
Evolution of localized electron spin in a nuclear spin environment

Sigurdur I. Erlingsson* and Yuli V. Nazarov
Department of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 14 April 2004; revised manuscript received 1 September 2004; published 18 November 2004)

Motivated by recent interest in the role of the hyperfine interaction in quantum dots, we study the dynamics
of a localized electron spin coupled to many nuclei. An important feature of the model is that the coupling to
an individual nuclear spin depends on its position in the quantum dot. We introduce a semiclassical description
of the system valid in the limit of a large number of nuclei and analyze the resulting classical dynamics.
Contrary to a natural assumption of chaoticity of such dynamics, the correlation functions of the electron spin
with an arbitrary initial condition show no decay in time. Rather, they exhibit complicated undamped oscilla-
tions. This may be attributed to the fact that the system has many integrals of motion and is close to an
integrable one. The correlation functions averaged over initial conditions do exhibit a slow decay(,1/ lnstd at
t→`).
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I. INTRODUCTION

The coherent manipulation of localized spins in solid state
systems is currently a very active research field.1 The ambi-
tious goal in this field is to develop a quantum bit, or qubit.
Such qubits would form the basic building blocks of quan-
tum computers.2–5 The strength of the qubit coupling to the
environment should be sufficiently well controlled so that the
residual environmental interactions are sufficiently small not
to disturb the qubit dynamics during the manipulation
time.6–8

The proposal of Ref. 4 to make the qubits from spins of
the electrons localized in quantum dots has stimulated many
theoretical and experimental studies. In a number of papers,
the relaxation time of electron spins in GaAs quantum dots
has been investigated. The role of various spin-orbit related
mechanisms has been considered for spin-flip transitions be-
tween singlet and triplets9 and Zeeman split doublets.10. The
hyperfine mediated spin-flip rates were investigated for
singlet-triplet11 and doublet12 transitions. A spin-flip mecha-
nism due to interface motion has been suggested.13 In Ref.
14 the role of Coulomb blockade effects was addressed. For
GaAs quantum dots measurements of spin relaxation times,
or T1, have been performed for singlet-triplet states15,16 as
well for doublet17 states. The measurements giveT1
<200 ms (singlet-triplet) andT1.50 ms (doublet). For dou-
blet states, only a lower bound for the relaxation time has
been obtained,17 this makes it difficult to decide which of the
mechanisms proposed is a leading one.

The operation of a qubit requires that a coherent superpo-
sition of states persists during the manipulation time. Several
papers have addressed the possible decoherence mechanisms
of electron spin in GaAs quantum dots. The decoherence
may be caused by inhomogeneous hyperfine
interaction.18,19,25If an ensemble of electron spins is consid-
ered, the “decoherence” time is determined by the frozen
fluctuations of the effective nuclear field.20,21 The fluctua-
tions of the nuclear spin system were also shown to result in
spectral diffusion and decoherence of electron spin.22,23

Reference 18 associates the decoherence time of the elec-
tron spin with the characteristic time scale of the decay of a

specific spin correlation function. The decay arises from the
spatially dependent hyperfine coupling constants through
flip-flop processes of spatially separated nuclei. An alterna-
tive approach used in Ref. 20 represents the nuclear spin
system as an effective nuclear magnetic field that couples to
the electron spin in the quantum dot and disregards the ef-
fects of spatially varying coupling. Merkulovet al.discussed
some basic features of this semiclassical approach but the
calculations were done for ensemble averaged quantities.20

In the present work we combine the approaches men-
tioned and extend the semiclassical effective-field method12

to include the effects of the spatially varying hyperfine cou-
pling constant. Due to the big difference of time scales for
the electron and nuclear spin systems we are able to solve the
problem in two steps. In the first step we establish that the
nuclear system can be treated as an adiabatic effective
nuclear magnetic field acting on the electron. The latter step
involves the back action of the electron spin which will de-
termine the evolution of the nuclear spins. The fact that the
single electron spin is coupled to a large number of nuclei in
the quantum dot,N, but each nucleus is only coupled to the
single electron spin suggests an asymmetry in the behavior
of the electron and nuclear spins. Also, the large number of
nuclei involved makes it possible to treat the nuclear system
in a semiclassical way.12,20,24 The electron precesses in an
effective nuclear magnetic field which is due to the whole
nuclear spin system. For a typical hyperfine coupling con-
stant A the precession frequency is of the order ofA/ÎN,
typical fluctuation of this effective field. As to a nucleus, it
precesses with a frequencyA/N, which is~ÎN time smaller.
Thus the dynamics of the electron are much faster than the
dynamics of the nuclei. The typical values for GaAs quantum
dots correspond toN=104; this gives 108 Hz for electron and
106 Hz for nuclear frequency.

Although the approach developed here is valid in a wide
range of external magnetic fields, we will concentrate on the
low field limit where the dynamics are governed by the hy-
perfine interaction only. This regime is characterized by isot-
ropy in spin space which results in richer dynamics. It is
important to study the dynamics in this regime since the
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states of a quantum dot spin qubit are almost degenerate. For
magnetic fields much larger than the effective nuclear mag-
netic field, the electron spin is constrained to the direction of
external field. This makes the feedback from the electron
spin to the nuclear system much weaker.20 Two important
features missed in our model restrict its applicability at very
long time scales. Besides the hyperfine interaction with the
electron spin, the nuclei interact with each other via dipole-
dipole interaction. This interaction is known to give rise to
inhomogeneous broadening of NMR line in solids, and be-
comes important at frequency scale of 103 Hz. The nuclear
spin-lattice relaxation is also not included, but this takes
place at even longer time scale of 101 s.29

We represent the resulting semiclassical dynamics by a set
of equations of motion for subsystems of nuclear spins. Each
subsystem is characterized by the same value of coupling to
the electron spin. The dynamical equations are nonlinear and
comprise many degrees of freedom. From this, one generally
expects chaotic and ergodic dynamics, so that the memory
about initial conditions is lost at a certain time scale, which
should be of the order of a typical nuclear precession fre-
quency. This would result in the decay of correlation func-
tions at this time scale and was an initial motivation of this
research. However, we prove that the actual dynamics is not
chaotic. The calculated correlation functions show complex,
yet regular, oscillations that persist for long time scale with-
out discernible decay. We explain this by conjecturing that
the system has many integrals of motion so it is close to
exactly integrable one.

If we average the dynamics over all possible initial con-
ditions, the averaged correlation function does show decay in
time. For large times, it is inversely proportional to logarithm
of time.

The remaining text of the paper is organized as follows. In
Sec. II the hyperfine interaction in a quantum dot is pre-
sented and its semiclassical representation discussed. The
adiabatic approximation for the electron spin dynamics is
discussed in Sec. III and some analytic properties of the dy-
namical equations are presented in Sec. IV. The correlation
functions used to characterize the dynamics are introduced in
Sec. V and finally the results of the numerical calculations
are discussed in Sec. VI.

II. HYPERFINE INTERACTION IN QUANTUM DOTS AND
ITS SEMICLASSICAL REPRESENTATION

The Hamiltonian describing the hyperfine coupling be-
tween conduction band electrons and the lattice nuclei in
GaAs is of the well known form of the contact potential

HHF = AŜ ·o
k

Î kdsr − Rkd, s1d

where A is the hyperfine constant,Ŝ sÎ kd and r sRkd are,
respectively, the spin and position of the electron(kth nu-
clei). In the GaAs conduction band(which is mainly com-
posed ofs orbitals), the dipole-dipole part of the hyperfine
interaction vanishes.26 In this paper the focus will be on elec-
trons localized in a quantum dot, and the hyperfine interac-

tion in such systems. The quantum dots considered here are
quite general, but we introduce some restrictions to simplify
the model. First of all it is assumed that the number of elec-
trons is fixed, preferably to one. From the experimental point
of view this assumption is quite reasonable since having only
a single electron in the dot has already been demonstrated
experimentally.27,28The second assumption is that the orbital
level splitting is much larger than the hyperfine energy. In
this case the hyperfine Hamiltonian can be projected to the
lowest orbital level since contributions from higher orbitals
are strongly suppressed due to the large orbital energy sepa-
ration. If the ground state orbitalcsrd of the quantum dot is
known, then an effective spin Hamiltonian can be written as

Hs = gmBB · Ŝ+ gGaAso
k

B · Î k + o
k

AucsRkdu2Ŝ · Î k, s2d

whereg is theg factor,mB is the Bohr magneton,gGaAs is the
gyromagnetic ratio of the effective nuclear species andB is
the external applied field.

In a typical quantum dot a single electron spin may be
coupled to 104–106 nuclear spins. When the electrons inter-
acts with so many nuclei it is possible to interpret the com-
bined effect of the nuclei as an effective magnetic field. Be-
fore proceeding further it is convenient to introduce a
different way of writing the hyperfine interaction in the last
term in Eq.(2). The wave function of the ground state orbital
has some characteristic spatial extent which is determined by
the confining potential. Without loss of generality it may be
assumed that the lateral[with respect to the underlying two-
dimensional electron gas(2DEG)] and transverse confining
lengths are, andz0, respectively. Defining the volume of the
quantum dot asVQD=pz0,2, a dimensionless function is in-
troduced

fsRkd = VQDucsRkdu2. s3d

Furthermore, denoting the maximum value off with fMax we
introduce a dimensionless coupling constant

gk = gsRkd =
fsRkd
fMax

P s0,1d. s4d

The hyperfine coupling constant may be expressed in terms
of the concentration,Cn, of nuclei with spinI and a charac-
teristic energyEn through the relationA=En/CnI. The energy
En is the maximum Zeeman splitting possible due to a fully
polarized nuclear system, its value beingEn<0.135 meV in
GaAs.29,30The hyperfine interaction term can thus be written
as

HHF = Ŝ · K̂, s5d

where we have introduced the operator for the effective
nuclear magnetic field

K̂ = go
k

gkÎ k s6d

and the characteristic hyperfine induced nuclear spin preces-
sion frequency
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g =
EnfMax

NI
. s7d

As was shown in Ref. 12 it is possible to replace the operator
in Eq. (6) with an effective nuclear magnetic fieldK. Its
initial value is random since it is determined by unknown
details of the nuclear system. Assuming that the nuclear spin
system temperaturekBT@g, all nuclear states are equally
likely to be occupied. Initially the nuclei are nominally de-
coupled from each other and the distribution ofK is to a
good approximation represented by a Gaussian12,20

PsKd = S 3

2pg2NI2D3/2

expS−
3K2

2g2NI2D , s8d

whereI 2̄ = IsI +1dN−1okgk
2.

In the above discussion the dynamics of the nuclear spin
system was disregarded. Before we include its dynamics it is
instructive to first deriveexactoperator equations of motion,
and then apply the semiclassical approximation to those
equations. The dynamics of the combined electron and
nuclear spin systems are determined by the Heisenberg equa-
tion of motion

d

dt
Ŝ= K̂ 3 Ŝ+ gmBB 3 Ŝ, s9d

d

dt
Î k = ggkŜ3 Î k + gGaAsB 3 Î k. s10d

Multiplying Eq. (10) with gk and summing overk gives the

equation of motion forK̂

d

dt
K̂ = gŜ3 So

k

gk
2Î kD + gGaAsB 3 K̂. s11d

In contrast to the simple dynamics of Eq.(9), the equation of

motion for K̂ is quite complicated. The reason for the asym-
metry is the position dependent couplinggk. The quantity in
the brackets on the right-hand side(rhs) of Eq. (11) cannot
be expressed in terms ofK̂. Only in the simple case of con-
stantgk it is possible to write a closed equation of motion for
K̂ and Ŝ.21 Without actually solving Eqs.(9) and (11) it is
still possible to extract general features of the dynamics. For
zero external magnetic field, the electron spin will precess
with frequency~EnN

−1/2 (which is the magnitude of the ef-
fective nuclear magnetic field) and the nuclear system pre-
cesses with frequency~EnN

−1. Thus, forN@1, the electron
spin effectively sees a stationary nuclear system and in turn
the nuclear system sees a time averaged electron spin.

To incorporatesid the separation of time scales andsii d the
inhomogeneous coupling we introduce a scheme that sepa-
rates the nuclear system intoNb subsystems, each being char-
acterized by a fixed couplinggb. The effective nuclear mag-
netic field of a given subsystem is

K̂b = ggbo
kPb

Î k, s12d

where the notationkPb is shorthand for all nuclei whose
coupling isgkP fgb−dg/2 ,gb+dg/2g, with dg=1/Nb being
the coupling constant increment. As long asNb!N each sub-
system can be replaced by a classical variableK̂b→Kb,
which represents the effective nuclear field due to that par-
ticular nuclear spin subsystem.

Using the same procedure as was used in deriving Eq.

(11) we arrive at an equation of motion forK̂b and applying
the semiclassical approximation results in

dKb

dt
= ggbkSl 3 Kb + gGaAsB 3 Kb, s13d

wherekSl is an appropriate time averaged electron spin. As
will be discussed in the next section, this average electron
spin may be written as a function of the total effective
nuclear field

K = o
b

Kb. s14d

The initial condition for each nuclear spin subsystem is ran-
domly chosen from a Gaussian distribution whose variance
is (see the Appendix)

kKb
2l = g2NIsI + 1dgbdg. s15d

The set of differential equations in Eq.(13), with the associ-
ated random initial conditions, constitutes a set of autono-
mous differential equations.

Separating the nuclear system into subsystem with a con-
stantgb is an approximation to the continuous couplinggk.
As the number of subsystems increasesgb will more closely
representgk. However, for the semiclassical approximation
to be valid each subsystem must contain many nuclear spins.
Thus, increasingNb should better reproduce the actual sys-
tem, as long asNb!N.

III. ADIABATIC APPROXIMATION FOR THE ELECTRON
SPIN

As we have shown in the previous section, the nuclear
spin system may be treated as a slowly varying effective
nuclear magnetic field acting on the electron spin. Letting
Hstd represent any slowly varying magnetic field(fulfilling
the usual adiabatic conditions) acting on a single electron
spin, leads to the Hamiltonian

Hestd = Ŝ ·Hstd. s16d

It is convenient to introduce the instantaneous eigenfunctions
of the Hamiltonian, which are solutions of

Hestdunstd; ± l = E±stdunstd; ± l. s17d

The eigenstates are labeled bynstd to indicate that these
eigenstates are either pointing “up”(1) or “down” (2) along
the total magnetic field, whose direction is determined by the
unit vector
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nstd =
Hstd
uHstdu

. s18d

For a spin 1/2 in an external field, the eigenenergies are
E±std= ± 1

2uHstdu, and the corresponding eigenstates are writ-

ten in the basis of theŜz eigenvectors

Sunstd; + l
unstd;− l

D =
1

Î1 + uastdu2
S u↑l + astdu↓l

u↓l − a * stdu↑l
D . s19d

The time dependent mixing of spin components is given by

astd =
uHstdu − Hzstd
Hxstd − iHystd

. s20d

The wave function may be expanded in basis of instanta-
neous eigenstates

ucstdl = o
s=±

csstdunstd;sl, s21d

where the expansion coefficients are

c±std = c±st0de„ig±std−i / "et0
t dtE±std

… . s22d

The additional phase factor appearing in the previous equa-
tion is the usual adiabatic phase31

g±std = iE
t0

t

dtknstd; ± ud/dtunstd; ± l. s23d

Integrating by parts the rhs of the last equation and using the
orthogonality of the instantaneous eigenstates, it can be
shown that the phaseg± is a real number. Also, for a doublet
g;g+=−g−.

Using the wave function in Eq.(21), the average electron
spin is

kŜstdl ; kcstduŜucstdl = o
s=±

ucsst0du2knstd;suŜunstd;sl

+ 2Rhc+
* st0dc−st0de„−2igstd−i / "et0

t dtuHstdu
…j. s24d

The latter term in Eq.(24) oscillates with frequency
uHstdu /h@EnN

−1/h, so its average is zero on the time scales
of the nuclear system. The average value of the electron spin
entering Eq.(13) is

kSl = o
s=±

ucsst0du2knstd;suŜunstd;sl =
1

2
cossu0d

Hstd
uHstdu

,

s25d

whereu0 is the angle between the initial electron spin and
ns0d, see Fig. 1. The orientation betweenS andns0d changes
the precession of allKb’s by a multiplicative factor cosu0.
This overall factor has no effect on the dynamics and we
subsequently put it to unity. Physically, one might think of a
dissipation mechanism that would initially align the electron
spin andH to each other, although the mechanism itself is
not critical for the following discussion.

From the semiclassical version of Eq.(9), the slowly
varying magnetic field isHstd=B+Kstd which results in an
equation forkSl that depends only onK andB. Also, since

we assume that the quantum dot is initially in the ground
state orbital and that the orbital energy separation is much
larger than the hyperfine energy, there are no “Rabi oscilla-
tions” to higher orbitals.

IV. SOME ANALYTIC PROPERTIES

The rest of the paper will only consider the case of small
magnetic fieldgmBB!K, which is the regime where the dy-
namics are most interesting. In this regime the magnetic field
becomes an “irrelevant” variable and the dynamics do not
depend onB, at least to lowest order. In the opposite situa-
tion the magnetic field strongly constraints all dynamics. The
average electron spin, forB=0, is

kSl = −
1

2

K

uKu
s26d

and the resulting equation of motions for the nuclear spin
subsystems is

d

dt
Kb = g̃gbK 3 Kb, s27d

whereg̃=−g /2uKu, sinceuKu is a constant of motion

d

dt
uKu2 = 0 s28d

and it equally changes the precession frequency of all the
block Kb. In addition touKu, more integrals of motion can be
constructed from Eq.(27)

0 =
d

dt
uKbu2, s29d

0 =
d

dt
I =

d

dtSob

Kb

gb
D , s30d

FIG. 1. The time dependent electron spinkSstdl precesses rap-
idly around the total effective magnetic field, resulting in a slowly
varying average spinkSl that the nuclei see. The angle between the
instantaneous electron spin andn is u0.
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0 =
d

dtXI ·So
b

Kb

gb
2DC . s31d

The integral of motion in Eq.(30) is actually the total spinI
of the nuclear system.20 The integrals of motion are expected
to affect the dynamics, i.e., the system will be “constrained”
by them.

The solution for the electron dynamics is determined by
the dynamics of the nuclear system, which is encapsulated in
Kstd. Although the dynamics are complicated there are some
ways to characterize the motion of the nuclear system. For
example, we can define the following quantity

Kst;zd = o
b

1

1 + gbz
Kbstd, s32d

which satisfies the following equation of motion:

d

dt
Kst;zd =

Kst;0d 3 Kst;zd
z

. s33d

It is possible to construct other similar equations, but in gen-
eral no simple solution for them exists.

V. CORRELATION FUNCTIONS

A wide class of classical systems exhibits decaying corre-
lation functions. This occurs in classically chaotic systems in
which the motion is such that the memory about initial con-
ditions is lost at some typical time scale.32 Most of the suf-
ficiently complicated classical systems are eventually cha-
otic. One might expect that the set of equations in Eq.(13)
should describe chaotic dynamics and decay of correlation
functions. We will see later on that this is not the case.

A useful way to characterize the electron spin dynamics is
to introduce certain correlation functions. For an isolated
quantum system these correlation functions are expected to
oscillate periodically, without any decay. Incorporating envi-
ronmental effects usually shows up in modified behavior of
the correlation functions. The expected behavior is that they
should decay as a function of time. To investigate how the
nuclear spin system acts as a spin bath(environment), we
introduce the following correlation function:

Gstd = k↑ uŜstd · Ŝu↑l, s34d

where the time evolution of the operators is in the usual
Heisenberg picture.

Since we are focusing on the slow dynamics it is useful to
write these correlation functions for long time scales. In the
adiabatic approximation the correlation functions may be
written as

Gstd =
1

4

s1 − uastdu2ds1 − uas0du2d + 4astda * s0d
s1 + uastdu2ds1 + uas0du2d

, s35d

where thea’s are defined in Eq.(20). The most interesting
regime corresponds to weak external magnetic fields. In this
case there is no preferred direction and the dynamics show
the richest behavior. In that limit the correlation functions
take the simplified form

Gstd =
Kstd ·Ks0d
4KstdKs0d

. s36d

From these equations it is evident that the electron spin cor-
relation function is determined by the nuclear system vari-
ables for timest@"ÎN/En.

When dealing with many identical systems in which the
electron can be prepared in a given initial state but the effec-
tive nuclear magnetic fields differ in the initial values, en-
semble averaged correlation function must be considered. No
information is available about the state of the effective
nuclear magnetic fields, except that their initial values are
Gaussian distributed. In this case the correlation function in
Eq. (35) should be averaged over the appropriate distribu-
tions

kGstdl =E p
b

dKb,0PshKb,0jdGst;hKb,0jd, s37d

whereKb,0=Kbs0d and P is the Gaussian distribution of the
initial values. Note that the correlation functions appearing in

FIG. 2. The ensemble averaged correlation function as a func-
tion of time for Nb=4, 8, 16, 32, 64, 128, 256 and 512. The inset
shows the asymptotic values ofkGstdl and a fit toa / lnsbNbd.

FIG. 3. Numerical calculations of the correlation functionGstd
for Nb=8 and various randomly chosen initial conditions. The
curves are offset for clarity and the vertical range is the same for all
curves, i.e., −0.25 to 0.25.
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Eq. (36) are also functions of the set of initial conditions
hKbs0dj.

VI. RESULTS

The correlation functions in Eqs.(36) and (37) are in
general not exactly solvable so numerical simulations have
to be used. In order to calculate them time series forKbstd
need to be calculated. These are obtained by numerically
integrating the differential equations in Eq.(27). We focus on
the case of no external magnetic field. In GaAsg
<10−7 meV<105 Hz for quantum dots containingN<106

nuclei. The differential equations are solved by integrating
numerically Eq. (27) using the fourth order Runge-Kutta
method. TheKbstd’s are then used to calculateastd that enter
Eq. (35).

For the ensemble averaged correlation functions many
sets of time serieshKbstdj are calculated, each corresponding

to a different random initial condition chosen from a Gauss-
ian distribution. The results for the ensemble averaged cor-
relation function in Eq.(37) are presented in Fig. 2. Each
curve is the result of calculations for a different number of
subsystemsNb=4,8, . . . ,512. As is to be expected, the cor-
relation functions decay in time but a saturation value is
reached for sufficiently long times, which is determined by
tsat~g−1Nb. This saturation is an artifact of the discretization,
i.e., it introduces a time above which the calculated correla-
tion function no longer represents the true correlation func-
tion. For the calculated correlation function to have a mean-
ingful limit, the saturation value should approach zero asNb
increases and the saturation time should go to infinity. The
inset in Fig. 2 plots the saturation values ofkGstdl. It is
evident that the saturation values tend to zero for largerNb.
The decay fits an inverse logarithma / lnsbNbd quite well.
This indicates that there is a well definedNb→` correlation
function which has an inverse logarithmic decay~1/ ln t as
t→`. The origin of the logarithmic decay is not fully under-
stood (and thus the theoretical values ofa and b) but it

FIG. 4. Numerical calculations of the correlation functionGstd
for Nb=32 and various randomly chosen initial conditions. The
curves are offset for clarity and the vertical range is the same for all
curves, i.e., −0.25 to 0.25.

FIG. 5. Numerical calculations of the correlation functionGstd
for Nb=128 and various randomly chosen initial conditions. The
curves are offset for clarity and the vertical range is the same for all
curves, i.e., −0.25 to 0.25.

FIG. 6. Numerical calculations of the correlation functionGstd
for Nb=256 and various randomly chosen initial conditions. The
curves are offset for clarity and the vertical range is the same for all
curves, i.e., −0.25 to 0.25.

FIG. 7. The power spectrum of the 2nd curve(counted from the
bottom one) in Fig. 4, corresponding toNb=32.
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might be related to the total spinuI u2~ ln tsat (see the Appen-
dix). The correlation function is normalized and its value
might be dominated by 1/uI u2 for t. tsat.

The correlation functions for a single system, i.e., without
taking the ensemble average, yield quite different results.
The calculations are performed forNb=8,32,128 and256.
For each number of subsystemsNb the calculations were
repeated for various random initial conditions, but no aver-
aging is performed. The results of the calculations forGstd
are presented in Figs. 3–6(note different range on the hori-
zontal, ort axis). The common feature of all the curves, for
all values ofNb, is that they do not decay with time. This
behavior persists to even longer times, not shown here. Even
though more complicated behavior is observed for largeNb,
the characteristic frequencies of the correlation function os-
cillations do not show any obvious dependence on the num-
ber of subsystems.

It is instructive to look at the power spectrum ofGstd,
where the oscillating behavior of the correlation functions
becomes more apparent. The power spectrum(or the squared
Fast Fourier transform) of Gstd is shown for the 1st and 6th
curves(counted from the bottom one) for Nb=32 (see Fig.
4), in Figs. 7 and 8, respectively. The sharp, isolated peaks in

the spectra illustrate well the multi-periodic oscillations ob-
served inGstd. This behavior is still present in the power
spectra forNb=256. Figures 9–11, corresponding to, respec-
tively, the 2nd, 4th and 6th curves in Fig. 6, show that even
for such a complicated system(256 coupled, nonlinear dif-
ferential equations) the correlation functions still show sharp,
isolated peaks corresponding to well defined oscillation pe-
riods and additional many smaller, closely spaced peaks.

The power spectrum is the Fourier spectrum of thetime
averagedcorrelation functions, which are completely differ-
ent from the power spectra expected for the ensemble aver-
aged correlation functions shown in Fig. 2. This implies that
the time average and the ensemble average are not equiva-
lent, i.e., the system in question is not ergodic. The simplest
way to think about this is to consider the integrals of motion
for the system. In the case of the time averaging the motion
of the system is at all times constrained by the integrals of
motion, resulting in multi-periodic correlation functions that
show no decay in time.33 For the ensemble case, the aver-
aged correlation function gets contributions from many “sys-
tems” which have different values of the integrals of motion
that results in an effective cancellation of periodic oscilla-

FIG. 8. The power spectrum of the 6th curve(counted from the
bottom one) in Fig. 4, corresponding toNb=32.

FIG. 9. The power spectrum of the 2nd curve(counted from the
bottom one) in Fig. 6, corresponding toNb=256..

FIG. 10. The power spectrum of the fourth lowest curve in Fig.
6, corresponding toNb=256.

FIG. 11. The power spectrum of the top curve in Fig. 6, corre-
sponding toNb=256.
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tions, leading to a decay of the correlation functions.
The behavior of the correlation functions for the single

system may be broadly explained in this way: The oscilla-
tions of the correlation function reflect that the system is in
some sense close to being exactly solvable. These features
will probably vanish if further terms are included into the
Hamiltonian in Eq.(2). The most natural term would be the
dipole-dipole interaction between the nuclei which would
kill most of the integrals of motion. It is important to recog-
nize that the time scale related to the dipole-dipole interac-
tion is very long, of the order 10−3 s, and the resulting decay
time would reflect that. However, the time scales we are
interested in are much smaller and thus the dipole-dipole
interaction may be neglected.

In connection to coherently controlling the spin, the mo-
tion of the electron spin in the effective nuclear magnetic
field will cause “errors.” Even though in this model nuclear
spins do not decohere the electron spin(in the sense of not
causing decay of correlation functions as a function of time),
they lead to a complicated, and unpredictable, evolution.
Consequently, an electron spin initially inu↑ l can be found
in the opposite spin state on a time scale~g−1. Thus, even
though the hyperfine coupling to the nuclear system does not
lead to decoherence in this model it can strongly affect the
dynamics of the electron spin.
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APPENDIX: THE VARIANCE IN TERMS OF gb

The initial condition for each nuclear spin subsystem is
chosen from a Gaussian distribution whose variance is deter-
mined by

kKb
2l = g2IsI + 1dgb

2CnVb, sA1d

where Vb is the volume of subsystemb, and CnVb is the
associated number of nuclear spins in that volume. For the
calculations it is convenient to express the variance for a
given subsystem only in terms of the couplinggb by express-

ing the subsystem volumeVb as a function ofgb. The volume
of the subsystemVb is related togb via

Vb ; UdV

dg
U

g=gb

dg, sA2d

whereV is the volume of the region wheregùgb. The func-
tional form of gsrd is determined by the densityucsrdu2. In
the numerical calculations a lateral parabolic confinement of
an underlying 2DEG is used. Assuming a constant electron
density in thez direction(growth direction) the electron den-
sity is

gsrd = usz0/2 − uzudexps− sx2 + y2d/,2d, sA3d

which gives the simple relationx2+y2=,2 lns1/gd, within the
2DEG. Using the relation for the volumeVsrd=z0psx2+y2d
the subsystem volume is

Vb = VQD
dg

gb
, sA4d

which gives the variance of the distribution of the effective
nuclear magnetic field for a given subsystem in terms of the
coupling

kKb
2l = g2NIsI + 1dgbdg. sA5d

These results can be used to calculate the variance of the
total nuclear spin defined in Eq.(30)

kI 2l = o
b,b8

kKb ·Kb8l

gbgb8
sA6d

=
kKl
g2 o

b

dg

gb
sA7d

<
kKl
g2 lns2Nbd, Nb @ 1. sA8d

In the last step it is assumed thatgb=1−sb−1/2d /Nb, result-
ing in the logarithm.
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