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Smoothed generalized free energies for thermodynamics

Remco van der Meer,1 Nelly Huei Ying Ng,1,2 and Stephanie Wehner1

1QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft, Netherlands
2Centre for Quantum Technologies, National University of Singapore, 117543 Singapore

(Received 1 August 2017; revised manuscript received 28 November 2017; published 29 December 2017)

In the study of thermodynamics for nanoscale quantum systems, a family of quantities known as generalized
free energies have been derived as necessary and sufficient conditions that govern state transitions. These free
energies become important especially in the regime where the system of interest consists of only a few (quantum)
particles. In this work, we introduce a family of smoothed generalized free energies, by constructing explicit
smoothing procedures that maximize or minimize the free energy over an ε ball of quantum states. In contrast
to previously known smoothed free energies, these quantities now allow us to make an operational statement for
approximate thermodynamic state transitions. We show that these smoothed quantities converge to the standard
free energy in the thermodynamic limit.

DOI: 10.1103/PhysRevA.96.062135

I. INTRODUCTION

The resource theory approach in quantum thermodynamics
[1–4] provides a fundamental framework for understanding
nonequilibrium state transitions ρS → σS , enabled by interac-
tions with a larger thermal bath while conserving total energy.
Specifically, a very general class of operations studied recently
are referred to as catalytic thermal operations (CTO) [4]. Such
operations take the form

U (ρS ⊗ ρC ⊗ τBβ
)U † = σSCB , (1)

where τBβ
= e−βHB

tr(e−βHB )
is the thermal state of the surrounding

bath (B) with Hamiltonian HB at a fixed inverse temperature β.
The system (S) has a Hamiltonian HS and is initially in the state
ρS . A catalyst (C) with Hamiltonian HC is allowed, where ρC

is the initial state of the catalyst, while U is a unitary operator
such that [U,Htotal] = 0, where Htotal = HS + HC + HB . The
latter condition simply implies that U conserves total energy.
Because of this generic feature, CTOs have been applied to
study various scenarios in thermodynamics, such as quantum
heat engines [5–8], and this can be done by modeling additional
systems as part of the system or catalyst if required. We say a
particular transition

ρS −−→
CTO

σS (2)

is possible, if there exist HB , HC , ρC , and U such that Eq. (1)
is satisfied in the regime of exact catalysis, i.e., trB(σSCB) =
σS ⊗ ρC . In other words, after tracing out the surrounding
heat bath, the catalyst returns to its initial state and is also
uncorrelated with the system S.

Phrased in this way, it may seem like a daunting task
to decide whether a specific transition is possible via CTO.
Fortunately, there exist a set of simple conditions [4] in terms
of a family of generalized free energies Fα , which are necessary
conditions for such a state transition to happen. In other words,
if ρS −−→

CTO
σS , then for all α ∈ R,

Fα(ρS,τSβ
) � Fα(σS,τSβ

), (3)

where τSβ
= e−βHS

tr(e−βHS )
is the thermal state at inverse temper-

ature β of the surrounding bath. The usual Helmholtz free
energy corresponds to the case of α → 1. Interestingly, these

conditions become sufficient if the states ρS and σS are already
block diagonal in the ordered energy eigenbasis,1 or in other
words, ρS and σS commute with HS . Moreover, in most cases,
only the generalized free energies with α � 0 matter, since
the α < 0 conditions may be fulfilled by borrowing a qubit
ancilla and returning it extremely close to its original state
[4]. These quantities signify how finite-sized quantum systems
differ thermodynamically from classical macroscopic systems.
Intuitively, these quantities also tell us that more moments
of the energy distribution are indispensable in determining
thermodynamical properties of a system, when we are outside
a regime where the law of large numbers applies.

While most literature on thermodynamic resource theories
is concerned with exact state transformations [3,4,11–15],
in realistic implementations, we may be satisfied as long
as the transition is approximately achieved. For example, in
experimental setups, initial states are prepared (and processes
are implemented) always up to some high but finite accuracy
[16,17], resulting in the achievement of the final state (or work
distribution) up to small but nonzero errors. This has also been
studied theoretically in the context of probabilistic thermal
operations [18], using a catalyst and returning it approximately
[4,9,10], and in work extraction protocols when heat or entropy
is inevitably produced alongside [5,19]. Here, we ask whether
one can identify conditions for approximate state transitions
on the system S to occur, where by “approximate” we refer
to a situation in which the error ε in terms of trace distance
between an ideal state ρ versus the real state ρ ′ is small, which
we also write as ρ ′ ≈ε ρ. As the trace distance quantifies how
well two states can be distinguished [20], “approximate” thus
means that the two states are nearly indistinguishable (up to
error ε) by any physical process.

In this work, we make progress toward answering the
question of approximate state transitions by introducing a new
family of smooth generalized free energies, F̂ ε

α (ρS,τSβ
) for

any block-diagonal state ρS . These smooth generalized free
energies jointly provide sufficient conditions for approximate

1Throughout the paper, we refer to such states as block-diagonal
states.
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FIG. 1. When an exact transition ρS −−→
CTO

σS is not possible

(denoted by a disconnected red arrow), it might still be true that
a state ρ ′

S ε1 close to ρS can be transformed to σ ′
S ε2 close to σS . What

are the conditions governing such approximate transitions?

state transitions. More precisely, if for some 0 < ε1,ε2 < 1,

F̂ ε1
α (ρS,τSβ

) � F̂ ε2
α (σS,τSβ

) ∀α � 0, (4)

then we know that there exists a CTO that can take an initial
state ρ

ε1
steep ε1 close to ρS , to a final state σ

ε2
fl which is ε2

close to σS (as illustrated in Fig. 1). The exact form of these
states ρ

ε1
steep and σ

ε2
fl may be explicitly determined. Moreover,

a thermal operation that brings ρ
ε1
steep −→

TO
σ

ε2
fl , when acted on

ρS , will also produce a final state (see Appendix B 4):

ρS −→
TO

σ ′
S ≈ε1+ε2 σS. (5)

We also proved that for all α � 0, when one takes n identical
and independently distributed (i.i.d.) copies, then in the limit
n → ∞, and ε → 0, the normalized quantities F̂ ε

α converge
to F1, which is the standard Helmholtz free energy known
in thermodynamics. This establishes with full rigor that
approximate state transitions approaching the thermodynamic
limit become determined solely by the Helmholtz free energy.

II. DIVERGENCES

In this section, we present the form of our smooth
generalized free energies. To do so, let us first recall that the
exact generalized free energies are given by

Fα(ρS,τSβ
) := β−1[− ln Zβ + Dα(ρS‖τSβ

)], (6)

where Zβ = tr(e−βHS ) is the partition function and Dα(ρS‖τSβ
)

are quantum Rényi divergences defined in Ref. [21].2 If we
consider states ρS block diagonal with respect to HS , then such
states commute with τSβ

. Therefore, by denoting the ordered
eigenvalues of ρS,τSβ

as {pi}i and {τi}i respectively, Dα in the
regime where α � 0 may be simplified to

Dα(ρS‖τSβ
) = 1

α − 1
ln
∑

i

pα
i τ 1−α

i . (7)

The reader who is familiar with Rényi divergences knows that
smooth variants, denoted as Dε

α , have long existed [22–24] and

2The values of Dα at points α = 1, ± ∞ are determined by the limits
α → 1, ± ∞ respectively, and therefore Dα is continuous in α ∈ R.
In Ref. [21], these divergences were defined only for α � 0; however,
one may extend these divergences for α < 0, with the function sgn(α)
as shown in Ref. [4].

have been shown to also converge to the relative entropy [4],
which recovers the Helmholtz free energy when substituted
into Eq. (6). Therefore, why not simply replace Dα with Dε

α?
The reason why such an approach is undesirable can be seen
from the form of these quantities:3

Dε
α(ρ‖τβ) =

⎧⎨
⎩

max
ρ̃∈Bε(ρ)

Dα(ρ̃‖τβ) if 0 � α � 1,

min
ρ̃∈Bε(ρ)

Dα(ρ̃‖τβ) if α > 1,
(8)

where the optimization in Eq. (8) is over the set of all quantum
states ε close in terms of trace distance to ρ, denoted as Bε(ρ).
Note that for different regimes within α � 0, the optimization
is different (min/max), and moreover, the solution ρ̃α would be
in general dependent on α. Therefore, when jointly comparing
Dε

α(ρ‖τβ) and Dε
α(σ‖τβ) for all α, the operational meaning of

comparing these divergences remains unclear, since it does
not directly imply the comparison between divergences of
a specific initial and final state ρε,σε, and thus the second
laws [4] cannot be applied, except solely in the limit where
ε → 0. On the other hand, the construction of our generalized
free energies involve the replacement of Dα with D̂ε

α , which
depends on explicit constructions of two block-diagonal states
ρε

fl,ρ
ε
steep, which we call the flattest state and the steep state:

D̂ε
α(ρ‖τβ ) =

{
Dα

(
ρε

steep‖τβ

)
if 0 � α � 1,

Dα

(
ρε

fl‖τβ

)
if α > 1.

(9)

The explicit construction of ρε
fl,ρ

ε
steep that we use here can be

found in Sec. III, and it is such an explicit construction that
makes it possible to have an operational meaning in terms
of state transitions. Here, we leave one remark about these
states, in order to motivate such a definition. The state ρε

fl is
special in the sense that any other state ρ ′ ∈ Bε(ρ) (including
non-block-diagonal states) can always be transformed to ρε

fl by
thermal operations (TO) [3], which is simply a special case of
catalytic thermal operations where the catalyst is not needed.
This can be expressed in terms of exact Rényi divergences:
For all α � 0, and any ε � 0, if ρ ′ ∈ Bε(ρ), then

Dα(ρ ′‖τβ ) � Dα

(
ρε

fl‖τβ

)
. (10)

In particular, since we constructed ρε
steep such that ρε

steep ∈
Bε(ρ), this means that Dα(ρε

steep‖τβ) � Dα(ρε
fl‖τβ ), and there-

fore the steep state can always be transformed to the flattest
state. However, the steep state ρε

steep does not enjoy the same
kind of uniqueness as ρε

fl; we later prove that one cannot always
find a unique candidate for ρε

steep that can be transformed to
any state ρ ′ ∈ Bε(ρ).

We can make use of the properties of ρε
fl and ρε

steep to prove
the operational meaning of the smoothed quantities in Eq. (9).
By defining smooth generalized free energies as

F̂ ε
α (ρ,τβ ) := β−1

[− ln Zβ + D̂ε
α(ρ‖τβ)

]
, (11)

we may state our main result as Theorem 1.

3From now on, we drop the subscript S from the states such as
ρS,τS , since in the rest of the paper they refer to the system by
default; subscripts are used only when other systems such as the bath
or the catalyst are discussed.
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Theorem 1. Consider two states ρ and σ block-diagonal
with respect to the Hamiltonian H . Let τβ be the thermal state
at inverse temperature β, where β > 0. If for all α � 0, we
have

F̂ ε
α (ρ,τβ ) � F̂ ε

α (σ,τβ), (12)

and then the exact state transition ρε
steep −−→

CTO
σ ε

fl is possible by

a catalytic thermal operation.
There are two remaining questions. First, how do the

smoothed quantities Dε
α and D̂ε

α relate to each other? We find
that for any ε ∈ [0,1], an explicit state ρε

fl always exists such
that Eq. (10) holds. Therefore, we know that the minimizations
in Eq. (8) are obtained by ρε

fl. Using this property, we may
rewrite the conventional smoothed Rényi divergences as

Dε
α(ρ‖τ ) =

{
max

ρ̃∈Bε(ρ)
Dα(ρ̃‖τ ) if 0 � α � 1

Dα(ρε
fl‖τ ) if α > 1.

(13)

This shows that these smoothed divergences are quite similar
to the original smoothed divergences: For α > 1, they are
equivalent. However, the same is no longer true for 0 � α � 1;
i.e., we show that it is not possible to replace the maximization
in Eq. (13) with a single explicit state. This is also why
Theorem 1 is only a sufficient condition (but not necessary);
there can be multiple candidates in Bε(ρ) which are steeper
than ρ, but maximize Dα for different values of α. For a
particular state transition, the best ρε

steep candidate may depend
on the final target state.

The second question is whether the generalized free
energies in Eq. (11) recover the macroscopic second law
when approaching the thermodynamic limit. We show that
this is true, by proving that our smoothed quantities satisfy the
asymptotic equipartition property:

Theorem 2. Consider any state ρ block diagonal with
respect to the Hamiltonian H . Then for all α � 0,

lim
ε→0

lim
n→∞

1

n
F̂ ε

α

(
ρ⊗n,τ⊗n

β

) = F (ρ,τβ). (14)

In proving Theorem 2, we obtain explicit upper and lower
bounds (see Appendix C) of the form

F (ρ,τβ) − f (n,ε) � 1

n
F ε

α

(
ρ⊗n,τ⊗n

β

)
� F (ρ,τβ) + g(n,ε),

(15)

where one can show that f (n,ε) and g(n,ε) vanish in the limits
n → ∞ and ε → 0.4 Furthermore, these bounds are still useful
should one be interested in finite values of n and ε. This is in
contrast to Ref. [4], where when using the previously known
quantities Dε

α in Eq. (8), one can only recover the macroscopic
second law in the limit n → ∞ and ε → 0, while for finite n,ε,
there is no operational meaning in terms of state transitions.
Our results also show that for finite values of n and ε, one

4The functions f and g as shown in Appendix C 2 have an implicit
dependency on ρ and τ as well. However, for any ρ and τ (thermal
state), we can show that these functions vanish in the desired limits
n → ∞ and ε → 0.

can easily check whether there exists a particular approximate
transition: If

F (ρ,τβ) � F (σ,τβ) + β−1�(n,ε,ρ,σ,τβ ), (16)

then (ρ⊗n)εsteep → (σ⊗n)εfl is possible via thermal operations.
The explicit form of �(n,ε,ρ,σ,τβ ) is derived in Corollary
1 in Appendix C 2 and vanishes to zero in the limit ε → 0
and n → ∞. Such a bound is useful for example in the
following situation: Consider ρ and σ such that we know
F (ρ,τβ) > F (σ,τβ), and therefore in the thermodynamic limit,
one can asymptotically transform n copies of ρ into σ via
CTOs. However, it is possible that when one considers a
single-copy transformation, Eq. (3) is not satisfied for all
α � 0, and therefore the transition cannot take place. However,
one can use Eq. (16) to find a lower bound such that whenever
n � n∗, then (ρ⊗n)εsteep → (σ⊗n)εfl is possible, by invoking
�(n∗,ε,ρ,σ,τβ ) � β[F (ρ,τβ) − F (σ,τβ)].

III. STEEP AND FLAT STATES

A. Motivation and definition

Here, we present explicit smoothing procedures used in
the definition of D̂ε

α given in Eq. (9). Given a quantum state
denoted by ρ, and a smoothing parameter ε > 0, we would
like to find the most “advantageous” or “disadvantageous”
states that are close to ρ in terms of trace distance. By most
advantageous, we mean that the state may reach as many other
states that are also close to ρ as possible. Similarly, by most
disadvantageous, we mean that such a state may always be
obtained from other states which are also close to ρ.

We find these states by considering transitions via thermal
operations (TO) [1,3], which are CTOs without a catalyst:
In the description given in Eq. (1), the system C is dropped
completely. Our analysis is focused on the subset of states
which commute with the Hamiltonian. Note that TOs form a
subset of CTOs, so if a transition can be performed with a TO,
then the transition can also be performed by a CTO. To find
these states, we will mainly be analyzing thermomajorization
curves, which is the necessary and sufficient condition that
determines the possibility of a transition ρ

ε1
steep −→

TO
ρ ′ [3].5

Consider a block-diagonal quantum state ρ associated with
a Hamiltonian H . Given the setBε(ρ), consider a special subset
of block-diagonal states Bε

D(ρ) ⊆ Bε(ρ), with

Bε
D(ρ) = {ρ ′|ρ ′ ∈ Bε(ρ),[ρ ′,H ] = 0}. (17)

If a state in Bε
D(ρ) is more advantageous than ρ, we call this an

ε-steep state; similarly if it is less advantageous, we call this
an ε-flat state. In particular, we use the following terminology:
A block-diagonal state ρ̂ is ε steeper than ρ if ρ̂ ∈ Bε

D(ρ)
and ρ̂ → ρ is possible via thermal operations. On the other
hand, we say that a block-diagonal state ρ̃ is ε flatter than ρ

if ρ̃ ∈ Bε
D(ρ) and ρ → ρ̃ is possible via thermal operations.

We leave two remarks about these definitions. First of all, it
should be noted that not all states in Bε(ρ) satisfy either of

5Thermomajorization can also be defined for arbitrary, non-block-
diagonal states and constitutes also a necessary condition for state
transition.
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FIG. 2. Steepest and flattest states of ρ with ordered eigenvalues eig(ρ) = {0.3,0.25,0.22,0.1,0.07,0.06}, when the Hamiltonian is trivial
and ε = 0.1. In panel (a), the steepest state is obtained by cutting the distribution tail and increasing the largest eigenvalue to normalize.
Therefore, we have eig(ρε

st) = {0.4,0.25,0.22,0.1,0.04,0}: All eigenvalues to the right of the vertical line are cut, and ε is added to the first
eigenvalue. In panel (b), the flattest state is constructed by cutting the largest eigenvalues up to ε. One visualizes this as having an upper dashed,
horizontal line gradually lowered until the probability mass laying above equals ε. This mass is cut and redistributed by adjusting the lower
dashed, horizontal line to a height, such that if one increases all probabilities laying below this line (i.e., 4–6 in this figure), up to this line, a
total of ε is added. This gives eig(ρε

fl) = {0.225,0.225,0.22,0.11,0.11,0.11}.

these definitions; there exist incomparable states pairs ρ,ρ̄

where the transition cannot happen either way. Second, we
can compare the Rényi divergence of these ε-steep and ε-flat
states. For an ε-steep state ρ̂, because the transition ρ̂ −→

TO
ρ is

possible, the transition ρ̂ −−→
CTO

ρ is possible as well. Similarly,

for any ε-flat state ρ̃, the transition ρ −−→
CTO

ρ̃ is possible. Thus,

we know that their Rényi divergences satisfy for α � 0,

Dα(ρ̂‖τ ) � Dα(ρ‖τ ) � Dα(ρ̃‖τ ). (18)

Next, we look at extreme cases of ε-steep and ε-flat states,
which we refer to as the ε-steepest and ε-flattest states.

Definition 1. The block-diagonal state ρε
st is the ε-steepest

state if ρε
st −→

TO
ρ ′ is possible for any ρ ′ ∈ Bε

D(ρ), or in other

words, ρε
st thermomajorizes ρ ′.

Definition 2. The block diagonal state ρε
fl is the ε-flattest

state if the transition ρ ′ −→
TO

ρε
fl is possible for any ρ ′ ∈ Bε(ρ),

or in other words, ρ ′ thermomajorizes ρε
fl.

As mentioned above, not all states are comparable when
considering arbitrary Hamiltonians. This implies that ρε

st and
ρε

fl do not necessarily always exist for any ε, introducing
additional challenges. To get some insight, let us first mention,
however, that they always exist for the simplest case of fully
degenerate (trivial) Hamiltonians (see Ref. [25] for proofs,
and application in Ref. [26] to study continuity bounds). A
visual construction is shown in Figs. 2(a) and 2(b), and the
reader may refer to Appendix B 1 for the explicit mathematical
construction. Figure 3 shows the majorization curve for ρε

st
and ρε

fl, in comparison with ρ. For general Hamiltonians,
thermomajorization curves have to be compared instead, and
this complicates the task of finding steepest and flattest states,
because the kinks do not align in their horizontal position (in
contrast to Fig. 3).

B. Constructing the flattest state and an ε-steeper state
for general Hamiltonians

Let us turn to more general Hamiltonians with discrete
energy levels. It is no longer straightforward to find the
ε-steepest or flattest states, because the optimal smoothing
strategy depends on the Hamiltonian. Nevertheless, we can
show that the ε-flattest state always exists, by providing an
explicit method to construct ρε

fl. Consider a d-dimensional
state ρ block diagonal in the energy eigenbasis, and write
down its eigenvalues {pi}i in a β-ordered form, such that

p1e
βE1 � · · · � pde

βEd . (19)

For a smoothing parameter ε, the flattest state of ρ can be
constructed as follows: If ε is large enough, such that the trace
distance δ(ρ,τβ ) � ε, then we know that τβ ∈ Bε

D(ρ). Since
all states may go to τβ via thermal operations, by definition

FIG. 3. Majorization curves of the state ρ compared to its steepest
and flattest states ρε

st and ρε
fl, as shown in Figs. 2(a) and 2(b). Any

other state ρ ′ ∈ Bε(ρ) will have a majorization curve that lies between
the red (with “ ” markers) and blue (with “×” markers) curves.
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the flattest state is equal to the thermal state. Otherwise, if
δ(ρ,τβ) < ε, the construction involves determining certain
indices M,N where 1 � M � N � d. These indices tell us
which eigenvalues of ρ we have to modify. In particular, let M

be the smallest integer such that

ε �
M∑
i=1

pi − pM+1e
βEM+1

M∑
i=1

e−βEi . (20)

Similarly, let N be the largest integer such that

ε � pN−1e
βEN−1

d∑
i=N

e−βEi −
d∑

i=N

pi. (21)

We prove in Lemma 6, Appendix D, that M � N . The flattest
state can then be constructed by cutting the first M eigenvalues
{pi}Mi=1 by a total amount of ε, and increasing the eigenvalues
{pi}di=N by another ε for renormalization. Moreover, the
eigenvalues are cut or increased in such a way that p̃1e

βE1 =
· · · = p̃MeβEM , and similarly p̃NeβEN = · · · = p̃de

βEd . This
construction means that ρε

fl not only is diagonal in the same
basis as ρ itself, it also has the same β ordering. Given these
indices, the eigenvalues of ρε

fl are given by

p̃i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−βEi

(∑M
i=1 pi

)
−ε∑M

i=1 e−βEi
if i � M,

e−βEi

(∑d
i=N pi

)
+ε∑n

i=N e−βEi
if i � N,

pi otherwise.

(22)

Unfortunately, a similar construction does not exist for the
steepest state. In particular, we prove that at least for some
states ρ and parameters ε > 0, ρε

st as defined in Definition
1 does not exist. Therefore, we give a way to construct a
particular ε-steep state ρε

steep instead: If ε > 1 − p1, then the
eigenvalues {p̂i}i of the steep state are given by

p̂i =
{

1 if i = 1,

0 otherwise. (23)

For any 0 < ε � 1 − p1, we cannot reach this pure state.
Therefore, we need to find the eigenvalues that we can cut
while remaining within the ε ball. We do this by first choosing
the index R ∈ N such that

∑d
i=R pi � ε >

∑d
i=R+1 pi . Then,

we define ρε
steep to be the state diagonal in the same basis as ρ,

with the eigenvalues

p̂i =

⎧⎪⎪⎨
⎪⎪⎩

p1 + ε if i = 1,

pi if 1 < i < R,

pi +∑d
i=R+1 pi − ε if i = R,

0 otherwise.

(24)

C. Proof of Theorem 1

Once the flattest and steep states are established in
Sec. III B, we can spell out the proof of our main result.

Proof of Theorem 1. For states ρ,τ , and a particular ε >

0, assume that D̂ε
α(ρ‖τ ) � D̂ε

α(σ‖τ ) for all α � 0. Then, for
α > 1 we have that

Dα

(
ρε

steep

∥∥τ) � Dα

(
ρε

fl

∥∥τ) = D̂ε
α(ρ‖τ )

� D̂ε
α(σ‖τ ) = Dα

(
σ ε

fl ‖τ). (25)

FIG. 4. The thermomajorization diagram of ρ (blue, marked +)
and the two bounds (yellow and purple, dashed). For any ρ ′ ∈ Bε

D(ρ),
its thermomajorization curve must lie between the two bounds (as
demonstrated with the red curve, marked o). These bounds are later
used in Eq. (A13).

For 0 � α � 1, we have that

Dα

(
ρε

steep

∥∥τ) = D̂ε
α(ρ‖τ ) � D̂ε

α(σ‖τ )

= Dα

(
σ ε

steep

∥∥τ) � Dα

(
σ ε

fl

∥∥τ). (26)

Thus, for all α � 0 we have that the exact divergences
Dα(ρε

steep‖τ ) � Dα(σ ε
fl ‖τ ). Therefore, the transition ρε

steep →
σ ε

fl is possible via catalytic thermal operations by the second
laws put forward in Ref. [4]. �

IV. DISCUSSION AND CONCLUSION

The significance of thermomajorization curves (TMC) go
beyond the framework of thermal operations: These curves
also constitute state transition conditions for a set of more
experimental friendly processes called crude operations [27].
Moreover, it has also been shown that thermal operations are
more powerful in enabling state transitions, when compared
to protocols achieved mainly by weak thermal contact [28];
for example, they allow anomalous heat flow, which is
a larger change in temperature than allowed if one only
considers weak thermal contact with a heat bath. Because of its
power, TMCs have been applied to study various problems in
thermodynamics, such as work extraction [3,13], heat engine
efficiencies [5–7], cooling rates [29,30], and thermodynamic
reversibility [7] in the quantum regime. In our work, we
proposed smoothed generalized free energies; this has been
achieved by understanding how to construct smoothed states
that have optimal advantage and/or disadvantage under thermal
operations. In the process, we developed technical bounds on
the difference between two TMCs (Appendix A, Theorem 3),
as a function of the trace distance between two states (Fig. 4).
Previously, thermomajorization was hard to analyze because
even when comparing two states close in trace distance, they
might have completely different β orderings, arising from
different shapes in their TMC. However, our bounds hold
solely as a function of trace distance, irrespective of the β

ordering. Therefore, these bounds might be of general use
when analyzing TMCs.
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The scope of our work has been restricted to block-diagonal
states. For arbitrary state transitions, even the necessary
and sufficient conditions for exact transitions are unknown
[4,11,31] and remain a large open problem in quantum thermo-
dynamics (thermomajorization, however, remains a necessary
condition [31]). The case for a single qubit has been solved in
Ref. [15], which may be a starting point to consider optimal
smoothing that takes coherence into account. Alternatively,
one may also choose to investigate a larger set of thermal
processes compared to thermal operations, such as Gibbs-
preserving maps [14,32] or generalized thermal processes
[33]. Such processes recover thermomajorization as the state
transition condition when dealing with block-diagonal states,
but for arbitrary quantum states, they achieve a strictly larger
set of state transitions when compared to thermal operations.
Very recently, necessary and sufficient conditions for state
transitions have been identified for both types of processes
[32,33]. Comparison between optimal smoothing procedures
for these various different processes could potentially help us
to understand their fundamental differences.

The appendixes provides the full derivation of technical
details used to obtain our main results. In Appendix A,
we recall the definition of thermal operations and thermo-
majorization in full. We develop a useful tool in this section
concerning generalized curves that resemble the form of
thermomajorization curves. Using this tool, we show the
distance between thermomajorization curves of two block-
diagonal states may be bounded by their trace distance.

Appendix B presents the constructions of flattest and
steepest states. In Appendix B 1, we start by proving that
such states always exist for the trivial Hamiltonian. For
general Hamiltonians, the flattest and steepest states are
investigated accordingly in Appendixes B 2 and B 3. Certain
technical lemmas used in Appendix B 2 are proven later on in
Appendix D.

Lastly, in Appendix C we prove the asymptotic equiparti-
tion property for our divergences.
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APPENDIX A: THERMO-MAJORIZATION AND
SOME TECHNICAL TOOLS

In this section, we introduce the tools necessary to derive
the results stated in the main text of this paper. We start by
defining the notion of thermomajorization curves for states
which are block diagonal in the energy eigenbasis and present
a few lemmas that will be useful in deriving the main results
on steepest and flattest states.

To model these thermodynamic operations, we adapt the
paradigm of thermodynamic resource theories, where state
transitions are achieved via thermal operations [1,3]. A
thermal operation on some quantum system S is defined by
two elements:

(1) a bath of some fixed inverse temperature β, which is a
quantum state of the form

τBβ
= 1

tr(e−βHB )
e−βHB , (A1)

(2) a unitary USB that preserves the total energy of the
global system SB, i.e., the commutator [USB,HSB = 0], where
HSB = HS ⊗ IB + IS ⊗ HB .

When one considers only initial states ρS that are block
diagonal in the energy eigenbasis, then necessary and sufficient
conditions for state transition to occur via thermal operations
are given by thermomajorization, which we will soon explain.
However, as mentioned in the main text, for catalytic thermal
operations, the conditions on the free energies Fα(ρS,τS)
fully determine whether a state transition is achievable. Since
thermal operations form a special subset of catalytic thermal
operations, we therefore know that thermomajorization is a
more stringent condition compared to the free energies.

The thermomajorization curve of a state ρ which is block
diagonal with respect to its corresponding Hamiltonian H

determines the set of final states achievable via thermal
operations: Any block diagonal state which has a thermoma-
jorization curve that lies below the curve of ρ can be reached.
For a d-dimensional state ρ =∑i pi |Ei〉〈Ei | that is diagonal
in the energy eigenbasis, we first denote p = {p1, . . . ,pd}
to be a vector containing the eigenvalues of ρ, which
are the occupational probabilities corresponding to energy
levels given in the vector E = {E1, . . . ,Ed}. Subsequently,
let p̂ = {p̂1, . . . ,p̂d} be a particular permutation of p, with
Ê = {Ê1, . . . ,Êd} being the same permutation upon E. In
particular, p̂,Ê is permuted in the ordering that

p̂1e
βÊ1 � · · · � p̂de

βÊd . (A2)

It is helpful to note that although there might be several permu-
tations that satisfy Eq. (A2) (for example, some inequalities
might be satisfied with equality), these different permutations
would give rise to the same thermomajorization curve, so
picking any permutation that satisfies Eq. (A2) suffices. The
energy spectrum Ê also allows us to define the partition func-
tion for the system (of a certain temperature), which is given
by Z =∑d

i=1 e−βÊi . Given p̂ and Ê, the thermomajorization
curve is defined as the piecewise linear curve c(p̂,Ê) which

connects the points given by {(∑k
i=1 e−βÊi /Z,

∑k
i=1 p̂i)}dk=0

with straight line segments. Because of the particular β

ordering of p̂ and Ê, such a thermomajorization curve is
concave.

In general, such a piecewise-linear curve c(p,E) does
not need to be defined only for the β-ordered vectors p̂,Ê,
but for any permutation of the eigenvalues p,E. In order
to compare such curves, we use the notation c(p,E) �
c(p̂,Ê) to denote that c(p,E) lies completely below c(p̂,Ê).
We will also use the notation c(p,E) + ε to denote the
piecewise linear curve that connects the points given by

{(∑k
i=1 e−βÊi /Z,ε +∑k

i=1 p̂i)}dk=0. A special relation exists
between any c(p,E) and the thermomajorization curve c(p̂,Ê),
which we detail in Lemma 1.

Lemma 1. Let ρ be a d-dimensional system, with d ∈ Z+.
Let p̂ = {p̂i}i be a vector containing the β-ordered eigenvalues
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of ρ, with Ê = {Êi}i containing the corresponding energy
levels. Let p be any other vector which is an arbitrary
permutation of the entries in p̂, with E being the same
permutation of Ê. Then, c(p,E) � c(p̂,Ê).

Proof. Since we want to prove the above lemma for an
arbitrary permutation of p and E, let us consider two possible
scenarios. In the first case, p,E is also β ordered, i.e., they
satisfy

p1e
βE1 � · · · � pde

βEd . (A3)

Note that this happens either when the permutation is trivial,
i.e., p̂ = p (and Ê = E), or it is also possible that certain
inequalities in Eq. (A2) are achieved with equality, so that the
β ordering is not unique.

The curves c(p,E) and c(p̂,Ê) will be the same in these
cases, such that c(p,E) � c(p̂,Ê) holds trivially.

The second case is that p,E now do not satisfy Eq. (A3);
i.e., they are not yet β ordered. This implies that we can find at
least one index n such that pne

βEn < pn+1e
βEn+1 . Intuitively,

such a relation means that when the curve c(p,E) is drawn,
then c(p,E) will be convex (instead of being concave) in
the interval (

∑n−1
i=1 e−βÊi /Z,

∑n+1
i=1 e−βÊi /Z). We will now

analyze the curve c(p,E) more closely around such a point.
To do so, we define the vectors p̃,Ẽ such that

p̃i =
⎧⎨
⎩

pn+1 if i = n,

pn if i = n + 1,

pi otherwise,
(A4)

and

Ẽi =
⎧⎨
⎩

En+1 if i = n,

En if i = n + 1,

Ei otherwise.
(A5)

If we then compare c(p,E) with c(p̃,Ẽ), we see that for the
points

A = (xA,yA) =
(

n−1∑
i=1

e−βEi

Z
,

n−1∑
i=1

pi

)
, (A6)

B = (xB,yB) =
(

n+1∑
i=1

e−βEi

Z
,

n+1∑
i=1

pi

)
, (A7)

the curves completely overlap before the point A and after
the point B. However, the curves will differ within the x-axis
interval (xA,xB ). We show that in this interval, the curve of
c(p̃,Ẽ) will lay above that of c(p,E). To show this, note that
both curves have exactly one kink in this region. We will
compare these kinks with the straight line through the points
A and B. To simplify the analysis, let us redefine the origin
to be located at point A. The straight line through these two
points is then given by

y = (pn + pn+1)Z

e−βEn + e−βEn+1
x. (A8)

The kink of c(p,E) is located at (e−βEn/Z,pn). The vertical
height difference between the straight line and the kink, at

x = e−βEn/Z, is given by

y − pn = (pn + pn+1)Z

e−βEn + e−βEn+1

e−βEn

Z
− pn

= e−βEn (pn + pn+1) − pn(e−βEn + e−βEn+1 )

e−βEn + e−βEn+1

= e−βEnpn+1 − e−βEn+1pn

e−βEn + e−βEn+1

= eβ(En+En+1)

eβ(En+En+1)

e−βEnpn+1 − e−βEn+1pn

e−βEn + e−βEn+1

= eβEn+1pn+1 − eβEnpn

eβ(En+En+1)(e−βEn + e−βEn+1 )
> 0. (A9)

To summarize, we know that between the x-axis interval
(xA,xB ), the following holds:

(1) The line y and the curve c(p,E) coincide at the points
A and B.

(2) The curve c(p,E) is piecewise linear and has a single
kink in this interval which lies below the line y.

These two points imply that within the whole interval,
c(p,E) will lie below the straight line y.

It is easy to see that the curve c(p̃,Ẽ) will lie above the
straight line, since it differs from c(p,E) only by a reordering
of the two line segments, meaning that the two curves form
a parallelogram. To prove this explicitly, note that the curve
c(p̃,Ẽ) has its kink located at (e−βEn+1/Z,pn+1), and when we
compare it with y at the position x = e−βEn+1/Z, we find the
opposite, i.e.,

y − pn+1 = (pn + pn+1)Z

e−βEn + e−βEn+1

e−βEn+1

Z
− pn+1

= e−βEn+1 (pn + pn+1) − pn+1(e−βEn + e−βEn+1 )

e−βEn + e−βEn+1

= e−βEn+1pn − e−βEnpn+1

e−βEn + e−βEn+1

= eβ(En+En+1)

eβ(En+En+1)

e−βEn+1pn − e−βEnpn+1

e−βEn + e−βEn+1

= eβEnpn − eβEn+1pn+1

eβ(En+En+1)(e−βEn + e−βEn+1 )

< 0, (A10)

which means that by similar reasoning as before, in the region
of interest,

c(p̃,Ẽ) � y � c(p,E). (A11)

Thus, if we perform a swap between neighboring elements
of p, such that after swapping the elements n and n + 1 we
have that pne

βEn � pn+1e
βEn+1 , then the new curve always

lays above that of the old one.
Using this, we can define a sequence of distri-

butions q1,q2, . . . ,qd with corresponding energy levels
E1,E2, . . . ,Ed , for any m ∈ Z+. We define the sequence to
start from q1 = p and E1 = E. Furthermore, for any n � 1, we
obtain qn+1 from qn by a single swap. This swap is performed
by the following procedure:
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(1) Identify the smallest index k such that qn
k eβEn

k <

qn
k+1e

βEn
k+1 .

(2) Obtain qn+1,En+1 from qn,En by swapping the kth
element with the (k + 1)-th element. Such a swap is identical
to the one we have seen in Eq. (A4).

One can see that such a process is analogous to a bubble sort
algorithm, where for finite dimension d, there always exists an
m ∈ Z+ large enough such that qd = p̂ and Ed = Ê; i.e., the
end result satisfies β ordering. Therefore, for this sequence,
we have that

c(p,E) = c(q1,E1)

� c(q2,E2) � · · · � c(qd,Ed )

= c(p̂,Ê).

This concludes the proof. �
For any two states ρ,σ , the trace distance δ(ρ,σ ) tells us

how far apart the states are. For states which are diagonal in
the same basis, if we denote p = eig(ρ),q = eig(σ ) as the
corresponding eigenvalues, then

δ(ρ,σ ) = 1

2

∑
i

|pi − qi |. (A12)

The next theorem tells us how the thermomajorization dia-
grams of block-diagonal states may behave, given an upper
bound on their trace distance ε. These bounds will be useful
when we prove the optimality of steepest and flattest states in
terms of thermomajorization within the ε ball of a state.

Theorem 3. Consider any state ρ block diagonal with
respect to some Hamiltonian H , and any other ρ ′ ∈ Bε

D(ρ).
Denote the thermomajorization curves of ρ and ρ ′ as cρ and
cρ ′ respectively. Then, as depicted in Fig. 4,

cρ − ε � cρ ′ � cρ + ε. (A13)

Proof. Let p = {pi}i be the β-ordered eigenvalues of ρ with
corresponding energy levels E = {Ei}i , such that p1e

βE1 �
· · · � pde

βEd . Therefore, the thermomajorization curve of ρ

is given by cρ = c(p,E). On the other hand, let p′ = {p′
i}i be

the eigenvalues of ρ ′; however, we do not write p′ such that it is
β ordered and instead we write it according to the same order as
p. Notice, therefore, that since p′ is not necessarily β ordered,
the thermomajorization curve cρ ′ �= c(p′,E) in general.

Because ρ ′ ∈ Bε
D(ρ), we have that the trace distance

1

2

d∑
i=1

|pi − p′
i | � ε. (A14)

Furthermore, because both states are normalized, we have that

d∑
i=1

(pi − p′
i) = 0. (A15)

This means that

d∑
i=1

(pi − p′
i) =

∑
i:pi>p′

i

(pi − p′
i) +

∑
i:pi<p′

i

(pi − p′
i) = 0

(A16)

and thus ∑
i:pi>p′

i

(pi − p′
i) = −

∑
i:pi<p′

i

(pi − p′
i). (A17)

Applying Eq. (A17) to Eq. (A14) yields

1

2

d∑
i=1

|pi − p′
i | = 1

2

∑
i:pi>p′

i

(pi − p′
i) − 1

2

∑
i:pi<p′

i

(pi − p′
i)

=
∑

i:pi>p′
i

(pi − p′
i)

= −
∑

i:pi<p′
i

(pi − p′
i) � ε. (A18)

We will consider two separate cases:
(1) Both p and p′ have the same β ordering. In this case,

we know that cρ ′ = c(p′,E) holds, and the kinks of the two
thermomajorization curves cρ,cρ ′ line up. In this simple case,
the maximum height difference between cρ and cρ ′ occurs at a
kink, and therefore it is sufficient to compare the height of the
curves at these discrete points. For any k ∈ {1,d}, at the kth
kink which happens at the x coordinate xk = Z−1∑k

i=1 e−βEi ,
the height difference between the two curves is given by∣∣∣∣∣

k∑
i=1

pi −
k∑

i=1

p′
i

∣∣∣∣∣
=
∣∣∣∣∣∣
∑

i�k:pi>p′
i

(pi − p′
i) +

∑
i�k:pi<p′

i

(pi − p′
i)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i�k:pi>p′
i

(pi − p′
i)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑

i�k:pi<p′
i

(pi − p′
i)

∣∣∣∣∣∣
∣∣∣∣∣∣

� max

⎛
⎝
∣∣∣∣∣∣
∑

i�k:pi>p′
i

(pi − p′
i)

∣∣∣∣∣∣,
∣∣∣∣∣∣
∑

i�k:pi<p′
i

(pi − p′
i)

∣∣∣∣∣∣
⎞
⎠

� ε. (A19)

Thus, if ρ,ρ ′ have the same β ordering of eigenvalues,
then the height difference between cρ and cρ ′ cannot be larger
than ε.

(2) The states ρ and ρ ′ do not have the same β ordering. We
can use the curve c(p′,E) to show that the height difference
between cρ and cρ ′ still cannot exceed ε. By Lemma 1, we know
that c(p′,E) � cρ ′ . Note that if we consider the curves cρ =
c(p,E) and c(p′,E), since p and p′ have the same ordering,
we know that the kinks of both curves always coincide. From
case (1), we know that

|c(p,E) − c(p′,E)| � ε, (A20)

and therefore c(p′,E) � c(p,E) − ε. Therefore, the thermo-
majorization curve cρ ′ can also be lower bounded by

cρ ′ � c(p′,E) � c(p,E) − ε. (A21)

Next, we need to prove that cρ ′ � c(p,E) + ε as well.
This can be done with a similar strategy as before, except

that we need to interchange the roles of p and p′. In particular,
let us first take the vectors p′,E which were not β ordered,
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and denote q ′,E′ to be the permuted versions of p′,E such
that q ′,E′ now satisfies β ordering. More precisely, we use the
permutation 
 such that for q ′,E′ defined by

q ′
i = p′


(i), (A22)

E′
i = E
(i), (A23)

q ′,E′ will now satisfy

q ′
1e

−βE′
1 � q ′

2e
−βE′

2 � · · · � q ′
de

−βE′
d . (A24)

This implies that

cρ ′ = c(q ′,E′). (A25)

Now, similarly we may consider the permuted vector q =

(p). Note that q,E′ is a particular permutation of p,E, so
according to Lemma 1,

c(q,E′) � c(p,E) = cρ. (A26)

Next, we will compare c(q,E′) with c(q ′,E′). First of all,
note that since q = 
(p) and q ′ = 
(p′), and since the trace
distance is invariant under such permutations, we know that

1

2

d∑
i=1

|qi − q ′
i | � ε (A27)

holds as well. Also, since q and q ′ are both normalized vectors
as well, Eqs. (A14)–(A19) hold for q ′ and q. Since they are
both ordered in the same way, the kinks of the two curves line
up again at the same x coordinates, and therefore comparing
the height of the curves at these coordinates will be sufficient.

Therefore, according to the analysis of case (1), the height
difference |c(q,E′) − c(q ′,E′)| � ε. Finally, combining this
with Eq. (A25) and Eq. (A26) allows us to conclude that

cρ ′ = c(q ′,E′) � c(q,E′) + ε � cρ + ε. (A28)

Equations (A21) and (A28) jointly prove the theorem for
case (2). �

Theorem 3 allows us to conclude the following: For any
two block-diagonal states ρ,ρ ′ which are ε close, regardless
of whether β ordering of the eigenvalues are same or different,
the height difference between the thermomajorization curves
of ρ and ρ ′ cannot exceed ε. Interestingly, the authors were
made aware later on that a simpler proof can also be obtained
by applying more general results in statistical literature, such
as in Ref. [34]. This theorem gives us some bounds for the
thermomajorization curves of the states within the ε ball.
Notice, however, that the bounds cannot always be reached:
In some regions, the lower bound can be negative, while
in other regions the upper bound can also exceed 1, as
shown in Fig. 4. However, since eigenvalues form a normal-
ized probability distribution, such bounds clearly cannot be
reached.

APPENDIX B: FLATTEST AND STEEPEST STATES

1. Trivial Hamiltonians

In this section, we will explain that for any smoothing
parameter ε > 0, for systems with trivial Hamiltonians, the
steepest and flattest states always exist. We do so by providing

the explicit construction of steepest and flattest states. A
detailed proof of these constructions being steepest and flattest
can also be found in Ref. [25].

Consider an m-dimensional system ρ with trivial Hamil-
tonian and denote the ordered eigenvalues of ρ as {pi}i .
The eigenvalues {p̂i}i of the steepest state of ρ are then
given by

p̂i =

⎧⎪⎪⎨
⎪⎪⎩

pi + ε if i = 1,

pi if 1 < i < M,

pi − ε +∑m
j=M+1 pi if i = M,

0 otherwise,

(B1)

with M ∈ N such that
m∑

i=M+1

pi < ε �
m∑

i=M

pi. (B2)

Here, we simply cut the tail of ρ, and added the cut probability
mass to the first eigenvalue. This state majorizes all other states
within the ε ball.

Consider the same state ρ, when ε < δ(ρ,I/m), where I/m

is the maximally mixed state. The eigenvalues {p̃i}i of the
flattest state of ρ are then given by

p̃i =

⎧⎪⎪⎨
⎪⎪⎩

1
N1

(− ε +∑N1
i=1 pi

)
if i � N1,

1
m+1−N2

(
ε +∑m

i=N2
pi

)
if i � N2,

pi otherwise,

(B3)

with N1 ∈ N such that

N1−1∑
i=1

(pi − pN1 ) < ε �
N1∑
i=1

(pi − pN1+1) (B4)

and N2 ∈ N such that
m∑

i=N2+1

(pN2 − pi) < ε �
m∑

i=N2

(pN2−1 − pi). (B5)

Here, we removed ε from the head of ρ, and distributed this
probability mass over the tail of ρ. One can show see that when
ε is larger, N1 becomes larger and N2 becomes smaller; when
ε = δ(ρ,I/m), the flattest state according to this construction
will give us the maximally mixed state. For all δ(ρ,I/m) <

ε � 1, the eigenvalues of the flattest state are simply given by

p̃i = 1

d
, ∀i. (B6)

This state is majorized by all other states within the ε ball.

2. General Hamiltonians: Construction of the flattest state

In this section, we turn to the case of general (finite-
dimensional) Hamiltonians. We show that for any quantum
state ρ, and for any smoothing parameter ε, the flattest state as
defined in Definition 2 always exists.

Theorem 4. Consider any d-dimensional state ρ which is
block diagonal with respect to H . For any ε > 0, there exists
a state ρε

fl such that ρε
fl ∈ Bε

D(ρ) and for any other state ρ ′ ∈
Bε(ρ), ρ ′ → ρε

fl is possible via thermal operations.
Proof. We begin by noting that it suffices to prove that

any state ρ ′ ∈ Bε
D(ρ) goes to ρε

fl via thermal operations. This
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is because if we have some ρ ′′ ∈ Bε(ρ) that are not block
diagonal, we can nevertheless first apply a map M that
decoheres ρ ′′ in the energy eigenbasis. The resulting state
M(ρ ′′) is within Bε

D(ρ); this is shown by invoking the data
processing inequality for trace distance:

δ(M(ρ),M(ρ ′′)) � δ(ρ,ρ ′′) � ε. (B7)

We continue by denoting p = {pi}i as the β-ordered eigenval-
ues of ρ with corresponding energy levels E = {Ei}i . To prove
this theorem, we provide an explicit method to construct ρε

fl for
any ε such that any other state in Bε

D(ρ) will thermomajorize
ρε

fl.
We will consider two cases. If ε is large enough, such that

δ(ρ,τβ ) = 1

2

n∑
i=1

∣∣∣∣∣pi − e−βEi∑n
j=1 e−βEj

∣∣∣∣∣ � ε, (B8)

then this means the thermal state τβ ∈ Bε
D(ρ). Since we know

all block-diagonal states thermomajorize τβ , by setting ρε
fl =

τβ we have that for any ε � δ(ρ,τβ), the flattest state clearly
exists.

For the case where ε � δ(ρ,τβ ), it is not as straightforward
to see that the flattest state exists. However, we will present
a way to construct this state, and prove that this state is
thermomajorized by all other states within the ε ball. For any
ε > 0, we perform the following steps to construct a state ρ̂,
which later we show that ρ̂ = ρε

fl:
Step 1: Determine an integer M, and partially decrease

the first M (β-ordered) eigenvalues p1, · · · ,pM. Define the
function

F (m) =
m∑

i=1

pi − pm+1e
βEm+1

m∑
i=1

e−βEi , m ∈ {1,d − 1}.
(B9)

Note that because pi are β ordered, F (1) � 0, F (d − 1) � ε,
and this function is nondecreasing with respect to m (Lemma
4, Appendix D). Therefore, we may find the smallest integer
1 � M � d − 1 such that

ε � F (M). (B10)

This value M is the number of eigenvalues we cut from ρ

to obtain ρ̂. First, denote the total probability mass of these
eigenvalues as

A(M) =
M∑
i=1

pi, (B11)

and note that since ε � F (M), ε < A(M) is also true. We now
denote the eigenvalues of ρ̂ as p̂, and for i � M , let

p̂i = A(M) − ε∑M
i=1 e−βEi

e−βEi . (B12)

From this construction in Eq. (B12) we see that

M∑
i=1

p̂i = A(M) − ε, (B13)

such that a total amount of exactly ε is cut from p1, . . . ,pM

to obtain p̂1, . . . ,p̂M . Furthermore, the first M eigenvalues are
cut in a way such that they have the same “advantage” in β

ordering, i.e.,

p̂1e
βE1 = · · · = p̂MeβEM � p̂M+1e

βEM+1 . (B14)

The inequality follows from our choice of M as described
by Eqs. (B9) and (B10). First, p1, . . . ,pM have the same β

ordering by construction; therefore, the β ordering can differ
from the initial state only by one way, i.e., by reducing the first
M eigenvalues such that p̂ie

βEi < p̂M+1e
βEM+1 for all i � M .

However, if this is true, then Eq. (B10) requires that more than
ε would have to be cut from p1, . . . ,pM . Since this is not the
case, β ordering is preserved.

Step 2: Adding ε onto the eigenvalues pN, . . . ,pd for some
integer N � M to renormalize.

In a similar way, we can also determine another integer
M � N < d (the lower bound on N holds whenever the trace
distance δ(ρ,τ ) � ε), which tells us how many eigenvalues
we have to increase. For any integer 2 � m � d, consider the
function

G(m) = pm−1e
βEm−1

d∑
i=m

e−βEi −
d∑

i=m

pi. (B15)

Note that by Lemma 5 (Appendix D), G(d) � 0, G(2) � ε,
and G(m) is nonincreasing in m ∈ {2,d}. Let N be the largest
integer such that

ε � G(N ). (B16)

Once N is determined, denote the total probability mass

B(N ) =
d∑

i=N

pi. (B17)

We proceed to increase the probabilities pN, . . . ,pd in the
following way to obtain p̂N , . . . ,p̂d : For N � i � d, let

p̂i = B(N ) + ε∑d
i=N e−βEi

e−βEi . (B18)

Note that because of this construction, these eigenvalues are
increased so that they again have the same β-ordering advan-
tage: p̂N+1e

βEN+1 � p̂NeβEN = · · · = p̂de
βEd . The inequality

follows from our choice of N in a similar way to the inequality
of Eq. (B14). Equation (B16) ensures that more than ε has to
be added to the eigenvalues to change the β ordering.

Step 3: Keep all the other eigenvalues. The last step in
defining ρ̂ is such that for all M < i < N , the eigenvalues are
left untouched, i.e., p̂i = pi .

We have now finished the task of constructing a particular
flat state ρ̂, which is diagonal in the same basis as ρ, with
eigenvalues denoted by p̂. Now, what remains is to show that
ρ̂ is thermomajorized by all states ρ ′ ∈ Bε

D(ρ), and therefore
ρ̂ = ρε

fl. To do this, we will divide the thermomajorization
curve up into three different regions, similar to what we did
earlier. These regions are depicted in Fig. 5.

First, let us consider the region x ∈ [0,
∑M

i=1 e−βEi ].
Since we have seen that p̂1, . . . ,p̂M have the same β-

ordering advantage, the thermomajorization curve cρ̂ is a
straight line within this interval. Furthermore, if we compare
the curves cρ,cρ̂ at the rightmost end of the interval, i.e.,
xM =∑M

i=1 e−βEi , we see that

cρ(xM ) = cρ̂(xM ) + ε. (B19)
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FIG. 5. The thermomajorization diagram of the flattest state
divided up into three regions. In this particular example, M = 2 and
N = 5. This means the first two β-ordered eigenvalues are cut (by a
total amount of ε = 0.06), while from the fifth eigenvalue onward,
each eigenvalue is increased. In the middle zone, the eigenvalues
are unchanged. The ordered eigenvalues of ρ and ρε

fl are given
by {0.33,0.28,0.28,0.1,0.01,0} and {0.275,0.275,0.28,0.1, 49

1700 , 7
170 }

respectively, and their β factors by {0.1,0.1,0.3,0.23,0.07,0.1}.

This means that cρ̂ has a thermomajorization curve that
achieves the lower bound given in Theorem 3. Now, is it
possible for another state ρ ′ to have a thermomajorization
curve cρ ′ < cρ̂ at any point in this interval? Since we know
that thermomajorization diagrams are concave, it follows that
if such a curve exists, then cρ ′ (xM ) < cρ̂(xM ) has to hold as
well. However, by Theorem 3 this is impossible, and we arrive
at a contradiction. This implies that for any ρ ′ ∈ Bε

D(ρ), in the
interval x ∈ [0,

∑M
i=1 e−βEi ], we always have cρ ′ � cρ̂ .

The second region we consider is the interval x ∈
[
∑M

i=1 e−βEi ,
∑N

i=1 e−βEi ].
For this entire region, we have that cρ = cρ̂ + ε.
Therefore, by the same reasoning, any ρ ′ satisfies cρ ′ � cρ̂

in this region.
Finally, we see that the same reasoning applies to the third

interval x ∈ [
∑N

i=1 e−βEi ,Z]. Recall that at xN =∑N
i=1 e−βEi ,

we have cρ(xN ) = cρ̂(xN ) + ε, and within this interval cρ̂ is
again a straight line. For any other cρ ′ , since it is concave, if
cρ ′ < cρ̂ within this interval, then cρ ′ (xN ) < cρ̂(xN ) as well,
which again leads to a contradiction.

Note that the thermomajorization diagram of any other state
ρ ′ ∈ Bε

D(ρ) lies within these three regions, if the Hamiltonian
stays invariant. Combining our analysis for the three regions,
we have shown that any such ρ ′ will have a thermomajorization
curve cρ ′ � cρ̂ at all points of the diagram. In other words,
given any state ρ ′ ∈ Bε

D(ρ), ρ ′ always thermomajorizes ρ̂.
Therefore, by definition, ρ̂ = ρε

fl. �

3. General Hamiltonians: steepest state

In this section, we give our results on the steepest state.
We first show that there does not, in general, exist a steepest
state. Then, we present a way to construct the steepest state
for small ε. Finally, we use this steepest state to define our
particular steep state.

a. Nonexistence of a general steepest state

To show that there is no steepest state with regard to TO,
it suffices to show that there is no steepest state with regard
to CTO. This can be seen as follows: If there is no steepest
state with regard to CTO, it means that for any candidate state
ρ̄ε

steep chosen, there exists at least one other state ρ̌ε
steep where

ρ̄ε
steep → ρ̌ε

steep is not possible via CTO. If ρ̄ε
steep → ρ̌ε

steep is not
possible via CTO, it is also not possible via TO. Therefore, by
the same definition, there exists no steepest state with regard
to TO.

Consider the block-diagonal state ρ, with eigenvalues
{pi}i = {0.55,0.35,0.1} and corresponding β factors {eβEi }i =
{1,2,8}. Denote the eigenvalues of the thermal state τ as {qi}i .
Consider all states within Bε

D(ρ) for ε = 0.45. Since a steepest
state maximizes the Rényi divergences for all α ∈ R, we know
that in particular

D0
(
ρε

st

∥∥τ) = max
ρ̂∈Bε(ρ)

D0(ρ̂‖τ )

= max
ρ̂∈Bε(ρ)

⎛
⎝− ln

∑
i:p̂i>0

qi

⎞
⎠

= min
ρ̂∈Bε(ρ)

⎛
⎝ln

∑
i:p̂i>0

qi

⎞
⎠. (B20)

Thus, in order for a state ρ̂ to be steepest, it has to minimize
qi for which pi are nonzero. Note that qi are inversely
proportional to the β factors of ρ. Thus, in order to obtain the
steepest state, we have to cut the eigenvalues that correspond
to large β factors. In our example, this means we would like to
cut the 0.55 eigenvalue. We cannot do this, however, because
the resulting state would no longer be within Bε(ρ). Thus, we
have to cut the other two eigenvalues to attain the maximum
of the divergences for α = 0. We define the eigenvalues of ρ̂

by {p̂i}i = {1,0,0}.
Note that a steepest state has to maximize Dα(ρ̂‖τ ) for all

values of α. Thus, if we can find an α for which the state that
we just constructed does not maximize the Rényi divergence,
then we have proved that no steepest state exists at all, for this
scenario. In particular, if we can find such α ∈ (0,1], then this
also shows that the smoothed divergences and the smoothed
Rényi divergences may be different, since this would imply
that a single state cannot always attain the maximum for all
α ∈ [0,1].

Consider the block-diagonal state ρ̃ ∈ Bε
D(ρ), with eigen-

values given by {p̃i}i = {0.45,0,0.55}, corresponding to the
same β factors as before. For this state, we find that for α = 1,

D1(ρ̃‖τ ) =
3∑

i=1

p̃i ln
p̃i

q̃i

= 0.45 ln

(
0.45 × 11

8

)
+ 0.55 ln

(
0.55

8

)

> ln

(
11

8

)
=

3∑
i=1

p̂i ln
p̂i

q̂i

= D1(ρ̂‖τ ). (B21)
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FIG. 6. The thermomajorization diagram divided up into four
different regions. In this example, k = 4. The ordered eigen-
values of ρ and ρε

steep are given by {0.52,0.28,0.13,0.07,0}
and {0.55,0.28,0.13,0.04,0} respectively, and their β factors by
{0.2,0.3,0.23,0.17,0.2}, with ε = 0.03.

Thus, ρ̂ does not maximize the Rényi divergence for α = 1.
Since for this case ρ̂ was the unique state maximizing the Rényi
divergence for α = 0, there exists no steepest state within
Bε

D(ρ).

b. The steepest state for small ε

Theorem 5. Consider any d-dimensional state ρ which
is block diagonal with respect to H , and let the β-ordered
eigenvalues of ρ be given by {pi}i , with corresponding energy
levels Ei . Then, if ε is bounded such that ε � min{εA,εB,εC},
where

εA := min
i:pi>0

pi, (B22)

εB := min
i:Ei>E1

(
p1e

βE1 − pie
βEi

eβEi − eβE1

)
, (B23)

εC := min
i:pi>0,Ei>Ek

(
pie

βEi − pke
βEk

eβEi − eβEk

)
, (B24)

then a steepest state ρε
st as defined in Definition 1 exists, and

its eigenvalues are given by

p̂i =
⎧⎨
⎩

pi + ε if i = 1,

pi − ε if i = k,

pi otherwise,
(B25)

where k is the largest index for which pk > 0.
Proof. We only have to show that the state ρε

st that we
defined in Eq. (B25), is indeed the steepest state. Thus, we
want to show that for any other state ρ ′ ∈ Bε

D(ρ), ρε
st → ρ ′ is

possible via thermal operations. We will do this by comparing
the thermomajorization curves cρε

st
and cρ ′ of ρε

st and ρ ′
respectively. We will divide cρε

st
up into four different regions,

just like we did before, and show for each region that cρ ′ � cρε
st
.

These regions are depicted in Fig. 6.
First, let us consider the region x ∈ [0,e−βE1 ]. Because cρε

st

in this entire region is a straight line, the only way to surpass it
is by having a steeper slope. For this to happen, the eigenvalues

{p′
i}i of ρ ′ must satisfy

p′
ie

βE′
i > p̂1e

βE1 , (B26)

for at least some 1 � i � d. We use the bound on ε given in
Eqs. (B22)–(B24) to show that this is impossible. This bound
consists of three parts, of which one is given by

ε � min
i:Ei>E1

(
p1e

βE1 − pie
βEi

eβEi − eβE1

)
. (B27)

In particular, this bound implies that for all 1 < i � d for
which Ei > E1,

ε �
(

p1e
βE1 − pie

βEi

eβEi − eβE1

)
. (B28)

Rewriting this yields that for these i

ε(eβEi − eβE1 ) � (p1e
βE1 − pie

βEi ). (B29)

Note that this equation trivially holds if Ei � E1. Thus, we
find that for all 1 < i � d,

p̂1e
βE1 = (p1 + ε)eβE1 � (pi + ε)eβEi � p′

ie
βE′

i , (B30)

which means Eq. (B26) does not hold. Thus, for this region
we find that for any state ρ ′ ∈ Bε

D(ρ), cρ ′ � cρε
st
.

Next, we consider the interval x ∈ [e−βE1 ,
∑k−1

i=1 e−βEi ].
Note that for all x within this interval,

cρε
st
(x) = cρ(x) + ε. (B31)

This means that ρε
st has a thermomajorization curve that

achieves the upper bound given in Theorem 3. Thus, for this
region we also find that for any state ρ ′ ∈ Bε

D(ρ), cρ ′ � cρε
st
.

The third region we consider is the interval x ∈
[
∑k−1

i=1 e−βEi ,
∑k

i=1 e−βEi ]. Similar to the previous interval, we
will use the bound on ε to show that cρε

st
cannot be surpassed.

Note that in this region, cρε
st

is a straight line with one end
point given by (

∑k
i=1 e−βEi ,1). Because thermomajorization

curves cannot surpass 1, the curve cρ ′ can only lie above cρε
st

if
ρ ′ has an eigenvalue such that

p′
ie

βEi < p̂ke
βEk . (B32)

There are two ways to construct such eigenvalues. Either we
can increase some eigenvalue pi that was originally equal to
0, or we can partially cut a nonzero eigenvalue. However, if
we choose to do the former, then the line segment still has to
be moved to the region that we are currently looking at. The
only way to do this is by decreasing another eigenvalue such
that its slope is even flatter. Thus, in both cases, we have to
decrease an eigenvalue such that Eq. (B32) is satisfied. We
again use the bound on ε given in Eqs. (B22)–(B24) to show
that this is not possible. One of the parts of the bound is
given by

ε � min
i:pi>0,Ei>Ek

(
pie

βEi − pke
βEk

eβEi − eβEk

)
, (B33)

which implies that for all i for which pi > 0 and Ei > Ek ,

ε �
(

pie
βEi − pke

βEk

eβEi − eβEk

)
. (B34)
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Rewriting this yields that for these i

ε(eβEi − eβEk ) � (pie
βEi − pke

βEk ). (B35)

Note that this equation trivially holds if Ei � Ek . Thus, we
find that for all 1 < i � d for which pi > 0,

p̂ke
βEk = (pk − ε)eβEk � (pi − ε)eβEi � p′

ie
βEi . (B36)

This contradicts Eq. (B32), and thus we have that in this region,
for any state ρ ′ ∈ Bε

D(ρ), cρ ′ � cρε
st
.

Finally, for the interval x ∈ [
∑k

i=1 e−βEi ,
∑d

i=1 e−βEi ], we
find that

cρε
st
(x) = 1, (B37)

because k is the largest index for which pk is nonzero.
Clearly, because states are normalized, it is impossible for
any thermomajorization curve to surpass this.

Since for all regions, the thermomajorization curve of ρε
st

cannot be surpassed, ρε
st thermomajorizes all other states within

the ε ball and is therefore the steepest state. �

4. Existence of thermal operation that achieves
approximate state transition

In our work, we apply smoothing procedures on two states:
the initial state ρ as well as the final state σ . The reason for this
might not be intuitive: Indeed, one might be satisfied to reach
the target state σ ′ ≈ε σ approximately. However, why can we
assume that we start out in another initial state ρ ′ ≈ε ρ? The
following lemma rigorously explains the physical justification
for doing so: If ρ ′ → σ ′ is achievable by a thermal operation
N , then if one applies N to the original initial state ρ, the final
state obtained is always in a 2ε ball of the state σ .

Lemma 2. Consider any quantum states ρS,ρ
′
S,σS,σ

′
S such

that ρ ′
S ∈ Bε1 (ρS) and σ ′

S ∈ Bε2 (σS). Then for any quantum
channel N such that N (ρ ′

S) = σ ′
S , we have

ρ̃S := N (ρS) ∈ Bε1+ε2 (σS). (B38)

Proof. By assumption of the lemma we have that
δ(ρS,ρ

′
S) � ε1 and δ(σS,σ

′
S) � ε2. Furthermore, by the data

processing inequality of trace distance, we have

δ(ρ̃S,σ
′
S) = δ(N (ρS),N (ρ ′

S)) � δ(ρS,ρ
′
S) � ε1. (B39)

On the other hand, we know from the triangle inequality that

δ(N (ρS),σS) = δ(ρ̃S,σS) � δ(ρ̃S,σ
′
S) + δ(σS,σ

′
S)

� δ(ρ̃S,σ
′
S) + ε2 � ε1 + ε2.

�

APPENDIX C: ASYMPTOTIC EQUIPARTITION
PROPERTY (AEP)

In this appendix, we prove that the smoothed divergences
defined in Eq. (9) satisfy the asymptotic equipartition property
(this is stated in Theorem 2 of the main text). By this, we
mean that for any α � 0, when we consider our smoothed
divergences for any states ρ and σ , then

lim
ε→0

lim
n→∞

1

n
D̂ε

α(ρ⊗n‖σ⊗n) = D(ρ‖σ ). (C1)

Such a property cannot be satisfied by the unsmoothed Rényi
divergences Dα , since the exact quantities are additive under
tensor product, and therefore for any positive integer n, the
quantity 1

n
D̂α(ρ⊗n‖σ⊗n) = Dα(ρ‖σ ) �= D(ρ‖σ ) in general.

However, the usual smoothed versions Dε
α(ρ‖σ ), as defined

in Eq. (13), do satisfy this property.

1. A δ-typical subspace

To prove the AEP for the quantities D̂α(ρ‖σ ), we first need
to establish a technical lemma regarding the typical subspace
of ρ⊗n. This can be done by using Hoeffding’s inequality [35].
This lemma shows that as n grows large, most of the weight
of the eigenvalues of ρ⊗n lie within such a typical subspace.

Lemma 3. For any quantum state ρ block diagonal with
respect to its Hamiltonian H , consider n copies, ρ⊗n. Let
{p̃k}k be the β-ordered eigenvalues of ρ⊗n, and let {q̃k}k be
the eigenvalues of τ⊗n in the same ordering as ρ⊗n. Then
according to the probability distribution given by {p̃k}k , we
have that for any δ > 0,

Pr

(
en[D(ρ‖τ )−δ] � p̃k

q̃k

� en[D(ρ‖τ )+δ]

)
� 1 − 2e−2nδ2

.

(C2)

Proof. First of all, note that if ρ is block diagonal with
respect to H , then it commutes with the thermal state τ .
Therefore, both ρ and τ can be diagonalized in the same,
ordered basis. Written in such a basis, let us denote the
eigenvalues of ρ by {pi}i , and the eigenvalues of τ by {qi}i ,
and let d be the dimension of ρ. Furthermore, without loss
of generality we can order this common basis such that it
corresponds to the β ordering of ρ, such that p1e

βE1 � · · · �
pde

βEd . Since each eigenvalue of τ is given by qi = 1
Z
e−βEi ,

it follows directly that p1

q1
� · · · � pd

qd
.

Next, we will introduce Hoeffding’s inequality. Consider
the sequence X1, . . . ,Xn of independent and identically
distributed random variables, where each random variable Xj

can assume the values {ln pi

qi
}i according to the probability

distribution {pi}i . We denote the average of this sequence
by Xn = 1

n

∑n
j=1 Xj , and the expected value by μ. Then, by

Hoeffding’s inequality, we have that for any δ > 0,

Pr(|Xn − μ| � δ) � 2e−2nδ2
. (C3)

Substituting the average and expected value gives us

Pr

⎡
⎣
∣∣∣∣∣∣
1

n

n∑
j=1

Xj −
d∑

i=1

pi ln
pi

qi

∣∣∣∣∣∣ � δ

⎤
⎦ � 2e−2nδ2

. (C4)

We will denote the value of Xj by ln pF (j )

qF (j )
, where for each j ∈

{1, . . . ,n}, the quantity F (j ) is a random variable across the
alphabet {1, . . . ,d}, according to the probability distribution
given by {pi}di=1. This yields

Pr

⎡
⎣
∣∣∣∣∣∣
1

n

n∑
j=1

ln
pF (j )

qF (j )
−

d∑
i=1

pi ln
pi

qi

∣∣∣∣∣∣ � δ

⎤
⎦ � 2e−2nδ2

. (C5)
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Notice that
∑d

i=1 pi ln pi

qi
= D(ρ‖τ ). Therefore, this is equiv-

alent with

Pr

⎡
⎣
∣∣∣∣∣∣
1

n

n∑
j=1

ln
pF (j )

qF (j )
− D(ρ‖τ )

∣∣∣∣∣∣ � δ

⎤
⎦ � 2e−2nδ2

. (C6)

Multiplying the equation within the large bracket by n, and
taking the complement yields

Pr

⎡
⎣
∣∣∣∣∣∣

n∑
j=1

ln
pF (j )

qF (j )
− nD(ρ‖τ )

∣∣∣∣∣∣ � nδ

⎤
⎦ � 1 − 2e−2nδ2

.

(C7)

If we now rewrite the sum of logarithms into a single logarithm,
we get

Pr

⎧⎨
⎩−nδ �

⎡
⎣ln

n∏
j=1

pF (j )

qF (j )
− nD(ρ‖τ )

⎤
⎦ � nδ

⎫⎬
⎭

� 1 − 2e−2nδ2
.

Finally, adding nD(ρ‖τ ) to the equation and exponentiating
gives us

Pr

⎡
⎣en(D(ρ‖τ )−δ) �

n∏
j=1

pF (j )

qF (j )
� en(D(ρ‖τ )+δ)

⎤
⎦

� 1 − 2e−2nδ2
. (C8)

The products
∏n

j=1 pF (j ) and
∏n

j=1 qF (j ), for any possible
values of F (j ) (there are dn such different eigenvalues) are
precisely eigenvalues of ρ⊗n and τ⊗n. This means that the
desired inequality holds. For most of the probability mass of
p̃k for k ∈ {1,dn}, the value of p̃k

q̃k
lies within the interval given

in Eq. (C8). �

2. Proof of Theorem 2

For all α � 0, we will try to find functions f = f (n,ε,ρ,τ )
and g = g(n,ε,ρ,τ ) such that

D(ρ‖τ ) − f � 1

n
D̂ε

α(ρ⊗n‖τ⊗n) � D(ρ‖τ ) + g, (C9)

with these functions converging to 0 as n grows large and ε

becomes small.6 It will become clear later that these functions
do not converge to 0 for all values of α, if we fixate either ε or
n. Since the smoothing procedure is different for regimes α ∈
[0,1] and α > 1, we shall split the analysis into two different
parts.

We first consider the region 0 � α � 1. For α = 0, our
smoothed divergence is equal to the Rényi divergence of the
steep state. Let us denote the eigenvalues of the steep state by

6For notational convenience, we drop the explicit dependence of f

and g on the variables n,ε,ρ, and τ for the moment, but it will be
helpful for the reader to take note that these functions will later vanish
for all possible ρ,τ , in the limit ε → 0 and n → ∞.

{p̂k}k for k = 1, . . . ,dn. By the definition of D̂α in Eq. (9), we
have that

1

n
D̂ε

0(ρ⊗n‖τ⊗n) = 1

n
D0

(
(ρ⊗n)εsteep

∥∥τ⊗n
)

= −1

n
ln
∑

k:p̂k>0

q̃k. (C10)

For any given ε, we obtain p̂k from p̃k (defined in Lemma
3) by cutting off all the eigenvalues for which the ratio p̃k

q̃k
�

γ , where γ is a real-valued parameter that depends on ε. In
particular, if γ � L = en[D(ρ‖τ )−δ], with δ =

√
1

2n
ln ( 2

ε
), then

by Lemma 3, we have that

∑
k: p̃k

q̃k
<L

p̃k � 2e−2nδ2 = ε, (C11)

and therefore p̂ is ε close to p̃. This means we can cut into the
δ-typical region for p̃k

q̃k
. Now we will use the fact that γ � L

to lower bound the right-hand side of Eq. (C10). Since we cut
at least all eigenvalues for which p̃k

q̃k
< L, we have that for all

k for which p̂k > 0, p̃k

q̃k
� L. This means that q̃k � p̃k

L
. Thus,

−1

n
ln
∑

k:p̂k>0

q̃k � −1

n
ln
∑

k:p̂k>0

p̃k

L

� 1

n
ln L

= D(ρ‖τ ) −
√

1

2n
ln

(
2

ε

)
.

Note that when n → ∞, this bound converges to D(ρ‖τ ) even
for a finite value of ε > 0.

Next, we will give an upper bound for 1
n
D̂ε(ρ⊗n‖τ⊗n).

Since the steepest state cuts away a probability mass of ε, if
we denote the value U = en(D(ρ‖τ )+δ), then we may write

1

n
D̂ε(ρ⊗n‖τ⊗n) (C12)

= 1

n
D

(
(ρ⊗n)εsteep

∥∥τ⊗n
)

= 1

n

∑
i: p̃i

q̃i
>U

p̂i ln
p̂i

q̃i

+ 1

n

∑
i: p̃i

q̃i
�U

p̂i ln
p̂i

q̃i

� 1

n
p̂1 ln

p̂1

q̃1
+ 1

n

∑
i>1: p̃i

q̃i
>U

p̃i ln
p̃1

q̃1
+ 1

n

∑
i: p̃i

q̃i
�U

p̃iU

� 1

n
(p̃1 + ε) ln

p̃1 + ε

q̃1
+ 2

n
e−nδ2

ln
p̃1

q̃1
+ 1 − ε

n
U

= (1 − ε)[D(ρ‖τ ) + δ] + 1

n
(p̃1 + ε) ln

p̃1 + ε

q̃1

+ 2e−nδ2
ln

p1

q1

=: D(ρ‖τ ) + g1(n,ε,ρ,τ ). (C13)

062135-14



SMOOTHED GENERALIZED FREE ENERGIES FOR . . . PHYSICAL REVIEW A 96, 062135 (2017)

For clarity, let us first write out

g1(n,ε,ρ,τ ) := (1− ε)δ − εD(ρ‖τ ) + 1

n
(p̃1 + ε) ln

p̃1 + ε

q̃1

+ 2e−nδ2
ln

p1

q1
. (C14)

Let us observe the terms left in Eq. (C14), in the limit when
ε → 0 and n → ∞, furthermore in a way such that δ as defined
in Eq. (C11) goes to zero as well (for example, one may take
ε = n−1). Since D(ρ‖τ ) is upper bounded by ln d, the first
two terms will vanish in this limit. Next, note that p̃1 = pn

1
and q̃1 = qn

1 , where p1,q1 are simply the eigenvalues of ρ,τ

that maximize β ordering. Therefore, the third term vanishes
as long as ε ln ε

n
→ 0, which is true whenever δ → 0. Lastly,

note that 2e−nδ2 = √
2ε, and since p1

q1
is just a constant where

q1 > 0 (the thermal state has full rank), the last term vanishes
as well. This implies that g1(n,ε,ρ,τ ) → 0 for all ρ,τ .

By using the fact that the modified smoothed divergences in
this region are given by the Rényi divergence of a single state,
we can apply these bounds to the entire region 0 < α � 1; the
Rényi divergences are monotonic in α, such that

D(ρ‖τ ) − δ � 1

n
D̂ε

0(ρ⊗n‖τ⊗n)

� 1

n
D̂ε

α(ρ⊗n‖τ⊗n)

� 1

n
D̂ε(ρ⊗n‖τ⊗n)

� D(ρ‖τ ) + g1(n,ε,ρ,τ ), (C15)

which concludes the proof for this regime of α ∈ [0,1].
Next, we consider the region α > 1. In this region, our

divergences are smoothed toward the flattest state,

D̂ε
α(ρ⊗n‖τ⊗n) = Dα

(
(ρ⊗n)εfl

∥∥τ⊗n
)
. (C16)

We start by looking at an upper bound of 1
n
D̂ε

∞(ρ⊗n‖τ⊗n).
Note that D∞(ρ‖σ ) := limα→∞ Dα(ρ‖σ ), and for ρ,σ that
commute and have ordered eigenvalues {pi} and {qi} respec-
tively, this quantity has a simplified expression:

D∞(ρ‖σ ) = ln max
i

pi

qi

. (C17)

Note that for the flattest state, given some ε > 0, one can obtain
the flattest state with eigenvalues {p̂i}i , which has a distance
exactly ε close to ρ⊗n. Let L be the real-valued parameter, such
that all eigenvalues for which p̃i

q̃i
� L are partially decreased,

to obtain the values p̂i

q̃i
= L instead. Therefore, L corresponds

to the largest β-ordering gradient for the flattest state.
One can upper bound L by using Hoeffding’s inequality to

conclude that for δ =
√

1
2n

ln ( 2
ε
), we have∑

i: p̃i
q̃i

�2n[D(ρ‖τ )+δ]

p̃i � 2e−2nδ2 = ε. (C18)

This means that one would be able to cut through all
eigenvalues of p̃i where p̃i

qi
� 2n[D(ρ‖τ ) + δ], and therefore

L � 2n[D(ρ‖τ ) + δ]. (C19)

Thus, we can always obtain an another distribution p̂ such
that p̂i

q̃i
� L holds for all eigenvalues p̂i . For the eigenvalue of

the flattest state which has largest β ordering, this yields

1

n
D̂ε

∞(ρ⊗n‖τ⊗n) � 1

n
ln(L)

= D(ρ‖τ ) +
√

1

2n
ln

(
2

ε

)
. (C20)

Next, we look for a lower bound for the case of α = 1. To
do so, we need to analyze another quantity: Denote L′ as the
smallest β value of the flattest state (therefore, L′ � L). Let
us try to find a lower bound for L′. This can be done by noting
that the total probability mass of the smallest β factors will be
larger than ε, since ε is distributed across these eigenvalues.
More precisely, if we consider the set S = {i| p̂i

qi
= L′}, then

Prob(S) � ε. Therefore,∑
i∈S

L′qi � ε ⇒ L′ � ε∑
i∈S qi

� ε. (C21)

Therefore, for U = 2n(D(ρ‖τ )+δ) and M = 2n(D(ρ‖τ )−δ), we
have that

1

n
D̂ε(ρ⊗n‖τ⊗n)

= 1

n
D

(
(ρ⊗n)εfl

∥∥τ⊗n
)

= 1

n

∑
i

p̂i ln
p̂i

q̃i

� 1

n

∑
i:M� p̃i

q̃i
�U

p̂i ln
p̂i

q̃i

+ 1

n

∑
i: p̃i

q̃i
<M

p̂i ln L′

� (1 − 2e−nδ2 − ε)[D(ρ‖τ ) − δ] − 1

n
ln

1

ε

∑
i: p̃i

q̃i
<M

p̂i

� (1 − 2e−nδ2 − ε)[D(ρ‖τ ) − δ] − 1

n
ln

1

ε

=: D(ρ‖τ ) − g2(n,ε,ρ,τ ), (C22)

where in the last inequality, since ln 1
ε

> 0, we can use the
bound

∑
i: p̃i

q̃i
<M

p̂i � 1. Let us again write out

g2(n,ε,ρ,τ ) := δ + (2e−nδ2 + ε)[D(ρ‖τ ) − δ] − ln ε

n
.

(C23)

Note that we are taking the limit ε → 0 and n → ∞ such that
δ also vanishes. Since D(ρ‖τ ) is upper bounded, the second
term also vanishes. Finally, the last term vanishes as long as δ

vanishes as well.
Thus, for the regime α > 1, one may conclude that

D(ρ‖τ ) − g2(n,ε,ρ,τ ) � 1

n
D̂ε(ρ⊗n‖τ⊗n)

� 1

n
D̂ε

α(ρ⊗n‖τ⊗n)

� 1

n
D̂ε

∞(ρ⊗n‖τ⊗n)

� D(ρ‖τ ) + δ. (C24)

062135-15



REMCO VAN DER MEER, NELLY HUEI YING NG, AND STEPHANIE WEHNER PHYSICAL REVIEW A 96, 062135 (2017)

By combining all the bounds we proved here in Sec. C 2,
one can also show that given finite values of n and ε, it suffices
to check only a single sufficient condition (in contrast with a
continuous family of inequalities) for the approximate state
transition (ρ⊗n)εsteep → (σ⊗n)εfl.

Corollary 1. Consider states ρ,σ , and for any real number
β > 0 and a Hamiltonian H , let τβ = 1

tr(e−βH )
e−βH . Moreover,

consider any positive integer n and any ε > 0. If

F (ρ,τβ) � F (σ,τβ) + β−1�(n,ε,ρ,σ,τβ )

is satisfied, where

�(n,ε,ρ,σ,τβ ) := δ + f (n,ε,ρ,σ,τβ ), (C25)

where the first term δ =
√

1
2n

ln 2
ε

and the second term

f (n,ε,ρ,σ,τβ ) := max[g1(n,ε,σ,τβ ),g2(n,ε,ρ,τβ )],

g1(n,ε,σ,τβ ),g2(n,ε,ρ,τβ ) defined in Eqs. (C14) and (C23),
then the transition (ρ⊗n)εsteep → (σ⊗n)εfl is possible via thermal
operations, with a bath being of inverse temperature β.

Proof. By Theorem 1, if F̂ ε
α (ρ⊗n,τ⊗n

β ) � F̂ ε
α (σ⊗n,τ⊗n

β ) for
all α � 0, then the transition (ρ⊗n)εsteep → (σ⊗n)εfl is possible.
Taking the definition in Eq. (11), this translates to

β−1 1

n
D̂α

(
ρ⊗n

∥∥τ⊗n
β

)
� β−1 1

n
D̂α

(
σ⊗n

∥∥τ⊗n
β

)
. (C26)

Equation (C26) will be satisfied for all α � 0 if it is satisfied
for both regimes α ∈ [0,1] and α ∈ (1,∞). Therefore, let us
look at the first regime: By using the upper bound in Eq. (C15)
for σ and corresponding the lower bound for ρ, we have one
condition:

D(ρ‖τβ) − δ � D(σ‖τβ) + g1(n,ε,ρ,τβ ), (C27)

which is sufficient for Eq. (C26), and can be rewritten as

F (ρ,τβ) � F (σ,τβ) + β−1[δ + g1(n,ε,σ,τβ )]. (C28)

Similarly, for the second regime α ∈ (1,∞) one can also find
the sufficient condition

F (ρ,τβ) � F (σ,τβ) + β−1[δ + g2(n,ε,ρ,τβ )]. (C29)

Since we need both Eqs. (C28) and (C29) to hold, taking the
maximum between g1(n,ε,σ,τβ ) and g2(n,ε,ρ,τβ ) suffices.
Moreover, let us recall that in the limit ε → 0, n → ∞
such that δ → 0 as well, we have that both g1(n,ε,σ,τβ ) and
g2(n,ε,ρ,τβ ) vanish, hence recovering F (ρ,τβ) � F (σ,τβ) as
the sufficient condition. �

APPENDIX D: TECHNICAL LEMMAS

Here, we present a few technical tools that were used in the
proofs of Theorem 4, in order to establish the construction of
the flattest state ρε

fl. These tools involve the functions

F (m) =
m∑

i=1

pi − pm+1e
βEm+1

m∑
i=1

e−βEi , m ∈ {1,d − 1}
(D1)

and

G(m) = pm−1e
βEm−1

d∑
i=m

e−βEi −
d∑

i=m

pi, (D2)

defined for β-ordered eigenvalues of a block-diagonal state ρ,
denoted as {pi}i .

Before starting, since we need to compare the value of these
functions to the trace distance between ρ and τβ , let us first
rewrite δ(ρ,τβ ) into a more convenient expression. We have
already seen that

δ(ρ,τβ ) =
∑

i:pi�τi

pi − τi . (D3)

We know that {pi}i has been β ordered. Moreover, we also
know that for the constant Zβ , pie

βEi � 1
Zβ

is equivalent
to pi � τi . Therefore, the summation in Eq. (D3) may be
simplified: There exists some integer 1 � k � d − 1 such that

δ(ρ,τβ ) =
k∑

i=1

pi − τi =
k∑

i=1

pi − 1

Zβ

k∑
i=1

e−βEi . (D4)

With this knowledge, we may proceed to prove certain
properties of F (m) and G(m) in the subsequent lemmas.

Lemma 4. The function F (m) is nondecreasing with re-
spect to m, while F (1) � 0. Moreover, let 1 � k � d − 1 such
that

δ(ρ,τβ ) =
k∑

i=1

pi − τi =
k∑

i=1

pi − 1

Zβ

k∑
i=1

e−βEi . (D5)

Then we have F (k) � δ(ρ,τβ ). This also automatically
implies that F (d − 1) � δ(ρ,τβ ).

Proof. It is straightforward to see that since p1e
βE1 �

p2e
βE2 , we have F (1) = p1 − p2e

βE2e−βE1 � 0. On the other
hand,

F (m + 1) =
m+1∑
i=1

pi − pm+2e
βEm+2 ·

m+1∑
i=1

e−βEi

=
m∑

i=1

pi + pm+1 − pm+2e
βEm+2 ·

m∑
i=1

e−βEi

− pm+2e
βEm+2e−βEm+1

�
m∑

i=1

pi − pm+2e
βEm+2

m∑
i=1

e−βEi = F (m).

The first equality simply comes from extracting out the (m + 1)
index from both summations, and the inequality comes from
noting that the eigenvalues are β ordered; namely, for any m,
we have pm+1e

βEm+1 � pm+2e
βEm+2 .

The last item to prove is that for the integer k that gives rise
to Eq. (D5), we have F (k) � δ(ρ,τβ ). To do so, let us expand

F (k) =
k∑

i=1

pi − pk+1e
βEk+1

k∑
i=1

e−βEi

�
k∑

i=1

pi − 1

Zβ

k∑
i=1

e−βEi = δ(ρ,τβ ).

�
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Lemma 5. The function G(m) is nonincreasing in m ∈
{2,d}, and G(d) � 0. Moreover, let 1 � k � d − 1 such that

δ(ρ,τβ ) =
k∑

i=1

pi − τi =
k∑

i=1

pi − 1

Zβ

k∑
i=1

e−βEi , (D6)

where δ(ρ,τβ ) is the trace distance between ρ and the
thermal state τβ . Then we have G(k) � δ(ρ,τβ ). This also
automatically implies that G(2) � δ(ρ,τβ ).

Proof. The proof is rather similar to Lemma 4. First of all,
by evaluating G(d), we have

G(d) = pd−1e
βEd−1e−βEd − pd � 0 (D7)

since by β ordering, pd−1e
βEd−1 � pde

βEd . Subsequently, we
have that

G(m) = pm−1e
βEm−1

d∑
i=m

e−βEi −
d∑

i=m

pi

= pm−1e
βEm−1

d∑
i=m+1

e−βEi + pm−1e
βEm−1e−βEm

−
d∑

i=m+1

pi − pm

� pmeβEm

d∑
i=m+1

e−βEi + pm−1e
βEm−1e−βEm

−
d∑

i=m+1

pi − pm

= pmeβEm

d∑
i=m+1

e−βEi

−
d∑

i=m+1

pi + pm−1e
βEm−1e−βEm − pm

� G(m + 1).

To compare G(k) with δ(ρ,τβ ), let us rewrite Eq. (D4):

δ(ρ,τβ ) = 1 −
d∑

i=k+1

pi − 1

Zβ

(
Zβ −

d∑
i=k+1

e−βEi

)

= 1

Zβ

d∑
i=k+1

e−βEi −
d∑

i=k+1

pi. (D8)

Subsequently, by evaluating

G(k + 1) = pke
βEk

d∑
i=k+1

e−βEi −
d∑

i=k+1

pi

� 1

Zβ

d∑
i=k+1

e−βEi −
d∑

i=k+1

pi = δ(ρ,τβ ).

�
By combining the properties of F (m) and G(m) proven in

Lemmas 4 and 5, we can then make a statement about how N

and M as chosen in the proof of Theorem 4 relate; namely,
when ε < δ(ρ,τβ ), it is always true that M � N .

Lemma 6. For any value of ε between the interval 0 � ε <

δ(ρ,τβ ), consider the smallest integer 1 � M < d − 1 where
ε � F (M). Furthermore, let 2 < N < d be the largest integer
such that ε � G(N ). Then M � N .

Proof. By Lemma 4 and 5, we know that there exists
an integer 1 � k � d − 1 such that F (k) � δ(ρ,τβ ) > ε, and
also G(k + 1) � δ(ρ,τβ) > ε. By Lemma 4, since F (m) is
nondecreasing in m, and since M is the smallest integer such
that F (M) � ε, this implies that M � k has to be true. On the
other hand, by Lemma 5 we know that G(m) is nonincreasing
in m. Since N is the largest integer such that G(k) � ε, then
we know N � k + 1. This implies that M � N . �
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[15] P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim,
Towards Fully Quantum Second Laws of Thermodynamics:
Limitations on the Evolution of Quantum Coherences, Phys.
Rev. Lett. 115, 210403 (2015).

[16] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise,
R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M.
Paternostro, and R. M. Serra, Experimental Teconstruction
of Work Distribution and Study of Fluctuation Relations in
a Closed Quantum System, Phys. Rev. Lett. 113, 140601
(2014).

[17] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q.
Yin, H. Quan, and K. Kim, Experimental test of the quantum
Jarzynski equality with a trapped-ion system, Nat. Phys. 11, 193
(2015).

[18] Á. M. Alhambra, J. Oppenheim, and C. Perry, Fluctuating States:
What is the Probability of a Thermodynamical Transition?, Phys.
Rev. X 6, 041016 (2016).
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