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Abstract

Due to an increase of precipitation reactions in water by temperature changes, cloggings can
occur in a geothermal doublet. A consequence of the cloggings is that the process of generating
geothermal energy becomes inefficient eventually. Our goal is to determine which minerals play
an important role in the clogging process in each part of the geothermal doublet. First, we have
divided the geothermal doublet into four tanks. Then we have derived a general model for a
general chemical reaction. Afterwards, we have used this model for 5 kinds of mineralisation
reactions. This led to first-order differential equations, which we have solved analytically or
numerically with the Forward Euler method. Finally, we have concluded that the minerals
barite, calcite, dolomite and goethite play an important role in the clogging process in tank 3
and tank 4.

1. Introduction

Fossil fuels (such as oil, gas and coal) are the world’s main energy sources. However, these
resources are limited. If we keep on using fossil fuels at our current rate, we will run out of
fossil fuels over the coming decades. To keep up with the future energy demand, we will need
alternative, renewable energy sources. For example, wind and solar energy are such alternatives.
Since wind and sunlight are not always available, we will look for energy sources that are also
reliable. In our report, we will focus on such a renewable and reliable energy source, namely
geothermal energy.

First of all, what is geothermal energy? Due to radioactive decay within the Earth, heat is
being produced. This internal heat is stored in the rocks and fluids beneath the Earth’s surface.
The energy generated from Earth’s internal heat is called geothermal energy.

This geothermal energy can be extracted from the Earth’s subsurface. The process of gen-
erating geothermal energy is illustrated in figure 1. Two wells are drilled into the Earth’s
subsurface at a certain depth such that the temperature of the water is approximately 80 oC. In
volcanic regions (such as Iceland), this depth is approximately a few 100 meters. Our geother-
mal plant is in the Netherlands and here we need to drill approximately 2 km to achieve high
temperature. The injector well injects the cold water into the geothermal reservoir and pumps
it through the subsurface, where the cold water is heated by the hot environment, to the pro-
duction well. Then the production well extracts the hot water and pumps it through a heat
exchanger. This extracted heat can be used, for example, to generate electricity or to heat up
buildings. Consequently, the cooled water is transferred to the injector well.
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Figure 1: The process of generating geothermal energy.

The advantage of the above-mentioned process is that it is environmentally friendly since the
CO2 emission is low compared to fossil fuels. Also, note that we only circulate the fluid, which
makes geothermal energy a renewable energy source. However, the pressure in the subsurface
changes due to the pumping of water. This change can trigger earthquakes. But in our case,
the pressure change remains approximately constant, so the chance of earthquakes is negligibly
small.

The energy costs of a geothermal doublet (figure 1) consists of two kinds, namely:

• Drilling costs: the energy costs for implementing a geothermal doublet.

• Pumping costs: the energy costs for pumping.

The drilling costs are one-time costs and these are lower than the pumping costs. Therefore,
we will focus on the pumping costs.

The location of a geothermal plant is chosen initially such that the gained energy is higher
than the input energy. However, at some point we will need more pumping energy to keep the
circulation ongoing due to possible ’cloggings’. Eventually, the pumping energy will exceed the
amount of energy produced and generating geothermal energy will become an inefficient process.

Cloggings arise from precipitations of naturally dissolved minerals in water. The dissolu-
tion/precipitation reaction of these minerals are in equilibrium. Due to temperature changes,
this equilibrium shifts. For example, when we inject the cold water into the subsurface, the
temperature of the subsurface water decreases and some of the dissolved minerals in the water
precipitate on the rock grains. As a result, the void spaces (pores) in the geothermal reservoir
get clogged.

The aim of this project is to investigate which minerals play an important role in the clogging
process in every segment of the reservoir. We will first divide the geothermal doublet into 4 tanks.
Then we will build up a general model for a general chemical reaction. This we will do by deriving
the rate equations for the reaction, which leads to first-order differential equations. Next, we
will apply the general model to specific chemical reactions and we will solve the corresponding
ODE’s analytically or numerically. Eventually, we will investigate which chemical reactions play
an important role in the clogging process in each tank.
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The structure of the reports is as follows. In section 2, we will describe the general model.
In section 3 and 4, we will use this model to determine the behaviour of some dissolved minerals
in water. Finally, we will end the report with some conclusions in section 5 and an outlook in
which we give some suggestions for making the process more efficient.

2. General model

In this section we will describe the overall model. We will first give a schematic overview of our
geothermal reservoir in figure 1. In this figure, we have divided the reservoir into four parts. We
will first estimate how long the water remains in each part of the four parts of the circulation.
Then we will analyse which reaction are important in each part. This is done as follows. We
assume that each tank behaves like a continuously stirred-tank reactor. This means that we
assume that the tanks are perfectly mixed, i.e. the flow is constant and the contents are mixed
uniformly. So in our model we neglect all spatial dependencies. This analysis tells us which
reactions are important in each tank. Afterwards, we will derive a rate equation for a general
chemical reaction. We will eventually use this derivation for specific reactions.

2.1. Schematic overview of a geothermal doublet

The process of generating geothermal energy described in the introduction, can be divided into
4 parts. A schematic diagram is given in figure 2. We will now describe the main processes
in each tank and we will begin at the injection well. Via tank 3 (injection well), the cooled
water is transported into tank 4 (geothermal reservoir). The first tank (producer well) has a
temperature of T = 80 oC, which remains constant for the whole life-span of the geothermal
doublet. For the second tank, the temperature decreases from T = 80 oC to T = 20 oC due to
the heat exchanger. Due to the temperature decrease in tank 2, precipitation of some minerals
occurs. A filter is included in tank 2 such that the precipitated minerals are removed from the
water.

Note that tank 3 includes also the wellbore region. The reason why we included the near
wellbore region in tank 3 is that the cloggings have a more important influence here compared
to the other tanks. For example, if there are cloggings in tank 4, then the water can flow around
these cloggings to tank 1. But such alternative paths does not the water have near the wellbore
region if this region is clogged.

Figure 2: Schematic overview of generating geothermal energy.

In each tank, the water flows from one end to another for some time. We will call this
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residence time ts. In our case, the flow rate is given as 300 m3/hour for each tank. In table 1,
we estimated ts with the given flow rate and data for each tank.

Tank Data ts

1
Tubing length and radius: 3000 m and 0.05 m

Surface pipeline length and radius: 50 m and 0.127 m
5 min

2
Time in heat exchanger: 30 sec

Time in filter: 30 sec
1 min

3
Surface pipeline length and radius: 50 m and 0.127 m

Tubing length and radius: 3000 m and 0.05 m
Wellbore height and radius: 30 m and 1 m

24 min

4
Distance between two wells: 1000 m
Width and height: 500 m and 30 m

6 years

Table 1: The residence time ts is estimated with the given data for each tank.

2.2. Derivation of a rate equation

We will now derive rate equations for a general reaction and we will apply this method in the
next sections.

Rate equations relate the reaction rate with the concentrations or activities of the reactants.
We will use molal concentrations, so the concentrations are measured in moles of solute per
kg of solvent. The reason why we use molality instead molarity is that the molality is invari-
ant to pressure change, which is not the case for molarity. For a species i, denote the molal
concentration by mi (mole/kgw) where the kgw stands for kg water.

Chemical reactions are often expressed in terms of activity ai for a species i. The activities of
solids and water are always equal to 1. First, we will relate the activity with the concentration.
The activity is proportional to the concentration, that is

ai =
γi

γomo
mi (1)

The γi is the dimensionless activity coefficient that depends on the temperature and the pressure
of the solution. The γo is a coefficient and mo is the standard molality. We set γo = 1 and
mo = 1 such that the units of equation (1) are on both sides equal.

Now, consider the following reversible chemical reaction:

n1B + n2C
+−−⇀↽−−
−

n3D (2)

where n1, n1 and n3 are positive integers. We will only work with precipitation reactions that
convert reactants to products in a single step, also known as elementary reactions. These
reactions often occur on the interface of a solid. The area of this interface will be denoted by
SA (m2/kgw).

The reaction rates of reaction (2) are proportional to SA multiplied by the concentrations
of reactants raised to an appropriate power. For instance, for the forward rate holds

R+ ∼ SA · ap1B a
p2
C
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where p1 and p2 are the reaction orders. Since we work with elementary reactions, the reaction
orders are usually equal to the stoichiometric coefficients of reaction (2). So for the forward
rate we have p1 = n1 and p2 = n2. The reaction rate is also proportional to the reaction rate
constant K, which includes the effects of variables such as temperature and pressure on the
rate. The rate constant is determined experimentally. Thus, we have the following forward and
backward rates of reaction (2): forward rate = R+ = SA ·K+a

n1
B a

n2
C

backward rate = R− = SA ·K−a
n3
D

(3)

where K+ and K− are the forward and backward reaction rate constants of (2), respectively. The
surface area SA is artificial in our case since the reactions occur in water, but it is conventional
to include it in the calculations.

Dependent on the reaction, one of the rate constants can be expressed by the Arrhenius
equation:

K+/− = A · e
−Ea
RT (4)

where R is the universal gas constant and T is the temperature in Kelvin. The A is called the
pre-exponential factor, which denotes the frequency of collisions. The activation energy of the
reaction is denoted by Ea. This is a measure of the minimum amount of energy required such
that the reaction occurs. Both A and Ea are experimentally determined. Observe that the
Arrhenius equation relates the rate constants with the temperature.

The other unknown rate constant can be determined by using the following relation:

K =
K−
K+

(5)

The K in (5) is determined experimentally by fitting the following functional form:

10 log(K) = A1 +A2T +
A3

T
+A4

10log(T ) +
A5

T 2
+A6T

2 (6)

where A1, A2, ..., A6 are experimentally determined parameters and T is the temperature in
Kelvin.

Finally, we can give the overall rate of appearance of substances B, C and D by combining
the forward and backward rate as follows:

dmB
dt = SA · (K−a

n3
D −K+a

n1
B a

n2
C )

dmC
dt = SA · (K−a

n3
D −K+a

n1
B a

n2
C )

dmD
dt = SA · (K+a

n1
B a

n2
C −K−a

n3
D )

(7)

3. Rate equations of independent reactions

First, we will study two chemical reactions that are independent of each other. These are the
reactions that form halite and barite, which are common dissolved minerals in water.
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3.1. Halite

Consider the following reversible reaction of halite NaCl:

Na+ + Cl−
+−−⇀↽−−
−

NaCl (8)

Let K+ and K− be the forward and backward rate constants of (8), respectively. Then we have forward rate = R+ = SA ·K+aNa+aCl−

backward rate = R− = SA ·K−aNaCl

(9)

The overall rate of appearance of Na+ and Cl– is the difference between R− and R+, i.e.
dmNa+

dt = SA ·K−aNaCl − SA ·K+aNa+aCl−

dmCl−
dt = SA ·K−aNaCl − SA ·K+aNa+aCl−

(10)

where t is the time. The equations in (10) contain both activity and concentration variables.
Using equation (1), we can rewrite (10) as

daNa+

dt = γNa+(K−aNaCl −K+aNa+aCl−)SA

daCl−
dt = γCl−(K−aNaCl −K+aNa+aCl−)SA

(11)

The activity coefficient γ depends on the temperature and the pressure of the solution. For our
process, this coefficient is approximately equal to 1. Therefore, we will set γNa+ = γCl− = 1.
Also, for our process we can assume that SA = 1. Substituting these values in (11) gives

daNa+

dt
=
daCl−

dt
=⇒ aNa++ = aCl− + c (12)

where c is some constant. This constant have to be zero due to charge conservation. Thus,
we have aNa+ = aCl− . If we substitute this in (11), we get the following first-order differential
equation: 

da
dt = K− −K+a

2

a(t0) = a0
(13)

where a is the activity of sodium or chloride.

3.1.1. Equilibrium solutions

We will first determine the equilibrium points of (13). So

K− −K+a
2
eq = 0 =⇒ aeq = ±

√
K−
K+

(14)

Since a > 0 for all t > 0, follows that aeq =
√

K−
K+

is the only equilibrium value of (13).
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aeq
T = 20 oC 5.8320
T = 80 oC 6.2936

Table 2: Equilibrium values of equation (13) for sodium and chloride.

3.1.2. Analytical solutions

An exact solution of equation (13) can be obtained since it is separable, i.e. equation (13) can
be written as

1

K− −K+a2
da

dt
= 1 (15)

Consequently, ∫ a

a0

1

K− −K+s2
ds =

∫ t

t0

1ds (16)

We will solve the left-hand side of (16) using partial fraction decomposition. Hence,∫ a

a0

1

K− −K+s2
ds =

1

K+

∫ a

a0

1

(aeq − s)(aeq + s)
ds

=
1

2aeqK+

∫ a

a0

( 1

aeq − s
+

1

aeq + s

)
ds

=
1

2aeqK+
[− ln(|aeq − s|) + ln(aeq + s)]as=a0 =

1

2aeqK+

[
ln
( aeq + s

|aeq − s|

)]a
s=a0

So rewriting equation (16) gives

1

2aeqK+

[
ln
( aeq + a

|aeq − a|

)
− ln

( aeq + a0
|aeq − a0|

)]
= t− t0 (17)

Hence, solving (17) for a gives the following analytical solution of (13):

a(t) =


aeq tanh(

√
K−K+(t+ C)) if aeq > a0

aeq
1

tanh(
√
K−K+(t+ C))

if aeq < a0
(18)

with

C =
1

2
√
K−K+

ln
( aeq + a0
|aeq − a0|

)
− t0

Define K as equation (5). The backward rate constant of our process is given as

K− = ANaCl · e−
ENaCl
a
RT (19)

where R is the universal gas constant, ANaCl is the pre-exponential factor and ENaCl
a is the

activation energy, which is the minimum amount of energy needed for the dissolution of halite.
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NaCl

Arrhenius pre-exponential factor A [1/s] 12.3
Arrhenius activation energy Ea [J/mole] 7442

Table 3: Input for halite.

NaCl

A1 6.244800e+003
A2 1.851478e+000
A3 -2.624691e+005
A4 -2.423205e+003
A5 1.203027e+007
A6 -6.099010e-004

Table 4: Parameters of K for halite.

In figure 3, the analytical solutions of (13) for sodium and chloride are plotted against time
for T = 20 oC. Here, we have taken as initial conditions the equilibrium solutions for T = 80 oC.
Also, in this figure the y−axis is scaled with

a(t)− a(t0)

a(t0)
(20)

Figure 3: Activity of Na+ and Cl– versus time in seconds. The temperature decreases from
T = 80 oC to T = 20 oC.

3.2. Barite

Consider the following reversible reaction of barite BaSO4:

Ba2+ + SO4
2− +−−⇀↽−−

−
BaSO4 (21)

Let K+ and K− be the forward and backward rate constants of (21), respectively. Then we have forward rate = R+ = SA ·K+aBa2+aSO4
2−

backward rate = R− = SA ·K−aBaSO4

(22)
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The overall rate of appearance of Ba2+ and SO4
2– is the difference between R− and R+, i.e.

dmBa2+

dt = SA ·K−aBaSO4 − SA ·K+aBa2+aSO4
2−

dmSO42−
dt = SA ·K−aBaSO4 − SA ·K+aBa2+aSO4

2−

(23)

where t is the time. Using equation (1), we can write (23) as
daBa2+

dt = γBa2+(K−aBaSO4 −K+aBa2+aSO4
2−)SA

daSO42−
dt = γSO4

2−(K−aBaSO4 −K+aBa2+aSO4
2−)SA

(24)

Since the activity coefficients and the surface area are approximately equal to 1 for our process,
we will set γBa2+ = γSO4

2− = 1 and SA = 1. Then it follows that aBa2+ = aSO4
2− . Substituting

these assumptions in (24), we get the first order differential equation described as in (13).

3.2.1. Analytical solutions

Let K be defined as equation (5). Since acidity affects rate constants, the backward rate constant
of reaction (21) is given as

K− = ABaSO4 · e−
E
BaSO4
a
RT +Aacid · e−

Eacid
a
RT anacid (25)

where the parameters are given in table 5 and 6. For our process, the pH remains constant due
to the buffering capacity of water. Therefore, we can let aacid = 10−pH.

BaSO4 acid

Arrhenius pre-exponential factor A [1/s] 3.13e-003 3.09e-002
Arrhenius activation energy Ea [J/mole] 30780 30780

Table 5: Input for barite.

pH 6
n 0.22

Table 6: Parameters for barite.

BaSO4

A1 3.630937e+003
A2 1.218154e+000
A3 -1.393850e+005
A4 -1.437233e+003
A5 5.362526e+006
A6 -4.566328e-004

Table 7: Parameters of K for barite.

In figure 4, the analytical solutions of (13) for barium and sulfate are plotted against time
for T = 20 oC. Here, we have taken as initial conditions the equilibrium solutions for T = 80 oC.
Also, in this figure the y−axis is scaled as equation (20).
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Figure 4: Activity of Ba2+ and SO4
2– versus time in minutes. The temperature decreases from

T = 80 oC to T = 20 oC.

4. Rate equations of dependent reactions

We will now analyze dependent reactions, i.e. reactions that compete for the same ions. Consider
the following reactions:

1. Calcite: Ca2+ + HCO3
–

K1
+−−⇀↽−−

K1
–

CaCO3 + H+

2. Dolomite: Ca2+ + Mg2+ + HCO3
–

K2
+−−⇀↽−−

K2
–

CaMg(CO3)2 + 2 H+

3. Goethite: Fe3+ + 2 H2O
K3

+−−⇀↽−−
K3

–

FeOOH + 3 H+

Let m1,m2,m3,m4 and m5 be the molal concentrations of Ca2+, HCO3
– , Mg2+, H+ and Fe3+,

respectively. Let SA1, SA2 and SA3 be the reactive surface area of reaction (1), (2) and (3),
respectively. Then for reaction (1) we have forward rate = R1

+ = SA1 ·K1
+a1a2

backward rate = R1
− = SA1 ·K1

−aCaCO3a4
(26)

For reaction (2) we have forward rate = R2
+ = SA2 ·K2

+a1a2a3

backward rate = R2
− = SA2 ·K2

−aCaMg(CO3)2a
2
4

(27)

and for reaction (3) we have forward rate = R3
+ = SA3 ·K3

+a5a
2
H2O

backward rate = R3
− = SA3 ·K3

−aFeOOHa
3
4

(28)
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For reactions (1)-(3), we can assume that SA1 = SA2 = SA3 = 1. Then we have the following
overall rates:

dm1
dt = K1

−a4 −K1
+a1a2 +K2

−a
2
4 −K2

+a1a2a3

dm2
dt = K1

−a4 −K1
+a1a2 +K2

−a
2
4 −K2

+a1a2a3

dm3
dt = K2

−a
2
4 −K2

+a1a2a3

dm4
dt = K1

+a1a2 −K1
−a4 +K2

+a1a2a3 −K2
−a

2
4 +K3

+a5 −K3
−a

3
4

dm5
dt = K3

−a
3
4 −K3

+a5

(29)

Using equation (1), we can rewrite system (29) as

da1
dt = γ1 · (K1

−a4 −K1
+a1a2 +K2

−a
2
4 −K2

+a1a2a3)

da2
dt = γ2 · (K1

−a4 −K1
+a1a2 +K2

−a
2
4 −K2

+a1a2a3)

da3
dt = γ3 · (K2

−a
2
4 −K2

+a1a2a3)

da4
dt = γ4 · (K1

+a1a2 −K1
−a4 +K2

+a1a2a3 −K2
−a

2
4 +K3

+a5 −K3
−a

3
4)

da5
dt = γ5 · (K3

−a
3
4 −K3

+a5)

(30)

Since the activity coefficient is approximately 1 for ionic solutions, we will set all activity coef-
ficients equal to 1.

4.1. Equilibrium solutions

Let

K1 =
K1

−
K1

+

, K2 =
K2

−
K2

+

and K3 =
K3

−
K3

+

(31)

To obtain the equilibrium points of system (30), it comes to solving the following equations:
K1

−a4 −K1
+a1a2 +K2

−a
2
4 −K2

+a1a2a3 = 0

K2
−a

2
4 −K2

+a1a2a3 = 0

K3
−a

3
4 −K3

+a5 = 0

(32)

For our problem, the reactions (1)-(3) are in steady state at time t0. The pH is then known.
Due to charge conservation, we have

a1 + a3 + a4 = 5a2 (33)

Combining (32) and (33) gives the following equilibrium solutions:

aeq1 = −1
2(aeq3 + a04) + 5

2

√
[15(aeq3 + a04)]

2 + 4
5K

1a04

aeq2 = 1
5(aeq1 + aeq3 + a04)

aeq3 = K2

K1a
0
4

aeq5 =
K3

−
K3

+
(a04)

3

(34)

with a04 = 10−pH.
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4.2. Numerical solutions

The value of K1,K2 and K3 can be determined by using equation (5) and (6). The forward
rates for reaction (1) and (2) are given by

KCaCO3
+ = ACaCO3 · e−

E
CaCO3
a
RT +AHCO3

− · e−
E
HCO3

−
a
RT an2

K
CaMg(CO3)2
+ = ACaMg(CO3)2 · e

−E
CaMg(CO3)2
a

RT +AHCO3
− · e−

E
HCO3

−
a
RT an2

(35)

and the backward rate of reaction (3) is given by

KFeOOH
− = AFeOOH · e−

EFeOOH
a
RT +AHCO3

− · e−
E
HCO3

−
a
RT an2 (36)

CaCO3 CaMg(CO3)2 HCO3
– FeOOH

Arrhenius pre-exponential factor A [1/s] 6.59 ×104 1.05 ×104 1.04 ×109 1.64 ×107

Arrhenius activation energy Ea [J/mole] 66000 103000 67000 86500

Table 8: Input for calcite, dolomite and goethite.

CaCO3 CaMg(CO3)2 FeOOH

A1 4.764488e+003 7.592995e+003 -7.256759e+003
A2 1.443789+000 2.356035e+000 -1.978556e+000
A3 -1.965495e+005 -3.074160e+005 3.226989e+005
A4 -1.855352e+003 -2.967791e+003 2.782977e+003
A5 8.937845e+006 1.377927e+007 -1.548242e+007
A6 -4.900053e-004 -8.182717e-004 5.886823e-004

Table 9: Parameters of K1,K2 and K3 for calcite, dolomite and goethite.

pH 6.5
n 1.6

Table 10: Parameters for calcite, dolomite and goethite.

aeq1 aeq2 aeq3 aeq5 pH

T = 20 oC 0.007051 0.001411 3.5046e-06 6.2262e-21 6.84
T = 80 oC 0.003963 0.0007928 4.6181e-07 9.4936e-22 6.5

Table 11: Equilibrium values of Ca2+, HCO3
– , Mg2+, Fe3+ and pH.

In figure 5 and 6, the numerical solutions of system (30) are plotted against time for T =
20 oC. The initial conditions are the equilibrium points of system (30) for T = 80 oC. We have
used the Forward Euler method for the approximations. In figures 5, the y−axis is scaled as
equation (20).
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(a) (b)

(c) (d)

Figure 5: The following activities are plotted against time: (a) activity of Ca2+ versus time in
days, (b) activity of HCO3

– versus time in days, (c) activity of Mg2+ versus time in years, (d)
activity of Fe2+ versus time in years. The temperature decreases from T = 80 oC to T = 20 oC
in each graph.

(a)

Figure 6: The pH versus time in days. The temperature decreases from T = 80 oC to T = 20 oC.
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5. Discussion

In tank 1, the temperature remains constant. So we would expect that all reactions remain in
equilibrium. However, a degasser is included in tank 1. The function of the degasser is to remove
gasses from the water. In our case, the dissolved gas CO2 is removed. Due to this removal, the
equilibrium of the reactions that include the ions HCO3

– and H+ shifts. This is because the
dissolved CO2 reacts with water to form carbonic acid H2CO3, which rapidly disassociates to
form the ions HCO3

– and H+. So removing CO2 triggers the reactions that depend on the ions
HCO3

– and H+. From the 5 mineralisation reactions that we have studied, the minerals calcite,
dolomite and goethite are triggered by the degasser. Since these reactions reach equilibrium in
days or years and the water remains in this tank for approximately 5 minutes, we can conclude
that the minerals calcite, dolomite and goethite have no important influence in the clogging
process in tank 1.

The first main temperature change happens in tank 2. Here, the temperature decreases,
which means that all reactions are triggered. The water remains approximately 1 minute in this
tank. So the minerals that precipitate within a short time (with order of seconds or minutes)
have a influence on the clogging process in this tank. From the 5 mineralisation reactions that
we have studied, only the minerals halite and barite satisfy this short-time scale. However, all
the precipitated minerals are removed from the water by the filter in tank 2. So the minerals
halite and barite have no influence in the clogging process in tank 2.

The water remains in tank 3 for a short time, approximately 24 minutes. So from the 5
minerals that we have studied, halite and barite have an influence on the clogging process in
tank 3 since these minerals correspond to the short-time scale. However, the precipitation of
halite reached its equilibrium in tank 2 and all the precipitated halite is removed from the water
by the filter in tank 2. Hence, halite has no effect in the clogging process in tank 3. The
mineralisation of barite still continues in tank 3 after it is triggered in tank 2. This is because it
takes approximately half an hour for the reaction of barite to reach its equilibrium. Thus, only
the mineralisation of barite has a significant effect on the clogging process in tank 3.

After injecting the cooled water in tank 4, the water stays there for approximately 6 years.
The temperature increases in this tank. Due to this temperature increase, only the precipitations
of calcite, dolomite and goethite have an impact on the clogging process in the geothermal
reservoir.
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6. Conclusion and outlook

In this section, we will first give a conclusion. Afterwards, we will give some recommendations
for further research.

Until now, we have divided the geothermal doublet into 4 tanks and we have developed a
method to determine the rate equation of a general chemical reaction. Eventually, we have
used this method for 5 different mineralisation reactions. We can now determine which minerals
play an important role in the clogging process in each part of the geothermal doublet. We can
conclude that barite has a significant influence on the clogging process in tank 3. The minerals
calcite, dolomite and goethite have an important influence on the clogging process in tank 4.
None of the minerals have any significant effect on the clogging process in tank 1 and 2.

The following improvements can be made about this project:

• Adding more minerals to the research such that we can analyse which minerals are impor-
tant in the clogging process.

• Include spatial dependencies in the model. This will lead to a model with partial differential
equations that will describe the behaviour of the dissolved minerals.
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