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Abstract

Access to clean and safe drinking water is essential for public health and sustainable devel-
opment. Drinking water treatment plants (DWTPs) ensure water quality, but fluctuating
raw water characteristics, particularly turbidity, challenge efficient coagulation and dosing
control. Traditional strategies like jar tests and feed-backward control are limited by delayed
results, making timely adjustments difficult. Short-term predictive tools based on machine
learning (ML) offer a solution by forecasting water quality variations and enabling proactive
control. This study develops several different ML models for short-term turbidity prediction
at the Lekkanaal DWTP, addressing three questions: (1) which parameters influence tur-
bidity, (2) which feature combinations yield optimal predictions, and (3) how far in advance
turbidity can be reliably forecasted.

Historical water quality and hydrological data were collected from Waternet, KNMI, and
Rijkswaterstaat, followed by preprocessing for reliable inputs. Candidate features were se-
lected using Spearman correlation and Self-Organizing Maps (SOMs). Three regression
models—AutoRegressive Integrated Moving Average (ARIMA), Random Forest (RF), and
Long Short-Term Memory (LSTM)—were trained for different horizons, and feature impor-
tance analyzed using greedy selection and visualization tools. An RF classifier evaluated the
feasibility of predicting peak turbidity events.

Results showed turbidity was driven by hydrological and physicochemical factors. Upstream
discharge and turbidity strongly correlated with local measurements, highlighting the Lek
River as a primary contributor, while EC and temperature showed negative correlations,
reflecting dilution and seasonal sediment mobilization. SOMs confirmed high turbidity co-
incides with northward flows from the Lek River into the Amsterdam-Rhine Canal.

Feature analysis indicated univariate models using recent sensor turbidity outperformed
multivariate models; additional features introduced noise. The last three hours of turbidity
dominated predictions across ARIMA, RF, and LSTM.

All models provided reliable short-term forecasts, with RF outperforming ARIMA and LSTM
for 3- and 6-hour horizons. Extreme peaks were systematically underestimated, and RF
classification detected fewer than 16% of peak events. Short-term forecasts up to six hours are
feasible, but high-magnitude events remain challenging, emphasizing the need for enhanced
monitoring and tailored strategies.

Keywords: Turbidity prediction, Drinking Water Treatment Plant, Short-term forecasting,
Machine learning, Random Forest, LSTM, ARIMA, Water quality monitoring
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1 Introduction

Background

Access to clean and safe drinking water is a fundamental necessity for human health and
well-being. Recognized as one of the 17 Sustainable Development Goals, clean water and
sanitation are critical not only for health but also for addressing poverty reduction, food
security, education, ecosystems, peace, and human rights. However, reliable access to clean
water is increasingly under pressure due to population growth and climate change, which
threaten water availability and quality in many regions. [1] DWTPs constitute critical com-
ponents within drinking water systems, ensuring that water provided to consumers is devoid
of harmful microorganisms and hazardous substances.

In Amsterdam and surrounding areas, more than 1,4 million customers use tap water from
the water-cycle company Waternet, with an average daily water consumption of 141 liter per
person in 2021 [2]. There are two sources of drinking water in Amsterdam. The main source
is from river Rhine, where water is pumped from the Lekkanaal near Nieuwegein. The other
source is from seepage water rising from the ground in the Bethunepolder. [3].

Problem description

In a DWTP, treatment usually starts with coagulation. Coagulation effectively promotes the
reduction of turbidity, heavy metals and pathogens. As a complex chemical process, the effi-
cacy of coagulation is influenced by many factors, such as raw water turbidity, temperature,
pH, mixing intensity and the dose of coagulant [4]. Achieving the optimal balance is chal-
lenging since there is no comprehensive or universally recognized mathematical description
of the process [5].

Traditionally, operators of DWTPs determine the correct coagulant dose using jar tests,
a method that simulates coagulation under different chemical conditions. However, these
tests are costly, time-consuming, and offer delayed results, making it difficult to respond
quickly to sudden water rapidly changes [6]. This delay hinders the timely implementation
of corrective measures, which are essential for maintaining the efficacy of the treatment
process and ensuring the safety of the drinking water supply.

Therefore, to cope with the fluctuating nature of influent water quality, more optimiza-
tion methods for dosage control based on online-measurable water quality parameters are
emerging [5]. These methods use physical sensors monitoring water quality parameters as
feedback to control the dosing. The three common approaches are Feed-forward control,
Feed-backward, and Feedforward-feedback control [4].

Feed-forward control continuously monitors raw water quality and respond to measured dis-
turbances by adjusting coagulant dosing accordingly. However, its success heavily depends
on the availability of robust models that establish the relationship between raw water charac-
teristics and the ideal coagulant dose. Without extensive and representative data collection,



this approach may struggle with accuracy, particularly during periods of high variability in
water quality [4].

Feed-backward control, in contrast, uses treated water quality (after coagulation and/or
whole treatment process) as the basis for dosing adjustments. While this approach provides
a direct connection to the desired water quality, it is limited by system delays, which prevent
real-time control. Such delays can lead to suboptimal dosing, including under-dosing or over-
dosing, especially during seasons when raw water quality changes rapidly [4].

Feedforward-feedback control combines the two strategies but still suffers from their limi-

tations, such as reliance on extensive data for calibration and the impact of system delays
[4].

To further address the difficulties posed by fluctuating water quality and system delay, pre-
dictive tools that provide short-term forecasts of water quality are recognized as promising
solutions. In particular, predicting water quality variations at the DWTP intake can serve as
an important input for feed-forward control models, enabling more proactive and adaptive co-
agulant dosing strategies. By anticipating changes before they affect treatment performance,
predictive models can provide DWTP operators with sufficient response time to prepare for
and mitigate potential issues, ensuring more efficient and reliable treatment processes [7].

Building on this need for predictive tools, ML has emerged as a powerful approach for
short-term water quality forecasting. Unlike traditional approaches, ML techniques harness
large datasets and computational power to model complex, non-linear relationships that
were once difficult to capture. Some ML architectures like LSTM networks have shown
particular promise in time series forecasting tasks, as they are explicitly designed to capture
temporal dependencies in sequential data [8]. In this context, developing an ML model
for the short-term prediction of turbidity is particularly valuable. Turbidity is a key water
quality parameter influencing the coagulation process, and sudden fluctuations can lead to
dosing inefficiencies, higher chemical consumption, or even risks to treated water quality. A
reliable turbidity forecasting model could therefore serve as an essential component of feed-
forward control in DWTP operations, enabling operators to make more timely and precise
dosing adjustments and ultimately improving treatment efficiency and reliability.

Research objectives and research questions

Although previous studies have explored predictive tools for water quality, most of them
have been conducted at the daily scale, which limits their usefulness for operational decision-
making in DWTPs where water quality can fluctuate within hours. As a result, there is still
limited understanding of how influent turbidity can be forecasted on the short-term (hourly)
scale, which is essential for timely coagulant dosing adjustments.

In addition, the Lekkanaal DWTP presents a particularly challenging case. The intake is
located at the junction between the Lek River and the Amsterdam-Rhine Canal, two water
bodies with distinctly different flow regimes. While the Rhine is dominated by natural river



discharge dynamics, the canal is primarily regulated by navigation demands and hydraulic
structures. The interaction of these contrasting flow patterns results in complex and highly
variable conditions at the DWTP intake, which complicates the prediction of turbidity levels.
This setting makes it especially relevant to examine which factors most strongly influence
turbidity variability at this location.

To address these gaps, this thesis aims to develop an ML model for the short-term predic-
tion of turbidity, a key water quality parameter influencing the coagulation process at the
Lekkanaal DWTP. By leveraging historical data and advanced ML techniques, the study
seeks to enhance turbidity forecasting accuracy and provide actionable insights for water

treatment optimization. To guide this investigation, the following research questions will be
addressed:

o What parameters influence turbidity levels at the Lekkanaal DWTP?
e Which combination of features yields the most effective turbidity predictions?

o How far in advance can turbidity levels be reliably predicted?






2 Literature review

2.1 Coagulation and turbidity

Coagulation is an essential process for the removal of suspended and colloidal material from
raw water. Figure 1 shows the main factors affecting the coagulation and flocculation pro-
cesses in water treatment.

— Type

Coagulant/

Flocculant

- Dosage

Mixing Speed

[

Performance of Mixing Process

Coagulation and
Flocculation
Processes

—] {  Mixing Time

—  Temperature
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Suspended Particles

‘|  Zeta Potential

Figure 1: Factors affecting coagulation and flocculation processes [9]

At Nieuwegein DWTP, ferric chloride has been chosen as the coagulant. Mixing is criti-
cal in coagulation (and flocculation), with fast mixing aiding coagulant-particle interaction
and microfloc formation, and slow mixing supporting large floc aggregation. Improper mix-
ing speeds or durations can reduce efficiency or cause floc breakdown. These processes are
highly pH-dependent, as pH influences the formation of polymeric species from metal-based
coagulants. Temperature changes also impact aggregation, while the concentration and char-
acteristics of suspended particles, including zeta potential, play significant roles. Coagulants
generally perform better in high-turbidity water, but extreme turbidity levels may require
coagulant aids for effective treatment. An optimum dosage of coagulants/flocculants can be
obtained by plotting the measured turbidity (or any other pollutant parameter) versus the
applied dosage (Figure 2).

There is a sensor continuously monitoring four parameters of the raw water from Lekkanaal,
including water temperature, discharge, pH and turbidity. Discharge is monitored to ensure
sufficient drinking water supply and the other three water quality parameters are closely
relevant for coagulation. In which, turbidity is an important indicator of the physical and
chemical characteristics of aquatic systems.

Turbidity is a physical property of fluids, reflecting the presence of suspended particles



Turbidity

O @
(©)
OO,
" -Sl-zlai-]i;u—li;m- T [ )-c.\-la;h-ili-/a-ll;n;l ---------- T VR;‘?{&liﬂ‘li;ﬂ-li;)I; o
Lo
%o © o8 O
A Joo®

Optimum

Coagulant / Flocculant Dosage
Dosage

Figure 2: Phases through the coagulation—flocculation process [9]

in water [10]. The typical unites for turbidity are nephelometric turbidity unit (NTU),
formazine turbidity unit (FTU), and formazine attenuation unit (FAU). Essentially, these
are the same in value, but different methods are used to determine these values. In this work,
turbidity is determined using a turbidimeter in FTU, which works by shining infrared light
through a water sample and measuring the amount of light scattered by the particles at a
90-degree angle. The higher the degree of light scattering, the higher the turbidity and FTU
value [10]. According to the World Health Organization’s standards, the turbidity of drinking
water should be below 1 FTU before disinfection, otherwise, the effectiveness of chlorination
significantly decreases. In areas where fewer resources are available, the turbidity should be

below 5 FTU.

Coagulation can be described as a processing to remove turbidity, color and natural organic
matter from raw water [11]. Turbidity is considered to be as an indirect parameter in
determining the removal efficiency of coagulation [11, 12]. Also, turbidity can be used to
determine the optimal dosage as shown in Figure 2.

The sources of turbidity are diverse, ranging from natural processes such as erosion, par-
ticle transport and sedimentation to anthropogenic activities like urban runoff, industrial
discharges, pesticides and microplastics [11]. Turbidity in rivers is primarily influenced by
environmental factors such as precipitation, discharge, temperature, and upstream turbidity
levels.



Many studies have shown correlation between turbidity and precipitation. Theoretically,
rainfall intensity may directly induce erosion resulting in high turbidity runoff flowing into
rivers.[13].

Similarly, river discharge directly affects sediment transport, with high discharge events re-
suspending particles and increasing turbidity levels [14]. Temperature impacts the physical
and chemical properties of water, influencing sediment settling rates and biological activity,
which can alter turbidity [15]. Lastly, upstream turbidity contributes to the downstream
conditions, as suspended particles and pollutants transported from upstream sources accu-
mulate and affect water quality further downstream. Monitoring these factors is essential for
understanding and managing turbidity in DWTP, ensuring effective coagulation and water
treatment.

Rainfall can increase turbidity by causing soil erosion and surface runoff. Intense rainfall
washes loose sediments, organic matter, and pollutants into rivers, leading to higher turbidity
levels [13]. During storms, the rapid influx of suspended particles can significantly reduce
water clarity [14].

Higher discharge rates, often due to heavy rainfall or snowmelt, increase the force of water
flow, which can resuspend settled sediments from the riverbed. This leads to elevated tur-
bidity levels, as more particles remain suspended in the water column [14]. Conversely, lower
discharge allows sediments to settle, reducing turbidity.

Water temperature influences the growth of algae and microbial activity, which can con-
tribute to turbidity [15]. Some studies also report that temperature may affect the photo-
electric components inside turbidity sensors, such as optical emitting and receiving electronic
components. As temperature increases, the sensor’s performance may be altered, potentially
leading to a decrease in measured turbidity [16].

Turbidity levels in a river are influenced by conditions upstream. If upstream sources con-
tribute large amounts of suspended particles—whether from natural sediment transport,
industrial discharges, or urban runoff—these particles will be carried downstream, maintain-
ing or increasing turbidity levels [13, 14].

2.2 Traditional water quality prediction strategies

Traditionally, water quality prediction is typically approached through two main strategies:
mechanistic models and data-driven models. While both strategies have been widely used,
they each have significant limitations that make them less suitable for addressing the com-
plexities of modern water quality management.

Mechanistic models are built on physical, chemical, and biological principles to simulate the
behavior of water bodies. These models solve differential equations to describe processes like
pollutant transport, chemical reactions, and biological activities. Examples of mechanistic
models include the QUAL2K model and the WASP (Water Quality Analysis Simulation



Program) [17, 18], both of which are used to simulate water quality dynamics in various
aquatic environments.

However, mechanistic models have several critical drawbacks:

o They are computationally expensive, especially when simulating large, complex wa-
ter systems, requiring substantial computational resources. WASP uses compartment
modeling approach and simulates spatial and temporal conservation of mass imple-
menting a finite-difference equation for each compartment or segment [17, 19].

o Detailed input data is often required. QUAL2K requires flow and concentrations for
headwater, discharges and withdrawals; reach segment lengths, elevations, hydraulic
geometry and weather data parameters. WASP requires simulation and output con-
trol, model segmentation, advective and dispersive transport, boundary concentrations,
point and diffuse source waste loads, initial concentrations and kinetic parameters,
constants and time functions [17, 18]. These may not always be readily available,
particularly in regions with limited monitoring infrastructure.

» These models are based on strict assumptions about the behavior of water systems (e.g.,
linear relationships and predefined processes), making them less effective in capturing
non-linear dynamics and uncertainties that are common in real-world water systems.
QUAL2K can only simulates the main stem of a river and does not simulate branches
of the river system [17, 18].

o Mechanistic models are often rigid and cannot easily incorporate new data or adjust
to unexpected changes in environmental conditions, making them less adaptable to
evolving water quality challenges. QUAL2K can only incorporate basic climate and
meteorological data and has limited dynamic simulation capabilities. [19, 20].

These limitations make mechanistic models less practical for use in environments where data
is limited, or the water quality dynamics are complex and non-linear.

Data-driven models, such as Multiple Linear Regression (MLR) and ARIMA, offer an alter-
native to mechanistic models [21]. These models predict water quality based on historical
data, without requiring detailed knowledge of the underlying physical processes. For in-
stance, MLR uses linear relationships between predictors (e.g., temperature, rainfall) and a
dependent variable (e.g., water quality parameters), while ARIMA models temporal depen-
dencies in time series data to forecast future values.

Despite their advantages, data-driven models also have notable limitations:
« MLR assumes linear relationships between variables, which may not capture complex,

non-linear interactions present in water quality data. This makes MLR unsuitable for
capturing more intricate dependencies [22].



» External factors (such as sudden changes in land use, pollutant discharge, or extreme
weather events) that affect water quality may not be captured in the historical data,
limiting the models’ ability to predict water quality under dynamic conditions.

The main drawbacks of traditional data-driven models lie in their inability to adapt to
new data quickly, their reliance on specific assumptions (like linearity), and their need for
substantial, high-quality datasets [23, 24].

2.3 Machine learning model

In recent years, the field of water quality prediction has seen significant advancements with
the application of ML models. Unlike traditional models, ML approaches are capable of
capturing complex patterns and relationships within large datasets without the need for
explicit physical modeling. ML models are particularly useful in addressing the limitations
of traditional methods, such as handling non-linear dynamics, adapting to new data, and
making predictions in data-scarce environments. Among the various ML models, Artificial
Neural Networks (ANNs) has emerged as powerful tools for water quality prediction [21].

ANNs

ANNSs are a class of ML models inspired by the structure and function of the human brain.
ANN was firstly introduced in the 1970s, but its importance wasn’t fully appreciated until
a famous paper by David Rumelhart, Geoffrey Hinton and Ronald Williams [25]. ANNs
consist of an input layer, hidden layers, and an output layer as shown in Figure 3 (a).
The interconnected nodes (neurons) in each layers can process input data and passing the
output to the next layer. These networks can learn complex, non-linear relationships between
input variables and output predictions by adjusting the weights of the connections through
training.

(a) Typical ANN (b) RNN (c) LSTM

s688

§666
5665

9996

input hidden output input hidden output
layer layer layer layer layer layer

hidden output
layer layer

X,
Q<
@- _:f
Q@

Figure 3: Typical Examples of ANN, RNN, and LSTM [26]
Red arrows: Hidden State. Green arrows: Forget Gate, Input Gate, and Output Gate

ANNSs are widely recognized due to their flexibility and ability to model complex patterns in



the data. From 2008, the use of the ANN technique has been booming in the field of water
quality prediction. ANNs have been used to predict various key water quality parameters
by many researchers. Most used target paramters are dissolved oxygen (DO), biological
dissolved oxygen (BOD), Chemical Oxygen Demand (COD), water temperature and pH [4,
8, 21].

However, while ANNs are effective at capturing non-linear relationships, they may struggle
to model temporal dependencies in time series data. Water quality parameters often exhibit
time-dependent behaviors, such as seasonal trends and periodic fluctuations, which are not
easily captured by standard feedforward ANN models. This limitation led to the development
of more specialized models, such as Recurrent Neural Networks (RNNs).

RNNs

Unlike traditional ANNs, RNNs are designed to handle sequential data, making them ideal
for time series forecasting tasks. RNNs have the unique ability to maintain a "memory" of
previous time steps through feedback connections between neurons. It takes the output of
the previous moment as the input of the next moment to affect the weights at the next
moment as shown in Figure 3 (b). This allows RNNs to model temporal dependencies and
predict future values based on past observations [24].

In the context of water quality prediction, RNNs have been applied to forecast time-dependent
water quality parameters by learning from past measurements and environmental factors.
These models are particularly useful for predicting changes in water quality over time, es-
pecially in cases where long-term dependencies exist, such as seasonal variations and trends
driven by climatic events.

However, traditional RNNs suffer from issues like vanishing gradients during training, which
can make it difficult for the network to learn long-term dependencies. To address this
limitation, the more advanced LSTM networks were introduced [27].

LSTM Networks

LSTM networks, a specialized type of RNN, are specifically designed to capture long-term
dependencies in sequential data. LSTMs address the vanishing gradient problem by using
a unique gating mechanism that regulates the flow of information through the network as
shown in Figure 3 (c) in green arrows. This enables LSTMs to maintain and update long-
term memory, making them highly effective for time series prediction tasks where long-term
relationships exist [24]. The relation between ANN, RNN and LSTM can be seen in Figure
3.

In water quality prediction, LSTMs have shown great promise in forecasting parameters
that exhibit long-term trends and periodic fluctuations, such as nutrient levels, turbidity,
and dissolved oxygen. LSTMs are particularly useful when dealing with time series data
that includes seasonal patterns, trends, and cyclical fluctuations that traditional methods,
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Figure 4: Typical examples of ANN RNN and LSTM [28]

like ARIMA or simple ANNs, may struggle to capture [24, 29].

The application of LSTMs in water quality prediction has been demonstrated in various
studies, where they have been used to predict parameters like pH, temperature, and chem-
ical oxygen demand (COD) by learning from historical time series data. LSTMs have the
advantage of being able to incorporate past water quality data, meteorological conditions,
and hydrological factors to generate accurate short- and long-term predictions [24, 29].

LSTMs have proven to be an effective tool in water quality prediction, offering superior
performance in modeling temporal dependencies and non-linear relationships compared to
traditional methods. Their ability to process sequential data makes them particularly suit-
able for applications in water systems where time-based patterns are crucial for accurate
forecasting.

2.4 Feature Selection Techniques

Feature selection plays a pivotal role in ML applications for water quality prediction. It
involves identifying the most relevant input variables that significantly influence the target
outputs while reducing redundancy and irrelevant information. The benefit of applying
feature selection techniques includes:

e Improved model accuracy: By removing irrelevant or redundant features, models are
less prone to overfitting and can generalize better to unseen data.
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o Increased computational efficiency: Reducing the feature set decreases training time
and resource requirements.

o Enhanced interpretability: Focusing on the most important features aids in under-
standing the relationships and dynamics within water systems.

Broadly, feature selection techniques can be categorized into three main approaches [30]:

1. Filter Methods: These methods evaluate the statistical properties of each feature
with respect to the target variable independently of the ML model. Examples include
techniques like correlation analysis, mutual information, and variance thresholding.
Filter methods are computationally efficient and are often used as a preprocessing
step.

2. Wrapper Methods: These methods involve training and evaluating an ML model
iteratively with different subsets of features to determine the combination that provides
the best performance. Techniques such as recursive feature elimination (RFE) and
forward or backward feature selection fall under this category. Although wrapper
methods provide tailored results, they are computationally intensive, especially for
large datasets.

3. Embedded Methods: These methods integrate feature selection directly into the ML
model training process. Regularization techniques, such as Lasso (L1 regularization)
and Elastic Net, are commonly used embedded methods that automatically penalize
irrelevant or redundant features.

In this research, two filter-based techniques were employed for feature selection: correlation
analysis and SOMs. These methods were selected for their complementary strengths in
detecting linear and non-linear relationships in multivariate water quality data.

Correlation analysis is a classical filter method that evaluates the strength and direction of
association between variables. There are three most commonly used correlation coefficients:

« Pearson correlation measures the strength of a linear relationship between two con-
tinuous variables. It assumes normally distributed data and is sensitive to outliers,
making it less suitable when the relationship is non-linear or the data is skewed.

e Spearman correlation is a rank-based method that assesses how well the relationship
between two variables can be described by a monotonic function. It does not require
the assumption of normality and is more robust to outliers and non-linear trends.

« Kendall’s Tau is also a rank-based measure but uses concordant and discordant pairs
to assess association. It is generally more conservative than Spearman and provides
better estimates for smaller datasets, though it is less commonly used due to higher
computational cost.
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In this study, Spearman correlation was chosen over other commonly used methods due to its
suitability for capturing monotonic but non-linear relationships, which are often observed in
environmental and hydrological datasets [31]. Features showing consistently low Spearman
correlation were eliminated early in the training data preparation process. This preliminary
step helped reduce dimensionality while preserving variables with strong predictive potential.

SOMs, first introduced by Kohonen [32], are a type of unsupervised artificial neural network
that project high-dimensional input data onto a lower-dimensional (typically 2D) grid while
preserving the topological relationships among the data points.

A SOM consists of two main layers:

o Input layer: Each input node corresponds to one feature or variable in the dataset
(e.g., turbidity, pH, discharge).

e Output layer (Kohonen map): A two-dimensional grid of neurons (also called
units), typically arranged in a rectangular or hexagonal layout. Each neuron is associ-
ated with a weight vector of the same dimension as the input data.

During training, the SOM algorithm organizes the neurons in the output grid such that
similar input patterns are mapped to nearby neurons, preserving the topological relationships
of the original data. The training process includes the following steps:

1. Initialization: Each neuron in the grid is initialized with a randomly generated weight
vector.

2. Input presentation: A data point (i.e., an input vector) is selected and presented to
the map.

3. Best Matching Unit (BMU) selection: The neuron whose weight vector is closest
to the input vector—usually based on Euclidean distance—is identified as the BMU.

4. Weight update: The BMU and its neighboring neurons are updated to make their
weights more similar to the input vector. The size of the neighborhood and the learning
rate decrease over time.

5. Iteration: Steps 2 to 4 are repeated for multiple epochs, allowing the neurons to
become specialized and organized based on the input data.

After training, similar inputs activate neurons located near each other on the map. This
self-organization results in a structured, low-dimensional representation of the original high-
dimensional data. The trained SOM can be visualized using different output maps that help

interpret the structure and relationships within the data:

o« Component planes: These visualizations show the distribution of each input variable

13



across the map. Each component plane corresponds to a single variable and is typically
color-coded (e.g., dark for low values, bright for high values). By comparing multiple
component planes, one can detect patterns, correlations, and variable groupings. For
example, if the regions of high turbidity and high discharge align spatially across
their respective component planes, it may indicate a strong relationship between those
variables.

o U-matrix (Unified Distance Matrix): The U-matrix displays the distance between
the weight vectors of neighboring neurons. Areas with small distances (lighter colors)
indicate clusters of similar inputs, while areas with large distances (darker colors)
mark boundaries between different clusters. This makes the U-matrix a powerful tool
for identifying natural groupings or cluster structures in the data.

Together, these visualization tools enable the user to explore complex datasets in an intuitive
way, discover patterns, identify redundant or highly correlated features, and gain a deeper
understanding of the data structure. SOMs are particularly effective for clustering, dimen-
sionality reduction, and visual pattern recognition in environmental datasets [33]. In the
context of this study, SOMs were applied to identify clusters of similar features and detect
non-linear dependencies that may not be captured by traditional correlation analysis.
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3 Material and Methodology

3.1 Research area

In the early years, surface water in river Amstel and city’s canals were drinkable for citizens in
Amsterdam. As surface water became more polluted and increasing demand with population
growth, the dune water supply system is built from 1853. And in 1957, a pipeline connecting
Lekkanaal and dune was built to recharge the dune and maintain the groundwater level [34].
Now surface water from Lekkanaal contributes about two thirds of tap water in Amsterdam.

Water extracted from the channel is not suitable for consumption in its raw form. Waternet’s
multi-step treatment process transforms this raw water into safe drinking water. This process
begins with water extraction, followed by pre-purification, where larger pieces of dirt is
removed by coagulation and sedimentation. Subsequently, the water undergoes sand and
gravel filtration, removing finer particles and harmful substances such as ammonia, with
assistance from naturally occurring bacteria. The filtered water is then subjected to natural
purification by infiltration into the sand dunes of the Amsterdam Water Supply area, where
harmful bacteria and viruses are further broken down over a three-month period. Afterward,
the water is transported to the Leiduin treatment facility, where it undergoes a series of final
purification steps: sand filtration, ozonation, lime removal, carbon filtering, and slow sand
filtration. This thorough process ensures that the water distributed to homes is of high
quality, safe for consumption, and meets regulatory standards.

Figure 5: Pre-purification of source water at Lekkanaal [3]

For water from Lekkanaal, the initial pre-purification step is carried out at the DWTP in
Nieuwegein, the largest DWTP in the Netherlands, where coagulation and sedimentation
happen. Coagulation in water treatment is defined as the process of adding a chemical coag-
ulant or coagulants to suspended, colloidal, and dissolved matter for subsequent processing
by flocculation or to produce conditions that will allow the particulate and dissolved matter
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to be removed later [3]. At Nieuwegein, ferric chloride is added to the raw water as a coag-
ulant. It neutralizes the electrical charges on colloidal particles, causing them to destabilize
and aggregate into larger, settleable flocs. Basic stoichiometric reactions occurring during
the coagulation process for ferric chloride is given below:

FeCl, + 3HCO; —> Fe(OH)s(s) + 3C1 + 3CO, (3.1)

These flocs sink to the bottom and are removed from the water. After pre-purification, there
are much less harmful substances such as bacteria and viruses. Water becomes crystally
clear instead of brown-green.

Lekkanaal is a canal that connects the River Lek to the Amsterdam-Rhine Canal at Nieuwegein.
Located within the Rhine-Meuse—Scheldt delta, this area has a complex water network in-
terconnected by rivers and canals. Although, the flow direction in Lekkanaal can be bidi-
rectional. The source of the water can be traced back to the River Rhine, which enters
the Netherlands at Lobith. The Rhine is charged by a mixture of snowmelt, rainwater and
groundwater with mean discharge of 2200 m3/s [35].
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The Netherlands has a temperate maritime climate with mild winters and cool summers.
Mean winter temperatures are about 3°C and mean summer temperatures are around 17°C.
Annual precipitation averages 85 cm and is fairly evenly distributed throughout the year.
Evaporation exceeds rainfall between April and August [35].

3.2 Data collection

There are three data sources for this study.

o Waternet operates the DWTP at Nieuwegein, where key water quality parameters,
including turbidity, pH, flow, and water temperature, are monitored using sensors at
the inlet.

« Rijkswaterstaat, a Directorate-General of the Ministry of Infrastructure and Water
Management in the Netherlands, is responsible for the design, construction, manage-
ment, and maintenance of the country’s primary infrastructure. It collects extensive
water data from sensors nationwide. In this study, historical discharge, water level,
water temperature, and turbidity data were obtained from its Waterbericht website.

« The Royal Netherlands Meteorological Institute (KINMI) is the Dutch national
weather service, responsible for weather forecasting and monitoring climate, air quality,
and seismic activity. It also serves as the national research and information center for
these fields. In this study, historical precipitation, air pressure, and temperature data
were obtained from KNMI’'s weather station at Deleen.

The locations of the data sources is plotted in Figure 7:

Nieuwegein
g Deled®
F w_k bij Duurstede kanaal

Data Sources
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s

Figure 7: Locations of the data sources
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The overview of data is listed in Table 1:

Table 1: Data source overview

Data source Parameter Name Location Lon | Lat Temporal resolution
Waternet Turbidity sensor__turbidity Nieuwegein 5.113 | 52.022 | 5M
Waternet Discharge sensor__dis Nieuwegein 5.113 | 52.022 | 5M
Waternet Water temperature | sensor temperature | Nieuwegein 5.113 | 52.022 | 5M
Waternet pH sensor_ pH Nieuwegein 5.113 | 52.022 | 5M
Rijkswaterstaat | Discharge Lob_ dis Lobith 6.145 | 51.846 | 10M
Rijkswaterstaat | Discharge Hag dis Hagestein boven 5.136 | 51.990 | 10M
Rijkswaterstaat | Discharge Nieu_ dis Nieuwegein 5.113 | 52.034 | 10M
Rijkswaterstaat | Discharge Pan_ dis Pannerdense 6.043 | 51.870 | 10M
Rijkswaterstaat | Discharge Tiel dis Tiel Waal 5.456 | 51.901 | 10M
Rijkswaterstaat | Water level Nieu_wl Nieuwegein 5.113 | 52.034 | 10M
Rijkswaterstaat | Water level Wijk  wl Wijk bij Duurstede kanaal | 5.316 | 51.989 | 10M
Rijkswaterstaat | Water temperature | Lob_ wt Lobith 6.145 | 51.846 | 10M
Rijkswaterstaat | Water temperature | Hag wt Hagestein boven 5.136 | 51.990 | 10M
Rijkswaterstaat | Water temperature | Nieu wt Nieuwegein 5.113 | 52.034 | 10M
Rijkswaterstaat | EC Nieu_EC Nieuwegein 5.113 | 52.034 | 10M
Rijkswaterstaat | EC Lob_EC Lobith 6.145 | 51.846 | 1H
Rijkswaterstaat | pH Lob_pH Lobith 6.145 | 51.846 | 1H
Rijkswaterstaat | Turbidity Lob__turbidity Lobith 6.145 | 51.846 | 1H
KNMI Pressure P Deleen 5.873 | 52.056 | 1H
KNMI Rainfall RH Deleen 5.873 | 52.056 | 1H
KNMI Temperature T Deleen 5.873 | 52.056 | 1H

3.3 Methodology

3.3.1 Data quality assessment

Time series data have automatically been recorded by various sensors at multiple locations.
The raw data may contain several types of errors, such as outliers, missing values, flat-lining
data, and invalid measurements [36]. To ensure data reliability, we followed the data quality
assessment framework proposed by Gleeson et al. [37], which addresses the following data

issues.

Timestamp errors

Timestamp errors occur when the time intervals between consecutive data points deviate
from the expected interval, leading to irregularities in time-series analysis. These errors can
result from data logging failures, synchronization issues, or missing records.

To detect timestamp errors, time intervals between consecutive timestamps were calculated,
and deviations from the expected interval (determined as the most common interval) were
identified. The cumulative time error was also tracked to assess long-term discrepancies.

Missing data

Missing data can arise due to sensor failures, data transmission errors, or incomplete records.
Identifying and addressing missing values is crucial for maintaining the reliability of data-
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driven models and analyses.

To detect missing data, each column was scanned for NaN (Not a Number) values. The total
count of missing values per column was summarized. Linear interpolation was then applied
to ensure data competences.

Invalid data

Invalid data points refer to values that fall outside predefined acceptable boundaries, which
can distort analysis and lead to inaccurate conclusions. These boundaries may be based on
physical limitations, sensor specifications, or domain knowledge.

To detect invalid data, each column was checked against lower and upper boundaries. If a
value fell below or exceeded these limits, it was marked as invalid. This approach ensures
a comprehensive understanding of data integrity and aids in necessary corrections. Table 2
shows the lower and upper boundaries for each time series.

Table 2: Parameter Boundaries

Name Lower boundary | Upper boundary | Unit
sensor__turbidity 1 le3 | FTU
sensor flow -led le4 | m®/h
sensor__tempearture 3 27 | °C
sensor_ pH 7.5 8.6

Lob_ dis -led led | m3/s
Hag dis -led led | m3/s
Nieu dis -led led | m3/s
Pan_ dis -led led | m3/s
Tiel dis -led le4 | m3/s
Nieu wl -100 100 | cm
Wijk  wl -100 100 | cm
Nieu  wt 0 50 | mS/m
Hag wt 0 50 | mS/m
Lob_wt 0 50 | °C
Nieu EC leb lel0 | °C
Lob_EC leb 1el0 | °C
Lob_pH 7 9

Lob_ turbidity 1 le3 | FTU
P 9000 11000 | Pa
RH 0 500 | 0.1mm
T -50 50 | °C
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Single point outliers

Single point outliers are data points that significantly deviate from surrounding values, often
caused by temporary sensor errors or sudden environmental disturbances. These anomalies
can introduce bias in the analysis if not properly identified and handled.

In this study, single point outliers were detected using a pre- and post-window z-score ap-
proach. The method involves computing rolling means and standard deviations for 6 data
points before and after each observation. The z-score measures how far a data point deviates
from the mean in terms of standard deviations. It is calculated using the formula:

T —p
g

z =

Where z is the data point, u is the mean of the surrounding values (computed from the pre-
or post-window), and o is the standard deviation of those values. A data point is considered
an outlier if both its pre- and post-z-scores exceed z-score threshold. In this work, a z-score
threshold of 60 with a 36-point window was applied to detect only significant single-point
outliers in the dataset. This strategy ensures that only genuinely anomalous values are
identified, distinguishing them from natural variability.

Flat-lining data

Flat-lining data occurs when a sensor repeatedly records the same value over an extended
period, potentially indicating sensor malfunction, data transmission failure, or a lack of
variability in the measured parameter. Such anomalies can distort data analysis and lead to
misleading conclusions.

To detect flat-lining, all time series were first resampled to a common hourly resolution
by computing the mean within each time interval. Consecutive identical values were then
identified, and their durations were calculated. If a flat-lining period exceeded a predefined
threshold of 24 hours, it was flagged as an anomaly. This rule was not applied to rainfall
data, as rainfall values could remian at zero for extended periods due to the absence of
precipitation.

Since turbidity is the target variable of the ML model, any anomalous periods in the turbidity
data were removed entirely to avoid introducing misleading patterns. For all other input
parameters, identified anomalies were corrected using linear interpolation. This approach
ensures a complete and continuous input dataset for training the ML model.

3.3.2 Runoff Time Analysis

When applying ML to predict turbidity, understanding water runoff time from upstream
monitoring locations to the DWTP is crucial. This travel time, referred to as the time
lag, determines how upstream measurements—such as turbidity and other water quality
parameters—correspond to conditions downstream. If the time series are misaligned due to
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an unknown lag, the ML model may suffer from reduced accuracy by relying on data that
does not properly reflect the timing of events at the DWTP.

To estimate this time lag, the peak-matching method was used for discharge data when
distinct peaks were present. This method compares discharge time series from upstream and
downstream monitoring stations, identifying corresponding peaks—significant increases in
discharge—in both datasets. The time difference between these peaks provides an estimate
of runoff time.

However, the Lekkanaal and Amsterdam-Rhine Canal exhibit different flow characteristics
due to hydraulic regulation. Water in these canals can flow in both directions, and discharge
peaks are often unclear. In such cases, correlation analysis with time lag was applied instead.
Specifically, Spearman correlation was calculated between turbidity and other water quality
time series with time lags ranging from 0 to 15 days in 1-hour increments. Spearman corre-
lation is preferred over the commonly used Pearson correlation because it is rank-based and
better suited for detecting non-linear relationships. The Spearman correlation coefficient (p)
is calculated as:

63 d2

=1 =%
P n(n? —1)

o d; =r(X;) —r(Y;) is the difference between the ranks of each pair of observations,
e n is the number of data points,
o 7(X;) and r(Y;) are the ranks of X; and Y; in their respective datasets.

The estimated travel time corresponds to the time lag at which the correlation reaches its
peak. Once identified, the upstream parameter time series were shifted by this optimal lag
before being fed into the ML model. This alignment step is crucial to ensure that the model
learns from temporally relevant input features, thereby improving its ability to capture causal
relationships and enhancing overall predictive performance.

3.3.3 Feature Selection

Feature selection is performed using correlation analysis and SOMs to identify the most
relevant parameters for turbidity prediction.

First, Spearman correlation obtained from runoff time analysis is used to evaluate the rela-
tionship between turbidity and other parameters. Time series with a Spearman correlation
coefficient larger than 0.3 were considered significant and selected as candidate features.
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Next, the selected features from the correlation analysis were further analyzed using SOMs to
explore non-linear relationships and potential feature redundancy. Numerical features were
first clipped between the 5th and 95th percentiles to reduce the influence of outliers. The
values were then normalized using the default range normalization provided by the SOM
Toolbox. A SOM was trained on the normalized numerical data using the default ‘imp’
(importance-based) initialization method. After training, component planes were visually
inspected to identify variables with similar patterns or cluster behaviors. Features that

showed consistent, unique patterns in the SOM were considered important and retained for
LSTM modeling.

This two-step process ensured that only meaningful and non-redundant variables were re-
tained, effectively reducing the input feature space and model complexity. By minimizing
redundancy, it also helped prevent overfitting and improved overall predictive performance.
The importance of the selected features was further evaluated during model development
through greedy feature selection.

3.3.4 Model Training

In this study, four models were developed to address two complementary tasks at the DWTP
intake:

1. Short-term turbidity forecasting (regression)
2. Turbidity state identification (classification into normal or peak)

For the regression task, three models representing distinct modeling paradigms were em-
ployed: ARIMA, a classical statistical model for univariate time series forecasting; RF, a
non-linear, multivariate model based on decision tree ensembles; and LSTM, a deep learning
model designed for sequential data. These models were trained and evaluated using consis-
tent data splits and forecast horizons (1 hour, 3 hours, and 6 hours ahead). While ARIMA
provides a baseline from traditional statistical modeling, RF introduces a non-linear multi-
variate benchmark, and LSTM represents a more advanced approach capable of capturing
complex temporal dependencies and feature interactions in dynamic water quality conditions.

In addition to continuous value forecasting, a second RF model was trained for a binary clas-
sification task: detecting whether upcoming turbidity levels fall into a normal or peak state.
This classification task is motivated by the operational need for timely alerts during abnor-
mal turbidity events, enabling rapid adjustments to treatment processes. The classification
model uses the same predictor variables and temporal splitting strategy as the regression
RF model but is trained on binary labels derived from a predefined turbidity threshold.

ARIMA (regression)

ARIMA models the future values of a variable as a linear combination of its own past values
(autoregressive part), past forecast errors (moving average part), and differencing to achieve
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stationarity (integrated part). The model is specified as ARIMA(p, d, q), where:
e p is the number of autoregressive terms,
o d is the number of times the data is differenced to make it stationary,
e ( is the number of moving average terms.

Given its simplicity and interpretability, ARIMA is often used as a baseline in time series
prediction tasks.

The ARIMA model is applied to the univariate turbidity time series. The entire dataset
is split chronologically, with the first 85% used for model training and the remaining 15%
reserved for testing. The training process involves the following steps:

o Stationarity Check: The augmented Dickey-Fuller (ADF) test is used to assess whether
the series is stationary. If necessary, differencing is applied to remove trends.

o Hyperparameter Selection: The optimal values for p, d, and q are chosen using a grid
search guided by the Bayesian Information Criterion (BIC). Compared to the Akaike
Information Criterion (AIC), BIC penalizes model complexity more strongly. This
ensures a more parsimonious model, especially important for large datasets like this
work.

o Model Fitting and Forecasting: The final ARIMA model is fit to the training data.
To evaluate the ARIMA model at different forecast horizons (e.g., 1-step, 3-step, 6-
step ahead), a fast rolling forecast method is used. For each time step t in the test
set, the trained model generates a multi-step forecast using get_forecast(steps=h),
where h is the desired forecast horizon. The last forecast in the multi-step forecast se-
quence is extracted for comparison with the actual observed value. The model is then
updated incrementally using model fitted.append([new_ observation|, refit=False) to
incorporate the next true observation, avoiding costly retraining. This process is re-
peated iteratively, simulating how the model would perform in a real-time deployment
setting.

RF (regression)

RF is an ensemble learning method based on decision trees. By constructing multiple trees
and aggregating their predictions, RF enhances prediction accuracy and robustness. It ef-
fectively captures nonlinear relationships and can handle high-dimensional feature spaces.

Before training, all continuous variables were normalized to the range [0, 1] using MinMaxScaler
for consistency across modeling pipelines. The scaler was fitted on the training data only,
and the same transformation was applied to the test set using stored parameters to avoid in-
formation leakage. Additionally, the target variable, sensor turbidity, was log-transformed
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using np.loglp to assess its impact on RF model performance, potentially reducing skew-
ness, stabilizing variance, and enhancing the model’s ability to capture non-linear patterns.

Like ARIMA model training, the RF model is trained on the first 85% of the data, while the
remaining 15% is reserved for testing. K-fold cross-validation is used to assess model perfor-
mance by splitting the training data into multiple subsets, ensuring reliable hyperparameter
tuning and reducing overfitting. TimeSeriesSplit, with 5 folds in this work, is employed
to preserve temporal order and prevent data leakage, ensuring that validation data always
follows training data chronologically, as shown in Figure 8.

For each forecast horizon, hyperparameter tuning is performed using Optuna, an efficient
automated hyperparameter optimization framework. The training and tuning process with

Optuna involves:

o Using the training folds generated by TimeSeriesSplit to train and validate RF models
with the proposed hyperparameters;

« Calculating the mean MSE across folds as the objective metric for optimization;



o Conducting multiple trials to identify the hyperparameter combination that minimizes
the validation MSE;

o Retraining the RF model on the full training set using the best-found hyperparameters
before evaluating on the test set.

The hyperparameter search space includes:
o Target variable: sensor_turbidity or sensor turbidity_ log
o Number of trees (n_ estimators): 100 to 1000
o Maximum tree depth (max_depth): 1 to 10
o Minimum number of samples required to split a node (min_samples_split): 2 to 20
e Minimum number of samples required at a leaf node (min_samples_leaf): 1 to 20

 Number of features considered for splitting (max_ features): from \/n to %, where n is
the total number of features

LSTM (regression)

In this work, the LSTM model employed a sequence-to-one structure. Stacked LSTM layers
process the input sequence, and the final hidden state is passed to a fully connected layer to
produce a single turbidity forecast.

The same preprocessing steps described for the RF model were applied here, including feature
scaling with MinMaxScaler, log-transformation of the target variable sensor_turbidity, and
TimeSeriesSplit with 5 folds for k-fold cross-validation. These steps ensured fair comparison
across models and preserved the temporal characteristics of the data.

Unlike RF, which use flat feature inputs, LSTM requires structured sequences of data. A
sliding window approach was applied, where each input sample consists of 24 consecutive
hourly records of all selected features. The corresponding output label is the turbidity value
at the desired future time step (e.g., 1-hour, 3-hour, 6-hour ahead). Models were trained
using the Adam optimizer and MSE loss. Batch size was set to 16, and training was conducted
for up to 100 epochs with early stopping based on validation loss.

Hyperparameter tuning was conducted using the Optuna framework, applied separately for
each forecast horizon. The optimization process targeted the best validation performance
across cross-validation folds, with mean MSE as the objective metric to minimize. The

hyperparameter search space includes:

o Target variable: sensor_turbidity or sensor turbidity_log
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» Hidden size: 16 to 256
e Number of LSTM layers (num_ layers): 1 to 2
o Learning rate: 107° to 1072

RF (classification)

In addition to the regression-based turbidity forecasting models, a RF classifier was imple-
mented to detect whether upcoming turbidity at the DW'TP intake would be in a normal or
peak state.

The feature set, data scaling, and temporal splitting strategy were identical to the RF
regression model. In this case, however, the continuous turbidity series was converted into a
binary target variable by applying a percentile-based threshold Tpeax to the sensor turbidity
values, labeling observations above the threshold as peak and the remainder as normal. To
avoid information leakage, Tpeax Was computed using only the training data.

Hyperparameter tuning was again performed using Optuna with TimeSeriesSplit cross-
validation, but the mean Fy-score (5 = 2) across folds was used as the optimization objective.
The final model was retrained on the full training set with the best-found hyperparameters
before evaluation on the test set.

3.3.5 Evaluation Metrics

The performance of the trained models was evaluated using two distinct sets of metrics,
corresponding to the regression and classification tasks.

Regression models (ARIMA, RF, LSTM)

Six metrics were used to assess predictive accuracy: Nash-Sutcliffe Efficiency (NSE), NSE
on the log-transformed target (log NSE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Relative Absolute Error.

o NSE: Measures the model’s predictive skill compared to the mean of observed data,
with values closer to 1 indicating better performance.

o Log NSE: Applies NSE to the log-transformed target variable, emphasizing perfor-
mance on low-value events; higher values indicate better fit.

o MSE: Calculates the average squared difference between predicted and actual values,
penalizing larger errors more heavily; lower values indicate better accuracy.

o« RMSE: The square root of MSE, providing error magnitude in the same units as the
target; lower values reflect higher accuracy.
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o MAE: Computes the average absolute difference between predicted and actual values;
lower values indicate better performance.

« Relative Absolute Error: Computes the mean of absolute errors divided by their cor-
responding absolute observed values, expressed as a percentage; lower values indicate
better accuracy.

Classification model (RF)

Performance was assessed using the confusion matrix, Precision, Recall, Fi-score, Fa-score

(B =2), and the Area Under the Receiver Operating Characteristic Curve (ROC-AUC).

o Confusion matrix: A tabular summary of predicted versus actual class labels, showing
counts of true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN).

o Precision: The proportion of predicted peak events that were actually peak in the
observed data.

o Recall: The proportion of actual peak events that were correctly identified by the
model.

e Fi-score: The harmonic mean of Precision and Recall, balancing the two metrics
equally.

o Fy-score (8 = 2): Similar to the Fi-score, but giving Recall twice as much weight as
Precision.

o ROC-AUC: Measures the model’s ability to distinguish between peak and normal
states across all classification thresholds, with values closer to 1 indicating better dis-
crimination.

All metrics were computed on the held-out test set to ensure consistent and fair model
comparison.

3.3.6 Feature Attribution Analysis

To enhance model performance and interpretability, this study applied both greedy feature
selection and post hoc interpretation techniques tailored to the respective model types.

To evaluate the predictive contribution of correlated input variables, a greedy feature se-
lection approach was applied using sensor turbidity as the baseline. Candidate features
identified through prior correlation analysis were added one at a time, forming new input
combinations. For each combination, a ML model was trained and validated to determine
whether the added feature improved predictive performance. This stepwise process allowed

27



for a systematic evaluation of the marginal utility of each feature in enhancing turbidity
forecast accuracy.

Following the identification of optimal feature sets, interpretability tools were applied to
quantify and visualize the influence of each input feature. For the RF model, two inter-
pretability methods were used:

o Built-in feature importance scores were extracted, which reflect the average contribu-
tion of each variable in reducing prediction error across the ensemble.

« SHAP (SHapley Additive exPlanations) was used to provide more nuanced local and
global attributions. Summary and beeswarm plots were generated using TreeExplainer
to visualize how each feature influenced predictions, including the direction and mag-
nitude of its effect.

Interpreting the LSTM model required gradient-based techniques. The Captum library
was used to apply Integrated Gradients, which attributes importance scores by integrating

gradients along a baseline-to-input path.

Together, these tools provided a transparent and model-specific understanding of how input
variables contributed the predictions.
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4 Results

4.1 Data quality assessment

Based on the data quality assessment framework. Figure 9 shows overall quality of the
original data collected from Waternet, Rijkswaterstaat, and KNMI.
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Figure 9: Data quality overview

Timestamp Errors

Sensor data show annual timestamp errors due to daylight saving time adjustments at the
end of October, as shown in Figure 10. These errors were corrected by shifting the data

forward to fill the missing hour.
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Figure 10: Timestamp error in sensor_ turbidity data

Discharge data from Lobith, Hagestein, and Pannerdense occasionally contain repeated
timestamps with few measurement values at the same time, as shown in Figure 11. To
resolve this, mean values of these measurements are calculated for repeated timestamps.
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Figure 11: Timestamp error in Hag dis data

Water temperature and EC data have inconsistent temporal resolutions, as shown in Figure
12. These inconsistencies are corrected by generating a uniform timestamp series and aligning
each measurement to the nearest expected timestamp.
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Figure 12: Timestamp error in Nieu_EC data

The pH and turbidity data from Lobith contained missing timestamps, which were filled
based on the expected hourly temporal resolution.
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Figure 13: Timestamp error in Lob_ pH data
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Missing data

Missing data occurs only in discharge and water level measurements, accounting for less than
1% of the time series.

Invalid data

For sensor data, water temperature and pH values have predefined valid ranges, as deter-
mined by the DWTP operators.

For the Rijkswaterstaat dataset, records containing extreme outliers, such as temperature
of 1e12 oC, were removed to ensure data integrity, as illustrated in Figure 14. These values
were deemed physically implausible and indicative of measurement errors, justifying their
exclusion from the analysis.
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Figure 14: Nieu wt with and without invalid data

In the original RH dataset, precipitation values below 0.05 mm are recorded as -1 mm. These
values are replaced with 0 mm.

Single point outliers

Single point outliers occur more frequently in water temperature data due to the inherent
nature of water temperature, where long periods of constant values can be followed by a
small spike. This spike is often identified as an outlier, as shown in Figure 15. Removing
these outliers and replacing them with linear interpolation did not affect the quality of the
dataset much. In other cases, abnormal single point outliers can be correctly detected.
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Figure 15: Single point outliners of Lob_EC

Flat-lining data

Flat-lining data were detected and interpolated linearly after all data was converted into
hourly data. Furthermore, 3 weeks of turbidity data with abnormally low variance was
found from 2020-11-16 14:00 to 2020-12-11 12:00, as shown in Figure 16. This period is
manually removed.
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Figure 16: Abnormal period of sensor_ turbidity
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Table 3 shows the overview of all time series.

Table 3: Data overview

Parameter Unit Mean Std Min Median Max
sensor__turb FTU 16.06 7.73 3.65 14.66 167.33
sensor_flow m?®/h | 12874.56 | 19144.44 0.00 12923.84 | 174764.31
sensor_ten °C 3.35 6.41 0.00 2.31 38.43
sensor_pH 4.97 0.34 3.75 5.02 10.58
Lob_ dis m?/s | 2124.90 1210.32 704.95 1692.51 7464.83
Hag dis m? /s 219.46 400.56 0.00 29.52 1380.26
Nieu dis m? /s 0.00 0.00 -52.72 0.00 0.00
Pan_ dis m3/s | 1526.30 758.43 737.31 1332.03 4968.93
Tiel dis m?3/s | 1494.37 758.42 541.57 1259.33 5083.54
Nieu wl cm -39.33 13.30 -174.56 -39.22 66.49
Wijk_wl cm -39.38 4.77 -120.76 -39.32 15.92
Lob_ wt °C 9.70 6.00 -1.61 9.22 26.23
Hag wt °C 10.03 6.19 -2.56 9.33 27.67
Nieu wt °C 12.13 7.71 -2.86 12.00 26.17
Nieu EC S/m | 4.60E407 | 9.32E+06 | 2.10E4+07 | 4.37E4+07 | 5.69E+07
Lob_EC S/m | 5.50E407 | 7.72E+06 0.00 5.57TE407 | 5.57TE+07
Lob_pH 7.98 0.17 7.26 7.94 8.94
Lob_ turbidity | FTU 21.47 17.25 2.25 16.42 514.50
P Pa 10154.60 7.00 10103.96 | 10151.04 | 10204.77
RH % 91.47 7.05 47.86 92.93 235.00
T °C 10.12 7.72 -13.10 9.96 82.67
RH_daily a mm 31.52 63.60 0.00 3.00 1141.50

4.2 Runoff time analysis

Runoff time analysis was conducted to determine the time lag between collected time series
with the target variable sensor_turbidity, which will ensure temporally relevant features are
used for MLL model training.

First, the peak match method was applied to identify the runoff time between discharge
stations. Figure 17 shows the peaks of Lob_dis and Hag dis, where 13 common peaks were
identified. The average travel time between these peaks was calculated to be around 28

hours.
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Figure 17: Peaks of Lob_ dis and Hag_ dis

The average travel time between corresponding peaks for each pair of discharge stations was
calculated in the same manner, as shown in Table 4.

Table 4: Average travel time from Lobith by peak match method.

Time series Lob_dis Pan dis Tiel dis Hag dis
Travel time 0 1:19:10  16:45:00 28:13:38

Figure 18 presents discharge data from Nieuwegein, located at the downstream end of the
Lekkanaal. Unlike river discharge time series, the canal flow exhibits bidirectional behavior
and lacks distinct peak patterns. As a result, the peak-matching method— which depends
on clear maxima to estimate time lags—was not applicable. Instead, a correlation-based
approach was adopted. Spearman correlation was calculated between each input time series
and the target variable sensor_turbidity over time lags ranging from 0 to 15 days.
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Figure 19 shows the result of the Spearman correlation between sensor_turbidity and dis-
charge time series. Distinct correlation peaks can be observed from discharge measurements

along the river.

The time lag difference between the correlation peaks of Lob_dis and

Pan_ dis is 2 hours, which aligns with the travel time obtained from the peak match method,
as well as for Tiel dis (17 hours).
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Figure 19: Spearman Cross_ Correlation between sensor turbidity and discharge

The time lag between the correlation peaks of Lob_dis and Hag dis is 13 hours—shorter
than the travel time estimated using the peak-matching method. This discrepancy arises
because peak matching focuses on flood periods, when weirs and floodplains increase the
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runoff time [39]. In contrast, correlation analysis accounts for all flow conditions, capturing
the generally faster and smoother water movement under normal, unobstructed conditions.

While the peak-matching method provided reasonable travel time estimates for river dis-
charge, it could not be applied to the canal, where flow patterns lack distinct peaks. In
contrast, Spearman correlation offered a more robust and universally applicable estimate of
time lags across both river and canal conditions. Therefore, the correlation-based lag values
were used to align all time series with sensor turbidity, ensuring temporal consistency of
the input data for subsequent ML modeling.

4.3 Feature selection
4.3.1 Spearman correlation

Table 5 provides an overview of the Spearman correlation results. The upstream discharge
data show the strongest positive correlations with sensor turbidity, while temperature-related
data and EC values in Nieuwegein exhibit the strongest negative correlations. The time lags
indicated in the table will be used to align the sensor_turbidity time series with the other
parameters.

Among collected time series, 11 of them were identified with maximum Spearman correlation
coefficients exceeding 0.3 or falling below -0.3. These belong to four categories of parameters:
upstream discharge and turbidity showed strong positive correlations with sensor turbidity,
while EC and water temperature exhibited strong negative correlations.

The strongest positive correlations with sensor turbidity were observed for upstream dis-
charge and turbidity time series. Increased discharge from upstream areas, especially during
storm events or snowmelt, typically mobilizes sediments, organic matter, and other sus-
pended solids from the riverbed and catchment surfaces, leading to elevated turbidity down-
stream [14, 40]. These suspended materials are transported with the flow, causing spikes in
turbidity levels at downstream monitoring points such as the DWTP intake. In contrast,
water temperature and EC measured near the DW'TP showed strong negative correlations
with sensor turbidity. For EC, this inverse relationship is often explained by the dilution
effect: high turbidity events usually occur during periods of increased discharge, which in-
troduce large volumes of sediment-rich but ion-poor runoff into the system. As a result, the
concentration of dissolved ions—and thus EC—tends to decrease when turbidity rises [41,
42]. Water temperature also tends to be lower during high-discharge events, where rainfall
or snowmelt contributes cooler water to the system [43]. Moreover, warmer temperatures
generally promote particle settling due to decreased water viscosity, leading to lower turbid-
ity under calm, stable conditions [44]. Therefore, both EC and temperature exhibit inverse
relationships with turbidity and provide valuable complementary information for turbidity
prediction.

Figure 20 shows the result of the Spearman correlation between sensor_turbidity and EC
time series from Lobith (approximately 70 km upstream of the DWTP) and Nieuwegein
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Table 5: Spearman correlation overview

Parameter Max correlation | Time lag (h)

sensor__turbidity 0

Lob_ turbidity 0.3391 118
Tiel dis 0.3292 86

Lob_ dis 0.3272 104
Hag dis 0.3223 91

Pan dis 0.322 101
Nieu_ dis 0.1726 0
sensor_pH 0.1006 0

RH_ daily accum 0.0494 156

RH 0.0328 120

Nieu wl -0.0718 52
Wijk_ wl -0.074 52
Lob_EC -0.1127 53

P -0.1269 339

Lob_pH -0.1639 152
sensor flow -0.2285 0
Nieu EC -0.3293 0

T 36
sensor wt 0
Nieu wt 9
Hag wt 8
Lob wt 8

(about 1.5 km away). Clear negative correlation can be observed between sensor__turbidity
and Nieu_ EC, while no significant correlation is found with Lob_EC. This difference can
be attributed to the spatial distance: the water quality at Nieuwegein, being much closer to
the DWTP, is more representative of the conditions affecting sensor_ turbidity. In contrast,
the lack of correlation with Lob_ EC suggests that ion concentrations change along the river,
reducing its predictive relevance for local turbidity levels near the DWTP.
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Figure 20: Spearman Cross_ Correlation between sensor_turbidity and EC

Figure 21 shows the result of the Spearman correlation between sensor__turbidity and Lobith
pH & turbidity time series. The correlation with pH exhibits a clear daily pattern, similar
to that observed in water temperature, indicating a 24-hour cycle in pH values at Lobith.
In contrast, the correlation with Lobith turbidity shows a positive peak at a time lag of
approximately 104 hours—similar to the lag observed in the discharge time series—suggesting
that turbidity is transported downstream from the Rhine and contributes to turbidity levels
in the Lekkanaal.
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Figure 21: Spearman Cross_ Correlation between sensor_turbidity and Lobith pH & turbidity

Figure 22 shows the result of the Spearman correlation between sensor_turbidity and weather
data time series. No clear correlation is observed with air pressure. Air temperature exhibits
a similar pattern to water temperature, but with a larger time lag, indicating that its effect
on turbidity is less direct than that of water temperature.

Although accumulated rainfall is often considered a useful predictor for turbidity [31], the
correlation between the two remains weak in this study. This may be attributed to the
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region’s flat topography and highly regulated waterway system, which diminish the direct
impact of rainfall-induced runoff on turbidity. Similar observations were reported by [14],
who found that in the Gota Alv River in Sweden, the relationship between precipitation
and turbidity was generally weak except during flood events. In such lowland and regu-
lated systems, the influence of local rainfall is often buffered by upstream storage and flow
management, leading to a decoupling of rainfall and turbidity under normal flow conditions.
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Figure 22: Spearman Cross_ Correlation between sensor_turbidity and weather data
4.3.2 SOMs

Based on the Spearman correlation analysis presented in the previous section, feature selec-
tion was carried out to identify candidate variables for ML model training. Parameters that
exhibited clear positive or negative correlations with the target variable sensor_turbidity
were first shortlisted as potential predictors. These selected features were then used to
generate SOMs to explore non-linear relationships and potential feature redundancy. This
two-step process ensured that only relevant and informative variables were considered in
subsequent modeling efforts.
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These 11 time series and sensor turbidty were used to generate SOMs, with the results
shown in Figure 23. The first row of SOMs presents senor_turbidity and its positively cor-
related variables. High turbidity events at the DWTP (bottom-right corner of the SOM)
are consistently associated with periods of elevated discharge in the Lower Rhine catchment.
This pattern is also reflected in the turbidity measurements at Lobith, suggesting that in-
creased upstream discharge enhances the transport of suspended matter into the downstream
reaches and subsequently affects raw water quality at DW'TP.

The second row shows variables that are negatively correlated sensor_turbidity. In contrast
to the first row, high turbidity events at the DWTP are associated with low air and water
temperatures. Notably, the SOMs of Nieu EC exhibit an opposite pattern compared to the
discharge-related SOMs. This finding is consistent with the diluting effect of increased river
discharge on ionic concentrations. Elevated discharge reduces the EC of the river water by
diluting solute concentrations, while simultaneously increasing turbidity through enhanced
mobilization and transport of suspended solids.
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Figure 23: SOMs of 10 most relevant parameters
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In addition to the numerical features, two categorical attributes, flow_ direction and month,
were included in the SOM analysis to provide contextual insight into the observed turbidity
patterns. The flow direction attribute represents the direction of water movement in the
Lekkanaal: a value of 1 indicates flow from the Lek River toward the Amsterdam-Rhine Canal
(northward), while -1 indicates the reverse (southward). Incorporating flow direction helps us
to identify the primary source of turbidity in Lekkanaal since the flow there is bidirectional.
Similarly, the month attribute adds seasonal context, helping to identify temporal patterns
in turbidity related to climatic and hydrological cycles.

As shown in Figure 24, high turbidity events are predominantly associated with a posi-
tive flow direction, indicating that water flows from the Lek River toward the Amsterdam-
Rhine Canal. This suggests that the Lek River is a major source of turbidity during these
events. This observation aligns with the earlier correlation analysis, where upstream dis-
charge showed a strong positive correlation with sensor turbidity. The Lek River generally
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has a higher discharge than the Amsterdam-Rhine Canal and therefore a greater capacity to
transport suspended solids. The categorical SOM for the Month attribute shows that high
turbidity events occur most frequently between December and February, corresponding to
the winter season. This seasonal pattern supports the previous finding of a negative corre-
lation between turbidity and water temperature, as colder months are associated with lower
temperatures.
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Figure 24: Categorical SOMs

The SOM results showed that the 11 time series selected from correlation analysis were
relevant for high turbidity events, together with two categorical attributes. However, SOMs
derived from parameters of the same kind (e.g., discharge and temperature) were highly
similar to one another, suggesting redundancy within these groups. To avoid overlapping
information and improve interpretability, Hag dis and sensor temperature were chosen as
representative variables from their respective groups, based on their proximity to the DWTP
location.

In contrast, the categorical attribute month exhibited minimal variability over the short
time horizon considered in this study (24 hours of input to predict the next hour). Since
such long-term seasonal effects did not meaningfully contribute to short-term turbidity dy-
namics, this feature was excluded. Consequently, Hag dis, sensor temperature, Nieu EC,
Lob_ turbidity, and Flow_ direction were selected as candidate features for model training,
in addition to sensor_ turbidity itself.

4.4 Model comparison per forecast horizon

This section compares the forecasting performance of ARIMA, RF and LSTM—across dif-
ferent forecast horizons. To ensure a fair comparison, all models were trained using only
sensor__turbidity as the input feature. This aligns with the ARIMA model’s univariate na-
ture and isolates the models’ ability to learn temporal patterns from turbidity measurements
alone. Figure 25 shows the schematic representation of the model setup.
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Figure 25: Comparison of model performance across three prediction horizons (t+1, t+3, t+6)

To determine the structure of ARIMA model, ADF test was applied to assess stationarity.
The test yielded a statistic of —10.15 with a p-value < 0.01, providing strong evidence against
the null hypothesis of non-stationarity. As a result, no differencing was required (d = 0). A
grid search over the parameter space p,q € [0, 5] was then conducted, and the ARIMA(3, 0,
1) model was selected based on the lowest BIC.

4.4.1 1-hour Ahead Forecast

Figure 26 illustrates the data split used in the 1-hour ahead forecast experiment. Each model
was trained on the first 85% of the time series, spanning from January 1, 2020, to July 22,
2023. The remaining 15%, from July 22, 2023, to February 27, 2024, was held out as the
test set for evaluating predictive performance.
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Figure 26: ARIMA predictions (Forecast window = 1 hour)

During the training period, two notable events occurred: the highest peak turbidity value

42



of 167.33 FTU recorded on November 12, 2020, at 07:00:00, and a series of high-turbidity
events in January and February 2023. In contrast, the test period exhibited peak events of
lower magnitude compared to those in the training period. Additionally, a rare period of
low turbidity occurred in August 2023, which was infrequently observed in the training set.

ARIMA 1H Test

60+

40 |

204

—— True
— ARIMA

RF 1H Test

60

40

20 A

—— True
-~ RF

LSTM 1H Test

60 4

40 |

204

— True
— LSTM

T T T T
2023-07 2023-08 2023-09 2023-10

T T T T T
2023-11 2023-12 2024-01 2024-02 2024-03
Time

Figure 27: Predictions of three model on test period (Forecast window = 1 hour)

Table 6: Forecast results of three models (Forecast window = 1 hour)

Model  NSE log NSE MSE RMSE MAE Relative abs error
ARIMA 0.80 0.87 560 237 1.25 9.19%
RF 0.81 0.87 5.34 2.31 1.30 10.15%
LSTM  0.80 0.85 571 2.39 1.49 12.37%

Table 6 summarizes the performance of the three models on the test set for 1-Hour forecast-
ing. All models achieve superior fit (NSE > 0.8). LSTM performed slightly worse in terms
of log NSE (0.85) compared to the other two models (0.87), indicating LSTM performed
worse in low-magnitude turbidity events. The RF model also outperformed others in terms
of MSE (5.34) and RMSE (2.31), reflecting better handling of large errors. Conversely,
ARIMA achieved the lowest MAE (1.25) and relative absolute error (9.19%), suggesting
it performs well on typical values. LSTM’s highest MSE (5.71) and MAE (1.49) indicate
reduced accuracy, underperforming the other two models in terms of typical values and

outliers.
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Figure 28: Scatterplot of predictions versus true values of three models (Forecast window = 1
hour)

Figure 28 shows error scatterplots. Most errors cluster along the zero-error line, indicating
good overall fit for typical turbidity values. However, all three models consistently under-
estimate peak events, as shown by low prediction at high true turbidity values in the lower
part of the plots. ARIMA exhibits the most symmetrical error pattern, with relatively same
amount of overestimation (positive errors) and underestimation (negative errors). In con-
trast, RF shows less pronounced overestimation with fewer large positive errors, contributing
to its lowest MSE and RMSE. LSTM displays distinct overestimation for low-turbidity events
(e.g., August 2023), aligning with its lowest log NSE.
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Prediction Error

Error density of three models (Forecast window = 1 hour)

10.0

Figure 29 shows the density of errors from three models. All three curves exhibit positive
skewness with longer tails on the left, indicating a tendency to overpredict during non-peak
periods and occasional underprediction during peak events. Among the models, ARIMA
demonstrates the least bias, with a mean error of -0.0485, aligning with its lowest MAE. In
contrast, LSTM exhibits the highest bias (mean error of 0.5448), consistent with its highest
MAE, suggesting systematic overprediction. RF, with a mean error of 0.1785 and the lowest

standard deviation (2.3037), supports its stability across peak and non-peak events.

All three models deliver robust 1-hour-ahead turbidity predictions but consistently underes-
timate peak events. LSTM underperforms, with pronounced overprediction in low-turbidity
periods. ARIMA provides the least biased predictions, ideal for non-peak forecasting. RF
minimizes overestimation with the lowest RMSE.
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4.4.2 3-hour Ahead Forecast
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Figure 30: Predictions of three model on test period (Forecast window = 3 hour)

Table 7: Forecast results of three models (Forecast window = 3 hour)

Model  NSE log NSE MSE RMSE MAE Relative abs error

ARIMA 0.68 0.76 913 3.02 1.84 14.09%
RF 0.70 0.76 8.46 291 1.90 15.45%
LSTM 0.68 0.69 9.22  3.04 2.10 18.58%

Table 7 presents 3-hour forecast performance. Compared to 1-hour forecasts, all models
show increased underfitting, with NSE dropping from 0.8 to around 0.69. RF maintains the
highest NSE (0.70) and lowest MSE (8.46) and RMSE (2.91), while ARIMA achieves the
lowest MAE (1.84) and relative absolute error (14.1%). LSTM'’s log NSE (0.69 vs. 0.76)
indicates worsening performance for low-turbidity events, with the highest MSE (9.22) and
MAE (2.10).
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Figure 31: Scatterplot of predictions versus true values of three models (Forecast window = 3
hour)

Figure 31 confirms persistent peak underestimation. ARIMA’s symmetrical errors contrast
with RF’s and LSTM’s asymmetrical patterns, with latter two showing fewer large positive
errors. LSTM’s overestimation of low-turbidity events intensifies.

ARIMA Error Density
Mean = -0.1124, Std = 3.0197

0.25
0.20 | /‘/L_‘-—\\\
2 0.15 4
£ N
§ 0.10 A / h
0.05 1 _._,‘__// \k
—
0.00 T T T T T T T
-10.0 =715 5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Prediction Error
RF Error Density
Mean = 0.3332, Std = 2.8887
0.25
0.20
2015+
Wl
=
8 0.10
0.05
0.00 — : ; ‘ — ;
—10.0 75 —5.0 2.5 0.0 2.5 5.0 7.5 10.0
Prediction Error
LSTM Error Density
Mean = 0.6023, Std = 2.9763
0.25
0.20 4 ///\\
2 0.15 A o
2 d \
8 0.10 4 / \
0.05 —
_.———‘—'__—'_// \
0.00 T T T T T T T
—10.0 75 —5.0 2.5 0.0 2.5 5.0 7.5 10.0

Prediction Error

Figure 32: Error density of three models (Forecast window = 3 hour)
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Figure 32 shows increased positive skewness and bias compared to 1-hour forecasts. ARIMA
remains least biased (mean error: -0.112), while LSTM’s bias is highest (0.545). RF’s mod-
erate bias and lowest standard deviation ensure stable error control.

Overall, 3-hour predictions mirror 1-hour trends but with reduced accuracy. RF remains best
for dynamic conditions, ARIMA for non-peak events, and LSTM continues to underperform.

4.4.3 6-hour Ahead Forecast
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Figure 33: Predictions of three model on test period (Forecast window = 6 hour)

Table 8: Forecast results of three models (Forecast window = 6 hour)

Model NSE log NSE MSE RMSE MAE Relative abs error
ARIMA 0.62 0.69 10.74  3.28 2.17 16.74%
RF 0.66 0.70 9.76 3.12 2.16 17.711%
LSTM 0.62 0.61 10.99 3.31 2.46 22.09%

Table 8 shows a further decline in forecast accuracy compared to 3-hour results. RF main-
tains the best overall performance with the highest NSE (0.66) and lowest MSE (9.76) and
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MAE (2.16). ARIMA retains the lowest relative absolute error (16.7%), while LSTM’s per-
formance deteriorates further, with the lowest log NSE (0.61) and highest errors.
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Figure 34: Scatterplot of predictions versus true values of three models (Forecast window = 6
hour)

Figure 34 confirms persistent peak underestimation across all models, with ARIMA showing
some overestimation but RF and LSTM presenting highly asymmetrical errors, lacking ma-

jor overpredictions. LSTM continues to overestimate low-turbidity events, consistent with
previous findings.
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Figure 35: Error density of three models (Forecast window = 6 hour)

Error density plots (Figure 35) show increased positive bias and variance relative to 3-hour
forecasts. ARIMA remains the least biased but with higher error spread, while RF exhibits
a balanced bias-variance trade-off. LSTM shows the highest bias and error variability.

Overall, 6-hour forecasts demonstrate the expected decline in accuracy, with RF’s relative
stability reaffirming its suitability for longer-term operational forecasting.

Across all forecast horizons (1-, 3-, and 6-hour), ARIMA, RF, and LSTM consistently un-
derestimate peak turbidity events, and accuracy diminishes as the lead time increases. RF
consistently achieves the lowest MSE and RMSE, increasingly outperforming the other mod-
els at longer horizons. ARIMA performs best for short-term, non-peak conditions, delivering
minimal bias and the lowest MAE. Meanwhile, LSTM underperforms overall, particularly
struggling with low-turbidity events and rare extremes, exhibiting the highest bias and error
variability.

4.5 Feature attribution analysis

The sensor_turbidity time series has been the sole input for all three models so far. To op-
timize model performance, greedy forward feature selection and feature importance analysis
were employed to evaluate the impact of additional input features. The objective was to as-
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sess whether incorporating highly correlated features, identified earlier, improves prediction

accuracy.
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Figure 36: Feature attribution analysis experiments

Figure 36 illustrates the two experimental setups for feature attribution analysis.

(a) Greedy feature selection. Each candidate feature is individually added to a base
feature and used to train a separate model. The change in performance relative to the base
feature quantifies the marginal contribution of that candidate. This approach captures the
isolated effect of each feature.

(b) Global attribution. All candidate features are combined with the base feature to train
a single model. Feature importance is then computed for all features simultaneously using
SHAP (RF model) and Captum (LSTM model). This provides a comparative “horizontal”
view of feature contributions within the same model.
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Figure 37: RF model greedy feature selection results (Forecast window = 1 hour)
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Figure 37 presents the key performance metrics from the RF model’s greedy forward feature
selection. The base model, using only sensor turbidity, outperforms all other feature com-
binations across all metrics, suggesting that additional features introduce noise and reduce
RF model accuracy.
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Figure 38: RF feature importance

All five additional features are used to train a new RF model for important analysis. Figure
38 displays the top 10 most important features for the RF model, all of which are sen-
sor_turbidity time lags. The importance of sensor turbidity t-1 to t-3 are substantially
higher than others, aligning with the ARIMA BIC test, which selected ARIMA(3,0,1) as the
optimal model, indicating that the three most recent data points are critical for 1-hour-ahead
predictions.

Table 9: Maximum importance of different features

Feature Maximum importance
sensor__turbidity 0.459
Lob_ turbidity 9.34e-3
Nieu EC 2.99¢-3
Hag_dis 2.97e-3
sensor__temperature 1.21e-3
flow direction 1.1e-4

Table 9 lists the maximum importance of each kind of input. sensor_ turbidity is significantly
more important than all other features.
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Figure 39: RF SHAP value

Figure 39 presents a SHAP summary plot, highlighting the top 10 features based on their
mean absolute SHAP values. The results reveal that sensor turbidity time lags, particularly
t-1, t-2, and t-3, dominate the feature importance rankings. This indicates that recent
turbidity measurements are the primary drivers of accurate predictions, where high values
of sensor_turbidity t-1 to t-3 (red dots on the right) strongly increase predicted turbidity
and low values (blue dots on the left) decrease it.

The SHAP analysis reinforces the finding that sensor turbidity alone is sufficient for robust
RF predictions, as additional features introduce noise without substantial benefits. This
insight guided the decision to retain the base model for operational forecasting, balancing
accuracy and model simplicity.
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Figure 40: LSTM model greedy feature selection results (Forecast window = 1 hour)

Figure 40 presents the key performance metrics from the LSTM model’s greedy forward
feature selection. Incorporating Hag dis, Lob_ turbidity, and flow_ direction results in only
slight improvements in model performance.
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Figure 41: LSTM feature importance

These features were subsequently used to train a new LSTM model for global feature attri-
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bution analysis. Figure 41 presents the importance of input features for the LSTM model,
showing results consistent with ARIMA and RF, where sensor__turbidity at lags t-1 is much
more influential than other input. Similarly, the LSTM model trained with five features
underperforms across all metrics compared to the LSTM model trained solely with sen-
sor_turbidity time series, as shown in Table 10.

Table 10: Forecast performance metrics for single- and multi-feature LSTM models.

Model NSE log NSE MSE RMSE MAE Relative abs error
LSTM (1 feature) 0.80  0.85 571 2.39 1.49 12.37%
LSTM (5 features) 0.75 0.78 739 272 1.82 15.93%

In summary, the inclusion of additional features did not lead to improved performance for ei-
ther the RF or LSTM models in 1-hour ahead turbidity forecasting. Instead, the most recent
three turbidity values consistently emerged as the most informative inputs. This suggests
that, despite strong correlations identified during feature selection, the added variables failed
to provide meaningful predictive insight. Consequently, short-term turbidity forecasting in
this context appears to be more of a statistical pattern recognition task than one governed
by underlying physical processes. This also explains why simpler models such as ARIMA
and RF outperformed the more complex LSTM model, where no significant temporal lag or
multivariate interaction to exploit.

4.6 RF classification model

In this section, peak turbidity events are defined as those where the sensor_turbidity value
exceeds Theax = 28.21 F'TU, corresponding to the 95th percentile of the training set turbidity
distribution. All other observations are classified as normal. As illustraed in Figure 42, the
RF classifier was initially trained using only the sensor turbidity feature. Subsequently,
the classifier was trained with an expanded feature set to evaluate whether incorporating
multiple predictors improves classification precision in distinguishing peak turbidity events.
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Figure 42: RF classifier experiments

Figure X presents the confusion matrices for the RF classifier trained with a single feature
(left) and multiple features (right). Both models achieve very high accuracy in detecting
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normal events (Normal, class 0): the single-feature model misclassified only 8 normal events
as peaks (FP), while the multi-feature model completely avoided such false positives (FP =
0). This explains why both models maintain overall accuracies above 95

Single-Feature Model Multi-Feature Model

Normal(0)
Normal(0)

True Label
True Label

228 49 236 41

Peak(1)
Peak(1)

Normal(0) Peak(1) Normal(0) Peak(1)
Predicted Label Predicted Label

Figure 43: Confusion Matrix

Table 11: Performance metrics for single- and multi-feature RF classifiers in peak event detection.

Model Accuracy Precision Recall Fi-score Fa-score ROC-AUC
Single-feature RF 0.9577 1.0000  0.1552  0.2687 0.4688 0.8710
Multi-feature RF 0.9573 1.0000  0.1480 0.2579 0.4487 0.8641

Despite the high accuracy and perfect precision (1.0000) for both models—indicating no false
alarms when a peak is predicted—both classifiers struggle significantly to detect peak events
(Peak, class 1). The single-feature model correctly detected only 49 out of 277 peak events
(true positives, TP = 49), missing 228 peaks (false negatives, FN = 228). Similarly, the
multi-feature model detected even fewer peaks, with 41 true positives and 236 missed peaks.
This results in very low recall values of 15.5% and 14.8% for the single- and multi-feature
models, respectively. This evidence clearly shows that while the models are highly reliable
when predicting peaks (high precision), they fail to capture most peak events (low recall).
The multi-feature model’s reduction of false positives to zero comes at the cost of missing
even more peaks, further lowering recall. Consequently, both models suffer from the classic
imbalanced classification issue, where rare but critical peak events are under-detected.

This challenge aligns with the regression analysis results, which also underestimated peak
turbidity values across all forecasting approaches. The consistent underperformance in de-
tecting high-magnitude peak events, both in classification and regression, highlights the
fundamental difficulty of predicting rare and extreme events in this dataset.
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The consistent difficulty in detecting peaks across both modeling approaches suggests that
short-term turbidity forecasting in this context is dominated by statistical pattern recognition
based on immediate past values, rather than being driven by identifiable physical processes.
This also explains why simpler models such as ARIMA and RF outperformed the more
complex LSTM, as there were no significant temporal lags or multivariate interactions for
the latter to exploit.

To enhance model performance in future work, two key areas should be addressed:
1. Data Sufficiency and Representativeness

Accurate hourly prediction of turbidity is a challenging task. In this study, hourly water
quality data is insufficient. Turbidity and EC time series were only available at DTWP and
from Lobith station. However, Lobith is located too far from Nieuwegein to offer meaningful
insight into upstream conditions, and on-site measurements do not capture inflows or distur-
bances occurring between these two locations. The lack of intermediate sensor data—such as
at Hagestein—substantially limits the model’s ability to detect upstream turbidity transfer
dynamics that could improve prediction accuracy.

Further constraining model performance is the extremely low representation of peak turbidity
events in our dataset (less than 5%). Because the model encounters very few instances of
high turbidity during training, it tends to converge toward average behavior and cannot
generalize well to rare, high-variance episodes. Imbalanced time-series regression problems
are well documented to degrade predictive capacity. Extending the period of observation to
include more extreme events would enable the model to better learn these critical dynamics.

Moreover, prior research shows that incorporating additional water-quality indicators—such
as dissolved oxygen and ammonium—can enhance short-term turbidity forecasting. For ex-
ample, Iglesias et al. (2014) developed an artificial neural network model for hourly turbidity
prediction in northern Spain. The input data included measurements of turbidity, ammo-
nium, EC, dissolved oxygen, pH, and temperature every 5 minutes from various sensors at
the automated monitoring stations [45]. Installing additional sensors between Lobith and
Nieuwegein—such as at Hagestein—would provide richer multivariate time-series inputs and
likely yield more accurate and robust turbidity predictions.

2. Temporal Resolution and Noise

Using hourly data introduces a high level of random noise influenced by transient factors
that our models and data sources do not capture—such as passing vessels stirring sediment
in canals or localized disturbances [14, 46]. Therefore, many turbidity prediction research
used daily turbidity as target [47, 48] even though they have higher temporal resolution
data. Aggregating data at daily or multi-hour intervals (e.g. 4-hour or daily averages)
may effectively suppress such noise, stabilize the underlying trends, and yield more robust
predictions.
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5 Conclusion

5.1 Conclusion

This thesis set out to answer three key research questions regarding short-term turbidity
prediction at the DWTP:

o What parameters influence turbidity levels at the Lekkanaal DWTP?
o Which combination of features yields the most effective turbidity predictions?
o How far in advance can turbidity levels be reliably predicted?

1. Turbidity levels at the Lekkanaal DWTP are primarily influenced by a combination of
hydrological and physicochemical parameters. Among these, upstream discharge and tur-
bidity show the strongest positive correlations with local turbidity measurements. These
relationships suggest that water flowing from the Lek River into the Lekkanaal carries sig-
nificant amounts of suspended solids, especially during high-flow events caused by rainfall
or snowmelt. The SOMs further support this, revealing that high turbidity events often
coincide with a northward flow direction—from the Lek River into the Amsterdam-Rhine
Canal—highlighting the Lek River as a primary contributor to elevated turbidity. Conversely,
EC and water temperature exhibit strong negative correlations with turbidity. Lower EC
during high turbidity events likely reflects dilution effects caused by increased surface runoff
and suspended particles, which reduce the concentration of dissolved ions. Similarly, low
water temperatures—typically observed in winter months—are associated with higher tur-
bidity. This seasonal pattern aligns with increased discharge and sediment mobilization
during colder months. These findings suggest that turbidity at the Lekkanaal DWTP is
influenced not only by immediate upstream conditions but also by broader seasonal and
hydrodynamic factors.

2. Feature selection analyses, including greedy feature selection and importance assessments
via SHAP for RF and Captum for LSTM, demonstrated that a univariate model relying
solely on sensor turbidity outperforms multivariate models. Additional features, such as
Lob_ turbidity, Nieu EC, Hag dis, sensor temperature, and flow direction, despite ex-
hibiting correlations with turbidity, introduced noise and reduced predictive accuracy across
all models. The dominant importance of historic sensor turbidity data, especially last three
hours, confirmed by ARIMA’s optimal configuration (ARIMA(3,0,1)), RF’s SHAP analysis
and LSTM’s Captum analysis, underscores the sufficiency of recent turbidity measurements
for robust predictions. This finding highlights the importance of model simplicity, as addi-
tional correlated features failed to enhance forecasting performance.

3. The models were evaluated across 1-, 3-, and 6-hour forecast horizons. All models ex-
hibited robust performance for 1-hour-ahead predictions, with NSE exceeding 0.8. However,
accuracy declined with longer horizons, with NSE dropping to approximately 0.69 at 3 hours
and 0.62-0.66 at 6 hours. RF consistently outperformed ARIMA and LSTM, maintaining
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the highest NSE (0.66 at 6 hours) and lowest RMSE across all horizons. ARIMA provided
the least biased predictions (lowest MAE) for 1- and 3-hour forecasts, making it reliable
for non-peak events. LSTM consistently underperformed, with the highest MAE and bias,
particularly struggling with rare low-turbidity events. Taken together, these results indicate
that the general turbidity pattern can be reliably forecast up to 6 hours in advance, with
RF providing the most robust performance.

Despite these positive results for overall forecasting skill, all models systematically underesti-
mated high turbidity peaks—the most critical events for DWTP operations. This limitation
was confirmed by the RF classification experiment, which, while achieving perfect precision
(1.0000), detected only a small fraction of peaks, with recall values below 16%. The con-
sistent underperformance in capturing rare, high-magnitude events across both regression
and classification frameworks highlights the fundamental challenge of peak prediction un-
der the current data constraints. Consequently, while short-term turbidity dynamics can
be reliably forecast up to 6 hours in advance, the reliable prediction of extreme turbidity
episodes remains unresolved. Future research should focus on expanding monitoring cover-
age, improving data representativeness of peak events, and developing methods tailored to
imbalanced time-series prediction.
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6 Appendix

6.1 Complete Spearman Cross_ Correlation Result
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Figure 44: Spearman Cross_ Correlation between sensor turbidity and discharge
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Figure 45: Spearman Cross_ Correlation between sensor_turbidity and water level
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Turbidity vs Lob_EC
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Figure 47: Spearman Cross_ Correlation between sensor turbidity and EC
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Figure 48:
Lob__turbidity
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6.2 Model Configurations

Table 12: Model Configurations of section 4.4

Model Type | Forecast Horizon Input Feature Input Length P d q
ARIMA 1 sensot__turbidity 24 3 0 1
ARIMA 3 sensot__turbidity 24 3 0 1
ARIMA 6 sensot__turbidity 24 3 0 1
Model Type | Forecast Horizon Input Feature Input Length | n_ estimators | max__depth | min__samples_ split | min__samples_ leaf | max_ features
RF 1 sensot__turbidity 24 103 8 8 1 10
RF 3 sensot__turbidity 24 654 7 11 1 9
RF 6 sensot__turbidity 24 330 7 11 20 9
Model Type | Forecast Horizon Input Feature Input Length | hidden_size | num_ layers learning_ rate
LSTM 1 sensot__turbidi 24 167 1 8.33E-05
LSTM 3 sensot__turbi 24 32 1 4.87E-05
LSTM 6 sensot__turbi 24 216 2 1.02E-05
Table 13: Model Configurations of section 4.5
Model Type | Forecast Horizon Input Feature Input Length | n_estimators | max_ depth | min_samples_ split | min_samples_ leaf | max_ features
RF 1 sensot__turbidity + one candidate feature 24 103 8 8 1 10
RF 1 sensot_turbidity + all candidate features 24 425 6 8 1 50
Model Type | Forecast Horizon Input Feature Input Length | hidden_size | num_ layers learning_ rate
LSTM 1 sensot__turbidity + one candidate feature 24 167 1 8.33E-05
LSTM 1 sensot_turbidity + all candidate features 24 62 1 1.29E-04

Table 14: Model Configurations of section 4.6

Model Type | Forecast Horizon Input Feature Input Length | n_estimators | max__ depth | min_samples_ split | min_samples_ leaf | max_ features
RF 1 sensot__turbidity 24 777 1 13 14 18
RF 1 sensot__turbidity + all candidate features 24 814 7 11 2 48
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