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SUMMARY

This is part IV of a series of literature reviews on hygrothermal
effects on polymer matrix composite materials. It contains a review of
papers on mechanical properties as measured in fatigue, creep or stress
relaxation tests with variations in temperature and humidity accounted for

in the results.

The other parts of the review are:

Part I:
Part II:
Part III:
Part V:
Part VI:
Part VII:

Moisture and Thermal Diffusion

Physical Properties

Mechanical Properties 1

Composite Structures and Joints

Numerical and Analytical Solutions

Summary of Conclusions and Recommendations

A complete list of references is included in the Appendix and the
numbers in the brackets appearing in the text refer to this list.

RESUME

Voici la partie IV d’une série de documents traitant des effets
hygrothermiques sur les matériaux composites a matrice polymérique. Elle
comprend une étude des données recueillies sur leurs propriétés mécaniques
lors d’essais de fatigue, de fluage et de relachement des contraintes dont les
résultats tiennent compte des variations de température et d’humditeé.

Les autres parties de cette série sont les suivantes:

Partie 1:
Partie II:
Partie III:
Partie V:
Partie VI:
Partie VII:

Diffusion de ’humidité et de la chaleur
Propriétés physiques

Propriétés mécaniques 1

Structures et joints composites

Solution numeériques et analytiques

Résumé des conclusions et recommandations

Une liste compléte des références est incluse en annexe et les
nombres entre parenthéses dans le texte se rapportent a cette liste.
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HYGROTHERMAL EFFECTS IN CONTINUOUS FIBRE REINFORCED COMPOSITES
PART IV: MECHANICAL PROPERTIES 2 — FATIGUE AND TIME-DEPENDENT PROPERTIES

1.0 INTRODUCTION

In this part of the review (Part IV) results of fatigue and creep and stress-relaxation tests
are reported.

With the move towards primary load carrying structures made with composite materials, the
number of publications related to the fatigue properties of these materials has rapidly increased. Most
of these papers are concerned with graphite/epoxies, and with other materials receiving less attention
either because of cost or inferior properties. In the future, if the trend towards higher strain allowables
for structural composite materials is realized, fatigue will certainly become a major factor in the design
of primary composite structures,

There is a strong indication that fatigue in composites is closely related to creep as time at
load, rather then number of cycles, has had the greater effect on life in some experiments. Mechanical
relaxation problems, however, have significance of their own for some applications like pressure
vessels, bolted joints (relaxation of clamp up force) or structures which have to demonstrate dimen-
sional stability (relaxation of residual stresses).

Fatigue tests of composite structures and joints will be reviewed in Part V.

2.0 FATIGUE
2.1 Constant Amplitude Loading Studies

Constant amplitude loading studies that produce S-N curves have limited value for composite
designers. They are, however, a very convenient method of demonstrating behavior of materials under
cyclic loading and have been used in environmental studies of composite materials. In this chapter
investigations will be reviewed in which materials have been exposed to various conditions of tempera-
ture and humidity prior to, during or after constant amplitude cycling.

Hofer, Bennett and Standerl 131 ] studied the effect of humidity preconditioning followed
by stress cycling, on residual mechanical properties. Earlier in the study S-N curves were generated at
room temperature. The stress ranges at 2 X 106 cycles were taken from these curves for all laminates
under consideration. The average stress range was calculated and a 10% smaller value was used as stress
range for stress cycling. Humidity preconditioning consisted of steady state 500 hour or 1000 hour
soaking at 48.9°C — 98 + 2% RH. Materials used were T300 (graphite) and S-glass in 5208 epoxy resin,
Hybrid laminates of an interweaving type were made with varying proportions of all glass and all
graphite plies. Lay-up was either unidirectional or quasi-isotropic. All materials were stressed in a
tension-tension load cycle (R = 0.1) at 30 Hz up to 107 cycles but not all specimens survived this
rather mild stress cycling regime. Those that did showed a decrease in residual strength but no loss
of modulus and slight increase in Poisson ratio for the 0° lay-ups.

Rotem and Nelsonl2451 and Rotem!246] studied specimens of graphite/epoxy (T300/5208)
in tension-tension (R = 0.1 and R = 10 at 30 Hz) at 22°C, 74°C and 114°C. They used unidirectional
and angle-ply laminates as well as [0°/+6 /0° ]g. These latter laminates were used to verify predictions
of fatigue durability and failure mode based on results for unidirectional and angle-ply laminates. The
fatigue behavior of a single lamina was characterized by its static strength and its ““fatique function”
which expresses the degradation in static strength due to cyclic loading. This function measured at
some reference temperature together with temperature shifting factors can be used to calculate the
fatigue function in a broad range of temperatures. Results generally correlated well with predictions
but for laminates where angle-ply laminae contributed to the load to a greater extent (0 <45°), the
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viscoelastic character of the matrix had to be taken into account. Generally for matrix dominated
laminates, fatigue failure was affected by cycling and temperature, and a shifting of the fatigue
function was observed. However, the slope of the S-N curve was not affected by temperature. Fiber
dominated laminates were not sensitive to temperature change (Figs. 1, 2, 3 and 4).

Haskins, Kerr and Steinl!27] presented results for HT-S/710 graphite/polyimide in
[0°/£45° |s lay-up. Fatigue tests were carried out at RT and 232°C. For the two loading ratios
(R = -1,R =0.1), there was little effect of temperature on fatigue of this fiber dominated lami-
nate which supports the results of Rotem and Nelson.

Kan and Ratwanil 161 1 presented results for matrix dominated laminates (+45/90, /+45/90, )g
made from graphite/epoxy (AS/3501-6). Specimens were moisture preconditioned up to 1% weight
gain with the uniform moisture distribution calculated using Fick’s model as defined by Springer and
Shenl212], Fatigue tests were run under tension-compression fully reversed loading (R =-1). Test
frequency of 5 Hz was chosen as the final loading frequency. Figure 5 shows the influence of moisture
content on the fatigue behavior of the laminate. It was tentatively concluded that for this matrix
dominated laminate, at room temperature, moisture had no influence on the compression fatigue life.

It would appear from all of the above reviewed results, that temperature is more detrimental
than moisture, in reducing fatigue strength.

Ryder and Walker(25 1] have done an extensive study of the effect of compressive loading
on the fatigue of graphite/epoxy (T300/934) laminates. The aim was to observe the effect of absorbed
moisture under compressive loading in unnotched and notched (circular hole) specimens. Two lay-ups
were used (1) 25% of 0° — (0/45/90/-45, /90/45/0)g, (2) 67% of 0° —(0/45/0, /-45/0, /45/0, /-45/0)g.
The baseline dry condition was 22°C, 40 + 10% RH while preconditioning took place at 82°C, 90% RH
up to saturation for the wet tests. There are four ways of defining the loading variables in fatigue: load
ratio (R), maximum stress (0, ), stress range (Ao) and minimum stress (Omin)- ASR =00 /0max

and Ao = 0y, — 0,45, during a fatigue test, any one of these variables may be held constant while

the effect of one of the other three is being studied. Laminate (1) and (2) act as minimum columns.
The maximum compressive stresses without lateral deflection greater than 0.0254 mm were therefore
limited to ~110 MPa and - 207 MPa respectively. Constant load ratio was rendered impractical as it
limited the maximum stresses. In these studies 0,,;, was held constant at either -110 MPa (-207 Ma)
or 0(0). Failure was defined for tension-tension as breakage of coupon and for tension-compression as
either breakage or an inability to sustain load due to severe delamination. Failure modes observed for
elevated temperature, wet (ETW) conditions were similar to those obtained at RT. The only difference
was that the type of damage which led to failure appeared much earlier in life for coupons tested at
the same stress. For matrix dominated laminate (1) elevated temperature, wet conditions decreased
life of unnotched specimens by a factor of 3, and for notched specimens by a factor of 10. For
notched specimens, the tension-tension S-N curve changed from flat at RT to declining strength with
number of cycles under ETW conditions. For the fiber dominated laminte (2) the results are not easy
to discuss. A larger scatter was evident for ETW conditions. During tension-compression tests at RT,
some specimens survived 106 cycles of +759 MPa stress, while under ETW, all specimens with stress
above +550 MPa failed before 106 cycles were reached. The fatigue tests were followed by residual
strength test and it was observed that the fatigue induced damage does not appear to have a direct
effect on residual tensile strength. For laminate (2) cycled to 106 cycles under tension-tension ETW
conditions, residual tensile strength was reduced by 20% while residual compressive strength was
reduced by 40%. This indicates that ETW cycling has a significantly larger degrading effect than RT
cycling which resulted in respective compressive strength reductions of 0% and 15%.

The data obtained was analyzed using Weibul distributions as well as other methods. Ryder
and Walker concluded that significant statistical analysis efforts, combined with an extensive experi-
mental investigation, is needed before any extrapolative procedures can be used with confidence to
predict fatigue performance in an environmentally degraded condition.
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The studies of the effect of moisture and temperature on composite material strength have
indicated that compressive strength is particularly sensitive to these factorsl!187. 1151, Similarly com-
pressive loads in fatigue have strong degrading effects on fatigue properties. However no evidence of a
synergistic effect of compression fatigue and environment was found in the reviewed literature.

Grimesl!15] carried out an investigation in which graphite/epoxy samples were loaded in
compression-compression at R = 10, The material used was AS/3501-6 with the following lay-ups:
[0],¢, [90],¢, [+45],5 and [(+45)5/0;¢ /904 ]. Some samples were pre-soaked up to a 1.1% weight
gain of moisture. Testing was carried out in a specially designed fixture which was used for both
fatigue and residual strength tests. Fatigue testing was carried out at room temperature and the
residual strength test was at an elevated (103.3°C) temperature. Only for [90], 4 ¢ specimens were
significant differences in fatigue properties found (Fig. 6). For dry samples, runouts were observed
at stress levels of 126.9 Mpa (or 49% static dry strength) while for wet conditions, the runout stress
level was 90 MPa (or 45% of static wet). However, these differences could be expected since for these
samples, static dry strength is higher than static wet strength —258.6/-199.3 [MPa/MPa]. ‘Wear out’*
occurred in all specimens but was greater in matrix dominated laminates. Higher wearouts were
attributed by Grimes to degradation of the interface.

Adamsl 3] reported results of an SEM study carried out on failed samples from Grimes’
investigation. The influence of moisture or elevated temperature was not observed. No obvious
differences were noted in the corresponding fracture surfaces. The author also tried to apply a micro-
mechanics analysis which was developed earlier and successfully applied to calculate residual and
environmental stresses. There is a similarity between static and fatigue failure in compression, however,
the application of micromechanics analysis to fatigue is still far from being satisfactory.

Sumsion and Williams!277 | and later Sumsionl278] studied the effects of temperature and
water on flexural and torsional fatigue of AS/3501 graphite/epoxy laminates. The lay-ups used were
0°, +45°, +30° and woven (24 plies). Specimen shapes were as shown in Figure 7. Torsional fatigue
tests were carried at 1 Hz under controlled strain (constant deflection) conditions and stopped if
either the torque dropped to a preset level or if the required number of cycles was reached. Testing
was carried out in air or water at both room and elevated (74°C) temperatures. After fatigue testing,
the specimens were subjected to four point bending at room temperature to measure strength, and
bending moment versus deflection curves were used to calculate failure energy. All the specimens
exhibited fatigue damage. The effect of exposure to a water environment during torsion testing at
74°C and, to a lesser extent at 24°C was to decrease the ‘incubation period’** and to increase the rate
of accumulation of damage. At 74°C water also appeared to decrease (lower) the limiting torsional
stiffness (Fig. 8). It should be noted that the cross plied specimens appeared more prone to fatigue
damage in torsion than the unidirectional specimens. In contrast, in flexural fatigue, water had greater
effect on unidirectional specimens.

The graphite/epoxy specimens showed significant flexural fatigue damage on both air and
water when subjected to fully reversed plane bending at 30 Hz (Fig. 9).

Phillips, Scott and Buckleyl233 ] also studied torsional fatigue of composites. The materials
used were high modulus carbon, glass and Kevlar 49 in a Ciba-Geigy MY 750 epoxy matrix cured with
metyl nadic anhydride and benzyldimethylamine. A unidirectional lay-up was used and rods were
machined to a 6 mm diameter. Test were run at room temperature and humidity. Samples were tested
in either an as received state, or after seven days at 100°C water immersion. Some conditioned speci-
mens were dried at 60°C for seven days prior to testing. Fatigue testing was carried out at 0.17 Hz,
under either constant torque (+T) or constant twist (£0) amplitude. Significantly, the strength
recovery upon drying observed during the static tests was not observed in torsional fatigue. Fatigue
life for carbon and glass composites was permanently degraded by 100°C water immersion (Fig. 10).

However, the boiling water test is very severe and is not similar to any situation encountered in service.

* Observable damage.
**¥  Time required to observe first damage of the material.
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The rate of change of compliance has been measured in terms of ATorque/log N. For Kevlar
composite, it is affected by various treatments as shown in Figure 11. In glass composites, this rate
demonstrated partial recovery upon drying while in carbon composites, it was insensitive to moisture
level.

Gauchel, Steg and Cowlingl! 06 ] used Naval Ordinance Laboratory (NOL) ring samples fila-
ment wound using S-glass with various epoxy resins. Prior to fatigue testing in diametrical compression,
rings were immersed at RT in water for 400 days. Testing was also carried out in water and concluded
when the observed load at a given deflection dropped by 20%.

The percent retention of fatigue life after soak compared to dry specimens varied greatly
(from 100% to 37.2%). The best results were achieved with a system containing 10 parts of
N,N-diglycidyl tribromoaniline (DGTBA) for one part of meta-phenylenediamine (MPDS). Later tests
showed that systems containing over 50% of DGTBA perform much better in fatigue under moisture
influence than the other systems under consideration. These latter systems were mostly based on
diglycidyl ether of bisphenol-A (DGEBA). The choice of resin may be detrimental to fatigue perform-
ance of a composite structure exposed to moisture.

In all the above papers the test conditions were steady state temperature and humidity,
Lundemol 200, 2011 studied the influence of environmental cycling on the static and fatigue proper-
ties of T300/5208, (+45), 5. The environmental cycles used prior to mechanical testing were aimed at
simulating fighter aircraft service, including thermal spikes and low temperature excursions, with the
humidities set to result in a moisture content of approximately 1% weight gain. Tension-tension

1
(R =0.1) fatigue tests were performed at 0,,,,, = P Ou1tim ate and a frequency of 28 Hz. No failures

occurred after 106 cycles for these specimens which were not exposed to the environmental treatment.
After four weeks of treatment, five out of eight specimens survived 106 cycles with no survivals
observed after six weeks of treatment (the longest life recorded for these specimens was 8.7 X 104
cycles. For specimens coated with polyurethane, less degradation was observed. Despite the low
number of environmental cycles imposed (30 in six weeks) the effect was significant.

2.2 Random Loading

Years of experience has led to the conclusion that fatigue and damage tolerance testing must
be conducted under conditions representative of service environments. Constant amplitude testing
may be used only for those parts which will have a constant amplitude service environment. For the
majority of aircraft parts this is not the case and simulation must be representative of the random
nature of the service load history, usually with both amplitude and frequency variation. The flight-
by-flight conditions including reverse loading must be represented(3!7 ], This is true for both metal
and composite structures. For composites, there is no accepted cumulative damage theory that allows
the extrapolation of simple constant amplitude test data to the evaluation of the effects of random
loading. Representative spectrum tests must be used and generally must start at the coupon level. This
is expensive and time consuming, and by its nature, must be directed towards a particular application.

In a series of articles Haskins, Kerr, Stein et all166, 126, 127] presented a program and
some results on long term evaluation of Advanced Composites for Supersonic Cruise Aircraft. The
materials used were graphite and boron/epoxy and polyimide (notably AS/3501, HT-S/710). Flight
simulation was carried out using random loading with temperature cycling representative of super-
sonic flight (Fig. 12). Baseline tests and short term tests (accelerated load frequency and maximum
temperature) were used to set reasonable load limits for long term tests. After 100 hours of testing, a
preliminary wearout model was set and later refined after 200 test hours (Fig. 13). For the long term
test, loads were set so that approximately 80% of the specimens would survive 25,000 simulated
flights of two hours duration (one lifetime). During each flight one compressive load was applied at
the highest temperature point of the flight. After 8000 hours, more specimen failures were observed
than predicted from short term tests. It was concluded that the wearout model used is not sufficient
to accurately predict complex real time exposure effects. Delamination was extensive as the failures
were due to compression — which indicates that ultimate tensile strength is not a good measure of
damage in composite.
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Sendeckyj et all2581 studied the effect of temperature on fatigue response of surface-
notched [(0/+45/0)g ]; T300/5208 graphite/epoxy. Flight-by-flight spectrum loading was used in two
versions, one with and the other without compressive loads present. One lifetime consisted of 1280
flights, each 44 seconds in duration. Load cycling was carried out at different temperatures from 27°C
to 210°C. All survivors of two lifetimes were inspected using both C-scan and TBE radiography and
subjected to a room temperature residual tensile strength test. Elimination of compressive stresses did
not lead to a significant change of residual strength. However, the fatigue test temperature did influ-
ence the residual strength. The maximum residual strength was observed for specimens tested between
156°C to 182°C. No specimen survived two lifetimes at 210°C but all had survived below that temper-
ature. At increased temperatures, the size of the damaged zone increases (delamination) however, the
more damage present the worse the conditions are for load transfer by the matrix. This, in turn,
reduces the local stress intensity due to the presence of a crack (notch).

Results from the US Air Force Materials Laboratory sponsored Advanced Composites
Serviceability Program have appeared in several papers(230.12,176,177], The main aim of this study
was to develop experimental information on the growth of flaws and to quantify their influence on
residual strength. A real time matrix of load, temperature and moisture was reduced and compressed.
This permitted one lifetime to be simulated by 24 hours test. Loading was representative of a vertical
tail spectrum (B1 bomber) including fully reversed load (R =-1.0). The maximum test load was equal
to the design limit load (2/3 of ultimate allowable or 80% of average ultimate stress). Figure 14 con-
tains a truncated spectrum for metal vertical tail with all cycles below a load factor (L.F.) of 0.089
removed (only the positive side of the R = -1.0 spectrum is shown). The final load and temper-
ature spectrum can be seen in Figure 15. The number of load cycles was reduced from 500,000 to
127,500 and the number of temperature cycles was reduced from 4000 to 6 to enable one test life-
time to be carried out in 24 hours. The temperature sequence in a mission was rearranged into a
monotonically increasing sequence from low to high. Preconditioning with moisture was carried out
at 74°C, 98% RH up to a 1.2 to 1.3% weight gain to represent the worst type of USAF basing
conditions. In order to maintain the moisture content, steam was injected into the system during the
49°C and 82°C cycles. Compromises made are summed up in Figure 16.

Specimens used in these studies were made of AS3501-5A and T300/5208. The flaws were
classified into categories which describe the stress gradients caused by a flaw embodied in a laminate
undergoing a far field (away from the flaw) uniform stress. The likelihood of occurrence was used
to estimate the flaw criticalityl! 77 | and fatigue tests were carried out. The flaw size was regarded as
critical if it led to specimen failure after two lifetimes of spectrum loading.

It was found that the residual compressive strength of graphite/epoxy, after load cycling
degrades with temperature, moisture, proof loading and size of imperfection or damage, Figures 17,
18 and 1911761, As delamination was the dominant damage type, residual tensile strength was not
significantlly affectedl! 771,

Daniel and Schramm et all79, 253 | conducted nondestructive inspections aimed at moni-
toring damage growth as part of the above described studies. They found that flaw growth was much
more pronounced for those specimens exposed to environmental fluctuations in addition to the
load spectrum. The worst type flaws appeared to bel791:

1. Circular hole.

2. Embedded film patch.
3. Internal ply gap.

4 Surface scratches.

Gerharz and Schutzl! 08! presented a “quasi real time” program and proposed several
accelerated schedules for testing the composite upper surface wing root area of a fighter plane. The
load spectrum used was FALSTAFF*. The objective of the accelerated test program was to achieve
the same damage growth and residual strength as found in a “real time” loading with a shorter testing
time. To date no results of these studies have been published.

* For more information see “Introduction to a Fighter Aircraft Loading Standard for Fatigue Evaluation
“FALSTAFF” by G.M. vanDijk and J.B. dedJonge.
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When developing accelerated testing schedules the effect of creep must be considered. Sun
and Chiml2791 found that fatigue life increases with time at load. For notched samples of T300/5208
in a [£45], ¢ lay-up, fatigue life was significantly longer when cycling frequency was first low and later
higher. The reverse order of cycling frequency resulted in shorter fatigue life. They concluded that a
reduction of stress intensity at a crack tip due to creep was responsible for increasing the fatigue life
during the “slow-fast” tests. As creep is clearly related to temperature it is obvious that time at
temperature in the environmental cycle will also influence fatigue life.

Other spectrum loading tests will be reviewed in Part V of this review which deals with
composite joints and structures.

2.3 Fatigue Testing in Simulated Environmental Conditions

Testing in hot-wet conditions was considered in Part III of the review series. There are
some additional points specific to fatigue testing under such conditions, to be made.

Several authors reported problems with grip tab failures. Rotem! 2461 used graphite cloth
T300/5208 tabs after tabs manufactured from other materials (glass epoxy and aluminium) failed.
Ryder and Walkerl2511  after some research, chose American Cyanimide FM400 as the best tab
adhesive for testing at 82°C, 95% RH. For tension-compression tests, a temperature rise in the tab
area of 39°C was recorded and resulted in tab failure. This problem was alleviated by cooling the tabs
with RT air. In the gauge length, the temperature rise was 3°-8°C which was accounted for in the
analysis of the results. Kan and Ratwanil161] in an earlier mentioned tests found that initial test
frequency of 10 Hz resulted in a temperature rise of 2.8°C in the gauge area. Therefore, 5 Hz was
chosen as the final loading frequency.

Some authors reported on spectrum loading tests with the environmental conditions simu-
lated,[108, 230, 26 7] and include a brief description of the equipment which they have used to
produce required temperatures and humidities around the test specimen. The thermal spike test inl!1 081
for example, required equipment capable of achieving slew rates of 60°C/min. The cost of such equip-
ment is very high and lower slew rates (~20°C/min) are more typical of such testing equipment.
These high rates are necessary to conduct accelerated tests.

2.4 Conclusions

1. The large scatter apparent in composite tests is usually increased by varying test temperature
and moisture conditions which makes interpretation of results difficult.

2. Non-organic fiber dominated laminates generally show little sensitivity to environmental
factors under fatigue.

3.  For matrix dominated laminates, fatigue characteristics are affected by temperature, while
moisture, at room temperature, seems to have no effect. (This may vary greatly depending
on the matrix used.)

4. Environmental effects on the viscoelastic properties of a matrix may have to be taken into
account in composite fatigue analysis.

5. The observation of sensitivity or insensitivity to environmental factors is very closely tied
to the definition of failure in composite materials.

6. Elevated temperature wet conditions and particularly environmental cycling reduce the
fatigue resistance of composites. The slopes of S-N curves for graphite composites are
relatively flat and even slight shifts of the curve will result in significant reductions in
fatigue life. Strength reduction, especially in tension, may not be as significant.
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7. Fatigue damage in composites usually is not directly related to residual strength. This is
frequently ignored in fatigue studies of composites.

8. A method has been proposed for calculating fatigue properties of laminates, at various
temperatures, from simple unidirectional and crossply studies at some reference temperature.
This method is, however, in the very early stages of development.

9. The following deficiencies exist with respect to composite fatigue: a) A general theory for
predicting laminate fatigue properties analogous to lamination theory for static properties;
b) A general cumulative damage theory like Miner’s rule for metals; c) A theory accounting
for degradation of properties due to environmental factors. As a result, verification of
existing designs has to be through testing under representative loads and environments.

10. Simple environmental simulation in accelerated tests should be adequate for fiber dominated
materials while realistic environmental simulation is required for matrix dominated materials.

3.0 TIME DEPENDENT PROPERTIES
3.1 Mechanical Relaxation

Mechanical relaxation phenomena are observed when material behavior is nonelastic and
stress and strain are not only functions of one another but also of time. The most commonly studied
transient effects are creep and stress relaxation. In simple creep, either the applied stress or load is held
constant while an increase in strain with time is recorded. Stress relaxation is observed when the stress
required to hold a specimen at constant deformation is gradually decreasing with time. Results of
creep and stress relaxation tests are strongly affected not only by the stress levels used, but by the test
temperature, and for the case of organic solids (matrix materials), the moisture content of the specimen.

3.1.1 Linear viscoelasticity — superposition principle

The constitutive equation for general time-dependent material behavior can be written as

follows:
€, = f(Oz, t!T!M' UH':TH’MH) {1)

where: )

€, — strain

o, — stress

t — time

i b — temperature

M — moisture content

H — history of (temperature, moisture, stress)

This equation is so complex that it has never been used and instead, material behavior is approximated
by combinations of elastic and viscous models.

The most general form of linear viscoelastic stress-strain relation in contracted engineering
notation is given byl741:

t de; (7)
o;(t) = { Qj (t-17) aF

(v]

dr (2)
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Q;; are the viscoelastic relaxation moduli. If conditions of temperature and moisture are varying, then
the relaxation moduli become functions of these as well as time. In this case, strain in Equation (2)
should be represented as sum of strains due to load, thermal and moisture expansion:

&() = € (1) - 4AT(T) - B; AM(7) (3)
@; and f3; are coefficients of thermal and moisture expansion AT and AM are variations in temperature
and moisture.

An alternate form of viscoelastic stress-strain relation which is more useful for creep type
experiments is(331:

t dUJ(T)
€(t) = J"+ Sij(t- 1)

o

dr (4)

where S;; are the creep compliances.
The concept of superposition of time-temperature or time-temperature/moisture permits the

use of master creep compliance (or relaxation modulus) curve representation of data:

Sij (T: M, t) = Sij (To ’ Mo ’ g) (5)

where T, M,, are reference temperature and moisture conditions and { is reduced time:

T 6
o apy (T, M) (6)

ary are horizontal shifting factors representing the amount of shifting necessary to bring the
5;; (T, M, t) (Qj; (T, M, t)) data into coincidence with the master curve. The relaxation tests (creep
and stress relaxation) are usually conducted at constant conditions so Equation (6) becomes:

t
§ & = (7
arm
or taking logarithm of both sides of Equation (7)
log; o§ = logy ot - logjgary (8)

Plots of isothermal /moisture moduli, or compliances, can be shifted horizontally with the magnitude
of the shift equal to log; jar -

Materials which lend themselves to this type of operation are called thermo-rheologically
simple (TSM). Vertical shifting is required when horizontal shifting did not result in a smooth, well-
defined master curve. The material is then termed thermo-rheologically complex (TCM).




s8s

For rigid plastics with and without reinforcement, the creep compliance relationship
frequently used for approximation is:

S(t) = S, +8, tn 9)

S,, S;, n — constant with time.

For TSM, the creep compliance in a series of isothermal tests is given by:

S =8, +8, (L) (10)

ar

For TCM S, is temperature dependent:

S - sD(T)+s](-:—) (11)

T

The linear viscoelastic model of time-dependent material behavior is used because of its
simplicity. The superposition principle, when applicable, dramatically reduces the amount of time
and number of data points required to fully characterize the viscoelastic properties of the material.
However, composite materials generally do not follow this approximation so it can be used only for
limited conditions (usually low stress and temperature levels) on an individual basis(33. 3281,

3.1.2 Time-temperature superposition

Yeow, Morris and Brinson[3281 studied time-temperature behavior of unidirectional
graphite/epoxy (T300/934). The stress levels used in this study were such that the applied axial stress
did not exceed 10% UTS. Specimens were subjected to various loads (mechanically conditioned) to
determine whether load history affected material response. Since the stress-strain curves did not
change, the number of specimens required for testing was reduced (specimens could be used several
times). The material was tested for linearity — creep and recovery for [90° ] specimen must have
equal instantaneous strain (€, in Fig. 20) and the stress-strain curve after 15 minutes of creep must
be linear (Fig. 21). Isothermal creep tests were conducted for temperatures of 20°C to 210°C and
results for the reciprocal of reduced compliance (1/S,,) are shown in Figure 22. Reduced compliance
is defined as:

€(t)
8yp = o T, (12)
where :
O, — applied stress
T — reference temperature
T — temperature of the test
€,(t) — strain (transverse to fiber direction)

The master curve obtained from these data is shown in Figure 23 while shift factors a; are plotted in
Figure 24. It was found that shift factors for all fiber orientations as well as for the reduced shear
modulus S¢ ¢, are equal. The deviation of the shift factor for reduced Poisson coefficient v, ; was
attributed to data scatter.
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Fiber dominated properties (S, and »;,) were found to be time and temperature insensi-
tive.

Beckwith[33] reported on a study of Shell 58-68R epoxy and its composite with S-901
glass fiber. The temperature range used in the study was - 7°C to 60°C. Tests were single and multiple
(3) cycle creep and recovery. Both the resin and composite were found to be TCM materials as initial
compliance (S, see Eq. (11)) was temperature dependent (Figs. 25 and 26). The master curve for net
creep compliance was obtained for the epoxy after initial compliance for each temperature was sub-
tracted from the total compliance measured (Fig. 27). The glass/epoxy tested can be regarded as
linearly viscoelastic. The range of linearity depends on temperature and fiber angle. At 24°C (+45°)
glass/epoxy recovers completely for 35 MPa but not for higher loads. However at 60°C it does not
recover even for 20 MPa (Fig. 28). Beckwith observed a change in initial and net creep compliance
in composites due to multiple loading. The nonlinear effects were assumed to be predominantly
microcracking and the crack growth seemed to cause a disproportionate amount of damage during
the first few loading cycles.

For those cases where the superposition principle can be applied, the key to obtaining the
master curve are the time-temperature shift factors. Kibler and Carter(16 7] examined the possibility of
using electrical conductivity measurements for obtaining these factors.

Direct-current resistance of neat epoxies is very high. It can be therefore assumed that
charge transport proceeds by the short range migration of heavy ions. In that case, the direct-current
electrical conductivity is itself inversely proportional to viscosity. Samples of 5208 epoxy resin were
used to extract the time-temperature shift factors from thermomechanical and electrical conduc-
tivity measurements:

- n(T) B o(Tg)

= (13
T 7 n(Tr)  oT) )

where 7 - viscosity o - electrical conductivity. Only linear effects were studied. The ar factors
extracted from both methods are compared in Figure 29. Carter and Kibler concluded that conduc-
tivity data may be useful in obtaining quick estimates of the effects of temperature on time-dependent
mechanical response.

3.1.3 Time-temperature-moisture superposition

The considerable ‘plasticizing’ effect of moisture on matrix type resins relaxation modulus
can be seen in Figure 30 taken from Browning(42. 441, The two master curves shown correspond to
dry and wet (equilibrium wt. gain at 71°C, 100% RH) samples. A shift factor from wet to dry was
found to be 10. This implies that the same response will be exhibited by a wet sample 10 times faster
then by the dry sample.

The effect of moisture on time-dependent response in composites has been studied only
recently and by relatively few authors. In one of the earlier works Wang and Liul304 ] studied creep
in graphite/epoxy (Modmor II/1004) unidirectional composite. Specimens were placed in various
humidity conditions at 21°C and 65°C. A significant increase in creep with humidity and temperature
was observed (Figs. 31 and 32). Within the limits of linear response, the time-temperature-humidity
shifting was shown to be effective (Fig. 33).

A much broader study was undertaken by Crossman et all70], The materials used were
GY70/CE339, T300/5209 (both unidirectional) and HMF 330C/934 (T300 satin weave). All these
materials are graphite/epoxies. Specimens were exposed to humidity conditions until saturation prior
to stress relaxation testing. Results are shown in Figures 34, 35 and 36. For HMF 330C/934, the
relaxation modulus at 149°C dry corresponds to the 71°C wet values. Part of this study was directed
at demonstrating the effect of relaxation effects on residual stresses (see Part II of this review series).
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Kibler! 1681 presented creep test results for T300/5208 and AS-3502 graphite/epoxies. Only
the linear range of behavior was studied (stress levels at 25% — 35% UTS). The creep compliance
master curve (Fig. 37) is essentially the same for both materials. Longer-term tests agree well with
short-term tests. For fiber-dominated properties no time dependence was found (Fig. 38). From the
above data Gg (t) was calculated and is shown in Figure 39. It can be seen that when both moisture
and elevated temperature are present, the shifts are considerable.

3.1.4 Nonlinear responses and time-temperature-stress superposition

Composite materials generally demonstrate nonlinear time-dependent behavior. Linear
viscoelasticity is applied only for low stresses. Wang and Liul3 04 | encountered nonlinear response at
65°C, 95% RH at a stress level of 29% UTS (Fig. 32). This stress level is rather low from a design point
of view. Wang and Wangl301 ] measured creep response at glass/epoxy (Scotchply 1002) at various
load levels with controlled temperature and moisture content. For (90°) laminates the degradation of
material is found to be quite serious when the temperature and moisture content increase (Figs. 40
and 41). Similar behavior was found for (+45°) specimens. Even the (0°) laminate, at high temperature
and moisture exhibited a definite increase in creep strain (Fig. 42).

Griffith, Morris and Brinsonl 14| demonstrated that in some cases the time-temperature-
stress superposition principle (TTSSP) can be used to produce unified master curves reduced to
particular stress-temperature conditions. The procedure is explained schematically in Figure 43. The
method is regarded to be valid if smooth curves can be produced. For the T300/934 material tested
good correlation was obtained between the master curve from short-term tests and a long-term test
(Fig. 44).

3.1.5 Predictions

a) Micromechanics — Halpin-Tsai

Halpin-Tsai micromechanics equation was used[!68. 731 to predict viscoelastic modulus
from bulk properties with good correlations (Fig. 45).

b) Macromechanics

Various authors have adopted elastic lamination theory to account for time-dependent
behaviorl168,328,114,301,74]

As a first step, it is necessary to calculate the transformed reduced compliances for a lamina
arbitrarily oriented with respect to a laminate or global axis system. Yeow et all3281 used a visco-
elastic analog of elastic orthotropic equation and compared it with the master curve from short-term
data and long-term data (Fig. 46). Correlation was good, however, in a more recent publication,
Griffith et all114] concluded that all axis predictions must account for the stress-dependent nature
of the master curves. The uniaxial stress must be transformed into stress components in the principal
material directions and master curves for stresses associated with these directions should then be used
with the transformation equation. For this approach, prediction was within 10% of measured
responses.

A procedure for calculating creep response of a laminate from measured creep responses of
laminae was shown in[301 ] and the results of comparison of predictions with measurements are in
Figure 47. This procedure allows for the nonlinear nature of creep responses. For linear viscoelastic
approximations, computer programs based on an elastic response model and data from master curves
were used with satisfactory resultsl1681,

3.2 Stress-Rupture

Creep tests can be carried out to failure (stress-rupture). For this case, the life of a composite
does not seem to correlate to the initial static strength or to the residual static strength taken at any
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point before rupture. More experimental data is needed to determine times to rupture characteristics.
As several years may be needed before rupture occurs accelerated testing methods are required.
Chiao et all60] and later Hahn and Chiaol1201 compared long-term test results to results from a time-
temperature reduction based on an Arrhenius type of equation. The materials tested were Kevlar 49
and S-glass strands impregnated with epoxy resins (several resins were used). In the earlier work(601

a discrepancy was found between the predicted and measured rupture times for stresses over 85%
UTS. Inl1201] Jifetime data spanning over eight years have been analyzed by a two-parameter Weibull
distribution and it was found that above 80% UTS the failure process changes from a wear-out type
to initial defect controlled. At high temperatures the failure process was also wear-out type and this
explained the difference between the predicted and experimental data for higher stresses. The stress
rupture of S-glass epoxy composite was found to be a random failure process (shape parameter of
Weibull distribution « =~ 1) regardless of stress level. The logarithmic characteristic lifetime was
linearly related to the applied stresses.

Aveston et all26 | tested fiber bundles unimpregnated and impregnated with resins in wet
environments. For carbon fibers no effect of time was observed. For E-glass considerable degradation
was observed with worst effects of immersion in water of epoxy and polyester impregnated strands.
Cemfil — glass fiber (alkali resistant) demonstrated much better performance while Kevlar 49 perform-
ance was somewhere between E-glass and Cemfil.

Allen[8] suggested the use of flexural creep and rupture tests to screen reinforced epoxy
resins for environmental performance. Creep rates and rupture incidence are increased by immersion
of specimens in water.

3.3 Conclusions

1. The linear viscoelastic model is a useful approximation for predicting CM performance at
low stress levels and moderate conditions of temperature and moisture.

2. Fiber dominated properties (compliance S, ; and Poisson ratio) are time and temperature/
moisture insensitive (graphite) or very slightly sensitive (glass and Kevlar 49).

3. For pressure vessels and similar applications where material remains loaded for extensive
periods, stress rupture in the fiber direction is a possibility. Arrhenius type relations may be
used to predict time to rupture from short-term data.

4. Most composites are thermo-rheologically complex materials as initial compliance
depends on testing conditions.

5. Moisture has a considerable “plasticizing” effect and the same creep response may be
expected from a wet sample 10 times sooner then from a dry sample.

6. The Halpin-Tsai equation predicts the viscoelastic modulus from bulk properties with good
results.

7. Lamination theory may be adopted to successfully predict the laminate viscoelastic
response, both linear and nonlinear.




| MPal

u
L3

STRESS AMPLITUDE, o

STRESS AMPLITUDE, 0," [MPa]

600

wm
(=]
o

400

300

200

100

80

70

60

50

40

30

20

-13-

R=01 ——— [ 15 25°C
—-— ¥ 15 74°C
—— | +15 114°C

| | | | | | =
1 10 102 10° 104 10° 108 107
CYCLES, N
FIG.1: S-N CURVES OF SOME ANGLE-PLY
LAMINATESI245]
f=10C/S R=0.1 ——— [ :60°,25C
_ —-— X :60°, 74°C
\\EL —— W =60°,114"C
——— A z75° 25°C
- —-— X =75°, 74°C
——— A 75, 114°C
~N ——— O 90, 25°C
g, —— @ 90, 114°C
g
A
A~
o oz *
—X__ A T~
‘-ﬁ'Hﬁ“"““ﬁtltE—HJ;i‘_E_‘4_ >
[ S S R R S— v~ J
10 102 103 104 10° 108 107

1

CYCLES, N

FIG. 2: S-N CURVES OF SOME ANGLE-PLY
LAMINATES[245]



<1

[MPa) 0"
700 — -~ O
i o]
Y \'\é( v
650 |— o ~A o [o)
té qﬂ._“. L
600 f - — — FAILURE OF 0° LAMINA 3¢ ><‘23 -
X
X 10,+60,0], 25°C o
ss0f— A [0,+60,0], 74°C
0 lo, +60,0], 114°C X
O [0,475,0], 25°C
5001~ w [0,:75,0) 74°C
® [0,-90,0], 25°C
450 1— A [0,-90,0], 74°C
T | e e | -
0 10 102 103 104 10° 108 107

N(CYCLES)

FIG. 3: S-N CURVES OF SOME SYMMETRICALLY
BALANCED LAMINATES THAT FAILBY FIBER
FRACTUREI245]

o' |MPa)
1200 (—
4 25°C
|0, £15, l:)]s
1100 |— .
74°C \
1000 |—
900 |— .
lo,=30,01, 74°C
114°C ~
800 |— e
~
A‘QB\L
N A N
700 |— ~A A
L 373-.. “\
6500 | T | - | e
0 10 102 103 104 10° 108 107
NICYCLES)

FIG. 4: S-N CURVES OF SOME SYMMETRICALLY
BALANCED LAMINATES, SHIFTED WITH
TEMPERATUREI[245]




-15-

s

? r 0.0 @ VOO TEMPERATUTT TRY W= 1,125 INCH

& .

g O prpe TEM PATURL WET B o= 0,10 NG

=]

o R- 1t

T Fso °

i o

o 52 e

Lo 2l oo °

¢ £ e

g

erEin

E':L

-

= 1 A L ]
10 1 [ 1 1

LRELES 10 FALNRE, L™

FIG.5: S-N CURVE FOR LAMINATE 1 SPECIMENS
[RTD AND RTW]I161]

1(-50)
120 R =10
Frequency = 10 Hz, unless noted otherwise q(-45)
AT= 2,0 to 5.6 C ( 5 to 10 F) i P
4(-35)
n
{(-30y max
(ksi)
— (-25)
1 (-20)
O
O
—_ 4 (-15)
o RTD Values -
-80— RTW Values
‘ e < (-10)
"
-40—] =
4 (-5
-
0 v gl L1l Ll 1ot anl L lllllllls | L1
17 10
4 19 i }110- Number 1]5? cycles to Failure O%O'Runout

FIG. 6: 90-DEG COMPRESSION FATIGUE OF
LAMINATE B, [0],4+ — RTD AND RTWI115]

T NIl o rrtTmne T T T AT T T B BRI 7T



I .

+ 16+

W=0.375In.

=~ 0.70 in.—~

/Q 1 ‘\
-0.38in. rad

—1 172 if.——-—p——I IN.——p——1 /2 iN,———=

(a) TORSION SPECIMEN

}6 in. rad 0'25“14-‘ [.

N T OF

— ¢ — 0250|n

Ojim

J-—O.? in.—=

YN /@Tﬁ
—2in,———— 0.25in.dia

S -4in.

(b) FATIGUE SPECIMEN

FIG.7: TEST SPECIMENSI[277]

15%10%
s
ol2f © TESTED W AuBICNT AiR
- A PRE-SDACED SPECINEN
-~ TESTELD ™ WOOM TLuWP{RaTyRL
watgm
£
< -
P 9
2
-
w 6
“
w
f O TeSTED N AR T4° €
& 41 @ PROSOARLD SPEC.MEN
|~ TESTLO & T4* C wATER
TR TTI G EE W T TTTT G S TTTVY SRPRE S Y 177 M AW wTITT S |
107! 109 10! 102 10? 104 0%

NUMBER OF CYCLES, N

FIG. 8: TORSION FATIGUE OF +45° FIBER-ORIENTED
GRAPHITE-EPOXY COMPOSITE. DECREASE IN STIFF-
NESS [7/0] WITH NUMBER OF CYCLES (LOG N) AS A

FUNCTION OF ENVIRONMENT. +45° FIBER ORIEN-
TATION. A7, = +11,200. TEST FREQUENCY 1 Hz[278]

TI11
TR T T I T T T T T T T T T T T n T T T IR e T T T T T T I T




-17-

190
Ry Ty GAAPHITE-EPORY
(0 £30% Olyy
g FLEXURAL FATIGUE
14-POINT BENDING)
— 150
5
z
"
w 130
"
-
-
wnot
-
3
%0+
10t
ENVIRONMEMNT AR
a0 " i i " oo i I Y B |
[T 10! 102 103 w0 0 ¢ (-4

NUMBER OF CYCLES, W

FIG.9: FLEXURE FATIGUE TESTS OF +30° FIBER-
ORIENTED SPECIMENS IN REVERSE (R =-1) AND

REPEATED (R =0) CYCLINGI278]

25{
20

SHEAR STRAIN AMPLITUDE =«

T T T T
o AS-RECEIVED

» SOAKED
e DRIED

~RECEIVED

DRIED ANMD
SO0AKED

]
1 10 100 . 1000 10000
FATIDUE LIFE [CYCLES)

FIG. 10: FATIGUE LIVESOF CFRP UNDER CONSTANT
SHEAR STRAIN AMPLITUDE CYCLING AFTER

VARIOUS TREATMENTSI233]

T

s T T T T T T T T
4
= © AL-RECEIVED
- s JOAKED
f 4 ORIED J
Z 03
=
—
P
-
-
S 01F -
-
-
o
-
o
-
>
2o -
o
=
= AS-RECEIYED
-
-
=y T b 1 1 1 1 L
L ] 10 11 20 25 30 s 1]

SHEAR STRAIN AWPLITUDE 107

FIG.11: AT/LOG N DURING CONSTANT STRAIN
AMPLITUDE CYCLING OF KFRPI233]

T—— T Ty ™ T

T T TR B IR T I U AT T Ty T T T T T T T T T

TETITIGET




<18 -

* BACKCROUND FROM PHIVIOUS NASA PROGRAMS

mMAx |
ust
1 o / \
Timg
15
1.0
. }
LY I |
: |
0 ]
1
- s l
I | | TIME
. | - 1 LT W .
L ik LI
LLIME CRUISE DISCIND

FIG. 12: LOAD/THERMAL HISTORY IS
REALISTICI126]

“ e

]

RESIDUAL 095 0.90 0.50 0.100
STRENGTH
1K1PS)
1.04
0.5 4
0 1 I]Iill]l 1 I]IIIIIF 1 ]llll!ll
102 1! ] 10
LIFETIMES

FIG. 13: WEAROUT MODEL FOR UNNOTCHED
[0/£45]; A-$/3501 GRAPHITE EPOXYI126]




16

LOAD FACTORS

MISSION FORTION 1] 02 o4 os os 10 SKIN TEMPE ﬂl'lull[_'t
ARCTIC RUNWAY STORAGE |3 80°F, V% OF THE Timp
ARCTIC BASE TAKEOFF ] RWILF 510 85°F, 1% OF THE Timg

IEEE——— 010 100°F, 9% OF THE Timg

]

351

. : :] 194 10°F, 90 OF THE Tisag
SUBSONIC CRUISE B0%F, 90 OF THE TimE

__oso 382,01 TIMES 20°F, 1% OF THE TiMe

L]

—4= 377 001 TIMES
_
. —————17:s 295.0.1 TIMES 270°F,  10°% OF THE Time

SUPERASONIC CRUIS KT 735°F, 90N OF THE TIME

b ———— 166

1]

351 10%F, 90% OF THE TIME

SUBSONIC REFUELING |— | S0%F 0% OF THE TIME

15
748 LF
§12
—i 83 130°F,  90% OF THE TIME
612 1759%F, 0% OF THE TiME
PENETRATION 1000 0.01 TIMES
o et ° 720, 0.1 TIMES
TERRAIN FOLLOWING o
930 001 TIMES
71501 TIMES
536
DASHOUT ESAPE 10%F, 90% OF THE TIME
FERRAINTOLLOWING 0 190%F, 10°% OF THE TIME

€76 0.01 TIMES
534 01 TIMES
= 415
296
1]
109F, 907 OF THE TIME
SUBSONIC CAUISE el S0°F, 9% OF THE TIME
- . -20%F, 1% OF THE TIME
L]
—

— 230 010 TIMES
; 203

i 45°F, 1% OF THE TIME
PRE LANDING LOITER ‘ O°F, 9% OF THE TIME

[ARCTIC BASE VICINITY] 673,001 TIMES 25°F, 90% OF THE TIME
L —— 171,01 TIMES
£59F, 1% OF THE TIME
— 0 TO 100°F, 99% OF THE TIME
350
[~ —— 203
510
FLY-AROUND AND
LANDING
——————1.203 01 TIMES
f————m 510,01 TIMES {
f=—— 350 0.1 TIMES UNIFORM DISTRIBUTION
———
PROBABILITY 509 OF THE TIME
|——— 703 01 TimeS TIME AT 30°F 49 OF THF TIME
T 510,0.1 TIMES Lydsmaioes
l 1780 MISSIONS/LIFE

NOTE. TOTAL LOADCYCLESPER LIFE TIME - 500 000

FIG. 14: SKIN TENSILE STRESS HISTORYI[230]




« 20 -

SEGMENTATION OF LOAD FACTOR CYCLES
TO SIMULATE ONE LIFETIME
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FIG. 15: SEGMENTATION OF LOAD/TEMPERATURE CYCLES[230]

COMPROMISES
* 500,000 CYCLES——=127,500 CYCLES

EFFECT: CLIPPING OF LOWER STRESS EXCURSIONS
* MONOTONICALLY ARRANGE TEMPERATURE EXCURSION

EFFECTS: REDUCES FREEZE-THAW OR LIQUID-STEAM CYCLES;
REORDERS STRESS/TEMPERATURE EXCURSIONS

« REDUCE SEGMENTS FROM 100 TO 6

EFFECT: REDUCES FREEZE-THAW OR LIQUID-STEAM CYCLES
e REDUCED DWELL TIME AT TEMPERATURE

EFFECT: MAY BE SIGNIFICANT (CREEP/RELAXATION)

NOTE: FREEZE-THAW CYCLES REDUCED FROM 10,000 TO 6
LIQUID- STEAM CYCLES REDUCED FROM 1,300 TO 6

FIG. 16: COMPROMISESI[230]
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