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Surface plasmons are collective electron excitations in metallic systems, and the associated electromagnetic
wave usually has the transverse-magnetic polarization. On the other hand, spin waves are spin excitations
perpendicular to the equilibrium magnetization and are usually circularly polarized in a ferromagnet. The direct
coupling of these two modes is challenging due to the difficulty of matching electromagnetic boundary conditions
at the interface of magnetic and nonmagnetic materials. Here, we overcome this challenge by utilizing the linearly
polarized spin waves in antiferromagnets (AFM) and show that a strong coupling between AFM magnons
and surface plasmons can be realized in a hybrid two-dimensional (2D) material/ AFM structure, featuring a
clear anticrossing spectrum at resonance. The coupling strength, characterized by the gap of anticrossing at
resonance, can be tuned by electric gating on 2D materials and probed by measuring the two reflection minima
in the reflection spectrum. Further, as a potential application, we show that plasmonic modes can mediate the
coupling of two well-separated AFMs over several micrometers, featuring symmetric and antisymmetric hybrid
modes. Our results may open a platform to study antiferromagnetic spintronics and its interplay with plasmonic

photonics.

DOLI: 10.1103/PhysRevB.111.024422

I. INTRODUCTION

Understanding the light-matter interaction is a central
topic in condensed matter physics. Light can induce elec-
tron oscillations on a metallic surface and in two-dimensional
(2D) conducting materials, so-called surface plasmons [1-3],
which is promising if one wants to confine and amplify
electromagnetic waves for sensing applications [4-6]. While
surface plasmons in the optical and infrared regime have been
widely studied, their extension down to gigahertz (GHz) and
terahertz (THz) regimes with desirable polarization has been
an outstanding challenge for a long time. This is because met-
als behave as perfect conductors in the low-frequency regime
and therefore almost reflect all the incident electromagnetic
waves, hindering the formation of surface plasmons. With the
development of fabrication technology, one can grow artifi-
cially structured materials and 2D materials to generate THz
spoof surface plasmons with similar dispersion and subwave-
length field confinement compared to the conventional surface
plasmons [7,8].

On the other hand, aside from the charge degree of free-
dom, electrons also have intrinsic spin. Light can stimulate
collective excitations of exchange-coupled localized spins in
magnetic materials, so-called spin waves [9,10]. The quasipar-
ticles corresponding to spin waves are magnons. Investigating
spin-wave transport and novel magnon states and their po-
tential applications in information processing is the focus
of magnon spintronics [11,12]. It has been shown that, by
combining the 2D materials such as graphene with magnetic
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systems, one can generate a transverse-electric (TE) surface
plasmon ranging from GHz to THz regime under the assis-
tance of surface spin waves [13]. Such a proposal is free
from the constraints of the conductivity of 2D materials and
further benefits from the great tunability of magnetic systems
and 2D materials by external magnetic fields and electric
gating, respectively. The studies on the interplay of plasmons
and magnons have developed gradually in the last few years
[14-19]. Nevertheless, to achieve coherent and reliable in-
formation transfer between two parties, in analog to hybrid
magnon-photon and magnon-qubit system, it is desirable to
realize strong coupling between them [12,20]. This is not easy
in layered structures involving ferromagnets and 2D materials
because the spin oscillations in a ferromagnet are circularly
polarized, and it is challenging to satisfy the continuity of
electromagnetic boundary conditions at the interface.

Here, we take a step further to show that surface plasmons
can strongly couple to surface magnons in antiferromagnets
(AFM), featuring a typical anticrossing spectrum. The es-
sential physics is that left and right circularly polarized spin
waves coexist in an AFM, and their superposition could gen-
erate a linearly polarized spin wave. A transverse-magnetic
(TM) wave incident on the interface of 2D materials and AFM
could be efficiently coupled to the linearized polarized spin
wave and further enhance the plasmon excitation in a 2D
material. This is a unique feature of AFM, and is absent in
ferromagnetic thin films, which only allow for the excitation
of circularly polarized spin wave. The THz nature of magnon
frequency in an AFM enables the excitation of THz plas-
mons, with a reduced wavelength compared to the vacuum
light. To probe the excitation, we propose to measure the
reflection spectrum of the hybrid system, where the hybrid

©2025 American Physical Society


https://orcid.org/0000-0003-0617-9489
https://orcid.org/0000-0002-7956-9966
https://ror.org/00a2xv884
https://ror.org/02e2c7k09
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.111.024422&domain=pdf&date_stamp=2025-01-27
https://doi.org/10.1103/PhysRevB.111.024422

YUAN, BLANTER, AND LIN

PHYSICAL REVIEW B 111, 024422 (2025)

FIG. 1. Scheme of a dielectric/graphene/AFM structure. The
surface spin waves excited in the AFM are strongly coupled to the
transverse magnetic surface plasmons excited in the graphene layer.
The blue and red arrows represent the sublattice magnetizations of
the antiferromagnetic layer.

magnon-plasmon excitations carry away electromagnetic en-
ergy and generate a double-valley structure. As a potential
application, we show that plasmons can mediate the coupling
of two AFMs separated over several micrometers, even though
the AFMs have vanishingly small magnetization. Our work
may open a route for the interdisciplinary development of
antiferromagnetic spintronics and plasmonic photonics.

II. MODEL AND PHYSICAL PICTURE

We consider a dielectric/graphene/antiferromagnetic insu-
lator (DE/GRA/AFM) hybrid structure as shown in Fig. 1.
The AFM layer constitutes two magnetic sublattices, and
the magnetization dynamics is described by the two coupled
Landau-Lifshitz-Gilbert (LLG) equations

om; = —ymy X Hy e +omy x 9;my, (1a)
omy = —ymy x Hy o + amy x 9;my, (1b)

where y is the gyromagnetic ratio, M; = M;m; with M| being
the saturation magnetization of each sublattice, and m; being
a unit vector representing the direction of magnetization, « is
Gilbert damping coefficient characterizing the relaxation rate
of magnetization. The effective fields H; ¢ (i = 1, 2) include
the contributions from the exchange field, anisotropy field,
external field (H,), and dipolar field (Hy), i.e.,

= —Hemy + Hanml,yey +H, +Hg, (2a)
H; ef = —Hexmy + Haan,yey +H, +H,. (2b)

The classical ground state of the system in the absence
of external magnetic fields is a Néel state with M; =
M,ey, My = —M,e,. When an external field is applied per-
pendicular to the easy axis (y axis), i.e., H, = Hype,, the
ground state becomes a tilted state as shown in Figs. 2(a)
and 2(b) with the tilting angle cos 0 = Hy/(2Hex + H,y). De-
pending on the direction of the oscillating field A(t), two
excitation modes of magnetization can be generated. When
the driving field is applied along the z axis, both m, and m,
oscillate with time as shown in Fig. 2(d). Such a geometry
can help to excite the TE surface plasmons by matching the
electromagnetic boundary conditions at the interface of the
2D material and the magnet, as verified in Ref. [13]. However,
there is no anticrossing between magnons and plasmons due
to the absence of bare TE plasmon mode.
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FIG. 2. Scheme of the two-sublattice antiferromagnet under a
perpendicular magnetic field with driving field parallel (a) and per-
pendicular (b) to the static magnetic field (x axis). (c), (d) Time
evolution of the total magnetization m = m; + m,. Magnetic param-
eters of NiO are used with Hyy =524 T, H,, = 1.47 T, M; = 0.32 T
[21], yHy = 0.5w,. The value of magnetic Gilbert damping o is
taken to be 0.1 to accelerate the relaxation process.

On the other hand, when the oscillating field is applied
along the direction of static magnetic field (x axis), one can
have a linearly polarized spin wave with only m, oscillating
in time, as shown in Fig. 2(c). The sublattice magnetization
components along the y axis and z axis cancel each other
and do not generate any oscillation of m, and m, under this
configuration. Considering the spin wave propagating in the
y axis, such an oscillation will generate a TM spin wave and
thus can match the input TM electromagnetic wave to excite
TM surface plasmons at the 2D layer, as we shall see below.
Since a bare TM plasmon is not forbidden in the current
geometry, one can expect an anticrossing structure when the
frequencies of the surface spin wave and the surface plasmon
are close. This is the main idea of our proposal. Next, we shall
rigorously verify this point.

III. HYBRID MAGNON-PLASMON EXCITATION

To study the spin-wave excitation above the ground state
shown in Fig. 2(a), we do linear expansions of the sublattice
magnetization around the tilted state as M; = M cosfe, +
M e + M ye,, My = Mg cosbe, + M, e, + M, ye,. Sub-
stituting this ansatz into the coupled LLG equations (1) and
keeping only the linear terms, we derive that My, + M, , =0
and

8tl‘SMx = _wgp(SMx + 2V2Haon - ay(ZHex + Han)at(San
3

where M, =M + M, and wgp = Y/ Han(2Hex + Hyy) 1S
the eigenfrequency of the spin wave, which is field indepen-
dent [22,23]. Under the assumption of harmonic oscillation
SM, o< e~ we can derive the susceptibility of the system
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defined as x = 6M,/H,, where
2y HuM;
— oy (2Hex + Hap) — w?

X == @)

g,
On the other hand, the magnetization dynamics should also
fulfill the Maxwell equations [13]

(V24+kHH - V(V -H)+ k*sM = 0, 3)

where k? = epow® with € being the permittivity of the
medium and p( being the vacuum permeability. Substituting
the relation M, = x H, into Eq. (5), we have

(I+ X)kg - (kgy + k%z) =0, ©)

where k; represents the electromagnetic wave vector with
i = 3, 2 for dielectric layer and AFM layer shown in Fig. 1,
respectively. In the long-wavelength or magnetostatic limit,
1+ x =0, the first term dominates the equation and thus
one has 14 x = 0. Through straightforward mathematics,
one can derive the resonance frequency with the revisions of

dipolar fields [21] as wy = /wgp + 2w,y w,, in the absence of

damping. Note that a)gp / Qwanwy,) ~ Hex /M5 > 1 for a crys-
talline magnet, hence the renormalized resonance frequency
is very close to the one without taking account of the dipolar
interactions.

Furthermore, by solving the Maxwell equation k x B =
—(we/c*)E with B = po(H + M) and ¢ being the speed of
light, we obtain the electric components of EM wave inside
the AFM as

A Ok

Eyy=————H, Ex
WENE

_ A+ Xk
WENE

He, (7)

where € is the vacuum permittivity.

Similarly to the ferromagnetic case [13], the eigenexcita-
tions of the hybrid system correspond to the exponential decay
of spin-wave modes in the magnetic layer and the evanescent
electromagnetic (EM) waves in the dielectric layer. By solving
the Maxwell equations, we can explicitly obtain the evanes-
cent modes in the dielectric as

k3
+) 3y (+)
ks = Hy,.~, ®)

g6 _ _ K g
¥ WE3E(Q

3x

where the sign (+) means exponential increase (decrease)

modes in the positive z direction, k3 = /k32y — w?e3/c? is the

decay coefficient of EM wave.

Now, we are ready to match the boundary conditions at the
interface of dielectric and magnetic layers. The continuity of
tangential components of magnetic and electric fields at the
interface requires that

EyY =E}). H{P +0Ey) =H, ©)
where the surface plasmon excitation in graphene is modeled
as a surface electric current j = O’Ez(; ), where o is the ac con-
ductivity of graphene. This approximation has been widely
used to treat plasmons in graphene [24,25]. It would be inter-
esting to consider how to bridge this approach with the one
based on electron-electron interaction in the future [8]. In the
THz regime, the graphene conductivity is well described by
the Drude model 0 = oyEr/(nT" — imhw) with oy = ez/4h,
Ep being the Fermi energy and I' being the relaxation rate

of carriers. Note that the plasmon wavelength we studied is
around micrometer scale as we shall see, which is much larger
than the electron Fermi wavelength in graphene [26]. Hence,
the usage of Drude conductivity is well justified.

To guarantee a nontrivial solution of the electromagnetic
fields according to Eq. (9), it is required that

_"_3<ii_“’_62) =1 (10)

WE3 €0 81,

where 6, (p € {AFM, DE}) depends on the nature of medium
2 with the form dapm = —(1 4+ x )&z and dpg = —k». For a
dielectric substrate with dpg, we recover the known dispersion
of surface plasmon in graphene [25]

4(70E1: _ € n €3 ’ (1 1)

V@ — e/t /¢ — e/
where we have imposed the requirement of momentum
conservation at the interface k», = k3, = g. Note that this
dispersion (11) is quite different from that of the hybrid TE
plasmon-magnon excitation [13]. In the electrostatic limit
q > w.\/€/c, Eq. (11) can be analytically solved as w =
V/8ooEr [[megh(e; + €3)]q o /g, similar to the dispersion of
surface plasmon on a metal surface [3]. The tunability of
Fermi energy Er in a 2D material readily allows for the
tunability of the dispersion of surface plasmons, which is
not present in a normal metal and is a unique feature of
2D systems. Figure 3(a) shows that the dispersion relation at
Er =0.5 eV (red line), 1 eV (blue line), and 2 eV (purple
line), respectively, by numerically solving Eq. (11).

When the substrate is an AFM, the surface spin wave in
the THz regime will be excited and its frequency crosses the
plasmon dispersion [black dashed line in Fig. 3(a)]. At the
crossing point, the momentum and energy of surface magnons
match that of the surface plasmon, and it is expected that a gap
will open due to the spatial overlap of EM fields generated by
plasmons and magnons inside the hybrid structure. To verify
this point, we recall the dispersion relation (10) and simplify
1t as

weghw?

40‘0EF _ €3
meohe?  \Jq? — wles/c?

€2
+ .
(14 )V — (1 + p)oter/c?

Figure 3(b) shows the numerical solution of this equa-
tion at Er = 2 eV without taking the electrostatic limit. A
clear anticrossing feature can be identified at the resonance
point wg, /2w = 1.1 THz. The gap of the anticrossing around
23 GHz characterizes the coupling strength between magnons
and plasmons. Thanks to the tunability of the surface plasmon
dispersion in 2D material by electric gating, the coupling
strength between magnons and surface plasmons can also
be tuned. When the dissipation of magnons and plasmons
is included, the solution of Eq. (10) gives a complex-valued
frequency as shown in Figs. 3(c) and 3(d). Here the real
parts of frequency have an avoided crossing near resonance,
which is the same behavior as in the dissipationless case. The
imaginary parts characterize the dissipation rate of the hybrid
modes and share a similar feature of the coherent coupling
between two physical modes at resonance [28]. Nevertheless,

12)
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FIG. 3. (a) Dispersion of surface plasmons in the DE/GRA/DE
structure at different values of the Fermi energy. The black dashed
line indicates the frequency of antiferromagnetic magnons. €3 =
2, ¢ =119 for NiO [27]. (b) Anticrossing spectrum between
magnons and plasmons in the hybrid DE/GRA/AFM structure in
the absence of dissipation of magnons and plasmons. The gap depth
at resonance signals the coupling strength. Er = 2 eV. (c) Real (top
panel) and imaginary (bottom panel) components of the complex-
valued frequency as a function of the wave vector after including the
dissipation of magnons and plasmons. The red (blue) color denotes
the higher (lower) branch of the hybrid magnon-plasmon modes,
respectively. Here, we use magnetic Gilbert damping « = 10~ and
plasmon relaxation rate I' = 0.4 meV. (d) Imaginary component of
the frequency as a function of the wave vector near the branch point
gy (vertical dashed line) at different plasmon relaxation rates. (e)
Coupling spectrum between magnons and plasmons as a function
of the Fermi energy, which can be tuned by gating voltage. (f) Co-
operativity in the phase diagram of Gilbert damping « and plasmon
relaxation rate I' for Er = 2 eV. All the other parameters are the
same as those in Fig. 2.

we also identify a nonmonotonic behavior of Im(w,) below
the resonance. We zoom in this abnormal dispersion by vary-
ing the plasmon relaxation rate and find that there is always a
local minimum at the wave vector ¢, as shown in Fig. 3(d). To
understand this behavior, we recall that the graphene plasmon
dispersion can be multivalued [29-31] due to the existence of
square-root terms in Eq. (10). The wave vector g, is exactly a
branch point connecting with /¢ — (1 4 x)w?e;/c*. In gen-
eral, the solution of this dispersion equation near the branch
point g, requires a careful justification [31]. A detailed study
of the imaginary parts using more advanced mathematical

technique [31] is beyond the scope of this work. Here we
focus on the avoided energy crossing in real spectrum and
expect that it is robust against the influence of a very small
dissipation rate.

Figure 3(e) shows that the coupling strength increases with
the electron Fermi energy. The reason is as follows. With
the increase of Fermi energy, the momentum of electrons de-
creases to match the frequency of magnons and thus the decay
length of EM wave inside the dielectric increases according
to 1/ = 1/y/k? — w?¢/c?. Then there is a larger volume for
mode overlap between magnons and plasmons, resulting in
an increase of their mutual coupling strength. The saturation
behavior at a higher Fermi energy is because the dispersion of
plasmon approaches w = c¢/./€ for larger Er (¢ is the larger
one of ¢, and €3) according to Eq. (11), which is insensitive
to the position of Fermi level. Taking account of the dissi-
pation of magnons y,, = 2ayHe and surface plasmons I,
we can calculate the cooperativity C = g%/(y,,I") [32] with g
being the coupling strength. The result is shown in Fig. 3(f).
For typical values of magnetic damping o ~ 10™* and plas-
mon relaxation rate I' ~ 0.5 meV, the magnon and surface
plasmon have already reached a strong coupling regime
(C > 1). To generate strong coupling between magnons and
plasmons in experiments, one may increase the Fermi level of
graphene [33,34], use multi-layer graphene which can effec-
tively increase the electron Fermi energy as we shall discuss
in Sec. VI, and optimize the various parameters in Eq. (10).
One has to be very careful when increasing the Fermi level
of electrons by doping. For heavy doping, the interaction
of electrons may become stronger and our electromagnetic
approach has to be modified.

IV. PROBE THE COUPLING

We have demonstrated that antiferromagnetic magnons
and surface plasmons can reach a strong coupling regime in
a hybrid dielctric/graphene/antiferromagnet structure. Here,
we further show that such a coupling can be probed by
measuring the reflection spectrum of a THz wave from the
hybrid structure. The idea is that the hybridized excitations
of magnons and surface plasmons take away electromagnetic
energy, which results in double minima in the reflection spec-
trum. Next, we will explicitly verify this point by analytically
calculating the reflection spectrum of the hybrid system.

We add another input layer (dielectric medium 4) on
top of the dielectric layer in Fig. 1 and consider a hybrid
DE/DE/GRA/AFM(DE) structure as shown in Figs. 4(a) and
4(b). The refractive index of medium 4 has to be larger than
that of medium 3 (e4 > €3) to guarantee that the incident
electromagnetic wave can generate an evanescent wave in the
medium 3 above a critical angle. By solving the Maxwell
equations, it is straightforward to obtain the incident TM
wave as

. . . )
HOD = (Hi;r)’ 0, 0)e k", (13a)

i i i AR
Eiz,r) — (0’ Eé;,r), Ei;r))ezqy+k4z Z, (13b)

with
(@i,r)

4 k . . P
E(t,r) - _ 4z H([’r), E(l,r) — H(l,r)’ 14
4y wes€y 4x 4z wes€ 4x ( )

024422-4



STRONG AND TUNABLE COUPLING BETWEEN ...

PHYSICAL REVIEW B 111, 024422 (2025)

(d)l .000

0.999
0.998
‘;Z 0.997
0.996

=== DE/GRA/AF! == DE/GRA/AF]
== DE/GRA/DE
= DE/GRA/DE

0.5 d=10pum 0.995 d = 40um
0.4 0.994 !
0.8 09 1.0 1.1 1.2 1.3 14 080910111213 1.4
o/2n (THz) ®/2n (THz)

FIG. 4. (a), (b) Scheme of the two setups to measure the reflec-
tion rate of the hybrid DE/GRA/AFM and DE/GRA/DE structures.
(c), (d) Reflection rate of the hybrid system as a function of incident
wave frequency for d = 10 and 40 um, respectively. Parameters are
Er =2 eV, plasmon relaxation rate I' = 0.1 meV, magnetic Gilbert
damping o = 1073, 6 = 39.4°.

where the indices i () stand for the incident (reflected) waves,
and g = ky, is the in-plane momentum of the electromag-
netic wave, which should be conserved in the whole hybrid
structure. In the dielectric medium 3, now we have both ex-
ponential increase and decay modes due to its finite thickness
(d). The full expression of magnetic and electric components
of the EM wave is a linear superposition of these two modes,
ie.,

H; = (H{",0,0)e®"9 1 (H,0,0)e 7% (15a)
E; = (0, ES(;r)7 Eé;))eiqy-k—icgz + (0, E3(;), ES(;))eiqy—:qz.
(15b)

The continuity of the tangential components of magnetic
and electric fields at the interfaces of media 4-3 (z = 0) and
media 3-2 (z = d) require that

Hy + Hy) = HD + H ., (162)
E)) +E) =E +E (16b)

H{Pesd + Hie™! 4 o E e = Hy e, (16c)

E(+)eK3d +E§;)6—K3d — Ez(;)e_’(zd.

) (16d)

Here, we have shifted the coordinate center to the interface
of media 4-3 for simplicity. By solving the linear set of equa-
tions (16), we derive the reflection coefficient of the system as

_ Hi;) _ k3€an + ikezm
HY  kseam — ikesn’

a7

where
N1 = (—i8,0 + €perw)k3 sinh(k3d) — €pe3d,w cosh(kzd),

N2 = (—i8,0 + €perw)k3 cosh(kzd) — €pe3d,w sinh(ksd).
(18)

Here p = DE for the DE/DE/GRA/DE structure and p =
AFM for the DE/DE/GRA/AFM structure, as defined below
Eq. (10).

Figure 4(c) shows the reflection rate |R|*> as a function
of the incident wave frequency for d = 10 pm. Clearly, two
reflection minima are identified (red line), corresponding to
the upper and lower branches of the hybrid modes in Fig. 3(b),
respectively. As a comparison, only one dip structure is iden-
tified corresponding to the bare plasmon mode when the AFM
layer is replaced by a standard dielectric layer, as shown
in Fig. 4(c) (blue line). As the thickness of dielectric layer
(medium 3) increases, the reflection rate is approaching 1,
indicating that only tiny surface plasmons are excited at the
graphene layer. This is because the electromagnetic wave
decays exponentially in medium 3 and is not strong enough
to excite the surface wave at the graphene after propagating a
longer distance d. In the limit d — oo, R = 1, we recover the
textbook result of total reflection [35].

V. PLASMON-ASSISTED AFM-AFM COUPLING

As an application of the strong magnon-plasmon coupling,
we show how the plasmon mode can mediate the coupling
of magnon excitations in two well-separated antiferromag-
nets. Here we consider a hybrid AFM/GRA/DE/GRA/AFM
structure as shown in Fig. 5(a). Following a similar approach
to match the continuity of electric and magnetic fields at the
interfaces of media 4-3 and 3-2, we find that the eigenex-
citation of the hybrid system should satisfy the following

~
o
~

(@

—_
—_
o0

o,/2n (THz)

(© (d)
1.0
0.9
0.5 0.8
S 00 = 0.7
M —mode No. 2 M 0.6 — moge No. 1
- 0.5 hode No. 4/ 0.5 — mogle No. 3
- 1.0 0.4
-10 -5 0 5 10 -10 -5 0 5 10
z/d z/d

FIG. 5. (a) Scheme of a hybrid AFM/GRA/DE/GRA/AFM
structure. The surface plasmons excited at the graphene layers can
mediate the coupling between two spatially separated antiferro-
magnets. (b) Dispersion relation of the hybrid modes calculated
by numerically solving Eq. (20a) (magenta and red lines) and
Eq. (20b) (gray and blue lines), respectively. Parameters are d =
4um, e, =€ =119, 63 =2. (c), (d) The spatial distribution of
electric fields in the antisymmetric (modes No. 2 and No. 4) and
symmetric modes (modes No. 1 and No. 3) at the crossing points
between the vertical dashed line and the four hybrid modes shown
in (b).
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equation:

e_md(a)Q n wer iO’z) (a)eg | wey ic74>
k3 dm2 € K3 Sma €0

_nd (2B _ 00 | 100 (06 | 064 | 104) g
K3 Sm2 €0 K3 Sma €0

Here we have shifted the coordinate origin to the center of the
middle dielectric layer with thickness d. The characterizing
function §,,; = —1(1 + x;)k;, where y; and k; are, respec-
tively, the magnetic susceptibility and decay coefficients of
the ith layer.

Without loss of generality, we assume that €; = €4, 05 =
o4, then the dispersion equation can be factorized and analyt-
ically solved as

d d 1
sinh %E + cosh o (L + E) =0,

€3 2 \0+00 6
(20a)
d d j
COSh K'?,_(,()_E?, + Sinh KL(L + E) — 0’
2 & 2 \(+ )k €
(20b)

where ko = k4 =K, X2 = Y4 = X, When d — 00, these two
equations are identical to each other, and the solution recov-
ers the two sets of hybrid magnon-plasmon mode as already
presented in Fig. 3.

For a dielectric layer with finite thickness, the hybrid
magnon-plasmon mode at the left region (z < 0) will over-
lap with that in the right region (z > 0) through the middle
dielectric layer. Such a hybridization will result in two new
classes of hybrid modes, as shown in Fig. 5(b). Here the
black and red lines refer to the solutions of Egs. (20a) and
(20b), which correspond to the symmetric and antisymmetric
modes, respectively. To clarify, we can explicitly solve the
linear set of equations characterizing the boundary conditions
and derive the spatial distribution of electric fields across
the hybrid structures. Figures 5(c) and 5(d) show the electric
field profiles for the antisymmetric and symmetric modes,
respectively. Such an indirect coupling channel shares certain
similarities with the coupling between two magnons mediated
by phonons in a nonmagnetic insulator, where both in-phase
and out-of-phase motions can be generated [36].

VI. DISCUSSION AND CONCLUSIONS

First, all our previous calculations focus on the monolayer
graphene. For a double-layer graphene attached on top of an
antiferromagnet, the modeling technique is quite similar to
the one shown in Fig. 5, where a dielectric layer replaces
medium 4. The magnon-plasmon coupling spectrum of the
hybrid structure can still be routinely described by Eq. (19)
after replacing §,,4 by its dielectric counterpart —k4. When
the interlayer distance of the two graphene layers is very
small that k3d < 1, we can analytically solve the dispersion

relation as
2
_£<,-_"_ we ) =1, 1)

where we have assumed k4 = «3 for simplicity. Compared
with the monolayer case derived in Eq. (10), the graphene
conductivity is doubled. Since the conductivity of graphene
is proportional to the electron Fermi energy, the Fermi energy
will then be shifted upwards, and hence the coupling strength
between magnons and plasmons will become stronger, as
discussed in Fig. 3(e). This technique may also help us
to enhance magnon-plasmon coupling, without doping the
graphene too heavily so that the electron-electron interac-
tion becomes important. Hence, it may be feasible in the
experimental side.

Further, the above analysis for double-layer graphene may
not work for bilayer graphene with atomic interplay distance
close to that in graphite (~3.4 A). Then, the conductivity of
the system will be modified by the van der Waals interaction
between the two layers. Take the AA-stacked bilayer graphene
as an example, the two copies of band structure of monolayer
graphene will shift upward and downward by A, respectively,
with A being the interlayer coupling strength. The resulting
dynamic conductivity is [37]

8ioy AE i1 how — 2|A — Ep|
e L T
i how—2|A+EF|

Bl P L (22)
7T ho+2|A+ Er|

When the Fermi energy is much larger than the interlayer
coupling, i.e., Er > A, the conductivity is reduced to o =
8ioy/(mhw), which is exactly two times of the conductivity of
monolayer graphene. Then we recover the results of double-
layer graphene. When the Fermi energy is comparable to the
interlayer coupling, especially when their energy difference
|[Er — Al is close to the magnon energy, the results can be
very different. A detailed discussion on the bilayer case will
be given elsewhere.

Lastly, we would like to discuss the existing literature
on the coupling between magnons and plasmons. Bludov
et al. [14] reported a similar anticrossing structure be-
tween magnons and plasmons in graphene-antiferromagnet
heterostructures while the influence of dissipation on the cou-
pling and the potential detection methods of the hybrid modes
are not studied. Costa et al. [15] reported strong coupling
between surface plasmons and magnons in graphene-2D fer-
romagnetic heterostructures by assuming an artificial Zeeman
interaction between plasmonic magnetic fields and spins. Here
we notice that one has to be very careful to match the bound-
ary conditions at the interface between graphene and magnets.
Also, generating THz uniform magnon mode in a ferromagnet
is very challenging due to the influence of exchange interac-
tion. Dyrdal et al. [16] reported the hybridization of magnons
and plasmons by spin-orbit interaction in 2D magnets. Ghosh
et al. [17] showed that plasmons can hybridize with weakly
dispersive optical magnons in 2D honeycomb magnets. A
proof-of-concept experiment on this coupling is still lack-
ing. Recently, Xiong et al. [19] observed the strong coupling
between magnons and spoof surface plasmons in a hybrid
structure of magnetic sphere and microwave spiral resonator
in experiments.

In conclusion, we have shown that surface plasmons in
a 2D material can reach strong coupling with the surface
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magnons in antiferromagnets at the THz regime. The cou-
pling strength is tunable by electric gating of the 2D material,
where the Fermi energy of electrons and thus the electric
conductivity can be changed. To probe the coupling, we
propose measuring the reflection spectrum of the hybrid sys-
tem, where the hybrid magnon-plasmon modes take away
electromagnetic energy and generate two reflection minima,
which characterize the lower- and higher-energy branches
of the hybridized modes, respectively. We further show that
the plasmons can mediate the coupling between two AFMs
over several micrometers. Both symmetric and antisymmetric
hybrid modes can be generated. Our finding may provide a
platform to study the interplay of magnon spintronics and

plasmonics, where antiferromagnets may manifest their THz
dynamics in particular. Further, it would be interesting to dive
into the quantum regime by quantizing the classical field pro-
files and to study the quantum correlations between magnons
and plasmons, which may potentially extend the horizon
of quantum magnonics [12]. This will be the focus of our
followup work.
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