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Spatial variability of soil properties is inherent in soil deposits, whether as a result of natural
geological processes or engineering construction. It is therefore important to account for soil
variability in geotechnical design in order to represent more realistically a soil’s in situ state. This
variability may be modelled as a random field, with a given probability density function and scale of
fluctuation. A more convenient way to deal with the uncertainty of a soil property due to spatial
variability, by constraining the generated random field at the locations of actual field measurements,
is presented in this article. Conditioning the random field at known locations is a powerful tool, not
only because it more accurately represents the observed variability on site, but also because it uses
the available field information more efficiently. In situ cone penetration test (CPT) data from a
particular test site are used to determine the input statistics for generating random fields, which are
later constrained (conditioned) at the locations of actual CPT measurements using the Kriging
interpolation method. The results from the conditional random fields are then analysed, to quantify
how the number of field measurements used influences the reduction of uncertainty. It is shown that
the spatial uncertainty relative to the original (unconditional) random field reduces with the number of
CPTs used in the conditioning.
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INTRODUCTION
According to Phoon & Kulhawy (1999), three primary
sources of uncertainty are typically observed in soils –
inherent variability, measurement error and transformation
of field (or laboratory measurements) into design soil
properties. Focusing on the first source of uncertainty, this
paper investigates a new strategy to represent the observed
spatial variability in soils more efficiently.

It is usual to model the heterogeneity of a soil property
(i.e. the inherent variability) as a random field, for example
using a generation method such as local average subdivision
(LAS), as proposed by Fenton & Vanmarcke (1990) and
used extensively in the literature (e.g. Griffiths & Fenton,
2001; Hicks & Spencer, 2010). For this purpose, the LAS
method requires a probability density function (pdf) with its
point statistics (mean m and standard deviation s) and the
scale of fluctuation (h). This statistical information of the
soil property can be estimated from available field data
obtained from testing at discrete locations across a site. An
improved strategy to deal with the uncertainty in modelling
the spatial variability of a soil property is to generate
random fields that are constrained (i.e. conditioned) at the
locations of known cone penetration test (CPT) measure-
ments using the Kriging interpolation method (Cressie,
1990). This is the strategy chosen here, because it minimises
the uncertainty of the soil domain studied while optimising
the use of available field information. The results from
conditional random fields are analysed here to evaluate and
quantify how the number of field measurements influences
the reduction of uncertainty. It is shown that uncertainty

reduces with increasing numbers of CPTs (used to constrain
the conditional random field) and this reduction depends on
the separation distance between CPTs.

STATISTICAL INTERPRETATION OF CPT TIP
RESISTANCES
Numerous artificial islands were constructed offshore
during the 1970s and 1980s in the Canadian Beaufort Sea
to provide temporary structures for oil and gas exploration.
One type of island used caisson technology to reduce the
required fill volumes (Hicks & Smith, 1988). It comprised
two main sand fills – a layer of sand (referred to as the
berm) on which the caisson was founded and the body of
the island structure (referred to as the core). Since no prior
design experience on these types of constructions was
available at the time, an extensive quality assurance and
monitoring programme was carried out during and after
island construction. This paper investigates in situ data
from one such island, Tarsiut P-45. In particular, seven
CPTs are used to statistically describe the tip resistances qc

of the sand fill core. The seven CPTs are aligned along the
same straight line and so they represent the soil variability
for a two-dimensional (2D) section. The obtained statistics
are then used to generate a 2D random field of qc, which is
later constrained at the CPT locations.

Point statistics and probability density function
The mean is taken to be the average value of tip resistances
measured over all CPT profiles (Table 1). Similarly, the
standard deviation was calculated for each profile to
quantify how the tip resistances deviate from the mean in
the dataset. The value in Table 1 is the average standard
deviation from the seven profiles. Table 1 also gives the
standard deviation of the cone tip resistance after removing
the underlying depth-dependent trend, sres.
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A normal distribution was used to represent the cone tip
resistances of the Tarsiut P-45 core. Figure 1 shows a
histogram based on all data from the seven CPTs, as well as
the fitted distribution function. Inspection of this figure
shows that, in this particular case, the variation of tip
resistance is reasonably well represented by a normal
distribution. Note that the data plotted in Fig. 1 have been
de-trended and normalised. That is, a linear depth trend of
qc was determined for each profile and subsequently
removed from the data. Then, in order to normalise the
data, the de-trended tip values were divided by the standard
deviation of this new set of data (sres). The data used to
plot the histogram in Fig. 1 were obtained by repeating this
process for each CPT profile.

Spatial statistics (scales of fluctuation)
The spatial nature of the variation is of particular
importance. The scale of fluctuation h defines the distance
over which properties are significantly correlated
(Vanmarcke, 1984) and may be used to generate numerical
predictions of spatial variability (Hicks & Onisiphorou,
2005). A second useful parameter is the degree of
anisotropy of the heterogeneity j, which relates the
horizontal and vertical scales of fluctuation (i.e. j 5 hh/
hv) (Hicks & Samy, 2002).

The scale of fluctuation is used in the correlation model
that is used to generate the random field and which
describes how the property value varies throughout the soil
domain. The strategy assumes that available data are
statistically homogeneous (or stationary), which requires

N a constant mean and a constant standard deviation
N a correlation function independent of the location and

dependent only on the separation distance (also referred
to as the lag distance).
For geotechnical engineering purposes, this is equivalent

to saying that the mean and standard deviation do not
spatially change and that the correlation between the values
at two locations is only a function of their separation
distance. A constant mean is obtained after de-trending the

data as described earlier. The conditions of a constant
standard deviation and a correlation function dependent
only on the lag distance are likely to be reached if the data
are extracted from the same soil layer, as approximately
uniform fluctuations are then likely to be observed (Phoon
& Kulhawy, 1999). This is a reasonable assumption for the
case studied here because all the core sand was dredged
from the same location and deposited in the same manner
(Wong, 2004).

Various methods are available to estimate the scale of
fluctuation. A simple and useful first approach is to
estimate the semi-variogram from available data and best
fit it with a theoretical semi-variogram (Baecher &
Christian, 2003; Dasaka & Zhang, 2012). This method
has been used here to estimate hh, albeit using only the
seven CPTs available for the 2D section investigated.
However, a more reliable estimate is possible for the
vertical scale of fluctuation hv, by using the method
proposed by Wickremesinghe & Campanella (1993). The
results obtained for the Tarsiut P-45 core are summarised
in Table 1 and are consistent with similar previous studies
(e.g. Wong, 2004; Hicks & Onisiphorou, 2005).

MODELLING SPATIAL VARIABILITY FOR THE TEST
SITE
Conditional random fields
An existing 2D LAS algorithm developed by Spencer
(2007) was used to generate the random fields in this study,
using the statistical inputs for the Tarsiut P-45 core
summarised in Table 1. The generated random fields were
then constrained by the measurements at the CPT locations
(see Fig. 2). The conditional approach follows previous
work by van den Eijnden & Hicks (2011) and is based on
the Kriging interpolation technique (Krige, 1951), which is
used extensively in geostatistics (Cressie, 1990; Wackernagel,
2003; Fenton & Griffiths, 2008) and is only briefly reviewed
here.

The aim of Kriging is to give a best estimate of a random
field between known data. In essence, the method estimates

Table 1. Cone tip resistance statistics

Property Range Mean

Mean, m: MPa 4?96–7?00 6?24
Standard deviation, s: MPa 2?22–4?09 2?90
Standard deviation, sres: MPa (trend removed) 1?28–2?52 1?88

Input variance, s2
res: MPa2 1?64–6?35 3?53

Vertical scale of fluctuationa, hv: m 0?37–0?91 0?63
Horizontal scale of fluctuationb, hh: m — 7?00
Degree of anisotropy of the heterogeneity, j — 11?00

ahv values estimated using the method of Wickremesinghe & Campanella (1993)
bhh values estimated from the covariance function (Baecher & Christian, 2003)
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Fig. 1. Histogram of normalised de-trended tip resistance
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Fig. 2. Typical realisation of a conditional random field for a 2D
section of the Tarsiut P-45 core
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Z at a desired location x0, from a linear combination of the
known values of Z at various observation points xa. The
Kriged interpolation of Z at x0 (i.e. Z*(x0)) can be written
as a linear combination of the known (conditioning) points
Z(xa) (for a 5 1, 2,…, n, with n being the number of
observations) as

Z�(x0)~
Xn

a~1

laZ(xa) with
Xn

a~1

la~1 (1)

where la are the n unknown weights, to be determined so as
to find the best estimate for Z at x0.

Although various forms of Kriging are available,
ordinary Kriging is adopted here. This method assumes
stationary data (as described above) and the estimation
variance s2

E at location x0 can be written, in terms of the
semi-variogram c(h), as (Wackernagel, 2003).

s2
E~{c(0){

Xn

a~1

Xn

b~1

lalbc(xa{xb)z2
Xn

a~1

lac(xa{x0)
(2)

By minimising this equation, the following system of
equations is obtained, from which the unknown weights
are estimated (Wackernagel, 2003)
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where lOK
a are the ordinary Kriging weights and mOK is the

Lagrange parameter. The left-hand side of the system
contains information between data points, whereas the
right-hand side contains information between each data
point and the estimation point. Combining equations (2)
and (3), it is possible to obtain the following expression for
the ordinary Kriging variance sOK

2 (Wackernagel, 2003)

s2
OK~mOK{c(0)z

Xn

a~1

lOK
a c(xa{x0) (4)

The conditioning of a random field comprises a process
that uses a generic (unconditional) random field with the
statistics calculated from the in situ data (see Table 1). This
generic random field is post-processed in order to condition
it at the known conditioning points. A description of the
method is given by Journel & Huijbregts (1978). Figure 2
shows a typical realisation of a conditional random field,
for the 2D section of the Tarsiut P-45 core for which the
statistics have been derived (Table 1). High and low
normalised tip resistances are denoted by light and dark
zones, respectively. The location of each CPT profile is also
included in the figure, along with the actual CPT profiles.

INVESTIGATION OF UNCERTAINTY IN SOIL
VARIABILITY
This section investigates how the conditioning algorithm
affects the reduction of spatial uncertainty in the random
field. To illustrate this aspect, Fig. 3 plots the estimation

variance, calculated using equation (4) and averaged over
the depth of the conditional field, with respect to horizontal
distance. At the top of the figure, the vertical dashed lines
represent the locations of the CPTs. Obviously, the highest
reduction of the variance is observed at the locations of the
conditioning CPTs, where the variance reaches a minimum
value very close to 0. Theoretically, a reduction to zero
variance would be reached were continuous measurements
available; however, here the vertical separation between
each CPT measurement is 2 cm.

The reduction in spatial uncertainty relative to the
original (unconditional) random field may be evaluated by
comparing the input variance s2

res and the estimation
(Kriging) variance, both as a function of position. A
suitable quantity that provides information on the global
uncertainty for the domain investigated is the integral of
the variance over the domain. In light of this, the area
under s2

res in Fig. 3 is referred to as the global spatial
uncertainty of the generic field (uoriginal) while the area
under the Kriging variance is referred to as the global
spatial uncertainty of the conditional random field (ucond).
To illustrate this, Table 2 shows the global spatial
uncertainty obtained when conditioning the original ran-
dom field with all seven CPTs for a single realisation. The
reduction in the global spatial uncertainty for six equiva-
lent calculations (i.e. obtained by constraining the random
field with one, two, three, four, five or six CPTs) is also
indicated. An overall reduction of the global spatial
uncertainty is clearly observed when increasing the number
of CPTs used in the conditioning algorithm, obtaining a
maximum reduction of 35?54% when using all seven CPTs
available from the site.
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Fig. 3. Estimation variance against horizontal distance for the
2D section of the Tarsiut P-45 core

Table 2. Reduction of global spatial uncertainty with increasing
number of CPTs (ucond refers to the total global uncertainty for
the conditional field; uoriginal corresponds to the global
uncertainty of the original field)

Number of CPTs

Global uncertainty reduction

1{
ucond

uoriginal

� �
100%

7 35?54
6 29?85
5 24?27
4 21?69
3 15?94
2 9?66
1 2?35
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It is perhaps more interesting to analyse the influence of
the horizontal distance between CPTs. For this purpose,
the results for conditioning the random field with only two
CPTs were considered for various separation distances.
Different choices are possible when looking at a pair of
CPTs, as seen in Fig. 2, resulting in different distances
between pairs of CPTs. Figure 4 illustrates the results
obtained by performing the same analysis described above

for nine different possible distances between CPTs. Table 3
highlights the important information for the discussion.

Inspection of Table 3 suggests that the greatest reduction
of global uncertainty in this second study (involving only
two CPTs) is reached when the horizontal distance between
the CPTs is somewhere between 27 and 45 m (Fig. 5).
Inspection of Fig. 4 suggests that an optimal spacing may
occur when, for a given CPT, the influence of the second
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CPT and the domain boundaries are at a minimum. This
approximately corresponds to a CPT spacing of one half
the total horizontal length, with each CPT being at a
distance of a quarter of the total length from the nearest
domain boundary.

CONCLUSIONS
The sand fill core of an artificial island was investigated
using CPT data. Cone tip resistances were statistically
interpreted in terms of the mean, standard deviation,
distribution function and scale of fluctuation. This
information was then used to generate a conditional
random field to characterise the heterogeneity of the sand
state. Conditioning the random field to known CPT data
provides a way to use the available in situ information
more efficiently, constraining the generated random field
by the actual measurements. The results obtained in this
study show that the spatial uncertainty reduces with
increasing numbers of CPTs used in the conditional
random field and it also depends on their mutual
separation distance. This study also shows that, with only

two CPTs, an optimal spacing will occur when they are as
far from each other and the edges of the domain as
possible, which corresponds to half of the total horizontal
length.
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WHAT DO YOU THINK?

To discuss this paper, please email up to 500 words to
the editor at journals@ice.org.uk. Your contribution will
be forwarded to the author(s) for a reply and, if
considered appropriate by the editorial panel, will be
published as a discussion.

Table 3. Influence of the horizontal distance between two CPTs
on global spatial uncertainty (ucond refers to the total global
uncertainty for the conditional field; uoriginal corresponds to the
global uncertainty of the original field)

Horizontal
distance: m

Global uncertainty reduction

1{
ucond

uoriginal

� �
100%

2 5?38
8 9?43
9 9?66
10 9?87
17 10?35
19 10?36
27 10?43
36 10?41
45 10?40
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Fig. 5. Reduction of global spatial uncertainty with horizontal
distance between two CPTs
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