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Evolution of localized electron spin in a nuclear spin environment
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Motivated by recent interest in the role of the hyperfine interaction in quantum dots, we study the dynamics
of a localized electron spin coupled to many nuclei. An important feature of the model is that the coupling to
an individual nuclear spin depends on its position in the quantum dot. We introduce a semiclassical description
of the system valid in the limit of a large number of nuclei and analyze the resulting classical dynamics.
Contrary to a natural assumption of chaoticity of such dynamics, the correlation functions of the electron spin
with an arbitrary initial condition show no decay in time. Rather, they exhibit complicated undamped oscilla-
tions. This may be attributed to the fact that the system has many integrals of motion and is close to an
integrable one. The correlation functions averaged over initial conditions do exhibit a slow(detén(t) at
t—oo).
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I. INTRODUCTION specific spin correlation function. The decay arises from the

The coherent manipulation of localized spins in solid statePatially dependent hyperfine coupling constants through
systems is currently a very active research fielhe ambi-  flip-flop processes of spatially separated nuclei. An alterna-
tious goal in this field is to develop a quantum bit, or qubit. tive approach used in Ref. 20 represents the nuclear spin
Such qubits would form the basic building blocks of quan-sSystem as an effective nuclear magnetic field that couples to
tum computer$-® The strength of the qubit coupling to the the electron spin in the quantum dot and disregards the ef-
environment should be sufficiently well controlled so that thefects of spatially varying coupling. Merkulost al. discussed
residual environmental interactions are sufficiently small nosome basic features of this semiclassical approach but the
to disturb the qubit dynamics during the manipulationcalculations were done for ensemble averaged quantfties.
time5-8 In the present work we combine the approaches men-

The proposal of Ref. 4 to make the qubits from spins oftioned and extend the semiclassical effective-field méethod
the electrons localized in quantum dots has stimulated manip include the effects of the spatially varying hyperfine cou-
theoretical and experimental studies. In a number of papergling constant. Due to the big difference of time scales for
the relaxation time of electron spins in GaAs quantum dotghe electron and nuclear spin systems we are able to solve the
has been investigated. The role of various spin-orbit relategroblem in two steps. In the first step we establish that the
mechanisms has been considered for spin-flip transitions béuclear system can be treated as an adiabatic effective
tween singlet and tripletsand Zeeman split doublet8. The  nuclear magnetic field acting on the electron. The latter step
hyperfine mediated spin-flip rates were investigated forinvolves the back action of the electron spin which will de-
singlet-triplet! and doubléef transitions. A spin-flip mecha- termine the evolution of the nuclear spins. The fact that the
nism due to interface motion has been suggektdd.Ref.  single electron spin is coupled to a large number of nuclei in
14 the role of Coulomb blockade effects was addressed. Fdhe quantum dotlN, but each nucleus is only coupled to the
GaAs quantum dots measurements of spin relaxation timesjngle electron spin suggests an asymmetry in the behavior
or T,, have been performed for singlet-triplet stdtéé§ as  of the electron and nuclear spins. Also, the large number of
well for doublet’ states. The measurements giig  nuclei involved makes it possible to treat the nuclear system
~ 200 us (singlet-tripley and T; > 50 us (doubley. For dou-  in a semiclassical wal$2%24The electron precesses in an
blet states, only a lower bound for the relaxation time hasffective nuclear magnetic field which is due to the whole
been obtained’ this makes it difficult to decide which of the nuclear spin system. For a typical hyperfine coupling con-
mechanisms proposed is a leading one. stant A the precession frequency is of the orderAfyN,

The operation of a qubit requires that a coherent superpdypical fluctuation of this effective field. As to a nucleus, it
sition of states persists during the manipulation time. Severgirecesses with a frequengy N, which is=\N time smaller.
papers have addressed the possible decoherence mechanidrhgs the dynamics of the electron are much faster than the
of electron spin in GaAs quantum dots. The decoherencdynamics of the nuclei. The typical values for GaAs quantum
may be caused by inhomogeneous hyperfinedots correspond tbi=10% this gives 16 Hz for electron and
interaction'819.25|f an ensemble of electron spins is consid- 10° Hz for nuclear frequency.
ered, the “decoherence” time is determined by the frozen Although the approach developed here is valid in a wide
fluctuations of the effective nuclear fiele2! The fluctua- range of external magnetic fields, we will concentrate on the
tions of the nuclear spin system were also shown to result itow field limit where the dynamics are governed by the hy-
spectral diffusion and decoherence of electron $pfs. perfine interaction only. This regime is characterized by isot-

Reference 18 associates the decoherence time of the elegepy in spin space which results in richer dynamics. It is
tron spin with the characteristic time scale of the decay of dmportant to study the dynamics in this regime since the
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states of a quantum dot spin qubit are almost degenerate. Fon in such systems. The quantum dots considered here are
magnetic fields much larger than the effective nuclear magguite general, but we introduce some restrictions to simplify
netic field, the electron spin is constrained to the direction othe model. First of all it is assumed that the number of elec-
external field. This makes the feedback from the electrorrons is fixed, preferably to one. From the experimental point
spin to the nuclear system much weakefwo important  of view this assumption is quite reasonable since having only
features missed in our model restrict its applicability at verya single electron in the dot has already been demonstrated
long time scales. Besides the hyperfine interaction with thexperimentally?’-?8 The second assumption is that the orbital
electron spin, the nuclei interact with each other via dipoledevel splitting is much larger than the hyperfine energy. In
dipole interaction. This interaction is known to give rise to this case the hyperfine Hamiltonian can be projected to the
inhomogeneous broadening of NMR line in solids, and bedowest orbital level since contributions from higher orbitals
comes important at frequency scale of Hx. The nuclear are strongly suppressed due to the large orbital energy sepa-
spin-lattice relaxation is also not included, but this takesration. If the ground state orbitak(r) of the quantum dot is
place at even longer time scale of*1€¥° known, then an effective spin Hamiltonian can be written as
We represent the resulting semiclassical dynamics by a set R R L
of equations of motion for subsystems of nuclear spins. Each  Hg=gugB - S+ ygaas> B - I+ 2 AlURIIZS 1y, (2)
subsystem is characterized by the same value of coupling to k k
the electron spin. The dynamical equations are nonlinear and . : .
comprise many degrees of freedom. From this, one generall hereg is th_eg fa_ctor, pg is the B_ohr magnetonygaas s the
expects chaotic and ergodic dynamics, so that the memo yromagnetic ratio Of. the effective nuclear species Bnid
about initial conditions is lost at a certain time scale, which™€ €xternal applied field.

should be of the order of a typical nuclear precession fre- Inladtyt/pligl_(iéantuT dot a S'n\?vlﬁ el?ﬁtror; s?m mf%; be
quency. This would result in the decay of correlation func-coupled to nuclear spins. en the electrons inter-

tions at this time scale and was an initial motivation of thi:s""ctS with so many nuclei it is possible to interpret the com-

research. However, we prove that the actual dynamics is n#}ined effect of the nuclei as an effective magnetic field. Be-

chaotic. The calculated correlation functions show complexa(?][fe pr?ceedmfg fgt_rthetrh It hls c?_nve_nltent tt(') m_trot?]ucle ?
yet regular, oscillations that persist for long time scale with-0' er€nt Way of writing the hyperfine intéraction in the 1as

out discernible decay. We explain this by conjecturing tha erm in Eq.(2). The wave fun(_;tlon of the gfouf‘d state o.rbltal
the system has many integrals of motion so it is close t as some characteristic spatial extent which is determined by

exactly integrable one the confining potential. Without loss of generality it may be
If we average the dynamics over all possible initial Con_assumed that the laterpdith respect to the underlying two-

ditions, the averaged correlation function does show decay iﬁlmetﬂsmngl elﬁctron ga(SZEE?)] Snfq j[rantshvers? confl?|tr;]g
time. For large times, it is inversely proportional to logarithm engtns are andz, reSpeg Ively. Detining the volume ot the
of time. quantum dot a¥/op=mZ(*, a dimensionless function is in-

The remaining text of the paper is organized as follows. mtroduced
Sec. Il the hyperfine interaction in a quantum dot is pre- - 2
sented and its semiclassical representation discussed. The f(RW) = Vol ¢(R)|*. 3
adiabatic approximation for the electron spin dynamics isFurthermore, denoting the maximum valuefofith f,,,, we
discussed in Sec. Il and some analytic properties of the dyintroduce a dimensionless coupling constant
namical equations are presented in Sec. IV. The correlation
functions used to characterize the dynamics are introduced in —g(RY = f(Ry
Sec. V and finally the results of the numerical calculations 9= 9(R) = f
are discussed in Sec. VI.

e (0,1). (4)

Max

The hyperfine coupling constant may be expressed in terms
of the concentrationC,,, of nuclei with spinl and a charac-

Il. HYPERFINE INTERACTION IN QUANTUM DOTS AND teristic energyE, through the relatio=E,/C,|. The energy

ITS SEMICLASSICAL REPRESENTATION E,is _the maximum Zeema_n splitting possible due to a fully
polarized nuclear system, its value beigg~=0.135 meV in

The Hamiltonian describing the hyperfine coupling be-GaAs?%3°The hyperfine interaction term can thus be written
tween conduction band electrons and the lattice nuclei ims
GaAs is of the well known form of the contact potential
- - Hur=S-K, 5
Hup=AS- 2 1,8(r =Ry, (1)
k where we have introduced the operator for the effective

an nuclear magnetic field
where A is the hyperfine constan§ (I,) andr (Ry) are, . gnetic

respectively, the spin and position of the electf&th nu- K= » gf 6)
clei). In the GaAs conduction ban@vhich is mainly com- " Kk

posed ofs orbitaly, the dipole-dipole part of the hyperfine

interaction vanishe€ In this paper the focus will be on elec- and the characteristic hyperfine induced nuclear spin preces-
trons localized in a quantum dot, and the hyperfine interacsion frequency
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I2b= Ysz ,I\kv (12

keb

) o ) where the notatiork e b is shorthand for all nuclei whose
As was shown in Ref. 12 it is possible to replace the operatogoypling isg, e [gy— 99/2,gy+ 89/ 2], with g="1/N,, being

in Eg. (6) with an effective nuclear magnetic field. Its
initial value is random since it is determined by unknown
details of the nuclear system. Assuming that the nuclear sp
system temperaturggT> v, all nuclear states are equally
likely to be occupied. Initially the nuclei are nominally de-
coupled from each other and the distribution Kfis to a
good approximation represented by a Gaus$izh

o))

wherel?2=1(1+1)N13,g2.

In the above discussion the dynamics of the nuclear spi
system was disregarded. Before we include its dynamics it i
instructive to first deriveexactoperator equations of motion,

3K?2

T 2NI2 ®

and then apply the semiclassical approximation to those
equations. The dynamics of the combined electron and
nuclear spin systems are determined by the Heisenberg equ

tion of motion

d~ ~ .
E[S:K X S+gugB X S, 9)

d- .. R
1= Y9S X 1+ ygaadB X . (10

dt

Multiplying Eq. (10) with g, and summing ovek gives the
equation of motion foK

d~ R R
k=78 (E o k) FyeanB XK. (11)
k

In contrast to the simple dynamics of E§), the equation of
motion forK is quite complicated. The reason for the asym-
metry is the position dependent coupligg The quantity in
the brackets on the right-hand si¢is) of Eq. (11) cannot
be expressed in terms & Only in the simple case of con-
stantg, it is possible to write a closed equation of motion for
K and S.:2* Without actually solving Egs(9) and (1) it is

the coupling constant increment. As longhis< N each sub-

.system can be replaced by a classical variaﬁi,eeKb,
Which represents the effective nuclear field due to that par-

ticular nuclear spin subsystem.
Using the same procedure as was used in deriving Eq.

(11) we arrive at an equation of motion f&b and applying
the semiclassical approximation results in

dK,,

dt

where(S) is an appropriate time averaged electron spin. As
will be discussed in the next section, this average electron

= Y9(S) X K+ YgaaB X Ky, (13

Igpin may be written as a function of the total effective

u

clear field

K= Kp. (14)

b
'Iaﬁe initial condition for each nuclear spin subsystem is ran-
domly chosen from a Gaussian distribution whose variance
is (see the Appendix

(K2 = ¥NI(I + 1)g,69. (15

The set of differential equations in E(L3), with the associ-
ated random initial conditions, constitutes a set of autono-
mous differential equations.

Separating the nuclear system into subsystem with a con-
stantg, is an approximation to the continuous coupligg
As the number of subsystems increaggsvill more closely
representy,. However, for the semiclassical approximation
to be valid each subsystem must contain many nuclear spins.
Thus, increasind\, should better reproduce the actual sys-
tem, as long ad,<N.

Ill. ADIABATIC APPROXIMATION FOR THE ELECTRON
SPIN

As we have shown in the previous section, the nuclear
spin system may be treated as a slowly varying effective
nuclear magnetic field acting on the electron spin. Letting
H(t) represent any slowly varying magnetic figfilfilling
the usual adiabatic conditiongcting on a single electron

still possible to extract general features of the dynamics. F°§pin leads to the Hamiltonian
zero external magnetic field, the electron spin will precess

with frequency<E, N2 (which is the magnitude of the ef-
fective nuclear magnetic fieldand the nuclear system pre-
cesses with frequencyE,N"1. Thus, forN> 1, the electron

He(t) =S - H(t). (16)

It is convenient to introduce the instantaneous eigenfunctions

spin effectively sees a stationary nuclear system and in turff the Hamiltonian, which are solutions of

the nuclear system sees a time averaged electron spin.

To incorporatei) the separation of time scales afiid the
inhomogeneous coupling we introduce a scheme that sep
rates the nuclear system inty subsystems, each being char-
acterized by a fixed coupling,. The effective nuclear mag-
netic field of a given subsystem is

He(D[n(1); £) = E.([n(1); ). 17

ahe eigenstates are labeled byt) to indicate that these
eigenstates are either pointing “u@t) or “down” (—) along

the total magnetic field, whose direction is determined by the
unit vector
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H(t) A n(t)
n(t)=——-—. (18)
H()
For a spin 1/2 in an external field, the eigenenergies are P - RN ~
Ei(t):i%|H(t)|, and the corresponding eigenstates are writ- \
ten in the basis of théZ eigenvectors T~ A -
In(t):+>) 1 ( 1) +a)|l) )
- - ] (19) {S(ty)
(In(t);—> V1 +[a®)P\[L) —a* (©)]1) 9 —
The time dependent mixing of spin components is given by
H(t)| = H(t
a(t) = [H(®)] - Hy(1) 20

HX (1) = iH,() FIG. 1. The time dependent electron sg8it)) precesses rap-
The wave function may be expanded in basis of instantaidly around the total effective magnetic field, resulting in a slowly

neous eigenstates varying average spifS) that the nuclei see. The angle between the
instantaneous electron spin ands 6.
(1) = 2 c,(Dn(t);0), (21)
T we assume that the quantum dot is initially in the ground

where the expansion coefficients are state orbital and that the orbital energy separation is much

_ - larger than the hyperfine energy, there are no “Rabi oscilla-

Ca () = Cy(t)el(1 071/ 1 g7Ew(). (22)  tions” to higher orbitals.
The additional phase factor appearing in the previous equa-
tion is the usual adiabatic ph&se IV. SOME ANALYTIC PROPERTIES
y.(t) = ift dr(n(7); +|diddn(o); ). (23) The rest of the paper wiI.I only considgr the case of small
f magnetic fieldgugB <K, which is the regime where the dy-

. . ) namics are most interesting. In this regime the magnetic field
Integrating by parts the rhs of the last equation and using thgocomes an “irrelevant” variable and the dynamics do not

orthogonality of the instantaneous eigenstates, it can bfenend orB, at least to lowest order. In the opposite situa-
shown that the phasg. is a real number. Also, for a doublet {jo the magnetic field strongly constraints all dynamics. The

Y=EVe=TY- o average electron spin, f@=0, is
Using the wave function in Eq21), the average electron
spin is 1K
: : N (S=-Ti (26)
(S(t)) = (YOIFy(t) = X [c,(t)Xn(V); o1SIn(); 0) 2|K|

« i s , and the resulting equation of motions for the nuclear spin
+ 29%{c+(t0)c_(to)e( 205/ GHGL - (24) subsystems is
The latter term in Eq.(24) oscillates with frequency
[H(t)|/h>EN"/h, so its average is zero on the time scales d -
of the nuclear system. The average value of the electron spin at b= 78K X Kp, @7
entering Eq(13) is

Ht) wherey=—-v/2|K|, since|K| is a constant of motion

(9= 2 [eolto)Xn(D); olSIn(0); 0) = % T

(25)

where 6, is the angle between the initial electron spin and
n(0), see Fig. 1. The orientation betweBmndn(0) changes
the precession of aKy's by a multiplicative factor cog,.
This overall factor has no effect on the dynamics and w
subsequently put it to unity. Physically, one might think of a q

dissipation mechanism that would initially align the electron 0=—|Ky/?, (29)
spin andH to each other, although the mechanism itself is dt

not critical for the following discussion.

o=t

d
d—t|K|2=o (28)

and it equally changes the precession frequency of all the
block K, In addition to|K|, more integrals of motion can be
econstructed from Eq27)

From the semiclassical version of E(P), the slowly d d K
varying magnetic field idH(t)=B+K(t) which results in an 0=—| = —<2 —b> (30)
equation for(S) that depends only oK andB. Also, since dt dt\"y g
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_E & 0.25 T T T T
°‘dt(' (2 g§>)' @D

02

The integral of motion in Eq(30) is actually the total spit

of the nuclear syster?.The integrals of motion are expected

to affect the dynamics, i.e., the system will be “constrained”

by them. M <Glooy> —— |
The solution for the electron dynamics is determined by 01 \l\x\x\l\l\x\x\

the dynamics of the nuclear system, which is encapsulated in

K(t). Although the dynamics are complicated there are some 005 F [ |

ways to characterize the motion of the nuclear system. For

0.15

<G(t)>

10 Nbl 00 1000

example, we can define the following quantity 0 . .
1 1 10 100 1000 10000
K(t; ) = K, (1), 32 tivh
G0=2 1 Kol (32
_ o _ ) ) FIG. 2. The ensemble averaged correlation function as a func-
which satisfies the following equation of motion: tion of time for N,=4, 8, 16, 32, 64, 128, 256 and 512. The inset
EK(t.g) _K(;0) X K(t;0) - shows the asymptotic values @&(t)) and a fit toa/In(BNy).
dt 4 ' G(t) = K(t) - K(0) (36
It is possible to construct other similar equations, but in gen- 4K(K(0)
eral no simple solution for them exists. From these equations it is evident that the electron spin cor-
relation function is determined by the nuclear system vari-
V. CORRELATION FUNCTIONS ables for timeg>7\N/E,,.

When dealing with many identical systems in which the

A wide class of classical systems exhibits decaying correelectron can be prepared in a given initial state but the effec-
lation functions. This occurs in classically chaotic systems irtive nuclear magnetic fields differ in the initial values, en-
which the motion is such that the memory about initial con-semble averaged correlation function must be considered. No
ditions is lost at some typical time sc&feMost of the suf- information is available about the state of the effective
ficiently complicated classical systems are eventually chanuclear magnetic fields, except that their initial values are
otic. One might expect that the set of equations in @8)  Gaussian distributed. In this case the correlation function in
should describe chaotic dynamics and decay of correlatio&q. (35) should be averaged over the appropriate distribu-
functions. We will see later on that this is not the case. tions

A useful way to characterize the electron spin dynamics is
to introduce certain correlation functions. For an isolated <G(t)>:j 1T dKy, oPK, oD Gt {Kp o), (37)
quantum system these correlation functions are expected to b ' ' '
oscillate periodically, without any decay. Incorporating envi- . . o
ronmentaﬁ effects u¥sually showz up inymodifiepd behgvior ofWh_ereKb'osz(o) andP is the Gau_SS|an dls_trlbutlon of_the_
the correlation functions. The expected behavior is that theW“al values. Note that the correlation functions appearing in
should decay as a function of time. To investigate how the ' ' -
nuclear spin system acts as a spin b@hvironmeny, we

introduce the following correlation function: M v
G(t) =(1IS(t) - S|D, (34
where the time evolution of the operators is in the usual ~
Heisenberg picture. 5 V\j\/\/ |
Since we are focusing on the slow dynamics it is useful to W\/\N W J\/WW\/\/\N\N
write these correlation functions for long time scales. In the W Vi
adiabatic approximation the correlation functions may be \/\/\N WW\/\/\N W

written as 0.25
o) LL AP0 + datvar ©) o . , , ,
T2 (1 +lat)>)(1 +]a(0)]? ' 0 200 400 600 800 1000

-1
where thea’'s are defined in Eq(20). The most interesting vl

regime corresponds to weak external magnetic fields. In this F|G. 3. Numerical calculations of the correlation functiGit)
case there is no preferred direction and the dynamics showr N,=8 and various randomly chosen initial conditions. The
the richest behavior. In that limit the correlation functions curves are offset for clarity and the vertical range is the same for all
take the simplified form curves, i.e., —0.25 to 0.25.
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-0.25 . : ; ! -0.25 L : ! *
0 200 400 600 800 1000 0 1000 2000 3000 4000 5000
tivh 4
FIG. 4. Numerical calculations of the correlation functiGit) FIG. 6. Numerical calculations of the correlation functiGit)

for Np,=32 and various randomly chosen initial conditions. Thefor N,=256 and various randomly chosen initial conditions. The
curves are offset for clarity and the vertical range is the same for alturves are offset for clarity and the vertical range is the same for all
curves, i.e., —0.25 to 0.25. curves, i.e., —0.25 to 0.25.

Eg. (36) are also functions of the set of initial conditions to a different random initial condition chosen from a Gauss-
{Kp(0)}. ian distribution. The results for the ensemble averaged cor-
relation function in Eq(37) are presented in Fig. 2. Each
VI. RESULTS curve is the result of calculations for a different number of
subsystem®,=4,8, ... 512. As is to be expected, the cor-
éelation functions decay in time but a saturation value is

general not exactly solvable so numerical simulations havreached for sufficiently long times, which is determined by
to be used. In order to calculate them time seriesKgit . o : . o
Kit) t...= v N,. This saturation is an artifact of the discretization,

need to be calculated. These are obtained by numerically

. . . : . . ’e., it introduces a time above which the calculated correla-
integrating the differential equations in §g7). We focuson . . '

o r tion function no longer represents the true correlation func-
the case of no external magnetic field. In GaAs

. tion. For the calculated correlation function to have a mean-
~ 7 = ~
107" meV= 10> Hz for quantum dots conta|n|ng| 100 ._ingful limit, the saturation value should approach zerd\gs

. . Yncreases and the saturation time should go to infinity. The
numerically Eq.(27) using the fourth order Runge-Kutta inset in Fig. 2 plots the saturation values @(t)). It is

method. TheK(t)’s are then used to calculasét) that enter . .
6V aat) evident that the saturation values tend to zero for laMer

Eq. (35). The decay fits an inverse logarithe/ In(8N,,) quite well.

For the ensemble averaged correlation functions man;i_ oo . . .
. : ; his indicates that there is a well definBig— < correlation
sets of time seriefKy(t)} are calculated, each correspondmgfunction which has an inverse logarithmic decay/Int as

t—o0. The origin of the logarithmic decay is not fully under-
stood (and thus the theoretical values af and B) but it

The correlation functions in Eqg36) and (37) are in

v ey AT Tl
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Wi w
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=
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DL AT b o™ A )
1) {'ﬂ\\/WAﬂ/\hﬁr\/j“Lv‘\J“waM TRVARAVANANAY
k\f h/ \f“ VN )J Y W W\J V if/ ,\[/\W\ b \m‘/ L\VJ \\U/ \/\‘\‘ N: 101 |
T Wluwwmw | T TR, w,ﬂww.wmw nﬂ,lm/» J “.ﬂm Vw L] W\W‘N J‘w\““ﬂ!ﬂww I 5
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10 1
0.25 —
ol MNMMV\ WWWM Mg
_025 1 1 L 1 ]0'1 -
0 1000 2000 3000 4000 5000
-1
tlyl 102 . .
) ) . ) 0.001 0.01 0.1 1
FIG. 5. Numerical calculations of the correlation functiGit) vl

for Np,=128 and various randomly chosen initial conditions. The
curves are offset for clarity and the vertical range is the same for all FIG. 7. The power spectrum of the 2nd cufeeunted from the
curves, i.e., —0.25 to 0.25. bottom ong in Fig. 4, corresponding tdl,=32.
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107 1 ] 10° . . . . ]
0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1
Vvl vl
FIG. 8. The power spectrum of the 6th curaunted from the FIG. 10. The power spectrum of the fourth lowest curve in Fig.
bottom ong in Fig. 4, corresponding tdl,=32. 6, corresponding td,=256.

might be related to the total spjh?«= In tg, (see the Appen-
dix). The correlation function is normalized and its value

igh i 1? for t>
might be dominated by 11f* for {> tea spectra folN,=256. Figures 9—11, corresponding to, respec-

The correlation functions for a single system, i.e., without? A
taking the ensemble average, yield quite different resultst'vely’ the 2nd, 4th and 6th curves in Fig. 6, show that even

The calculations are performed fbf,=8,32,128 and256. for suph a complicated syste(ﬁ56 coupled, T‘O”“”ear dif-
For each number of subsysterh the calculations were ferential equationsthe correlation functions still show sharp,
repeated for various random initial conditions, but no aver-'$Olated peaks_ _correspondmg to well defined oscillation pe-
aging is performed. The results of the calculations Ggt) riods and additional many smaller, closely spaced peaks.
are presented in Figs. 3«6ote different range on the hori- The power spectrum Is the Fourier spectrum of "’““.*-’
zontal, ort axis). The common feature of all the curves, for averagedcorrelation functions, which are completely differ-
all values ofN,, is that they do not decay with time. This ent from the power spectra expected for the ensemble aver-

behavior persists to even longer times, not shown here. Eve?{?ectjiéorf\llatr'gn fuanncc;lct)as SZOWr?“')rII F;% %éThlsrlmE“?s thai\\t/ _
though more complicated behavior is observed for lage € time average € ensembie average are not equiva

the characteristic frequencies of the correlation function osl-em’ 1€, _the system In question is not ergod|c. The 5|mp_lest
way to think about this is to consider the integrals of motion

illation not show an Vi nden nthe n ; . X
cillations do not show any obvious dependence on the umfor the system. In the case of the time averaging the motion
ber of subsystems. . X . :

of the system is at all times constrained by the integrals of

It is instructive to look at the power spectrum Git), : Lo . T ; .
o . ) . _motion, resulting in multi-periodic correlation functions that
where the oscillating behavior of the correlation functions S
show no decay in tim& For the ensemble case, the aver-

becomes more apparent. The power speciumthe squared aged correlation function gets contributions from many “sys-
Fast Fourier transforimof G(t) is shown for the 1st and 6th Y . . 9 ) y sy
tems” which have different values of the integrals of motion

curves(counted from the bottom ondor N,=32 (see Fig. : : : o .
4), in Figs. 7 and 8, respectively. The sharp, isolated peaks ithat results in an effective cancellation of periodic oscilla

the spectra illustrate well the multi-periodic oscillations ob-
served inG(t). This behavior is still present in the power

. . o [ ]
106 “« 10
—. | _
104 L 10
X a_ 102 b 1
g 102 = 10
] ]
10” 10° 1 1
102 | 107 1
0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1
vl v
FIG. 9. The power spectrum of the 2nd cuxeeunted from the FIG. 11. The power spectrum of the top curve in Fig. 6, corre-
bottom ong in Fig. 6, corresponding tdl,=256.. sponding toN,=256.
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tions, leading to a decay of the correlation functions. ing the subsystem volumé, as a function ofy,. The volume
The behavior of the correlation functions for the single of the subsystenv,, is related togy, via

system may be broadly explained in this way: The oscilla-

tions of the correlation function reflect that the system is in V. = av

some sense close to being exactly solvable. These features b dg

will probably vanish if further terms are included into the

Hamiltonian in Eq.(2). The most natural term would be the whereV is the volume of the region wheg= g,,. The func-

dipole-dipole interaction between the nuclei which wouldtional form of g(r) is determined by the densityx(r)2. In

kill most of the integrals of motion. It is important to recog- the numerical calculations a lateral parabolic confinement of

nize that the time scale related to the dipole-dipole interacan underlying 2DEG is used. Assuming a constant electron

tion is very long, of the order I8 s, and the resulting decay density in thez direction(growth direction the electron den-

time would reflect that. However, the time scales we aresity is

interested in are much smaller and thus the dipole-dipole

interaction may be neglected. g(r) = 6(zg/2 - |Z))exp(— (x* + y?)/€?), (A3)

In connection to coherently controlling the spin, the mo-WhiCh gives the simple relatia+y2=¢2 In(1/g), within the

tion of the electron spin in the effective nuclear magnetic ; . > 2. 9
field will cause “errors.” Even though in this model nuclear 2PEC: Using the relation for the volumé(r)=zym(x*+y)

spins do not decohere the electron sgimthe sense of not "€ subsystem volume is

causing decay of correlation functions as a function of jjme 5

they lead to a complicated, and unpredictable, evolution. Vi =Vop—, (A4)
Consequently, an electron spin initially jin) can be found 9

in the opposite spin state on a time scalg™. Thus, even
though the hyperfine coupling to the nuclear system does n
lead to decoherence in this model it can strongly affect theC
dynamics of the electron spin.

89, (A2)
9=9;,

hich gives the variance of the distribution of the effective
uclear magnetic field for a given subsystem in terms of the
oupling

(K2 = ¥’NI(I + 1)g,69. (A5)

These results can be used to calculate the variance of the
The authors acknowledge financial support from FOMtotal nuclear spin defined in E¢30)
and S.I.LE. would like to thank Oleg Jouravlev, Dmitri Ba-
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grets, and Lieven Vandersypen for fruitful discussions. (Kp - Ky
(1H=2 ———r (A6)
b.b' On0br
APPENDIX: THE VARIANCE IN TERMS OF g,
The initial condition for each nuclear spin subsystem is (K)w 89
chosen from a Gaussian distribution whose variance is deter- ==> = (A7)
mined by 9 b
(KB = Y101+ DGECVs, (A1) K
where V, is the volume of subsystern, and C,V, is the ra IN(2Np),  Np> 1. (A8)

associated number of nuclear spins in that volume. For the -
calculations it is convenient to express the variance for dn the last step it is assumed ttggt=1-(b—1/2)/N,, result-
given subsystem only in terms of the coupligigby express- ing in the logarithm.
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