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We study the statistics of the fluctuating electron temperature in a metallic island coupled to reservoirs

via resistive contacts and driven out of equilibrium by either a temperature or voltage difference between

the reservoirs. The fluctuations of temperature are well defined provided that the energy relaxation rate

inside the island exceeds the rate of energy exchange with the reservoirs. We quantify these fluctuations in

the regime beyond the Gaussian approximation and elucidate their dependence on the nature of the

electronic contacts.
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The temperature of a given system is well defined in the
case where the system is coupled to and in equilibriumwith
a reservoir at that temperature. Out of equilibrium, the
temperature is determined by a balance of the different
heat currents from or to the system [1]. However, this
applies only to the average temperature: the heat currents
fluctuate, giving rise to temperature fluctuations. Although
the equilibrium fluctuations have been discussed in text-
books [2], their existence was still debated around the turn
of the 1990s [3].

In this Letter we generalize the concept of temperature
fluctuations to the nonequilibrium case by quantifying their
statistics in an exemplary system: a metal island coupled to
two reservoirs (see Fig. 1). The island can be biased either
by a voltage or temperature difference between the reser-
voirs. In this case, the temperature of the electrons is not
necessarily well defined. The electron-electron scattering
inside the island may, however, provide an efficient relaxa-
tion mechanism to drive the energy distribution of the
electrons towards a Fermi distibution with a well defined,
but fluctuating, temperature [1,4]. Here we assume this
quasiequilibrium limit where the time scale �e�e of inter-
nal relaxation is much smaller than the scale �E related to
the energy exchange with the reservoirs.

In equilibrium, the only relevant parameters character-
izing the temperature fluctuation statistics are the average
temperature Ta, fixed by the reservoirs, and the heat ca-
pacity C ¼ �2k2BTa=ð3�IÞ of the system. The latter is
inversely proportional to the effective level spacing �I on
the island. In terms of these quantities, the probability of
the electrons being at temperature Te reads [2,5]

PeqðTeÞ / exp

�
�CðTe � TaÞ2

kBT
2
a

�

¼ exp

�
��2kBðTe � TaÞ2

3Ta�I

�
; (1)

corresponding to the Boltzmann distribution of the total

energy of the island. The probability has a Gaussian form
even for large deviations from Ta, apart from the fact that it
naturally vanishes for Te < 0. From this distribution we
can, for example, infer the variance, hð�TIÞ2i ¼ kBT

2=C.
As we show below, the scale of the probability log, lnP�
Ta=�I, is the same for the nonequilibrium case, while its
dependence on (Te=Ta) is essentially different.
To generalize the concept of temperature fluctuations to

the nonequilibrium case, we examine the probability that
the temperature of the island measured within a time
interval �0 . . . �0 þ �� and averaged over the interval
equals Te:
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�
�I

�
1

��

Z �0þ��

�0

TIðtÞdt�Te
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¼
�Z dk

2�
exp

�
ik
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�0

½TIðtÞ�Te�dt
���

: (2)

FIG. 1. Setup and limit considered in this Letter: A conducting
island is coupled to reservoirs via electrical contacts character-
ized by the transmission eigenvalues fT�

n g, which, for example,
yield the conductances G� of the contacts. The temperature
fluctuates on a time scale �E characteristic for the energy
transport through the junctions. We assume the limit �e�e �
�E where the internal relaxation within the island is much faster
than the energy exchange with reservoirs. In this limit both the
temperature and its fluctuations are well defined.
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The average h�i is over the nonequilibrium state of the
system. This is evaluated using an extension of the
Keldysh technique [6] where the fluctuations of charge
and heat are associated with two counting fields, � and
�, respectively [7–9]. The technique allows one to evaluate
the full statistics of current fluctuations both for charge [7]
and heat currents [8] in an arbitrary multiterminal system.
In terms of the fluctuating temperature and chemical po-
tential of the island, TIðtÞ and �IðtÞ, and the associated
counting fields �IðtÞ and �IðtÞ, the average in Eq. (2) is
presented in the form

PðTeÞ /
Z

D�IðtÞDTIðtÞD�IðtÞD�IðtÞdk

� exp

�
�Aþ ik

�Z �0þ��

�0

dt½TIðtÞ � Te�
��
: (3)

Here A ¼ A½�IðtÞ; TIðtÞ; �IðtÞ; �IðtÞ� is the Keldysh ac-
tion of the system. The counting fields �IðtÞ and �IðtÞ enter
as Lagrange multipliers that ensure the conservation of
charge and energy [9].

The Keldysh action consists of two types of terms,A ¼R
dt½SIðtÞ þ ScðtÞ�, with SIðtÞ ¼ QI _�I þ EI

_�I describing
the storage of charge and heat on the island and Sc describ-
ing the contacts to the reservoirs. Here QI ¼ Cc�I is the
charge on the island, EI ¼ CðTIÞTI=2þ Cc�

2
I =2 gives the

total electron energy of the island, and Cc is the electrical
capacitance of the island. For the electrical contacts, the
action can be expressed in terms of the Keldysh Green’s
functions as [10] (we set @ ¼ e ¼ kB ¼ 1 for intermediate
results)

Sc;el ¼ 1

2

X
�

X
n2�

Tr ln

�
1þ T�

n

f �G�; �GIg � 2

4

�
: (4)

The sums run over the lead and channel indices � and n.
All products are convolutions over the inner time variables.
The trace is taken over the Keldysh indices, and the action
is evaluated with equal outer times. This action is a func-

tional of the Keldysh Green’s functions �G� and �GI of the
reservoirs and the island, respectively. It also depends on
the transmission eigenvalues fT�

n g, characterizing each
contact. The counting fields enter the action by the gauge
transformation of Green’s function [8]

�Gðt; t0Þ ¼ e�ð1=2Þ½�Iþi�IðtÞ@t� ��3 �G0ðt; t0Þeð1=2Þ½�I�i�Iðt0Þ@t0 � ��3 ;
(5)

where the Keldysh Green’s function reads

�G 0ðt;t0Þ¼
Z d�

2�
e�i�ðt�t0Þ 1�2fð�Þ 2fð�Þ

2�2fð�Þ �1þ2fð�Þ
� �

: (6)

For quasiequilibrium fð�Þ ¼ fexp½ð���Þ=T� þ 1g�1 is a
Fermi distribution. In what follows, we assume the fields
�ðtÞ, TðtÞ to vary slowly at the time scale T�1, in which
case we can approximate i�ðtÞ@t � �ðtÞ�.

The saddle point of the total action at � ¼ � ¼ 0 yields
the balance equations for charge and energy. Assuming

that the electrical contacts dominate the energy transport,
we get

@QI

@t
¼Cc@t�I

¼X
�

Tr ��3
X
n

T�
n

½ �G�; �GI�
4þT�

n ðf �GI; �G�g� 2Þ ; (7a)

@EI

@t
¼C@tTI

¼X
�

Trð���IÞ ��3
X
n

T�
n

½ �G�; �GI�
4þT�

n ðf �GI; �G�g� 2Þ : (7b)

The right-hand sides are sums of the charge and heat
currents, respectively, flowing through the contacts � [11].
The time scale for the charge transport is given by �c ¼

Cc=G, with G ¼ P
�

P
n T

�
n =ð2�Þ. This is typically much

smaller than the corresponding time scale for heat trans-
port, �E ¼ Ch=Gth, whereGth ¼ �2GT=3. We assume that
the measurement takes place between these time scales,
�c � �� � �E. In this limit the potential and its counting
field�I and �I follow adiabatically the TIðtÞ and �IðtÞ, and
there is no charge accumulation on the island. As a result,
we can neglect the charge capacitance Cc concentrating on
the zero-frequency limit of charge transport.
To determine the probability, we evaluate the path in-

tegral in Eq. (3) in the saddle-point approximation. There
are four saddle-point equations,

@�I
Sc ¼ 0; @�I

Sc ¼ 0; (8a)

�2

6

_�I

�I

¼ �@T2
I
Sc � ikMbðt; �0;��Þ

2TI

; (8b)

�2

6

_T2
I

�I

¼ @�I
Sc: (8c)

Here MbðtÞ ¼ 1 inside the measurement interval (�0, �0 þ
��) and zero otherwise. The formulas in Eq. (8a) express
the chemical potential and charge counting field in terms of
instant values of temperature TI and energy counting field
�I, �I ¼ �Ið�I; TIÞ, �I ¼ �Ið�I; TIÞ. The third and fourth
equations give the evolution of these variables. It is crucial
for our analysis that these equations are of Hamilton form,
�I and T2

I being conjugate variables, the total connector
action Sc being an integral of motion. Boundary conditions
at t ! �1 correspond to most probable configuration
Te ¼ Ta. This implies Sc ¼ 0 at trajectories of interest.
The zeros of Sc in the �I-TI plane are concentrated in

two branches that cross at the equilibrium point �I ¼ 0,
Te ¼ Ta (for illustration, see [12]). The saddle-point solu-
tions �IðtÞ, TIðtÞ describing the fluctuations follow these
branches (see Fig. 2 for an example). Branch B (� ¼ 0)
corresponds to the usual ‘‘classical’’ relaxation to the
equilibrium point from either higher or lower temperatures.
Branch A corresponds to ‘‘antirelaxation’’: the trajectories
following the curve quickly depart from equilibrium to
either higher or lower temperatures. The solution of the
saddle-point equations follows A before the measurement
and B after it.
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Since Sc ¼ 0, the only contribution to path integral (3)

comes from the island term C _�IT
2
I , and thus

PðTeÞ ¼ exp

�
�2

3�I

Z
_�T2dt

�

¼ exp

�
� 2�2

3�I

Z Te

Ta

T�S
I ðTÞdT

�
: (9)

Thus, in order to find PðTeÞ, we only need a function �S
I ðTIÞ

satisfying Sc½�S
I ðTIÞ; TI� ¼ 0 at branch A.

The connector action can generally be written in the
form

Sc ¼
X
�

X
n2�

Z d�

2�
lnf1þ T�

n ½fIð1� f�Þðe��I��I� � 1Þ

þ f�ð1� fIÞðe�Iþ�I� � 1Þ�g; (10)

with f�=I ¼ fexp½ð����=IÞ=T�=I� þ 1g�1.

To prove the validity of the method for the equilibrium
case, let us set all the chemical potentials to 0 and all the
reservoir temperatures to Ta. This implies �I ¼ �I ¼ 0.

Using the fact that for a Fermi function f ¼ �e�=Tð1� fÞ,
we observe that Sc¼0 regardless of contact properties pro-
vided �I ¼ �S

I ðTIÞ ¼ 1=TL � 1=TI. Substituting this into
Eq. (9) reproduces the equilibrium distribution, Eq. (1).

Out of equilibrium, further analytical progress can be
made in the case where the connectors are ballistic, Tn �
1. Such a situation can be realized in a chaotic cavity
connected to terminals via open quantum point contacts.

The connector action reads [9],

Sc ¼
X
�

G�

2

�
2���I þ T��

2
I þ ½�2T2

�=3þ�2
���I

1� T��I

� 2�I�I � TI�
2
I þ ½�2T2

I =3þ�2
I ��I

1þ TI�I

�
: (11)

Let us first assume two reservoirs with T1 ¼ T2 � TL. In
this case the general saddle-point solution for the potential
follows from Kirchoff law: �I ¼ ðg�1 þ�2Þ=ð1þ gÞ
with g � GL=GR. For the charge counting field we get
�I ¼ ��I�. The most probable temperature Ta is given by
T2
a ¼ T2

L þ 3gð�1 ��2Þ2=½�2ð1þ gÞ2�, and function
�S
I ðTIÞ is expressed as

�S
I ¼

T2
I � T2

a

TIðTLTI þ T2
aÞ
: (12)

Substituting this into Eq. (9) yields for the full probability

� lnPball ¼ �2kB
3�IT

3
L

�
TLðTe � TaÞ½ðTe þ TaÞTL � 2T2

a�

þ 2T2
aðT2

a � T2
LÞ ln

�
T2
a þ TeTL

T2
a þ TaTL

��
: (13)

In the strong nonequilibrium limit V � ð�1 ��2Þ 	 TL,
i.e., Ta 	 TL, this reduces to

Pball / exp

�
� 2�2kB

3�I

ðTe þ 2TaÞðTe � TaÞ2
3T2

a

�
: (14)

The logarithm of this probability is plotted as the lower-
most line in Fig. 3.
If the island is biased by temperature difference, T1 �

TL 	 T2, V ¼ 0, the probability obeys the same Eq. (13)
with T2

a ¼ gT2
1=ð1þ gÞ.

For general contacts, the connector action and its saddle-
point trajectories have to be calculated numerically. For
tunnel contacts, the full probability distribution is plotted
in two regimes in Fig. 3. The distribution takes values
between the ballistic and equilibrium cases. Let us under-
stand this by concentrating on the Gaussian regime and
inspecting the variance of the temperature fluctuations for
various contacts. This variance is related to the zero-
frequency heat current noise S _Q via

2GthCh�T2i ¼ S _Q ¼ @2�Scj�!0: (15)

In equilibrium, S
ðeqÞ
_Q

¼ 2GthT
2 by virtue of the fluctuation-

dissipation theorem. For an island with equal ballistic

contacts driven far from equilibrium, V 	 TL, Sbal_Q ¼ffiffiffi
3

p
GV3=ð8�Þ ¼ GthðTaÞT2

a, i.e., only half of S
ðeqÞ
_Q
. The

reduction manifests the vanishing temperature of the res-
ervoirs. Most generally, for contacts of any nature, the heat
current noise reads

S _Q=S
ðeqÞ
_Q

¼ 1

2
þ aQ

X
�

F�; (16)

FIG. 2. Time line of a huge fluctuation. The measurement is
made at t 
 �0 with the result Te ¼ 2:5Ta, and thereby the time
lines here are conditioned to give this (very unprobable) outcome
at t ¼ �0. For t < �0, the temperature follows the ‘‘antirelax-
ation’’ branch A, whereas after the measurement, it relaxes as
predicted by a ‘‘classical’’ equation in branch B. (a) and (b) show
the time dependence of the fluctuation for TIðtÞ and �IðtÞ,
respectively. The heat current into the island corresponding to
this fluctuation is plotted in (c), and (d) shows the charge current
flowing through the island. The statistical fluctuations of these

curves are small (with amplitude � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta�I=kB

p
) on the plot scale

�Ta.
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where F� ¼ P
nT

�
n ð1� T�

n Þ=
P

nT
�
n is the Fano factor for a

contact �, aQ 
 0:112 being a numerical factor. For two

tunnel contacts we hence obtain Stun_Q 
 0:723S
ðeqÞ
_Q
, a value

between the ballistic and equilibrium values. For contacts
of any type, the variation of temperature fluctuations is
between the ballistic and tunneling values.

For rare fluctuations of temperature, jTe � Taj ’ Ta, the
probability distribution is essentially non-Gaussian in con-
trast to the equilibrium case. The skewness of the distribu-
tion is negative in the case of voltage driving: low-
temperature fluctuations (Te < Ta) are preferred to the
high-temperature ones (Te > Ta). In contrast, biasing
with a temperature difference (uppermost curve in Fig. 3)
favors high-temperature fluctuations.

The non-Gaussian features of the temperature fluctua-
tions can be accessed at best in islands with a large level
spacing that is smaller than the average temperature, say,
by an order of magnitude. Many-electron quantum dots
with spacing up to 0:1 K=kB seem natural candidates for
the measurement of the phenomenon. The most natural
way to detect the rare fluctuations is through a threshold
detector [13], which produces a response only for tempera-
tures exceeding or going under a certain threshold value.
Besides the direct measurement of temperature, one can
use the correlation of fluctuations. For example, Fig. 2(d)
shows that the fluctuation of the temperature also causes a
fluctuation in the charge current. Observing the latter may
thus yield information about the former.

It is interesting to note an analogy in our calculation to
the problem of tunneling: both the level spacing �I � @ in

SI and the scattering described in Sc are quantum effects,
and thereby the temperature fluctuation probability can be
written as PðTeÞ � expð�Sclassical=@Þ, where Sclassical can be
computed from classical physics. In the case of tunneling,
Sclassical (in imaginary time) is given by classical motion in
an inverted potential [14]. This motion, describing the
tunneling through a potential barrier, is analogous to our
antirelaxation.
To conclude, we have evaluated nonequilibrium tem-

perature fluctuations of an example system beyond the
Gaussian regime. The method makes use of saddle-point
trajectories and allows us to describe electric contacts of
arbitrary transparency.
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FIG. 3 (color online). Logarithm of temperature fluctuation
statistics probability PðTeÞ in a few example cases. Solid lines
from top to bottom: temperature bias with symmetric tunneling
contacts, Ta ¼ T1=

ffiffiffi
2

p
, T2 ¼ 0 (magenta); Gaussian equilibrium

fluctuations (black), nonequilibrium fluctuations with Ta ¼ffiffiffi
3

p jeVj=ð2�kBÞ, T1 ¼ T2 ¼ 0 for symmetric tunneling and bal-
listic contacts (blue and red lines, respectively). The dashed lines
are Gaussian fits to small fluctuations ðTe � TaÞ � Ta, de-
scribed by the heat current noise SQ at Te 
 Ta.
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