
BioMechanical Engineering

Accelerating flat reinforcement learning on
a robot by using subgoals in a hierarchical
framework

B. van Vliet

M
as
te
r
th
es
is
–
11
77

Delft University of Technology
Faculty of Mechanical, Maritime and Materials Engineering

Department of BioMechanical Engineering

Master thesis

Accelerating flat reinforcement learning on a
robot by using subgoals in a hierarchical

framework

Author:
B. van Vliet
Wb1175734

Supervisor:
E. Schuitema

Professor:
Prof.dr.ir. P.P. Jonker

October 14, 2010

Preface

Seeing a robot learn what it is supposed to learn is satisfying.
Seeing it learn something it is not supposed to is fun.

This document contains the report of my research in the form of a sci-
entific paper and an appendix. The appendix contains more detailed
information about the software implementation and work that has been
done, but which did not fit into the paper.
I would like to thank everyone who supported me during this research.
Special thanks goes to my supervisor Erik Schuitema, for answering all
the C++ questions, for helping me to find software bugs and for his
feedback.

Bart van Vliet

Accelerating flat reinforcement learning on a robot by using

subgoals in a hierarchical framework

van Vliet, B.

Abstract — Learning a motor skill task with
Reinforcement Learning still takes a long time.
A way to speed up the learning process with-
out using much prior knowledge is to use sub-
goals. In this study, the use of subgoals de-
creased the learning time by a factor nine and
we show that tests on a real robot give simi-
lar results. The price to be paid, in case the
subgoals do not lie on the optimal path, is a
worse end performance. Hierarchical greedy
execution can (partially) cancel out this prob-
lem. For future work, we suggest the use of a
method which is able to obtain optimal per-
formance.

1 Introduction

As robots become more versatile, it becomes harder
to design their controllers. Instead, we could use
the reinforcement learning (RL) framework. In this
framework, the robot learns to perform tasks by max-
imizing the rewards it receives by interacting with the
environment. In order to optimize, the robot explores
by performing random actions. In this way, RL can
find the optimal solution without the need of knowl-
edge about the system. However, learning a task with
RL can take a long time. This is why researchers are
looking for ways to speed up the learning process. To
accomplish this without using a lot of prior knowl-
edge, while still aiming for an optimal solution, we
look into the use of subgoals. These subgoals can be
regarded as guiding waypoints, placed on the path to
the goal of the task, and are either given or discovered
by an algorithm, like L-Cut [1].

1.1 Related work

A way to implement subgoals in the RL framework
is to use reward shaping, by giving extra reward for
reaching a subgoal. In this way, the learner knows
when it is on the right way to the goal. In [2] a
robot had to grasp a puck and drop it at home. By
giving a reward for grasping the puck, the learning
speed was improved. However, the robot can quickly
discover it can gather many rewards by continuously
grasping and dropping the puck, each time collecting
the subgoal reward. Such behavior was shown in [3]
and to avoid this, a penalty has to be given for such
behavior. In the task of [2] this was done by giving a
penalty for dropping the puck away from home, but
it is not always this straightforward to find a way
to penalize the repetitive behavior. In [4] and [5],
more general methods to avoid the cyclic movements
have been presented, however, these methods require
much prior knowledge.

Another way to solve the problem is by adding an
extra state variable, which tells which subgoal has
been reached. In [6] this is done by making a subtask
for each subgoal. The root task learned to execute
these subtasks in the correct order. Such a hierarchi-
cal approach is believed to be a good way to make RL
suitable for complex tasks and more general frame-
works have been developed later, of which [7] and [8]
are the most popular. These frameworks also add re-
gions in state space for each subtask, where the sub-
task is allowed to be executed. This limits the choice
for the root task, which improves the learning speed.
Another advantage of these frameworks is that they
can be extended with hierarchical greedy execution
(HGE). When this is used, the root task is allowed
to go to the next subgoal, while the previous subgoal

1

Figure 1: Leo, a 2D bipedal autonomous robot and
the simulation of its left leg. Its task is to learn how
to make a step onto the platform.

has not been reached yet. This is especially benefi-
cial when the subgoals are not placed on the optimal
path. In this case, HGE can bring the solution closer
(or make it equal) to the optimal solution.

1.2 Goal

In this paper we test the use of subgoals on a task
performed by a single leg of our robot LEO; see Fig-
ure 1. In section 4.1 we show that subgoals speed
up the learning process. Also, we will show that the
robot learns even faster when adding a region for each
subgoal where it is allowed to be executed. In section
4.2 we compare these results with the same setting,
but in a hierarchical structure. Furthermore, we will
test whether HGE indeed helps to bring the solu-
tion closer to the optimal solution. Then we show
the influence of bad subgoal placement in section
4.3. Lastly, we compare simulation results with re-
sults of the real robot in section 4.4, which is, to our
knowledge, the first time the hierarchical framework
MAXQ [8] is applied to a real robot.

2 Preliminaries

In the reinforcement learning (RL) framework, an
agent interacts with the environment. The agent per-
forms actions and perceives the state and rewards.
The goal of the agent is to maximize the sum of re-
wards it perceives. The interaction is usually mod-
eled as a Markov decision process (MDP). It is a dis-
crete time process where, each time step, the agent
perceives a state s and chooses an action a. The
next time step, the agent ends up in a new state
s′ with probability T (s, a, s′) and receives a reward
r = R(s, a, s′). This reward function R has to be
designed by an engineer or user, while the state tran-
sition probability function T can be unknown. The
agent chooses actions based on the state it is in, ac-
cording to: a = π(s), where π is the policy of the
agent. A policy should exploit its current knowledge,
but should also explore to find better solutions. To
do so, we chose to use an ε-greedy policy, which sim-
ply chooses a random action with chance ε and a
greedy action otherwise. A greedy action is the one
that exploits the current knowledge; it is the action
where the policy expects the highest sum of rewards.
In order to find the greedy action, the policy uses
the action-value function Q(s, a). It contains the
expected sum of discounted rewards for each state-
action pair when taking action a in state s and fol-
lowing policy π afterward, as shown in (1).

Q(s, a) = E

{
iend∑
i=1

[
γi−1rt+i

]
|st = s

}
(1)

Where γ ∈ [0, 1] is the time discount factor. The
actual learning is done by updating the Q values such
that they make a good prediction of the rewards that
are going to be received.

We will use a general speed up method: eligibility
traces. In short, the trace contains a history of state-
action pairs. Instead of only updating the Q values
of the last state-action pair, the whole history can
be updated. One can argue that state-action pairs
further back in history are less responsible for the
last rewards. Therefore, the update of a state-action
pair of k steps ago, is discounted by λk, with trace
discount factor λ ∈ [0, 1]. However, some state-action

2

pairs can occur multiple times in the trace. To avoid
such pairs getting an update that is too large, we
limit the net trace discount factor to 1, as in [9].

2.1 Hierarchical RL

At the basis of hierarchical reinforcement learning
(HRL) lies the Semi-MDP (SMDP) framework [7].
An SMDP is equal to an MDP, except that it al-
lows an action to take multiple time steps. The re-
wards collected after taking an action that took N
time steps, have to be discounted by γN .

The SMDP framework allows us to break up a
single task into smaller tasks: a hierarchy of sub-
tasks. We used the MAXQ framework [8], which
was extended in [10] to include eligibility traces:
MAXQ-Q(λ). In this framework, each subtask has
its own state space, action space and goal. A sub-
task can only be executed when the current state is
inside the subtask’s region. The subtask at the top of
the hierarchy, the root task, tries to solve the original
task, while the other subtasks only try to reach their
own goal. The root task usually is an SMDP; its ac-
tions consist of executing a subtask on a lower level.
Once the root task has chosen a subtask to execute,
this subtask is in control until it reaches its goal or
gets outside of its region. Then the root task can
select another subtask to execute. The subtasks on
the lowest level of the hierarchy perform actions from
the original task, which are called primitive actions.
A MAXQ hierarchy with subgoals can be visualized
in a graph as shown in Figure 2.

To make subtasks reach their own goal, each sub-
task i has its own pseudo reward function R̃i(s, a, s

′).
These pseudo rewards are not visible to other sub-
tasks, they merely influence the policy of the subtask.

Once the subtasks have learned sufficiently, they
will always reach their goal. However, these goals
may not lie on the optimal path of the overall task,
the problem that the root task has to solve. To get
closer to the optimal path, we can use hierarchical
greedy execution (HGE) as described in [8]. The idea
is to interrupt a currently active subtask and give the
root task the opportunity to choose another subtask
to execute. In this way, a new subtask can be given
control before the previous executed subtask could

MaxRoot

Goal

QGoal QSubgoal 1

Max
Subgoal 1

Max

QMoveFor
Goal

QMoveFor
Subgoal 1

Move

Subgoal 2

QSubgoal 2

Max

QMoveFor
Subgoal 2

Figure 2: The MAXQ graph for one subgoal, each
extra subgoal adds three nodes, like the dotted nodes.

reach its goal.
However, interrupting a subtask influences the

learning process. The Q value of a task can only
be updated when the subtask it executed has fin-
ished. Also, when interrupting a subtask, its eligi-
bility trace has to be cleared, since the state-action
pairs in the trace can no longer be held responsible
for future state-actions. Therefore, we should not use
HGE from the beginning but enable it after the sub-
tasks have sufficiently learned to reach their goals.

In [8], HGE is gradually enabled by interrupting
the currently executed subtask after a decreasing
amount of time steps. This results in interrupting
at the same time at each run. Since there could be
a correlation between the time of interrupting and
learning rate when averaging over multiple runs, we
chose to slowly increase the chance of an interruption,
according to:

pinterruption =

{ κ
(thge−t)+κ for t < thge
1 for t ≥ thge

}
, (2)

where κ is a parameter to modify the curvature and
thge the time when HGE is fully active; when there
is an interruption each time step. For a constant
chance p on an interruption, the chance of having k
time steps in between two interruptions is given by:

f(k, p) = (1− p)k−1 p (3)

3

In case the root task has no other option but choos-
ing the same subtask again, interrupting would not
lead to a different choice, it would only clear the eli-
gibility trace. Therefore, we do not interrupt in such
a case.

More information about the MAXQ-Q(λ) algo-
rithm can be found in appendix A.

3 Experiment

To test the use of subgoals on a robot, we performed
experiments on a simulated and a real robot leg. The
task we gave it is a motor skill task without a straight-
forward solution.

3.1 Setup

The robot leg is part of a humanoid robot of approx-
imately half a meter tall [11]. For this research we
built a stand (see Figure 1) with which we fixed the
torso of the robot and we only used the left leg. Each
joint is actuated by a Dynamixel RX-28 motor. Al-
though this is a servo motor, we bypass the internal
controller and operate it in voltage mode. To detect
foot contact, there are two force sensors at the bot-
tom of the foot, one at the toe and one at the heel.

The simulation of the leg is made with ODE [12].
We used dimensions, masses and inertias equal to
those of the real robot. The motor torque M is cal-
culated as a function of voltage U by:

M(U) = kG
U − kGω

R
, (4)

where k is the torque constant, G the gearbox ratio,
R the winding resistance and ω the angular velocity.
The inertia of the armature, which has a significant
influence for large gearbox ratios, is also included in
the simulation.

The primitive actions consist of choosing between
5 voltages (-14, -7, 0, 7, 14) for the hip and knee
motors, resulting in 25 possible actions. The ankle
motor was controlled to keep the foot perpendicular
to the lower leg. The sampling frequency was 75 Hz,
the same that was used for early walking experiments.
The state of the robot consists of 7 variables: the foot

Joint Angle step size Velocity step size
Hip 0.0476 rad 6.67 rad/s
Knee 0.0769 rad 9.09 rad/s
Ankle 0.100 rad 11.1 rad/s

Table 1: State space resolution per tiling

Start

Goal
20

50

30

Figure 3: The task to perform: make a step, measures
are in mm.

contact and the angle plus angular velocity of each
joint. The state was discretized by tile coding [13]
with 16 tilings, the resolutions are listed in table 1.
The contact variable is binary; at a certain force at
the toe and heel, the variable is true.

Information about the software can be found in
appendix C.

3.2 Task

The task of the robot is to make a step up, as shown in
Figure 3. An episode starts with the leg in a straight
down position and ends when the goal is reached,
or after 60 (simulated) seconds, equal to 4500 time
steps. The goal is reached when the foot makes con-
tact at both the toe and heel, which is only possible
in a position near the position shown in Figure 3.

We used a simple reward scheme, where a reward
of 100 was given when the task was completed. Each
time step a reward of -1 was given, to make the robot
minimize the time to reach the goal. A subtask re-
ceives a pseudo reward of 100 when reaching its sub-
goal and a pseudo reward of -100 when leaving its
region. A subgoal was defined as a small position
area, irrespective of the joint angular speeds. We de-

4

fined subgoals in this way, because a position is easier
to imagine for a person.

The Q values were initialized with random values
between -1 and 1. In this way, a path that has timed
out, left the region, or took too much time to reach
the subgoal obtains lower values than the initial val-
ues, since these paths gathered many negative re-
wards. This results in more exploration at the early
learning stage, as the agent will avoid these negative
paths.

The learning parameters were not tweaked, since
the initial choice was satisfying. We chose α = 0.25,
γ = 1, ε = 0.05 and λ = 0.9. For the HGE parame-
ters, we used thge = 100 minutes and κ = 0.0833.

3.3 Simulation test setup

To see the effect of using subgoals, we compared
learning without subgoals (test 0) to learning with
one, two and three subgoals (test 1, 2 and 3). The
locations of the subgoals and their regions are shown
in Figure 4. Each subgoal is defined as an area of
10mm by 10mm, which the toe should reach.

Since the placement of these subgoals often has to
be guessed, we will also take a look at the influence of
the placement of the subgoal in test 1, by placing it
at different positions, further away from the optimal
path (test 1.1, 1.2 and 1.3).

3.4 Robot test setup

Apart from the simulation tests, we also performed
tests on the real robot Leo, to see if the simulation re-
sults match the results of the robot. Due to the long
time real tests take, we only performed test 0 and 2.
Real hardware brings several problems that a simu-
lation does not have. One major problem is the time
between perceiving a state and performing the action,
the control delay [14]. We found that the control de-
lay of our system was on average a quarter of a time
step. Such a delay could decrease the learning perfor-
mance. To avoid this, we tried larger time steps, so
that the control delay would be negligibly small com-
pared to the time step. The time step should still be
small enough, so that it would still take about 20

Goal 10
20

50

subgoal

Start

(a) test 1.0

Goal
50

20

50

subgoal

Start

(b) test 1.1

Goal 10 40

70

subgoal

Start

(c) test 1.2

Goal
50

40

70

subgoal

Start

(d) test 1.3

Goal 10
20

subgoal 2

Start

50

subgoal 120 30

(e) test 2

10
20

subgoal 2

Start

50

subgoal 1

Goal

60

30

20

20 30

subgoal 3

(f) test 3

Figure 4: Placement of the subgoals (squares) and
their regions where they are allowed to be executed
(colored areas), measures are in mm.

time steps to reach the goal, to ensure that a differ-
ence in performance can be quantified by the number
of time steps it takes to reach the goal. A sampling
frequency of 20 Hz, thus 3.5 times larger time steps,
turned out to be working well. We also found out
we could decrease the resolution of each state vari-
able, without getting instabilities. Since the path to
the goal is now 3.5 times shorter, we also scaled λ in
order to have a 3.5 times shorter eligibility trace. In
order to fully compare this with a simulation, we also
simulated with those settings.

5

Figure 5: Solution found by flat learning, the line
represents the position of the toe over time. Subgoals
used by other tests are drawn as squares.

0 200 400 600 800 1000
0

1000

2000

3000

4000

Simulated time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 0

test 1

test 2

test 3

Figure 6: Learning curves, with standard error bars,
for 0 to 3 subgoals.

4 Results

An example solution, found by flat learning with-
out subgoals, shows that the chosen subgoals most
likely lie off the optimal path, see Fig. 5. The perfor-
mance is defined as the inverse of the average num-
ber of steps it takes to reach the goal. Typically
the performance increases drastically in a short time
period, after which it slowly increases, as shown in
Fig. 6. Therefore, we stopped simulating after 1000
minutes and do not know the optimal performance.
Consequently, we defined the end performance as the
smoothed performance after 1000 minutes. The fall
time is defined as the time it takes until the average
number of steps reached 10% of the number of steps
at the start of the learning. Each test is averaged
over 25 runs.

0 200 400 600 800 1000
60

80

100

120

140

Simulated time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 0

test 1

test 2

test 3

Figure 7: Learning curves for 0 to 3 subgoals, using a
flat method with extra state variable, without regions
for each subgoal.

0 200 400 600 800 1000
60

80

100

120

140

Simulated time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 0

test 1

test 2

test 3

Figure 8: Learning curves for 0 to 3 subgoals, using
a flat method with extra state variable, with regions
for each subgoal.

4.1 Flat learning with subgoals

When using subgoals without regions in which they
are allowed to be executed, the fall time decreases
when using more subgoals (see Fig. 7). However, the
end performance also decreases with more subgoals.

If we add regions, the fall times become consider-
ably smaller for tests 1, 2 and 3, as shown in Fig. 8.
The fall time of test 1 is approximately three times
smaller than test 0, while the fall time of test 2 and
3 are roughly nine times smaller compared to test
0. The end performances remain nearly equal. The
small difference of fall time between test 2 and 3 can
be explained by the ease of learning the last part of
the task; once the robot managed to reach subgoal 2,
the path to the end goal was quickly discovered.

6

0 200 400 600 800 1000
60

80

100

120

140

Simulated time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 0

test 1

test 2

test 3

Figure 9: Learning curves for 0 to 3 subgoals, when
using MAXQ-Q(λ) without HGE.

0 200 400 600 800 1000
60

80

100

120

140

Simulated time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 0

test 1

test 2

test 3

Figure 10: Learning curves for 0 to 3 subgoals with
HGE.

4.2 Subgoals in a hierarchy

When we compare flat learning (Fig. 8) to
MAXQ-Q(λ) (Fig. 9) with the same subgoals and re-
gions, we see that the hierarchical method has the
same fall times, but better end performances. Since
the only difference between the two methods is that
MAXQ-Q(λ) has an eligibility trace for each subtask,
instead of one trace for the whole task, it seems that
emptying the trace when a subgoal has been reached
has a positive effect on the exploration.

When using HGE, the fall times and end perfor-
mances remain practically the same, as can be seen
in Figure 10. However, between 100 and 300 minutes,
just after HGE was fully activated, the performance
of test 2 and 3 is higher than without HGE.

0 200 400 600 800 1000
60

80

100

120

140

Simulated time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 1.0

test 1.1

test 1.2

test 1.3

Figure 11: Learning curves for different places of the
subgoal, without HGE.

0 200 400 600 800 1000
60

80

100

120

140

Simulated time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 1.0

test 1.1

test 1.2

test 1.3

Figure 12: Learning curves for different places of the
subgoal, with HGE.

4.3 Subgoal placement

In Figure 11, we see that tests 1.1 and 1.3 have a
substantially lower end performance and a longer rise
time compared to tests 1.0 and 1.1. Apparently, the
subgoals of tests 1.1 and 1.3 lie further away from the
optimal path than the subgoals of tests 1.0 and 1.2,
which can also be seen in Figure 5.

By using HGE, there is an increase in fall time for
tests 1.1 and 1.3 (see Fig. 12), which could be caused
by the fact that thge (as in formula 2) is smaller than
the fall time. The end performance on the other
hand, increased. Again, between 100 and 200 min-
utes the performance is higher, compared to the same
interval without HGE.

7

0 5 10 15 20
0

200

400

600

800

1000

1200

Learning time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 0

test 2

Figure 13: Learning curves of the real robot.

4.4 Tests on Leo

On the real robot, the tests were performed multiple
times. After removing runs in which hardware prob-
lems occurred, we could average test 0 over 12 runs
and test 2 over 13 runs. The hardware problems that
occurred, were a broken gearbox at the hip actuator
and a toe force sensor that got stuck multiple times,
which lead to the robot receiving a reward for kick-
ing its behind. Due to a software bug, the runs were
aborted after 13 minutes of learning time, instead of
20 minutes. The results can be found in Fig. 13. Due
to the smaller state space, the likeliness of finding the
goal by random actions is higher. This explains the
smaller difference in fall time between test 0 and test
2, which is around 1.5 times. The end performance
of test 2 seems to be equal to that of test 0.

The learning curves of the simulation with the
same settings as we used on the real robot, together
with the average learning curves of the real robot, are
plotted in Figure 14. When comparing simulation re-
sults with the results of the real robot, we can see
that the learning curves of test 0 are roughly similar.
Test 2, however, has a lower fall time and a higher
end performance than test 2 on the real robot. This
can be explained by observations we made when the
robot was learning. We noticed how the robot was
shaking when nearly reaching a subgoal, indicating it
was hard to reach the subgoal. We suspect this was
caused by sensor noise and backlash, which makes it
hard to precisely reach the small subgoal area.

0 5 10 15 20
0

200

400

600

800

1000

1200

Simulated time (minutes)

S
te

p
s
 t

o
 g

o
a

l

test 0

test 2

test 0 real

test 2 real

Figure 14: Learning curves of a simulation with the
same settings as for the real robot.

5 Discussion and conclusions

When learning motor skills with RL, the use of sub-
goals can lead to a faster learning rate. However,
this will usually lead to a worse performance after
convergence. A hierarchical framework like MAXQ
adds a region for each subgoal in which the subgoal
is allowed to be executed. These regions decrease the
state space and thus speed up the learning process.
Another advantage of MAXQ is the possibility to use
HGE. It can result in a policy closer to the optimal
policy, especially when the subgoals lie further away
from the optimal path. Such subgoals also result in
longer learning times. The real robot also benefits
from subgoals, but performed worse than the simula-
tion due to the small subgoal areas.

We conclude that the use of subgoals is very useful
for RL on a robot, as long as the subgoals lie close to
the optimal path and are not too small in comparison
with the robot’s precision.

6 Future work

It is interesting to test the use of subgoals for a more
complicated task, like standing up. This task was
originally meant to be used for this paper, but we
decided to start with a simpler task. We already
found that the stand up task is suitable to be guided
by subgoals, see appendix B.

With the methods we described in this paper, there
is a trade-off between learning speed and optimality.

8

We believe there is a way to achieve both fast learn-
ing and an optimal policy. This can be accomplished
by a method called “all goals updating” [15]. With
this method, not only the subtask which is in control
gets Q updates, but also other subtasks are updated.
In this way a subtask is learning while not in control.
We can use this by learning a flat policy, while learn-
ing in the hierarchical way. This can be implemented
by performing Q updates for the last subtask, the
one that brings the robot to the final goal, outside
its region. At some point in time, the last subtask
is allowed to be executed outside its region, where it
already learned with the all goals updating method.

References

[1] Ö. Şimşek, A.P. Wolfe, and A.G. Barto. Iden-
tifying useful subgoals in reinforcement learning
by local graph partitioning. In Proceedings of the
22nd international conference on Machine learn-
ing, pages 816–823. ACM New York, NY, USA,
2005.

[2] M.J. Mataric. Reward functions for accelerated
learning. In Proceedings of the Eleventh Interna-
tional Conference on Machine Learning, volume
189, 1994.

[3] J. Randløv. Solving complex problems with re-
inforcement learning. PhD thesis, University of
Copenhagen, 2001.

[4] A.Y. Ng, D. Harada, and S. Russell. Policy in-
variance under reward transformations: Theory
and application to reward shaping. In Proceed-
ings of the Sixteenth International Conference
on Machine Learning (ICML’99), pages 278–
287, 1999.

[5] A.D. Laud. Theory and application of reward
shaping in reinforcement learning. PhD the-
sis, University of Illinois at Urbana-Champaign,
2004.

[6] S.P. Singh. Transfer of learning across composi-
tions of sequential tasks. In Proceedings, Eighth
International Conference on Machine Learning’,

Morgan Kaufmann, Evanston, Illinois, pages
348–352, 1991.

[7] R.S. Sutton, D. Precup, and S. Singh. Between
mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial
intelligence, 112(1):181–211, 1999.

[8] T.G. Dietterich. The maxq method for hierarchi-
cal reinforcement learning. In Proceedings of the
Fifteenth International Conference on Machine
Learning, pages 118–126, 1998.

[9] S.P. Singh and R.S. Sutton. Reinforcement
learning with replacing eligibility traces. Ma-
chine learning, 22(1):123–158, 1996.

[10] Erik Schuitema. Hierarchical reinforcement
learning. Master’s thesis, Delft University of
Technology, Delft, The Netherlands, 2006.

[11] Erik Schuitema, Martijn Wisse, Thijs Ramak-
ers, and Pieter Jonker. The design of LEO: a
2D bipedal walking robot for online autonomous
reinforcement learning. In Proceedings of the
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Taipei, Taiwan, Octo-
ber 2010.

[12] http://ode.org/. last visited in Oct 2010.

[13] Richard S. Sutton and Andrew G. Barto. Re-
inforcement Learning: An Introduction. MIT
Press, 1998.

[14] Erik Schuitema, Lucian Busoniu, Thijs Ramak-
ers, Robert Babuska, and Pieter Jonker. Con-
trol delay in reinforcement learning for real-time
dynamic systems: a memoryless approach. In
Conference on Intelligent Robots and Systems
(IROS-10), 2010.

[15] T.G. Dietterich. Hierarchical reinforcement
learning with the maxq value function decom-
position. Journal of Artificial Intelligence Re-
search, 13:227–303, 2000.

9

A The MAXQ-Q(λ) algorithm

Here we will describe the MAXQ-Q(λ) algorithm into more detail.
In MAXQ, the value function of subtask i is defined as

Qi(s, a) = V (s, a) + Ci(s, a) (5)

V (s, a) =

{
Qa(s, πi(s)) if a is a subtask
Vp(s, a) if a is primitive

(6)

Since the actual policy of a subtask is based on rewards plus pseudo rewards, each subtask also has a
pseudo value function C̃i(s, a), which predicts the expected pseudo plus real reward. Thus, the greedy action
of the policy for subtask i is:

πi,greedy(s) = arg max
a′

[
C̃i(s, a

′) + V (s, a′)
]

(7)

The eligibility trace is stored in ei(s, a), which contains the discount factor for each state-action pair.
A subtask terminates when it reached its goal or when it got outside of its region. It also has to terminate

when its parent has to terminate. In all those cases Ti(s) is true.
The pseudo code of the MAXQ-Q(λ) algorithm, including HGE, can be found in table 2. In the real time

implementation, the algorithm has to be cut open between lines 3 and 4. At line 3 the actuation commands
are sent to the simulator or motors. The next time step, the program should continue at line 4, where the
new state is perceived. In order to achieve this, the complete calling stack has to be stored, as well as the
temporary variables.

The part that usually costs the most calculation time is to find the maximum Q value (line 15), especially
for the root, as it has to loop through all C values of all subtasks lower in the tree. At this moment, once
a subtask has been chosen, this subtask will calculate its maximum Q value again, while this has just been
done. A future improvement would be to cache the maximum Q value.

10

1: function MAXQ-Q(λ)(MaxNode i, State s)
2: if i is a primitive MaxNode then
3: execute i // Send control commands
4: receive R(s, i, s′), and observe result state s′ // Receive state and rewards
5: V (s, i)← (1− αi) · V (s, i) + αi ·R(s, i, s′)
6: return 1
7: else
8: count← 0
9: initialize ei(s, a) = 0 for all s, a // Reset trace

10: choose an action a according to the current exploration policy πi(s)
11: while Ti(s) is false do
12: N ← MAXQ-Q(λ)(a,s) // Recursive call
13: observe result state s′, reward R(s, i, s′) and pseudo-reward R̃i(s, i, s

′)
14: choose an action a′ according to the current exploration policy πi(s

′)
15: a∗ ← arg maxb[C̃i(s

′, b) + V (s′, b)]
16: if s′ is terminal and absorbing then
17: C̃i(s

′, a∗)← 0, Ci(s
′, a∗)← 0, V (s′, a∗)← 0

18: end if
19: δ̃ ← γN [Ri(s, a, s

′) + R̃i(s, a, s
′) + C̃i(s

′, a∗) + V (s′, a∗)]− C̃i(s, a)
20: δ ← γN [Ri(s, a, s

′) + Ci(s
′, a∗) + V (s′, a∗)]− Ci(s, a)

21: ei(s, a)← 1 // Replacing trace
22: for all s, a with ei(s, a) > emin // Limited trace length do
23: C̃i(s, a)← C̃i(s, a) + αiδ̃ei(s, a)
24: Ci(s, a)← Ci(s, a) + αiδei(s, a)
25: if a′ = a∗ // Greedy action then
26: ei(s, a)← γNλ(i)ei(s, a) // Let the trace decay
27: else
28: ei(s, a)← 0 // Cut off trace on exploration
29: end if
30: end for
31: count← count+N
32: s← s′; a← a′

33: if HGE and i 6= rootnode and rootnode has no other subtask to choose than i then
34: break
35: end if
36: end while
37: end if
38: return count

Table 2: The MAXQ-Q(λ) learning algorithm in pseudo-code, including HGE

11

B Stand up with subgoals

When Leo is learning to walk, it often falls, hence it would be nice to have a fast stand up policy. This is a
suitable task to be learned with subgoals.

To keep the learning time low, the action space can be reduced. First of all, symmetry can be exploited
by coupling left and right leg actuators. This reduces the number of actuated DOF from seven to four. To
reduce the action space even further, we designed a simple stand-up sequence in which only three actuators
are active at the same time. The subgoals of this policy are shown in Figure 15, while the unused actuators
are listed in table 3.

1

2

3 4 5 6

7 8 9 10 11 12 13

On the floor, face up

Bring arm above the head

Bring feet under torso

Stretch

Figure 15: Stand up sequence for face up

We tested this sequence on the real robot, by using a PD controller which brought the angles to the given
subgoals. The robot was able to stand up with this sequence, as shown in figure 16, meaning we can use the
subgoals for RL.

12

Transition Shoulder Hip Knee Ankle
1–2 x x x
2–3 x
3–4 x
4–5 x
5–6 x x
6–7 x
7–8 x
8–9 x
9–10 x
10–11 x
11–12 x
12–13 x

Table 3: Unused actuators during transitions from subgoal to subgoal for the stand up sequence with face
up

Figure 16: Leo standing up with the calculated sequence

13

C Software architecture

In this appendix, the software architecture is presented in class diagrams. The software is made in C++ and
we made use of an existing framework, developed in our lab. This framework is made to work for both a real
time environment and simulation. The State Transition Generator (STG) is the part that provides the new
state plus time and can receive actuation commands, see Figure 17. The STG can be either a simulator or
a real hardware device, both use the same communication, so a policy can be used for both the simulation
and the real robot. The policy player chooses a policy and lets this policy choose the actuation commands
to send to the STG.

In Figure 18 the class diagram of the program for the real robot is shown. The program has three policies:
one to cool down when the actuators become too warm, one to bring the leg back into its starting position
and the policy that learns to make a step up. The latter is shown more detailed in Figure 20.

The program to run the simulation is an extension of an existing program, which was used for walking
experiments on the robot. In the extended program, the policy and simulation to be used are settings in an
XML file. In this way, the program can run both the step up as well as the walking simulation, depending
on the settings in the XML file. Furthermore, when the program has been given an XML file as parameter,
the console version of the program will be started, which is why the class diagram splits in two (see Fig. 19).
The console version is especially useful when multiple simulations have to be performed, and enables the
user to run the program on a remote machine via SSH.

The policy CLLSMaxq is the policy which learns to perform the step up task, the diagram of this policy
is shown in Figure 20. The implementation of subgoals in a hierarchy is shown in the path on the left.
Each subgoal has its own Max-node, as in Figure 2. Flat learning without subgoals was implemented as a
single Q-node (CLLSQMoveForGoal). To implement flat learning with subgoals, we made a separate root
node (CLLSMaxRootPlus) with a single Q-node. All the lower Q-nodes are connected to the same primitive
node, that sends out the actuation command. The number of subgoals, subgoal areas, subgoal regions and
learning parameters of the nodes are defined in the XML file.

The inheritance trees of most classes used in the programs are shown in Figures 21, 22, 23 and 24. The
listed functions are public functions and are not listed in derived classes, even if they are overridden.

State Transition
Generator (STG)Policy player

Current policy

actuation

state actuation

state and time

and
time

Figure 17: Overview of the framework.

14

Main

CLLSMaxq

CLLSPrimitiveMove

MAXQ nodes

CLeoRealLegStairs CSTGLeoReal
(policy player)

CLLSGotoStart CPolicyCoolDown

state

action
...

CLog2

log

log

log loglog

log

log

Figure 18: Class diagram of the program for the real robot. The CLLSMaxq policy and its nodes are shown
more detailed in figure 20

15

Main

CLeoSimConsole CLeoSimDialog

CLeoLearner CLeoLearnerQtCSTGLeoSim

CLLSMaxq CLegStairsTest CPolicyWalk CPolicy...

CLLSPrimitiveMove

state

action

state

action

action action

(policy player) (policy player)
...

Nodes

log log

log

log

log

loglog log log

log

log CLog2

Figure 19: Class diagram of the simulation program. The red part (bottom) are the policies, the blue part
(right) is used when the user chooses a dialog, else the green part (left) is used.

16

CLLSMaxq

CLLSPrimitiveMove

CLLSMaxRoot CLLSMaxRootPlus

CLLSQSubgoal

CLLSMaxSubgoal

CLLSQMoveForSubgoal CLLSQMoveForGoal CLLSQMoveForGoalPlus

set

set

set
set set

set

log

log

log

log

log

log

log

log

log

Figure 20: Class diagram of the step up policy. The blue part (left) is used when having one or more subgoals
in a hierarchy, the green part (center) when having no subgoals, the red part (right) for flat learning with
subgoals

17

CSTGPolicyLeo

STGStateType = CLeoState

CLLSMaxq CLLSGotoStart CLegStairsTest CPolicyCoolDown

CSTGPolicy <STGStateType>

• setSimMode(
bool enable)

• totalCooldownTime()
• setCooldownTemperature(

double temp)
• isCool()

• CSTGPolicy(ISTGActuation *actuationInterface)
• onInstall(uint64 t absoluteTime)
• onUninstall(uint64 t absoluteTime)
• isDone(STGStateType* currentState, uint64 t absoluteTime)
• reset(uint64 t absoluteTime)
• resetMemory(uint64 t absoluteTime)
• readConfig(const CConfigSection &configNode)
• save(std::ofstream& fileOutStream)
• load(std::ifstream& fileInStream)
• init()
• executePolicy(STGStateType* currentState, uint64 t absoluteTime)

Figure 21: Inheritance diagram of the policies. The base class is on top, derived classes are connected to
the base class.

18

CSTGODESim <STGStateType>

• readConfig(...)

CStateTransitionGenerator <STGStateType>

• init()
• deinit()
• start()
• stop()
• getAbsTime()
• createSubscription(...)
• stopSubscription(...)

CSTGLeoSim

• STGStateType = CLeoState

ISTGActuation <STGStateType>

• setActuationMode(ESTGActuationMode actuationMode)
• setJointPosition(int jointIndex, double position, double speed)
• setJointSpeed(int jointIndex, double speed)
• setJointTorque(int jointIndex, double torque)
• setJointVoltage(int jointIndex, double voltage)
• setJointCurrent(int jointIndex, double current)
• setJointPWM(int jointIndex, double PWM)
• activateActions(const uint64 t& stateID)

ISTGLeoActuationCSTGLeo

CSTGLeoReal

• setConfig(CLeoConfig* config)
• enableDummyMode(bool enabled)
• measureTemperatures()
• getBoardTemperature()
• getCPUTemperature()
• getTemperatureStatus()
• turnOffMotors()
• setErrorLED(unsigned int ledIndex, bool value)

• STGStateType = CLeoState • STGStateType = CLeoState

• bindRobot()
• isRunning()
• setInitialCondition()
• resetActuationValues()

Figure 22: Inheritance diagram of the state transition generators. The base classes are on top, the derived
classes point to their base classes.

19

CSTGListener <STGStateType>

• waitForNewState()
• getState()
• startListening(...)
• stopListening()

CSTGPolicyPlayer <STGStateType>

• installPolicy(CSTGPolicy *policy, uint64 t absoluteTime)
• executePolicy(uint64 t absoluteTime)
• isPolicyDone(STGStateType *currentState, uint64 t absoluteTime)
• resetPolicy(uint64 t absoluteTime)
• resetPolicyMemory(uint64 t absoluteTime)
• getCurrentPolicy()
• activateActions()

CSTGPolicyPlayerLeo

• STGStateType = CLeoState

CSTGPolicyPlayerLeoPosixThread

• pause(bool enabled)
• singleStep()
• init()
• deinit()
• stop()

CLeoLearnerCLeoLearnerQt CLeoRealLegStairs

• readConfig(...)
• load(std::ifstream &fileInStream)
• save(std::ofstream &fileOutStream)

QObject
...

Figure 23: Inheritance diagram of the policy players. The base classes are on top, the derived classes point
to their base classes.

20

CMaxqNode

• Load(std::ifstream& fileInStream)
• Save(std::ofstream& fileOutStream)
• Init()

CMaxqMaxNode

• AddTask(CMaxqQNode *task)
• SetTreeLearnRate(ComputationalType alpha)
• SetTreeDiscountRate(ComputationalType gamma)
• SetTreeExploreRate(ComputationalType epsilon)
• SetTreeTraceFallRate(ComputationalType lambda)
• SetTreeState(CSTGState* currentSTGState)
• ResetTreeMemory()
• IsTerminalState()
• ExecuteTimeStep(CMaxqMaxNode* executorNode,

char ancestorTerminalStatus)

CMaxqQNode

• SetParent(CMaxqMaxNode* parentNode)
• SetTaskNode(CMaxqMaxNode* taskNode)
• SetNumTilings(int numTilings)
• SetMemsize(IndexPrecision memsize)
• RandomizeValues(QPrecision min, QPrecision max)
• ResetTreeMemory()
• UpdateState(CSTGState* currentSTGState)
• SetParameter(int index, StatePrecision parameter)

CMaxqPrimitiveNodeCLLSMax

• getAnklePos(double& x, double& y)
• getToePos(double& x, double& y)
• getHeelPos(double& x, double& y)

CLLSMaxSubgoal

• SetSubgoal(double minX, double
maxX, double minY, double maxY)

• SetSubgoalReward(QPrecision re-
ward)

• SetRegion(double mixX1, double
maxX1, double minY1, double
maxY1, double mixX2, double
maxX2, double minY2, double
maxY2)

CLLSMaxRoot

• SetGoalReward(QPrecision reward)

CLLSPrimitiveMove

• SetTimeReward(
QPrecision timeReward)

CLLSQ

CLLSQSubgoal

CLLSQMoveForSubgoal

CLLSMaxRootPlus

CLLSQMoveForGoal

CLLSQMoveForGoalPlus

• SetGoalReward(QPrecision reward)

Figure 24: Inheritance diagram of the MAXQ nodes. The base classes are on top, the derived classes point
to their base classes.

21

	Cover Page
	Introduction
	Related work
	Goal

	Preliminaries
	Hierarchical RL

	Experiment
	Setup
	Task
	Simulation test setup
	Robot test setup

	Results
	Flat learning with subgoals
	Subgoals in a hierarchy
	Subgoal placement
	Tests on Leo

	Discussion and conclusions
	Future work
	The MAXQ-Q() algorithm
	Stand up with subgoals
	Software architecture

