++)	{	//	For	each	pixel...

								pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

 }

				else	{

						state2	=	LOW;

						for	(int	i	=	0;	i	<	6;	i++)	{	//	For	each	pixel...

								pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

						for	(int	i	=	6;	i	<	12;	i++)	{	//	For	each	pixel...

								pixels.setPixelColor(i,	pixels.Color(0,	150,	0));

 }

 }

				pixels.show();			//	Send	the	updated	pixel	colors	to	the	hardware.

				tone(buzzerPin,	hertz1,	onTime);

 }

		else	if	((state	==	LOW)	&&	(current	-	previous)	>	offTime)	{

				state	=	HIGH;

				previous	=	current;

				for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

						pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

				pixels.show();

				noTone(buzzerPin);

 }

}

void	countdown()	{

		unsigned	long	current	=	millis();

		if	(j	>	1)	{

				if	((state	==	LOW)	&&	(current	-	previous)	>	onTime2)	{

						state	=	HIGH;

						previous	=	current;

						for	(int	i	=	1;	i	<	j;	i++)	{

								pixels.setPixelColor(i,	pixels.Color(150,	0,	0));

 }

						pixels.show();

						tone(buzzerPin,	hertz2,	onTime2);

						j	=	j	-	1;

 }

				else	if	((state	==	HIGH)	&&	(current	-	previous)	>	offTime2)	{

						state	=	LOW;

						previous	=	current;

						pixels.clear();

						noTone(buzzerPin);

 }

		}	else	{

				warn();

 }

137

}

void	warn()	{

		unsigned	long	current	=	millis();

		if	((state	==	LOW)	&&	(current	-	previous)	>	onTime3)	{

				state	=	HIGH;

				previous	=	current;

				for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

						pixels.setPixelColor(i,	pixels.Color(150,	0,	0));

 }

				pixels.show();

				tone(buzzerPin,	hertz3,	onTime3);

 }

		else	if	((state	==	HIGH)	&&	(current	-	previous)	>	offTime3)	{

				state	=	LOW;

				previous	=	current;

				for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

						pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

				pixels.show();

				noTone(buzzerPin);

 }

}

void	notify2min()	{

		unsigned	long	current	=	millis();

		if	((state	==	LOW)	&&	(current	-	previous)	>	onTime3)	{

				state	=	HIGH;

				previous	=	current;

				for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

						pixels.setPixelColor(i,	pixels.Color(0,	150,	0));

 }

				pixels.show();

				tone(buzzerPin,	hertz3,	onTime3);

 }

		else	if	((state	==	HIGH)	&&	(current	-	previous)	>	offTime3)	{

				state	=	LOW;

				previous	=	current;

				for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

						pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

				pixels.show();

				noTone(buzzerPin);

 }

}

///////////////////////////////NEOPIXEL	AND	BUZZER//

void	readDS3231time(byte	*	second,	byte	*	minute,	byte	*	hour,	byte	*	dayOfWeek,	byte	*	dayOfMonth,	byte	*	month,	byte	*	year)

{

		Wire.beginTransmission(DS3231_I2C_ADDRESS);

		Wire.write(0);	//	set	DS3231	register	pointer	to	00h

		Wire.endTransmission();

		Wire.requestFrom(DS3231_I2C_ADDRESS,	7);

		//	request	seven	bytes	of	data	from	DS3231	starting	from	register	00h

		*second	=	bcdToDec(Wire.read()	&	0x7f);

		*minute	=	bcdToDec(Wire.read());

		*hour	=	bcdToDec(Wire.read()	&	0x3f);

		*dayOfWeek	=	bcdToDec(Wire.read());

138

		*dayOfMonth	=	bcdToDec(Wire.read());

		*month	=	bcdToDec(Wire.read());

		*year	=	bcdToDec(Wire.read());

		if	(*month	<	10)	{

				monString	=	“0”	+	String(*month,	DEC);

		}	else	monString	=	String(*month,	DEC);

		if	(*dayOfMonth	<	10)	{

				dayString	=	“0”	+	String(*dayOfMonth,	DEC);

		}	else	dayString	=	String(*dayOfMonth,	DEC);

		if	(*minute	<	10)	{

				minString	=	“0”	+	String(*minute,	DEC);

		}	else	minString	=	String(*minute,	DEC);

		if	(*second	<	10)	{

				secString	=	“0”	+	String(*second,	DEC);

		}	else	secString	=	String(*second,	DEC);

}

void	currtime()

{

		byte	second,	minute,	hour,	dayOfWeek,	dayOfMonth,	month,	year;

		readDS3231time(&second,	&minute,	&hour,	&dayOfWeek,	&dayOfMonth,	&month,	&year);

		dateString	=	“20”	+	String(year,	DEC)	+	“-”	+	monString	+	“-”	+	dayString;

		hourString	=	String(hour,	DEC);

		timeString	=	hourString	+	“:”	+	minString	+	“:”	+	secString;

}

void	setDS3231time(byte	second,	byte	minute,	byte	hour,	byte	dayOfWeek,	byte	dayOfMonth,	byte	month,	byte	year)

{

		//	sets	time	and	date	data	to	DS3231

		Wire.beginTransmission(DS3231_I2C_ADDRESS);

		Wire.write(0);	//	set	next	input	to	start	at	the	seconds	register

		Wire.write(decToBcd(second));	//	set	seconds

		Wire.write(decToBcd(minute));	//	set	minutes

		Wire.write(decToBcd(hour));	//	set	hours

		Wire.write(decToBcd(dayOfWeek));	//	set	day	of	week	(1=Sunday,	7=Saturday)

		Wire.write(decToBcd(dayOfMonth));	//	set	date	(1	to	31)

		Wire.write(decToBcd(month));	//	set	month

		Wire.write(decToBcd(year));	//	set	year	(0	to	99)

		Wire.endTransmission();

}

////////////////////////////////////RTC//

//arduino_secrets.h//
#define	SECRET_SSID	“”
#define	SECRET_PASS	“”

139

//	This	code	uses	a	neopixel	ring,	a	speaker	to	give	audio	and	visual	feedback	to	the	rescuers.	It	needs	wav.	files	to	be	saved	inside	the	micro	sd	card	for	audio	playing.	The	rest	part	is	

same	with	the	final	code,	like	saving	data	in	micro	SD	card,	uploading	data	via	WPA2	personal	Wifi	network.

#include	<WiFiNINA.h>

#include	<WiFiUdp.h>

#include	“arduino_secrets.h”

char	server[]	=	“script.google.com”;

char	ssid[]	=	SECRET_SSID;

char	pass[]	=	SECRET_PASS;

int	status	=	WL_IDLE_STATUS;

WiFiSSLClient	client;

String	CPRdata	=	“”;

///////////////////////WIFI and IOT CLOUD////////////////////

#include	<Adafruit_NeoPixel.h>

#ifdef	__AVR__

#include	<avr/power.h>	//	Required	for	16	MHz	Adafruit	Trinket

#endif

#define	PIN								6	//	On	Trinket	or	Gemma,	suggest	changing	this	to	1

#define	NUMPIXELS	12	//	Popular	NeoPixel	ring	size

Adafruit_NeoPixel	pixels(NUMPIXELS,	PIN,	NEO_GRB	+	NEO_KHZ800);

#define	DELAYVAL	500	//	Time	(in	milliseconds)	to	pause	between	pixels

//////////////////////////NEOPIXEL	SETUP////////////////////////////////////

int	buzzerPin	=	5;

int	hertz1	=	262;	//C4

int	hertz2	=	523;	//C5

int	hertz3	=	1046;	//C5

#include	<AudioZero.h>

long	onTime	=	300;

long	offTime	=	300;

long	onTime2	=	500;

long	offTime2	=	500;

long	onTime3	=	250;

long	offTime3	=	250;

int	state	=	LOW;

int	state2	=	LOW;

unsigned	long	previous;

unsigned	long	before;

int	j	=	11;

File	audioFile;

/////////AUDIO//////////

#include	<Wire.h>

#define	DS3231_I2C_ADDRESS	0x68

String	monString;

String	dayString;

String	hourString;

String	minString;

String	secString;

String	dateString;

String	timeString;

String	dataString;

///////////RTC/////////////////////

byte	decToBcd(byte	val)	{

		return	((val	/	10	*	16)	+	(val	%	10));

}

140

byte	bcdToDec(byte	val)	{

		return	((val	/	16	*	10)	+	(val	%	16));

}

/////////////DECIMAL	TO	BINARY//////////////////////////////

#include	<SPI.h>

#include	<SD.h>

String	title	=	“Date,Timestamp,Acceleration,Rate”;

String	datetime;

String	starttime;

String	endtime;

String	filename;

int	SDPin	=	4;

bool	filenamed	=	false;

bool	uploaded	=	true;

bool	recorded	=	false;

File	sensorData;

//File	compress;

//File	countdown;

//File	warn;

/////////SD///////

int	accPin	=	A1;

int	acc;

int	compressionRate;

int	maxThreshold	=	900;

int	minThreshold	=	865;

int	pinThreshold	=	10;

unsigned	long	t;

unsigned	long	t1;

unsigned	long	t2;

const	long	interval	=	300;

const	long	interval2	=	2000;

/////////ACCELERATION///////////

void	setup()	{

		Wire.begin();

		Serial.begin(115200);

		SD.begin(SDPin);

		//		Serial.print(“Initializing	SD	card...”);

		//		if	(!SD.begin(SDPin))	{

		//				Serial.println(“initialization	failed!”);

		//				while	(1);

 // }

		//		Serial.println(“initialization	done.”);

		////////////////SD	INITIALIZATION///////////////

		//		byte	second,	minute,	hour,	dayOfWeek,	dayOfMonth,	month,	year;

		//		readDS3231time(&second,	&minute,	&hour,	&dayOfWeek,	&dayOfMonth,	&month,	&year);

		//		//filename	=	“CPRdata.csv”;//monString	+	dayString	+	String(hour,	DEC)	+	“.csv”;

		//		sensorData	=	SD.open(filename,	FILE_WRITE);

		//		if	(sensorData)	{

		//				//sensorData.println(“Session	start”);

		//				sensorData.println(title);

		//				sensorData.close();	//	close	the	file

		//				//Serial.println(title);

 // }

		////////////////////////CREATE	CASE	FILE	IN	SD/////////////////////////////////////

141

		pixels.begin();

		pixels.setBrightness(5);

		///////////////////////INITIALIZE	NEOPIXEL///////////////////////////////////////

		//AudioZero.begin(16000);	//16000	SAMPLE	RATE

		///////////INITIALIZE	AUDIO//////////////////

}

void	loop()	{

		if	(analogRead(accPin)	>	pinThreshold)	{

				acceleration();

				currtime();

				if	((compressionRate	>	0	and	compressionRate	<	95)	or	compressionRate	>	110)	{

						j	=	11;

						compress();

						pixels.clear();

				}	else	if	(compressionRate	==	0)	{

						countdown();

						pixels.clear();

 }

				if	(recorded	==	false)	{

						datetime	=	dateString;

						starttime	=	timeString;

						Serial.println(“Date:”	+	datetime);

						Serial.println(“Start:”	+	starttime);

						recorded	=	true;

 }

				unsigned	long	present	=	millis();

				if	((present	-	before)	>	999)	{

						savedata();

						before	=	present;

 }

				uploaded	=	false;

 }

		else	if	((analogRead(accPin)	<	pinThreshold)	&&	uploaded	==	false)	{

				endtime	=	timeString;

				Serial.println(“End:”	+	endtime);

				while	(status	!=	WL_CONNECTED)	{

						Serial.println(“Connecting	to	wifi...”);

						status	=	WiFi.begin(ssid,	pass);

						if	(analogRead(accPin)	>	pinThreshold)	{

								break;

 }

						if	(uploaded	==	true)	{

								break;

 }

 }

				Serial.println(“Connected	to	wifi”);

				readdata();

				recorded	=	false;

				filenamed	=	false;

 }

		else	{

				recorded	=	false;

				filenamed	=	false;

142

				Serial.println(analogRead(accPin));

 }

}

void	acceleration()	{

		acc	=	analogRead(accPin);

		t1	=	millis();

		t	=	t1	-	t2;

		if	(acc	>	maxThreshold)	{

				if	(t	>	interval)	{	//	calculate	compression	rate	every	300ms

						compressionRate	=	60000	/	t;	//so	maximal	rate	is	60s/0.3s=200pushes/min

						t2	=	t1;

 }

		}	else	if	(t	>	interval2	&&	acc	<	minThreshold)	{	//	if	no	force	sensed	longer	than	2s,	rate	is	0

				compressionRate	=	0;

 }

}

////////////////////////////////ACCELERATION///

void	savedata()	{

		if	(filenamed	==	false)	{

				filename	=	monString	+	dayString	+	hourString	+	“.csv”;

				sensorData	=	SD.open(filename,	FILE_WRITE);

				if	(sensorData)	{

						sensorData.println(title);

						sensorData.close();

 }

				else	{

						Serial.println(“fail	to	write”);

 }

				filenamed	=	true;

 }

		dataString	=	dateString	+	“,”	+	timeString	+	“,”	+	String(acc)	+	“,”	+	String(compressionRate);	//	convert	to	CSV

		sensorData	=	SD.open(filename,	FILE_WRITE);

		if	(sensorData)	{

				sensorData.println(dataString);

				sensorData.close();

				Serial.println(dataString);

 }

		else	{

				Serial.println(“fail	to	write”);

 }

}

void	readdata()	{

		if	(client.connectSSL(server,	443))	{

				Serial.println(“connected	to	server”);

				client.println(“GET	https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9038aIQ0/exec?Date=”	+	datetime	+	“&Start=”	+	starttime	+	“&End=”	

+	endtime);

				client.println(“Host:	script.google.com”);

				client.println(“Connection:	close”);

				client.println();

				uploaded	=	true;

		}	else	Serial.println(“fail”);

}

String	getValue(String	data,	char	separator,	int	index)

143

{

		int	found	=	0;

		int	strIndex[]	=	{0,	-1};

		int	maxIndex	=	data.length()	-	1;

		for	(int	i	=	0;	i	<=	maxIndex	&&	found	<=	index;	i++)	{

				if	(data.charAt(i)	==	separator	||	i	==	maxIndex)	{

						found++;

						strIndex[0]	=	strIndex[1]	+	1;

						strIndex[1]	=	(i	==	maxIndex)	?	i	+	1	:	i;

 }

 }

		return	found	>	index	?	data.substring(strIndex[0],	strIndex[1])	:	“”;

}

//////////////////////////SD//

void	compress()	{

		unsigned	long	current	=	millis();

		if	((state	==	HIGH)	&&	(current	-	previous)	>	onTime)	{

				state	=	LOW;

				previous	=	current;

				if	(state2	==	LOW)	{

						state2	=	HIGH;

						for	(int	i	=	0;	i	<	6;	i++)	{	//	For	each	pixel...

								pixels.setPixelColor(i,	pixels.Color(0,	150,	0));

 }

						for	(int	i	=	6;	i	<	12;	i++)	{	//	For	each	pixel...

								pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

 }

				else	{

						state2	=	LOW;

						for	(int	i	=	0;	i	<	6;	i++)	{	//	For	each	pixel...

								pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

						for	(int	i	=	6;	i	<	12;	i++)	{	//	For	each	pixel...

								pixels.setPixelColor(i,	pixels.Color(0,	150,	0));

 }

 }

				AudioZero.begin(16000);

				audioFile	=	SD.open(“compress.wav”);

				pixels.show();			//	Send	the	updated	pixel	colors	to	the	hardware.

				AudioZero.play(audioFile);

 }

		else	if	((state	==	LOW)	&&	(current	-	previous)	>	offTime)	{

				state	=	HIGH;

				previous	=	current;

				for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

						pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

				pixels.show();

				//AudioZero.end();

 }

}

void	countdown()	{

		unsigned	long	current	=	millis();

		if	(j	>	1)	{

144

				if	((state	==	LOW)	&&	(current	-	previous)	>	onTime2)	{

						state	=	HIGH;

						previous	=	current;

						for	(int	i	=	1;	i	<	j;	i++)	{

								pixels.setPixelColor(i,	pixels.Color(150,	0,	0));

 }

						if	(j	==	10	or	j	==	9)	{

								AudioZero.begin(16000);

								audioFile	=	SD.open(“resu.wav”);

								AudioZero.play(audioFile);

 }

						else	if	(j	==	8	or	j	==	7)	{

								AudioZero.begin(16000);

								audioFile	=	SD.open(“87.wav”);

								AudioZero.play(audioFile);

 }

						else	if	(j	==	6	or	j	==	5)	{

								AudioZero.begin(16000);

								audioFile	=	SD.open(“65.wav”);

								AudioZero.play(audioFile);

 }

						else	if	(j	==	4	or	j	==	3)	{

								AudioZero.begin(16000);

								audioFile	=	SD.open(“43.wav”);

								AudioZero.play(audioFile);

 }

						else	{

								AudioZero.begin(16000);

								audioFile	=	SD.open(“21.wav”);

								AudioZero.play(audioFile);

 }

						pixels.show();

						j	=	j	-	1;

 }

				else	if	((state	==	HIGH)	&&	(current	-	previous)	>	offTime2)	{

						state	=	LOW;

						previous	=	current;

						pixels.clear();

						//AudioZero.end();

 }

		}	else	{

				warn();

 }

}

void	warn()	{

		unsigned	long	current	=	millis();

		if	((state	==	LOW)	&&	(current	-	previous)	>	onTime3)	{

				state	=	HIGH;

				previous	=	current;

				for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

						pixels.setPixelColor(i,	pixels.Color(150,	0,	0));

 }

				AudioZero.begin(16000);

				audioFile	=	SD.open(“warn.wav”);

				pixels.show();

				AudioZero.play(audioFile);

145

 }

		else	if	((state	==	HIGH)	&&	(current	-	previous)	>	offTime3)	{

				state	=	LOW;

				previous	=	current;

				for	(int	i	=	0;	i	<	12;	i++)	{	//	For	each	pixel...

						pixels.setPixelColor(i,	pixels.Color(0,	0,	0));

 }

				pixels.show();

				//AudioZero.end();

 }

}

///////////////////////////////NEOPIXEL	AND	BUZZER//

void	readDS3231time(byte	*second,	byte	*minute,	byte	*hour,	byte	*dayOfWeek,	byte	*dayOfMonth,	byte	*month,	byte	*year)

{

		Wire.beginTransmission(DS3231_I2C_ADDRESS);

		Wire.write(0);	//	set	DS3231	register	pointer	to	00h

		Wire.endTransmission();

		Wire.requestFrom(DS3231_I2C_ADDRESS,	7);

		//	request	seven	bytes	of	data	from	DS3231	starting	from	register	00h

		*second	=	bcdToDec(Wire.read()	&	0x7f);

		*minute	=	bcdToDec(Wire.read());

		*hour	=	bcdToDec(Wire.read()	&	0x3f);

		*dayOfWeek	=	bcdToDec(Wire.read());

		*dayOfMonth	=	bcdToDec(Wire.read());

		*month	=	bcdToDec(Wire.read());

		*year	=	bcdToDec(Wire.read());

		if	(*month	<	10)	{

				monString	=	“0”	+	String(*month,	DEC);

		}	else	monString	=	String(*month,	DEC);

		if	(*dayOfMonth	<	10)	{

				dayString	=	“0”	+	String(*dayOfMonth,	DEC);

		}	else	dayString	=	String(*dayOfMonth,	DEC);

		if	(*minute	<	10)	{

				minString	=	“0”	+	String(*minute,	DEC);

		}	else	minString	=	String(*minute,	DEC);

		if	(*second	<	10)	{

				secString	=	“0”	+	String(*second,	DEC);

		}	else	secString	=	String(*second,	DEC);

}

void	currtime()

{

		byte	second,	minute,	hour,	dayOfWeek,	dayOfMonth,	month,	year;

		readDS3231time(&second,	&minute,	&hour,	&dayOfWeek,	&dayOfMonth,	&month,	&year);

		dateString	=	“20”	+	String(year,	DEC)	+	“-”	+	monString	+	“-”	+	dayString;

		hourString	=	String(hour,	DEC);

		timeString	=	hourString	+	“:”	+	minString	+	“:”	+	secString;

}

void	setDS3231time(byte	second,	byte	minute,	byte	hour,	byte	dayOfWeek,	byte	dayOfMonth,	byte	month,	byte	year)

{

		//	sets	time	and	date	data	to	DS3231

		Wire.beginTransmission(DS3231_I2C_ADDRESS);

146

		Wire.write(0);	//	set	next	input	to	start	at	the	seconds	register

		Wire.write(decToBcd(second));	//	set	seconds

		Wire.write(decToBcd(minute));	//	set	minutes

		Wire.write(decToBcd(hour));	//	set	hours

		Wire.write(decToBcd(dayOfWeek));	//	set	day	of	week	(1=Sunday,	7=Saturday)

		Wire.write(decToBcd(dayOfMonth));	//	set	date	(1	to	31)

		Wire.write(decToBcd(month));	//	set	month

		Wire.write(decToBcd(year));	//	set	year	(0	to	99)

		Wire.endTransmission();

}

////////////////////////////////////RTC//

//arduino_secrets.h//
#define	SECRET_SSID	“”
#define	SECRET_PASS	“”

147

Appendix H - Final Google Script code
//	This	code	shows	how	the	Google	Script	takes	the	uploaded	data	from	the	Arduino	and	store	it	in	its	corresponding	Google	spreadsheets	and	make	analysis	and	charts	over	the	data.	

The	corresponding	sheet	link	is:	https://docs.google.com/spreadsheets/d/1WH5DgohmEYl1PSwjiyz5xM3mm7EYOXnFjsHGCCtlg_Q/edit#gid=340263445

var	id	=	‘1WH5DgohmEYl1PSwjiyz5xM3mm7EYOXnFjsHGCCtlg_Q’;	//	This	is	the	spreadsheet	ID	that	corresponds	to	this	script

var	spreadsheet	=	SpreadsheetApp.openById(id);

var	sheet	=	SpreadsheetApp.openById(id).getActiveSheet();

function	doGet(e)	{		//	Get	the	CPRdata	as	e	from	Arduino	from	the	Https	request:	https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9038a

IQ0/exec?CPRdata=”	+	CPRdata,	‘AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9038aIQ0‘	is	the	ID	of	this	script

		Logger.log(JSON.stringify(e));	//	Make	e	as	a	string

		var	result	=	‘Ok’;	

		if	(e.parameter	==	undefined)	{

				result	=	‘No	Parameters’;

 }

		else	{

				var	newRow;

				for	(var	param	in	e.parameter)	{

						Logger.log(‘In	for	loop,	param=’+param);

						var	value	=	stripQuotes(e.parameter[param]);	//	stripQuotes()	function	eliminate	potential	garbled	characters	from	e	

						switch	(param)	{

										case	‘CPRdata’:	//Parameter

										var	CPRdata	=	value.split(“,”);	//	Split	value	(e)	by	comma	and	assign	it	into	CPRdata	array

										break;

 default:

										result	=	“Wrong	parameter”;

 }

 }

						Logger.log(JSON.stringify(CPRdata));

				newRow	=	sheet.getLastRow()	+	1;

				var	newRange	=	sheet.getRange(newRow,	1,	100,	4);	//	Assign	400	cells	(100	lines	of	data:	date,	time,	ACC,	rate)	all	in	once

				newRange.setValues([[CPRdata[0],CPRdata[1],CPRdata[2],CPRdata[3]],[CPRdata[4],CPRdata[5],CPRdata[6],CPRdata[7]],[CPRdata[8],CPRdata[9],CPRdata[10],CPRdata[11]],

																								[CPRdata[12],CPRdata[13],CPRdata[14],CPRdata[15]],[CPRdata[16],CPRdata[17],CPRdata[18],CPRdata[19]],[CPRdata[20],CPRdata[21],CPRdata[22],CPRdata[23]],

																								[CPRdata[24],CPRdata[25],CPRdata[26],CPRdata[27]],[CPRdata[28],CPRdata[29],CPRdata[30],CPRdata[31]],[CPRdata[32],CPRdata[33],CPRdata[34],CPRdata[35]],

																								[CPRdata[36],CPRdata[37],CPRdata[38],CPRdata[39]],[CPRdata[40],CPRdata[41],CPRdata[42],CPRdata[43]],[CPRdata[44],CPRdata[45],CPRdata[46],CPRdata[47]],

																								[CPRdata[48],CPRdata[49],CPRdata[50],CPRdata[51]],[CPRdata[52],CPRdata[53],CPRdata[54],CPRdata[55]],[CPRdata[56],CPRdata[57],CPRdata[58],CPRdata[59]],

																								[CPRdata[60],CPRdata[61],CPRdata[62],CPRdata[63]],[CPRdata[64],CPRdata[65],CPRdata[66],CPRdata[67]],[CPRdata[68],CPRdata[69],CPRdata[70],CPRdata[71]],

																								[CPRdata[72],CPRdata[73],CPRdata[74],CPRdata[75]],[CPRdata[76],CPRdata[77],CPRdata[78],CPRdata[79]],[CPRdata[80],CPRdata[81],CPRdata[82],CPRdata[83]],

																								[CPRdata[84],CPRdata[85],CPRdata[86],CPRdata[87]],[CPRdata[88],CPRdata[89],CPRdata[90],CPRdata[91]],[CPRdata[92],CPRdata[93],CPRdata[94],CPRdata[95]],

																								[CPRdata[96],CPRdata[97],CPRdata[98],CPRdata[99]],[CPRdata[100],CPRdata[101],CPRdata[102],CPRdata[103]],[CPRdata[104],CPRdata[105],CPRdata[106],CPRdata[107]],

																								[CPRdata[108],CPRdata[109],CPRdata[110],CPRdata[111]],[CPRdata[112],CPRdata[113],CPRdata[114],CPRdata[115]],[CPRdata[116],CPRdata[117],CPRdata[11

8],CPRdata[119]],

																								[CPRdata[120],CPRdata[121],CPRdata[122],CPRdata[123]],[CPRdata[124],CPRdata[125],CPRdata[126],CPRdata[127]],[CPRdata[128],CPRdata[129],CPRdata[13

0],CPRdata[131]],

																								[CPRdata[132],CPRdata[133],CPRdata[134],CPRdata[135]],[CPRdata[136],CPRdata[137],CPRdata[138],CPRdata[139]],[CPRdata[140],CPRdata[141],CPRdata[14

2],CPRdata[143]],

																								[CPRdata[144],CPRdata[145],CPRdata[146],CPRdata[147]],[CPRdata[148],CPRdata[149],CPRdata[150],CPRdata[151]],[CPRdata[152],CPRdata[153],CPRdata[15

4],CPRdata[155]],

																								[CPRdata[156],CPRdata[157],CPRdata[158],CPRdata[159]],[CPRdata[160],CPRdata[161],CPRdata[162],CPRdata[163]],[CPRdata[164],CPRdata[165],CPRdata[16

6],CPRdata[167]],

																								[CPRdata[168],CPRdata[169],CPRdata[170],CPRdata[171]],[CPRdata[172],CPRdata[173],CPRdata[174],CPRdata[175]],[CPRdata[176],CPRdata[177],CPRdata[17

8],CPRdata[179]],

																								[CPRdata[180],CPRdata[181],CPRdata[182],CPRdata[183]],[CPRdata[184],CPRdata[185],CPRdata[186],CPRdata[187]],[CPRdata[188],CPRdata[189],CPRdata[19

0],CPRdata[191]],

148

																								[CPRdata[192],CPRdata[193],CPRdata[194],CPRdata[195]],[CPRdata[196],CPRdata[197],CPRdata[198],CPRdata[199]],[CPRdata[200],CPRdata[201],CPRdata[20

2],CPRdata[203]],

																								[CPRdata[204],CPRdata[205],CPRdata[206],CPRdata[207]],[CPRdata[208],CPRdata[209],CPRdata[210],CPRdata[211]],[CPRdata[212],CPRdata[213],CPRdata[21

4],CPRdata[215]],

																								[CPRdata[216],CPRdata[217],CPRdata[218],CPRdata[219]],[CPRdata[220],CPRdata[221],CPRdata[222],CPRdata[223]],[CPRdata[224],CPRdata[225],CPRdata[22

6],CPRdata[227]],

																								[CPRdata[228],CPRdata[229],CPRdata[230],CPRdata[231]],[CPRdata[232],CPRdata[233],CPRdata[234],CPRdata[235]],[CPRdata[236],CPRdata[237],CPRdata[23

8],CPRdata[239]],

																								[CPRdata[240],CPRdata[241],CPRdata[242],CPRdata[243]],[CPRdata[244],CPRdata[245],CPRdata[246],CPRdata[247]],[CPRdata[248],CPRdata[249],CPRdata[25

0],CPRdata[251]],

																								[CPRdata[252],CPRdata[253],CPRdata[254],CPRdata[255]],[CPRdata[256],CPRdata[257],CPRdata[258],CPRdata[259]],[CPRdata[260],CPRdata[261],CPRdata[26

2],CPRdata[263]],

																								[CPRdata[264],CPRdata[265],CPRdata[266],CPRdata[267]],[CPRdata[268],CPRdata[269],CPRdata[270],CPRdata[271]],[CPRdata[272],CPRdata[273],CPRdata[27

4],CPRdata[275]],

																								[CPRdata[276],CPRdata[277],CPRdata[278],CPRdata[279]],[CPRdata[280],CPRdata[281],CPRdata[282],CPRdata[283]],[CPRdata[284],CPRdata[285],CPRdata[28

6],CPRdata[287]],

																								[CPRdata[288],CPRdata[289],CPRdata[290],CPRdata[291]],[CPRdata[292],CPRdata[293],CPRdata[294],CPRdata[295]],[CPRdata[296],CPRdata[297],CPRdata[29

8],CPRdata[299]],

																								[CPRdata[300],CPRdata[301],CPRdata[302],CPRdata[303]],[CPRdata[304],CPRdata[305],CPRdata[306],CPRdata[307]],[CPRdata[308],CPRdata[309],CPRdata[31

0],CPRdata[311]],

																								[CPRdata[312],CPRdata[313],CPRdata[314],CPRdata[315]],[CPRdata[316],CPRdata[317],CPRdata[318],CPRdata[319]],[CPRdata[320],CPRdata[321],CPRdata[32

2],CPRdata[323]],

																								[CPRdata[324],CPRdata[325],CPRdata[326],CPRdata[327]],[CPRdata[328],CPRdata[329],CPRdata[330],CPRdata[331]],[CPRdata[332],CPRdata[333],CPRdata[33

4],CPRdata[335]],

																								[CPRdata[336],CPRdata[337],CPRdata[338],CPRdata[339]],[CPRdata[340],CPRdata[341],CPRdata[342],CPRdata[343]],[CPRdata[344],CPRdata[345],CPRdata[34

6],CPRdata[347]],

																								[CPRdata[348],CPRdata[349],CPRdata[350],CPRdata[351]],[CPRdata[352],CPRdata[353],CPRdata[354],CPRdata[355]],[CPRdata[356],CPRdata[357],CPRdata[35

8],CPRdata[359]],

																								[CPRdata[360],CPRdata[361],CPRdata[362],CPRdata[363]],[CPRdata[364],CPRdata[365],CPRdata[366],CPRdata[367]],[CPRdata[368],CPRdata[369],CPRdata[37

0],CPRdata[371]],

																								[CPRdata[372],CPRdata[373],CPRdata[374],CPRdata[375]],[CPRdata[376],CPRdata[377],CPRdata[378],CPRdata[379]],[CPRdata[380],CPRdata[381],CPRdata[38

2],CPRdata[383]],

																								[CPRdata[384],CPRdata[385],CPRdata[386],CPRdata[387]],[CPRdata[388],CPRdata[389],CPRdata[390],CPRdata[391]],[CPRdata[392],CPRdata[393],CPRdata[39

4],CPRdata[395]],

																								[CPRdata[396],CPRdata[397],CPRdata[398],CPRdata[399]]]);

 }

		var	end	=	sheet.getRange(sheet.getLastRow(),1).getValue();	//	Get	the	value	of	the	last	line	of	the	sheet

		if	(end	==	“END”){	//	If	the	last	value	is	“END”,	it	means	the	upload	is	done

		setName();	//	Set	the	sheet	name

		setValue();	//	Caculate	compression	start	time,	duration,	end	time,	pause	interval	and	average	rate

		newChart();	//	Generate	a	chart	summary

		newSheet();	//	Create	a	new	sheet	for	next	session

		sendEmail();	//	Send	email	to	the	HEMS	team	if	this	spreadsheet	is	full

 }

		//	Return	result	of	operation

		return	ContentService.createTextOutput(result);

}

function	stripQuotes(value)	{

		return	value.replace(/^[“’]|[‘”]$/g,	“”);

}

function	setName(){

		var	name	=	Utilities.formatDate(new	Date(),	“CET”,	“yy-MM-dd/HH:mm”);	//	Set	the	sheet	name	based	on	current	time

		sheet.setName(name);

}

149

function	newChart()	{	//	Generate	a	chart	summary	of	this	session,	blue	line	represents	the	ACC	value	and	red	represents	compression	rate

		var	lastRow	=	sheet.getLastRow()-2;

		var	chart	=	sheet.newChart()

					.setChartType(Charts.ChartType.LINE)

					.addRange(sheet.getRange(2,3,lastRow,2))

					.setPosition(4,	10,	2,	2)

					.setOption(‘title’,	‘CPR	Session	summary’)

					.setOption(‘width’,	1000)

					.setOption(‘height’,	400);

		sheet.insertChart(chart.build());

}

function	setValue(){	//	

		var	rate;

		var	avg;

		var	start;

		var	end;

		var	row;

		var	change	=	false;

		var	finish	=	false;

		var	j	=	1;

		var	data	=	sheet.getRange(3,2,sheet.getLastRow(),1).getValues();	//	Take	the	whole	values	of	ACC	into	array	data

		for	(i	=	2;	i<	sheet.getLastRow();	i++){	//	Go	through	every	line	of	the	ACC	value	in	the	loop

				if	(data[i]	>=	90	&&	change	==	false){	//	If	ACC	value	is	bigger	than	90,	which	counts	as	valid	compression	rate

						row	=	i;

						start	=	sheet.getRange(i,2).getValue();	//	Get	corresponding	time

						sheet.getRange(j,5).setValue(start);	//Set	this	time	as	compression	start	time

						rate	=	sheet.getRange(i,4).getValue();	//Set	corresponding	compression	rate	as	start	rate

						sheet.getRange(j,8).setFormula(“=MINUS(R[1]C[-3],R[0]C[-1])”);	//	Set	pause	interval

						change	=	true;	//	Change	state

				}	else	if	(data[i]	>=	90	&&	change	==	true){	//	If	ACC	value	is	bigger	than	90	and	state	changes

						rate	=	rate	+	val;	//	Accumulate	rate	values

				}	else	if	(data[i]	<90	&&	change	==	true){	//	If	ACC	valus	is	smaller	than	90,	which	counts	as	invalid	compression	rate

						end	=	sheet.getRange(i,2).getValue();	//	Get	corresponding	time

						sheet.getRange(j,7).setValue(end);	//Set	this	time	as	compression	end	time

						sheet.getRange(j,6).setFormula(“=MINUS(R[0]C[1],R[0]C[-1])”);	//	Calculate	CPR	duration

						avg	=	float2int(rate/(i	-	row));	//	Calculate	average	compression	rate

						sheet.getRange(j,9).setValue(avg);	//	Set	average	rate

						j++;	//	Move	to	next	row

						change	=	false;	//	Change	state	back

 }

 }

//	Current	loop	takes	more	than	6min	to	execute	if	the	whole	data	is	too	large	(>	3600	lines),	which	would	cause	a	corruption	becasue	Google	restrict	the	function	execution	time	to	

6min.	

//	Following	code	tries	to	solve	this	problem	by	going	through	the	loop	and	calculating	values	with	arrays.	But	this	code	is	not	working	now.	It	needs	further	development	to	make	sure	

that	at	least	7200	lines	of	data	can	be	taken	care	of	by	the	funciton	within	6min.

//		var	ratedata	=	sheet.getRange(3,2,sheet.getLastRow(),1).getValues();

//		var	timedata	=	sheet.getRange(1,2,sheet.getLastRow(),1).getValues();

//		var	result	=	new	Array(5);

//		var	values	=	[];

//		for	(i	=	0;	i<	sheet.getLastRow();	i++){

//				if	(ratedata[i]	>=	90	&&	change	==	false){

//						row	=	i;

//						result[0]	=	timedata[i];	//start	time

//						rate	=	ratedata	[i];	//start	rate

//						result[3]	=	result[0]	-	result[2];//pause	interval

//						change	=	true;

//				}	else	if	(ratedata[i]	>=	90	&&	change	==	true){

150

//						rate	=	rate	+	ratedata[i];

//				}	else	if	(ratedata[i]	<90	&&	change	==	true){

//						result[2]	=	timedata[i];	//end	time

//						result[1]	=	result[2]	-	result[0];	//duration

//						result[4]	=	float2int(rate/(i	-	row));	//avg	rate

//						change	=	false;

//						finish	=	true;

// }

//				if	(finish	==	true){

//						values.push(result);

//						j++;

//						finish	=	false;

// }

// }

//		sheet.getRange(2,5,j,5).setValues(values);

//		for	(i	=	2;	i<	sheet.getLastRow();	i++){

}

function	float2int	(value)	{	//	Transfer	float	to	integer

				return	value	|	0;

}

function	newSheet(){	//	Create	a	new	sheet	for	the	next	session	based	on	the	template	sheet

		var	template	=	spreadsheet.getSheetByName(‘template’);

		var	options	=	{template:	template};

		spreadsheet.insertSheet(0,options);

 }

function	sendEmail	()	{	//	Send	email	to	HEMS	team	if	this	spreadsheet	is	full	with	200	sheets

		var	numSheets	=	spreadsheet.getSheets().length;	//	Get	the	number	of	sheets	inside	this	spreadsheet

		if	(numSheets	==	200){	//	If	it	contains	200	sheets,	which	means	it	is	full

		DriveApp.getFileById(spreadsheet.getId()).makeCopy();	//	Make	a	full	copy	of	this	spreadsheet	in	the	same	Google	Drive	to	backup	the	spreadsheet

		var	address	=	‘xxx@mail.com’;	//	Send	email	to	this	address	with	following	text

		var	subject	=	‘Data	of	199	CPR	sessions	are	collected’;

		var	body	=	‘Hi	xxx,	the	data	of	199	CPR	sessions	are	collected	and	saved	in	the	HEMS	folder’;

		MailApp.sendEmail(address,subject,body);

		for	(i	=	0;i<199;	i++){	//	Delete	all	the	sheets	in	this	spreadsheet	except	the	template	sheet,	so	this	spreadsheet	is	ready	for	more	sessions

		spreadsheet.deleteActiveSheet();

 }

 }

}

151

Appendix I - Final Arduino code: WPA2 personal and enterprise
version

//	This	is	the	final	code	for	the	Arduino	MKR	1010	Wifi.	It	collects	data	and	sends	data	by	connecting	to	a	WPA2	personal	Wifi	network.

///////////////////WIFI and IOT CLOUD////////////////////

//This	part	sets	up	the	libraries	and	variables	for	Wifi	connection	and	Https	requests

#include	<WiFiNINA.h>	//	Necessary	library

#include	<WiFiUdp.h>	//	Necessary	library

#include	“arduino_secrets.h”	//	Contains	password

char	server[]	=	“script.google.com”;

char	ssid[]	=	SECRET_SSID;

char	pass[]	=	SECRET_PASS;

int	status	=	WL_IDLE_STATUS;

WiFiSSLClient	client;

String	CPRdata	=	“”;

///////////////////WIFI and IOT CLOUD////////////////////

///////////////////////////RTC///////////////////////////

//This	part	sets	up	the	libraries	and	variables	for	the	DS3231	RTC	module

#include	<Wire.h>

#define	DS3231_I2C_ADDRESS	0x68

String	monString;

String	dayString;

String	hourString;

String	minString;

String	secString;

String	dateString;

String	timeString;

String	dataString;

byte	decToBcd(byte	val)	{

		return	((val	/	10	*	16)	+	(val	%	10));

}

byte	bcdToDec(byte	val)	{

		return	((val	/	16	*	10)	+	(val	%	16));

}

///////////////////////////RTC///////////////////////////

///////////////////////////SD////////////////////////////

//This	part	sets	up	the	libraries	and	variables	for	the	micro	SD	card	module

#include	<SPI.h>

#include	<SD.h>

String	filename	=	“CPR_Data.csv”;

String	title	=	“Date,Timestamp,Acceleration,Rate”;

String	sheetname;

int	SDPin	=	7;	//	CS	(chip	selected)	Pin	to	digital	pin	7

int	p;

int	vol;

bool	uploaded	=	true;

bool	recorded	=	false;

bool	filenamed	=	false;

bool	marked	=	false;

File	sensorData;

File	sdfile;

///////////////////////////SD////////////////////////////

152

//////////////////////////ACC////////////////////////////

//This	part	sets	up	the	libraries	and	variables	for	calculate	the	chest	compresion	rate	based	on	the	ACC	readings	from	CorPatch

int	accPin	=	A1;	//	ACC	pin	to	Analog	pin	1

int	acc;

int	maxval;

int	compressionRate;

int	maxThreshold	=	910;	//	ACC	readings	that	are	higher	than	this	threshold	count	as	a	valid	compression

int	minThreshold	=	875;	//	ACC	readings	that	are	lower	than	this	threshold	count	as	no	compression

int	pinThreshold	=	100;	//	If	ACC	reading	is	higher	than	this	threshold,	it	means	CorPatch	is	plugged	in

unsigned	long	t;

unsigned	long	t1;

unsigned	long	t2;

unsigned	long	before;

const	long	interval	=	400;	//	Chest	compression	rate	is	calculated	every	400ms

const	long	interval2	=	2000;	//	If	longer	than	2000ms,	

//////////////////////////ACC////////////////////////////

////////////////////SETUP	FUNCTION///////////////////////

//	This	setup	function	only	run	once	at	the	beginning	when	the	device	is	turned	on

void	setup()	{

		Wire.begin();	

		Serial.begin(115200);	

		SD.begin(SDPin);

		//setDS3231time(40,	44,	13,	2,	11,	8,	20);	//	This	function	is	used	to	synce	current	time

}

////////////////////SETUP	FUNCTION///////////////////////

/////////////////////LOOP FUNCTION///////////////////////

//	This	loop	function	is	looped	as	long	as	the	device	is	turned	on	after	executing	the	setup	function

void	loop()	{

		if	(analogRead(accPin)	>	pinThreshold)	{	//	If	the	ACC	value	is	higher	than	pinThreshold	(100),	it	means	that	the	CorPatch	is	plugged	in

				acceleration();	//	Calculate	compression	rate

				currtime();	//	Get	current	time

				unsigned	long	present	=	millis();

				if	((present	-	before)	>	999)	{	//called	every	1000ms

						savedata();	//	Create	a	new	csv	file,	save	the	current	time	(date,	time),	ACC	value,	compression	rate	value	to	this	file	in	the	micro	SD	card

						before	=	present;	//	refresh	timer

 }

				uploaded	=	false;	//	This	file	is	not	uploaded	to	Google	sheet	yet

				marked	=	false;	//	This	saved	csv	file	is	not	marked	as	‘END’	yet

 }

		else	if	((analogRead(accPin)	<=	pinThreshold)	and	uploaded	==	false)	{	//If	ACC	value	is	lower	than	pinThreshold	(100),	it	means	CorPatch	is	unplugged,	and	if	the	data	is	not	uploaded	

yet,	upload	the	data	here

				markend();	//	Mark	an	‘END’	string	at	the	end	of	the	just	saved	csv	file

				while	(status	!=	WL_CONNECTED)	{	//	This	is	a	while	loop	function,	which	means	it	only	stops	until	the	condition	is	not	true	or	a	‘break’	is	called	during	the	loop.	Here	if	Wifi	is	not	

conected,	the	function	loops	until	Wifi	is	connected	or	‘break’	is	called

						Serial.println(“Connecting	to	wifi...”);	

						status	=	WiFi.begin(ssid,	pass);	//	Connect	to	Wifi	with	SSID	and	password

						if	(analogRead(accPin)	>	pinThreshold)	{	//	If	the	CorPatch	is	plugged	in	again,	break	this	loop

								break;

 }

						if	(uploaded	==	true)	{	//	If	data	is	uploaded,	break	this	loop

								break;

 }

 }

				Serial.println(“Connected	to	wifi”);

				readdata();	//	send	data	to	Google	sheets

				recorded	=		false;	//

153

				filenamed	=	false;	//	The	new	file	for	next	case	is	not	created	yet

 }

		else	{	//After	uploading	the	data	of	this	case,	the	device	goes	to	standby	mode,	which	does	nothing	until	the	CorPatch	is	plugged	in	again

				recorded	=	false;

				filenamed	=	false;	//	The	new	file	for	the	next	case	is	not	created	yet

				marked	=	false;	//	The	new	file	for	the	next	case	is	not	marked	as	‘END’	yet

				Serial.println(analogRead(accPin));

 }

}

/////////////////////LOOP FUNCTION///////////////////////

/////////////////////ACCELERATION////////////////////////

//This	function	is	is	called	to	get	current	ACC	value	and	calculate	compression	rate	every	400ms

void	acceleration()	{

		acc	=	analogRead(accPin);	//	Get	ACC	raw	value

		if	(millis()	-	t	>	interval)	{	//	Do	this	every	400ms

				if	(acc	>=	maxval)	{	//	If	the	ACC	value	is	increasing

						maxval	=	acc;	//	Max	ACC	value	is	the	new	reading

				}	else	{	//	If	the	ACC	value	starts	to	decrease,	which	means	the	last	maxval	is	the	peak	during	this	period

						if	(maxval	>	maxThreshold)	{	//	If	the	peak	ACC	value	is	bigger	than	maxThreshold	(910)

								compressionRate	=	60000	/	(millis()	-	t);	//	Calculate	the	compression	rate	by	dividing	60000ms	by	the	interval	between	current	and	last	time	the	peak	value	occurs

								maxval	=	0;	//	maxval	set	back	to	0

								t	=	millis();	//	current	time	is	recorded	to	t

 }

 }

 }

		if	(millis()	-	t	>	interval2	&&	acc	<	minThreshold)	{	//	If	ACC	value	is	smaller	than	minThreshold	(875)	for	more	than	2	seconds

				compressionRate	=	0;	//	Compression	rate	is	set	as	0

 }

}

/////////////////////ACCELERATION////////////////////////

////////////////SAVE	DATA	TO	SD	CARD/////////////////////

//	This	function	is	called	to	save	the	current	data	to	a	newly	created	csv	file	in	the	micro	SD	card

void	savedata()	{

		if	(filenamed	==	false)	{	//	If	a	new	file	is	not	created	yet	for	the	new	rescue	case

				sheetname	=	monString	+	dayString	+	hourString	+	minString	+	“.csv”;	//	Create	a	new	file	by	namin	it	with	current	time,	this	file	is	used	to	upload	data	to	Google	sheets	later

				filenamed	=	true;	//	File	is	created	for	the	rescue	case

				sdfile	=	SD.open(filename,	FILE_WRITE);	//	Open	the	newly	created	file

				if	(sdfile)	{

						sdfile.println(title);	//	Write	the	file	title	“Date,Timestamp,Acceleration,Rate”	in	the	first	row	of	the	csv	file,	so	here	4	columns	with	these	4	titles	are	created	inside	the	csv	file

						sdfile.close();

 }

				else	{

						Serial.println(“fail	to	write”);

 }

 }

		dataString	=	dateString	+	“,”	+	timeString	+	“,”	+	String(acc)	+	“,”	+	String(compressionRate)	+	“,”;	//	Combine	the	whole	data	into	one	string	with	commas	in	between

		sensorData	=	SD.open(sheetname,	FILE_WRITE);	//	Save	the	data	to	the	file	that	is	used	to	upload	to	Google	sheets

		if	(sensorData)	{

				if	(p	<	99)	{	//	Write	the	100	lines	of	the	dataString	in	one	row	inside	the	csv	file,	so	they	can	be	uploaded	in	batch	later

						sensorData.print(dataString);

						p++;

 }

				else	{

						sensorData.println(dataString);

						p	=	0;

154

 }

				sensorData.close();

 }

		else	{

				Serial.println(“fail	to	write”);

 }

		sdfile	=	SD.open(filename,	FILE_WRITE);	//	Open	the	backup	CPRData.csv	file,,	which	contains	all	the	historic	data

		if	(sdfile)	{

				sdfile.println(vol);

				sdfile.println(dataString);	//	Write	the	new	data	into	the	file

				sdfile.close();

 }

		else	{

				Serial.println(“fail	to	write”);

 }

		Serial.println(dataString);

}

////////////////SAVE	DATA	TO	SD	CARD/////////////////////

//////////////////MARK	FILE	AS	END///////////////////////

//This	function	is	used	to	mark	an	“END”	string	at	the	end	of	an	unuploaded	file,	so	the	Arduino	knows	when	to	stop	upload	data

void	markend()	{

		if	(marked	==	false)	{	//	If	the	file	is	not	marked

				sensorData	=	SD.open(sheetname,	FILE_WRITE);	//	Open	the	upload	file

				if	(sensorData)	{

						sensorData.println(“\nEND\n”);	//	Add	“END”	at	then	end	of	the	file

						sensorData.close();

 }

				else	{

						Serial.println(“fail	to	write”);

 }

				sdfile	=	SD.open(filename,	FILE_WRITE);	//	Open	the	backup	CPRData.csv	file

				if	(sdfile)	{

						sdfile.println(“\nEND\n”);	//	Add	“END”	at	then	end	of	the	file

						sdfile.close();

 }

				else	{

						Serial.println(“fail	to	write”);

 }

				marked	=	true;	//	The	file	is	marked

 }

}

//////////////////MARK	FILE	AS	END///////////////////////

/////////////UPLOAD	DATA	TO	GOOGLE	SHEETS////////////////

//This	function	uplaods	the	saved	csv	file	to	the	google	sheets

void	readdata()	{

		sensorData	=	SD.open(sheetname);	//	Open	the	upload	file

		if	(sensorData)	{

				while	(sensorData.available())	{	//	During	upload,	this	while	loop	only	stops	is	the	SD	card	module	is	not	communicating	or	a	break	is	called

						CPRdata	=	sensorData.readStringUntil(‘\n’);	//	Read	the	first	line	and	assign	it	to	CPRdata	string,	which	contains	100	lines	of	the	dataString	(100s	of	data)

						Serial.println(CPRdata);

						if	(client.connectSSL(server,	443))	{

								Serial.println(“connected	to	server”);

								client.println(“GET	https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9038aIQ0/exec?CPRdata=”	+	CPRdata);	//	Attach	the	CPRdata	string	

at	the	end	of	this	Https	address	to	upload	data	to	Google	sheets

155

								client.println(“Host:	script.google.com”);

								client.println(“Connection:	close”);

								client.println();

 }

						if	(CPRdata	==	“END”)	{	//	If	the	CPRdata	is	assigned	as	“END”,	which	means	this	is	the	end	of	the	file

								uploaded	=	true;	//	Mark	the	file	as	uploaded

								break;	//	Get	out	of	the	while	loop

 }

 }

		}	else	Serial.println(“fail”);

}

/////////////UPLOAD	DATA	TO	GOOGLE	SHEETS////////////////

///////////////////GET	CURRENT	TIME//////////////////////

//	This	function	gets	the	current	time	from	the	DS3231	module

void	readDS3231time(byte	*	second,	byte	*	minute,	byte	*	hour,	byte	*	dayOfWeek,	byte	*	dayOfMonth,	byte	*	month,	byte	*	year)

{

		Wire.beginTransmission(DS3231_I2C_ADDRESS);

		Wire.write(0);	//	set	DS3231	register	pointer	to	00h

		Wire.endTransmission();

		Wire.requestFrom(DS3231_I2C_ADDRESS,	7);

		//	request	seven	bytes	of	data	from	DS3231	starting	from	register	00h

		*second	=	bcdToDec(Wire.read()	&	0x7f);

		*minute	=	bcdToDec(Wire.read());

		*hour	=	bcdToDec(Wire.read()	&	0x3f);

		*dayOfWeek	=	bcdToDec(Wire.read());

		*dayOfMonth	=	bcdToDec(Wire.read());

		*month	=	bcdToDec(Wire.read());

		*year	=	bcdToDec(Wire.read());

		if	(*month	<	10)	{	//	Following	codes	format	the	corresponding	time	unit	into	2	digits

				monString	=	“0”	+	String(*month,	DEC);

		}	else	monString	=	String(*month,	DEC);

		if	(*dayOfMonth	<	10)	{

				dayString	=	“0”	+	String(*dayOfMonth,	DEC);

		}	else	dayString	=	String(*dayOfMonth,	DEC);

		if	(*minute	<	10)	{

				minString	=	“0”	+	String(*minute,	DEC);

		}	else	minString	=	String(*minute,	DEC);

		if	(*second	<	10)	{

				secString	=	“0”	+	String(*second,	DEC);

		}	else	secString	=	String(*second,	DEC);

}

///////////////////GET	CURRENT	TIME//////////////////////

//////////FORMAT	CURRENT	TIME	INTO	A	STRING//////////////

//	This	function	combines	the	time	data	into	one	formatted	string	as	“2020-02-09”	and	“23:04:12”,	for	example.

void	currtime()

{

		byte	second,	minute,	hour,	dayOfWeek,	dayOfMonth,	month,	year;

		readDS3231time(&second,	&minute,	&hour,	&dayOfWeek,	&dayOfMonth,	&month,	&year);

		dateString	=	“20”	+	String(year,	DEC)	+	“-”	+	monString	+	“-”	+	dayString;

		hourString	=	String(hour,	DEC);

		timeString	=	hourString	+	“:”	+	minString	+	“:”	+	secString;

}

156

//////////FORMAT	CURRENT	TIME	INTO	A	STRING//////////////

//////////////////////RESET	TIME/////////////////////////

//	This	function	reset	the	current	time	in	the	DS3231	module

void	setDS3231time(byte	second,	byte	minute,	byte	hour,	byte	dayOfWeek,	byte	dayOfMonth,	byte	month,	byte	year)

{

		//	sets	time	and	date	data	to	DS3231

		Wire.beginTransmission(DS3231_I2C_ADDRESS);

		Wire.write(0);	//	set	next	input	to	start	at	the	seconds	register

		Wire.write(decToBcd(second));	//	set	seconds

		Wire.write(decToBcd(minute));	//	set	minutes

		Wire.write(decToBcd(hour));	//	set	hours

		Wire.write(decToBcd(dayOfWeek));	//	set	day	of	week	(1=Sunday,	7=Saturday)

		Wire.write(decToBcd(dayOfMonth));	//	set	date	(1	to	31)

		Wire.write(decToBcd(month));	//	set	month

		Wire.write(decToBcd(year));	//	set	year	(0	to	99)

		Wire.endTransmission();

}

//////////////////////RESET	TIME/////////////////////////

//arduino_secrects.h//
//	This	file	stores	the	SSID	nad	password	of	the	Wifi	network

#define	SECRET_SSID	“”	//	Put	the	SSID	between	the	double	quotes
#define	SECRET_PASS	“”	//Put	the	password	between	the	double	quotes

157

//	This	is	the	final	code	for	the	Arduino	MKR	1010	Wifi.	It	collects	data	and	sends	data	by	connecting	to	a	WPA2	enterprise	Wifi	network.

///////////////////WIFI and IOT CLOUD////////////////////

//This	part	sets	up	the	libraries	and	variables	for	Wifi	connection	and	Https	requests

#include	<WiFiNINA.h>	//	Necessary	library

#include	<WiFiUdp.h>	//	Necessary	library

#include	“arduino_secrets.h”	//	Contains	password

char	server[]	=	“script.google.com”;

char	ssid[]	=	SECRET_SSID;

char	pass[]	=	SECRET_PASS;

int	status	=	WL_IDLE_STATUS;

WiFiSSLClient	client;

String	CPRdata	=	“”;

///////////////////WIFI and IOT CLOUD////////////////////

///////////////////////////RTC///////////////////////////

//This	part	sets	up	the	libraries	and	variables	for	the	DS3231	RTC	module

#include	<Wire.h>

#define	DS3231_I2C_ADDRESS	0x68

String	monString;

String	dayString;

String	hourString;

String	minString;

String	secString;

String	dateString;

String	timeString;

String	dataString;

byte	decToBcd(byte	val)	{

		return	((val	/	10	*	16)	+	(val	%	10));

}

byte	bcdToDec(byte	val)	{

		return	((val	/	16	*	10)	+	(val	%	16));

}

///////////////////////////RTC///////////////////////////

///////////////////////////SD////////////////////////////

//This	part	sets	up	the	libraries	and	variables	for	the	micro	SD	card	module

#include	<SPI.h>

#include	<SD.h>

String	filename	=	“CPR_Data.csv”;

String	title	=	“Date,Timestamp,Acceleration,Rate”;

String	sheetname;

int	SDPin	=	7;	//	CS	(chip	selected)	Pin	to	digital	pin	7

int	p;

int	vol;

bool	uploaded	=	true;

bool	recorded	=	false;

bool	filenamed	=	false;

bool	marked	=	false;

File	sensorData;

File	sdfile;

///////////////////////////SD////////////////////////////

//////////////////////////ACC////////////////////////////

//This	part	sets	up	the	libraries	and	variables	for	calculate	the	chest	compresion	rate	based	on	the	ACC	readings	from	CorPatch

int	accPin	=	A1;	//	ACC	pin	to	Analog	pin	1

int	acc;

int	maxval;

158

int	compressionRate;

int	maxThreshold	=	910;	//	ACC	readings	that	are	higher	than	this	threshold	count	as	a	valid	compression

int	minThreshold	=	875;	//	ACC	readings	that	are	lower	than	this	threshold	count	as	no	compression

int	pinThreshold	=	100;	//	If	ACC	reading	is	higher	than	this	threshold,	it	means	CorPatch	is	plugged	in

unsigned	long	t;

unsigned	long	t1;

unsigned	long	t2;

unsigned	long	before;

const	long	interval	=	400;	//	Chest	compression	rate	is	calculated	every	400ms

const	long	interval2	=	2000;	//	If	longer	than	2000ms,	

//////////////////////////ACC////////////////////////////

////////////////////SETUP	FUNCTION///////////////////////

//	This	setup	function	only	run	once	at	the	beginning	when	the	device	is	turned	on

void	setup()	{

		Wire.begin();	

		Serial.begin(115200);	

		SD.begin(SDPin);

		//setDS3231time(40,	44,	13,	2,	11,	8,	20);	//	This	function	is	used	to	synce	current	time

}

////////////////////SETUP	FUNCTION///////////////////////

/////////////////////LOOP FUNCTION///////////////////////

//	This	loop	function	is	looped	as	long	as	the	device	is	turned	on	after	executing	the	setup	function

void	loop()	{

		if	(analogRead(accPin)	>	pinThreshold)	{	//	If	the	ACC	value	is	higher	than	pinThreshold	(100),	it	means	that	the	CorPatch	is	plugged	in

				acceleration();	//	Calculate	compression	rate

				currtime();	//	Get	current	time

				unsigned	long	present	=	millis();

				if	((present	-	before)	>	999)	{	//called	every	1000ms

						savedata();	//	Create	a	new	csv	file,	save	the	current	time	(date,	time),	ACC	value,	compression	rate	value	to	this	file	in	the	micro	SD	card

						before	=	present;	//	refresh	timer

 }

				uploaded	=	false;	//	This	file	is	not	uploaded	to	Google	sheet	yet

				marked	=	false;	//	This	saved	csv	file	is	not	marked	as	‘END’	yet

 }

		else	if	((analogRead(accPin)	<=	pinThreshold)	and	uploaded	==	false)	{	//If	ACC	value	is	lower	than	pinThreshold	(100),	it	means	CorPatch	is	unplugged,	and	if	the	data	is	not	uploaded	

yet,	upload	the	data	here

				markend();	//	Mark	an	‘END’	string	at	the	end	of	the	just	saved	csv	file

				while	(status	!=	WL_CONNECTED)	{	//	This	is	a	while	loop	function,	which	means	it	only	stops	until	the	condition	is	not	true	or	a	‘break’	is	called	during	the	loop.	Here	if	Wifi	is	not	

conected,	the	function	loops	until	Wifi	is	connected	or	‘break’	is	called

						Serial.println(“Connecting	to	wifi...”);	

						status	=	WiFi.beginEnterprise(ssid,	user,	pass);	//	Connect	to	Wifi	with	SSID,	usename	and	password

						delay(10000);	//Delay	for	10s	is	maybe	needed	because	it	takes	time	to	connect	to	WPA2	enterprise

						if	(analogRead(accPin)	>	pinThreshold)	{	//	If	the	CorPatch	is	plugged	in	again,	break	this	loop

								break;

 }

						if	(uploaded	==	true)	{	//	If	data	is	uploaded,	break	this	loop

								break;

 }

 }

				Serial.println(“Connected	to	wifi”);

				readdata();	//	send	data	to	Google	sheets

				recorded	=		false;	//

				filenamed	=	false;	//	The	new	file	for	next	case	is	not	created	yet

 }

		else	{	//After	uploading	the	data	of	this	case,	the	device	goes	to	standby	mode,	which	does	nothing	until	the	CorPatch	is	plugged	in	again

159

				recorded	=	false;

				filenamed	=	false;	//	The	new	file	for	the	next	case	is	not	created	yet

				marked	=	false;	//	The	new	file	for	the	next	case	is	not	marked	as	‘END’	yet

				Serial.println(analogRead(accPin));

 }

}

/////////////////////LOOP FUNCTION///////////////////////

/////////////////////ACCELERATION////////////////////////

//This	function	is	is	called	to	get	current	ACC	value	and	calculate	compression	rate	every	400ms

void	acceleration()	{

		acc	=	analogRead(accPin);	//	Get	ACC	raw	value

		if	(millis()	-	t	>	interval)	{	//	Do	this	every	400ms

				if	(acc	>=	maxval)	{	//	If	the	ACC	value	is	increasing

						maxval	=	acc;	//	Max	ACC	value	is	the	new	reading

				}	else	{	//	If	the	ACC	value	starts	to	decrease,	which	means	the	last	maxval	is	the	peak	during	this	period

						if	(maxval	>	maxThreshold)	{	//	If	the	peak	ACC	value	is	bigger	than	maxThreshold	(910)

								compressionRate	=	60000	/	(millis()	-	t);	//	Calculate	the	compression	rate	by	dividing	60000ms	by	the	interval	between	current	and	last	time	the	peak	value	occurs

								maxval	=	0;	//	maxval	set	back	to	0

								t	=	millis();	//	current	time	is	recorded	to	t

 }

 }

 }

		if	(millis()	-	t	>	interval2	&&	acc	<	minThreshold)	{	//	If	ACC	value	is	smaller	than	minThreshold	(875)	for	more	than	2	seconds

				compressionRate	=	0;	//	Compression	rate	is	set	as	0

 }

}

/////////////////////ACCELERATION////////////////////////

////////////////SAVE	DATA	TO	SD	CARD/////////////////////

//	This	function	is	called	to	save	the	current	data	to	a	newly	created	csv	file	in	the	micro	SD	card

void	savedata()	{

		if	(filenamed	==	false)	{	//	If	a	new	file	is	not	created	yet	for	the	new	rescue	case

				sheetname	=	monString	+	dayString	+	hourString	+	minString	+	“.csv”;	//	Create	a	new	file	by	namin	it	with	current	time,	this	file	is	used	to	upload	data	to	Google	sheets	later

				filenamed	=	true;	//	File	is	created	for	the	rescue	case

				sdfile	=	SD.open(filename,	FILE_WRITE);	//	Open	the	newly	created	file

				if	(sdfile)	{

						sdfile.println(title);	//	Write	the	file	title	“Date,Timestamp,Acceleration,Rate”	in	the	first	row	of	the	csv	file,	so	here	4	columns	with	these	4	titles	are	created	inside	the	csv	file

						sdfile.close();

 }

				else	{

						Serial.println(“fail	to	write”);

 }

 }

		dataString	=	dateString	+	“,”	+	timeString	+	“,”	+	String(acc)	+	“,”	+	String(compressionRate)	+	“,”;	//	Combine	the	whole	data	into	one	string	with	commas	in	between

		sensorData	=	SD.open(sheetname,	FILE_WRITE);	//	Save	the	data	to	the	file	that	is	used	to	upload	to	Google	sheets

		if	(sensorData)	{

				if	(p	<	99)	{	//	Write	the	100	lines	of	the	dataString	in	one	row	inside	the	csv	file,	so	they	can	be	uploaded	in	batch	later

						sensorData.print(dataString);

						p++;

 }

				else	{

						sensorData.println(dataString);

						p	=	0;

 }

				sensorData.close();

 }

		else	{

160

				Serial.println(“fail	to	write”);

 }

		sdfile	=	SD.open(filename,	FILE_WRITE);	//	Open	the	backup	CPRData.csv	file,,	which	contains	all	the	historic	data

		if	(sdfile)	{

				sdfile.println(vol);

				sdfile.println(dataString);	//	Write	the	new	data	into	the	file

				sdfile.close();

 }

		else	{

				Serial.println(“fail	to	write”);

 }

		Serial.println(dataString);

}

////////////////SAVE	DATA	TO	SD	CARD/////////////////////

//////////////////MARK	FILE	AS	END///////////////////////

//This	function	is	used	to	mark	an	“END”	string	at	the	end	of	an	unuploaded	file,	so	the	Arduino	knows	when	to	stop	upload	data

void	markend()	{

		if	(marked	==	false)	{	//	If	the	file	is	not	marked

				sensorData	=	SD.open(sheetname,	FILE_WRITE);	//	Open	the	upload	file

				if	(sensorData)	{

						sensorData.println(“\nEND\n”);	//	Add	“END”	at	then	end	of	the	file

						sensorData.close();

 }

				else	{

						Serial.println(“fail	to	write”);

 }

				sdfile	=	SD.open(filename,	FILE_WRITE);	//	Open	the	backup	CPRData.csv	file

				if	(sdfile)	{

						sdfile.println(“\nEND\n”);	//	Add	“END”	at	then	end	of	the	file

						sdfile.close();

 }

				else	{

						Serial.println(“fail	to	write”);

 }

				marked	=	true;	//	The	file	is	marked

 }

}

//////////////////MARK	FILE	AS	END///////////////////////

/////////////UPLOAD	DATA	TO	GOOGLE	SHEETS////////////////

//This	function	uplaods	the	saved	csv	file	to	the	google	sheets

void	readdata()	{

		sensorData	=	SD.open(sheetname);	//	Open	the	upload	file

		if	(sensorData)	{

				while	(sensorData.available())	{	//	During	upload,	this	while	loop	only	stops	is	the	SD	card	module	is	not	communicating	or	a	break	is	called

						CPRdata	=	sensorData.readStringUntil(‘\n’);	//	Read	the	first	line	and	assign	it	to	CPRdata	string,	which	contains	100	lines	of	the	dataString	(100s	of	data)

						Serial.println(CPRdata);

						if	(client.connectSSL(server,	443))	{

								Serial.println(“connected	to	server”);

								client.println(“GET	https://script.google.com/macros/s/AKfycbwZVNu1a-d2qICRNFSq0CgYL3DwjHHyvu9rY4PlPYy9038aIQ0/exec?CPRdata=”	+	CPRdata);	//	Attach	the	CPRdata	string	

at	the	end	of	this	Https	address	to	upload	data	to	Google	sheets

								client.println(“Host:	script.google.com”);

								client.println(“Connection:	close”);

								client.println();

 }

161

						if	(CPRdata	==	“END”)	{	//	If	the	CPRdata	is	assigned	as	“END”,	which	means	this	is	the	end	of	the	file

								uploaded	=	true;	//	Mark	the	file	as	uploaded

								break;	//	Get	out	of	the	while	loop

 }

 }

		}	else	Serial.println(“fail”);

}

/////////////UPLOAD	DATA	TO	GOOGLE	SHEETS////////////////

///////////////////GET	CURRENT	TIME//////////////////////

//	This	function	gets	the	current	time	from	the	DS3231	module

void	readDS3231time(byte	*	second,	byte	*	minute,	byte	*	hour,	byte	*	dayOfWeek,	byte	*	dayOfMonth,	byte	*	month,	byte	*	year)

{

		Wire.beginTransmission(DS3231_I2C_ADDRESS);

		Wire.write(0);	//	set	DS3231	register	pointer	to	00h

		Wire.endTransmission();

		Wire.requestFrom(DS3231_I2C_ADDRESS,	7);

		//	request	seven	bytes	of	data	from	DS3231	starting	from	register	00h

		*second	=	bcdToDec(Wire.read()	&	0x7f);

		*minute	=	bcdToDec(Wire.read());

		*hour	=	bcdToDec(Wire.read()	&	0x3f);

		*dayOfWeek	=	bcdToDec(Wire.read());

		*dayOfMonth	=	bcdToDec(Wire.read());

		*month	=	bcdToDec(Wire.read());

		*year	=	bcdToDec(Wire.read());

		if	(*month	<	10)	{	//	Following	codes	format	the	corresponding	time	unit	into	2	digits

				monString	=	“0”	+	String(*month,	DEC);

		}	else	monString	=	String(*month,	DEC);

		if	(*dayOfMonth	<	10)	{

				dayString	=	“0”	+	String(*dayOfMonth,	DEC);

		}	else	dayString	=	String(*dayOfMonth,	DEC);

		if	(*minute	<	10)	{

				minString	=	“0”	+	String(*minute,	DEC);

		}	else	minString	=	String(*minute,	DEC);

		if	(*second	<	10)	{

				secString	=	“0”	+	String(*second,	DEC);

		}	else	secString	=	String(*second,	DEC);

}

///////////////////GET	CURRENT	TIME//////////////////////

//////////FORMAT	CURRENT	TIME	INTO	A	STRING//////////////

//	This	function	combines	the	time	data	into	one	formatted	string	as	“2020-02-09”	and	“23:04:12”,	for	example.

void	currtime()

{

		byte	second,	minute,	hour,	dayOfWeek,	dayOfMonth,	month,	year;

		readDS3231time(&second,	&minute,	&hour,	&dayOfWeek,	&dayOfMonth,	&month,	&year);

		dateString	=	“20”	+	String(year,	DEC)	+	“-”	+	monString	+	“-”	+	dayString;

		hourString	=	String(hour,	DEC);

		timeString	=	hourString	+	“:”	+	minString	+	“:”	+	secString;

}

//////////FORMAT	CURRENT	TIME	INTO	A	STRING//////////////

//////////////////////RESET	TIME/////////////////////////

//	This	function	reset	the	current	time	in	the	DS3231	module

162

void	setDS3231time(byte	second,	byte	minute,	byte	hour,	byte	dayOfWeek,	byte	dayOfMonth,	byte	month,	byte	year)

{

		//	sets	time	and	date	data	to	DS3231

		Wire.beginTransmission(DS3231_I2C_ADDRESS);

		Wire.write(0);	//	set	next	input	to	start	at	the	seconds	register

		Wire.write(decToBcd(second));	//	set	seconds

		Wire.write(decToBcd(minute));	//	set	minutes

		Wire.write(decToBcd(hour));	//	set	hours

		Wire.write(decToBcd(dayOfWeek));	//	set	day	of	week	(1=Sunday,	7=Saturday)

		Wire.write(decToBcd(dayOfMonth));	//	set	date	(1	to	31)

		Wire.write(decToBcd(month));	//	set	month

		Wire.write(decToBcd(year));	//	set	year	(0	to	99)

		Wire.endTransmission();

}

//////////////////////RESET	TIME/////////////////////////

//arduino_secrects.h//
//	This	file	stores	the	SSID	nad	password	of	the	Wifi	network

#define	SECRET_SSID	“”	//	Put	the	SSID	between	the	double	quotes
#define	SECRET_PASS	“”	//Put	the	password	between	the	double	quotes

163

Appendix J - Solidworks model assembly and parts drawings

164

165

166

Appendix K - Purchase links of the cost estimation

				As	shown	in	the	figure,	to	print	one	set	of	housing	in	Ultiimaker	2+,	it	needs	9	hours	20	minutes	and	66	grams	
of	filament.	If	the	manufacture	size	is	15	data	collectors,	the	total	printing	time	will	be	150	hours	(6.25	days)	and	
the	total	filament	needed	will	be	990	grams.	According	to	http://goedkoop3dprinterhuren.nl/prijzen/,	renting	an	
Ultimaker	2+	for	a	week	costs	€130,	and	1000	grams	of	filament	costs	€20.	In	total,	€150	is	estimated	to	print	the	
housings	of	15	data	collectors.	Following	are	purchase	links	that	are	used	to	estimate	the	cost:

 3D printing parts
 Prijzen	–	Goedkoop	3D	printer	huren.	(n.d.).	Goedkoop3dprinterhuren.	http://goedkoop3dprinterhuren.nl/prijzen/

 DS3231 RTC module
 AZDelivery	Real	Time	Clock	RTC	DS3231	I2C	Real	time	klok	voor	Arduino	met	eBook:	Amazon.nl.	(n.d.).	Amazon.Nl.	https://www.
amazon.nl/gp/product/B01M2B7HQB/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1

 Micro SD card module
 Kiwi	Electronics.	(n.d.-b).	MicroSD	card	breakout	board+.	https://www.kiwi-electronics.nl/microsd-card-breakout-board-
plus?search=micro%20sd&description=true

 SanDisk micro SD card 16GB
 Sandisk	SDSDQM-016G-B35	flashgeheugen	16	GB	MicroSDHC.	(n.d.).	Bol.Com.	https://www.bol.com/nl/p/sandisk-sdsdqm-016g-b35-
flashgeheugen-16-gb-microsdhc/9000000012279555/?s2a=#productTitle

 Arduino MKR 1010 Wifi
 Arduino	MKR	WiFi	1010	|	Arduino	Official	Store.	(2020).	Arduino.	https://store.arduino.cc/arduino-mkr-wifi-1010

 10kΩ resistor
 Kiwi	Electronics.	(n.d.-c).	Weerstand	10K	Ohm	-	1/4	watt	-	5%	-	10	stuks.	https://www.kiwi-electronics.nl/Weerstand-10K-ohm-1-4-
watt-5-procent-10-stuks?search=resistor%2010k&description=true

 AA battery
 Duracell	batterij	72	pack	AA.	(n.d.).	Bol.Com.	https://www.bol.com/nl/p/duracell-batterij-72-pack-aa/9200000074443115/?Referrer=
ADVNLGOO002018-G-58263947517-S-493987207082-9200000074443115&gclid=Cj0KCQjw-O35BRDVARIsAJU5mQXBfA8yNOgvndIxoUct4dugE
Vn16sWYt8vuOUcybdNWKqzj8Mq-bFMaAsUXEALw_wcB

167

Appendix K - Purchase links of the cost estimation CR2032 cell battery
 VARTA	CR2032	lithium	knoopcellen	3V	batterij	in	originele	blisterverpakking,	10-pack:	Amazon.nl.	(n.d.).	Amazon.Nl.	https://www.
amazon.nl/gp/product/B018S4PTNW/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1

 Velcro bands double sided
 KabelDirekt	-	klittenband	kabelbinders	hersluitbaar	-	20	mm	x	5	m	-	(rol	voor	kabels,	vrij	op	maat	te	snijden	&	herbruikbaar,	wit):	
Amazon.nl.	(n.d.).	Amazon.Nl.	https://www.amazon.nl/gp/product/B07BYLY15R/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1

 9 pins D-Sub cable 2M
 Premium	seriële	RS232	kabel	9-pins	SUB-D	(m)	-	9-pins	SUB-D	(m)	/	gegoten	connectoren	-	2	meter	-	9-pin	SUB-D	(RS232/RS485)	
-	SUB-D	(9p/15p/25p)	-	Computer	|	Onlinekabelshop.nl.	(n.d.).	Onlinekabelshop.	https://www.onlinekabelshop.nl/seriele-kabel-9pins-sub-d-
mannelijk-9pins-sub-d-mannelijk-2-meter

 Wires
 VELLEMAN	-	K/MOWM	Schakeldraad-assortiment	-	10	kleuren	-	60	m	-	0,2	mm2	volledig	materiaal	276230:	Amazon.nl.	(n.d.).	
Amazon.Nl.	https://www.amazon.nl/VELLEMAN-Schakeldraad-assortiment-kleuren-volledig-materiaal/dp/B001IRVDV4/ref=sr_1_2?__mk_nl_
NL=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=arduino+wire&qid=1597746429&sr=8-2

 Contact plates
 Spring	100st	Battery	Battery	Shrapnel	AA	of	AAA-batterij	Spring	7	No.	positieve	en	negatieve	Contact	Stukken	50pairs	
Drop	Ship	Easy	to	install:	Amazon.nl.	(n.d.).	Amazon.Nl.	https://www.amazon.nl/gp/product/B08DHRCCL6/ref=ox_sc_act_
title_2?smid=A2GWW94JYD74WR&psc=1

