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Hydrodynamic interactions change the buckling threshold
of parallel flexible sheets in shear flow

Hugo Perrin ,* Heng Li ,* and Lorenzo Botto†

Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering,
Delft University of Technology, Delft, The Netherlands

(Received 16 September 2022; accepted 29 November 2023; published 22 December 2023)

Buckling induced by viscous flow changes the shape of sheetlike nanomaterial particles
suspended in liquids. This instability at the particle scale affects collective behavior of
suspension flows and has many technological and biological implications. Here, we investi-
gated the effect of viscous hydrodynamic interactions on the morphology of flexible sheets.
By analyzing a model experiment using thin sheets suspended in a shear cell, we found that
a pair of sheets can bend for a shear rate ten times lower than the buckling threshold defined
for a single sheet. This effect is caused by a lateral hydrodynamic force that arises from
the disturbance flow field induced by the neighboring sheet. The lateral hydrodynamic
force removes the buckling instability but massively enhances the bending deformation.
For small separations between sheets, lubrication forces prevail and prevent deformation.
Those two opposing effects result in a nonmonotonic relation between distances and
shear rate for bending. Our study suggests that the morphology of sheetlike particles in
suspensions is not purely a material property but also depends on particle concentration
and microstructure.

DOI: 10.1103/PhysRevFluids.8.124103

I. INTRODUCTION

Soft biological or synthetic objects, such as cells, lipid bilayers, macromolecules, and nanoparti-
cles, can deform when suspended in sufficiently strong shear or extensional flows [1–4]. Predicting
flow-induced morphological changes is crucial in many fields, ranging from biophysics, where
swimming of micro-organisms relies on fluid-structure interactions [5], to soft matter physics,
where the rheological response of a particulate suspension is affected by the instantaneous particle
shape [6]. Model studies in canonical flows have provided profound physical insights of general
applicability. For example, the theoretical prediction of the coil-stretch transition of polymers in
simple shear flow [7,8] was instrumental in the development of rheological models for dilute
polymer solutions [9].

The recent need to develop liquid-based methods to process two-dimensional (2D) nanomaterials
[10–12] has triggered new interest on the effect of flow on the morphology of sheetlike materials
[3,10,11,13–17]. Two-dimensional materials have low bending modulii and therefore can undergo
transient or permanent buckling in flow [3]. Recent numerical studies [3,18] demonstrate that
purely mechanical models based on the competition between hydrodynamic compressive force and
elastic-bending forces can capture the change of morphology of isolated graphene sheet and 2D
polymers suspended in a simple shear flow. This agreement demonstrates that the morphology of a
single sheet is determined by a buckling instability whose threshold depends, for a given fluid shear
rate and viscosity, only on the bending modulus and length of the sheet. However, the extension of
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6 cm

FIG. 1. (a) Schematic of the shear cell. (b) Schematic of a buckled sheet viewed along the vorticity
direction of the shear flow and definition of the midpoint orientation angle θ and midpoint curvature κ̄ . The
compressional quadrant and the extensional quadrant are shown. In this schematic, the sheet is oriented in the
compressional quadrant (−π/2 < θ < 0).

this result to suspensions of many particles is an open question. Because of their relatively large
contact area, sheetlike particles are prone to stacking at small interparticle separations [11,19].
Hydrodynamic interactions between nearly parallel sheets are thus expected to alter the buckling
dynamics predicted for single sheets.

In this study we investigate parallel pairs of flexible sheets in a shear flow as a function of
their separation distance, and study how the buckling instability threshold depends on hydrody-
namic interactions. By performing model experiments, and interpreting the results with the help
of boundary-integral simulations and theoretical modeling, we demonstrate that hydrodynamic
interactions can trigger bending far below the buckling threshold of a single sheet. Hydrodynamic
interactions cannot therefore be considered second-order effects when predicting the morphology
of flexible sheets in flow. More specifically, our simulations and theoretical modeling show that the
dipolar disturbance flow field induced by each sheet gives rise to a lateral hydrodynamic force.
This lateral force modifies the mechanical response of the sheet pair to the compressive axial
hydrodynamic force experienced when the pair is oriented in the compressional quadrant of the
shear flow. However, for small separations, the lubrication forces overcome this dipolar contribution
and prevent bending. These two competing effects result in a nonmonotonic relation between
interparticle distance and critical shear rate for buckling. More generally, our results suggest that
the deformation of close sheets in a suspension may not only depend on the mechanical and
geometric properties of each sheet but also strongly on the pair-particle separation and thus on
the concentration.

II. EXPERIMENTS

Mylar sheets (Young’s modulus E � 4 GPa) of different thicknesses (h = 23, 50, and 125 µm),
width w = 1 cm, and length L ranging from 1 to 4 cm were used. Corresponding sheet bending
modulii are B � 5.0 × 10−6, 5.0 × 10−5, and 8.1 × 10−4 J [B = Eh3/12(1 − ν2) where ν � 0.5
is the Poisson’s ratio]. The shear cell is composed of a belt driven by two corotating cylinders of
diameter 6 cm—see Fig. 1(a). A motor, connected to one of the cylinders, imposes a controlled
shear rate in the range γ̇ = 0.4 − 10 s−1. The design of the shear cell is essentially identical to
the one described in Ref. [20], so we refer to that publication for construction details. The flow
cell allows to generate a flow that, in the central region away from the cylinders, is essentially a
two-dimensional simple shear flow (the flow profile was measured by particle image velocimetry
[21]). We considered single sheets, and pairs of parallel sheets with separation distance d varying
in the range d/L = 0.03–1. The sheets were placed in glycerol (the viscosity is η � 1 Pa s and the
density is ρ � 1.2 × 103 kg m−3). Mylar is slightly more dense than glycerol, and the difference
between their densities is 	ρ � 102kg m−3. The sedimentation time over one sheet length is of the
order of 103s, which is about 100γ̇ −1 for the lowest shear rate. Furthermore, the sedimentation
is in the vorticity direction so the motion of the sheet along the vertical direction does not
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affect the essentially two-dimensional dynamics of the sheets. The maximum Reynolds number
Re = ργ̇ L2/η is of order 1 at the maximum shear rate. The sheets were immersed in the liquid
when the belts were not in motion (zero flow velocity), and manipulated with tweezers so that their
normal was in the plane of the flow. When studying sheet pairs, the sheets were placed parallel to
each other and the separation distance d measured. After placing the sheets, the motor driving the
belts was switched on. Data from experiments in which the sheets were not sufficiently parallel were
discarded. The criterion for parallelism was that the initial angle between the two sheets must not be
greater than 2◦. During the dynamics, the normal vector remains in the flow-gradient plane and thus
the dynamics is two-dimensional. Optical measurements with a camera were carried out from the
top, i.e., along the vorticity direction of the undisturbed shear flow, with a time resolution of 0.1 s
and with a spatial resolution of 25 µm/pixel. Sheet profile detection is performed manually using
imageJ software. We extracted the midpoint orientation angle θ (t ) by fitting a line to each sheet’s
profile—see Fig. 1(b). The midpoint curvature κ̄ (t ) was obtained by fitting a parabola to each sheet’s
profile. We detected and analyzed sheet profiles at maximum temporal resolution only when there
was a significant temporal variation in angle or curvature. For this reason, the temporal density of
data points seen in the graphs is not uniform. As explained in Sec. II of the Supplemental Material
[21], for the few (about 1 in 100) images that were not captured due to a camera software problem,
we used linear interpolation to account for the small temporal gap between images. Even though the
maximum Re is of order 1, in analyzing the results we will consider a low Reynolds approximation
(Stokes flow). As it will appear later, this approximation gives a reasonable agreement between the
simulations and the experimental data.

III. SIMULATION METHOD

We simulated the fluid-structure interaction of thin sheets in Stokes flow by a regularized
Stokeslet approach [17,22–24]. The regularized Stokeslet method has been used to study a variety of
fluid-structure interaction problems at low Reynolds number, including cilia-driven transport [22],
flagella synchronization [23], and flow around double helices [24]. As in the experiment the flow and
the sheet dynamics are two-dimensional, we simplified the simulation choosing a two-dimensional
description. For a two-dimensional slender body, the approach consists in placing regularized force
singularities along the body’s centerline. The integral of the regularized force density over each
discretization line segment represents the force exerted by that segment of the slender body on the
fluid. Owing to the linearity of the Stokes equation, the velocity field u(x, t ) at position x and time
t obeys the following boundary integral equation [25]:

u(x, t ) = u∞(x) + 1

4πη

∫
C

Gε (x, x0) · f (x0, t )dl, (1)

where u∞ is the undisturbed background flow, η is the dynamic viscosity, f (x0, t ) is the force density
exerted on the fluid by the sheet element dl centered at x0 and Gε is a 2D regularized Stokeslet for
an unbounded flow [26]. Here, we neglected the double-layer potential because of the inextensibility
approximation for the sheets [17,24]. Since the sheets are inertia-less, the hydrodynamic force (−f )
is balanced by the local internal elastic force. Numerically, we compute the elastic force from the
derivative of the bending energy, as done in Refs. [17,23,27]. A very large value of the spring
stretching constant was used to model the inextensibility of the sheets. The maximum relative
elongation of the sheet during the dynamics was typically not larger than 10−3. The kinematics
of each sheet is governed by the no-slip boundary condition on the surface of the sheet. In the
slender body approximation, this condition is approximated by a no-slip condition at the centerline
of the sheet:

∂X(s, t )

∂t
= u(X(s, t )), (2)
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where X(s, t ) is the position vector along the centerline of the sheet at the curvilinear coordinate
s and time t . In this numerical method the sheet has zero thickness, therefore to observe tumbling
and bending, the sheet needs to be initialized at an orientation angle different from ±π/2 and the
initial shape set to a perturbation from a straight line [28]. Based on our previous work [17] we
chose for the initial orientation θ0 = −π/2 + π/10 and for the initial shape perturbation the first
buckling mode κ (s) = κ0 sin(sπ/L) with a small amplitude κ0 = 8 × 10−3/L, where κ (s) is the
local curvature at s. At each time step, the velocity field is calculated first by Eq. (1), then Eq. (2) is
advanced in time by a first-order explicit Euler scheme to obtain the sheet’s configuration at the new
time step. In the simulations, each sheet is discretized by 51 nodes and the time step is 10−5γ̇ −1.
Validations of the code on two cases for which asymptotic solutions are known can be found in our
previous article [17]. Those two cases are the relaxation of an initially deformed sheet in a quiescent
flow and the tumbling dynamics of a single sheet in a shear flow. During the simulation, at each time
step the midpoint curvature κ̄ (t ) = κ (s = L/2, t ) of a sheet is calculated by fitting a parabola to its
center.

IV. DYNAMICS OF A SINGLE SHEET

For an inextensible flexible sheet of length L, width w, and bending modulus B, the Euler buck-
ling force for axial compression scales proportionally to wB/L2 [29,30]. The viscous compressive
force in a shear flow in the Stokes limit scales as ηγ̇ Lw. Its dependence on the orientation angle
is −2 sin θ cos θ [3,31], which is maximum when the sheet is oriented along the compressional
axis θ = −π/4 of the shear flow [see Fig. 1(b)]. The buckling dynamics of a single flexible sheet
depends therefore on the elastoviscous number [3]

Ev = ηγ̇ L3

B
. (3)

This nondimensional number can be also interpreted as the ratio of two timescales: 1/γ̇ , the
characteristic timescale of the shear flow, and ηL3/B, the characteristic timescale of curvature
relaxation in a quiescent viscous liquid.

We determined the single-sheet buckling threshold by measuring experimentally the sheet curva-
ture κ̄ corresponding to different elastoviscous numbers, placing only one sheet in the shear cell. The
Mylar sheet is practically perfectly flat when not subject to external forces. The residual curvature
of each sheet, if at all present, is at most 0.02/L. For small elastoviscous numbers, the sheet
tumbles in the flow and remains straight. For relatively large elastoviscous numbers, for example
Ev � 21 [Fig. 2(a)], the sheet deforms during tumbling. The time dependence of the angle θ (t ) in
Fig. 2(a) is well described by Jeffery’s solution for rigid oblate ellipsoids [3,32,33]. This agreement
validates the Stokes flow assumption we made for the simulations. This agreement also shows
that the tumbling dynamics is not significantly affected by the sheets deformations for curvatures
smaller than 1/L. The time-dependent curvature is seen to grow when the sheet is oriented in the
compressional quadrant (−π/2 < θ < 0), which is the signature of the buckling instability. Then
the curvature decays to zero, over a timescale 1/γ̇ . It is interesting to note that the curvature decays
also in the compressional quadrant, likely because for (−π/4 < θ < 0), the hydrodynamic forces
are predominantly compressive but their magnitude is below the threshold for buckling. As θ (t )
spans the extensional quadrant (0 < θ < π/2), the curvature decays monotonically to zero. To
identify the single-sheet buckling threshold, we measured the maximum curvature κ̄max attained
during a tumbling cycle for different elastoviscous numbers [see Fig. 2(b)]. The results lie in two
regions separated by a critical elastoviscous number Ec

v � 11 ± 3 above which the sheet always
deforms with a curvature larger than the experimental resolution. The maximum curvature measured
in experiments seems to increase proportionally to E2

v [21]. Below this number the sheets curvature
is negligible. We defined the critical value of Ev as the threshold value above which sheets always
deform. The uncertainty in the determination of Ec

v was estimated from the dispersion of the
data points [21]. To corroborate this observation, we performed numerical simulations of single
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FIG. 2. (a) Normalized midpoint curvature κ̄L (crosses) and midpoint orientation angle θ (triangular
markers) versus rescaled time γ̇ t for Ev � 21. Time has been shifted so that γ̇ t = 0 corresponds to the
orientation θ = 0. The black line is Jeffery’s prediction θ (t ) = arctan(γ̇ t ) [32]. (b) Maximum normalized
curvature versus elastoviscous number for a single sheet. The dark and light grey regions delimit the rigid
limit and the buckling region, respectively. The measured critical elastoviscous number from this diagram is
Ec

v � 11. (c) Normalized curvature versus normalized time from dynamic simulations of a single sheet for
different elastoviscous numbers.

sheets for different elastoviscous numbers, see Fig. 2(c). For elastoviscous numbers larger than
Ev = 8, the curvature increases in time, signature of the growth of the buckling instability. For
elastoviscous numbers smaller than Ev = 8, the curvature decays. The simulations confirm that the
maximum curvature increases approximately as ∼E2

v for relatively small values of Ev [21]. The
agreement between the numerical prediction (�8) and the experimental value (� 11) is accept-
able considering the finite experimental resolution, which makes a very precise determination of
the buckling threshold difficult [31]. A mathematical model for the buckling of a thin flexible cir-
cular disk, based on applying Jeffery’s solution for the hydrodynamic stress on an oblate ellipsoids
to predict the compressive load on the disk, predicted a threshold values � 102 [34]. Recent sim-
ulations of an hexagonal flexible sheet modeled as a collection of beads interacting via long-range
hydrodynamic interactions—represented at the Rotne-Prager-Yamakawa level—suggested a critical
buckling threshold in simple shear flow of about 50 [3]. Since both the hydrodynamic compressive
force and the elastic response of the sheet depend on the shape, it is expected that the buckling
threshold for rectangular sheets is different than the ones for circular disks or hexagonal sheets,
so differences with published work are expected. The experimental determination of the buckling
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FIG. 3. Comparison between single sheet dynamics and dynamics of a pair of parallel sheets below the
single-sheet buckling threshold. (a) Experimental normalized curvature κ̄L versus normalized time γ̇ t for a
single sheet (in black) and a sheet pair separated by d/L � 0.2 (in red) for Ev � 3.6. (b) Images of a pair of
parallel sheets at two selected times. (c) Normalized curvature κ̄L versus normalized time γ̇ t for simulation of
a single sheet (in black) and a pair of sheets separated by d/L = 0.1 (in red) for Ev = 7. (d) Simulated shapes
of a pair of parallel sheets corresponding to the two selected times of panel (b).

threshold for single rectangular sheets, confirmed by our numerical simulation, is an important step
that provides a reference case for the study of pairs of parallel sheets.

V. DYNAMICS OF A PAIR OF PARALLEL SHEETS

A body formed by two sheets bonded together by adhesion or friction has a larger bending
rigidity than a single sheet [30,35,36]. Therefore, one may intuitively assume that two sheets
separated by a layer of viscous liquid would have a larger buckling threshold than a single sheet. In
contrast, we found that a pair of parallel sheets can deform for values of Ev below the single-sheet
threshold. For example, for Ev � 3.6 the single-sheet curvature is negligible (see Fig. 2(b) and
Fig. 3(a) [37]) while for the same parameter two sheets separated by d/L � 0.2 display a finite
curvature. The curvature of the two sheets increases with time, then decreases, changes sign and
finally decays to zero at the end of the tumbling motion [see Fig. 3(a)]. In the single-sheet case,
for Ev > Ec

v the curvature relaxes while the sheet is oriented in the extensional quadrant [see
Fig. 2(a)]. In contrast, pair of sheets deform while oriented in the extensional quadrant [Fig. 3(b)
right panel]. These two changes of behavior for a pair of sheets, bending below the buckling
threshold and bending in the extensional quadrant, are consequences of hydrodynamic interactions
between the sheets, as it will be demonstrated below. A further example illustrating how the
curvature changes with time for d/L � 0.04 and Ev � 12.8 is given in the Supplemental Material
[21].

To rationalize the experimental observations, we simulated the dynamics of two parallel flexible
sheets. For Ev = 7, the simulations indicate that the single sheet dynamics is stable: a small initial
curvature decreases in time—see the black line in Fig. 3(c). For a pair of parallel sheets separated
by a distance d = 0.1L and the same value Ev = 7, the computed curvature follows qualitatively
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FIG. 4. Hydrodynamic interactions from simulation. (a) Lateral force induced by the first sheet on the
second sheet in the case of two parallel sheets in a shear flow, oriented in the compressional quadrant (at θ0 =
−π/2 + π/10), for d/L = 1, 0.7, and 0.5. (b) Magnitude of the lateral force at the center of the sheet versus
the separation distance when the sheets are oriented in the compressional quadrant (at θ0 = −π/2 + π/10).
The line is the best fit y = Axα with A � 0.02 and α � −1.1. (c) Vector plot of the 2D disturbance flow. The
rectangle represents the sheet. (d) Magnitude of the disturbance flow velocity udist induced by a sheet in a 2D
compressional flow, versus the distance r measured orthogonally to the sheet.

the experimental dynamics, see the red line in Fig. 3(c): each sheet of the pair deforms, adopts a
concave shape in the compressional quadrant [Fig. 3(d), left panel], then the curvature changes
sign, the sheets adopt a convex shape in the extensional quadrant [Fig. 3(d), right panel] and
finally the deformation relaxes to zero. Because in the simulation only hydrodynamic interactions
are accounted for, the simulation results support the hydrodynamic origin of the two changes of
behavior discussed above in relation to experiments.

From the numerical simulations of two sheets we computed the lateral force on one of the two
sheets, when oriented in the compressional quadrant and for varying distance d/L; see Fig. 4(a).
The lateral force is nonuniform along the sheet, with a maximum value in the center of the
sheet and minima located at the two edges. The force distribution can be described, to a first
approximation, as a parabola. As d/L increases it is seen from Fig. 4(b) that the amplitude of
the parabolic profile decreases, following a power law with an exponent close to −1. To explain
and model this lateral force, we quantified the disturbance flow field set up by a sheet. Because
the sheet is inertia-less and the flow 2D, the disturbance flow field in the far field is that of a 2D
force dipole whose amplitude decreases as 1/r [38], where r is the distance from the geometric
center of the sheet. The flow disturbance induced by a body oriented along the compressional
or extensional axis of a shear flow can be approximated by placing an elongated particle in a
two-dimensional purely straining flow [39], with the long axis of the particle along the extensional
direction. We performed simulations with this simplified flow configuration. The computed vector
plots in Fig. 4(c) illustrate the dipolar characteristics of the flow, where it is seen that the spatial
variation of the flow corresponds to the parabolic distribution of the lateral force. The amplitude
of the disturbance flow field is reasonably well captured by a 1/r dependence for r as small as
0.5L [see Fig. 4(d)]. The sign of the background straining flow governs the sign of the dipole:
with our convention the sign is positive for compressional background flow and negative for
extensional background flow. Hence, the simulations show that the presence of one sheet generates
a parabolic lateral force on the other sheet; this lateral force originates from the disturbance dipole
flow field, its amplitude scales as L/d and its sign is governed by the background flow field,
being positive when the sheets are in the compressional quadrant and negative in the extensional
quadrant.
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The information above enables to construct a minimalistic model of flow-induced shape changes
that takes into account the dependence on sheet-to-sheet distance. From a balance of forces
and moments on an inextensible sheet, in the linear approximation the curvature κ obeys the
Euler-Bernoulli equation

Bw
d2κ

ds2
− Tt (s)κ (s) − fn(s) = 0, (4)

where s is the curvilinear coordinate, fn is the lateral hydrodynamic force per unit length, and Tt is
the axial tension [30,40]. The axial tension satisfies

dTt

ds
+ ft (s) = 0, (5)

where ft is the axial hydrodynamic force per unit length [30,40]. To model fn and ft we used
a quasistatic approximation that consists of two main assumptions. First, we neglected the effect
of the lateral hydrodynamic drag force caused by the time variation of the curvature. Second,
we assume that the curvature is only coupled to the orientation θ through the amplitude of ft ,
which we assume to be −2 sin θ cos θ . Considering the two extreme cases θ = −π/4 (orientation at
maximum compression) and θ = π/4 (orientation at maximum extension) and modeling the axial
force per unit length as an edge force arising from the straining component of the imposed shear
rate, we obtain Tt = −ηγ̇ Lw for θ = −π/4 and Tt = ηγ̇ Lw for θ = π/4. Fitting the results of our
numerical simulations, we modeled the lateral force per unit length arising from the dipolar flow
field as

fn(s) = ±w
L

d
ηγ̇ Kg(s), (6)

where the sign depends on whether the sheet is oriented along the compressional or the extensional
axis. The function g(s) = 1

12 − ( s
L − 1

2 )2 is a symmetric parabola of zero mean that reproduces the
spatial variation of the lateral force seen in Fig. 4(a) and K is a numerical prefactor. We estimated
K � 0.4 from the force amplitude computed at the orientation θ0, see Fig. 4(b) (by definition K =
A g(1/2)/2 sin θ0 cos θ0, where A is a fitting parameter). The moment balance then reads

d2κ̃

ds̃2
± Ev

(
κ̃ (s̃) − K

d̃
g(s̃)

)
= 0, (7)

where κ̃ = κL, s̃ = s/L, and d̃ = d/L. The “+” sign corresponds to the maximum compression
(θ = −π/4). The “−” sign corresponds to the maximum extension (θ = +π/4). At maximum
compression, for the single sheet case (1/d̃ → 0) this differential equation reduces to the classical
Euler-buckling equation for an edge axial load. If Ev = π2, then the Euler-buckling equation admits
two solutions verifying the free end boundary conditions κ̃ (0) = κ̃ (1) = 0. One solution is the trivial
solution κ̃ (s̃) = 0 and the other is the first buckling mode κ̃ (s̃) = κ̃0 sin(π s̃) for a purely axial load.
The value of the buckling threshold, here π2, corresponds to a uniform axial tension. However, it
can be shown that for a more realistic model of the axial hydrodynamic force ft (s), i.e., a linear
variation of ft (s) along the sheet [31] for which the axial tension is a parabola, the threshold is
reduced by only 15% with respect to π2. Therefore, the model of uniform axial tension captures the
essential behavior of buckling. The value Ec

v = 11 ± 3 we measured experimentally is comparable
with the prediction π2 of this minimal model. However, at the maximum compression, for finite d̃
Eq. (7) admits only one solution satisfying the boundary conditions for any given value of Ev:

κ̃ (s̃) = K

6d̃Ev

{[Ev (−6(s̃ − 1)s̃ − 1) + 12] + (Ev − 12) cos(
√

Ev s̃)

+ (Ev − 12) tan(
√

Ev/2) sin(
√

Ev s̃)}. (8)

The existence of a unique nonzero solution means that there is no buckling instability in the strict
sense. Hydrodynamic interactions remove the buckling instability and the curvature has a finite
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FIG. 5. Left panel: sketch of the hydrodynamic forces distribution in the single and two sheet cases.
The black line segments represent the sheets. The green arrows represent the compressional or extensional
tangential forces. The red arrows represent the dipolar lateral forces. For Ev < Ec

v the single sheet remains
straight while the pair of sheets adopts concave and convex shapes. Right panel: morphology diagram.
Maximum normalized curvature for different normalized separation distances d/L and elastoviscous numbers
Ev = ηγ̇ L3/B. The black squares correspond to deformation below the experimental resolution κr = 0.02/L,
the color circles to a finite curvature. The shadow regions are guides for the eye. The experimental data
for single sheets of Fig. 2(b) are reported in correspondence to d/L = ∞. The equation of the dashed line
is d/L = KEv/[κrL(Ec

v − Ev )], with Ec
v = 11, κrL = 0.02, and K = 0.02. The dashed line is plotted for

d/L > 0.05.

bending amplitude for all values of Ev . To summarize, for a single sheet in pure compression
there is a buckling instability while for a pair of sheets, there is no buckling instability but
bending deformations do occur. Taking the limits Ev → 0 and Ev − Ec

v → 0 with Ev < Ec
v , one

can derive from Eq. (8) the following approximation for the maximum curvature (at θ = −π/4) of
the midpoint of the sheet:

κ̄ ∼ + K
L

d

Ev

Ec
v − Ev

. (9)

Here we have indicated explicitly the sign of the lateral force, the “ + ” sign corresponding to the
compressional quadrant. In the extensional quadrant, by solving Eq. (7), one can show that the
curvature scales as κ̄ ∼ −KEv L/d . As illustrated in the sketch on the left panel of Fig. 5, the
change of sign of the dipole force as the sheet tumbles explains the change from concave to convex
morphologies seen in Fig. 3(b). Equation (7) is linear, so the scaling in L/d for the dipole amplitude
determines the dependence of the bending curvature with respect to d .

To evaluate the ability of the model above to capture essential features of the experimental data,
for each value of the parameters (Ev, d/L), we measured the maximum rescaled curvature κ̄maxL
during tumbling. For pair of sheets, the results indicate two regions of behavior (see right panel
Fig. 5). A first region where each sheet’s curvature is lower than the experimental resolution. The
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label “Straight” in the figure indicates this first region. And a second region where the sheets deform
significantly (indicated by the label “Bent” in the figure). Significant deformations are seen to occur
for Ev as small as 0.8–1, i.e., approximately ten times smaller than in the single-sheet case. Sheet
proximity has thus a strong effect on the morphology. Our simple model provides a criterion for
which the curvature becomes larger than the experimental resolution κr = 0.02/L. This criterion
defines two regions in the morphology diagram delimited by the dashed line of equation d/L =
KEv/[κrL(Ec

v − Ev )] in Fig. 5. The model predicts a much larger amplitude of deformation than
observed in the experiments, but a similar trend with respect to Ev . Indeed, the value of K used in
Fig. 5, K = 0.02, is smaller than the one obtained from fitting the lateral force profiles of Fig. 4(b),
K � 0.4. The overestimation of the amplitude of deformation in the model likely originates from
two aspects of the quasistatic approximation we used: first, we neglected the hydrodynamic drag
force in the normal direction to the sheets, which delays the curvature response time; second, we
assumed that the compressive force ft is constant while in the experiments the sheets tumbles and
thus are not submitted to a constant force. But it can be seen accounting for the difference in the
value of K that the model is in reasonably good agreements with experimental data for d/L � 0.05,
as the dashed line in this interval separates the circles from the squares symbols with the correct
scaling law in L/d . For d/L � 0.05, the sheets are observed to remain straight during the tumbling
motion for all Ev tested and the L/d prediction fails. The experimental data of Fig. 5 reveal thus
that the relation between the separation distance and the critical elastoviscous number to observe
significant bending is non monotonic. Further experimental and simulation results of κ̄maxL versus
d/L for fixed Ev are shown in the Supplemental Material to give further evidence that the relation is
nonmonotonic [21]. Lubrication forces between two plates separated by a distance d scale as 1/d3

for a normal displacement [41] and so are dominant at small distances over the dipolar forces. The
timescale for the growth of the deformation in the case of a steady compressive force and lubrication
scales as (L/d )3τ [41] where τ = ηL3/B is the elastoviscous timescale. This timescale is much
longer than the tumbling timescale 1/γ̇ for moderate Ev = γ̇ τ and small d/L. Thus, lubrication
forces constrain dynamically the deformation for very small distances and moderate Ev . The convex
shape is not observed in every experimental case, because for large distance between the sheets
(d/L > 0.5) the centers of mass of the sheets are convected by the flow and thus the sheets are
not always perfectly “in registry.” A plot showing the amplitude of the maximum curvature of the
convex shape from simulations can be found in the Supplemental Material, where experimental
videos of the pair of sheets in which the convex shape is observed are also provided [21].

VI. CONCLUSION

In this study we measured for the first time the effective buckling threshold, which we define
as the threshold to observe significant bending, for a pair of flexible sheets suspended in a viscous
simple shear flow as function of the sheet-sheet distance. In experiments, we obtain a value of the
critical elastoviscous number for buckling of a single rectangular sheet of Ec

v � 11. This number is
quite close to the one we obtain form 2D simulations, Ec

v � 8. Our main result is the demonstration
of a large reduction, by about a factor of ten, of the elastoviscous number for which a close pair of
parallel sheets bend significantly. This reduction is caused by the dipolar flow disturbance induced
by one sheet. This disturbance induces a lateral force on the second sheet. With a minimal model
we showed that this lateral force enhances the effect of the compressional force experienced by the
pair when oriented along the compressional axis of the shear flow. Furthermore, we showed that the
dipolar flow disturbance induces bending also when the pair is oriented in the extensional quadrant.
Experiments and simulations suggest that the amplitude of bending is inversely proportional to
the distance between the sheets. For small separations, the lubrication force prevails and limits
the dynamical deformation of the sheets. The competition between the dipolar enhancement and
lubrication leads to a nonmonotonic relation between distance and effective buckling threshold.

In the applied context of designing macroscopic materials, for instance nanocomposites, from
sheetlike nanoparticles by liquid-based methods (as ink printing, coating, polymer nano-composite
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processing and liquid-phase exfoliation [10,11]), our results suggest that at finite volume fraction
hydrodynamic interactions could amplify deformations induced by the shear flow. The effect could
alter thermal, optical or electrical properties that are dependent on the nanoparticle shape. In the
context of rheology, by focusing on hydrodynamic pair-interactions our results provide a first step
to understand the dynamics of flexible sheets in suspension. In particular, it has been evidenced
for suspensions of fibers that buckling produces normal stress differences [28]. Hence, our results
suggest that the microstructure of a suspension of sheetlike particles, including the statistics of pair-
particle orientation and interparticle distance, could have a profound influence on the rheology by
affecting the instantaneous particle shape. Therefore, the microstructure of suspensions of sheetlike
particles should be well-characterized in future rheological studies.
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