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Abstract
Collaboration is a key technique in modern sup-
ply chains, both for building trust with other com-
panies, but also for reducing costs or maximizing
profits. It is an approach which provides all in-
volved parties with benefits that they could not pos-
sibly achieve on their own. Collaboration, however,
requires abundant information, including propri-
etary information which the owners might not want
to disclose publicly. This leads to the main pri-
vacy concern, namely ensuring the privacy of pro-
prietary information, since access to this informa-
tion can mean a competitive advantage in the mar-
ket. Several techniques which enable collaboration
while preserving privacy have been developed over
time, including secure transformation, which is a
non-cryptographic approach. The main focus of
this paper is studying this technique and its recent
developments, along with the feasibility of using it
to preserve privacy in supply chains, through a lit-
erature review. Secure transformation is still some-
what in its infancy, with much theoretical research
being conducted, yet the technique still not being
employed in practice. Therefore, reviewing the re-
search done is the most suitable approach to an-
swering the question of how secure transformation
applications can preserve privacy in collaborative
supply chains. The main result of this research is
that secure transformation is a double-edged sword
which promises effective computation for certain
collaborative problems, with the downside of hav-
ing weaker security guarantees compared to cryp-
tographic approaches.

1 Introduction
A supply chain is a network composed of suppliers, manu-
facturers, retailers, and customers, having as a main purpose
the production and sale of goods. Supply chains range
from simple structures made up of one of each member
mentioned before, to complex structures with multiple
instances of each. In the latter case, collaboration becomes a
prevalent approach to reducing costs (for example delivery

costs, by sharing supply trucks or shipment containers)
while maximizing profits. Such supply chains are called
”collaborative supply chains”, and a common concern is the
privacy of each collaborator’s proprietary information. In
order to collaborate properly, in theory, all of the participants
should have access to each other’s information, in order to
solve the problem of cost minimization. This, however, is
normally infeasible, as gaining access to private information
usually means gaining a competitive advantage. Therefore,
the main goal of this area of research is finding techniques
which facilitate collaboration, while preserving the privacy
of the collaborators.

Collaboration techniques in supply chains have been
gaining increasing popularity, as teamwork becomes increas-
ingly essential for both efficiency [1] and sustainability [2].
A recent survey on collaborative supply chain techniques
which preserve privacy is [1]. The research question of this
paper is ”How is privacy preserved through applications of
privacy-preserving techniques for supply chain collaboration
among multiple parties?”. The survey presents the concepts
of horizontal (collaborators have the same role; for example,
both are suppliers) and vertical (collaborators have distinct
roles; for example, one is the manufacturer and the other
is the retailer) collaboration, along with two approaches to
preserve privacy: a trusted third party and no trusted third
party. For the first case, the collaborators give all of their
private information to the trusted third party, whose goal is
to find a solution which is optimal for all participants. This
approach has many disadvantages, among which are the
cost of hiring the third party and the need to fully trust this
third party. The alternative is to use techniques which do not
require a third party, and these are secure multi-party com-
putation (MPC) and secure transformation. These techniques
are used to compute a function which represents the optimal
solution (given as input the private information of all parties
involved). Both MPC and secure transformation have their
advantages and disadvantages, which will be discussed in a
later section. Aside from the challenges mentioned in the
paper itself, this survey was published more than 7 years ago
(in 2014), and it is likely that new applications, which solve
the problem of collaborating while preserving privacy more
efficiently, have been developed.
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Thus, the main research question of this paper is ”How
do secure transformation applications preserve privacy in
collaborative supply chains?”. The contents of this research
include an overview of both historical and recent develop-
ments which relate to the technique of secure transformation
and its applications, and also recent developments for other
privacy-preserving techniques. These recent developments
are compared against each other, and their viability for
real-life collaborative applications is considered.

2 Techniques for Privacy Preservation in
Supply Chain Collaboration

In this section, the definitions and explanations given in [1]
are heavily used as a base for describing techniques with and
without a trusted third party.

2.1 Trusted Third Party
A trusted third party is an outside party (meaning it is not
one of the collaborators) whose goal is to ensure privacy-
preserving collaboration in the supply chain. While it is a
convenient approach, as the collaborators themselves do not
have to do anything besides provide their private information,
it also comes with many drawbacks. Among those, the need
to fully trust the third party and the high monetary costs are
the biggest downsides which make the trusted third party a
sub-optimal choice in many situations.

2.2 No Trusted Third Party
When no trusted third party is present, the collaborators have
to organize themselves in order to collaborate properly with-
out revealing private information. In order to do this, the op-
timal solution is (most often, although there are also other
approaches) considered to be the output of a function with
multiple inputs (the private information of the collaborators;
this could be, for example, the rate at which some product
is being manufactured). Thus, the collaborators are looking
for a solution to a function. The techniques used to accom-
plish this are secure multi-party computation (MPC) and se-
cure transformation.

Secure Multi-Party Computation (MPC)
MPC is based on interpreting the function as a combinatorial
circuit and giving each collaborator random input and out-
put wires of this circuit. This technique is often referred to
as ”garbled circuits”, and while it is not the only technique
developed, it is one of the earliest ones. A visual representa-
tion of a two party garbled circuits computation can be found
in Figure 1. ”The celebrated results (Yao 1986 [3]; Goldre-
ich, Micali, and Wigderson 1987 [4]; Ben-Or, Goldwasser,
and Wigderson 1998 [5]) in this area show that any function
can be securely computed in a distributed manner efficiently
(e.g., in polynomial time with respect to the size of the cir-
cuit required to compute the function)” [1, p. 249]. The main
advantage of this approach is the provable security, due to it
being a cryptograhic approach, and the possibility of comput-
ing any function. However, this comes with the disadvantage
of being inefficient in most cases, and thus too slow to be used
in supply chains [6].

Figure 1: Visualization of garbled circuits (two party case)

Secure Transformation (or Data Obfuscation)
Secure transformation means transforming (or obfuscating)
the input into a randomized format such that, when the func-
tion is computed, the result does not reveal anything about
the input to the other parties. After the transformation, the
input is shared among all collaborators and the function also
needs to be transformed, to accommodate the transformed in-
puts. At this point, every party involved has all the informa-
tion needed to obtain the output of the function. Each col-
laborator can then find their solution to the original problem,
and, more importantly, they cannot find the solutions of oth-
ers. Generally, the problems solved are linear programming
problems, meaning that the function is linear. Figure 2 pro-
vides the flow of the general secure transformation approach
for the two party case. While the efficiency of this approach
is promising, secure transformation is, however, not without
fault, as ”the secure transformation-based approaches cannot
always be considered as ’Provably Secure’ (uncertain privacy
risk may still exist)” [1, p. 249], which stems from the non-
cryptographic origin of the technique itself.

Figure 2: Visualization of secure transformation (two party case)

3 Methodology
In order to discuss recent developments related to secure
transformation, it is necessary to formally introduce the
methods for collaborating in supply chains, and thus also
consider other techniques, albeit in less detail, for a complete
overview. To this end, a literature review will be conducted,
with a heavier focus on secure transformation, but recent
developments for MPC and trusted third party will also be
considered, in order to give a proper comparison of how col-
laborative techniques evolved in recent times. This method
was chosen, since the non-cryptographic approach of secure



transformation is a relatively new development in the field
of collaborative computation and it has not been deployed
in real life applications. Unlike MPC, which has been under
development for at least 35 years (one of the earliest break-
throughs being in 1986 by Yao [3]), secure transformation
has been seeing interest for about two decades, and while this
produced many valuable results, they were only theoretical.
Thus, a literature review of the techniques and approaches is
the most suitable method for producing a relevant overview
of developments in secure transformation.

As the focus of this paper is the secure transformation,
historical developments (during 2009-2014) for this ap-
proach, mainly linear programming which uses secure
transformation, are presented in a following section. These
developments include the ones mentioned in [1] and [7].
Then, recent developments (later than 2014) for all tech-
niques are discussed, namely [8–11] (secure transformation),
[12–14] (MPC), and [15,16] (trusted third party). The section
concludes with a comparison of the developments.

A final section considers real-life applications such as
scheduling and routing [17], container logistics [18], and
airline management [19]. The feasibility of using secure
transformation or other techniques (in order to protect the
privacy of the mentioned functions) is discussed.

It is worth noting that most of the mentioned literature
does not specifically refer to supply chain collaboration and
instead features different collaborating parties for which the
technique is developed. Regardless, the techniques are, in
general, applicable in the context of collaborators in a supply
chain who want to avoid sharing their private information
while solving some collaborative linear programming prob-
lem (for example, minimizing the cost of distributing goods
via trucks).

4 Literature Review of Privacy-Preserving
Collaborative Techniques

This section presents one of the main contributions of this
work, namely the review of existing work. The relevance of
linear programming in supply chain is presented, then devel-
opments are discussed, and a comparison of how the tech-
niques developed is also provided. The papers discussed
throughout this section include the ones mentioned in [1] and
[7], as well as in many other related papers.

4.1 Relevant Terms and Definitions
The relevance of linear programming in supply chain is de-
scribed in [1]. Among the applications, the authors mention
minimizing transportation costs, maximizing manufacturing
profit, and optimally assigning of the crew in the airline
industry, with the goal of minimizing costs while satisfying
constraints. The relevance or arbitrarily partitioned linear
programs is mentioned in [7], along with the high frequency
of encountering this situation in supply chains. The example
they give is that of multiple companies that produce wine
at multiple wineries, with grapes from multiple vineyards

which have a limited production. These companies want
to collaborate to reduce the costs of transporting the grapes
to the right winery, as the wineries each require specific
types of grapes, and they do so through solving an arbitrarily
partitioned linear programming problem. Thus, the general
privacy issue that secure transformation tries to solve is
preserving the private data of the collaborators who are
solving a linear programming problem.

Another important term that needs to be defined is the
general model of a linear programming problem. According
to [20], linear programming problems represent a subset of
optimization problems. Furthermore, optimization problems
are defined as follows: ”given a function f : A → R from
some set A to the real numbers, we seek an element x0 in A
such that f(x0) ≤ f(x), ∀ x ∈ A (’minimization’) or such that
f(x0) ≥ f(x), ∀ x ∈ A (’maximization’).” [20, p. 4] and the
main components are: ”An objective function which we want
to minimize or maximize”, ”A set of unknowns or variables
which affect the value of the objective function”, and ”A
set of constraints that allow the unknowns to take on certain
values or exclude others” [20, p. 5]. The defining aspect is
the fact that the constraints and the objective function are
linear.

It is relevant to also define the possible ways of parti-
tioning the constraints among the participating parties:
horizontal partitioning (a constraint belongs exclusively to
one collaborator), vertical partitioning (constraints belong
to multiple collaborators), and arbitrary partitioning (a
combination of the previous two) [20]. Note that these terms
are different from horizontal and vertical collaboration,
which refers to the roles of the collaborators withing the
supply chain.

Lastly, [11] defines the ”canonical form” of a linear
programming problem as ”maximize cT · x, subject to
Ax ≤ b, x ≥ 0” [11, p. 218], while the ”standard form” is
”maximize cT · x, subject to Ax = b, x ≥ 0” [11, p. 218],
where the equality is gained through the introduction of
”slack variables” (which allow the inequalities to happen in
the end), and the ”feasible region” of the problem’s solution
is the set of all of its solutions, which are vectors.

4.2 Historical Developments for Secure
Transformation

Vaidya’s ”Privacy-Preserving Linear Programming”
Vaidya’s paper from 2009 [20] focuses on solving a lin-
ear programming problem with two collaborating parties,
through secure transformation. The paper considers the case
of an arbitrary partitioning: one party (P1) has the objective
function , while the other (P2) has the set of constraints. The
party which has the cost function is the one which solves the
problem. The two party problem is described as: ”

max (c1 + c2)T x
s.t. (M1 +M2)x ≤ (b1 + b2)

x ≥ 0,



where x is an n-dimensional vector of variables, c1+c2 is
an n-dimensional vector of objective function coefficients,
M1+M2 is an m × n matrix of constraint coefficients
(where there are m constraint inequalities) and b1+b2 is an
m-dimensional vector of constraint values.” [21, p. 118].
In [20], c = c1+c2, M = M1+M2, and b = b1+b2. The
transformation (is based on Du’s transformation [22] and)
consists of a vector space transformation, of both the input
and the problem, through multiplication with a matrix Q
with strictly positive elements, and then transforming back
by multiplying with the inverse matrix Q−1. Additionally,
the paper notes that secure transformation relies on matrix
multiplication, which consists of many dot products. In order
to do these computations efficiently, they use the provably
secure solution proposed by Goethals et al. in 2004 [23],
which uses Homomorphic Encryption.

Later in the same year, Bednarz presents an issue with
this transformation in [21]. This is the fact that the modified
problem has solutions that are invalid for the original prob-
lem, due to the constraint of the positive matrix elements,
which in turn cause some elements in the inverse matrix to be
negative and flip inequality symbols (the same issue applying
to Du’s original transformation in [22]). The authors also
present a solution to this problem: allowing the matrix to
have zeroes and using ”generalized permutation matrices”,
with the downside that these provide less security as P1 can
try all permutations of this matrix (to see which one produces
the correct final result and thus) to deduce P2’s private data.

In a 2013 paper, Hong and Vaidya introduce a new
transformation in [24], that corrects the original issue by
using the matrix suggested in [21]. The privacy issue is
solved through the following changes: the final result is
partitioned, with these partitions being kept private, so
that the initial matrix cannot be guessed, and cT is also
partitioned into c1T and c2T , with them being permutated
as well. The transformed vector cT Q is also kept private,
to prevent deducing Q from cT and cT Q. Furthermore, this
revised transformation can be applied to the multi-party
(more than two parties) case, where each party i holds a share
Mi of M and a share cTi of cT .

Mangasarian’s ”Privacy-preserving horizontally
partitioned linear programs”
Mangasarian also tackles the multi-party situation. He
presents two transformations: one for vertically partitioned
linear problems [25], and one for horizontally partitioned
ones [26].

The vertical problem is described as:”

min
x∈X

c′x where X = {x | Ax ≥ b},

and the matrix A ∈ Rm×n together with the cost vector
c ∈ Rn, that is

[
c′

A

]
, are divided into p vertical blocks of

n1, n2, . . . . . . and np, (m+1)-dimensional columns with
n1 + n2 + · · · + np = n. Each block of columns of A and
corresponding block of the cost vector c are ’owned’ by a
distinct entity that is unwilling to make this block of data

public or share it with the other entities.” [25, p. 166]. Note
that c′x here represents scalar (inner) product and c′ is the
row representation (transpose) of vector c. For this vertical
case, the transformation consists of each party j multiplying
its owned column A.j and cost vector element c.j with a
random (m+1)-dimensional row vector B.j ′. Therefore, the
public information accessible to all parties is the matrix BA
(where B and A are formed by the row and column vectors
respectively) and the vector Bb.

For the horizontal case, the problem and transforma-
tion are similar, the only differences being the fact that
X = {x | Ax = b, x ≥ 0} and rows and columns are
swapped throughout the problem (i.e. parties now own rows
and pick a column vector B.Ii ). It is also mentioned that
the same method cannot be used if the equality constraint
is turned into an inequality, since the transformation would
not ”preserve the original feasible region of the problem.
Furthermore, if we convert the inequality constraints to
equality constraints by adding slack variables, multiplying
the ith identity matrix coefficient matrix of the slack variables
of the ith entity by its privately held random matrix B.i would
reveal B.i” [26, p. 435].

The horizontal transformation is then extended to in-
equality constraints by Li et al. in [27]. The paper avoids the
issue pointed out by Mangasarian by converting the problem
from its original form to:”

min cTx

s.t. Ax+Dxs = b, x, xs ≥ 0. ”[27, p. 140]

Here, each party i (1 ≤ i ≤ p) chooses a random diagonal
matrix DIi with positive entries, forming the diagonal matrix
D = diag(DI1 , DI2 , . . . , DIp). Also, xs is the vector of
slack variables xs = (xm+1, xm+2, . . . , xm+n)T . Rather
than just adding slack variables to accommodate inequalities,
they also multiply them with random positive numbers, so
that the private matrix B.i is not revealed.

The next year, Hong and Vaidya point out a possible
inference attack to both [26] and [27] and revise the transfor-
mation in [28]. The attack is formulated in terms of m, the
number of constraints of the linear programming problem:
by learning m, an attacker could ”infer other entities’ private
constraints by formulating equations with real variables”
[28, p. 270]. The paper states that m could be discovered as
either the number of slack variables l (which is made public
while solving the problem), or as the rank of the matrix
A (which can be found from the public information about
the transformation, more specifically, from the rank of the
matrix BA), which is often equal to the number of constraints
m. To tackle the latter issue, artificial inequality constraints
are generated, in order to increase the rank of the matrix
A, and thus protect the rank of A from being inferred (the
only property that can be inferred now is m’, the number
of constraints of the artificially-extended problem). The
solution to the former issue also relies on these artificial



constraints, more specifically on the fact that by the number
of slack variables has to increase, in order to accommodate
the newly added constraints. The authors also mention
that the chance of inferring m can further be reduced by
adding multiple slack variables when converting inequality
constraints to equality constraints.

It is worth mentioning the applications of these papers
in supply chain. According to [1], the horizontal partitioning
present in [26] and [27] ”can be utilized to secure the
production process in which each factory privately holds a
different kind of raw material, or secure the task machine
scheduling process in which every machine is held by one
party” [1, p. 256], while the vertical partitioning in [25]
”could secure the transportation in which all companies share
their trucks to bound the shipping” [1, p. 256].

Secure Outsourcing of Computation Through
Transformation
In their 2011 paper [6], Dreier and Kerschbaum introduce
a variant to Vaidya’s transformation in [20] and one of
Mangasarian’s older transformations (from 2010) in the
context of secure outsourcing of the problem to the cloud.
In the context of supply chain collaboration, the cloud could
be seen as an untrusted third party that the collaborators use
to solve the distributed problem. In this case, the constraints
would be partitioned across all collaborators. Outsourcing
problem computation to the cloud is regarded as an easy way
of gaining access to more computational resources, and this
also applies to the supply chain case. The paper claims that
Vaidya’s work had security issues and Mangasarian’s does
not cover problems often encountered in supply chains, while
both of them lack a security analysis. The transformation
they use is very similar to Vaidya’s transformation in [20],
with he difference being that a positive vector r is used
to hide the vector of variables x. As a result, they claim
that the transformation is correct and prove this claim, and,
furthermore, they show that its efficiency is is better than
that of cryptography-based methods from that time. The
security of the transformation is thoroughly analysed through
”Leakage Quantification” methods, and the authors also
perform several experiments with a simulated supply chain,
to show that the transformation is efficient and that data leaks
are minor.

Outsourcing of computation to the cloud is also investi-
gated by Wang et al. in [29]. The cloud is considered to be
capable of solving a general linear programming problem,
and the private data (the problem coefficients) is first trans-
formed locally and then sent to the cloud for the computation.
The communication relies on encryption of the data sent,
through a randomly generated key K = (Q, M, r, λ, γ). This
key is composed of the transformation elements: a random
matrix Q, which is used to hide the equality constraints of
the problem, a random matrix λ, which is used to hide the
equality constraints, and a scalar value γ, used for hiding
the objective function. Furthermore, an affine mapping
(represented by multiplying with a random non-singular
matrix M and adding a random vector r) is used to hide the

feasible region of the original problem and the output. The
hidden (transformed) problem is denoted as ΦK . Note that
this approach is different from the ones encountered so far,
since none of the transformations used separate matrices to
encrypt different parts of the problem, and most of them only
used affine transformations to hide the feasible region of the
problem. In doing so, this paper enhances the security of
their protocol. The paper also develops an anti-cheat system
(a way to check of the answer given by the cloud is actually
correct). The method employed is different for each type of
problem (normal - there is a solution, infeasible - there is
no solution, unbounded - the solution is infinitely large), but
it is shown that the overhead is always low (in theory), for
both customers and the cloud. Through an experiment, this
low overhead is proven to be correct, and furthermore, it is
shown that the computation for normal problems is at least
roughly 25 times faster (with the maximum being about 47
times faster) when done on the cloud than what it would have
taken locally.

Other Work
Weeraddana et al. also partially discuss secure transforma-
tion in the 2012 paper [30]. Rather than covering a specific
problem, this work looks at the general approaches of secure
transformations and categorizes them into one of two classes:
change of variables and transformation of objective and con-
straint functions. For the change of variables, the transfor-
mation can be scaling, translation, affine transformation, or
a non-linear transformation. As it turns out, most the papers
discussed thus far ([6, 20–22, 25, 29]) all provide an affine
transformation. For a transformation of objective and con-
straint functions, scaling and partitioning the problems are
techniques for preserving privacy. For both classes of trans-
formations, the paper provides a proposition for the general
form of the transformation and the privacy guarantees that it
provides, along with generalized proofs for the privacy guar-
antees. The authors note that hybrid transformations also ex-
ist, where both kinds of transformations are applied sequen-
tially, and the example given is that of [6], where there is first
a change of variable and then a scaling transformation.

4.3 Recent Developments
As was seen in the previous subsection, transformations are
difficult to formulate, as privacy vulnerabilities might be ini-
tially overlooked. This subsection presents recent develop-
ments for secure transformation, and the other techniques pre-
sented in 2, for a full overview of recent work in the field of
privacy-preserving collaboration.

Secure Transformation
In 2015, Pankova and Laud take an in-depth look at the
technique of secure transformation when applied to linear
programming problems in [11]. The paper provides attacks
to a general form of the existing transformations at that
time, and tries to provide definitions that prove that the
security is comparable to that of a cryptographic approach.
Unfortunately, their attempts at cryptography-based transfor-
mations only prove that transformation approaches cannot
reach information-theoretical security. The authors doubt the
existence of transformations which achieve computational



security, but they mention that there are cases with provable
security, and the example given is that of working within a
finite field to outsource the computation of a matrix inverse.
Their conclusion is that ”cryptography over real numbers
has not received much attention so far. Extending finite
field assumptions to real numbers is not possible in general.”
[11, p. 244].

The most recent version of the original transformation
proposed by Vaidya in 2009 ([20]) is [7]. The techniques
previously described in [24] remain close to identical, save
for a few corrections in the procedures. This indicates
that the open questions posed in both [24] and [7] are still
unanswered. Among those, the security of transformations
”is still somewhat heuristic” [7, p. 14]. They argue that,
while the original data is kept secure, as this is the purpose
of the transformation, it is not clear whether or not the
transformation reveals links between the constraints or the
difficulty of the original problem. Additionally, integer
programming and quadratic programming are mentioned as
candidates for good transformations.

A recently published paper by Zhang et al. [8] is re-
lated to Mangasarian’s work from 2012 ([26]). Specifically,
this paper mentions that an issue with the original transfor-
mation is that the random matrix used is not always full rank,
and in such cases, the transformed problem is not the same
as the original one. They solve this problem by using an
invertible matrix that they multiply with the two sides of the
equality constraints.

The linear problem considered is:”

min z = cTx

s.t. Ax = b

x ≥ 0.

Here, (A b) consists of the matrix A ∈ Rm×n and the right-
hand vector b ∈ Rm and is divided into p horizontal blocks.
The number of rows of the p horizontal block is recorded
as m1, m2, . . . , mp, where m1 + m2 + · · · + mp = m. An
m order identity matrix E is divided into p vertical blocks.
The number of columns of the p vertical block is recorded as
m1, m2, . . . , mp, where m1 + m2 + · · · + mp = m. Each
block of rows of [ A b ] corresponding to the index sets I1,
I2, . . . , Ip, ∪pi=1Ii = {1, 2, . . . , m}, is owned by a distinct
entity that is unwilling to make its block of data public or
share it with the other entities.” [8, p. 1]. In order to do the
transformation, the parties choose a number λ ≥ n together,
then each party i (1 ≤ i ≤ p) computes its own private
matrix B.Ii ∈ Rm×mi with elements in (0,1). The matrix
B =

(
B.I1 + λE.I1 B.I2 + λE.I2 · · · B.Ip + λE.Ip

)
is then used as the transformation. The paper argues that,
since this matrix is invertible, the solution of the transformed
problem is the same as the original one, and, while this
solution is public, it does not reveal any information about
the private data.

The authors of [29], improve their original paper in [9].

The main addition in this paper is the investigation regarding
the connections between the original (Φ) the the transformed
problems (ΦK). Through this, the authors conclude that
two new problems, Ψ and ΨK , derived from Φ and ΦK

respectively (by multiplying their constraint matrices and
result vectors), also share the same feasible region. Ad-
ditionally, the enhancements for the hiding of the feasible
region of the problem are also investigated in detail, with the
result being that if the matrix used to achieve this happens
to be the identity matrix I, then the feasible regions are
the same, and this poses a security threat. The solution
proposed is to also multiply with another matrix P, which
needs to be a generalized permutation matrix with positive
non-zero elements. Furthermore, the original experiments are
extended to also cover infeasible and unbounded problems,
and performed again for normal problems. The results show
that the speedups (the time it would have taken to solve the
problem locally, divided by the time it takes to solve it on
the cloud) for normal problems are, in fact, at least 50 times
faster (and as much as 434 times faster) when done on the
cloud. For infeasible problems, speedups are at least 39 times
and at most 364 times, while for unbounded problems, they
are at least 68 times and at most 497 times.

Two years later, Li et al. present developments for out-
sourcing non-linear problems to the cloud in [10]. The
reasoning for outsourcing to the cloud are the same as the
ones discussed for [29], but as far as (integer) non-linear
programming is involved, examples of its relevance are in
the citrus supply chain ([31], [32]), but also transport and
logistics ([10]). The problem considered can be the same one
as the one in [29], but some of the transformations provided
are different. Equality constraints are hidden by multiplying
with two matrices P (random diagonal matrix) and Q (posi-
tive constant diagonal matrix), while inequality constraints
are hidden through multiplying with matrices T (random
diagonal matrix) and S (positive constant diagonal matrix).
Similar to the approach of [29], the output is protected by
adding a random vector r. An experiment provides insight
into the efficiency of the protocol, with a minimum speedup
of 34 times faster and a maximum of 49 times faster. Since
this is the case, it also means that the overhead gained from
outsourcing the computation to the cloud is quite low.

MPC
Some recent developments of MPC applications that have
been deployed in practice are presented in by Lindell in
[12]. Among these, the most relevant one for supply chain
is cryptographic key protection, through a technique called
threshold cryptography, which ”provides the ability to carry
out cryptographic operations (like decryption and signing)
without the private key being held in any single place”
[12, p. 13].

The author of [12] also mentions [13], which is a book
by Evans et al., dedicated to secure multi-party computation.
Aside from explaining the many techniques (from garbled
circuits to oblivious transfer, in chapter 4) in detail and
presenting secure techniques for dealing with malicious



adversaries (from cut-and-choose to authenticated garbling,
in chapter 6), the book also mentions recent developments
in the field. For example, chapter 4.1.3 talks about less
expensive garbling, through half gates. This is achieved
through a garbling technique developed by Zahur et al. [33]
which rewrites an AND gate as an exclusive or of two ”half
gates” (”which are AND gates where one of the inputs is
known to one of the parties” [13, p. 69]). The two needed
gates are called generator and evaluator half gates. As
another example, chapter 7.1.1 mentions more developments
on garbled circuits such as the ones by Mohassel et al. [34],
who present a 3-party variant of the original garbled circuits.
Their approach is to use two parties as circuit garblers and the
third party as an evaluator, who only needs to verify that the
two generated circuits are identical. The book considers this
to be secure under an honest majority assumption (at most
one of the parties is corrupted by an adversary). Furthermore,
it is mentioned that Patra and Ravi [35] have enhanced this
protocol with ”fairness (if the adversary learns the output,
then the honest parties do) and guaranteed output delivery
(all honest parties will receive output)” [13, p. 128], and that
Chandran et al. [36] extend it to the case of n parties, out of
which roughly

√
n are corrupted.

Lastly, in [14] Bayatbabolghani and Blanton present
several references to recently developed compilers for MPC,
among which ObliVM [37], and Obliv-C [38].

Trusted Third Party
A recently developed technique for collaborating using a
trusted third party is introduced by Tueno et al. in [15]. As
an item passes through different components of the supply
chain, data such as ”time, location, and type of handling (e.g.,
packing, unpacking, receiving, or shipping)” [15, p. 476] is
gathered by using Radio Frequency Identification (RFID)
tags. The paper mentions how this data can be used for
collaborative applications such as estimated arrival forecasts,
counterfeit detection, batch recalls or analytics. As is often
the case in collaboration, some data might need to remain
private. Thus, their approach is to store the data in a cloud
that all the collaborators can access, and encrypt parts of
the data that are considered private (selective encryption),
through a public key infrastructure offered by a trusted third
party. The trusted third party is responsible for distributing
the RFID tags and for initializing them with private signa-
tures. The collaborators encrypt their data using different
keys, which are shared only with parties that should have
access to the data. In this way, even the cloud provider does
not have access to the private data, as the keys are shared
through the trusted third party.

While this paper does not cover any collaborative ap-
plication specifically, by enabling the collaborators to share
their data with each other through a trusted third party, it
paves the way for solving a collaborative problem. It is worth
nothing, though, that this approach wanders away from the
initially discussed role of the trusted third party, namely that
of actually computing the function, not providing a means to
share data between collaborators who trust each other.

Comparison of Developments
Recent literature suggests that MPC is the collaborative
technique which has seen the most improvement recently.
While the transition from a theoretic concept to an approach
used in practice is not something that happened recently,
newer developments help push its adoption as a solid and
provably secure strategy, due to it being based on crypto-
graphic properties.

Trusted third party has also seen developments, but
there also seems to be a different direction for this approach.
More specifically, trusted third parties are used less as a
party which is given all the private information and tasked
with finding the optimal solution, and more as a mediator
which allows parties themselves to collaboratively solve the
problem. This can be seen not only in the paper mentioned
before ([15]), but also in papers such as [16] (where third
parties are used to from collaborative relationships).

While some developments have been published for se-
cure transformation, the lack of a good way of proving the
security of the protocols, and having to rely on heuristic
analysis still seems to prevent it from becoming a technique
used in practice. While the work of [11] raises doubts
towards the feasibility of using secure transformations for
linear problems using real numbers, the technique as a
whole is not condemned to failure. Linear programming is
not the only type of problem found in supply chains and
theoretical developments for particular cases of problems
are being made. Research towards non-linear programming
(and future research into real number cryptography-based
transformations) also opens possibilities for secure transfor-
mation to be deployed in supply chain applications which
value computational efficiency over the limitation of only
”heuristic” privacy.

Table 1, listing all of the developments discussed thus
far can be found in Appendix 1.

5 Real-life Applications and Limitations
This section provides a look at a few different collaborative
tasks, and constitutes the second part of the contribution. A
short description, about what the task implies and what its
privacy requirements are, is given, and the feasibility of using
a secure transformation approach to accomplish this is evalu-
ated. Limitations of secure transformation are also discussed.

Collaborative Scheduling and Routing
Two of the problems discussed in [17] are last mile delivery
(meaning the last step of delivery to the actual customer) and
bin packing (packing items such that the number of bins is
minimized), both of which are relevant in collaborative sup-
ply chains. The paper mentions that there are linear pro-
gramming approaches to these problems, namely [39] (which
presents the problem as a set partitioning problem, for which
[40] presents a linear programming approach) and [41] re-
spectively. Given this fact, depending on how data is parti-
tioned among the collaborators, various secure transforma-
tions could be used. For example, if there is a horizontal



partitioning, approaches such as the ones in [26] or [8] are
suitable. For vertical partitioning, [25] presents a solution,
while [7] works for any arbitrary partitions.

Collaborative Container Maritime Logistics

The situation of collaboration in maritime transport, more
specifically focusing on containers, is presented in [18]. This
is done between ports and port users, whose main collabo-
ration interest is through information sharing. If the secu-
rity of the information is a concern, the approach in [15]
could involve a third party that facilitates secure communica-
tion. Another aspect of collaboration within this field is joint
supply chain performance measurement, which is concerned
with ”optimising related port activities including container
handling time, number of vessels to be accommodated, port
time, berth utilisation, and joint actions in security and risks”
[18, p. 300]. As such, optimization problems could be formu-
lated (perhaps even as linear programming problems in some
cases) and solved in a privacy-preserving manner through se-
cure transformation.

Collaborative Airline Management

Within airline management, [19] identifies schedule design as
one of the most important decisions. As airlines are usually
part of airline alliances, the individual decisions also depend
on the collaborators’ opinions, with the main goal of making
efficient use of all the resources available. In this manner,
optimization problems could be formulated, and, as was the
case for collaborative container management, some of them
could be linear programming problems. Normally this would
imply that secure transformation is a valid strategy, however,
since they form an alliance, these collaborators are likely to
trust each other more compared to other supply chains. If this
is the case, there is no need to protect information from other
parties, but there is still a need for securely sharing this in-
formation, and then a third party can facilitate this [15]. If,
however, an alliance decides to collaborate with a different
one, the usual case applies, and secure transformation tech-
niques can be employed, with the same discussion regarding
partitioning as for scheduling and routing. As schedule de-
sign is a difficult problem, perhaps outsourcing the problem
to a cloud with more computation power, as mentioned in [9]
and [10], is also a possible approach.

Limitations

The main limitations of the technique of secure transforma-
tion come from its origin as a non-cryptographic approach.
As [11] discusses, if perfect secrecy is the goal of the pro-
tocol, secure transformation is infeasible and techniques such
as MPC are more suitable. That is not to say that using secure
transformation is the same as having no security, but, given an
adversary with enough computational resources, data regard-
ing the original problem might leak. If this data happens to
be highly private information, then this poses a major privacy
issue. The most important challenge, for any supply appli-
cation which wants to employ secure transformations, is to
figure out whether or not efficiency is valued over security.

6 Responsible Research
First of all, as this work features only a literature review, no
experiments were performed as part of the research. The
sources themselves are also mostly theoretical (some also
being literature reviews), featuring little to no experiments.
Regardless, the experiments that do appear feature randomly
generated matrices, which could (theoretically) be cherry
picked to feature better results. However, that would not
affect the result, as the random numbers themselves do not
influence the security of the protocol, and are only meant to
provide data obfuscation.

Secondly, the papers studied and the information presented
were also not specifically selected to show only the positives
of secure transformation. While works such as [1] and [7]
mention just some downsides of secure transformation, [11]
criticizes the approach as a whole and shows why it is unsuit-
able for providing privacy when working outside a finite field.

Thirdly, all the information taken from a paper written
by a different author is cited, and the references provided
are given for the correct papers, with correct information.
While [1] was used as a basis for definitions, and papers
cited by this source were researched in detail and explained
here, their work is credited wherever this is the case and not
closely replicated in content, nor in structure.

Lastly, the research performed is highly reproducible,
given that it is a literature review (which includes all of the
sources used), and conclusions should mostly align with
the following statement: the technique can work in supply
chains, but it has obvious flaws which need to be taken into
account in order to minimize the risk of leaking private data.

7 Conclusions and Future Work
In this paper, the question of how secure transformation
preserves privacy in collaborative supply chains was tackled.
To this end, the collaborative technique of secure transforma-
tion was investigated in detail. Both older and recent papers
highlight the efficiency of this approach when compared
to cryptographic approaches such as secure multi-party
computation (MPC). Secure transformation preserves the
privacy of collaborative supply chains by transforming
the original input and problem. Such a transformation is
usually composed of one or more matrix multiplications,
and the most common types of problems that it is applied
to are linear programming problems, where two or more
parties try to collaboratively solve a problem without re-
vealing private data. This situation can often be found in a
real life supply chain, and thus this model generally fits the
description and privacy needs of a collaborative supply chain.

Despite its positives, the general consensus is that this
technique is not perfect, as it has the downside of ”somewhat
heuristic” privacy [7, p. 14] or even its impossibility of
reaching the same security as a cryptographic approach when
working outside a finite field [11]. Being a non-cryptographic
technique, the security of the protocols cannot be proved



through well known and properly understood cryptographic
primitives. Thus, issues might arise, either in having an
erroneous transformation that covers a larger solution (i.e.
some solutions to the transformed problem are not solutions
to the original problem), in the difficulty of coming up with
a proper proof for the privacy, or even in the impossibility of
formulating a privacy-preserving transformation at all.

Other collaborative techniques, namely trusted third
party and MPC were defined in the introduction, and recent
developments for them were also discussed. In comparison
to secure transformation, the reliability of MPC in terms of
privacy preservation seems to have pushed the approach into
use for real life applications (though not necessarily in the
supply chain yet). It appears that, in many cases, being able
to prove that the data is indeed private, through cryptographic
means, is favourable over speed.

The purpose of secure transformation in supply chains
is, however, not missing. It is a technique for which much
theoretical research is still being conducted. The broad area
of linear programming has applications in fields such as
logistics and scheduling, for both land and maritime supply
chains. Recent research into non-linear programming (which
also has some applications in the supply chain) has also been
conducted for cases of outsourcing the computation to an
untrusted cloud. Older transformations are being revised
and fixed, and transformations for certain problems and
data partitionings which are encountered in supply chains
are still being developed. Additionally, more research into
cryptography over real numbers is a much-needed tool for a
better chance of finding a secure transformation.

To conclude, the technique is still advancing, and some
questions regarding it still remain. Among the most crucial is
whether or not the trade-off between efficiency and privacy is
suitable for a real-life supply chain. Unlike the theory-based
simulations ran so far (which proved this to be the case), a
data leak in the real world could produce heavy losses, and
therefore the first real experiment should be performed with
this aspect in mind. Another question is whether or not a
solid non-linear transformation is possible. Though research
has shown that there are cases where secure transformations
for linear problems are infeasible, perhaps a non-linear
transformation specifically targeted at supply chain problems
and their security necessities could be developed. By
rigorously studying and modifying it to ensure both a privacy
akin to that of a cryptographic approach and the efficiency
of the non-cryptographic one, there would be no need for a
trade-off. A candidate for such a transformation has already
been provided in [10], but it only tackles computation
outsourcing and rigorous research and real-life applications
have not been investigated yet.
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A Appendix 1

Table 1: An overview of developments for collaborative supply chain techniques

Name Important aspects Year,
Reference

Secure transformation

Transformation-based
computation and impos-
sibility results

• secure transformation cannot reach perfect security when working
outside a finite field

• cryptographic approaches could help, but cryptography over real
numbers has not been thoroughly researched

2015, [11]

Privacy preserving linear
programming

• the main advantage of secure transformation is its efficiency
• the main issue of secure transformation is its heuristic privacy

2016, [7]

A new algorithm for
privacy-preserving hori-
zontally partitioned lin-
ear programs

• an older transformation is revised, in order to fix underlying secu-
rity issues

• this shows that the problem of not being able to quantify the pri-
vacy causes difficulties in coming up with suitable transformations

2021, [8]

Secure optimization
computation outsourcing
in cloud computing:
A case study of linear
programming

• outsourcing computation of linear programs to the cloud and pre-
serving the privacy via transformations is gaining popularity

• experimental results show the benefit of outsourcing and the fact
the the privacy is preserved

• a method of preventing the cloud from cheating by skipping com-
putation and giving random results is developed

2015, [9]

Privacy-preserving out-
sourcing of large-scale
nonlinear programming
to the cloud

• outsourcing of computation to the cloud is extended to non-linear
programs too

• the experiments show that the approach is also beneficial for non-
linear programs and that privacy is still preserved

• relevant for citrus supply chain, for example

2018, [10]

MPC

Secure multiparty com-
putation (MPC)

• MPC is seeing deployment in practice (but not supply chain yet)
• cryptographic key protection is relevant for supply chain

2020, [12]

A pragmatic introduc-
tion to secure multi-party
computation

• a very detailed and rigorous work on MPC
• discusses recent developments, such as less expensive garbling

(through half gates) and extensions of the original two-party gar-
bling problem to three parties

2017, [13]

Secure multi-party com-
putation • compilers for MPC are being developed 2018, [14]

Trusted third party

Selective access for sup-
ply chain management in
the cloud

• the use of RFID technology for tracking products through the sup-
ply chain, enables third parties to act as an intermediary between
two collaborators trying to share data with each other securely

2017, [15]

Orchestration of busi-
ness collaboration by
third-party brokers

• shows that the role of third parties is shifting away from being
the party which computes the function to that of the party which
enables the forming of collaborative relationships

2017, [16]
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