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Abstract

Call graphs are useful tools for representing method relationships within software
projects and correlations between dependencies. Although static analysis is a preva-
lent method for call graph construction, it has its limitations such as struggling with
handling dynamic features and lambda expressions. In this research, we introduced
an approach that utilizes test suites from public Java Maven projects to construct dy-
namic call graphs and then merge them with static call graphs. Our objective is to
explore the efficacy of the merged call graph in uncovering additional information.
We employed OPAL and Soot to generate static call graphs and Java agents to trace
edges during actual execution. Subsequently, a merging procedure, coupled with a
filtering mechanism, was implemented to eliminate duplications. We conducted vul-
nerability detection analysis to assess the results and a version analysis to investigate
the potential for extending our approach by merging multiple versions. Our results in-
dicated that the merged call graph offers a modest increase in edges compared to solely
static analysis. Additionally, we discovered that vulnerability identification followed a
comparable pattern, supporting the consistency of our methodology. Additionally, we
discover that combining several minor/patch versions of a project is a successful tactic
for enhancing test coverage. Our research highlights the value of using test suites from
open-source projects to build more in-depth call graphs.
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Chapter 1

Introduction

In today’s software development ecosystem, dependency management has become a critical
aspect given the increasing interdependency of software packages. Developers nowadays
lean heavily on external libraries and frameworks to enhance their productivity, allowing
them to focus on their application’s core functionality while leveraging readily available
solutions for common, repetitive tasks.

To reuse existing code and the availability of a large number of open-source libraries,
and to speed up the development process, the trend of increasing dependencies emerged.
However, the growing complexity and escalating number of these dependencies lead to
explosions in the size and complexity of the projects, particularly in understanding the be-
havior of software, identifying possible vulnerabilities, and ensuring its security.

Faced with these challenges, call graphs (CG) have emerged as a powerful tool. A call
graph contains almost all the invocation paths between functions and classes in a project
and provides valuable insight into various complex interdependencies. By mapping the
control flow between various methods, CG provides a simplified conceptual map of the
operation of a software system which provides insight into the structure. Thus, it became
the cornerstone of many software analyses. Covering areas as diverse as impact analysis
and vulnerability detection, these analyses enhance our understanding of software behavior
and help proactively detect and resolve issues.

To construct call graphs, there are mainly two approaches: static and dynamic analysis.
Static analysis scans the program’s byte code to extract all possible paths, while dynamic
analysis traces all the executed paths during runtime. Static analysis tends to be more com-
prehensive and constructs more complete call graphs. However, it also falls short on dy-
namic language features and its conservative strategies also produce more false positives
and redundant edges in the call graph. Dynamic analysis is more accurate than static anal-
ysis because there are no false positives during runtime. But compared to static analysis, it
relies entirely on the test suites. The dynamic analysis tracks every method executed within
the test suites during runtime. If test suites have low coverage of the project, the dynamic
analysis misses most of the edges of a project. In our study, we intend to combine static and
dynamic analysis making them complementary.

In an effort to explore the full potential of call graphs in navigating software complexity,
our study focuses on public Java Maven projects. These projects, with their Maven unit test
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cases, serve as a potentially valuable source of run-time data for call graph construction and
augmentation. Moreover, it is possible to replace the test suite generation. We seek to lever-
age these test suites in constructing and analyzing call graphs that account for both static
and dynamic analysis. By exploring this approach, we aim to augment the understanding of
software dependencies and explore the possibility of better vulnerability detection.

1.1 Research Questions

Among the programming languages, Java presents compelling use cases for the application
of call graphs. Given the intricate dynamic nature of Java and its rich ecosystem of libraries
and frameworks, creating a comprehensive CG that encapsulates both static and dynamic
behavior is particularly challenging, but essential. In this study, we explore the following
research questions:

* The Impact of Public Test Suites on Call Graphs: How do public test suites in open-
source projects contribute to the construction of call graphs, specifically in terms of
dynamic analysis? How much additional information can they provide, and under
what conditions is this information most valuable?

* Vulnerability Detection: How does the inclusion of dynamic analysis, supplemented
by public test suites, enhance the detection of vulnerabilities compared to static anal-
ysis alone? Does the combination of static and dynamic analysis offer significant
advantages in vulnerability detection and if so, under what circumstances?

* Effect of Version Analysis: How does the merging of call graphs from different ver-
sions of software and the subsequent optimization of these graphs affect the compre-
hensiveness and accuracy of software analysis? What kind of additional information
can be extracted through this process, and how does it contribute to a more efficient
software analysis?

For the first research question, we download Maven projects from GitHub and analyze
their dependencies and package information. Static and dynamic analyses were then per-
formed to construct the call graph. The increase in information content resulting from the
integration of these two analyses was carefully evaluated to quantify the contribution of the
test suite to the overall call graph. To address the second research question, we identify vul-
nerabilities in the constructed call graphs. These vulnerabilities are collected from different
public sources (e.g., national vulnerability databases) and propagated in the integrated call
graph. We then check for the presence of additional vulnerabilities discover through the
propagation process that are not initially found in the public sources. Regarding the third
research question, we employ a version-based analysis. By selecting one version as a base-
line, we merge the call graphs of different versions. This merging process includes the
merging of the minor or patch versions, as well as the optimization of the merged graphs.
Our goal is to explore the possibility of obtaining edges from other versions that were un-
detected in the base version, specifically from their test suites.
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1.2 Contribution

Our study focuses on the interplay of static and dynamic analysis methods in constructing
call graphs for software analysis. While both approaches have their distinct advantages,
their combination provides a more comprehensive understanding of the system. However,
given the resource intensity of dynamic analysis, we advocate its use primarily in projects
with extensive dynamic behavior.

The following is a summary of the main findings:

1. Complementarity of Static and Dynamic Analysis: Static and dynamic analyses play
complementary roles in assessing software systems, with static analysis providing
the primary evaluation and dynamic analysis supplementing it. Dynamic analysis
cannot fully replace static analysis due to its limitations in test coverage and effi-
ciency. Despite drawing information primarily from official repositories test suites,
dynamic analysis effectively utilizes test resources to provide extra information, aid-
ing in the exploration of certain unprobed methods. The value of dynamic analysis
is project-specific. It offers significant extra information in IO-intensive projects and
those heavily utilizing Java’s dynamic features, but its value is limited in projects not
exploiting these features.

2. Vulnerability Detection: Our research shows that combining static and dynamic anal-
ysis can help identify more vulnerabilities.

3. Version Analysis: Merging different versions of the project leads to a marginally more
comprehensive and refined call graph. However, we also discovered the same trend as
in the dynamic efficacy that the effectiveness and applicability of this approach may
vary widely among different projects due to the usage of Java dynamic features.

Following this introduction, the structure of the remainder of this paper is as follows:
In Chapter 2, we provide an overview of existing related work, setting the foundation and
context for our work. In Chapter 3, we outline our research methodology, detailing the
approaches and techniques used to investigate our research questions. In Chapter 4, we
present our research results, followed by a thorough analysis of the results. In Chapter 5,
we discussed the analysis results and future Work and the implications of our findings which
suggests directions for future research based on our results. In Chapter 6, we summarize
our work.






Chapter 2

Related Work

Call graphs represent the structure of a software program. They are directed graphs with
nodes being methods and edges representing the method calls. With these edges, analysis
can be conducted to track the invocation paths within the component or the entire software.
The graphical representation of a program is the basis of many software analysis tasks like
vulnerability analysis, control flow analysis, and refactoring[19, 40]. The construction and
analysis of call graphs have been a subject of considerable interest in software engineering
ever since 1979(31]]. Call graph construction is not a new concept in computer science. The
goal is to build accurate and sound call graphs. There are 2 ways of constructing call graphs:
static analysis and dynamic analysis. Static analysis is considered sound and conservative
and dynamic analysis is considered accurate however incomprehension. Although state-of-
the-art approaches are relatively comprehensive when it comes to call graph generation, they
still cannot confidently say whether a branch in the software or its dependency is reached
or not. Which makes the call graph generation problem undetermined|9]].

In this chapter, we delve into the concept of call graphs, discussing both static and
dynamic analyses employed for their construction. We then summarize the current state of
call graph analysis in contemporary software engineering research and practice.

2.1 Static analysis

A large number of research has been conducted on call graph construction. Many algorithms
have been developed and proven effective and efficient while making trade-offs between
precision and time. Tip and Palsberg[37|] carried out an analysis where they compared
many of the widely used popular algorithms. Notably, Class Hierarchy Analysis (CHA)[15]]
is recognized as a fast yet lower-precision algorithm that utilizes class hierarchy data for
resolving virtual methods. Additionally, the Rapid Type Analysis (RTA)[8] algorithm takes
into account allocation sites. On the other hand, Variable Type Analysis (VTA)[34] handles
the assignments between various variables by formulating subset constraints.

Owing to their unique prowess in call graph construction, Soot, WALA, and OPAL are
distinguished frontrunners in the realm of static analysis tools.

Soot, a framework developed by McGill University, operates as a Java optimization
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framework. It’s equipped with a suite of transformation algorithms and analytical tools.
Soot streamlines optimization and analysis by translating Java bytecode into various inter-
mediate representations, Jimple being a notable example[39]. This tool further extends its
utility by facilitating easy navigation and manipulation of built-in call graphs, backed by
versatile algorithms such as Class Hierarchy Analysis (CHA), Rapid Type Analysis (RTA),
and certain context-sensitive pointer analysis variants.

Originating from IBM, the T.J. Watson Libraries for Analysis (WALA)[3]] provides a
toolkit that empowers users to craft, scrutinize, and alter call graphs. WALA, with its innate
capability to support a spectrum of programming languages including Java and JavaScript,
generates call graphs underpinned by pointer analysis. A notable feature of WALA is its
adaptable pointer analysis, encompassing both object and context sensitivity. Its modular
and extensible architecture renders WALA a versatile instrument for diverse static analysis
endeavors.

Lastly, the OPAL Project[16] presents a dedicated framework tailored for the static
analysis of Java bytecode. The hallmark of OPAL is its unwavering emphasis on precision,
dependability, and efficiency. OPAL’s robust pointer alias analysis is both comprehensive
and scalable, aiding in the formulation of sophisticated call graphs. Moreover, its declarative
analysis specification is a standout feature, granting analyses heightened transparency and
simplifying their configuration and extension.

2.1.1 limitations

However, the static analysis could not precisely depict the structure of the actual call graph.
Due to its conservative nature, the static analysis approximates every possible edge which
introduces many false positives. Ever Since JDK v1.3, dynamic features like Reflection
API[3]] are available. Now they are widely used to instantiate classes and transform exe-
cutions during run-time. Considering that dynamic approaches rely on workloads to run
the program under study, they are intrinsically flawed. These workloads won’t cover every
potential execution route for real-world apps. It turns out that most static evaluations are
flawed because Java programs frequently use dynamic features. These dynamic properties
are notoriously challenging to represent.

We chose Soot and OPAL for this study for a few compelling reasons. First off, their
analyses of Java bytecode are both thorough and fast, which fits the focus of our investi-
gation. Soot offers a variety of call graph construction algorithms, allowing us to choose
the one that best suits our requirements. Our analysis is also made easier by its capacity
to convert Java bytecode into condensed intermediate representations. On the other hand,
OPAL’s emphasis on accuracy and performance enables us to create call graphs that are
incredibly precise. We have more control over the analysis process thanks to its declarative
specification of analyses. By combining these tools, we can build a thorough static call
graph that serves as a solid starting point for our further investigation of dynamic analysis
and their combination.
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2.2 Dynamic analysis

Dynamic analysis constructs a dynamic call graph by running the program and observing its
runtime behaviors. Unlike static analysis, it is highly precise and doesn’t require approxi-
mation. However, its speed is typically slower, as it hinges on the program’s execution time,
which is usually much longer than the time required for static analysis.

Dynamic call graphs present the actual execution paths and are generally more compact
than static call graphs. Although they ideally represent subgraphs of static call graphs, they
can offer valuable insights into dynamic features that enrich the static analysis. In Java,
there are primarily two techniques for call graph generation: bytecode-level instrumenta-
tion and source code-level instrumentation[36]. Both methods involve inserting probes into
the source code or bytecode to monitor executioncite[24]. Java agent is a well-known tool
for performing bytecode-level operations. As a part of the Java Instrumentation API[4],
it aids in the instrumentation of Java Virtual Machine (JVM)-based programs, featuring
the ’premain’ method and specific attributes outlined in its manifest. Upon the initial-
ization of JVM, the ’premain’ method oversees the startup process. It loads the method
bodies and user-initiated property alterations into the JVM during this phase. Owing to
its bytecode instrumentation ability, Java Agent facilitates several functionalities, includ-
ing Aspect-Oriented Programming (AOP), profiling, mutation testing, and some forms of
monitoring.

Unlike static call graphs, dynamic call graphs depict the interplay between dynamic
behavior—representing specific program activities—and program structure, which outlines
how these activities are implemented[41]. The value of dynamic analysis is heavily depen-
dent on the quality and quantity of test cases. Well-structured and selected test cases can
reveal more undetected branches and invocations in static analysis. Greater test coverage
enables more invocation tracking, thus enhancing the comprehensiveness of the dynamic
call graph. One popular approach to increase test coverage is the test case generation from
static call graphs. Arcuri, Andrea, and Fraser et al. used bytecode instrumentation to au-
tomatically separate code from its environmental dependencies and extended the EvoSuite
Java test generation tool to explicitly set the environment state in the sequences of calls[7]].
They observed a significant increase in test coverage to over 80% or even 90%. Parasoft
Jtest[6] generates Java unit test cases to supplement the manually written test suite. Various
other studies have shown that dynamic analysis is very effective when the test coverage is
high enough. The study also revealed that dynamic analysis uncovers a significant number
of false negatives in static analysis, indicating that hybrid techniques can be very effective.

However, some test suite generation tools have their own limitations. Some test cases
are randomly generated, which results in very poor overall coverage. Some of them even
fail to execute the program[17]. In [21], the authors discovered the possibility of aug-
menting the existing test cases by generating guessed test cases to test the accuracy of
detected invariants. Test generation is expensive, and the study demonstrated that it is not
as effective in discovering dynamic program behavior as manually written tests. While
state-of-the-art analysis with reflection support can significantly improve recall, its high
cost renders it impractical for many applications. Multiple other researchers also revealed
the same issue[14, 29]. Li and Jens et. al investigated the challenges static analyses face
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when attempting to model dynamic language features soundly while maintaining accept-
able precision[33]]. The authors conducted a study on 31 real-world Java programs using
an oracle of actual program behavior recorded from executions of built-in and synthesized
test cases with high coverage. Unlike these studies, we propose a new approach to utilize
the test suites in existing public projects to generate dynamic call graphs. We expect that
this approach would be more efficient to cover more execution paths and generate a more
complete call graph.



Chapter 3

Methodology

The design of call graph combination and version analysis is discussed in this chapter. The
three sections in this chapter are listed below:

1. Call graph combination. Combine call graphs from dynamic analysis and static anal-
ysis using multiple different tools to increase edge coverage.

2. Vulnerability analysis. Find vulnerabilities in the call graph and compare the results
with pure static or dynamic analysis.

3. Version analysis. Merge several versions of the project to acquire higher test coverage
for dynamic analysis.

In the following 2 sections, we introduce the utilized methodology to answer the RQ1.
We present the data collection and processing strategy for static and dynamic analysis to
combine their call graphs. In addition, we identify projects with informative test suites and
construct partial call graphs derived from the invocation paths. These partial call graphs are
then merged to form a comprehensive call graph for the dependency. In Sections 3.4 and
3.5, we introduced the procedure of vulnerability detection and version analysis.

3.1 Static analysis

Static analysis plays a vital role in understanding the structure and behavior of software.
The information from static analysis enables the identification of potential vulnerabilities,
optimization opportunities, and architectural improvements. In many studies, static analysis
has been proven to be the most informative approach regarding software analysis such as
program comprehension, performance analysis, and security assessment.

In our study, the static analysis tools scan the JAR files obtained from Maven Central[28].
It is a public repository for Java libraries commonly accessed by Java developers to acquire
multiple types of compiled dependencies. During the process, JAR files with various depen-
dencies are carefully chosen and examined. We scanned all of the packages in the JAR files
and identified the classes and methods within them. The extraction of call graphs and other
pertinent data for static analysis was then conducted. We found that the JAR files larger
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than 10 MB were too extensive for our analysis. They were excluded from the analysis due
to time and resource limitations for a variety of reasons:

* Large JAR files require significantly more computational resources and time, which
impacts the overall efficiency of the analysis.

* The complexity of the call graphs generated from larger JAR files may render them
challenging to interpret and analyze.

* Excluding large JAR files helps maintain a manageable dataset size, enabling more
in-depth analysis of the remaining projects within the available resources and time
limit.

In our study, we also created a mapping between the jar file and its Maven coordinate
to enable static and dynamic analysis and to create nodes in graph databases, which is
introduced in the processing later in this chapter.

3.1.1 Static Analysis Tools

Soot and OPAL are powerful and versatile static analysis frameworks for Java byte code.
Both provide a comprehensive range of analyses, including points-to analysis, control-flow
analysis, and call graph construction. In particular, we are using fasten project from the
Delft University of Technology[13]. It is a tool for generating call graphs using OPAL call
graph generator version *3.0.0°. It calls the OPAL framework to generate call graphs and
store them inside a customized data structure. OPAL loads the Java bytecode before starting
the abstract interpretation process. The program’s execution is simulated by the abstract
interpretation, but instead of using real inputs, it makes use of abstract values that stand
in for sets of potential inputs. This tool can also merge the resulting call graphs with their
dependencies which helps to acquire more information on the dependency we are analyzing.
In Soot, the process begins by loading the program’s Java bytecode for analysis. The code
is then simplified and immediately represented by Jimple by Soot, making it simpler for
tools to understand and work with. In the call graph, each node denotes a method, and
each edge denotes a method call. Multiple edges may be added from the call site to each
potential target method if dynamic dispatch makes it impossible to pinpoint the actual target
method of an invocation. Furthermore, Soot uses iterative refinement to increase the call
graph’s precision. The call graph is progressively updated and improved during this process
depending on the findings of additional Points-to Analyses and other analyses. The program
can then be subjected to various downstream analyses or modifications using the generated
call graph. Control flow analysis, data flow analysis, call graph analysis, and many other
types of studies are all supported by Soot out of the box. Although neither tool is capable
of handling all dynamic features properly, OPAL’s use of abstract interpretation enables it
to handle them more accurately than Soot. OPAL offers a less complicated intermediate
representation, which offers several distinct intermediate representations for Java bytecode.

However, it is important to acknowledge that both Soot and OPAL, like any other static
analysis tools, have their limitations and weaknesses. Soot may struggle with handling in-
complete library code, which can adversely affect the precision of call graph construction.

10
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On the other hand, OPAL is criticized for its limited support for higher language-level fea-
tures. These constraints inevitably impact the quality of the call graph constructed. To
offset these limitations and harness the strengths of each tool, we integrated the results of
Soot and OPAL for static call graph analysis. This integration allowed our study to offer a
more robust and comprehensive understanding of the structure and behavior of dependen-
cies. We were also able to cross-validate the call graph construction by using two different
static analysis tools. If the call graphs generated by Soot and OPAL were similar, it gave us
more confidence that our analysis was accurate and correct.

3.1.2 Strategy

In our research, we aim to perform a thorough and accurate static analysis of the selected
JAR files by combining the results of Soot and OPAL. We discovered that the complexity
of analyzing larger JAR files increases dramatically. The number of edges and dependen-
cies within these files has increased to the point where the analysis cannot be completed
within a reasonable time limit. As a result, we decided to skip JAR files larger than 10 MB
from our analysis. Furthermore, larger JAR files frequently contain a higher percentage of
irrelevant or infrequently used code. This may result in a lower actual edge-to-noise ratio
in the analysis results, lowering the value of the resulting data. To ensure consistency in
call graph generation and combination, we generated call graphs using the Class Hierarchy
Analysis (CHA) available in both tools. The static analysis results serve as a foundation
for subsequent sections that address the research questions posed in the introduction. This
lays a strong foundation for understanding software behavior and identifying areas where
dynamic analysis can supplement static analysis.

3.2 Dynamic analysis

Although static analysis already constructs complex call graphs, they are still considered
over-approximation to the actual call graph. This means there are still a lot of the reachable
methods missing. The dynamic call graph is a record of the runtime execution of a program,
they are built entirely different from the static call graphs[32]]. Unlike static analysis’s nature
of scanning jar files to directly construct call graphs, the dynamic analysis uses test suites
to trace actual call executions in practical executions, which provides more insight into the
actual executions of the project. Static analysis may face challenges when analyzing Java
programs due to:

* Dynamic proxy & Polymorphism: Precise method calls may be hard to infer during
inheritance or interface-implementation relationships, as actual object types in Java
are determined at runtime.

* Reflection: Reflection allows inspection of classes, interfaces, fields, and methods at
runtime, complicating static analysis due to its unpredictability at compile-time.

* Dynamic Loading & Dynamic Proxy: Classes and methods dynamically loaded and
invoked at runtime can obscure the foresight of static analysis.

11
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» Lambda Expressions & Functional Interfaces: Introduced in Java 8, these constructs
can alter the code control flow, presenting a challenge to static analysis.

To counter these challenges, we introduce dynamic analysis in our project.
In this section, we present the steps and frameworks taken to perform the dynamic
analysis on the processed projects we mentioned earlier.

3.2.1 Leveraging Public Projects for Dynamic Analysis

One of our key research questions is the utilization of public projects to construct dynamic
call graphs. We intend to extract essential call patterns and edges from the test suites of
these projects. After that, we combine the partial call graphs to cover more essential paths
in the dependency library. To ensure a diverse and representative sample of Maven projects,
data was gathered from various open-source repositories hosted on GitHub. We collected
them and classified them into two types:

official projects: Official projects are the projects developed and maintained by the
dependency’s authors. It typically contains the source code, documentation, and other nec-
essary resources of the dependency. They represent the core functionality(internal calls) and
features provided by the dependency. Official projects generally have more comprehensive
test suites with sufficient coverage of the methods and classes.

Client projects: These projects rely on the project we are analyzing and integrate the
dependency into their codebase to leverage its features. Client projects show how the library
is used in real-world scenarios and can help identify common patterns.

We intend to compare the edges from both to give suggestions for future analysis. While
collecting projects, we took multiple factors into consideration, such as project size and
complexity. Some projects with multiple modules or costs For the test suite, we aim to get
as higher test coverage as possible. The library projects offer more comprehensive internal
test suites and the test suites from client projects are informative as well. In order to extract
useful projects and obtain test suites, the data collection process was guided by the following
criteria:

* Collect the compilation of all Java Maven projects on GitHub from the specified
period (2009 to 2023).

* Exclude uninformative projects lacking test cases, only projects with more than 10
stars were considered.

* Filter Maven projects by scanning for the presence of a pom.xml file in their web
pages, verifying their usage of Maven as the build tool.

We found that GitHub has a 1000-result limit for a single GitHub API search[2], while
the number of projects we need for the analysis is well above 10000. We decided to search
the dependencies month by month and accumulate all pertinent projects. We also tried to
use the existing GitHub activity dataset on Google Cloud[12]. However, we encountered
the challenge of extracting Maven projects from the dataset. As a result, we decided to rely
on the GitHub API to search to collect all of the projects with 5 to 10 stars but eventually

12
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package scanning

com.example.packagel
com.example.package2

com.exaple.packagel ->
artifactl-version.jar com.example:artifact]:version

- package mapping
com.example:artifact]:

version

dependency list

Figure 3.1: The process of mapping package to Maven coordinate

found a large number of them lack basic maven test cases and were not suitable for our
study.

3.2.2 Data Processing

Although in the dynamic analysis method call information is collected at run-time at the
JVM level, this data we collected does not provide direct insight into the usage patterns
of dependencies, as it does not correlate with the specific dependencies employed in the
project. Similarly, in the static analysis, scanning the methods in the source code does not
necessarily correlate with the dependency either.

After cloning the collected projects, we extracted all dependencies into a dedicated li-
brary folder using the Maven command “dependency:copy-dependencies”. The classes in
the JAR files are extracted to build the package mapping for each dependency. These map-
pings detail the relationship between the JAR files and their respective packages. Since
all dependency JAR files are retrieved from Maven Central, they adhere to the standard
naming convention[20](artifactld-version.jar). Therefore, Maven coordinate information
can be derived from the filenames, facilitating the construction of a comprehensive JAR-to-
coordinate mapping. We found that although most dependencies follow the naming con-
vention suggested by Maven, packages and jar files are not necessarily named the same as
their coordinates (e.g., for the Gson project, the package name is com.google.gson but the
coordinates are com.google.code.gson) which leads to problems with the correspondence
of dependencies and packages.

Therefore, we combined the mappings (JAR-to-packages and JAR-to-coordinate) men-
tioned above to construct a package-coordinate mapping as shown in[3.2] All the mappings
are stored by version in the Redis server. We first store the call graph of each project using
their names as the key. Then the partial graphs of its dependencies are extracted and merged
into the dependency call graph.

13
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3.2.3 Dynamic analysis setup

In this subsection, we outline the steps taken to perform dynamic analysis on GitHub
projects mentioned earlier.

Dependency resolution

As mentioned earlier in the data processing section, we have collected more than 28,000
projects and analyzed their dependency usage. To proceed with the dynamic analysis, we
first collected projects that are using the version of the dependency needed. We use the
Maven command “dependency:copy-dependencies” to copy all the dependencies into a li-
brary folder so that we can process the dependencies of the projects and construct mapping
as mentioned earlier.

Java Agent

In dynamic analysis, the Java agent is a bytecode-based instrumentation approach that is
commonly used. It is inserted into the Java bytecode as a probe to actively detect all related
methods[25]]. The other method is the source code approach which does not depend on the
JVM but requires a separate build. Research done by Horvath proved that with filtering
mechanisms, the difference between them is negligible[23]]. So in our approach, we utilized
the capabilities of two popular byte code manipulation libraries, Byte Buddy[1] and Javas-
sist, to develop a Java agent that intercepts method calls throughout the project execution
processes. In live executions, there are multiple types of Java dynamic features to be inter-
cepted, such as reflection calls, proxy methods, and dynamic invocation. Such features are
overlooked in the static analysis and are captured and recorded in our dynamic analysis.

Byte Buddy is written on top of ASM, a mature and well-tested library for reading and
writing compiled Java classes. Byte Buddy deliberately exposes the ASM API to its users
in order to support complicated type manipulations, so that a Byte Buddy user is not limited
to its higher-level functionality but can easily implement custom implementations when
necessary. For ByteBuddy, the Java agent structure is outlined as follows:

As we are using Java agents, the premain method is an essential part of the Java instru-
mentation framework and provides a powerful mechanism for the dynamic analysis of Java
programs. The extracted packages are configured in the element matcher to avoid unneeded
call sites and stack overflow errors caused by extensive method calls in memory. The Byte-
Buddy agent is then installed and configured in the Agent Builder to transform the matching
classes. The transformation encompasses applying the method tracing sub-class to all meth-
ods within the selected classes. The probes are inserted into the bytecode from here as an
entry point. On method invocation, the probe detects method executions and returns the
corresponding signature and information. They are then resolved into package name, class
name, method name, parameters, return type, and access modifier. Subsequently, the ana-
lyzed method is pushed into a stack as the caller method. The later recorded method will
capture the method on top of the stack so that edges between the “caller” and “callee” meth-
ods can be established during run time. These calls combined together are deemed to be
the paths of the execution of calls between various components in the dependencies. Upon
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exiting a method or an exception thrown inside a method, ByteBuddy captures the method
signatures to inform the termination of the execution path. Removing the top method from
the thread-local call stack helps the call stack remain consistent during method calls.

During the analysis process, we also designed a filter to facilitate the filtering process,
ensuring the edges we captured during the analysis are valid. All test-related classes, classes
with names containing “test”, and all calls originating from test cases and test frameworks
(e.g., JUnit, TestNG) are excluded from the call graphs, as they are not a part of the core
functionalities of the dependency and are considered less valuable for call graph analysis.
Calls from the native Java framework(e.g., rt.jar before Java 1.8 or jrt-fs.jar after) are also
excluded since the majority of them are stable method calls, which would not enhance the
information density needed in the study, as most of them hold little significance in terms of
analyzing the actual call graph.

void enhanceMethod (Method method, String clazzName) {

packageName, className, methodName =
extractClassAndMethodInfo (method, clazzName)

method.insertBefore ("pushMethodCallInfoToStack (packageName,
className, _methodName)")

method.insertAfter ("popMethodCallInfoFromStack ()")

}

Listing 3.1: Javassist Method Call Tracing Pseudocode

Javassist is a byte code engineering library that allows us to modify and manipulate Java
classes at run-time which shares the same structure as Byte Buddy. The standard reflection
API of Java does not allow users to alter program behavior. In order to overcome this
limitation, Javassist extended the reflection API[10], which enables structural reflection in
Java as opposed to other extensions that only enable behavioral reflection. It also allows
structural reflection before a class is loaded into the JVM and prevents a performance issue.
They also included a custom compiler to improve the performance of reflective architecture
in their later work|[[11].

Both tools offer comprehensive support for handling dynamic features in Java execu-
tions. Dynamic instances and delegate methods in dynamic invocations, and instrumenta-
tion of classes in reflection calls are captured using multiple APIs so that the corresponding
edges are extracted correctly. In contrast with Byte Buddy, Javassit requires the byte code
manipulated and method calls recorded using instrumentation and a transformer. As shown
in Listing Javassist requires the manual insertion of custom byte code snippets at the
beginning and end of the methods using the insertBefore and insertAfter methods. Which
calls the designated methods before and after the execution of the scanned methods.

Configuration

We made several other configurations to improve our dynamic analysis process in addition
to the Java agent configuration we previously discussed. This was accomplished by modify-
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Table 3.1: Dynamic analysis parameters configuration

Parameter Value
Java agent Packages specified in analysis
Multi-threaded test execution Enabled
Parallel level Method
TestFailurelgnore True
Parallel TestTimeout 10 minutes
ReuseForks True
SkipIntegrationTests True
dynamic call graph
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Figure 3.2: Dynamic call graph construction

ing the project’s POM files in the Maven project(including all pom.xml files in the project’s
path) to ensure full coverage of the Java agent.

These options are shown in Table [3.1] The packages that needed to be scanned were
specifically identified in order to avoid collecting unnecessary data that was irrelevant to
our study. This selective scanning process is critical for reducing noise in our collected data
and allowing us to focus on dependencies and method executions that are most relevant
to the projects under consideration. Another configuration involved reusing forks, which
allowed us to share the Java Virtual Machine (JVM) instance across multiple tests. This step
is important because it improves performance while decreasing overhead. When dealing
with large and complex projects, resource usage efficiency is critical. This configuration
also enables a more streamlined and efficient analysis process, reducing disruptions and
improving overall workflow.

We made additional changes to the POM settings to ensure optimal information collec-
tion within reasonable time constraints. We specifically set it up to allow multi-threaded
test execution at the method level and the parallel test timeout to 10 minutes.

We also decided to skip the integration tests. They are generally more time-consuming
and less informative than unit tests. We were able to save time and focus on the most
relevant and informative data for our research by focusing on unit tests.

Furthermore, we discovered that not all of the projects could be fully compiled with-
out errors. In these cases, we decided to remove all failed test cases and proceed with the
remaining test cases. This choice was critical in allowing us to collect as much data from
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the test suite as possible, regardless of individual test failures. This approach ensures that
isolated test failures that may not be significant to our research goals do not have a nega-
tive impact on our analysis. Finally, the tag releases frequently indicate stable versions or
significant project milestones. They mark a snapshot of the codebase of a version. So we
conduct our dynamic analysis on the most recent tag.

3.2.4 Test Coverage Evaluation

The dynamic analysis depends heavily on test suites. A better and more comprehensive
test suites result in more extensive coverage of the dependency methods which generates
more edges in the call graph. To assess the comprehensiveness and representativeness of
our dynamic analysis, we need to evaluate the test coverage of the dependency. In this
subsection, we use JaCoCo to generate a test coverage report after the execution of the
test suites. The report includes the coverage of classes, methods, lines, and branches for
each package. We then calculate a combined test coverage percentage, which is a weighted
average of line and branch coverage, as an overall metric of test coverage.

Using JaCoCo for Test Coverage Analysis

JaCoCo (Java Code Coverage) is a widely-used code coverage tool that provides a reliable
method for measuring test coverage in Java projects. We compare the percentage of code ex-
ecuted during the test suite’s execution between projects to find patterns and try to conclude
its impact on . We integrate it into the projects’ build process by configuring the JaCoCo
Maven plugin[22]. This integration automatically generates code coverage reports after ex-
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ecuting the test suites. We then extracted the dependency methods that were executed in
the project from the reports to determine the dependency coverage for each dependency,
focusing on the following coverage metrics:

* Line Coverage: The percentage of executed lines of code during the test suite’s exe-
cution.

» Branch Coverage: The percentage of executed branches (e.g., if-else statements) dur-
ing the test suite’s execution.

* Method Coverage: The percentage of executed methods during the test suite’s execu-
tion.

Combining Test Coverage and Analysis Results

To demonstrate the overall test coverage of our dynamic analysis, we combine the test
coverage results of the individual projects. For projects with an official GitHub repository,
we also include their test coverage results in our analysis(in which test cases are often more
comprehensive). This aggregated coverage percentage provides a comprehensive view of
how much our analysis covers the dependency’s functionality.

The combined test coverage percentage obtained from the JaCoCo analysis is a strong
indicator of the coverage’s validity and comprehensiveness in our research. It highlights
the effectiveness of our dynamic analysis in capturing method call relationships and depen-
dencies between various components. With a high coverage percentage(more than 95% in
this study), we gain assurance that our dynamic analysis results provide valuable insights
into the dependency’s behavior, and build complete dynamic call graphs, which ultimately
contribute to more effective dependency management and vulnerability detection.

3.3 Call Graph Merging

Typical call graphs from dynamic and static analysis tend to be significantly huge with
thousands of nodes and edges. It is not possible for manual de-duplication or comparison.
Several algorithms designed to compare large call graphs have been proposed in recent
years. However, due to the diverse approaches we utilize to generate the call graph, these
methods are not directly applicable to our call graphs. The preprocessing of the call graphs
generated by both the static and dynamic analysis tools is critical to our research. The goal
is to establish consistency between the edges produced by the various types of analyses. As
a result, we developed a merging procedure to pair nodes and harmonize the format of call
graphs from all the analyzer tools.

Soot and OPAL each have their own way of representing Java method byte codes. We
noticed that type descriptors were used to represent parameters and return types on occasion
(for example, ”[L” for arrays of objects and ”[C” for arrays of char types). Similarly, Byte
Buddy uses the same type descriptors during execution. However, Javassit sticks to the
full name of each type which causes inconsistencies between the result of different tools.
We parsed all types and arguments into their corresponding Java-type representations (like
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int, char[]) at each node to facilitate edge de-duplication in the call graph and to ensure
uniformity across all return types and method arguments. Nonsensical edges produced by
the static and dynamic analyses were also removed at this stage. The integration of dynamic
and static analyses is essential for our methodology. This allows us to build a more complete
and accurate picture of the behaviors of method invocations within the dependencies we’re
investigating. Distinct edges from each analysis are tagged ’dynamic’ and ’static’, while
Edges that appear in both analyses are tagged as both”. The "both’ edges clearly mark the
areas where dynamic and static analysis overlap.

To store the generated call graphs, non-relational databases (NoSQL) are a highly suit-
able choice compared to MySQL and other relational databases. Owing to their rapid so-
Iution deployment and scalable nature, NoSQL databases tend to be more efficient for this
purpose [35]. MongoDB was chosen to be the graph database in this study for its document-
oriented feature. It stores data as JSON-like documents with dynamic schemas (the format
is called BSON). Traditional relational databases may struggle with complex, multi-level
joins that are often required when working with graph data. In contrast, MongoDB can
store related data in a single document structure. This can help to simplify the queries and
improve overall performance [26]]. For visualization and graph analysis, we transferred the
data from MongoDB to the Neo4j database. Given that the storage formats for nodes and
edges differ substantially between these two databases, which requires careful parsing and
reorganizing.
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Dynamic analysis, utilizing open-source projects, reveals connections between meth-
ods in the call graph generation process. Nevertheless, this method frequently duplicates
nodes and edges. MongoDB’s unique indexing feature was used to address these redundan-
cies. A composite key using the combination of package name, class name, method name,
parameters, return type, and access specifiers is used to define each method. Following
this systematic and organized process, we perform the call graph merging operation, de-
duplicate existing edges from the examined projects, and identify calls present in both types
of analysis. The dynamic analysis results give a thorough understanding of the call graph
and highlight how effective dynamic analysis is compared to static analysis. However, in our
study, project dependencies aren’t taken into consideration in the current analysis, for the
goal of our current research and methodology is to examine the viability of this approach.

3.4 Vulnerability analysis

Once the call graphs are constructed, it’s important to test them in practice. We selected
vulnerability detection as our use case. Our aim is to identify more vulnerabilities and com-
pare them with the vulnerabilities detected only using static call graphs in this study. Most
vulnerabilities are concealed in some methods or classes which lead to potential malicious
attacks causing security breaches or unauthorized access, even controlling the entire system.
Hence, identifying vulnerabilities in a project is essential for its robustness and safety. The
spread of security flaws is a common problem in ecosystems. If a library is compromised,
all upstream dependencies could be potentially compromised as well[27]]. Direct dependen-
cies can update to a safe version right away, but indirect dependencies must wait until the
entire chain in between has been updated. In our study, we employed the vulnerability API
from FASTEN[18]]. With this tool, developers can precisely analyze whether their appli-
cations are invoking vulnerable code and can determine whether dependency updates are
required.

We aim to address these vulnerabilities with call graphs to extend the known issues to a
more comprehensive understanding of the affected modules. We aim to identify vulnerable
methods using propagation methods based on known vulnerabilities sourced from the Na-
tional Vulnerabilities Database (NVD) and other public resources, employing the FASTEN
project. Having identified the vulnerable methods, our next step involves highlighting these
potential security risks on the call graph. Upon obtaining the vulnerable methods from FAS-
TEN API, we trace all the methods that are calling them. We then propagate these vulner-
abilities using a breadth-first search (BFS) algorithm. marking all the methods potentially
affected by these weaknesses. Further, by combining this process with edge types—which
indicate the analysis source of each edge—we enhance the reliability and precision of our
vulnerability detection. The API we used from the FASTEN project accepts the version
and artifact ID of the dependencies as input and returns the existing vulnerability ID. This
allows us to trace back to the corresponding vulnerable methods. This is crucial as it pro-
vides a clear direction for subsequent fixes and updates, allowing developers to pinpoint
problematic areas swiftly and effectively. The entire process of vulnerability detection is
illustrated in Figure[3.6] providing a step-by-step guide to understanding our approach.
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Figure 3.5: Example of vulnerability tracing
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Figure 3.6: Public vulnerable methods propagation and filtering

To enhance the precision of our analysis, we look for vulnerabilities only accessible by
dynamic edges, which are the edges that only appeared in dynamic analysis. Despite being
resource-intensive, dynamic analysis dive deeper into the structure during run-time. This
focus on dynamic edge analysis allows us to identify potential vulnerabilities that might be
missed in a static analysis context. It also helps us understand the dynamic behavior of the
software system under study better. We calculate the proportion of the extra vulnerabilities
provided by the dynamic analysis so that we may be able to have more insights into the
efficiency of the dynamic analysis and may further guide future methodologies on call graph
construction and analysis.

3.5 Version analysis

For large projects, the complexity of their codebases makes the high test coverage almost
impossible to achieve. Compared to smaller projects, their test coverage is significantly
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lower, leaving potential edges and paths unexplored. Although it is impossible to cover all
the edges in the test suite of a single version of the projects, it is highly likely that other ver-
sions might have more test cases covering the same functions in this version. According to
semantic versioning suggestions, which are followed by almost every single large project,
the changes between minor versions and patch versions are small enough to make them
compatible with each other. So, we proposed an approach to merge call graphs from dif-
ferent versions(minor and patch versions) of the project in a compatible manner. To ensure
consistency, we designed appropriate filtering mechanisms, allowing us to reveal previously
unseen edges within the version being analyzed.

As shown in Figure we selected one version of the project as the baseline and then
select another version of the call graph to merge with the baseline. In order to explore
the most relevant updates and minimize the noise from major architectural changes, we
based our selection process on the principles of Semantic Versioning[30]]. It is a system
that involves versioning a software product to communicate what kind of changes were
made in the new release. It follows the pattern of MAJOR.MINOR.PATCH. Between major
versions, there are incompatible changes that greatly change the methods and classes which
makes the call graph incompatible. In this study, we focused only on the minor’ and ’patch’
versions, as these updates often include crucial bug fixes and functional improvements while
maintaining backward compatibility. This focus allows us to maximize the chance of finding
relevant test suites, eliminating potential confusion or distortion that may arise from major
version changes.

The merged call graph is able to be built on the nodes of the existing project, com-
plementing the missing edges due to incomplete coverage of test suites. We evaluated the
effectiveness of this approach by examining the amount of new information brought by the
merged graph. When merging the call graph, we only look for compatible nodes and edges.
These nodes must have existed in the base version to ensure that the edges are complemen-
tary instead of added. One important presumption is that we assume the static analysis is
accurate and complete, meaning that the edges detected by static analysis are never removed
or excluded in the call graphs. We first merge 2 versions only with compatible edges, as
shown in Figure[3.7a] the edges from dynamic and static analysis in version 2 are all merged
into the call graph. In the merged call graph, ’Both’ edges are the edges that appeared in
both dynamic and static analysis. After directly merging these two graphs, we proceed to
optimize the fully merged graph.

Our study operates under the assumption that the static analysis method should theo-
retically be capable of scanning all nodes (for this assumption, we also use the consistency
guarantee means). We decided to primarily concentrate on the dynamic edges added to the
baseline version by the new version. This decision meant that if we found static or "both’
edges that weren’t present in the baseline version but appeared in version 2, we’d consider
these as redundant edges that don’t truly belong to the baseline version. This strategy en-
sured that we focused on genuine enhancements to the call graph and prevented the inflation
of results with unrelated or insignificant additions introduced by the new version. The re-
sult of this process is what we’ve termed ’dynamic merge’ graphs, as illustrated in Figure
This graph more accurately reflects the unique information contributed by dynamic
analysis, giving us a clearer view of its potential benefits.
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The constructed call graph from dynamic and static analysis with a merging step is still
considered an oversimplification of the actual project structure. This simplification from
the perfect call graph could cause problems in the study, information may be missing due
to insufficient test coverage. For example, nodes are not found or tests do not cover some
edges. So we seek to mitigate the influence of the changing factors as small as possible. To
achieve this, we maintained consistency of dynamic analysis and static analysis, we are bet-
ter equipped to accurately augment information from new versions to baselines. For these
merged call graphs, while ensuring accuracy, we calculate their coverage of the edges in the
baseline version and measure the amount of additional information provided by the merged
graph. This process helps us to identify any potential enhancements to the completeness
and detail of the call graphs.
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Chapter 4

Results and evaluation

In this chapter, we present and evaluate the result acquired using the methodologies men-
tioned in Chapter 3.

4.1 Data processing

By following the data processing approach in Chapter 3, we collected Maven projects from
GitHub and properly formatted and organized them as follows:

* We obtained and processed a total of 28,000 projects, covering a wide range of Maven
projects and contributing to the comprehensiveness of the call graph construction.

* A total of 241,536 packages were detected during the analysis of project dependen-
cies, mapping between all of the packages and coordinates are constructed for further
investigations of the dependencies.

* A small proportion of projects, accounting for less than 10% (approximately 2,000
projects), were removed due to their extensive size and the associated challenges in
compiling and analyzing them.

* As a result of the data processing, 93,000 Maven coordinates were acquired, pro-
viding valuable information to facilitate the efficient retrieval and analysis of project
dependencies.

While cataloging the Maven coordinates in our study, we found that a considerable num-
ber of dependencies did not hold additional value for our research. Dependencies such as
logging frameworks (e.g., SLF4J, Log4j), while broadly used across most projects, pos-
sess a relatively stable character. Therefore, they do not offer substantial insights into the
invocation paths and the correlated vulnerabilities. Furthermore, some dependencies are
oversimplified in their functionalities which offer very limited APIs that contribute to dy-
namic call graph relationships and possible vulnerability analysis in this research. Finally,
it is essential to note that our analysis does not include standard or utility libraries that are
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inherent to the Java ecosystem. Although these libraries are an essential part of all Java ap-
plications, they are even more stable and it is not necessary to explore the internal features
of Java language in this study.

In most projects, even though we did not analyze these packages individually, they still
produced a significant number of edges. Especially when we are analyzing other projects,
the interactions between other projects and these utility projects are not negligible. Their
presence in the call graph indicates their ubiquitous use in various Java applications, which
further emphasizes their importance in the overall structure and functionality of Java pro-
grams.

In order to ensure a more focused and efficient analysis, we performed a filtering proce-
dure to exclude projects without proper test suites. Our dataset was consequently downsized
to about 28,000 projects. This updated dataset highlights the size and complexity of the data
we’re working with while also better serving our study goals. In these projects, we tried to
collect the projects with proper Maven test suites. We found a lot of the projects with dozens
of stars but still lack sufficient test coverage. In addition, despite our best efforts to collect
projects with adequate Maven test suites, many of them even failed at the compilation stage.
For these projects, we still analyzed them and all the execution paths before the error were
correctly traced and extracted. This limitation may affect the completeness of our dynamic
analysis and potentially impact the accuracy of the resulting merged call graphs. However,
these challenges do not diminish the idea of using test suites that are from public projects. It
emphasizes the need for further research and improved practices in test suite selection and
extraction.

4.2 Call graph construction

RQ1: What insights can be gained into dependency usage patterns and software behavior
by combining static and dynamic analysis techniques on existing GitHub projects,
focusing on Maven test suite execution for dynamic analysis?

In our study, we employed Neo4j, a popular graph database, as a tool to visualize our call
graph. Neo4j successfully gives us a reliable way to show the intricate connections between
representation techniques and query methods. Figure provides an illustration of this
visualization, with a cluster from the commons-io project that centers on the method “copy-
Large”. In this visual representation, the red nodes are the methods from the commons-io
project, while the other yellow nodes are from external packages. The orange edges desig-
nate static edges as well as "both” edges (edges detected in both static and dynamic analy-
ses), while blue edges are exclusively identified using dynamic analysis. The names of the
methods are reflected in the node labels. Each node has all the properties we mentioned in
Chapter 3, we only used the method name as a label of demonstration. The cluster under
observation exhibits a high level of coverage, which is a property typically seen in object-
oriented programming. The complicated linkages seen in the call graph can be intuitively
understood and further interpreted with the help of this visualization technique. It’s impor-
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Figure 4.1: Visualization example in Neo4j

tant to underline that although the volume of dynamic edges in this particular cluster seems
high, it doesn’t reflect the overall composition of the entire call graph. Dynamic edges make
up a considerably lower portion of the call graph overall when seen in a larger context. This
distinction serves as the foundation for the function of dynamic analysis within our method-
ology, which enhances static analysis rather than substituting it. Therefore, despite the fact
that dynamic analysis can catch real-time behavior and relations that static analysis misses,
the latter remains a crucial cornerstone of call graph building due to its complete and thor-
ough nature.

Figure highlights the relative contribution of static and dynamic analysis in call
graph construction. Static and dynamic edges represent the edges exclusively found in
static and dynamic analysis, while ’both’ edges are found in both of the analyses. Among
the analyzed projects, we noticed that static analysis contributed over 95% edges in the
combined call graph. While the remaining 4% is contributed by the dynamic analysis.

Figure[d.3|represents the distribution of edges detected by both static and dynamic anal-
ysis. The area denoted by 46% corresponds to the edges that were detected solely through
static analysis. The 4% region represents the edges that were exclusively detected through
dynamic analysis. The overlapping section, representing 49% of the total, indicates the
edges that were detected by both static and dynamic analysis. This shows that while static
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Figure 4.2: Edge type distribution in combined call graphs

analysis is capable of identifying a significant portion of the edges, dynamic analysis can
detect additional unique edges that static analysis misses, even though the quantity might
not be as substantial. Furthermore, nearly half of the edges are common to both analysis
methods, highlighting the complementary nature of static and dynamic analysis.

Static analysis is the core of call graph construction and dynamic analysis act as a sup-
plement. We also discovered that test coverage affects the effectiveness of dynamic analysis
significantly. Projects with higher test coverage tend to have a higher percentage of dynamic
contribution. In Table .1 we presented the test coverage of several projects. Combined
with Figure we can clearly discern the impact of test coverage on dynamic analysis.
Projects with higher test coverage tend to contribute more dynamic edges in the call graph,
suggesting a direct correlation between the comprehensiveness of test coverage and the ef-
fectiveness of dynamic analysis.

We also looked into the Maven projects in the dataset we collected. A notable observa-
tion from our analysis is the origin of the dynamic edges. A significant majority, precisely
80%, of these dynamic edges are derived from the official repositories of the dependencies.
In contrast, client projects using these dependencies contribute only 20% of useful informa-
tion. This distribution highlights the importance of considering official repositories in our
analysis for a comprehensive understanding of the dependencies and their behaviors.
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Table 4.1: Test coverage of multiple projects

Project Name Test Coverage

plexus_utils 43%
xstream 75%
gson 83%
jsoup 84%
commons-cli 96%
commons-text 98%
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4.3 Vulnerability detection

RQ2: How does the inclusion of dynamic analysis, supplemented by public test suites,
enhance the detection of vulnerabilities compared to static analysis alone? Does the
combination of static and dynamic analysis offer significant advantages in vulnerability
detection and if so, under what circumstances?

In our study, we implemented a propagation method that plays a key role in our vul-
nerability detection process. This method was utilized within the constructed call graphs.
The implementation of this method resulted in an increase in detected vulnerabilities. On
average, we were able to identify an additional 5% of vulnerabilities across the analyzed
projects. This increase, though might seem modest, in fact, constitutes a significant en-
hancement in the overall vulnerability detection rate.

Through dynamic analysis, we were able to unearth several vulnerabilities. As demon-
strated in Listing .1} we identified several observations regarding polymorphism during
dynamic analysis. Specifically, we found that the ’copy’ function initiates a call to the 'read’
method. This sequence reflects a clear instance of polymorphism. The ’copy’ method di-
rectly invokes a vulnerable method, consequently impacting all methods found along the
execution path, which was not detected in static analysis.

public static void copy (final Reader input, £final Writer
output, final int bufferSize) throws IOException {
final char|[] buffer = new char[bufferSize];
int n = 0;
while (0 <= (n = input.read(buffer))) {
output.write (buffer, 0, n);
1
output.flush () ;

Listing 4.1: Example of polymorphism detected by dynamic analysis

We also found some instances where certain lambda expressions remained undetected
during static analysis, thereby leading to undetected vulnerabilities. For instance, as illus-
trated in Listing .2} the “sort” function calls the *compare’ function, which encounters a
vulnerability during the static initialization of the class. The presence of such scenarios
reinforces the value of dynamic analysis in complementing static methods for a more com-
prehensive vulnerability detection process.

In our research, we have also examined the evolution of vulnerabilities across different
versions of a software package. Figure {.4] shows an example of this analysis using the
xstream package. The bigger nodes represent vulnerable methods discovered in the older
version, while the smaller nodes represent the corresponding methods in the newer version.
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public File[] sort (final File... files) {
if (files != null) {
Arrays.sort (files, this);
}

return files;

@Override
public int compare (final File filel, final File file2) {

final String suffixl = FilenameUtils.getExtension (
filel.getName ());
final String suffix2 = FilenameUtils.getExtension (

file2.getName ());
return caseSensitivity.checkCompareTo (suffixl,
suffix2);

Listing 4.2: Example of Lambda expression that leads to vulnerability

Our analysis showed that the vulnerabilities found in the older release had been successfully
addressed and fixed in the newer release. Interestingly, we also discovered the emergence
of new vulnerabilities in the updated version, in addition to some persistent vulnerabilities
that remained unresolved. We believe the call graph constructed using our approach serves
as a practical tool for the developers to have a better understanding of the evolution of
vulnerabilities.

4.4 Version analysis

RQ3: How does the merging of call graphs from different versions of software and the
subsequent optimization of these graphs affect the comprehensiveness and accuracy of the
call graph?

In our version analysis, we sought to combine the base version with another minor or
batch version sharing the same major version. The goal was to construct a compatible
merged call graph. In order to build a compatible merge call graph, we only included nodes
present in the base version so that the merged call graph guarantees its compatibility with the
base version. As a result, we discerned that the unified call graph contributes an additional
1-2% of edges as shown in Table [4.2]

Initially, we operated under the presumption that the static analysis is precise. But this
approach lead us to identify certain edges that, in theory, should not exist in the merged call
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Figure 4.4: Example of vulnerability changes

graphs. Predominantly, these edges corresponded to new implementations or modifications
present in the newer version but absent in the base version. In the context of our analysis,
these edges were considered extraneous and misleading.

To address this issue, we refined our approach to exclusively incorporate edges deemed
as compatible enhancements to our base version. We effectively pruned redundant edges
identified earlier. This refined process yielded a minor, but significant, increase in nodes,
in the range of 1-2%. Although the exact increase varied among projects. This refined
approach allows us to provide more accurate and version-specific insights, focusing on the
actual evolution of the software and enhancing the overall reliability of our study.

Table 4.2: Percentage of extra information found in version analysis

Project name compatible merge dynamic merge
commons-compress 1.88% 1.15%
commons-text 1.54% 0.72%
commons-io 2.80% 1.49%
xstream 2.31% 0.89%

1.93% 0.60%

plexus-utils

In Table 4.2] we noticed an interesting pattern that mirrors the one found in our first
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research question. Particularly, for projects that make extensive use of dynamic features
or information inaccessible during the static analysis, the addition of dynamic information
clearly helps to complement and extend the completeness of the static analysis.
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Chapter 5

Discussion and Future Work

In this chapter, we reflect upon the key findings of our research, discuss their implications,
and propose directions for future research. We address the strengths and limitations of
our method and also identify several challenging questions that emerged during this study,
which we believe warrant further exploration in future work.

In this work, we demonstrate that leveraging the test suites from public GitHub projects
for call graph construction and analysis is a powerful approach to understanding the intricate
relationships between methods or functions. This methodology not only allows us to explore
real-world projects but also to identify trends and patterns that may not be apparent in
isolated or controlled environments.

Static call graph pruning We found that the combination of static and dynamic analysis
resulted in a marginal increase in the number of edges in the call graph compared to using
static analysis alone. This increase fully depends on the amount of information the dynamic
analysis provides. While not significant, it has the potential to provide important insights
missed by relying solely on static analysis, reflecting the complementary role that dynamic
analysis can play in generating more comprehensive call graphs. We observed that dynamic
analysis contributes to less than 5% of the new edges in the constructed call graph, sug-
gesting that static analysis constitutes the core of the evaluation. It is worth noting that in
cases where the test coverage is high (up to 95%), dynamic analysis can find more than 80%
of the edges. However, in most cases, dynamic analysis accounts for less than 50% of the
edges in the complete call graph. Despite the lack of dependence on perfect test coverage
in our study, the observed correlation between edge distribution and test coverage suggests
that higher test coverage leads to a more comprehensive dynamic analysis.

Although it is safe to say static analysis is the core of call graph construction, the conser-
vative nature still makes it prone to redundancy, and dynamic analysis may be able to help
with it. For instance, let’s consider projects with high test coverage, such as commons-text,
which has an impressive 99% test coverage. In such cases, it is theoretically expected that
dynamic analysis would identify nearly all edges in the call graph. However, our findings
reveal that dynamic analysis only identified about 70% of the total edges. This shortfall can
be attributed to the over-approximation tendency of static analysis, which often introduces
false-positive edges that are never invoked during actual execution. These undiscovered
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static edges may be viewed as redundant in the context of great test coverage, hiding the
true dependencies inside the software system. These findings lead us to the conclusion that
a trimming technique could significantly aid static analysis in future studies. The overall
analysis process would be made more effective and efficient by essentially getting rid of
these extraneous edges. This would result in a call graph representation that is more precise
[38].

Test coverage It is important to note that dynamic analysis is highly dependent on test
suites, which are often difficult to collect and resource-intensive to run. Therefore, given
the test coverage and efficiency issues, dynamic analysis is not a substitute for static analysis
in most projects. Interestingly, the value of dynamic analysis varies from project to project.
For projects that are I0-intensive or make extensive use of polymorphic and Java dynamic
features, dynamic analysis provides a great deal of additional information. In some cases
even more than 10% of extra edges. We conclude that the combined use of dynamic and
static analysis techniques proves to be especially beneficial when examining these projects.
This could potentially aid developers and project maintainers in making informed decisions,
such as choosing suitable APIs or predicting possible software maintenance issues.

We went in-depth on the datasets and related test suites used in our research in Chapter
4. We discovered that more than 40% of the projects we gathered had dataset problems.
These included test suites not existing at all, compilation errors, and runtime errors. These
problems not only pose difficulties for our research but also highlight a more significant
issue within the open-source community. Studies like ours, which rely on these resources
for dynamic analysis, may experience significant differences in results depending on the
standard and accessibility of test suites. Despite these difficulties, our approach and results
offer insightful information about the potential of combining static and dynamic analyses
using open-source test suites, laying the groundwork for further study. The future study
should highlight the significance of maintaining thorough, high-quality test suites and il-
lustrates the potential difficulties researchers may encounter when utilizing open-source
projects for related research. Our analysis of the test suites revealed that more than 80%
dynamic edges are detected in the test suite of the project’s official repository due to their
higher test coverage. At the same time, the contribution from client projects is dispropor-
tionate to the resource and time needed to gather them from public sources. Therefore, we
conclude that if dynamic analysis is to be implemented, extracting information from official
repositories will be sufficient and more efficient in terms of time consumption. However, a
substantial number of dependencies that are either not open source or lack comprehensive
test suites present challenges to this approach. These dependencies, although crucial for
many projects, remain under-explored due to their limited accessibility or the absence of
test suites. Consequently, this results in a less comprehensive call graph and may poten-
tially omit significant relationships or vulnerabilities. A plausible direction for future work
would be to diversify the sources of test suites and invest in innovative techniques to opti-
mize test coverage, we could further enhance the robustness and comprehensiveness of our
call graph.
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call graph storage While our research establishes the validity of combining static and dy-
namic analysis, our investigation primarily pertains to the call graphs of individual projects
and the discoverable entry and exit edges linking other projects. These edges reflect how
other projects invoke methods within the project under study and how this project makes
calls to external projects. We refrained from unifying all related graphs since it would ne-
cessitate altering the graph storage methodology and potentially require specialized storage
for inbound and outbound edges. To achieve this integration, a plausible strategy involves
the following steps: first, examine the dependencies of the project in question and verify
if the dependent libraries have been analyzed previously. If these libraries are yet to be
analyzed, they should undergo a comparable analysis and call graph construction process.
The resulting information would then be saved to the graph database for future reference.
If these libraries have been analyzed before, their call graphs would be retrieved directly
from the database and integrated into the call graph of the current project. In the project’s
call graph, the connections between the project and its dependencies are independently ex-
tracted into a different database. A partial graph directly connected to the project can be
gathered using these nodes from the dependencies. Propagation methods such as Breadth-
First Search (BFS) or Depth-First Search (DFS) can be employed to extract relevant nodes
and edges from the dependency call graphs, which can then be merged into the resulting
call graph. The integrated call graph provides a more holistic view of the project and its
dependencies. In essence, this proposed methodology facilitates the reuse of project analy-
sis results, thereby enhancing project analysis efficiency and enabling more comprehensive
and detailed analysis in future research endeavors.

Vulnerability detection For further validation of the combined call graph using our ap-
proach, we chose vulnerability detection as a practical use case. In our vulnerability detec-
tion procedure, we found that the undetected method-level vulnerabilities in the static anal-
ysis came mainly from the methods using Java dynamic features, polymorphic and lambda
expressions. These invocation paths are not discovered by the static analysis due to their
conservative nature. It also could be our static analysis tools have their own configuration
rules and limitations. We found that the increased percentage of detected vulnerabilities
correlates well with the additional information that was discussed earlier in the paper. In
other words, the additional vulnerabilities discovered are often associated with the extra
edges retrieved through our analysis approach. This finding indirectly accentuates the im-
portance of leveraging supplementary information from dynamic analysis in improving the
comprehensiveness and accuracy of vulnerability detection. It emphasizes the value of inte-
grating static and dynamic analysis and exploiting available test suites for an enriched and
more accurate call graph. However, our vulnerability detection approach has its limitations.
The FASTEN vulnerability detection failed to map a lot of the method-level vulnerabili-
ties because the NVD description was too general. For instance, a vulnerability related to
handling input could affect multiple methods while FASTEN failed to identify any vulnera-
ble methods. This is very common in SQL injection vulnerabilities. In future work, if there
are more accurate and comprehensive method-level vulnerability mapping tools, developers
may be able to find more vulnerabilities using this approach.
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Semantic versioning For the third research question, despite the low test coverage, differ-
ent versions in large projects still provide a potential opportunity to discover more valuable
information. In this study, we used the concept of semantic versioning. Combining minor
and patch versions was logical as changes between them are very small. The test suites are
similar so we are likely to find possible unseen edges in the base version. However, due
to their similarity, we did not further extract much useful information from these versions.
As we observed a similar trend in which the IO-intensive projects or projects use dynamic
features as in research question one. We could further validate the conclusion we derived
from the combination of static and dynamic analysis that dynamic analysis provides a small
amount of extra information and the benefits from this analysis is proportionate to the in-
formation gain. This highlights the indispensable role of dynamic analysis, even if it only
complements static analysis, in providing a more comprehensive picture of the software.

Future research could explore the opportunities of extracting useful edges by combining
test suites from different major versions. This could be an interesting direction, considering
that major versions typically involve substantial changes, and thus could potentially provide
more informative edges. However, it is not clear whether we could further improve the
test coverage using information from other major versions. The changes between major
versions are not negligible. As we are searching for the same methods in the base version,
the methods in other major versions could have been removed, their name could have been
changed to an unrecognizable state. It is critical to find a solution to maintain rigorous edge
validation to ensure the relevancy and accuracy of the additional edges introduced into the
call graph.

5.1 Threats to Validity

Despite being thorough and using a solid methodology, our research could still be invali-
dated. These threats can be divided into several categories, such as tool-related restrictions,
dataset representativeness, and approach-related presumptions. In our research, the static
and dynamic analysis tools used have inherent limitations. Even though static analysis is
thorough, the production of false positives occasionally causes an overestimation of the call
graph. On the other hand, the standard and breadth of the test cases used during execution
are dynamic analysis’s natural limitations. The resulting dynamic call graph may not be a
complete representation if these test cases are not sufficiently exhaustive or do not explore
all potential code execution paths, which could affect the accuracy of our findings.

The validity may also be threatened by the dataset’s representativeness. For our static
analysis, due to time and resource limits, we only chose JAR files that are smaller than 10
megabytes as our analysis sample. The generalizability of our findings may be constrained
if these projects do not accurately reflect the wide range of applications and complexity
levels present in actual software systems. As a result, it is unclear to what extent all Java
projects, particularly those with higher degrees of complexity or those created outside the
Maven ecosystem, can be generalized to include our findings.

Thirdly, the thoroughness of the test suites used has a significant impact on how well our
dynamic analysis performs. We anticipate finding the majority of the edges using dynamic
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analysis with high test coverage. However, incomplete test suites in many projects increase
the risk of overlooking certain dependencies and certain code paths. In our research, the
balance and comparative analysis of static and dynamic analyses may be compromised as a
result of underestimating the contribution of dynamic analysis.

Finally, we chose to exclude some logging and utility libraries from the analysis because
they are stable and extensively used in the Java ecosystem. This could also be viewed as
a limitation. This choice might omit potential security flaws in these libraries and their
implications for the entire software system, such as the famous Log4J vulnerability found
in 2021 which affected countless number of projects depending on it.

We think it’s critical to consider these potential risks when interpreting our findings.
Each of these threats represents a potential area for methodological improvement and might
be the subject of future research.
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Chapter 6

Summary

The representation of method relationships within software projects and the relationships
between dependencies can be done with the help of call graphs. Although static analysis
is frequently used to build call graphs, it has drawbacks, such as a poor ability to handle
dynamic features and lambda expressions. In this study, we introduced an approach for
constructing dynamic call graphs using test suites from open-source Java Maven projects
and merging them with static call graphs. We investigated the effectiveness of the merged
call graph in revealing additional edges. To generate static call graphs, we used OPAL and
Soot. We used Java agents to track the invocation edges for dynamic analysis. After merg-
ing call graphs from both analyses, a merging process along with a filtering mechanism was
conducted to get rid of duplicates. We performed a vulnerability detection analysis to evalu-
ate the results, and a version analysis to look into the possibility of expanding our approach
by merging multiple versions. According to our findings, the merged call graph offers a
slight edge increase over static analysis alone. The majority of the edge information came
from the test suites in the official repository of the projects. Additionally, we found a similar
pattern in vulnerability identification, which supports the consistency of our methodology.
Combining several minor/patch versions of a project is an effective strategy for increasing
test coverage. In a word, our study emphasizes the importance of using test suites from
open-source projects to construct more detailed call graphs.
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Appendix A

Glossary

In this appendix, we give an overview of frequently used terms and abbreviations.

CG: Call graph.

JDK: Java Development Kit.

JVM: Java virtual machine.

API: Application programming interface.

Combined call graph: Xall graph constructed by combining static and dynamic analysis.

Merged call graph: Call graph constructed by merging different versions of the same
project.

Neodj Bloom: Neo4j Bloom is a free visualization tool for the Neo4j graph database.
OPAL: OPAL is a static analysis platform for Java bytecode analysis such as call graphs.

POM file: A Project Object Model or POM file is where developers declare the usage of
dependencies with Maven.

Maven: Maven is a software package management tool.

dynamic feature: The features that allow the program to change at runtime.
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