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SUMMARY 

This is part IV of a series of literature reviews on hygrothermal 
effects on polymer matrix composite materials. It contains a review of 
papers on mechanical properties as measured in fatigue, creep or stress 
relaxation tests with variations in temperature and humidity accounted for 
in the resul tso 

The other parts of the review are: 

Part I: 
Part Il: 
Part lIl: 
Part V: 
Part VI: 
Part VII: 

Moisture and Thermal Diffusion 
Physical Properties 
Mechanical Properties 1 
Composite Structures and Joints 
Numerical and Analytical Solutions 
Summary of Conclusions and Recommendations 

A complete list of references is included in the Appendix and the 
numbers in the brackets appearing in the text refer to this list. 

RÉSUMÉ 

V oici la partie IV d 'une série de documents traitant des effets 
hygrothermiques sur les matériaux composites à matrice polymérique. Elle 
comprend une étude des données recueillies sur leurs propriétés mécaniques 
lors d 'essais de fatigue, de fluage et de relachement des contraintes dont les 
résultats tiennent compte des variations de température et d'humdité. 

Les autres parties de cette série sont les suivantes: 

Partie I: 
Part ie II: 
Partie III: 
Partie V: 
Partie VI: 
Partie VII: 

Diffusion de l'humidité et de la chaleur 
Propriétés physiques 
Propriétés mécaniques 1 
Structures et joints composites 
Solution numériques et analytiques 
Résumé des conclusions et recommandations 

Vne lis te complète des références est incluse en annexe et les 
nombres entre parenthèses dans Ie texte se rapportent à cette liste. 

(üi) 
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HYGROTHERMAL EFFECTS IN CONTINUOUS FffiRE REINFORCED COMPOSITES 

PART IV: MECHANICAL PROPERTIES 2 - FATIGUE AND TIME-DEPENDENT PROPERTIES 

1.0 INTRODUCTION 

In this part of the review (Part IV) results of fatigue and creep and stress-relrucation tests 
are reported. 

With the move towards primary load carrying structures made with composite materials, the 
number of publications related to the fatigue properties of these materials has rapidly increased. Most 
of these papers are concerned with graphitejepoxies, and with other materials receiving less attention 
either because of cost or inferior properties. In the future, if the trend towards higher strain allowables 
for structural composite materials is realized, fatigue will certainly become a major factor in the design 
of primary composite structures. 

There is astrong indication that fatigue in composites is closely related to creep as time at 
load, rather then number of cycles, has had the greater effect on life in some experiments. Mechanical 
relaxation problems, however, have significance of their own for some applications like pressure 
vessels, bolted joints (relaxation of clamp up force) or structures which have to demonstrate dimen­
sional stability (relaxation of residual stresses). 

Fatigue tests of composite structures and joints will be reviewed in Part V. 

2.0 FATIGUE 

2.1 Constant Amplitude Loading Studies 

Constant amplitude loading studies that produce S-N curves have limited value for composite 
designers. They are, however, a very convenient method of demonstrating behavior of materials under 
cyclic loading and have been used in environmental studies of composite materiais. In this chapter 
investigations will be reviewed in which materials have been exposed to various conditions of tempera­
ture and humidity prior to, during or af ter constant amplitude cycling. 

Hofer, Bennett and Stander! 131 I studied the effect of humidity preconditioning followed 
by stress cycling, on residu al mechanical properties. Earlier in the study S-N curves were generated at 
room temperature. The stress ranges at 2 X 106 cycles were taken from these curves for alilaminates 
under consideration. The average stress range was calculated and a 10% smaller value was used as stress 
range for stress cycling. Humidity pre conditioning consisted of steady state 500 hour or 1000 hour 
soaking at 48.9°C - 98 ± 2% RH. Materials used were T300 (graphite) and S-glass in 5208 epoxy resin. 
Hybrid laminates of an interweaving type were made with varying proportions of all glass and all 
graphite plies. Lay-up was either unidirectional or quasi-isotropic. All materials were stressed in a 
tension-tension load cycle (R = 0.1) at 30 Hz up to 107 cycles but not all specimens survived this 
rather mild stress cycling regime. Those that did showed a decrease in residual strength but no 1055 

of modulus and slight increase in Poisson ratio for the 0° lay-ups. 

Rotem and Nelson[2451 and Rotem(246) studied specimens of graphitejepoxy (T300j5208) 
in tension-tension (R = 0.1 and R = 10 at 30 Hz) at 22°C, 74°C and 114°C. They used unidirectional 
and angle-ply laminates as well as [0° I± fJ 10° ]s. These latter laminates were used to verify predictions 
of fatigue durability and failure mode based on results for unidirectional and angle-ply laminates. The 
fatigue behavior of a single lamina was characterized by its static strength and its "fatique function" 
which expresses the degradation in static strength due to cyclic loading. This function measured at 
some reference temperature together with temperature shifting factors can be used to calculate the 
fatigue function in a broad range of temperatures. Results generally correlated well with predictions 
but for laminates where angle-ply laminae contributed to the load to a greater extent (fJ <45°), the 
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viscoelastic character of the matrix had to be taken into account. Generally for matrix dominated 
laminates, fatigue failure was affected by cycling and temperature, and a shifting of the fatigue 
function was observed. However, the slope of the S-N curve was not affected by temperature. Fiber 
dominated laminates were not sensitive to temperature change (Figs. 1,2,3 and 4). 

Haskins, Kerr and Stein! 12 7) presented results for HT-S/710 graphite/polyimide in 
[0° /±45°]s lay-up. Fatigue tests were carried out at RT and 232°C. For the two loading ratios 
(R = -1, R = 0.1), there was little effect of temperature on fatigue of this fiber dominated lami­

nate which supports the results of Rotem and Nelson. 

Kan and Ratwanil 161 ) presentedresults for matrix dominated laminates (±45/902 /±45/902 )s 
made from graphite/epoxy (AS/3501-6). Specimens were moisture preconditioned up to 1% weight 
gain with the uniform moisture distribution calculated using Fick's model as defined by Springer and 
Shen! 212). Fatigue tests were run under tension-compression fully reversed loading (R = -1). Test 
frequency of 5 Hz was chosen as the finalloading frequency. Figure 5 shows the influence of moisture 
content on the fatigue behavior of the laminate. It was tentatively concluded that for this matrix 
dominated laminate, at room temperature, moisture had no influence on the compression fatigue life. 

It would appear from all of the above reviewed results, that temperature is more detrimental 
than moisture, in reducing fatigue strength. 

Ryder and Walker! 2 5 1 ) have done an extensive study of the effect of compressive loading 
on the fatigue of graphite/epoxy (T300/934) laminates. The aim was to observe the effect of absorbed 
moisture under compressive loading in unnotched and notched (circular hole) specimens. Two lay-ups 
were used (1) 25%ofO° - (0/45/90/-452 /90/45/0)s, (2) 67%ofO° - (0/45/02 /- 45/02 /45/02 /- 45/0)s. 
The baseline dry condition was 22°C, 40 ± 10% RH while preconditioning took place at 82°C, 90% RH 
up to saturation for the wet tests. There are four ways of defining the loading variables in fatigue: load 
ratio (R), maximum stress (amax )' stress range (L1a) and minimum stress (am in ). As R = amin /amax 
and L1a = amax - amin' during a fatigue test, any one of these variables may be held constant while 
the effect of one of the other three is being studied. Laminate (1) and (2) act as minimum columns. 
The maximum compressive stresses without lateral deflection greater than 0.0254 mm were therefore 
limited to -110 MPa and - 207 MPa respectively. Constant load ratio was rendered impractical as it 
limited the maximum stresses. In these studies amin was held constant at either -110 MPa (-207 Ma) 
or 0(0). Failure was defined for tension-tension as breakage of coupon and for tension-compression as 
either breakage or an inability to sustain load due to severe delamination. Failure modes observed for 
elevated temperature, wet (ETW) conditions were similar to those obtained at RT. The only difference 
was that the type of damage which led to failure appeared much earlier in life for coupons tested at 
the same stress. For matrix dominated laminate (1) elevated temperature, wet conditions decreased 
life of unnotched specimens by a factor of 3, and for notched specimens by a factor of 10. For 
notched specimens, the tension-tension S-N curve changed from flat at RT to declining strength with 
number of cycles under ETW conditions. For the fiber dominated laminte (2) the results are not easy 
to discuss. A larger scatter was evident for ETW conditions. During tension-compression tests at RT, 
some specimens survived 106 cycles of +759 MPa stress, while under ETW, all specimens with stress 
above +550 MPa failed before 106 cycles were reached. The fatigue tests were followed by residual 
strength test and it was observed that the fatigue induced damage does not appear to have a direct 
effect on residual tensile strength. For laminate (2) cycled to 106 cycles under tension-tension ETW 
conditions, residual tensile strength was reduced by 20% while residual compressive strength was 
reduced by 40%. This indicates that ETW cycling has a significantly larger degrading effect than RT 
cycling which resulted in respective compressive strength reductions of 0% and 15%. 

The data obtained was analyzed using Weibul distributions as weIl as other methods. Ryder 
and Walker concluded that significant statistical analysis efforts, combined with an extensive experi­
mental investigation, is needed before any extrapolative procedures can be used with confidence to 
predict fatigue performance in an environmentally degraded condition. 

'th Ui i i -
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The studies of the effect of moisture and temperature on composite material strength have 
indicated that compressive strength is particularly sensitive to these factors! 187 , 11 SI. Similarly com­
pressive loads in fatigue have strong degrading effects on fatigue properties. However no evidence of a 
synergistic effect of compression fatigue and environment was found in the reviewed literature. 

Grimes! 11 51 carried out an investigation in which graphite/epoxy samples were loaded in 
compression-compression at R = 10. The material used was AS/3501-6 with the following lay-ups: 
[O]n t, [90]n t, [±45 ]nS and [( ±45) 5 1016 1904 ]. Some samples were pre-soaked up to a 1.1 % weight 
gain of moisture. Testing was carried out in a specially designed fixture which was used for both 
fatigue and residual strength tests. Fatigue testing was carried out at room temperature and the 
residual strength test was at an elevated (103.3°C) temperature. Only for [90h4 T specimens were 
signifieant differences in fatigue properties found (Fig. 6). For dry samples, run outs were observed 
at stress levels of 126.9 Mpa (or 49% statie dry strength) while for wet conditions, the runout stress 
level was 90 MPa (or 45% of static wet). However, these differences could be expected since for these 
samples, static dry strength is higher than statie wet strength - 258.6/-199.3 [MPaiMPa]. 'Wear out'* 
occurred in all specimens but was greater in matrix dominated laminates. Higher wearouts were 
attributed by Grimes to degradation of the interface. 

Adams! 3 I reported results of an SEM study carried out on failed samples from Grimes' 
investigation. The influence of moisture or elevated temperature was not observed. No obvious 
differences were noted in the corresponding fracture surfaces. The author also tried to apply a micro­
mechanies analysis which was developed earlier and successfully applied to calculate residual and 
environmental stresses. There is a similarity between statie and fatigue failure in compression, however, 
the application of micromechanics analysis to fatigue is still far from being satisfactory. 

Sumsion and Williams! 2 7 7 I and later Sumsion! 2 78 I studied the effects of temperature and 
water on flexural and torsional fatigue of ASj3501 graphitejepoxy laminates. The lay-ups used were 
0°, ±45°, ±30° and woven (24 plies). Specimen shapes were as shown in Figure 7. Torsional fatigue 
tests were carried at 1 Hz under controlled strain (constant deflection) conditions and stopped if 
either the torque dropped to a preset level or if the required number of cycles was reached. Testing 
was carried out in air or water at both room and elevated (74°C) temperatures. Af ter fatigue testing, 
the specimens were subjected to four point ben ding at room temperature to measure strength, and 
bending moment versus deflection curves were used to calculate failure energy. All the specimens 
exhibited fatigue damage. The effect of exposure to a water environment during torsion testing at 
74°C and, to alesser extent at 24°C was to decrease the 'incubation period'** and to increase the rate 
of accumulation of damage. At 74°C water also appeared to decrease (lower) the limiting torsional 
stiffness (Fig. 8). It should be noted that the cross plied specimens appeared more prone to fatigue 
damage in torsion than the unidirectional specimens. In contrast, in flexural fatigue, water had greater 
effect on unidirectional specimens. 

The graphite/epoxy specimens showed significant flexural fatigue damage on both air and 
water when subjected to fully reversed plane bending at 30 Hz (Fig. 9). 

Phillips, Scott and Buckley! 2 3 3 I also studied torsional fatigue of composites. The materials 
used were high modulus carbon, glass and Kevlar 49 in a Ciba-Geigy MY750 epoxy matrix cured with 
metyl nadic anhydride and benzyldimethylamine. A unidirectional lay-up was used and rods were 
machined to a 6 mm diameter. Test were run at room temperature and humidity. Samples were tested 
in either an as received state, or after seven days at 100°C water immersion. Some conditioned speci­
mens were dried at 60°C for seven days prior to testing. Fatigue testing was carried out at 0.17 Hz, 
under either constant torque (±T) or constant twist (±O) amplitude. Signifieantly, the strength 
recovery upon drying observed during the stat ic tests was not observed in torsional fatigue. Fatigue 
life for carbon and glass composites was permanently degraded by 100°C water immersion (Fig. 10). 
However, the boiling water test is very severe and is not similar to any situation encountered in service. 

* ObservabIe damage. 
** Time required to ob serve first damage of the material. 
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The rate of change of compliance has been measured in terms of 6Torque/log N. For Kevlar 
composite, it is affected by various treatments as shown in Figure 11. In glass composites, this rate 
demonstrated partial recovery upon drying while in carbon composites, it was insensitive to moisture 
level. 

Gauchel, Steg and Cowling11 06) used Naval Ordinanee Laboratory (NOL) ring samples fila­
ment wound using S-glass with various epoxy resins. Prior to fatigue testing in diametrical compression, 
rings were immersed at RT in water for 400 days. Testing was also carried out in water and conduded 
when the observed load at a given deflection dropped by 20%. 

The percent retention of fatigue life af ter soak compared to dry specimens varied greatly 
(from 100% to 37.2%). The best results were achieved with a system containing 10 parts of 
N,N-diglycidyl tribromoaniline (DGTBA) for one part of meta-phenylenediamine (MPDS). Later tests 
showed that systems containing over 50% of DGTBA perform much better in fatigue under moisture 
influence than the other systems under consideration. These latter systems were mostly based on 
diglycidyl ether of bisphenol-A (DGEBA). The choice of resin may he detrimental to fatigue perform­
ance of a composite structure exposed to moisture. 

In all the above papers the test conditions were steady state temperature and humidity, 
Lundemol 20 O. 201) studied the influence of environmental cycling on the statie and fatigue proper­
ties of T300/5208, (±45)4 s. The environmental cycles used prior to mechanical testing were aimed at 
simulating fighter aircraft service, induding thermal spikes and low temperature excursions, with the 
humidities set to result in a moisture content of approximately 1 % weight gain. Tension-tension 

1 
(R = 0.1) fatigue tests were performed at 0max = - 0ultim ate and a frequency of 28 Hz. No failures 

2 
occurred af ter 106 cy des for these specimens which were not exposed to the environmen tal treatmen t. 
After four weeks of treatment, five out of eight specimens survived 106 cycles with no survivals 
o bserved af ter six weeks of treatmen t (the longe st life recorded for these specimens was 8.7 X 104 

cycles. For specimens coated with polyurethane, less degradation was observed. Despite the low 
number of environmental cycles imposed (30 in six weeks) the effect was significant. 

2.2 Random Loading 

Years of experienee has led to the conclusion that fatigue and damage toleranee testing must 
be conducted under conditions representative of service environments. Constant amplitude testing 
may be used only for those parts which will have a constant amplitude service environment. For the 
majority of aircraft parts this is not the case and simulation must be representative of the random 
nature of the service load history, usually with both amplitude and frequency variation. The flight­
by-flight conditions including reverse loading must be representedl31 7). This is true for both metal 
and composite structures. For composites, there is no accepted cumulative damage theory that allows 
the extrapolation of simple constant amplitude test data to the evaluation of the effects of random 
loading. Representative spectrum tests must he used and generally must start at the coupon level. This 
is expensive and time consuming, and by its nature, must be directed towards a particular application. 

In a series of articles Haskins, Kerr, Stein et all 1 66. 1 26. 1 27) presented a program and 
some results on long term evaluation of Advanced Composites for Supersonic Cruise Aircraft. The 
materials used were graphite and boron/epoxy and polyimide (notably AS/3501, HT-S/710). Flight 
simulation was carried out using random loading with temperature cycling representative of super­
sonic flight (Fig. 12). Baseline tests and short term tests (accelerated load frequency and maximum 
temperature) were used to set reasonable load limits for long term tests. After 100 hours of testing, a 
preliminary wearout model was set and later refined af ter 200 test hours (Fig. 13). For the long term 
test, loads were set so that approximately 80% of the specimens would survive 25,000 simulated 
flights of two hours duration (one lifetime). During each flight one compressive load was applied at 
the highest temperature point of the flight. Af ter 8000 hours, more specimen failures were observed 
than predicted from short term tests. It was concluded that the wearout model used is not sufficient 
to accurately predict complex real time exposure effects. Delamination was extensive as the failures 
were due to compression - which indicates that ultimate tensile strength is not a good measure of 
damage in composite. 

1111' -
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Sendeckyj et a}l2 581 studied the effect of temperature on fatigue response of surface­
notched [(0/±45/0>S 13 T300/5208 graphite/epoxy. Flight-by-flight spectrum loading was used in two 
versions, one with and the other without compressive loads present. One lifetime consisted of 1280 
flights, each 44 seconds in duration. Load cycling was carried out at different temperatures from 27°C 
to 210°C. All survivors of two lifetimes were inspected using both C-scan and TBE radiography and 
subjected to a room temperature residual tensile strength test. Elimination of compressive stresses did 
not lead to a significant change of residual strength. However, the fatigue test temperature did influ­
en ce the residual strength. The maximum residual strength was observed for specimens tested between 
156°C to 182°C. No specimen survived two lifetimes at 210°C but all had survived below that temper­
ature. At increased temperatures, the size of the damaged zone increases (delamination) ho wever, the 
more damage present the worse the conditions are for load transfer by the matrix. This, in turn, 
reduces the local stress intensity due to the presence of a crack (notch). 

Results from the US Air Force Materials Laboratory sponsored Advanced Composites 
Serviceability Program have appeared in several papersl 2 3 0, 1 2 , 1 76 , 1 77 I. The main aim of this study 
was to develop experimental information on the growth of flaws and to quantify their influence on 
residual strength. A real time matrix of load, temperature and moisture was reduced and compressed. 
This permitted one lifetime to be simulated by 24 hours test. Loading was representative of avertical 
tail spectrum (B1 bomber) including fully reversed load (R = -1.0). The maximum test load was equal 
to the design limit load (2/3 of ultimate allowable or 80% of average ultimate stress). Figure 14 con­
tains a truncated spectrum for metal vertical tail with all cycles below a load factor (L.F.) of 0.089 
removed (only the positive side of the R = -1.0 spectrum is shown). The finalload and temper­
ature spectrum can be seen in Figure 15. The number of load cycles was reduced from 500,000 to 
127,500 and the number of temperature cycles was reduced from 4000 to 6 to enable one test life­
time to be carried out in 24 hours. The temperature sequence in a mission was rearranged into a 
monotonically increasing sequence from low to high. Preconditioning with moisture was carried out 
at 74°C, 98% RH up to a 1.2 to 1.3% weight gain to represent the worst type of USAF basing 
conditions. In order to maintain the moisture content, steam was injected into the system during the 
49°C and 82°C cycles. Compromises made are summed up in Figure 16. 

Specimens used in these studies were made of AS3501-5A and T300/5208. The flaws were 
classified into categories which describe the stress gradients caused by a flaw embodied in a laminate 
undergoing a far field (away from the flaw) uniform stress. The likelihood of occurrence was used 
to estimate the flaw crit icality I 1 77 land fatigue tests were carried out. The flaw size was regarded as 
critical if it led to specimen failure af ter two lifetimes of spectrum loading. 

It was found that the residual compressive strength of graphite/epoxy, af ter load cycling 
degrades with temperature, moisture, proof loading and size of imperfect ion or damage, Figures 17, 
18 and 191 1 76 I. As delamination was the dominant damage type, residual tensile strength was not 
significantlly affectedl 1 77 I. 

Daniel and Schramm et all 7 9 , 253 I conducted nondestructive inspections aimed at moni­
toring damage growth as part of the above described studies. They found that flaw growth was much 
more pronounced for those specimens exposed to environmental fluctuations in addition to the 
load spectrum. The worst type flaws appeared to bel 7 9 I: 

1. Circular hole. 
2. Embedded film patch. 
3. Internal ply gap. 
4. Surface scratches. 

Gerharz and Schutzl 1 081 presented a "quasi real time" program and proposed several 
accelerated schedules for testing the composite upper surface wing root area of a fighter plane. The 
load spectrum used was F ALSTAFF*. The objective of the accelerated test program was to achieve 
the same damage growth and residual strength as found in a "real time" loading with a shorter testing 
time. To date no results of these studies have been published. 

* For more information see "Introduction to a Fighter Aircraft Loading Standard for Fatigue Evaluation 
"FALSTAFF" by G.M. vanDijk and J.B. deJonge. 

.tE flirt __ ii_~i __ iijü._J._ .wa,. a,gs 
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When developing accelerated testing schedules the effect of creep must be considered. Sun 
and Chim! 2 7 9 I found that fatigue life increases with time at load. For notched samples of T300/5208 
in a [±45 h s lay-up, fatigue life was significantly longer when cycling frequency was first low and later 
higher. The reverse order of cycling frequency resulted in shorter fatigue life. They concluded that a 
reduction of stress intensity at a crack tip due to creep was responsible for increasing the fatigue life 
during the "slow-fast" tests. As creep is clearly related to temperature it is obvious that time at 
temperature in the environmental cycle will also influence fatigue life. 

Other spectrum loading tests will be reviewed in Part V of this review which deals with 
composite joints and structures. 

2.3 Fatigue Testing in Simulated Environmental Conditions 

Testing in hot-wet conditions was considered in Part lil of the review series. There are 
some additional points specific to fatigue testing under such conditions, to be made. 

Several authors reported problems with grip tab failures. Rotem! 246 I used graphite cloth 
T300/5208 tabs af ter tabs manufactured from other materials (glass epoxy and aluminium) failed. 
Ryder and Walker! 25 1 I, af ter some research, chose American Cyanimide FM400 as the best tab 
adhesive for testing at 82° C, 95% RH. For tension-compression tests, a temperature rise in the tab 
area of 39°C was recorded and resulted in tab failure. This problem was alleviated by cooling the tabs 
with RT air. In the gauge length, the temperature rise was 3° _8°C which was accounted for in the 
analysis of the results. Kan and Ratwanil l 6 1 I in an earlier mentioned tests found that initial test 
frequency of 10 Hz resulted in a temperature rise of 2.8°C in the gauge area. Therefore, 5 Hz was 
chosen as the finalloading frequency. 

Some authors reported on spectrum loadingtests with the environmental conditions simu­
lated,! 108 , 230, 267 I and include a brief description of the equipment which they have used to 
produce required temperatures and humidities around the test specimen. The thermal spike test in! 1 081 

for example, required equipment capable of achieving slew rates of 60°C/min. The cost of such equip­
ment is very high and lower slew rates ('---20°C/min) are more typical of such testing equipment. 
These high rates are necessary to conduct accelerated tests. 

2.4 Conclusions 

1. The large scatter apparent in composite tests is usually increased by varying test temperature 
and moisture conditions which makes interpretation of results difficult. 

2. Non-organic fiber dominated laminates generally show little sensitivity to environmental 
factors under fatigue. 

3. For matrix dominated laminates, fatigue characteristics are affected by temperature, while 
moisture, at room temperature, se ems to have no effect. (This may vary greatly depending 
on the matrix used.) 

4. Environmental effects on the viscoelastic properties of a matrix may have to be taken into 
account in composite fatigue analysis. 

5. The observation of sensitivity or insensitivity to environmental factors is very closely tied 
to the definition of fallure in composite materials. 

6. Elevated temperature wet conditions and particularly environmental cycling reduce the 
fatigue resistance of composites. The slopes of S-N curves for graphite composites are 
relatively flat and even slight shifts of the curve will result in significant reductions in 
fatigue life. Strength reduction, especially in tension, may not be as significant. 
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7. Fatigue damage in composites usually is not directly related to residual strength. This is 
frequently ignored in fatigue studies of composites. 

8. A method has been proposed for calculating fatigue properties of laminates, at various 
temperatures, from simp Ie unidirectional and crossply studies at some reference temperature. 
This method is, however, in the very early stages of development. 

9. The following deficiencies exist with respect to composite fatigue: a) A general theory for 
predicting laminate fatigue properties analogous to lamination theory for static properties; 
b) A general cumulative damage theory like Miner's rule for metals; c) A theory accounting 
for degradation of properties due to environmental factors. As aresult, verification of 
existing designs has to be through testing under representative loads and environments. 

10. Simple environmental simulation in accelerated tests should be adequate for fiber dominated 
materials while realistic environmental simulation is required for matrix dominated materials. 

3.0 TIME DEPENDENT PROPERTJES 

3.1 Mechanical Relaxation 

Mechanical relaxation phenomena are observed when material behavior is nonelastic and 
stress and strain are not only functions of one another but also of time. The most commonly studied 
transient effects are creep and stress relaxation. In simp Ie creep, either the applied stress or load is held 
constant while an increase in strain with time is recorded. Stress relaxation is observed when the stress 
required to hold a specimen at constant deformation is gradually decreasing with time. Results of 
creep and stress relaxation tests are strongly affected not only by the stress levels used, but by the test 
temperature, and for the case of organic solids (matrix materials), the moisture content of the specimen. 

3.1.1 Linear viscoelasticity - superposition principle 

The constitutive equation for general time-dependent material behavior can be written as 
follows: 

(1) 

where: 
ez strain 

az stress 

t time 

T temperature 

M moisture content 

H history of (temperature, moisture, stress) 

This equation is so complex that it has never been used and instead, material behavior is approximated 
by combinations of elastic and viscous models. 

The most general form of linear viscoelastic stress-strain relation in contracted engineering 
notation is given byl 74 I : 

Qjj(t-r) dr (2) 
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Qij are the viscoelastic relaxation moduli. If conditions of temperature and moisture are varying, then 
the relaxation moduli be co me functions of these as well as time. In this case, strain in Equation (2) 
should be represented as sum of strains due to load, therm al and moisture expansion: 

(3) 

aj and ~j are coefficients of thermal and moisture expansion t::, T and t::,M are variations in temperature 
and moisture. 

An alternate form of viscoelastic stress-strain relation which is more useful for creep type 
experiments is! 3 3 I: 

dr 

where Sij are the creep compliances. 

(4) 

The concept of superposition of time-temperature or time-temperaturejmoisture permits the 
use of master creep compliance (or relaxation modulus) curve representation of data: 

where Te' Me are reference temperature and moisture conditions and ~ is reduced time: 

aT M are horizontal shifting factors representing the amount of shifting necessary to bring the 
Sij (T, M, t) (Qij (T, M, t» data into coincidence with the master curve. The relaxation tests (creep 
and stress relaxation) are usually conducted at constant conditions so Equation (6) becomes: 

t 

or taking logarithm of both sides of Equation (7) 

(5) 

(6) 

(7) 

(8) 

Plots of isothermaljmoisture moduli, or compliances, can be shifted horizontaHy with the magnitude 
of the shift equal to log) 0 aT M • 

Materials which lend themselves to this type of operation are caHed thermo-rheologically 
simple (TSM). Vertical shifting is required when horizontal shifting did not result in a smooth, well­
defined master curve. The material is then termed thermo-rheologically complex (TeM). 
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For rigid plastics with and without reinforcement, the creep compliance relationship 
frequently used for approximation is: 

S(t) 

So' SI ,n - constant with time. 

For TSM, the creep compliance in a series of isothermal tests is given by: 

(9) 

(10) 

For TCM So is temperature dependent: 

(11) 

The linear viscoelastic model of time-dependent material behavior is used because of its 
simplicity. The superposition principle, when applicable, dramatically reduces the amount of time 
and number of data points required to fully characterize the viscoelastic properties of the material. 
However, composite materials generally do not foilow this approximation so it can be used only for 
limited conditions (usually low stress and temperature levels) on an individual basis! 33,3281. 

3.1.2 Time-temperature superposition 

Yeow, Morris and Brinson! 328 1 studied time-temperature behavior of unidirectional 
graphite/epoxy (T300/934). The stress levels used in this study were such that the applied axial stress 
did not exceed 10% UTS. Specimens were subjected to various loads (mechanically conditioned) to 
determine whether load history affected material response. Since the stress-strain curves did not 
change, the number of specimens required for testing was reduced (specimens could be used several 
times). The material was tested for linearity - creep and recovery for [90°] specimen must have 
equal instantaneous strain (Eo in Fig. 20) and the stress-strain curve after 15 minutes of creep must 
be linear (Fig. 21). Isothermal creep tests were conducted for temperatures of 20°C to 210°C and 
results for the reciprocal of reduced compliance (1/S22 ) are shown in Figure 22. Reduced compliance 
is defined as: 

S22 =-- (12) 

where 
a 0 applied stress 

T 0 reference temperature 

T temperature of the test 

E2 (t) strain (transverse to fiber direction) 

The master curve obtained from these data is shown in Figure 23 while shift factors aT are plotted in 
Figure 24. It was found that shift factors for all fiber orientations as weil as for the reduced shear 
modulus S66 , are equal. The deviation of the shift factor for reduced Poisson coefficient V2 1 was 
attributed to data scatter. 

ia_u, __ ._ -_. _. __ I_'iIDI 1111111111'''-'11111111 11 e ij ilA 813-. •• 
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Fiber dominated properties (SII and v12) were found to he time and temperature insensi-
tive. 

Beckwith! 3 3 1 reported on a study of Shell 58-68R epoxy and its composite with S-901 
glass fiber. The temperature range used in the study was -7°C to 60°C. Tests were single and multiple 
(3) cycle creep and recovery. Both the resin and composite were found to be TCM materials as initial 
compliance (So see Eq. (11» was temperature dependent (Figs. 25 and 26). The master curve for net 
creep compliance was obtained for the epoxy after initial compliance for each temperature was sub­
tracted from the total compliance measured (Fig. 27). The glass/epoxy tested can be regarded as 
linearly viscoelastic. The range of linearity depends on temperature and fiber angle. At 24°C (±45°) 
glass/epoxy recovers completely for 35 MPa but not for higher loads. However at 60°C it does not 
recover even for 20 MPa (Fig. 28). Beckwith observed a change in initial and net creep compliance 
in composites due to multiple loading. The nonlinear effects were assumed to he predominantly 
microcracking and the crack growth seemed to cause a disproportionate amount of damage during 
the first few loading cycles. 

For those cases wh ere the superposition principle can be applied, the key to obtaining the 
master curve are the time-temperature shift factors. Kibier and Carter! 1671 examined the possibility of 
using electrical conductivity measurements for obtaining these factors. 

Direct-current resistance of neat epoxies is very high. It can be therefore assumed that 
charge transport proceeds by the short range migration of heavy ions. In that case, the direct-current 
electrical conductivity is itself inversely proportional to viscosity. Samples of 5208 epoxy resin were 
used to extract the time-temperature shift factors from thermomechanical and electrical conduc­
tivity measurements: 

a(TR ) 

a(T) 
(13) 

where 'Tl - viscosity a - electrical conductivity. Only linear effects were studied. The aT factors 
extracted from both methods are compared in Figure 29. Carter and Kibier concluded that conduc­
tivity data may be useful in obtaining quick estimates of the effects of temperature on time-dependent 
mechanical response. 

3.1.3 Time-temperature-moisture superposition 

The considerable 'plasticizing' effect of moisture on matrix type resins relaxation modulus 
can be seen in Figure 30 taken from Browning! 42 , 44 I. The two master curves shown correspond to 
dry and wet (equilibrium wt. gain at 71 °c, 100% RH) samples. A shift factor from wet to dry was 
found to be 10. This implies that the same response will be exhibited by a wet sample 10 times faster 
then by the dry sample. 

The effect of moisture on time-dependent response in composites has been studied only 
recently and by relatively few authors. In one of the earl ier works Wang and Liu[304] studied creep 
in graphite/epoxy (Modmor II/1004) unidirectional composite. Specimens were placed in various 
humidity conditions at 21°C and 65°C. A significant increase in creep with humidity and temperature 
was observed (Figs. 31 and 32). Within the limits of linear response, the time-temperature-humidity 
shifting was shown to be effective (Fig. 33). 

A much broader study was undertaken by Crossman et al[70 I. The materials used were 
GY70/CE339, T300/5209 (both unidirectional) and HMF 330C/934 (T300 satin weave). All these 
materials are graphite/epoxies. Specimens were exposed to humidity conditions until saturation prior 
to stress relaxation testing. Results are shown in Figures 34, 35 and 36. For HMF 330C/934, the 
relaxation modulus at 149°C dry corresponds to the 71°C wet values. Part of this study was directed 
at demonstrating the effect of relaxation effects on residual stresses (see Part 11 of this review series). 
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Kiblerl 168) presented creep test results for T300/5208 and AS-3502 graphite/epoxies. Only 
the linear range of behavior was studied (stress levels at 25% - 35% UTS). The creep compliance 
master curve (Fig. 37) is essentially the same for both materials. Longer-term tests agree weU with 
short-term tests. For fiber-dominated properties no time dependence was found (Fig. 38). From the 
above data GR (t) was calculated and is shown in Figure 39. It can be seen that when both moisture 
and elevated temperature are present, the shifts are considerable. 

3.1.4 Nonlinear responses and time-temperature-stress superposition 

Composite materials generally demonstrate nonlinear time-dependent behavior. Linear 
viscoelasticity is applied only for low stresses. Wang and Liul 3 04) encountered nonlinear response at 
65°C, 95% RH at a stress level of 29% UTS (Fig. 32). This stress level is rather low from a design point 
of view. Wang and Wangl3 0 I ) measured creep response at glass/epoxy (Scotchply 1002) at various 
load levels with controUed temperature and moisture content. For (900

) laminates the degradation of 
material is found to be quite serious when the temperature and moisture content increase (Figs. 40 
and 41). Similar behavior was found for (±45°) specimens. Even the (00

) laminate, at high temperature 
and moisture exhibited a definite increase in creep strain (Fig. 42). 

Griffith, Morris and Brinsonl I 14 ) demonstrated that in some cases the time-temperature­
stress superposition principle (TTSSP) can be used to produce unified master curves reduced to 
particular stress-temperature conditions. The procedure is explained schematically in Figure 43. The 
method is regarded to be valid if smooth curves can he produced. For the T300/934 material tested 
good correlation was obtained between the master curve from short-term tests and a long-term test 
(Fig. 44). 

3.1.5 Predictions 

a) Micromechanics - Halpin-Tsai 

Halpin-Tsai micromechanics equation was usedl 16 8 , 73) to predict viscoelastic modulus 
from bulk properties with good correlations (Fig. 45). 

b) Macromechanics 

Various authors have adopted elastic lamination theory to account for time-dependent 
behaviorl I 6 8, 3 2 8, I 14 , 3 0 I , 74 J. 

As a first step, it is necessary to calculate the transformed reduced compliances for a lamina 
arbitrarily oriented with respect to a laminate or global axis system. Yeow et all 328) used a visco­
elastic analog of elastic orthotropic equation and compared it with the master curve from short-term 
data and long-term data (Fig. 46). Correlation was good, however, in a more recent publication, 
Griffith et all I I 4) concluded that all axis predictions must account for the stress-dependent nature 
of the master curves. The uniaxial stress must be transformed into stress components in the principal 
material directions and master curves for stresses associated with these directions should then be used 
with the transformation equation. For this approach, prediction was within 10% of measured 
responses. 

A procedure for calculating creep response of a laminate from measured creep responses of 
laminae was shown inl 30l ) and the results of comparison of predictions with measurements are in 
Figure 47. This procedure allows for the nonlinear nature of creep responses. For linear viscoelastic 
approximations, computer programs based on an elastic response model and data from master curves 
were used with satisfactory resultsl 168 ). 

3.2 Stress-Rupture 

Creep tests ean be carried out to fallure (stress-rupture). For this case, the life of a composite 
does not seem to correlate to the initial statie strength or to the residual static strength taken at any 
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point before rupture. More experimental data is needed to determine times to rupture characteristics. 
As several years may be needed before rupture occurs accelerated testing methods are required. 
Chiao et all 6 0 1 and later Hahn and Chiaol 1 201 compared long-term test results to results from a time­
temperature reduction based on an Arrhenius type of equation. The materials tested were Kevlar 49 
and S-glass strands impregnated with epoxy resins (several resins were used). In the earlier workl 6 0 I 
a discrepancy was found between the predicted and measured rupture times for stresses over 85% 
UTS. Inl 12 Ol lifetime data spanning over eight years have been analyzed by a two-parameter Weibull 
distribution and it was found that above 80% UTS the failure process changes from a we ar-out type 
to initial defect controlled. At high temperatures the failure process was also wear-out type and this 
explained the difference between the predicted and experimental data for higher stresses. The stress 
rupture of S-glass epoxy composite was found to be a random failure process (shape parameter of 
Wei bull distribution a ~ 1) regardless of stress level. The logarithmic characteristic lifetime was 
linearly related to the applied stresses. 

Aveston et all 2 6 1 tested fiber bundles unimpregnated and impregnated with resins in wet 
environments. For carbon fibers no effect of time was observed. For E-glass considerable degradation 
was observed with worst effe cts of immersion in water of epoxy and polyester impregnated strands. 
Cemfil- glass fiber (alkali resistant) demonstrated much better performance while Kevlar 49 perform­
ance was somewhere between E-glass and Cemfil. 

Allen! 8 I suggested the use of flexural creep and rupture tests to screen reinforced epoxy 
resins for environmental performance. Creep rates and rupture incidence are increased by immersion 
of specimens in water. 

3.3 Conclusions 

1. The linear viscoelastic model is a useful approximation for predicting CM performance at 
low stress levels and moderate conditions of temperature and moisture. 

2. Fiber dominated properties (compliance SI I and Poisson ratio) are time and temperaturej 
moisture insensitive (graphite) or very slightly sensitive (glass and Kevlar 49). 

3. For pressure vessels and similar applications where material remains loaded for extensive 
periods, stress rupture in the fiber direction is a possibility. Arrhenius type relations may be 
used to predict time to rupture from short-term data. 

4. Most composites are thermo-rheologicaliy complex materials as initial complianee 
depends on testing conditions. 

5. Moisture has a considerable "plasticizing" effect and the same creep response may be 
expected from a wet sample 10 times sooner then from a dry sample. 

6. The Halpin-Tsai equation prediets the viscoelastic modulus from bulk properties with good 
results. 

7. Lamination theory may be adopted to successfully predict the laminate viscoelastic 
response, both linear and nonlinear. 
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