
Ad

Master of Science Thesis

Goal oriented adaptation of
unstructured meshes

Application to finite volume methods

Giovanni Todarello

February 28, 2014

Goal oriented adaptation of
unstructured meshes

Application to finite volume methods

Master of Science Thesis

For obtaining the degree of Master of Science in
Aerospace Engineering at Delft University of Technology

Giovanni Todarello

February 28, 2014

Faculty of Aerospace Engineering · Delft University of Technology

Delft University of Technology

Copyright c© Aerospace Engineering, Delft University of Technology
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF AERODYNAMICS

The undersigned hereby certify that they have read and recommend to
the Faculty of Aerospace Engineering for acceptance the thesis entitled
“Goal oriented adaptation of unstructured meshes” by Giovanni
Todarello in fulfillment of the requirements for the degree of Master of
Science.

Dated: February 28, 2014

Graduation commitee:
Dr. ir. M.I. Gerritsma

Dr. R.P. Dwight

Dr. J. Peter (ONERA, France)

Ir. I. Azijli

TABLE OF CONTENTS

List of Figures vii

List of Tables ix

List of symbols and acronyms xi
List of Symbols . xi
List of Acronyms . xii

Acknowledgements xv

Abstract xvii

1 Literature review 1
1.1 Introduction . 1
1.2 Goal oriented mesh adaptation for finite volume schemes . . . 2

2 Gradient computation methods 7
2.1 The elsA Opt module . 7
2.2 Finite differences . 9
2.3 Discrete direct differentiation method 9
2.4 Discrete adjoint method . 10

2.4.1 Parameter mode . 10
2.4.2 Mesh mode . 11

2.5 Solution of the linear systems 11
2.6 Recursive projection method 12

3 Code development 15
3.1 Framework of the implementation 15

3.1.1 MUSCL 2nd order scheme 19
3.2 Implementation of discrete gradient computation methods . . 20

v

Table of contents

3.2.1 Direct differentiation method 20
3.2.2 Discrete adjoint method (parameter mode) 26
3.2.3 Discrete adjoint method (mesh mode) 28

4 Code verification 33
4.1 Test case NACA0012 . 33

4.1.1 Mesh . 33
4.1.2 Flow . 34
4.1.3 Parameter α . 35

4.2 Verification procedure . 37
4.2.1 Direct differentiation method 37
4.2.2 Adjoint method (parameter mode) 43
4.2.3 Adjoint method (mesh mode) 44

5 Mesh adaptation 49
5.1 Adaptation procedure . 49
5.2 Results NACA0012 - Lift and drag 56

5.2.1 M = 0.5 AoA = 0◦ . 57
5.2.2 M = 0.85 AoA = 2◦ 60
5.2.3 M = 1.50 AoA = 1◦ 64

6 Conclusions 69

Bibliography 73

A Goal function partial derivatives 77

B Python package for mesh adaptation 81

C Adjoint method subroutine 87

vi

LIST OF FIGURES

2.1 Convergence of adjoint system of equations for computation
of drag derivatives using RPM (NACA0012 - 4841 nodes tri-
angular mesh). 13

3.1 Normal vector orientation and interface states. 18

3.2 Block of cells involved in the computation of the flux Jacobian
at the highlighted interface 21

3.3 Structure of the code . 22

3.4 Block of cells involved in the computation of ∂RC
∂W

dW
dα 24

3.5 Structure of the code . 27

3.6 Only internal interface states marked with * are involved in
the definition of ω in cell A. 29

3.7 Structure of the code . 31

4.1 Detail of the mesh in proximity of the airfoil. 33

4.2 View of the mesh. 34

4.3 Density contour plot at steady state. 35

4.4 Mach contour plot at steady state. 35

4.5 Mesh rotation vanishing in the vicinity of the boundary (for
visualization purposes the value of dα in this picture is much
larger than the dα used). 36

4.6 Detail of the ±α shifted meshes near the trailing edge (dα =
5 · 10−5). 37

4.7
∂
(

∂u
∂y

)
∂W

dW
dα computed with DDM and FD respectively 39

4.8
∂(∂p

∂x)
∂W

dW
dα computed with DDM and FD respectively. 39

4.9 Density sensitivity computed with DDM and FD respectively. 40

4.10 x-momentum sensitivity computed with DDM and FD respec-
tively . 40

vii

List of Figures

4.11 Sensitivity of the 1st component of the flux balance with re-
spect to the flow, computed with DDM and FD respectively. 41

4.12 Sensitivity of the 2nd component of the flux balance with
respect to the flow, computed with DDM and FD respectively. 41

4.13 Comparison between partial sensitivity with respect to the
mesh of the flux balance and total sensitivity of the flux bal-
ance (1st component). 42

4.14 Comparison between partial sensitivity with respect to the
mesh of the flux balance and total sensitivity of the flux bal-
ance (2nd component). 42

4.15 First component of the adjoint vector related to drag. 45
4.16 First component of the adjoint vector related to lift. 45
4.17 Node displacement in shock region (respectively plus and mi-

nus dX). 46
4.18 Plot of dJdX vector for drag. 47
4.19 Plot of dJdX vector for lift. 47

5.1 Adaptation procedure. 50
5.2 All the quantities involved in the adaptation procedure. . . . 55
5.3 The initial mesh . 56
5.4 Subsonic case - 1st component of adjoint vector relative to lift. 57
5.5 Subsonic case - dJ

dX vector field. 57
5.6 Subsonic case - 1st adaptation step. 58
5.7 Subsonic case - 2nd adaptation step. 58
5.8 Subsonic case - Plot of minus the logarithm of the estimator. 59
5.9 Transonic case - 1st component of adjoint vector relative to lift. 60
5.10 Transonic case - dL

dX vector field. 60
5.11 Transonic case - 1st adaptation step. 61
5.12 Transonic case - 2nd adaptation step. 61
5.13 Transonic case - 3rd adaptation step. 62
5.14 Transonic case - Plot of minus the logarithm of the estimator. 63
5.15 Supersonic case - 1st component of the adjoint vector relative

to lift. 64
5.16 Supersonic case - dL

dX vector field. 64
5.17 Supersonic case - 1st adaptation step. 65
5.18 Supersonic case - 2nd adaptation step. 65
5.19 Supersonic case - 3rd adaptation step. 66
5.20 Supersonic case - Plot of minus the logarithm of the estimator. 67

viii

LIST OF TABLES

4.1 Direct differentiation - Drag sensitivity to parameter α. . . . 43
4.2 Direct differentiation - Lift sensitivity to parameter α. 43
4.3 Adjoint (parameter mode) - Drag sensitivity to parameter α. 44
4.4 Adjoint (parameter mode) - Lift sensitivity to parameter α. . 44
4.5 Adjoint (mesh mode) - Drag sensitivity to parameter α. . . . 48
4.6 Adjoint (mesh mode) - Lift sensitivity to parameter α. 48

5.1 Subsonic case - Number of nodes at each step. 59
5.2 Subsonic case - Average values of the estimator at each step. 59
5.3 Transonic case - Number of nodes at each step. 63
5.4 Transonic case - Average values of the estimator at each step. 63
5.5 Supersonic case - Number of nodes at each step. 67
5.6 Supersonic case - Average values of the estimator at each step. 67

ix

List of Tables

x

LIST OF SYMBOLS AND ACRONYMS

List of Symbols

α - Vector of design parameters.

β - Cell-centered contribution to Van Albada limiter.

ε - Tolerance for mesh adaptation.

η - Mesh adaptation estimator .

γ - Heat capacity ratio.

λ - Adjoint vector.

µinit - Initial metric.

µtarget - Target metric.

ω - Auxiliary variable in adjoint method code (parameter mode).

φ - Van Albada limiter.

ψ - Percentage of spectral radius below which Harten correction is applied.

ρ - Density.

θ - Mesh adaptation estimator (including characteristic length).

ζ - Upwind contribution to Van Albada limiter.

D - Drag.

E - Energy per unit mass.

F - Flux (interface quantity).

xi

List of symbols and acronyms

J - Vector of goal functions of interest.

L - Lift.

P+ - Interface state relative to right cell.

P− - Interface state relative to left cell.

Pb - Primitive variable at the borders of the domain.

P - Primitive variable.

R - Flux balance without division by the volume of the cell (cell centered
quantity).

S - Surface.

V - Vector.

Wb - Conservative variables at the borders.

W - Conservative variables.

X - Mesh nodes coordinates.

Ã - Roe average matrix.

f - Split factor.

k(2),k(4) - Dissipation coefficients in Jameson scheme.

nα - Number of design parameters.

nf - Number of goal functions of interest.

nn - Number of nodes.

p - Pressure.

s - Entropy.

u - Velocity component in x direction.

v - Velocity component in y direction.

w - Velocity component in z direction.

xii

List of Acronyms

elsA - Ensemble Logiciel de Simulation en Aérodinamique.

AoA - Angle of Attack.

CFD - Computational Fluid Dynamics.

CGNS - CFD General Notation System.

DDM - Direct Differentiation Method.

DSNA - Département Simulation Numérique des écoulements et Aéroacoustique.

FD - Finite Difference.

FDM - Flux Difference Method.

FVS - Flux Vector Splitting.

INRIA - Institut National de Recherche en Informatique et en Automa-
tique.

MUSCL - Monotone Upstream-centered Schemes for Conservation Laws.

NACA - National Advisory Committee for Aeronautics.

ONERA - Office National d’Études et de Recherches Aérospatiales.

RPM - Recursive Projection Method.

xiii

List of symbols and acronyms

xiv

ACKNOWLEDGEMENTS

The presesent thesis has been the last task of the Master Programme in
Aerodynamics at TUDelft and at the same time the most intense, interest-
ing and formative. I want to thank, in this brief section, all the people who
contributed to the accomplishment of this work and to my path towards
graduation.

First of all I want to thank infinitely Jacques Peter, my supervisor from
the DSNA department of ONERA, France, with whom I had the chance to
work on a daily basis. He gave continuous support throughout the whole
thesis period at ONERA, with precious suggestions to my work. He has
always been able to address me towards the most effective solution to prob-
lems and without his guidance it would have not been possible to obtain the
same result. I also want to thank Sébastien Bourasseau, a PhD student of
the DSNA department of ONERA, for his help and suggestions in the code
development work. Moreover, I want to thank the whole DSNA department
of ONERA in Chatillon (France) for making me feel at home and for keeping
the work atmosphere always pleasant and enjoyable.

I want to thank my supervisor from TUDelft, Richard Dwight, for giving me
the possibility to take part to such an interesting project, for the suggestions
and corrections to my thesis that he has always been available to give and
for his help in arranging the thesis defence. I also want to thank Dr. ir.
M.I. Gerritsma and Ir. I. Azijli for taking part to the graduation commitee.

I want to thank all my friends and all the amazing people that I met during
my Master Programme at TUDelft and during the international experiences
in France and Germany.

Most of all I want to thank my parents, for the huge support given to

xv

Acknowledgements

me during my student career and for giving me the possibility to accomplish
my goals. Without them this achievement could have not been possible and
it’s to them that this work is dedicated.

Giovanni Todarello

February 28, 2014
Pisa, Italy

xvi

ABSTRACT

In the present thesis report the author synthetizes 9 months of work at the
DSNA department of ONERA in Chatillon, France. The topic of the thesis
is goal oriented mesh adaptation with particular application to unstructured
grids and to finite volume methods. The motivation of the present work is
the application to unstructured meshes of a novel indicator for mesh adap-
tation, based on the total derivative of the goal function with respect to
mesh nodes coordinates, introduced by Peter et al. in [6], [7] and that has
been tested until now on structured grids only.
In chapter 1 a brief literature survey is presented, with the aim of introduc-
ing the theoretical background of the work and the state of the art of goal
oriented mesh adaptation techniques.
In chapter 2 the author gives a description of the gradient computation
module of the CFD software elsA, developed by ONERA, that has been the
main tool used for flow simulations and mesh adaptation and the core of the
code development work.
The description of the technical work carried out starts in chapter 3, in
which the author describes and explains the code implementation, that has
been necessary to compute the local indicator for mesh adaptation.
In chapter 4, the complete code verification chain is described, and the re-
sults of the procedure are summarized in terms of accuracy of the gradients
computed with respect to the results obtain with finite differences.
Finally, in chapter 5, the author presents the mesh adaptation chain devel-
oped and the results obtained after the application of the same adaptation
chain on three test-cases, subsonic, transonic and supersonic respectively.

xvii

Abstract

xviii

CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

Goal oriented mesh refinement techniques are of great importance in numer-
ical simulations for engineering applications. In many practical cases it is
sufficient to have a good estimate of an integral function of interest rather
than resolving with accuracy all the details. In particular in fluid dynam-
ics, the quantities of interest are often lift and drag and grid adaptation
techniques become important, resulting in considerable computational cost
saving.
There are mainly two fundamental types of grid adaptation methods: fea-
ture based methods and adjoint based methods. A clear and exhaustive
comparison of the two types has been presented by Balasubramanian and
Newman [1]. Feature based methods aim to refine the grid in physically
significant zones like shock waves and boundary layers, in order to improve
the accuracy of the flow in these areas [2, 3, 4]. The most common technique
of this type is gradient based grid adaptation, in which the idea is to refine
the grid more severely in zones with a high gradient of the solution. How-
ever, this technique may lead to erroneous results as shown in [5], in which
the shock position found by locally refining the mesh based on the pressure
gradient was different by the position found by refining the mesh globally.
Adjoint based grid adaptation techniques, based on the definition of the
dual problem, will be discussed more in detail in the following. The grid
adaptation technique adopted in the thesis belongs to this class of methods.
The objective of the thesis is to analyze the properties of the derivative of
the goal function with respect to mesh coordinates used as a local indica-
tor for goal oriented adaptation of unstructured grids in the framework of
Euler equations discretized using finite volume schemes. At present, this
indicator has been tested already on structured meshes [6, 7]. The idea and

1

Literature review

motivation of the thesis is to extend its application to unstructured grids,
where the adaptation capability can be exploited to full extent without the
limitations deriving from the structured grid constraint.

1.2 Goal oriented mesh adaptation for finite vol-
ume schemes

Adjoint based methods were developed during the 90’s in the framework
of finite element methods and are based on the duality property of the
adjoint solution [8, 9, 10, 11, 12]. This class of grid adaptation methods is
always preceded by an estimation of the local error on which the refinement
strategy will be based. The first important generalization of adjoint based
error estimation techniques from the limited field of finite element methods
to a broader framework was introduced by Pierce and Giles [13, 14].
Considering the well-posed linear differential problem:

Lu = f, (1.1)

defined on a domain Ω and complete with boundary conditions, where f is
a function of the Hilbert space L2(Ω) with inner product denoted by (., .),
the corresponding adjoint operator L∗ is defined by the relation:

(L∗λ, u) = (λ, Lu), (1.2)

in which λ is the solution of the equation:

L∗λ = g, (1.3)

and it’s called adjoint vector. Given the integral quantity J = (g, u), it can
be expressed equivalently as the inner product between λ and f :

(g, u) = (L∗λ, u) = (λ, Lu) = (λ, f). (1.4)

The error that is made by computing J with an approximation uh of the
linear differential problem is:

(g, u)− (g, uh) = (λ, f − Luh). (1.5)

This is a crucial relation, which is the basis of all adjoint based error es-
timation and grid adaptation techniques. It states that the error in the
computation of the integral function J (could be for example lift), due to
the numerical approximation uh ≈ u (could be for example a numerical ap-
proximation of the flow field), can be expressed as a weighted sum of the
residual components in the domain (the weights being the adjoint vector
components). However this expression is not so useful in this form, since

2

Goal oriented mesh adaptation for finite volume schemes

the exact adjoint solution of the vector has the same computational cost of
the exact solution of the primal problem. It is more convenient to express
the error in terms of an approximate adjoint vector λh as:

(g, u)− (g, uh) = (λh, f − Luh)︸ ︷︷ ︸
first order error

+ (λ− λh, f − Luh)︸ ︷︷ ︸
second order error

. (1.6)

The output value of the goal function J can be conveniently corrected:

Jcorr = J + (λh, f − Luh). (1.7)

The corrected value will converge, as the grid spacing tends to zero, with
double the order of convergence of the solution error. Pierce and Giles
provide results in [13] for the case of the 1D and 2D Poisson equation, both
for finite differences and for finite volumes discretizations.
Venditti and Darmofal proposed an extension of this method to non linear
functions with several applications for finite volume schemes, respectively
quasi-one dimensional flows [15], inviscid flows [16] and viscous flows [17].
The Venditti and Darmofal method requires the definition of two meshes: a
coarse, affordable mesh, that will be referred to with the subscript H and a
fine one, which is too expensive for the solution of the problem, for which
the subscript h will be used. The integral quantity of interest J , which is a
function of the field U , can be written using Taylor expansion as:

Jh(Uh) ≈ Jh(UHh) +
∂Jh
∂Uh

∣∣∣
UH
h

(Uh − UHh), (1.8)

in which Jh(UHh) represents the value of J obtained by interpolating on
the fine grid the field UH computed on the coarse grid. The finite volume
equations can be written in terms of residuals of the variables as:

Rh(Uh) = 0 = Rh(UHh) +

[
∂Rh
∂Uh

∣∣∣
UH
h

]
(Uh − UHh), (1.9)

and substituting for the term (Uh − UHh) in equation (1.8):

Jh(Uh) ≈ Jh(UHh)− ∂Jh
∂Uh

∣∣∣
UH
h

[
∂Rh
∂Uh

∣∣∣
UH
h

]−1

Rh(UHh). (1.10)

This equation can be rewritten in terms of the adjoint vector λ:

Jh(Uh) ≈ Jh(UHh)− λh|UH
h
Rh(UHh), (1.11)

in which λ is the solution of the adjoint problem:[
∂Rh
∂Uh

∣∣∣
UH
h

]T
λh|UH

h
=

[
∂Jh
∂Uh

∣∣∣
UH
h

]T
. (1.12)

3

Literature review

Equation (1.11) is similar to (1.5) and the information is exactly the same:
the error is a weighted sum of residuals and the adjoint vector components
represent the weights. However the solution of λ on the fine grid is too
expensive. A more useful expression can be found by solving the adjoint
problem (1.12) on the coarse grid and interpolating onto the fine grid:

Jh(Uh) ≈ Jh(UHh)− λHh Rh(UHh)−
(
λh|UH

h
− λHh

)
Rh(UHh). (1.13)

The term λHh Rh(UHh) is called by Venditti and Darmofal computable correc-
tion, since it can be easily computed by solving the problem on the coarse

grid. The term
(
λh|UH

h
− λHh

)
Rh(UHh) is called error in computable correc-

tion and all the grid adaptive strategy outlined is based on reducing this
term.
Dwight [18, 19] proposed a new method for the specific case of finite volume
methods in which the flux is computed with the Jameson scheme [20]. The
dissipation coefficients of the Jameson scheme, k(2) and k(4), whose values
determine the level of accuracy and stability of the scheme, are used to ob-
tain an estimation of the error in the computation of the goal function J :

k(2) dJ

dk(2)
+ k(4) dJ

dk(4)
, (1.14)

and the corrected value of the goal function becomes:

J − k(2) dJ

dk(2)
− k(4) dJ

dk(4)
. (1.15)

The grid adaptation strategy is based on a local indicator that is a measure
of local artificial dissipation. To this purpose, the dissipation coefficients are
defined independently on each cell and the local indicator for mesh adapta-
tion is:

k
(2)
(i)

dJ

dk
(2)
(i)

+ k
(4)
(i)

dJ

dk
(4)
(i)

, (1.16)

This quantity is a measure of the local sensitivity of the goal function J to the
coefficients of artifical dissipation. On a converged solution, the numerical
dissipation should vanish and the same should happen for the sensitivity of
the goal function with respect to the coefficients. The higher the value of the
spurious sensitivity, the higher the local error. The adjoint method is used
to compute the derivatives dJ

dk
(2)
i

and dJ

dk
(4)
i

in an efficient way. Considering

the state equation R(w, k) = 0, the Lagrangian quantity L can be defined
as:

L(w, k, λ) = J(w) + λTR(w, k), (1.17)

4

Goal oriented mesh adaptation for finite volume schemes

and its derivative with respect to the dissipation coefficient k is equal to the
derivative of the goal function J with respect to k:

dL

dk
=
dJ

dk
=

(
∂J

∂w
+ λT

∂R

∂w

)
dw

dk
+ λT

∂R

∂k
, (1.18)

and defining the adjoint vector λ through the relation:

∂RT

∂w
λ = −∂J

T

∂w
, (1.19)

the derivative of the goal function with respect to k can be rewritten as:

dJ

dk
= λT

∂R

∂k
. (1.20)

The local indicator proposed by Peter et al. [6, 7] is based on the deriva-
tive of the goal function with respect to mesh nodes coordinates dJ

dX . This
quantity is widely used in the context of sensitivity analysis [21] for shape
optimization to compute the gradient of the goal function with respect to
design parameters with the lowest memory effort, as proposed in [22]. The
reason why dJ

dX is also used for mesh adaptation is that it is an indication
of how the goal function is sensitive to a small change in mesh coordinates.
Relatively large values of dJ

dX at grid location X, compared to other zones
of the mesh, suggest that the goal function is particularly sensitive to the
mesh in X and that refinement is necessary. The adjoint method is used to
compute the quantity:

dJ

dX
=
∂J

∂X
+ λT

∂R

∂X
, (1.21)

after solving the adjoint equation (1.19).
The quantity computed through formula (1.21) is not directly used, since it
will present components that are orthogonal to the walls, e.g. orthogonal to
the airfoil. These components are not suitable for mesh optimization while
they are very important in the case of shape optimization. A projection of
the dJ

dX vector field is then necessary along the solid walls contours, and the

field P
(
dJ
dX

)
is obtained.

The results obtained by Peter et al. are very promising, even if the analysis
has been carried out on structured meshes only. They tested the behaviour
of two local indicators:

η =
∣∣∣∣∣∣P (dJ

dX

) ∣∣∣∣∣∣,
θ =

∣∣∣∣∣∣P (dJ
dX

) ∣∣∣∣∣∣ · r,
5

Literature review

the first one being the norm of P
(
dJ
dX

)
, while the second one is multiplied

by a characteristic length r, equal to half the radius of the inscribed circle at
each node. In the latter, the influence of the mesh size is considered. This is
because it might not be possible to identify an admissible node displacement
(considering the neighbouring nodes) that affects the value of J considerably
when the mesh is too fine. In other words, the mesh adaptation capability
is larger when the grid is coarse, even if the value of the first indicator is the
same and this larger capability is taken into account in the second indicator
through the characteristic length r. Peter et al. proved that the average
value of the second indicator considered decreases after local mesh adapta-
tion, while this is not always true for the average value of the first indicator.
Moreover, a heuristic grid adaptation criterion has been developed, called
line addition method [7]. This method, based on the addition of lines of
nodes in areas with large values of the indicator, has been applied and shows
good results for the adapted grids, on which the value of the goal function
gets significantly closer to the extrapolated correct value.
The work from Peter et al. is the basis of the research that has been carried
out at ONERA. The topic has been the investigation of the behaviour of
the dJ

dX local indicator for goal oriented mesh adaptation, with application
to unstructured grids. The extension to unstructured grids will constitute a
significant advantage in terms of adaptation capability, since the restriction
to preserve a structured mesh will not be present. The topic of grid adapta-
tion on unstructured meshes is addressed in details in [23, 24]. A complete
description and comparison of a-posteriori error estimation methods can be
found in [25].

6

CHAPTER 2

GRADIENT COMPUTATION METHODS

2.1 The elsA Opt module

The framework of the technical work carried out, has been the CFD software
elsA [26], developed by ONERA. One of the many functionalities of the code
elsA is the Opt module for the computation of gradients of functional outputs
such as lift and drag. The capability to compute gradients is fundamental
for a complete CFD chain in order to perform sensitivity analysis, [21], and
aerodynamic shape optimization. In this chapter, a summary of the gradient
computation methods implemented in the elsA Opt module will be given.
However, since the main topic of the present thesis is goal oriented mesh
optimization, it is important to clarify why the Opt module has been used.
The main reason for using the Opt module in the present work, is that
the discrete adjoint method for gradient computation, allows the user to
compute derivatives of the function J with respect to a large numbers of
design parameters and also with respect to the mesh nodes coordinates, dJ

dX ,
at an acceptable cost. As already discussed in chapter 1, this vector field
is mainly used in sensitivity analysis, in order to avoid the storage of the
mesh sensitivity, as explained in [22]. However, in the present thesis, the
vector field dJ

dX will be used only as a local indicator for mesh optimization.
Moreover, the Opt module has been very important in the framework of the
implementation for debugging purposes. As a matter of fact, it would have
been impossible, or at least extremely difficult and time consuming, to verify
the accuracy of the code for the computation of dJ

dX without the possibility
to compare with the other gradient computation methods described in the
following.
The most common methods for the computation of function gradients with
respect to design parameters are:

• Finite differences.

7

Gradient computation methods

• Direct differentiation method.

• Adjoint method.

About the last two, it is important to highlight that both a continuous and a
discrete form can be obtained, depending on the order in which the lineariza-
tion (for direct differentiation) or adjoint operation and the discretization
of the equations are done. While for the direct differentiation method only
the discrete form has been actually considered in literature, for the adjoint
method both forms have been used and compared, as discussed in detail
in [21], in which the pros and cons of the two approaches are listed. The
conclusion is that the discrete adjoint method is preferable mainly because
boundary conditions are intrinsically considered in this form and the consis-
tency with finite differences of the actual code is ensured. In the following,
only the discrete form of the direct differentiation and adjoint methods will
be considered.
Not only elsA but also external modules are used for the computation of
gradients. In particular it will be necessary to have an external module for
the computation of partial derivatives of the integral quantities of interest
with respect to the mesh nodes coordinates and to the flow field. In the
present thesis a set of Python scripts has been developed to this scope, an
extract of which is given in appendix A. More in general, dedicated software
are used at ONERA to this purpose, namely FFD72 for civil aircraft appli-
cation, [27], and X-OPT for turbomachinery applications.
In the following, the cell-centered flow variables will be referred to with W
and the mesh nodes coordinates with X. The flow variables at the bound-
aries of the domain are denoted by Wb and they are functions of the flow in
the cells close to the boundary and of the mesh coordinates at the boundary:

Wb = Wb(W,X). (2.1)

The equations of fluid dynamics, as they are coded in elsA, can be written
in the general form:

R(W,X) = 0, (2.2)

where R is the flux balance in each cell (summation of interface fluxes). It
is important to highlight that the coding of the term R in elsA does not
include the division by the volume of the cell. This remark will be valid
throughout the whole thesis when referring to the term R.
The vector of design parameters will be denoted by α and the size of this
vector (number of design parameters) is nα. The vector of goal functions
will be denoted by J and the size of this vector (number of goal functions)
is nf . The number of nodes will be denoted by nn.

8

Finite differences

2.2 Finite differences

The oldest method for gradient computation is finite differences. The only
advantage of this method is that it does not require any additional code
implementation, since the only quantities needed are the values of the func-
tions of interest computed on a pair of shifted meshes (±dα). The formula
for gradient computation by finite differences is the following:

dJk
dαi

=
Jk(W (α+ dαi), X(α+ dαi))− Jk(W (α− dαi), X(α− dαi))

2dαi
, (2.3)

in which Jk(W (α ± dαi), X(α ± dαi)) represent the values of the k-th goal
function computed on the meshes shifted of the quantities ±dαi respectively.
The shifted meshes are not directly available as inputs, while the mesh
sensitivities are. For this reason the shifted meshes have to be computed as:

X(α± dαi) = X(α)± dX

dαi
· |dαi|. (2.4)

The finite difference method requires 2nα flow computations for second or-
der accuracy, which is in general unacceptable, given the large number of
parameters involved in aerodynamic design. Moreover, determining the ap-
propriate value for |dαi| is not always trivial. Too small values may lead to
large rounding errors, while large values would deteriorate the accuracy of
the gradient computed through formula (2.3), [21].

2.3 Discrete direct differentiation method

The discrete direct differentiation method aims at computing the gradient
of the goal function by directly differentiating the discrete equations of the
scheme, (2.2). The formula that can be derived by derivating with respect
to the i-th component of the design parameters vector is:

∂R

∂W

dW

dαi
+
∂R

∂X

dX

dαi
= 0 i ∈ [1, nα]. (2.5)

The sensitivity of the k-th goal function Jk with respect to αi can be ex-
pressed as:

dJk
dαi

=
∂Jk
∂X

dX

dαi
+
∂Jk
∂Wb

dWb

dX

dX

dαi
+ (

∂Jk
∂W

+
∂Jk
∂Wb

dWb

dW
)
dW

dαi
. (2.6)

Substituting in (2.6) the dW
dαi

vector obtained from (2.5), the sensitivity can
be rewritten as:

dJk
dαi

=
∂Jk
∂X

dX

dαi
+
∂Jk
∂Wb

dWb

dX

dX

dαi
− (

∂Jk
∂W

+
∂Jk
∂Wb

dWb

dW
)
∂R

∂W

−1 ∂R

∂X

dX

dαi
. (2.7)

9

Gradient computation methods

2.4 Discrete adjoint method

2.4.1 Parameter mode

There are different ways of obtaining the adjoint system of equations. The
simplest one is to transpose equation (2.7):

dJk
dαi

T

=

(
∂Jk
∂X

dX

dαi

)T

+

(
∂Jk
∂Wb

dWb

dX

dX

dαi

)T

−
(
∂R

∂X

dX

dαi

)T (
∂R

∂W

)−T (
∂Jk
∂W

+
∂Jk
∂Wb

dWb

dW

)T

.

(2.8)

The definition of the adjoint vector λk is given by the following system of
equations:(

∂R

∂W

)T
λk = −

(
∂Jk
∂Wb

dWb

dW
+
∂Jk
∂W

)T
k ∈ [1, nf], (2.9)

and the goal function sensitivity can be rewritten as:

dJk
dαi

=
∂Jk
∂X

dX

dαi
+
∂Jk
∂Wb

dWb

dX

dX

dαi
+ λTk

∂R

∂X

dX

dαi
. (2.10)

A different way of obtaining the discrete adjoint equation is to add a null
term to equation (2.6), which is the product of the adjoint vector by (2.5):

dJk
dαi

=
∂Jk
∂X

dX

dαi
+
∂Jk
∂Wb

dWb

dX

dX

dαi
+

(
∂Jk
∂W

+
∂Jk
∂Wb

dWb

dW

)
dW

dαi
+λTk

(
∂R

∂W

dW

dαi
+
∂R

∂X

dX

dαi

)
,

(2.11)

that can be rewritten as:

dJk
dαi

=
∂Jk
∂X

dX

dαi
+
∂Jk
∂Wb

dWb

dX

dX

dαi
+

(
∂Jk
∂W

+
∂Jk
∂Wb

dWb

dW
+ λTk

∂R

∂W

dW

dαi

)
dW

dαi
+λTk

(
∂R

∂X

dX

dαi

)
.

(2.12)

If the adjoint vector is defined as in equation (2.9) the term multiplying the
flow sensitivity cancels out and the goal function sensitivity is again as in
(2.10).
The adjoint method requires the solution of nf systems of equations of the
type (2.9). This means that there is one adjoint vector per goal function,
and it makes sense to talk about adjoint vector related, for example, to lift
or drag. This also implies that every error estimation and grid adaptation
strategy based on the adjoint method is function specific.
In the case of direct differentiation instead, it will be necessary to solve nα
systems of equations of type (2.5), one per each design parameter αi. Since
in general in aerodynamic design problems nα >> nf , the adjoint method
is more convenient than the direct differentiation.

10

Solution of the linear systems

2.4.2 Mesh mode

The discrete adjoint method described in the previous section requires the
storage of the mesh sensitivity dX

dα , that is a large term of size 3nn×nα. An
interesting alternative is to compute instead only the total derivative of the
goal function with respect to the mesh nodes coordinates dJ

dX :

dJk
dX

=
∂Jk
∂X

+
∂Jk
∂Wb

dWb

dX
+ λTk

∂R

∂X
. (2.13)

The idea is to store dX
dα on an another computer with higher memory re-

sources and to compute the product dJ
dX

dX
dα afterwards.

Another difference is that, in the mesh mode approach, the term ∂R
∂X has

to be directly computed, while in the standard adjoint implementation de-
scribed in the previous section the term ∂R

∂X
dX
dα is computed by finite differ-

ences:

∂R

∂X

dX

dαi
≈ R [X (α+ dαi) ,W (α)]−R [X (α− dαi) ,W (α)]

2dαi
. (2.14)

It is worth noticing that the same idea cannot be applied to the direct
differentiation method. The corresponding expression would be:

∂R

∂W

dW

dX
+
∂R

∂X
= 0, (2.15)

and the term dW
dX is in general too large to be stored.

2.5 Solution of the linear systems

Both in the case of the direct differentiation method and in the case of
the adjoint method the solution of linear systems of equations involving
the Jacobian matrix ∂R

∂W is required, respectively equations (2.5) and (2.9).

The Jacobian ∂R
∂W is a large sparse matrix, so the direct inversion is not

a suitable approach and some iterative procedure is necessary. In elsA, a
Newton relaxation method is used.
In the case of direct differentiation, the Newton method can be written as:

∂R

∂W

(APP)(
(
dW

dα
)(l+1) − (

dW

dα
)(l)

)
= −

(
∂R

∂W

(EXA)dW

dα

(l)

+ (
∂R

∂X

dX

dα
)

)
,

(2.16)

and for the adjoint method:

∂R

∂W

T (APP) (
λ(l+1) − λ(l)

)
= −

(
∂R

∂W

T (EXA)

λ(l) +

(
∂J

∂Wb

dWb

dW
+

∂J

∂W

)T)
.

11

Gradient computation methods

(2.17)

The matrix ∂R
∂W

(APP)
is an approximate Jacobian, while ∂R

∂W

(EXA)
is the

exact one, that was simply noted ∂R
∂W in the previous sections. The subscript

l refers to the iteration index.

2.6 Recursive projection method

Equations (2.16) and (2.17) can be rewritten in a fixed point iteration form
as:

λ(l+1) = Fλ(l) + y. (2.18)

For example considering the adjoint method:

F =

(∂R

∂W

T (APP)
)−1(

∂R

∂W

T (APP)

− ∂R

∂W

T (EXA)
) ,

y = −

(∂R

∂W

T (APP)
)−1(

∂J

∂Wb

dWb

dW
+

∂J

∂W

)T ,
in which the matrix F is called iteration matrix.
The convergence of method (2.18) depends on the spectral radius of the
iteration matrix. In particular the method is convergent if the spectral
radius of matrix F is lower than 1:

ρ (F) < 1.

The recursive projection method of Shroff and Keller described in detail
in [28], is a stabilization procedure that aims at eliminating from the solu-
tion the unstable eigenmodes of the matrix F . The implementation of this
method, that was until now present for structured grids only, in the elsA
code, has been necessary for the practical solution of systems of equations
(2.5) and (2.9) in the present thesis, since convergence could not be obtained
by Newton relaxation.

12

Recursive projection method

Figure 2.1: Convergence of adjoint system of equations for computation
of drag derivatives using RPM (NACA0012 - 4841 nodes triangular mesh).

13

Gradient computation methods

14

CHAPTER 3

CODE DEVELOPMENT

3.1 Framework of the implementation

The formulas presented in chapter 2, and in particular the discrete equations
for fluid dynamics (2.2), have been written until now in a very general form.
The only restriction that has been done is related to the code elsA, that is
based on the finite volume method. In this section, the topic will be the
characterization of the equations presented in chapter 2 to a more specific
case, that has been the framework of the code implementation.
Only unstructured meshes have been considered in the implementation of
the code, as well as in the code verification and in the mesh adaptation
procedure described in chapter 4 and 5 respectively. The advantage of us-
ing unstructured meshes in the context of mesh adaptation is significant,
since the possibility to add or remove arbitrary nodes is much larger, the
only restriction being the capability of the code used to deal with strongly
anisotropic meshes and with the presence of small cells next to large ones.
In elsA, at every level of coding, the connectivity information of an un-
structured mesh is available in terms of left and right cell at each interface.
This is an important remark, that explains why all the loops that will be
described in the following sections, relative to the code implemented, have
been carried out on the interfaces of the cells and never on the cells.
The normal vector at each interface is always oriented from left to right as
illustrated in figure 3.1. It must be noted that the terms left and right do
not have a topological meaning in this case, but they’re just labels assigned
to the two adjacent cells at each interface, so that the orientation of the
normal vector is always properly defined.
The set of equations that will be considered in the following are the Euler
equations for inviscid flows. In integral conservative form, on a fixed volume

15

Code development

V surrounded by surface S, the equations can be written as:

∂

∂t

∫
V
U dV +

∫
S

~F · ~n dS = 0, (3.1)

where the vector of conservative variables U and the flux ~F ·~n are respectively
equal to :

U =

 ρ
ρ~u
ρE

 ~F · ~n =

 ρ (~u · ~n)
ρ~u (~u · ~n) + p~n

ρE (~u · ~n) + p (~u · ~n)

 ,
where ρ is the density, p is the pressure, ~u is the velocity vector and E is
the total energy per unit mass.
In order to close the system of 5 equations and 6 unknowns, a thermody-
namic relation is needed. In the present thesis, the assumption is that the
flow considered is an ideal gas, for which the following relation holds:

ρE =
p

γ − 1
+
ρ

2
|~u|2, (3.2)

where γ is the heat capacity ratio.
Moreover, it is necessary to exclude the possibility of the appearance of
expansion shocks in the solution, by considering the second law of thermo-
dynamics:

∂s

∂t
+ (~u · ~∇) s ≥ 0, (3.3)

where s represents the entropy.
From equation (3.1) it is possible to obtain the differential conservative form
of Euler equation by applying the divergence theorem:

∂U

∂t
+ ~∇ · ~F = 0, (3.4)

and in linear form:

∂U

∂t
+
∂Fx
∂U

∂U

∂x
+
∂Fy
∂U

∂U

∂y
+
∂Fz
∂U

∂U

∂z
= 0. (3.5)

The Euler equations have been discretized using a second order upwind
finite volume scheme. The most common upwind techniques are the FVS,
flux vector splitting, introduced by Van Leer in 1973 [29] and the FDM, flux
difference method, first proposed by Godunov [30], based on the solution
of a Riemann problem at each interface. A detailed explanation of the two
methods is given in [31, 32]. In the present thesis the second method has
been adopted, by means of the Roe approximate Riemann solver [33].
The Roe solver is based on the definition of an average Jacobian matrix Ã
that satisfies the following properties:

16

Framework of the implementation

• The eigenvectors are linearly independent.

• It satisfies the condition Ã(Ui+1 − Ui) = Fi+1 − Fi.

• As Ui+1 → Ui the average Roe matrix tends to the exact Jacobian
Ã→ ∂F

∂U .

The matrix Ã is obtained by substituting in the exact Jacobian expression
some average quantities between left and right interface states. Interface
states will be referred to, in the following, using a ± index, with the con-
vention that the normal vector at each interface is always directed from ”-”
to ”+” as illustrated in figure 3.1. Since the orientation of the normal vec-
tor in elsA is always from the cell labelled as ”left” to the cell labelled as
”right”, it follows that the ”-” interface states are relative to left cells and
”+” interface states are relative to right cells.
For the definition of the averages that are needed to build matrix Ã, the
auxiliary variable R is introduced:

R =

√
ρ+

ρ−
,

and the Roe averages are:

ρ̄ = Rρ− ū =
u+R+ u−

1 +R
v̄ =

v+R+ v−

1 +R

w̄ =
w+R+ w−

1 +R
ē =

1

2

√
ū2 + v̄2 + w̄2 h̄ =

h+R+ h−

1 +R

c̄ =
√

(γ − 1)(h̄− ē).

The eigenvalues of the Roe’s matrix are then:

λ̄(1) = λ̄(2) = λ̄(3) = ūn,

λ̄(4) = ūn + c̄,

λ̄(5) = ūn − c̄,

where ūn is the component of the average velocity vector ~̄u:

~̄u =

 ū
v̄
w̄

 ,

in the direction of the surface normal ~n :

ūn = ~̄u · ~n.

17

Code development

L

R

n

+
−

Figure 3.1: Normal vector orientation and interface states.

The Harten correction is applied in order to prevent non-physical shocks
from occurring. The correction implemented in the code is based on the
value ψ, which represents a percentage of the Roe matrix spectral radius:

|λ̄i| =

{
|λ̄i| if |λ̄i| > ψ ,
λ̄i

2
+δ2

2δ if |λ̄i| < ψ .
(3.6)

The Roe flux can be written in different equivalent forms, in terms of the
right eigenvectors r(j) of the Roe matrix Ã and the corresponding eigenvalues
λj (wave speeds) and characteristic strengths Γj , [34]:

FROE =

 ~F− · ~n+

(−)∑
j

λ(j)Γ(j)r(j)

S, (3.7)

FROE =

 ~F+ · ~n−
(+)∑
j

λ(j)Γ(j)r(j)

S, (3.8)

FROE =
1

2

(~F+ + ~F−) · ~n−
∑
j

|λ(j)|Γ(j)r(j)

S, (3.9)

18

Framework of the implementation

in which
∑(−) and

∑(+) indicate summation over negative and positive
wave speeds respectively.
In the code elsA, the fluxes are always defined in terms of primitive variables.
For this reason, in the following, all the interface variables, directly involved
in the computation of the fluxes, will be expressed in primitive variables
denoted with P .

3.1.1 MUSCL 2nd order scheme

The Roe flux scheme considered has been extended to 2nd order using
MUSCL extrapolation formula, [35, 36, 37, 38, 39]. It consists in com-
puting left and right interface states by means of a limiting function. In the
present thesis, the Van Albada limiter,[40], has been considered, so that the
± interface states can be written, in primitive variables, as:

P− = Pl +
1

2
φl, (3.10)

P+ = Pr −
1

2
φr, (3.11)

where φl,r represent the Van Albada limiters in left and right cell respec-
tively.
The Van Albada limiter is a function of a cell centered contribution β and
an upwind contribution ζ.

φl(βl, ζl) =
β2
l ζl + ζ2

l βl
β2
l + ζ2

l

, (3.12)

φr(βr, ζr) =
β2
r ζr + ζ2

rβr
β2
r + ζ2

r

. (3.13)

The cell centered contribution, which is the same for left and right cell, is
just the difference between the value of the primitive variable in the left and
right cell:

βl = βr = Pr − Pl. (3.14)

The upwind contribution of the left cell (relative to the ”-” interface state)
and of the right cell (relative to ”+” interface state) to the limiter, is the
scalar product of the gradient times the vector ∆~xc from the left to the right
cell center.

ζl =
∂Pl
∂x

∆xc +
∂Pl
∂y

∆yc +
∂Pl
∂z

∆zc, (3.15)

19

Code development

ζr =
∂Pr
∂x

∆xc +
∂Pr
∂y

∆yc +
∂Pr
∂z

∆zc. (3.16)

The gradient of each primitive variable P (and in general the gradient of
a scalar quantity) is computed in elsA, for unstructured meshes, with the
following formula valid in each interior cell:

dP

dxi
=

1

V

∑
j

(P + Pj)

2
Sjni,j , (3.17)

where the index i refers to the gradient component and the index j refers to
each of the interfaces of the cell considered. The quantity Pj in the formula
above is the value of the variable P in the j-th neighbouring cell. The
correction for border cells at the boundary interfaces consists in substituing
the contribution of the average between the border cell value and the ghost
cell value with the boundary interface value Pb, that depends on the type of
boundary condition:[

Pb −
1

2
(P + Pghost)

]
S · n.

By looking at figure 3.2, that represents a block of a simple 2D unstructured
triangular mesh, we see that the interface state ” - ”will depend on the values
in cells L, R, J1 and J2, while interface state ” + ” will depend on the values
in L, R, H1 and H2. More in general the state ” - ” depends on the value
of P in the left cell and all its neighbours, and state ” + ” depends on the
value of P in the right cell and neighbours. Since the flux is function of
P+ and P− the whole block represented in figure 3.2 will be involved in the
value of the flux at the highlighted interface.
On the border interfaces, left and right states are the same and are equal to
the value of the primitive variables at the border:

P+ = P− = Pb.

3.2 Implementation of discrete gradient computa-
tion methods

3.2.1 Direct differentiation method

As already discussed in detail in the section related to gradient computation
techniques, the direct differentiation method aims at computing the gradient
of the goal functions Jk:

dJk
dαi

=
∂Jk
∂X

dX

dαi
+
∂Jk
∂Wb

dWb

dX

dX

dαi
+

(
∂Jk
∂W

+
∂Jk
∂Wb

∂Wb

∂W

)
dW

dαi
, (3.18)

20

Implementation of discrete gradient computation methods

J1

J2
H1

H2

− +

R
L

Figure 3.2: Block of cells involved in the computation of the flux Jacobian
at the highlighted interface

based on the direct solution of the systems of equation:

∂R

∂W

dW

dαi
= − ∂R

∂X

dX

dαi
i ∈ [1, nα]. (3.19)

In practice the systems will be solved using a Newton relaxation method:

∂R

∂W

(APP)
(
dW

dαi

(l+1)

− dW

dαi

(l)
)

= −

(
∂R

∂W

(EXA)dW

dαi

(l)

+
∂R

∂X

dX

dαi

)
. (3.20)

In figure 3.3 a flowchart is presented summarizing the procedure followed
in elsA for the computation of the gradient by direct differentiation. The
block filled in red is the one that has been implemented, adding a new class
to the rest of the already existing code.
The main class is OptLinParam, an istance of which is created once the
user declares that he is going to use this method for gradient computation.
After that, the three classes below are created. The one on the left, OptLin-
GatherGradients, is responsible for gathering the different terms of equation
(3.18). All the partial derivatives of the goal function with respect to the

21

Code development

OptLinParam.C

OptLinSolver.COptLinGatherGradients.C OptdResdControl.C

OptLineqMeanFlowU.C OptLineqMeanFlow.C

OptLinRoeO1U.C OptLinRoeO2U.C

Unstructured

Structured

Order1

Order2

Figure 3.3: Structure of the code

22

Implementation of discrete gradient computation methods

flow and mesh coordinates are not computed using elsA, but through exter-
nal modules. As already mentioned, in this thesis a set of Python scripts
has been developed to this purpose, and a brief extract is reported in ap-
pendix A. The mesh sensitivity is given as input to elsA before starting the
computation. The derivatives of the boundary values Wb with respect to
the mesh dWb

dX and the flow dWb
dW are computed in a different module of elsA

and are dependent on the type of boundary condition. In the end, the only
term to be computed inside the module Opt of elsA is the flow sensitivity
dW
dα through the solution of system (3.20). The class OptLindResdControl

is responsible for the computation of the term ∂R
∂X

dX
dα in equation (3.20) by

finite differences:

∂R

∂X

dX

dαi
≈ R[X(α+ dαi),W (α)]−R[X(α− dαi),W (α)]

2dαi
, (3.21)

which means that the initial mesh is shifted according to the quantities dα
and −dα and the flux balance is computed respectively on the two meshes.
Since only the mesh sensitivity dX

dα is given as input to the code, while the
two shifted meshes are not, their coordinates have to be computed as:

X(α± dαi) = X(α)± dX

dαi
· |dαi|. (3.22)

The focus of the implementation has been though the OptLinSolver class,
that manages the operations for the solution of the system (3.20). The

matrix ∂R(APP)

∂W is already coded in elsA and there is no need to make any
adaptation for the second order flux. The term of equation (3.20) that has
been coded for second order flux is instead:(

∂R

∂W

(EXA)dW

dα

(l)
)
, (3.23)

in which the matrix ∂R
∂W

(EXA)
is the exact Jacobian of the flux balance (cell

centered variable) with respect to aerodynamic variables and l is the iter-
ation index of the Newton method. This operation is carried out after the
creation of the objects OptLineqMeanFlow or OptLineqMeanFlowU depend-
ing on the type of domain considered (structured or unstructured). In the
present thesis only unstructured domains have been considered. The last
object to be created is the flux object that is specific for the type of flux
used and in this case it will be the 2nd order Roe flux scheme previously
described in this chapter. At this level of the code the new class OptLin-
RoeO2U has been embedded as shown in figure 3.3.
In order to explain the implementation of the term (3.23), it is convenient
to take in consideration one single row of the flux balance Jacobian matrix,
corresponding to the row vector of derivatives of the flux balance in cell C

23

Code development

C

N

N

N

c

c

c

n

n

n

n

n

n

Figure 3.4: Block of cells involved in the computation of ∂RC
∂W

dW
dα .

represented in figure 3.4. This row vector will have 10 non null components
corresponding to the indices of the cells in figure 3.4, representing the block
of cells involved in the computation of ∂RC

∂W
dW
dα . Since the connectivity in-

formation in elsA is available in terms of left and right cell indices at each
interface, it is convenient to implement a code based on a loop on the in-
terfaces. To this purpose the product ∂RC

∂W
dW
dα can be rewritten in terms of

interface variables, namely the flux derivatives:

∂RC
∂W

dW

dα
=
∑
c

∂Fc
∂W

dW

dα
, (3.24)

where the indices C and c refer to figure 3.4.
The implementation will consist in the computation of the Jacobian of the
flux (interface variable) at each interface:

(
∂Fc
∂W

dW

dα

)
=

∂Fc
∂P−

∑
j

∂P−

∂Pj

dPj
dWj

dWj

dα

+
∂Fc
∂P+

[∑
h

∂P+

∂Ph

dPh
dWh

dWh

dα

]
.

(3.25)

The index j refers to the subset of cells that have an influence on the inter-
face value P−, that are the left cell and all its neighbouring cells. Similarly
the index h refers to the subset of cells that influence the value P+, that are
the right cell and all its neighbouring cells.
This approach is absolutely general and is also valid for structured meshes.

24

Implementation of discrete gradient computation methods

The difference between structured and unstructured meshes is the explicit
expression of the interface states, since for unstructured meshes, the gradi-
ent of the primitive variables (and in particular the value of the gradient
in left and right cell) is involved in the definition of the interface variables
through the Van Albada limiting function (see previous section).
The complexity of the implementation consists in the fact that, while loop-
ing on each interface, it is only possible to identify indices and quantities
related to left and rigth cell and there is no further connectivity information
regarding the block of surrounding cells. Considering figure 3.2 for exam-
ple, and reminding the formulas (3.10) and (3.12), the derivative of the P−

interface state with respect to the cell centered variable PJ1 can be written
as:

∂P−

∂PJ1
=

1

2

[
∂φL
∂ζL

dζL
dPJ1

+
∂φL
∂βL

dβL
dPJ1

]
,

and reminding formula (3.15) and (3.17)

∂P−

∂PJ1
=

1

2

∂φL
∂ζL

[
SJ1

2VL

(
n(x,J1)∆xc + n(y,J1)∆yc + n(z,J1)∆zc

)]
.

In this case, while looping on the interface highlighted in figure 3.2, the
values SJ1, n(x,J1), n(y,J1), n(z,J1) would not be available.
The best way to overcome this obstacle is to do a two-steps implementation,
by looping on the interfaces two times. During the first loop, the goal
will be to store a cell centered quantity that contains the information of
the contribution of the surrounding cells. Only after doing this, it will be
possible to compute the exact Jacobian with a second loop on interfaces.
The terms of equation (3.25) can be rearranged after defining the partial
sensitivity (only flow variables dependence) of primitive variables gradients
with respect to the design parameter:

∂(∇P)

∂W

dW

dα
=

1

V

∑
j

[
1

2

(
dP

dW

dW

dα
+
dPj
dWj

dWj

dα

)
Sjnj

]
,

that should not be confused with the total sensitivity (flow variables and
mesh dependence):

d(∇P)

dα
=
∂(∇P)

∂W

dW

dα
+
∂(∇P)

∂X

dX

dα
. (3.26)

Now formula (3.25) can be rewritten in a more general form as follows:

∂Fc
∂W

dW

dα
=

∂Fc
∂P±

∂P±

∂(∇P)L,R

[
∂(∇P)L,R

∂W

dW

dα

]
+
∂Fc
∂P±

∂P±

∂PL,R

dPL,R
dWL,R

dWL,R

dα
.

(3.27)

25

Code development

This expression is useful because it includes only terms related to the left
and right cell. Indeed the contribution of the surrounding cells is hidden
inside the terms ∂(∇P)

∂W
dW
dα , that will be computed during the first loop.

Once this terms are stored, a second loop on the interfaces is carried out
in order to finalize the computation of (3.27). The cost paid for the much

easier implementation is the memory needed to store the terms ∂(∇P)
∂W

dW
dα ,

corresponding to 15 scalar fields.

3.2.2 Discrete adjoint method (parameter mode)

The discrete adjoint method is based on the definition of the adjoint vector:

∂R

∂W

T

λk = −
(
∂Jk
∂Wb

dWb

dW
+
∂Jk
∂W

)T
k ∈ [1, nf], (3.28)

and, as already illustrated in chapter 1, after the solution of this systems of
equation we can rewrite the goal functions sensitivities as:

dJk
dαi

=
∂Jk
∂X

dX

dαi
+
∂Jk
∂Wb

dWb

dX

dX

dαi
+ λTk

∂R

∂X

dX

dαi
. (3.29)

Similarly to the direct differentiation method, the systems of equation (3.28)
can be solved using the Newton relaxation method. In this case:

∂R

∂W

T (APP) (
λ

(l+1)
k − λ(l)

k

)
= −

[
∂R

∂W

T (EXA)

λ
(l)
k +

(
∂Jk
∂Wb

dWb

dW
+
∂Jk
∂W

)]
.

(3.30)

In figure 3.5 the structure of the code of the adjoint method (parameter
mode) is presented. The main object OptAdjParam is provided with two
methods. The method gather, in which the terms of equation (3.29) are
gathered. In order to do this, it is necessary to create an object of type
OptdResdControl for the computation of ∂R

∂X
dX
dα by finite differences. The

method solve, for the solution of system (3.30), that provides the adjoint
vector λ. The scheme is very similar to the one presented for the direct
differentiation method, with the only difference that in this case the ob-
ject of type OptAdjdFunctiondAero is created to gather the aerodynamic
partial derivatives of the goal function appearing in the right hand side of
(3.30). The focus of my work has been instead the creation of the new class
OptAdjRoeO2U for the computation of the term:

∂R

∂W

T (EXA)

λ(l) = λT (l) ∂R

∂W

(EXA)

. (3.31)

In this case, in order to explain the implementation, it is convenient to con-
sider one single column of the flux balance Jacobian matrix, representing the

26

Implementation of discrete gradient computation methods

OptAdjParam.C

OptAdjSolver.C

OptAdjParamGather.C

OptdResdControl.C OptAdjdFunctiondAero.C

OptAdjeqMeanFlowU.C OptAdjeqMeanFlow.C

OptAdjRoeO1U.C OptAdjRoeO2U.C

Unstructured

Structured

Order1

Order2

Figure 3.5: Structure of the code

27

Code development

column vector of derivatives of the flux balance with respect to the flow vari-
ables of cell C. This vector will have 10 non null components, corresponding
to the flux balances of each cell of the block represented in figure 3.4. For
this reason the product λT ∂R

∂WC
will involve the adjoint vector in each cell of

the block. Also in this case, it is convenient to express this quantity in term
of fluxes rather than flux balances, since the loop has to be carried out on
interfaces where fluxes are available rather than flux balances:

λT
∂R

∂WC
=
∑
c,n

∆λc,n
∂Fc,n
∂WC

, (3.32)

where the indices c and n refer to figure 3.4 and ∆λ is the difference of the
adjoint components of left and right cells at each interface (always left minus
right, see figure 3.1). Also in this case an implementation based on one single
loop on the interfaces is not possible. With two loops on the interfaces it
is again possible, similarly to the case of the direct differentiation code, to
store a cell centered quantity containing the information of the contribution
of the furthest cells. In this case the quantity that has been stored does not
have a clear physical interpretation as in the case of the gradient sensitivity
for the direct differentiation method. It can be expressed as:

ωA =
∑
i

∆λi
∂Fi
∂P ∗

∂P ∗

∂(∇P)A
, (3.33)

where the superscript * refers to internal interface states of each cell, as
illustrated in figure 3.6 for cell A.
After the definition of ω, equation (3.32) can be rewritten as:

λT
∂R

∂WC
=
∑
c

(
∆λc

∂Fc
∂WC

+ ωN · ~Sc
)
, (3.34)

that can be easily computed during the second loop on interfaces. A part of
Fortran code implemented for the computation of the term λT ∂R

∂X is given
in appendix C.

3.2.3 Discrete adjoint method (mesh mode)

The last part of code implemented in the framework of the elsA Opt module
has been the adjoint method in mesh mode, for the computation of dJ

dX ,
the total derivative of the goal function with respect to the mesh nodes
coordinates:

dJk
dX

=
∂Jk
∂X

+
∂Jk
∂Wb

dWb

dX
+ λTk

∂R

∂X
. (3.35)

The structure of the code is presented in figure 3.7. The computation of the
adjoint vector λ is carried out in the same subroutines used for the standard

28

Implementation of discrete gradient computation methods

*

*

*

A

i

i

i

Figure 3.6: Only internal interface states marked with * are involved in
the definition of ω in cell A.

adjoint method (parameter mode), described in the previous section. The
object OptAdjMeshGather will require in this case the computation of the
derivative of the flux balance with respect to mesh nodes coordinates, ∂R

∂X ,
that is dependent on the order of the scheme. For this reason the new class
OptAdjMeshRoeO2U has been created for second order Roe flux.
The Fortran subroutines called by this new class compute the partial deriva-
tive of the flux balance ∂R

∂X as a sum of flux derivatives on the interfaces of
each cell:

∂R

∂X
=
∑
j

∂Fj
∂X

. (3.36)

Each term
∂Fj

∂X is a sum of different contributions: first order terms, that
include the direct dependence of the flux balance on the surface vector and
second order terms, that include the dependence of the interface states on ζ,
the upwind contribution to the Van Albada limiter, see equations (3.15) and
(3.16), that in turn depends on the mesh nodes coordinates. This is clear
considering the dependence of the gradient of the primitive variables, see
equation (3.17), on the volume and the surfaces of the cell, that are directly
related to the coordinates of the nodes. The complete expression of ∂F

∂X can

29

Code development

be written as:

∂F

∂X
=

∂F

∂~S

d~S

dX︸ ︷︷ ︸
1st order terms

+
∂F

∂P±
∂P±

∂ζ

[
∂ζ

∂V

dV

dX
+
∂ζ

∂~S

d~S

dX
+

∂ζ

∂∆~xc

d∆~xc
dX

]
︸ ︷︷ ︸

2nd order terms

. (3.37)

For cells that are adjacent to the boundary there is one more contribution,
because in this case the expression of the gradient in the cell will include
the boundary state Wb, that is in general dependent on the orientation of
the normal vector at the boundary interface. This contribution will be:

∂F

∂P±
∂P±

∂ζ

∂ζ

∂Wb

dWb

dX
. (3.38)

For the computation of the second order terms of equation (3.37), a first
loop on interfaces is needed in order to store an array containing the in-
dices of the nodes and the indices of the interfaces belonging to each cell of
the mesh. The second step is the computation of the elementary matrices
dV
dX , d~S

dX and d∆ ~xc
dX . Finally, the actual computation of the terms of equation

(3.37) is carried out.
Given the complexity of the computation of the second order terms of equa-
tion (3.37), the code developed for the adjoint method in mesh mode is able
to handle 2D meshes only. On the other hand, the codes developed for the
direct differentiation method and for the adjoint method in parameter mode
are as general as possible and able to cope with 3D meshes as well.

30

Implementation of discrete gradient computation methods

OptAdjMesh.C

OptAdjSolver.C

OptAdjMeshGather.C

OptAdjMeshRoeO2U.C OptAdjdFunctiondAero.C

OptAdjeqMeanFlowU.C OptAdjeqMeanFlow.C

OptAdjRoeO1U.C OptAdjRoeO2U.C

Unstructured

Structured

Order1

Order2

Figure 3.7: Structure of the code

31

Code development

32

CHAPTER 4

CODE VERIFICATION

4.1 Test case NACA0012

4.1.1 Mesh

The test case that has been used for the verification of the code is a NACA0012.
The characteristics of the mesh are the following:

• 4787 nodes

• 9027 triangular elements

• Boundaries are located at 8 chord lengths upwind of the airfoil and 10
chord lengths downwind of the airfoil.

CoordinateX

C
o
o
r
d
in
a
te
Y

0 0.2 0.4 0.6 0.8 1
0.4

0.2

0

0.2

0.4

Figure 4.1: Detail of the mesh in proximity of the airfoil.

33

Code verification

X

Y

Z

Figure 4.2: View of the mesh.

4.1.2 Flow

The flow conditions that have been considered for the verification test are
Mach = 0.85 and AoA = 1◦.
The steady state solution has been found with the code elsA using an im-
plicit backward Euler scheme. The type of flux is the second order MUSCL
extension of Roe flux described in the previous chapter.
The mesh considered is suitable for the verification of the code implemented,
due to the low number of nodes. However it is not fine enough to compute in
an accurate way the transonic flow considered. For this reason the flow has
been previously computed and checked using a 513 × 513 nodes structured
mesh. After this step, the steady state computation has been carried out on
the unstructured mesh in order to proceed with the code verification.
The characteristics of the flow are presented in figures 4.3 to 4.4.

34

Test case NACA0012

(a) Unstructured mesh for code verifica-
tion (4787 nodes). (b) Structured mesh (513× 513 nodes).

Figure 4.3: Density contour plot at steady state.

(a) Unstructured mesh for code verifica-
tion (4787 nodes). (b) Structured mesh (513× 513 nodes).

Figure 4.4: Mach contour plot at steady state.

4.1.3 Parameter α

The parameter α with respect to which the gradients are computed has
been chosen as a simple rotation around the leading edge. In order to keep
the outer boundary unaltered, the imposed transformation has to gradually
vanish while approaching it, as shown in figure 4.5
Being ρ the distance to the leading edge, the transformation can be written:

35

Code verification

x(α) =

x cos(α) + y sin(α) if ρ ≤ 4 ,

(x cos(α) + y sin(α)− x)(1
4ρ

3 − 15
4 ρ

2 + 1
18ρ) if 4 ≤ ρ ≥ 6 ,

x if ρ ≥ 6 .

y(α) =

−x sin(α) + y cos(α) if ρ ≤ 4 ,

(−x sin(α) + y cos(α)− y)(1
4ρ

3 − 15
4 ρ

2 + 1
18ρ) if 4 ≤ ρ ≥ 6 ,

y if ρ ≥ 6 .

CoordinateX

C
o
o
r
d
in
a
te
Y

5 0 5

5

0

5

Figure 4.5: Mesh rotation vanishing in the vicinity of the boundary (for
visualization purposes the value of dα in this picture is much larger than
the dα used).

36

Verification procedure

CoordinateX

C
o
o
r
d
in
a
te
Y

0.99 1 1.01

0.01

0

0.01

Figure 4.6: Detail of the ±α shifted meshes near the trailing edge (dα =
5 · 10−5).

The shifted meshes will be used to compute finite differences values and also
to compute the mesh sensitivity to the parameter α, dX

dα , that is one of the
needed file inputs for gradient computation in elsA.

4.2 Verification procedure

4.2.1 Direct differentiation method

The validity and the precision of the output of the direct differentiation
method has been checked by means of comparison with finite differences.
Several quantities of interests have been checked including:

• Aerodynamic part of primitive variable gradients sensitivities

• Sensitivities of conservative variables

• Aerodynamic part of flux and total flux sensitivity

37

Code verification

• Sensitivity of goal functions

As shown in chapter 3, the aerodynamic part of the flux derivative can be
written as:

∂F

∂W

dW

dα
=

∂F

∂P±
∂P±

∂(∇P)L,R

[
∂(∇P)L,R

∂W

dW

dα

]
+
∂F

∂P±
∂P±

∂PL,R

dPL,R
dWL,R

dWL,R

dα
.

(4.1)

The array ∂(∇P)
∂W

dW
dα is stored as a cell-centered quantity during a first loop

on the interfaces of the mesh. The advantage of this type implementation,
apart from those explained in the previous chapter, is that this quantity
can be checked using finite differences in the code verification stage. It can
be seen, in each cell, as the change of the gradient of primitive variables
produced by the change of the flow due to the shifting of the mesh, while
the mesh itself remains unaltered:

∂(∇P)

∂W

dW

dα
=
∇P [X(α),W (α+ dα)]−∇P [X(α),W (α− dα)]

2dα
. (4.2)

The expression (4.2) indicates that, in order to compute this quantity by
finite differences, it will be sufficient to compute the gradient of the solution
on the nominal mesh X(α), considering the steady state solutions obtained
on the shifted meshes. On the other hand, from the gradient computation
routine, it will be possible to have this quantity directly, that is computed
and stored during the first loop on interfaces, as explained in chapter 3.
The comparison is plotted in figures 4.7 and 4.8 for two different gradient
components.
The second step of the verification takes place once the system of equations:

∂R

∂W

(APP)
(
dW

dα

(l+1)

− dW

dα

(l)
)

= −

(
∂R

∂W

(EXA)dW

dα

(l)

+
∂R

∂X

dX

dα

)
, (4.3)

is definitively solved. At this point, it will be possible to compare the mesh
sensitivity computed in the direct differentiation routine with the finite dif-
ferences obtained from the shifted meshes:

dW

dα
=
W (α+ dα)−W (α− dα)

2dα
. (4.4)

The results are shown in figures 4.9 and 4.10.
The last check has been carried out on flux balance derivatives. In partic-
ular, the term ∂R

∂W
dW
dα computed in the direct differentiation code has been

compared also in this case with finite differences. The right quantity to com-
pare with is the flux balance computed on the nominal mesh, but taking the
flow solutions computed on the shifted meshes:

∂R

∂W

dW

dα
=
R [X(α),W (α+ dα)]−R [X(α),W (α− dα)]

2dα
. (4.5)

38

Verification procedure

Figure 4.7:
∂
(

∂u
∂y

)
∂W

dW
dα computed with DDM and FD respectively .

Figure 4.8:
∂(∂p

∂x)
∂W

dW
dα computed with DDM and FD respectively.

39

Code verification

Figure 4.9: Density sensitivity computed with DDM and FD respectively.

Figure 4.10: x-momentum sensitivity computed with DDM and FD re-
spectively .

40

Verification procedure

Figure 4.11: Sensitivity of the 1st component of the flux balance with
respect to the flow, computed with DDM and FD respectively.

Figure 4.12: Sensitivity of the 2nd component of the flux balance with
respect to the flow, computed with DDM and FD respectively.

41

Code verification

Figure 4.13: Comparison between partial sensitivity with respect to the
mesh of the flux balance and total sensitivity of the flux balance (1st com-
ponent).

Figure 4.14: Comparison between partial sensitivity with respect to the
mesh of the flux balance and total sensitivity of the flux balance (2nd com-
ponent).

42

Verification procedure

The results are shown if figures 4.11 and 4.12.
Moreover, the total derivative of the flux balance with respect to the pa-
rameter α has been proven to be equal to zero, as it must be according
to equation (3.19). By comparing it with the partial sensitivity of the flux
balance with respect to the mesh only, ∂R

∂X
dX
dα , a decrease of 4 orders of mag-

nitudes has been observed, as illustrated in figures 4.13 and 4.14.
The final verification is the value of the sensitivity of lift and drag with
respect to the parameter α. The result and the comparison with finite dif-
ferences are shown in tables 4.1 and 4.2, in which the values of the partial
sensitivities (only mesh or flow dependency respectively) and of the total
sensitivity are presented. However, it is important to notice that the code
developed is only responsible for the computation of the partial sensitivities
with respect to the flow, ∂D

∂W
dW
dα and ∂L

∂W
dW
dα in tables 4.1 and 4.2.

Table 4.1: Direct differentiation - Drag sensitivity to parameter α.

Finite differences Direct differentiation
∂D
∂X

dX
dα 1.760e-01 1.760e-01

∂D
∂W

dW
dα 2.933e-01 2.932e-01

dD
dα 4.693e-01 4.692e-01

Table 4.2: Direct differentiation - Lift sensitivity to parameter α.

Finite differences Direct differentiation
∂L
∂X

dX
dα -3.008e-02 -2.918e-02

∂L
∂W

dW
dα 7.307e+00 7.307e+00

dL
dα 7.278e+00 7.278e+00

4.2.2 Adjoint method (parameter mode)

The verification of the discrete adjoint method has been based on the com-
parison with the direct differentiation method, after it had already been
validated.
Since the code developed for adjoint method performs the computation of
the term:

λT
∂R

∂W
,

this will be the object of the verification. An efficient way of doing it, is the
cross check of the following equality:

λ̄T ·
(
∂R

∂W

dW

dα

)
ddm

=

(
λ̄T

∂R

∂W

)
adj

· dW
dα

, (4.6)

43

Code verification

in which λ̄ and dW
dα are two arbitrarily chosen vectors. On the left hand

side, the term between brackets is computed using the previously verified
direct differentiation method routine and is then scalarly multiplied by the
arbitrary vector λ̄. On the right hand side, instead, the term in brackets
is computed in the adjoint method routine and must give exactly the same

result when is multiplied by dW
dα .

This cross check has been carried out for different choices of the two arbitrary

vectors. For example, in the case in which dW
dα is taken as the real solution

of system (3.20) and λ̄ as the real solution of system (3.30) relatively to
drag (or similarly for lift), the difference between the two computed terms
is about 10−4 times their order of magnitude.
The final and definitive check has been done on the sensitivity value. The
results are shown in table 4.3 and 4.4. Also in this case, the code developed
is only responsible for the computation of the partial sensitivity with respect
to the flow, ∂D

∂W
dW
dα and ∂L

∂W
dW
dα .

Table 4.3: Adjoint (parameter mode) - Drag sensitivity to parameter α.

Finite differences Direct differentiation Adjoint
∂D
∂X

dX
dα 1.760e-01 1.760e-01 1.760e-01

∂D
∂W

dW
dα 2.933e-01 2.932e-01 2.932e-01

dD
dα 4.693e-01 4.692e-01 4.692e-01

Table 4.4: Adjoint (parameter mode) - Lift sensitivity to parameter α.

Finite differences Direct differentiation Adjoint
∂L
∂X

dX
dα -3.008e-02 -2.918e-02 -2.918e-02

∂L
∂W

dW
dα 7.307e+00 7.307e+00 7.307e+00

dL
dα 7.278e+00 7.278e+00 7.278e+00

4.2.3 Adjoint method (mesh mode)

The verification of the dJ
dX method was based on a comparison with the

discrete adjoint code. Since the code for the computation of the adjoint
vector λ is shared by the two methods, the only possible source of error
would be the matrix ∂R

∂X . A fast and efficient way of verifying the code is to

compare the result of the scalar product λ · ∂R∂X
dX
dα obtained with the adjoint

parameter mode method and the adjoint mesh mode method. In the former,
the term ∂R

∂X
dX
dα is computed using finite differences, while in the second case

the term λ ∂R∂X is actually built inside the routine and successively multiplied

by the vector dX
dα . For any arbitrary choice of the vector λ̄ (not only for the

44

Verification procedure

Figure 4.15: First component of the adjoint vector related to drag.

Figure 4.16: First component of the adjoint vector related to lift.

45

Code verification

real solution of system (3.30)), the following relation must be satisfied:

λ̄T ·
(
R [X(α+ dα)]−R [X(α− dα)]

2dα

)
=

(
λ̄T

∂R

∂X

)
· dX
dα

. (4.7)

This relation has been checked for several choices of λ̄. For example in the
case in which λ̄ is the real solution of system (3.30) relatively to drag (or
similarly for lift), the difference between the two computed terms is about
10−4 times their order of magnitude.
The definitive check on the accuracy of the dJ

dX vector computed consists in
moving some of the nodes of the mesh and computing by finite differences
the change in the goal function J and finally comparing it with the output
of the code.

dJ

dX
≈ J(X + dX)− J(X − dX)

2dX
. (4.8)

This check has been carried out with positive results for several nodes of the
mesh, in different mesh locations, including the boundaries. For example in
the case of the displacement of a node in the shock area, as shown in figure
4.17, the difference between left and right side of equation (4.8) is about
10−4 times their order of magnitude.

CoordinateX

C
o
o
r
d
in
a
te
Y

0.4 0.6 0.8 1
0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

CoordinateX

C
o
o
r
d
in
a
te
Y

0.4 0.6 0.8 1
0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 4.17: Node displacement in shock region (respectively plus and
minus dX).

46

Verification procedure

CoordinateX

C
o
o
r
d
in
a
te
Y

0 0.5 1

0.4

0.2

0

0.2

0.4

0.6

Figure 4.18: Plot of dJdX vector for drag.

CoordinateX

C
o
o
r
d
in
a
te
Y

0 0.2 0.4 0.6 0.8 1

0.4

0.2

0

0.2

0.4

0.6

Figure 4.19: Plot of dJdX vector for lift.

47

Code verification

The last verification has been done on the values of sensitivity of lift and
drag. In table 4.5 and 4.6 the final results of the whole verification process
are summarized.

Table 4.5: Adjoint (mesh mode) - Drag sensitivity to parameter α.

FD DD Adjoint dJ
dX ·

dX
dα

∂D
∂X

dX
dα 1.760e-01 1.760e-01 1.760e-01 1.760e-01

∂D
∂W

dW
dα 2.933e-01 2.932e-01 2.932e-01 2.932e-01

dD
dα 4.693e-01 4.692e-01 4.692e-01 4.692e-01

Table 4.6: Adjoint (mesh mode) - Lift sensitivity to parameter α.

FD DD Adjoint dJ
dX ·

dX
dα

∂L
∂X

dX
dα -3.008e-02 -2.918e-02 -2.918e-02 -2.918e-02

∂L
∂W

dW
dα 7.307e+00 7.307e+00 7.307e+00 7.307e+00

dL
dα 7.278e+00 7.278e+00 7.278e+00 7.278e+00

An important final remark on the complete verification procedure is that,
both in the case of the direct differentiation method and in the case of the
adjoint method, the Newton relaxation method has not been successfull in
bringing the systems of equations of type (3.20) and (3.30) to convergence.
For this reason, it has been necessary to code and extension to unstructured
meshes of the recursive projection algorithm [28] presented at the end of
chapter 2, in order to eliminate the unstable eigenmodes of the iteration
matrix.

48

CHAPTER 5

MESH ADAPTATION

5.1 Adaptation procedure

The vector field dJ
dX , that can be computed using the code developed, can

be used as a local estimator in a goal oriented mesh adaptation strategy. As
a matter of fact, large components of dJ

dX in a specific mesh node indicate
that the value of the goal function J is particularly sensitive to the node
displacement at that location. This simple observation suggests that refining
the mesh in areas with large dJ

dX components and large cells sizes (large
possible displacements of the nodes), would produce an adapted mesh on
which the computation of the goal function J would be more accurate. This
assumption has been proven to be correct by Peter et al. in [6, 7], in which
the investigation has been limited to structured meshes. In this chapter, the
steps followed in order to extend this results to unstructured meshes will be
carefully described.
Each step of the adaptation procedure, with the creation of an adapted mesh
from an initial one, can be split in four different stages, as illustrated in
figure 5.1, in which blue boxes refer to operations carried out through elsA,
while red boxes indicate external modules. The first stage is the steady
state computation in elsA. Once the flow is converged, the aim will be the
computation of the partial derivatives of the goal function with respect to
the mesh coordinates and the flow. This stage requires the creation of an
external module, that in my case has been a set of Python scripts, a part
of which is reported in appendix A. The partial derivatives computed, are
necessary inputs for the computation of the dJ

dX vector in elsA. Finally, a new
external module has been created, a part of which is reported in appendix
B, for the computation of the local estimator and for the creation of the
adapted mesh based on the value of the local estimator itself. At this point,
one step of the adaptation procedure is complete and it is possible to go on,

49

Mesh adaptation

COMPUTATION OF
STEADY STATE (ELSA)

COMPUTATION
OF GOAL FUNC-
TION DERIVA-

TIVES (EXTERNAL
PYTHON PACKAGE)

COMPUTATION
OF dJ

dX (ELSA)

CREATION OF
THE NEW MESH

(EXTERNAL
PYTHON PACKAGE)

Figure 5.1: Adaptation procedure.

starting again with the steady state computation.
The creation of the new mesh by means of the dJ

dX vector can be further

analyzed. The first part is the projection of the dJ
dX vector field at the

boundaries of the domain. This procedure has also been followed by Peter
et al. in [6, 7]. The objective is to eliminate the components of dJ

dX that
cannot be used in the framework of mesh optimization without modification
of the shape of the object. The new vector field P

(
dJ
dX

)
is defined as follows:

P

(
dJ

dX

)
=

dJ
dX · ~n at the boundaries ,

0 at corners ,
dJ
dX elsewhere .

where ~n is the normal vector at each boundary interface.
At this point, the local estimator can be computed. In the present thesis,
the same estimator used by Peter et al. in [6, 7] has been used, that is a node

quantity equal to the product of
∣∣∣∣∣∣P (dJdX) ∣∣∣∣∣∣ by some characteristic length:

θ =
∣∣∣∣∣∣P (dJ

dX

) ∣∣∣∣∣∣ · dmin
2

, (5.1)

where the characteristic length dmin has been computed at each node, as
the minimum distance to the neighbouring nodes.
For the creation of the new mesh, the open source software MMG2D, [41],
developed at INRIA Bordeaux, has been used. MMG2D is a software for

50

Adaptation procedure

mesh adaptation that works with 2D meshes, while MMG3D is the version
for 3D meshes.
It requires two inputs:

• The coordinates of the nodes of the mesh.

• The desired metric, that is a node quantity, based on which the new
adapted mesh will be built.

The desired metric that is given as input can be either a scalar or a vector
quantity. In the present thesis only the scalar metric input has been used.
The exact definition of metric, or in other words the exact way in which
the metric input file is interpreted by MMG2D, is explained in the software
manual [41]. However, a very good approximation of the metric of the mesh
is the average value between the minimum and maximum distance to the
neighbouring nodes. This means that, if this quantity is computed for the
initial mesh and given as input to MMG2D as target metric for the new
mesh to be built, the output mesh will be almost identical to the initial one,
which corresponds to no change or very little change. This node quantity
will be named µinit in the following and is equal to:

µinit =
dmin + dmax

2
. (5.2)

The objective will be to change this initial metric µinit in such a way to
keep into account the local estimator θ previously computed. This leads to
the computation of the desired metric µtarget, that will be the metric of the
output mesh created by MMG2D. The criterion used for the adaptation is
based on a threshold value of the estimator. In all nodes in which the esti-
mator is higher than the prefixed tolerance, the metric µinit will be changed
to the desired metric µtarget:

µtarget =
µinit
f

, (5.3)

where f is the split factor, that is a node quantity indicating how much the
metric has to be reduced or in other words how much the mesh has to be
refined in each node. The split factor f has been defined as:

f =
√

2[log10(θ)−log10(ε)], (5.4)

where ε is the value of the threshold fixed on the value of the estimator.
From equation (5.4) it can be deduced that, if the estimator θ is one order
of magnitude higher than the tolerance, the metric of the adapted mesh will
be reduced by a factor f =

√
2 and if it would be two orders of magnitude

higher than the tolerance, f would be equal to 2 and so on.
The definition of the desired metric described, can be summarized with the
following piece of pseudo-code:

51

Mesh adaptation

IF (e s t imator > t o l) :
s p l i t f = 2ˆ [s q r t (log10 (e s t imator) − l og10 (t o l))]
metric new = m e t r i c o ld / s p l i t f

Once the target metric is computed, all the necessary inputs to MMG2D
are ready and the output mesh can be obtained. At this point there are still
two issues to be solved before going to the next step of the adaptation. First
of all, the new nodes created at the boundary, are positioned by MMG2D
on the straight line between the two nearest neighbouring nodes. This is
improved by projecting the new nodes on the real profile of the boundary.
The second point is the conversion of the mesh from the MMG2D format to
the CGNS format, necessary for the next step steady state computation in
elsA. After this, the cycle illustrated in figure 5.1 is ready to start again.
In figures 5.2a to 5.2g all the quantities involved in one step of the adapta-
tion procedure are presented.
Throughout the whole mesh adaptation procedure, as for the code verifica-
tion part, the recursive projection algorithm [28], briefly described in chapter
2, has been necessary in order to guarantee convergence of the systems of
equations (3.20) and (3.30).

(a) Starting mesh.

52

Adaptation procedure

(b) Flow computed on the starting mesh.

(c) 1st component of the adjoint vector.

53

Mesh adaptation

(d) dJ
dX (above) and P dJ

dX (below).

(e) Estimator.

54

Adaptation procedure

(f) Adapted mesh.

(g) Flow computed on the adapted mesh.

Figure 5.2: All the quantities involved in the adaptation procedure.

55

Mesh adaptation

5.2 Results NACA0012 - Lift and drag

The adaptation procedure described, has been applied to a NACA0012 mesh
with three different flow conditions. A subsonic case, M = 0.5 AoA = 0◦,
a transonic case, M = 0.85 AoA = 2◦ and a supersonic case M = 1.5
AoA = 1◦. The goal functions considered were lift and pressure drag.
For all the three cases, the initial mesh was the same, figure 5.3. This mesh
has 4841 nodes and the distance of the boundaries is 8 chord lengths upwind
and 10 chord lengths downwind of the airfoil.
Due to the difficulties encountered in obtaining a steady state solution, or
a solution to the adjoint system of equation, only 3 successive adaptation
steps were completed for the transonic and supersonic test cases and only 2
steps for the subsonic one. The results of the three cases are presented in
the following sections.

CoordinateX

C
o

o
rd

in
at

eY

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.3: The initial mesh

Since lift and drag, for Euler flows, are both functions of pressure around
the airfoil, the quantities involved in the mesh adaptation procedure (and
the adapted meshes themselves) are not so different in the lift and drag
adaptation procedures. For this reason the plots presented in the following
sections are relative to lift only. For each case, the plot of the first component
of the adjoint vector is given, together with a plot of the dL

dX vector field in
proximity of the airfoil. Moreover, a plot of the meshes obtained after each
step of adaptation is given, together with the plot of the logarithm of the
estimator. In conclusion, for each case, a table is presented with the average
values of the estimator θ respectively for lift and drag. In all the cases and

56

Results NACA0012 - Lift and drag

after each adaptation step, the average value of the estimator is proven to
decrease, as also shown by Peter et al. in [6, 7]. The tolerance value ε
appearing in formula (5.4) has been heuristically fixed to 10−8 for drag and
10−7 for lift.

5.2.1 M = 0.5 AoA = 0◦

Figure 5.4: Subsonic case - 1st component of adjoint vector relative to lift.

Figure 5.5: Subsonic case - dJ
dX vector field.

57

Mesh adaptation

Figure 5.6: Subsonic case - 1st adaptation step.

Figure 5.7: Subsonic case - 2nd adaptation step.

58

Results NACA0012 - Lift and drag

Figure 5.8: Subsonic case - Plot of minus the logarithm of the estimator.

Table 5.1: Subsonic case - Number of nodes at each step.

STEP1 STEP2 STEP3

Nodes number (drag adaptation) 9493 17562 -

Nodes number (lift adaptation) 11109 21829 -

Table 5.2: Subsonic case - Average values of the estimator at each step.

STEP1 STEP2 STEP3

θ̄drag 4.5184e-07 1.3780e-07 -

θ̄lift 1.2103e-05 2.9148e-06 -

59

Mesh adaptation

5.2.2 M = 0.85 AoA = 2◦

Figure 5.9: Transonic case - 1st component of adjoint vector relative to
lift.

Figure 5.10: Transonic case - dL
dX vector field.

60

Results NACA0012 - Lift and drag

Figure 5.11: Transonic case - 1st adaptation step.

Figure 5.12: Transonic case - 2nd adaptation step.

61

Mesh adaptation

Figure 5.13: Transonic case - 3rd adaptation step.

62

Results NACA0012 - Lift and drag

Figure 5.14: Transonic case - Plot of minus the logarithm of the estimator.

Table 5.3: Transonic case - Number of nodes at each step.

STEP1 STEP2 STEP3

Nodes number (drag adaptation) 8423 24636 49755

Nodes number (lift adaptation) 15784 32341 47939

Table 5.4: Transonic case - Average values of the estimator at each step.

STEP1 STEP2 STEP3

θ̄drag 2.3632e-06 7.4657e-07 1.9818e-07

θ̄lift 2.6818e-05 2.6584e-06 7.8659e-07

63

Mesh adaptation

5.2.3 M = 1.50 AoA = 1◦

Figure 5.15: Supersonic case - 1st component of the adjoint vector relative
to lift.

Figure 5.16: Supersonic case - dL
dX vector field.

64

Results NACA0012 - Lift and drag

Figure 5.17: Supersonic case - 1st adaptation step.

Figure 5.18: Supersonic case - 2nd adaptation step.

65

Mesh adaptation

Figure 5.19: Supersonic case - 3rd adaptation step.

66

Results NACA0012 - Lift and drag

Figure 5.20: Supersonic case - Plot of minus the logarithm of the estimator.

Table 5.5: Supersonic case - Number of nodes at each step.

STEP1 STEP2 STEP3

Nodes number (drag adaptation) 10182 17849 25427

Nodes number (lift adaptation) 8096 12072 15092

Table 5.6: Supersonic case - Average values of the estimator at each step.

STEP1 STEP2 STEP3

θ̄drag 1.1623e-06 1.6233e-07 5.6068e-08

θ̄lift 3.8668e-06 9.0549e-07 3.2832e-07

67

Mesh adaptation

68

CHAPTER 6

CONCLUSIONS

The objective of this thesis is to extend to unstructured meshes the results
of Peter et al., [6, 7], proving that the derivative of a functional output, e.g.
lift or drag, with respect to the mesh nodes coordinates, can be used as a
local indicator in a goal oriented mesh adaptation strategy.
The work has been divided in three main stages:

• Code development (≈ 35% of the total work)

• Code verification (≈ 40% of the total work)

• Creation of a complete mesh adaptation chain (≈ 25% of the total
work)

The three stages have been described in the same order in chapter 3, 4 and
5 of the present thesis.
In the first part, the objective has been the extension of the Opt module
of the code elsA [26] developed at ONERA, adding the capability to han-
dle the computation of the Jacobian of the second order Roe flux [33, 34],
equations (3.9), for Euler flows on unstructured meshes. Three different
gradient computation methods [21] have been implemented: direct differ-
entiation method, parameter mode adjoint method and mesh mode adjoint
method. Even if only the latter has been directly used for mesh adaptation,
being responsible for the computation of the dJ

dX vector field, the implemen-
tation of the other two methods has been necessary for the verification of
the accuracy of the code.
In the second part of the work, the objective has been the verification of the
accuracy of the code implemented, using a NACA0012 transonic test case
(M = 0.85, AoA = 1◦). A verification chain has been adopted, the first step
being the comparison of the output of the direct differentiation code with
finite differences. Once the direct differentiation method has been proven

69

Conclusions

to be correctly coded, the accuracy of the adjoint vector has been easily
checked using formula (4.6). At this point, it was possible to proceed with
the verification of the mesh mode adjoint method. The main advantage of
the verification chain procedure was that, being the adjoint vector and the
partial derivatives of the function J already verified in the former steps, the
only source of error in equation (3.35) remains the term ∂R

∂X .
The main obstacle in the code verification work has been the difficulty in
bringing to convergence the systems of equations of type (3.20) and (3.30).
The problem has been solved only after coding in elsA an extension to un-
structured meshes of the recursive projection method described in chapter
2.
In the last part of the work, the code developed has been used in order to
build a complete mesh adaptation chain. This chain has the capability of
taking as input an initial mesh in CGNS format, that is the format needed
by elsA for computations on unstructured grids, and execute a full optimiza-
tion step that produces an output mesh, again in CGNS format, ready for a
possible successive step. The complete chain is illustrated in figure 5.1 and
makes use of:

• elsA for steady state calculation and to compute the vector field dJ
dX

• Two sets of Python scripts, developed during the present thesis, one
of which handles the computation of partial derivatives of lift and
drag (one script of the set is given in appendix A) and the other one
handling all the operations needed after the computation of dJ

dX in
order to create the output mesh in CGNS format (one script of the set
is given in appendix B).

• The open source software MMG2D [41], for the actual creation of the
output mesh from the initial one, based on the desired metric input.

The mesh adaptation chain has been tested for a NACA0012 geometry,
with 3 different flow conditions, subsonic (M = 0.5, AoA = 0◦), transonic
(M = 0.85, AoA = 2◦) and supersonic (M = 1.5, AoA = 1◦).
In this case, the main obstacle has been the robustness of the implicit stage
of the code elsA for steady state computations on unstructured meshes,
that is particularly evident for flow conditions exhibiting strong shocks as
in the transonic and supersonic case, when large variations of cells sizes are
present in some areas of the grid, as resulting from the local mesh adapta-
tion procedure. This issue limited considerably the automation of the mesh
adaptation chain and, as a consequence, the number of adaptation steps
carried out for each case (maximum 3 adaptation steps). In order to cir-
cumvent this problem, the parameter ψ representing the percentage of the
spectral radius, below which the Harten correction is applied (see equation
(3.6)), has been changed from one adaptation step to the other in order to

70

obtain convergence of the steady state computation.
Moreover, due to the lack of robustness of the implicit stage of elsA on
unstructured meshes, it has not been possible to carry out steady state
computations on a hierarchy of globally adapted meshes, especially for the
finest meshes. The results obtained on the hierarchy of meshes would have
been the basis for a quantitative assessment of the convergence of the values
of lift and drag obtained through the local mesh adaptation chain.
A second relevant issue has been the solution of the system of equations
(3.30), that has been successfull only when using the recursive projection al-
gorithm. Especially in the subsonic case, the algorithm required a very large
number of iterations, more than 100000, making the adaptation procedure
slow and time consuming. This problem limited the number of adaptation
steps performed in the subsonic case to only 2.
The low number of mesh adaptation steps completed, in combination with
the difficulty to obtain steady state solutions on a hierarchy of globally
adapted meshes, are the reason why a final analysis of the convergence of
lift and drag is missing in the present report.
Although the difficulties encountered, the adaptation procedure produced
satisfactory meshes at each adaptation step, for all the 3 cases analyzed.
Moreover the average value of the local estimator θ has been proven to
gradually decrease at each adaptation step, in all the cases considered, as
already shown by Peter et al. in [6] and [7] for structured meshes.
The steps to be taken in the future for the improvement of the work done
in the present thesis are the extension to 3D meshes of the code of the ad-
joint method in mesh mode and, most of all, the development of a more
robust implicit stage for the convergence of the steady state computation
on unstructured meshes in elsA.

71

Conclusions

72

BIBLIOGRAPHY

[1] R. Balasubramanian and J. C. Newman III. Comparison of adjoint-
based and feature based grid adaption for functional outputs. Interna-
tional Journal for Numerical Methods in Fluids, 53:1541–1569, 2007.

[2] M. J. Marchant and N. P. Weatherill. Adaptive techniques for compress-
ible inviscid flows. Journal of Numerical Methods in Applied Mechanics
and Engineering, 106:83–106, 1993.

[3] N. P. Weatherill and M. J. Marchant. Grid adaptation using a distribu-
tion of sources applied to inviscid compressible flow simulations. Inter-
national Journal for Numerical Methods in Fluids, 19:739–764, 1994.

[4] D. L. Marcum and N. P. Weatherill. A procedure for efficient generation
of solution adapted unstructured grids. Computer Methods in Applied
Mechanics and Engineering, 127:259–268, 1995.

[5] G. Warren, W. Anderson, J. Thomas, and S. Krist. Grid convergence
for adaptive methods. In AIAA Paper Series, 91-1592, 1991.

[6] J. Peter, P. Trontin, and M. Nguyen-Dinh. Goal oriented mesh adap-
tation using total derivative of aerodynamic functions with respect to
mesh coordinates. In AIAA Paper Series, 2011–30, 2011.

[7] J. Peter, P. Trontin, and M. Nguyen-Dinh. Goal oriented mesh adap-
tation using total derivative of aerodynamic functions with respect to
mesh coordinates - With application to Euler flows. Computer and
Fluids, 66:194–214, 2012.

[8] C. Johnson, R. Rannacher, and M. Boman. Numerics and hydrody-
namics theory. SIAM Journal pf Numerical Analysis, 32:1058–1079,
1995.

73

Bibliography

[9] M. Giles, M. Larson, M. Levenstam, and E. Süli. Adaptive error control
for finite element approximations of the lift and drag coefficients in
viscous flow. Technical Report NA-97/06, Comlab, Oxford University,
1997.

[10] R. Becker and R. Rannacher. Weighted a posteriori error control in FE
methods. In Proceedings of ENUMATH-97. Heidelberg: World Scien-
tific Publishing, 1998.

[11] S. Prudhomme and J. Oden. On goal oriented error estimation for ellip-
tic problems: application to the control of pointwise errors. Computer
Methods in Applied Mechanics and Engineering, 176:313–331, 1999.

[12] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin meth-
ods for the compressible euler equations. Journal of Computational
Physics, 182(2):508–532, 2002.

[13] N.A. Pierce and M.B. Giles. Adjoint recovery of superconvergent func-
tionals from PDE approximations. SIAM Review, 42(2):247–264, 2000.

[14] N.A. Pierce and M.B. Giles. Adjoint and defect error bounding and
correction for functional estimates. In AIAA Paper Series, 2003–3846,
2003.

[15] D.A. Venditti and D.L. Darmofal. Adjoint error estimation and grid
adaptation for functional outputs: application to quasi-one dimensional
flow. Journal of Computational Physics, 164:204–227, 2000.

[16] D.A. Venditti and D.L. Darmofal. Grid adaptation for functional out-
puts: application to two-dimensional inviscid flow. Journal of Compu-
tational Physics, 176:40–69, 2002.

[17] D.A. Venditti and D.L. Darmofal. Anisotropic grid adaptation for func-
tional outputs: application to viscous flow. Journal of Computational
Physics, 187:22–46, 2003.

[18] R.P. Dwight. Goal-oriented mesh adaptation using a dissipation based
error indicator. International Journal for Numerical Methods in Fluids,
56(8):1193–2000, 2007.

[19] R.P. Dwight. Heuristic a posteriori estimation of error due to dissipation
in finite volume schemes and application to mesh adaptation. Journal
of Computational Physics, 227:2845–2863, 2008.

[20] A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions of the
Euler equations by finite volume methods using Runge-Kutta time step-
ping schemes. In AIAA Paper Series, 1981–1259, 1981.

74

[21] J. Peter and R.P. Dwight. Numerical sensitivity analysis: a survey of
approaches. Computers and Fluids, 39(3):373–391, 2010.

[22] E. Nielsen and M. Park. Using an adjoint approach to eliminate mesh
sensitivities in aerodynamics design. AIAA Journal, 44(5):948–953,
2005.

[23] D.J. Mavripilis. Unstructured mesh generation and adaptivity. Techni-
cal Report 95/26, MS 132C, NASA Langley Research Center, Hampton,
VA 23681-0001, 1995.

[24] D.J. Mavripilis. Unstructured grid techniques. Annual Review of Fluid
Mechanics, 29:473–514, 1997.

[25] K. Fidkowski and D. Darmofal. Review of output-based error esti-
mation and mesh adaptation in computational fluid dynamics. AIAA
journal, 49(4):673–694, 2011.

[26] L. Cambier and J.P. Veuillot. Status of the elsA CFD software for flow
simulation and multidisciplinary applications. In AIAA Paper Series,
2008-664, 2008.

[27] D. Destarac. Far-field/near field drag balance and applications of drag
extraction in CFD. VKI Lecture Series, 2:3–7, 2003.

[28] G. Shroff and H. Keller. Stabilization of unstable procedures: the
recursive projection method. SIAM Journal on Numerical Analysis,
39(4):1099–1120, 1993.

[29] B. van Leer. Flux vector splitting for the Euler equation. In 8th Inter-
national Conference on Numerical Methods in Fluid Dynamics, pages
507–512, 1982.

[30] S. Godunov. A difference method for numerical calculation of discon-
tinuous solutions of the equations of hydrodynamics. Matematicheskii
Sbornik, 89(3):271–306, 1959.

[31] C. Hirsch. Numerical computation of internal and external flows. Wiley,
1990.

[32] E. Toro. Riemann solvers and numerical methods for fluid dynamics:
a practical introduction. Springer, 2009.

[33] P. Roe. Approximate Riemann solvers, parameter vectors, and differ-
ence schemes. Journal of computational physics, 43(2):357–372, 1981.

[34] PL Roe. Characteristic-based schemes for the euler equations. Annual
review of fluid mechanics, 18(1):337–365, 1986.

75

Bibliography

[35] B. van Leer. Towards the ultimate conservative difference scheme. I.
The quest of monotonicity. In Proceedings of the Third International
Conference on Numerical Methods in Fluid Mechanics, pages 163–168.
Springer, 1973.

[36] B. van Leer. Towards the ultimate conservative difference scheme.
II. Monotonicity and conservation combined in a second-order scheme.
Journal of computational physics, 14(4):361–370, 1974.

[37] B. van Leer. Towards the ultimate conservative difference scheme. III.
Upstream-centered finite-difference schemes for ideal compressible flow.
Journal of Computational Physics, 23(3):263–275, 1977.

[38] B. van Leer. Towards the ultimate conservative difference scheme. IV.
A new approach to numerical convection. Journal of computational
physics, 23(3):276–299, 1977.

[39] B. van Leer. Towards the ultimate conservative difference scheme. V.
A second-order sequel to Godunov’s method. Journal of computational
Physics, 32(1):101–136, 1979.

[40] G. van Albada, B. van Leer, and W. Roberts. A comparative study
of computational methods in cosmic gas dynamics. Astronomy and
Astrophysics, 108:76–84, 1982.

[41] C. Dobrzynski. Mmg3d: User guide. Technical Report 422, INRIA,
Bordeaux, March 2012. Project-Team Bacchus.

76

APPENDIX A

GOAL FUNCTION PARTIAL DERIVATIVES

The following piece of code is an extract of the Python set of scripts that
has been created in order to compute partial derivatives of lift and drag.
The script presented computes the partial derivatives of the aerodynamic
functions of interest with respect to the flow variables at the boundaries
Wb.

import Converter.PyTree as C

import Converter.Internal as Internal

import numpy as np

from math import *

import os

t = C.convertFile2PyTree(’../ mesh/initial_mesh_D_NGON.adf’)

alpha = 0.0 * pi /180.

Read file with boundary cells indices and store bnd cells indices in an array

bncells = np.loadtxt(’bndcells.dat’,dtype = int)

#Read file with boundary nodes list

bnnodes = np.loadtxt(’bndnodes.dat’,dtype = int)

#Compute pressure at boundary cells

#Extract quantities of interest from cgns tree

#conservative variables

consvar = Internal.getNodesFromName(t, ’O2I_sol ’)

wcons1 = consvar [0][2][1][1]

wcons2 = consvar [0][2][2][1]

wcons3 = consvar [0][2][3][1]

wcons4 = consvar [0][2][4][1]

wcons5 = consvar [0][2][5][1]

#nodes coordinates

gridcoord = Internal.getNodesFromName(t, ’GridCoordinates ’)

xcoord = gridcoord [0][2][0][1]

ycoord = gridcoord [0][2][1][1]

#penta connectivity

connect = Internal.getNodesFromName(t, ’PENTA_6 ’)

penta = connect [0][2][0][1]

penta = penta.reshape (-1,6)

gam = 1.4

gam1 = gam - 1.

77

Goal function partial derivatives

bncells_m1 = bncells -1

nb_bsurfs = len(bncells)

dddwb1 = []

dddwb2 = []

dddwb3 = []

dddwb4 = []

dddwb5 = []

for ind in range (nb_bsurfs):

n1 = bnnodes[ind][0]

n2 = bnnodes[ind][1]

n3 = bnnodes[ind][2]

n4 = bnnodes[ind][3]

sx = 0.5*((ycoord[n3 -1] - ycoord[n1 -1]) - (ycoord[n4 -1] - ycoord[n2 -1]))

sy = 0.5*((xcoord[n4 -1] - xcoord[n2 -1]) - (xcoord[n3 -1] - xcoord[n1 -1]))

Check surface orientation (sign of scalar product with one of edges of the neighbouring

boundary cell)

ind_glo = bncells_m1[ind]

penta1 = penta[ind_glo][0]

penta2 = penta[ind_glo][1]

penta3 = penta[ind_glo][2]

if (penta1 != n1 and penta1 != n2):

vertex = penta1

elif (penta2 != n1 and penta2 != n2):

vertex = penta2

else:

vertex = penta3

#scalar product

edgex = xcoord[vertex -1] - xcoord[n1 -1]

edgey = ycoord[vertex -1] - ycoord[n1 -1]

scprod = sx * edgex + sy *edgey

normal must be pointing inward because we’re considering pressure forces

if scprod > 0 :

sx = -sx

sy = -sy

surf = (sx**2 + sy**2) **0.5

nx = sx/surf

ny = sy/surf

u = wcons2[ind_glo]/ wcons1[ind_glo]

v = wcons3[ind_glo]/ wcons1[ind_glo]

ub = u - u*nx*nx - v*nx*ny

vb = v - u*nx*ny - v*ny*ny

ee = 0.5*(ub*ub+vb*vb)

#pressure derivatives with respect to cons variables at the boundary

dpdw1 = gam1 * ee

dpdw2 = - (gam1 *ub)

dpdw3 = - (gam1 *vb)

dpdw4 = 0

dpdw5 = gam1

dddwb1.append(dpdw1 *(sx*cos(alpha) + sy*sin(alpha)))

dddwb2.append(dpdw2 *(sx*cos(alpha) + sy*sin(alpha)))

dddwb3.append(dpdw3 *(sx*cos(alpha) + sy*sin(alpha)))

dddwb4.append(dpdw4 *(sx*cos(alpha) + sy*sin(alpha)))

dddwb5.append(dpdw5 *(sx*cos(alpha) + sy*sin(alpha)))

dddwb1 = np.array(dddwb1)

dddwb2 = np.array(dddwb2)

dddwb3 = np.array(dddwb3)

dddwb4 = np.array(dddwb4)

dddwb5 = np.array(dddwb5)

#Write results to file in standard format: index , idom , i, j, k, dfdw1 ,dfdw2 ,dfdw3 ,dfdw4 ,dfdw5

########################## DRAG ##########################

78

h1 = open("header1.dat","a")

h1.write(’TITLE = "drag sensitivities "\n’)

h1.write(’VARIABLES = "index" "idom" "i" "j" "k" "dfdu1" "dfdu2" "dfdu3" "dfdu4" "dfdu5 "\n’)

h1.write(’ZONE T=" ",I=%s, J=1, K=1, F=BLOCK\n’ % str(nb_bsurfs))

h1.close ()

f5 = open(’dfunctiondwb_001.dat’, ’w’)

#write index

index= range(nb_bsurfs)

index = np.array(index)

block = index +1

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write domain number

idom = [1] * nb_bsurfs

block = idom

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write index i

bnfaces = np.loadtxt(’bndfaces.dat’,dtype = int)

block = bnfaces

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write index j = -1

block = [-1] *nb_bsurfs

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write index k = -1

block = [-1] *nb_bsurfs

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write to file drag derivative with respect to wb1

block=dddwb1

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write to file drag derivative with respect to wb2

block=dddwb2

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write to file drag derivative with respect to wb3

79

Goal function partial derivatives

block=dddwb3

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write to file drag derivative with respect to wb4

block=dddwb4

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

#write to file drag derivative with respect to wb5

block=dddwb5

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f5.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block[indx0:indx1]))+"\n")

f5.close ()

os.system("cat header1.dat dfunctiondwb_001.dat > ../ elsainfiles/drag/dfunctiondwb_001.tp")

80

APPENDIX B

PYTHON PACKAGE FOR MESH ADAPTATION

The following code is an extract of the Python package created in order
to manage the operations that go from the computations of the dJ

dX vector
field in elsA to the creation of the adapted mesh through MMG2D. It is a
necessary bridge between elsA and MMG2D.
In the specific part of code presented, the user computes the estimator for
mesh adaptation starting from the raw dJ

dX vector field computed in elsA
and defines the target metric, that will be one of the inputs required by
MMG2D.

import numpy as np

from math import *

import Converter.PyTree as C

import Converter.Internal as Internal

import os

###

def belong(var ,array):

length = len (array)

if length ==0:

return False

count = 0

for j in range(length):

if (var==array[j]):

return True

else:

if j==length -1:

return False

##

Get relevant arrays from CGNS tree

t = C.convertFile2PyTree(’../ mesh/initial_mesh_D_NGON.adf’)

Total number of nodes

dom = Internal.getNodesFromName(t, ’dom1’)

nnodes = dom [0][1][0][0]

ncell= dom [0][1][0][1]

coords = Internal.getNodesFromName(t, ’GridCoordinates ’)

x = coords [0][2][0][1]

y = coords [0][2][1][1]

81

Python package for mesh adaptation

connect = Internal.getNodesFromName(t, ’PENTA_6 ’)

penta = connect [0][2][0][1]

penta= penta.reshape (-1,6)

triangles = penta [: ,0:3]

Store indices of corners (in this case only trailing edge)

corners = []

#find index of trailing edge

for i in range (nnodes):

if (x[i]==1. and y[i]==0.):

ind_cnr = i

break

corners.append ([i])

corners = np.array(corners)

corners = corners [0]

nb_cnr = len(corners)

Read PdDdX file

f11 = open(’../ elsaoutfiles/drag/PDDDX.tp’, ’r’)

l11 = f11.readlines ()

f11.close()

emptstr1=’’

str11=emptstr1.join(l11 [:])

emptstr21 = ’ ’

str21=emptstr21.join(str11.split(’\n’))

array1=np.fromstring(str21 , dtype=float , sep=’ ’)

pdddx = array1 [0: nnodes]

pdddy = array1[nnodes :2* nnodes]

Compute modulus of PdJdX only on z=0 plane

nnodes_plane0 = nnodes /2

mod_pdddx = [0.] *nnodes_plane0

for i in range(nnodes_plane0):

mod_pdddx[i] = sqrt((pdddx[i])**2 +(pdddy[i])**2)

Compute characteristic length for each node: average between min and max distance to

neighbouring nodes

char_length = [0.] * nnodes_plane0

char_length_min = [1000.] * nnodes_plane0

char_length_max = [0.] * nnodes_plane0

for j in range(ncell):

indn1 = triangles[j][0] -1

indn2 = triangles[j][1] -1

indn3 = triangles[j][2] -1

dist1_2 = sqrt((x[indn1] - x[indn2])**2 +(y[indn1] - y[indn2])**2)

dist1_3 = sqrt((x[indn1] - x[indn3])**2 +(y[indn1] - y[indn3])**2)

dist2_3 = sqrt((x[indn2] - x[indn3])**2 +(y[indn2] - y[indn3])**2)

char_length_min[indn1] =min(min(dist1_2 ,dist1_3),char_length_min[indn1])

char_length_min[indn2] =min(min(dist1_2 ,dist2_3),char_length_min[indn2])

char_length_min[indn3] =min(min(dist1_3 ,dist2_3),char_length_min[indn3])

char_length_max[indn1] =max(max(dist1_2 ,dist1_3),char_length_max[indn1])

char_length_max[indn2] =max(max(dist1_2 ,dist2_3),char_length_max[indn2])

char_length_max[indn3] =max(max(dist1_3 ,dist2_3),char_length_max[indn3])

for j in range (nnodes_plane0):

char_length[j] = 0.5*(char_length_min[j] + char_length_max[j])

Compute local estimator in each node: product between minimum distance to neighbouring

nodes and modulus of PdJdX

estimator_D = [0.]* nnodes_plane0

for k in range(nnodes_plane0):

estimator_D[k] =0.5* char_length_min[k] * mod_pdddx[k]

For corners define estimator as average value of the estimator in neighbouring nodes

for i in range (nb_cnr):

divby = 0

for j in range(ncell):

indn1 = triangles[j][0] -1

indn2 = triangles[j][1] -1

indn3 = triangles[j][2] -1

82

if (indn1 == corners[i]):

estimator_D[i]= estimator_D[i]+ estimator_D[indn2] + estimator_D[indn3]

divby = divby +2

elif (indn2 == corners[i]):

estimator_D[i]= estimator_D[i]+ estimator_D[indn1] + estimator_D[indn3]

divby = divby +2

if (indn3 == corners[i]):

estimator_D[i]= estimator_D[i]+ estimator_D[indn1] + estimator_D[indn2]

divby = divby +2

estimator_D[i] = estimator_D[i]/divby

Compute spatial average of the estimator

estimator_D_avg = [0.]* nnodes_plane0

included = [[] for i in range(nnodes_plane0)]

for j in range(ncell):

indn1 = triangles[j][0] -1

indn2 = triangles[j][1] -1

indn3 = triangles[j][2] -1

if not belong(indn1 ,included[indn1]):

estimator_D_avg[indn1] = estimator_D_avg[indn1] + estimator_D[indn1]

included[indn1]. append(indn1)

if not belong(indn2 ,included[indn1]):

estimator_D_avg[indn1] = estimator_D_avg[indn1] + estimator_D[indn2]

included[indn1]. append(indn2)

if not belong(indn3 ,included[indn1]):

estimator_D_avg[indn1] = estimator_D_avg[indn1] + estimator_D[indn3]

included[indn1]. append(indn3)

if not belong(indn1 ,included[indn2]):

estimator_D_avg[indn2] = estimator_D_avg[indn2] + estimator_D[indn1]

included[indn2]. append(indn1)

if not belong(indn2 ,included[indn2]):

estimator_D_avg[indn2] = estimator_D_avg[indn2] + estimator_D[indn2]

included[indn2]. append(indn2)

if not belong(indn3 ,included[indn2]):

estimator_D_avg[indn2] = estimator_D_avg[indn2] + estimator_D[indn3]

included[indn2]. append(indn3)

if not belong(indn1 ,included[indn3]):

estimator_D_avg[indn3] = estimator_D_avg[indn3] + estimator_D[indn1]

included[indn3]. append(indn1)

if not belong(indn2 ,included[indn3]):

estimator_D_avg[indn3] = estimator_D_avg[indn3] + estimator_D[indn2]

included[indn3]. append(indn2)

if not belong(indn3 ,included[indn3]):

estimator_D_avg[indn3] = estimator_D_avg[indn3] + estimator_D[indn3]

included[indn3]. append(indn3)

for j in range(nnodes_plane0):

if estimator_D_avg[j]!=0.:

estimator_D_avg[j]= estimator_D_avg[j]/(len(included[j]))

###Write to file

f1 = open(’../ elsaoutfiles/drag/estimator_D_avg.tp’, ’w’)

block_1=np.array([estimator_D_avg ,estimator_D_avg])

block_1 = block_1.reshape (1,-1)

block_1 = block_1 [0]

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block_1)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f1.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block_1[indx0:indx1]))+"\n")

###Write to file

f100 = open(’../ elsaoutfiles/drag/logestimator_D_avg.tp’, ’w’)

block_100 = [0.] * len(block_1)

for i in range(len(block_1)):

if block_1[i] != 0.:

block_100[i] = -log10(block_1[i])

width , fmt = 6, "%14.7E"

indx0 , indx1 , indxm = -width , 0, len(block_100)

while indx1 < indxm:

indx0 = min(indx0 + width , indxm)

indx1 = min(indx1 + width , indxm)

f100.write(reduce(lambda x,y:"%s %s"%(x,y),

map(lambda x:fmt%x, block_100[indx0:indx1]))+"\n")

83

Python package for mesh adaptation

Identify possible fake nodes (nodes used only to define geometry but not belonging to any

cell)

real_nodes = []

newind = [-1] * nnodes_plane0

count = 0

for k in range(nnodes_plane0):

if (mod_pdddx[k] != 0.): ### or (mod_pdldx[k] != 0.) would be the same

count = count + 1

real_nodes.append(k)

newind[k] = count

else:

for i in range(nb_cnr):

if k== corners[i]:

count = count + 1

real_nodes.append(k)

newind[k] = count

real_nodes = np.array(real_nodes)

ngeomnodes = nnodes_plane0 - len(real_nodes)

print ngeomnodes , " geometric nodes detected"

Reduce arrays of interest to include real nodes only

estimator_D_avg_rn = []

char_length_rn = []

for l in real_nodes:

estimator_D_avg_rn.append(estimator_D_avg[l])

char_length_rn.append(char_length[l])

estimator_D_avg_rn= np.array(estimator_D_avg_rn)

char_length_rn= np.array(char_length_rn)

Define ’objective metric ’: desired characteristic length of the output mesh

###For DRAG

metric_D = [0.] * len(real_nodes)

tol = 10.**(-8.)

nbadp = 0

for l in range (len(real_nodes)):

if (estimator_D_avg_rn[l] < tol):

metric_D[l] = char_length_rn[l]

else:

split_factor = sqrt (2**(log10(estimator_D_avg_rn[l]) - log10(tol)))

metric_D[l] = char_length_rn[l]*(1./ split_factor)

nbadp = nbadp +1

print "Estimator_D over tolerance in ", nbadp , " nodes"

Build _D.sol file

hsol_D = open("header_sol_D.dat","a")

nvert = len(real_nodes)

hsol_D.write("MeshVersionFormatted\n1\nDimension\n2\nSolAtVertices\n%s\n1 1\n" % str(nvert))

hsol_D.close()

np.savetxt(’metric_D.dat’,metric_D , fmt=[’%.15e’])

os.system("cat header_sol_D.dat metric_D.dat > inputfile_D.sol")

Build .mesh file

h1 = open("header1.dat","a")

h1.write("MeshVersionFormatted\n1\nDimension\n2\nVertices\n%s\n" % str(nvert))

h1.close ()

listtowrite =[]

ref = 1

for i in real_nodes:

listtowrite.append ([x[i],y[i],ref])

np.savetxt(’vertices.dat’,listtowrite , fmt=[’%.15e’,’%.15e’,’%d’])

h2 = open("header2.dat","a")

84

h2.write("\nTriangles\n%s\n" % str(ncell))

h2.close ()

connect = Internal.getNodesFromName(t, ’PENTA_6 ’)

penta = connect [0][2][0][1]

penta= penta.reshape (-1,6)

triangles = penta [: ,0:3]

listtowrite2 = []

for i in range(ncell):

listtowrite2.append ([newind[triangles[i][0] - 1], newind[triangles[i][1] - 1],newind[

triangles[i][2] - 1], ref])

np.savetxt(’triangles.dat’,listtowrite2 , fmt=[’%d’,’%d’,’%d’,’%d’])

os.system("cat header1.dat vertices.dat header2.dat triangles.dat > inputfile_D.mesh")

os.system("rm header* triangles.dat vertices.dat metric *.dat")

85

Python package for mesh adaptation

86

APPENDIX C

ADJOINT METHOD SUBROUTINE

The Fortran code given in the following, is used for the computation of the
adjoint vector in parameter mode.
The operation that is actually carried out here, is the second of the two
loops described in chapter 3, in the section related to the adjoint method
in parameter mode. The subroutine presented here is specific for interior
interfaces. Different subroutines have been used, instead, to manage the
operations on boundary interfaces.

gam1 = gam - ONE

gam1_1 = ONE/gam1

sen = ZERO

DO iface=0,nfaceint -1

iL = indicVolL(iface)

iR = indicVolR(iface)

surf = snl(iface)

snx = slx(iface)

sny = sly(iface)

snz = slz(iface)

nx = snx/(surf+E_MIN_SURFACE)

ny = sny/(surf+E_MIN_SURFACE)

nz = snz/(surf+E_MIN_SURFACE)

C***

C I calculation of the left and right states of the problem

C***

C---------

r1 = wcons1(iL)

u1 = wcons2(iL)/wcons1(iL)

v1 = wcons3(iL)/wcons1(iL)

w1 = wcons4(iL)/wcons1(iL)

ee1 = HALF*(u1**2+v1**2+w1**2)

p1 = gam1*(wcons5(iL)-r1*ee1)

C---------

r2 = wcons1(iR)

u2 = wcons2(iR)/wcons1(iR)

v2 = wcons3(iR)/wcons1(iR)

w2 = wcons4(iR)/wcons1(iR)

ee2 = HALF*(u2**2+v2**2+w2**2)

p2 = gam1*(wcons5(iR)-r2*ee2)

C vector from the left cell center to the right one

87

Adjoint method subroutine

C

dx = cellcenter(iR ,1) - cellcenter(iL ,1)

dy = cellcenter(iR ,2) - cellcenter(iL ,2)

dz = cellcenter(iR ,3) - cellcenter(iL ,3)

C

C Upwind Left cell contribution to limiter (gradL.C_L C_R) -> ul

C

ulr = grad_r(iL) * dx +

& grad_r(iL+ ncell) * dy +

& grad_r(iL+2* ncell) * dz

ulu = grad_u(iL) * dx +

& grad_u(iL+ ncell) * dy +

& grad_u(iL+2* ncell) * dz

ulv = grad_v(iL) * dx +

& grad_v(iL+ncell) * dy +

& grad_v(iL+2* ncell) * dz

ulw = grad_w(iL) * dx +

& grad_w(iL+ncell) * dy +

& grad_w(iL+2* ncell) * dz

ulp = grad_p(iL) * dx +

& grad_p(iL+ ncell) * dy +

& grad_p(iL+2* ncell) * dz

C

C Upwind Right cell contribution to limiter (gradR.C_L C_R) -> ur

C

urr = grad_r(iR) * dx +

& grad_r(iR+ ncell) * dy +

& grad_r(iR+2* ncell) * dz

uru = grad_u(iR) * dx +

& grad_u(iR+ ncell) * dy +

& grad_u(iR+2* ncell) * dz

urv = grad_v(iR) * dx +

& grad_v(iR+ ncell) * dy +

& grad_v(iR+2* ncell) * dz

urw = grad_w(iR) * dx +

& grad_w(iR+ncell) * dy +

& grad_w(iR+2* ncell) * dz

urp = grad_p(iR) * dx +

& grad_p(iR+ ncell) * dy +

& grad_p(iR+2* ncell) * dz

C**

C I calculation of interface states and Roe average state

C***

C--

rg = r1 + HALF*vanalbada(ulr ,r2-r1 ,epsilon)

ug = u1 + HALF*vanalbada(ulu ,u2-u1 ,epsilon)

vg = v1 + HALF*vanalbada(ulv ,v2-v1 ,epsilon)

wg = w1 + HALF*vanalbada(ulw ,w2-w1 ,epsilon)

pg = p1 + HALF*vanalbada(ulp ,p2-p1 ,epsilon)

eeg = HALF*(ug*ug+vg*vg+wg*wg)

hg = gam*pg*gam1_1/rg + eeg

vng = ug*nx+vg*ny+wg*nz

rd = r2 - HALF*vanalbada(urr ,r2-r1 ,epsilon)

ud = u2 - HALF*vanalbada(uru ,u2-u1 ,epsilon)

vd = v2 - HALF*vanalbada(urv ,v2-v1 ,epsilon)

wd = w2 - HALF*vanalbada(urw ,w2-w1 ,epsilon)

pd = p2 - HALF*vanalbada(urp ,p2-p1 ,epsilon)

eed = HALF*(ud*ud+vd*vd+wd*wd)

hd = gam*pd*gam1_1/rd + eed

vnd = ud*nx+vd*ny+wd*nz

C--

r = SQRT(rd/rg)

rr = SQRT(rd*rg)

uu = (ud*r+ug)/(r+ONE)

vv = (vd*r+vg)/(r+ONE)

ww = (wd*r+wg)/(r+ONE)

ee = HALF*(uu**2+vv**2+ww**2)

hh = (hd*r+hg)/(r+ONE)

cc = SQRT(gam1*(hh -ee))

vn = uu*nx+vv*ny+ww*nz

C***

C linearization of the double of Roe flux with respect to primitive variables is

C done in an included file.

C input variables of file :

C mean state : uu, vv , ww , cc, hh, vn, rr

C left/right state : rg , ug , vg, wg, vng , eeg , pg, rd, ud, vd, wd , vnd , eed , pd

C geometry : nx ,ny,nz,snx ,sny ,snz

#include "FxcHartenF.h"

88

#include "dRoedgddF.h"

C output variables of file : dpg11 , dpg12 , ... dpg55 , dpd11 , dpd12 , ... dpd55

C caution factor TWO (the double of ...)

C**

C limiter derivatives

C----------------------------------

dvaL_r2 = dvanalb_db(ulr ,r2 -r1,epsilon)

dvaL_u2 = dvanalb_db(ulu ,u2 -u1,epsilon)

dvaL_v2 = dvanalb_db(ulv ,v2 -v1,epsilon)

dvaL_w2 = dvanalb_db(ulw ,w2 -w1,epsilon)

dvaL_p2 = dvanalb_db(ulp ,p2 -p1,epsilon)

dvaR_r2 = dvanalb_db(urr ,r2 -r1,epsilon)

dvaR_u2 = dvanalb_db(uru ,u2 -u1,epsilon)

dvaR_v2 = dvanalb_db(urv ,v2 -v1,epsilon)

dvaR_w2 = dvanalb_db(urw ,w2 -w1,epsilon)

dvaR_p2 = dvanalb_db(urp ,p2 -p1,epsilon)

C**

C BUILD RHS (lambda^T * dR/dW)

C VA = (a^2 * b + a * b^2)/(a^2 + b^2)

C

C Pg = P(left) + 1/2 * VA(grad(left).D , P(right)-P(left))

C Pd = P(right) - 1/2 * VA(grad(right).D , P(right)-P(left))

C

C Flux = Froe(Pg,Pd) = Froe(P(left) + 1/2 * VA(grad(left).D , P(right)-P(left)),

C P(right) - 1/2 * VA(grad(right).D , P(right)-P(left)))

C

C rhsnwt(R) += [lambda(R) - lambda(L)] * (dFlux/dPd * dPd/dPR + dFlux/dPg * dPg/dPR) +

---- index j refers to the remaining

C sum_j [(lambda(L) +/- lambda(j))*dFlux(j+1/2)/dP(j+1/2)*dP(j+1/2)/dP(R)]

neighbours of the left cell (apart from right cell

c

C rhsnwt(L) += [lambda(R) - lambda(L)] * (dFlux/dPd * dPd/dPL + dFlux/dPg * dPg/dPL) +

---- index k refers to the remaining

C sum_k [(lambda(R) +/- lambda(k))*dFlux(k+1/2)/dP(k+1/2)*dP(k+1/2)/dP(L)]

neighbours of the right cell (apart from left cell)

C**

C--

C STEP 1 - DERIVATIVES WITH RESPECT TO GRADIENTS ARE NOT CONSIDERED IN THIS STEP

C

C rhsnwt(R) += [lambda(R) - lambda(L)] * [dFlux/dPd * dPd/dP(R) + dFlux/dPg * dPg/dP(R)] *

dP(R)/dW(R)

C rhsnwt(L) += [lambda(R) - lambda(L)] * [dFlux/dPd * dPd/dP(L) + dFlux/dPg * dPg/dP(L)] *

dP(L)/dW(L)

C

C---

delta1 = HALF*(lmb1(iR) - lmb1(iL))

delta2 = HALF*(lmb2(iR) - lmb2(iL))

delta3 = HALF*(lmb3(iR) - lmb3(iL))

delta4 = HALF*(lmb4(iR) - lmb4(iL))

delta5 = HALF*(lmb5(iR) - lmb5(iL))

C Compute (lambdaR - lambdaL)*dF/dPg

yg1 =delta1*dpg11+delta2*dpg21+delta3*dpg31+delta4*dpg41

1 +delta5*dpg51

yg2 =delta1*dpg12+delta2*dpg22+delta3*dpg32+delta4*dpg42

1 +delta5*dpg52

yg3 =delta1*dpg13+delta2*dpg23+delta3*dpg33+delta4*dpg43

1 +delta5*dpg53

yg4 =delta1*dpg14+delta2*dpg24+delta3*dpg34+delta4*dpg44

1 +delta5*dpg54

yg5 =delta1*dpg15+delta2*dpg25+delta3*dpg35+delta4*dpg45

1 +delta5*dpg55

C Compute (lambdaR - lambdaL)*dF/dPd

yd1 =delta1*dpd11+delta2*dpd21+delta3*dpd31+delta4*dpd41

1 +delta5*dpd51

yd2 =delta1*dpd12+delta2*dpd22+delta3*dpd32+delta4*dpd42

1 +delta5*dpd52

yd3 =delta1*dpd13+delta2*dpd23+delta3*dpd33+delta4*dpd43

1 +delta5*dpd53

yd4 =delta1*dpd14+delta2*dpd24+delta3*dpd34+delta4*dpd44

1 +delta5*dpd54

yd5 =delta1*dpd15+delta2*dpd25+delta3*dpd35+delta4*dpd45

1 +delta5*dpd55

89

Adjoint method subroutine

C Compute [(lambdaR - lambdaL)*dF/dPd*dPd/dP(rc) + (lambdaR - lambdaL)*dF/dPg*dPg/dP(rc)]

step11R = yd1*(1-HALF*dvaR_r2) + yg1*(HALF*dvaL_r2)

step12R = yd2*(1-HALF*dvaR_u2) + yg2*(HALF*dvaL_u2)

step13R = yd3*(1-HALF*dvaR_v2) + yg3*(HALF*dvaL_v2)

step14R = yd4*(1-HALF*dvaR_w2) + yg4*(HALF*dvaL_w2)

step15R = yd5*(1-HALF*dvaR_p2) + yg5*(HALF*dvaL_p2)

C Compute [(lambdaR - lambdaL)*dF/dPd*dPd/dP(lc) + (lambdaR - lambdaL)*dF/dPg*dPg/dP(lc)]

step11L = yg1*(1-HALF*dvaL_r2) + yd1*(HALF*dvaR_r2)

step12L = yg2*(1-HALF*dvaL_u2) + yd2*(HALF*dvaR_u2)

step13L = yg3*(1-HALF*dvaL_v2) + yd3*(HALF*dvaR_v2)

step14L = yg4*(1-HALF*dvaL_w2) + yd4*(HALF*dvaR_w2)

step15L = yg5*(1-HALF*dvaL_p2) + yd5*(HALF*dvaR_p2)

C---

C STEP 2 - ADD DERIVATIVES WITH RESPECT TO GRADIENTS

C

C VA(a,b) ---> a = [gradP . (dx,dy,dz)] b = [P(R) - P(L)]

C

C lmbdmRdGFB = - Sigma lambda (dR/dGrad) (dGrad/dGrenFluxBalOfGrad)

C = 1/vol

C this cell -centred line -vector (15 components) needs to be multiplied

C by (dGrenFluxBalOfGrad/dP)(dP/dW)

C In all conntributioms to (dGrenFluxBalOfGrad/dP) except at boundary interfaces

C factor HALF coming from the mean of cell -centred values

C

C rhsnwt(L) += HALF * [lmbdmRdGFB(L) - lmbdmRdGFB(R) . S] * dP/dW(L)

C rhsnwt(R) += HALF * [lmbdmRdGFB(L) - lmbdmRdGFB(R) . S] * dP/dW(R)

C

C--

C

step21 =HALF*(lmbdmRdGFB1(iL ,1)-lmbdmRdGFB1(iR ,1))*snx

1 +HALF*(lmbdmRdGFB1(iL ,2)-lmbdmRdGFB1(iR ,2))*sny

1 +HALF*(lmbdmRdGFB1(iL ,3)-lmbdmRdGFB1(iR ,3))*snz

step22 =HALF*(lmbdmRdGFB2(iL ,1)-lmbdmRdGFB2(iR ,1))*snx

1 +HALF*(lmbdmRdGFB2(iL ,2)-lmbdmRdGFB2(iR ,2))*sny

1 +HALF*(lmbdmRdGFB2(iL ,3)-lmbdmRdGFB2(iR ,3))*snz

step23 =HALF*(lmbdmRdGFB3(iL ,1)-lmbdmRdGFB3(iR ,1))*snx

1 +HALF*(lmbdmRdGFB3(iL ,2)-lmbdmRdGFB3(iR ,2))*sny

1 +HALF*(lmbdmRdGFB3(iL ,3)-lmbdmRdGFB3(iR ,3))*snz

step24 =HALF*(lmbdmRdGFB4(iL ,1)-lmbdmRdGFB4(iR ,1))*snx

1 +HALF*(lmbdmRdGFB4(iL ,2)-lmbdmRdGFB4(iR ,2))*sny

1 +HALF*(lmbdmRdGFB4(iL ,3)-lmbdmRdGFB4(iR ,3))*snz

step25 =HALF*(lmbdmRdGFB5(iL ,1)-lmbdmRdGFB5(iR ,1))*snx

1 +HALF*(lmbdmRdGFB5(iL ,2)-lmbdmRdGFB5(iR ,2))*sny

1 +HALF*(lmbdmRdGFB5(iL ,3)-lmbdmRdGFB5(iR ,3))*snz

C---

C multiply contributions from 1st and 2nd step by dP/dW

C---

C Right cell

m1 = step11R + step21

m2 = step12R + step22

m3 = step13R + step23

m4 = step14R + step24

m5 = step15R + step25

addrhs1R = m1 - ONE/r2*(m2*u2+m3*v2+m4*w2) + m5*gam1*ee2

addrhs2R = m2/r2 - m5*gam1*u2

addrhs3R = m3/r2 - m5*gam1*v2

addrhs4R = m4/r2 - m5*gam1*w2

addrhs5R = m5*gam1

C Left cell

t1 = step11L + step21

t2 = step12L + step22

t3 = step13L + step23

t4 = step14L + step24

t5 = step15L + step25

addrhs1L = t1 - ONE/r1*(t2*u1+t3*v1+t4*w1) + t5*gam1*ee1

addrhs2L = t2/r1 - t5*gam1*u1

addrhs3L = t3/r1 - t5*gam1*v1

addrhs4L = t4/r1 - t5*gam1*w1

addrhs5L = t5*gam1

C---

C add contribution to left and right cell

C--

rhsnt1(iL) = rhsnt1(iL) + addrhs1L

rhsnt2(iL) = rhsnt2(iL) + addrhs2L

rhsnt3(iL) = rhsnt3(iL) + addrhs3L

rhsnt4(iL) = rhsnt4(iL) + addrhs4L

90

rhsnt5(iL) = rhsnt5(iL) + addrhs5L

rhsnt1(iR) = rhsnt1(iR) + addrhs1R

rhsnt2(iR) = rhsnt2(iR) + addrhs2R

rhsnt3(iR) = rhsnt3(iR) + addrhs3R

rhsnt4(iR) = rhsnt4(iR) + addrhs4R

rhsnt5(iR) = rhsnt5(iR) + addrhs5R

ENDDO

END

91

Adjoint method subroutine

92

	List of Figures
	List of Tables
	List of symbols and acronyms
	List of Symbols
	List of Acronyms

	Acknowledgements
	Abstract
	1 Literature review
	1.1 Introduction
	1.2 Goal oriented mesh adaptation for finite volume schemes

	2 Gradient computation methods
	2.1 The elsA Opt module
	2.2 Finite differences
	2.3 Discrete direct differentiation method
	2.4 Discrete adjoint method
	2.4.1 Parameter mode
	2.4.2 Mesh mode

	2.5 Solution of the linear systems
	2.6 Recursive projection method

	3 Code development
	3.1 Framework of the implementation
	3.1.1 MUSCL 2nd order scheme

	3.2 Implementation of discrete gradient computation methods
	3.2.1 Direct differentiation method
	3.2.2 Discrete adjoint method (parameter mode)
	3.2.3 Discrete adjoint method (mesh mode)

	4 Code verification
	4.1 Test case NACA0012
	4.1.1 Mesh
	4.1.2 Flow
	4.1.3 Parameter

	4.2 Verification procedure
	4.2.1 Direct differentiation method
	4.2.2 Adjoint method (parameter mode)
	4.2.3 Adjoint method (mesh mode)

	5 Mesh adaptation
	5.1 Adaptation procedure
	5.2 Results NACA0012 - Lift and drag
	5.2.1 M=0.5 AoA = 0
	5.2.2 M=0.85 AoA = 2
	5.2.3 M=1.50 AoA = 1

	6 Conclusions
	Bibliography
	A Goal function partial derivatives
	B Python package for mesh adaptation
	C Adjoint method subroutine

