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Indices 

*  Equilibrium state in Bottleneck model  
~  Stochastic variable 
¯  Equilibrium state in general network modeling 
a  Link 
p  Route 
o  Origin 
d  Destination 
k  Time interval 
t  Time instant 
i  Iteration index 
g  Index of generation in GA 
 

Matrix or vectors 

X  Vector of Halton draws 

aC  Vector of stochastic link capacities drawn based on Halton draws to estimate 
the capacity distribution for link a 

nC  Matrix of stochastic link capacities for all links in a network 
f  Vector of route flows in case of static assignment or matrix of dynamic route 

flows in case of dynamic assignment 
C  Vector of a certain combination of link capacities for all links in a network 
Σ   Variance-covariance matrix of link capacities in a network 
L   Vector of numbers of lanes on all the designed links 
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Abbreviations 

SN-DDDUEV Stochastic Network and Departure time and Dynamic Deterministic 
User Equilibrium with Vertical Queues 

SN-DDPUEH Stochastic Network and Departure time and Dynamic Probabilistic 
User Equilibrium with Horizontal Queues 

DN-DDDUEV Deterministic Network and Departure time and Dynamic Deterministic 
User Equilibrium with Vertical Queues 

SN-SPUE  Stochastic Network and Static Probabilistic User Equilibrium 
PAT   Preferred Arrival Time 
FIFO   First-In-First-Out 
MSA   Method of Successive Averages 
CNDP   Continuous Network Design Problem 
DNDP   Discrete Network Design Problem 
MNDP   Mixed Network Design Problem 
RDDNDP  Reliability-based Dynamic Discrete Network Design Problem 
MPEC    Mathematical Program with Equilibrium Constraints 
MPRDEC  Mathematical Program with Reliability-based Dynamic Equilibrium 

Constraints 
RSDNDP  Reliability-based Static Discrete Network Design Problem 
TNT   Total Network Travel time 
TNC   Total Network Travel Cost 
CoV   Coefficient of Variation 
VOT   Value of Time 
VOR   Value of Reliability 
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 3 

1 Introduction 

1.1 Introduction to the Research Topic 

Road networks are dynamic and stochastic systems. It is dynamic in a sense that the traffic 
flows and traffic conditions are changing on the networks over space and time dimensions. It 
is stochastic in a way that the link capacities and travel demand are stochastic over time. 
Attibuted to the dynamism and the stochasticity, the traffic condition on the network at any 
location at any time is uncertain. Many sources contribute to the stochasticity in capacity and 
demand, ranging from irregular and random incidents such as earthquakes, floods, adverse 
weather, traffic accidents, breakdowns, signal failures, and road works to regular fluctuations 
of travel demand in times of day, days of the week, and seasons of the year (Taylor 1999). All 
these sources lead to variations in network capacities or fluctuations in travel demand, which 
cause travel times and travel costs for travelers to vary on the same network in the same time 
period from day to day and to vary from time to time within a day (Emam and Al-Deek 2005; 
Tu et al. 2007b; Tu 2008). 
 
Travel time reliability has been defined and widely adopted as a concept reflecting the 
properties of the travel time stochasticity. We refer to (Asakura and Kashiwadani 1991; Cassir 
et al. 2000; Chen et al. 2002b; Tu 2008) for categories of reliability definitions and measures 
of travel time reliability for different purposes. On the one hand, travel time reliability might 
be adopted for purpose of modeling travelers’ choice behavior in response to stochastic and 
uncertain travel times. On the other hand, it is also applicable as a measure of the service 
quality that a road network provides to its users. Therefore the travel time reliability related 
research could be generally grouped into reliability-based choice behavior modeling under 
uncertainty and reliable network performance assessment or network designs.  
 
Modeling travelers’ choice behavior under uncertainty, for instance route choice and 
departure time choice behavior, has gained increasing attention (Abdel-Aty et al. 1996; 
Bogers and van Zuylen 2004; Van Amelsfort 2009). Especially in the context of uncertainty, 
modeling departure time adaptation is fairly important since travelers attempt to arrive on 
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time at their destination with a high probability and to reduce the schedule delay late by 
departing earlier (Li et al. 2008b; Li et al. 2008d) (Schedule delay refers a difference between 
the actual arrival time and the preferred arrival time. If a traveler arrives at his/her destination 
later than his/her preferred arrival time, then the schedule delay is the schedule delay late). At 
the same time, this time adaptation appears to be one of the major responses of travelers to 
changing congestion conditions on their trips. How to model travelers’ choice behavior under 
uncertainty and whether to model departure time choice behavior under uncertainty will have 
significant impacts on the traffic assignment and thus lead to different network performance 
evaluations and different network designs.  
 
When facing stochastic network conditions, road authorities or designers aim to design a 
network which is required to provide efficient and reliable services to road users and to ensure 
smooth travels under normal traffic flow fluctuations with stochastic networks. Since the link 
capacities and the travel demand are not deterministic and network conditions are not static, it 
is desired to design and assess road networks considering the stochastic and dynamic nature 
of the road network systems and taking into account travelers’ major choice behavior under 
uncertainty (Li et al. 2008c; Li et al. 2009b; Li et al. 2009a).  
 
Currently, in most road network design studies where stochastic networks or travel demand 
are considered, choice behavior under uncertainty are not modeled (Lou et al. 2009; Ng and 
Waller 2009; Sharma et al. 2009). In most cases with stochastic networks or travel demand, 
static network design problems are proposed and formulated in which the lower level traffic 
assignment cannot capture the dynamics, flow propagations and spillback effects. Departure 
time choice modeling is in most cases neglected, which is however a very important aspect of 
travel behavior that needs to be modeled in the context of uncertainty (Van Amelsfort 2009). 
In several dynamic network design studies, which are nework designs based on dynamic 
traffic assignment, for instance (Heydecker 2002), deterministic networks and travel demand 
are considered.  
 
Therefore this dissertation, other that earlier network design studies as aforementioned, 
focuses on road network designs with stochastic capacities based on dynamic traffic 
assignment (we call it dynamic road network design) with modeling travelers’ route/departure 
time choice behavior under uncertainty. Travel time reliability is explicitly taken into account 
on both the network design level and the individual behavior. The structure of the network 
and numbers of lanes on a set of potential links are aimed to be designed to provide efficient 
and reliable services to the road users, since the sensitivity of the network is strongly 
dependent on the physical structure and physical characteristics of the network. Different 
network structures, having different capability to handle the variability in the demand and in 
flows caused by stochastic capacities, exhibit different reactions to the same variability level 
of capacity or demand. The less sensitive, the more reliable the network can be. The goal of 
this research is to develop a comprehensive dynamic network design approach with stochastic 
capacities, which explicitly models travelers’ departure time/route choice behavior under 
uncertainty and models travel time reliability at the network design level. The approach aims 
to find a fairly good and even the optimal network structure given the spatial land use pattern, 
which could best handle the traffic flows and their variations caused by stochastic capacities.  
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With regard to road networks, the operational conditions may be normal and abnormal. 
Because natural resources are limited, performance of road networks under abnormal 
conditions cannot be required to be the same as that under normal conditions. The condition 
modeled in this dissertation will concentrate on the normal daily traffic conditions. Extreme 
conditions, for instance natural disasters, are not considered. 
 
This chapter will firstly specify the main research questions and objective which need to be 
solved or achieved in this dissertation. The approaches to solve the research questions and to 
achieve the research objectives in this dissertation will be presented briefly. Then the research 
scope will be described. After that, the scientific contributions and the practical relevance of 
the research in this dissertation will be introduced. Finally the outline of this dissertation will 
be given.  

1.2 Research Questions and Objectives 

This dissertation deals with the road network design problem with stochastic networks. 
Stochastic networks denote networks in which the link capacities are stochastic and varying 
between days. In general, a network design problem is a bi-level problem and a Mathematical 
Problem with Equilibrium Constraints (MPEC). In general, a bi-level problem is an 
optimization problem which is constrained to another optimization problem. Bi-level 
problems are special cases of multi-level optimization problems where only two levels are 
involved and mutually interrelated. In the network design problem, on the upper level road 
authorities aim to optimize certain network performances while on the lower level traveler’s 
choice is modeled to reach a certain equilibrium at which individual traveler’s travel utility is 
optimized. Therefore, the network design problem is an optimization problem constrained to 
lower level user equilibrium, which is a typical MPEC. Dealing with network design 
problems requires a realistic modeling of travelers’ choice behavior, based on which the 
network performance can be evaluated and the networks can be designed.  
 
As aforementioned in most studies tackling road network design problems with stochastic 
capacities or travel demand, the travelers’ choice behavior under uncertainty is not modeled. 
This is not plausible since travel time/cost uncertainty significantly influences travelers’ 
choice behavior. In addition, a static road network design approach is followed in most 
studies with only route choice modeling. The dynamics in flow propagation, spillback effects, 
etc., are not captured. As previously discussed, departure time choice adaptation under 
uncertainty appears to be one of the major responses of travelers to changing congestion 
conditions on their trips, which is however neglected in most research on network modeling 
under uncertainty and network designs under uncertainty. This dissertation describes a 
dynamic network design approach where travelers’ route and departure time choice behavior 
under uncertainty is explicitly modeled with stochastic capacities. Travel time reliability plays 
a role in both the network design level and the individual choice behavior level. The proposed 
dynamic network design approach is an equilibrium network design approach, implying that a 
long term dynamic user equilibrium under stochastic capacities is modeled. It is assumed that 
travelers based on their past accumulative experiences are aware of the distributive properties 
of the travel time distributions at any departure time instant t on all available routes. A long 
term user equilibrium will emerge with which no traveler can reduce his long term travel cost 
by unilaterally changing routes or departure times (for detailed discussions, see Chapter 3).  



30

6  Reliability-based Dynamic Network Design with Stochastic Networks 

Generally, this dissertation consists of four distinguishable but related parts:  
 

1. Investigation of the influence of the travel time/cost uncertainty on travelers’ choice 
behavior and modeling travelers’ departure time/route choice behavior under 
uncertainty (Chapter 2);  

 
2. Theoretical investigations on the long term dynamic user equilibrium with stochastic 

capacities (Chapter 3); 
 

3. Establishment of network assignment procedures that adequately capture the 
stochasticities in the capacities and capture the influence of this on the travelers’ 
choice behaviors for general road networks (Chapter 4);  

 
4. Establishment of a reliability-based dynamic discrete road network design 

methodology with stochastic networks and its applications. Travel time reliability is 
considered on both the network design level and the individual choice behavior level. 
Numbers of lanes on a set of potential links in the network are the design variables 
(Chapter 5-7).  

 
The research questions/objectives involved in each of the four parts will be presented 
sequentially.  
 
Part 1: Modeling travelers’ departure time/route choice behavior under uncertainty 
 
Dealing with network design problems requires realistic modeling of travelers’ choice 
behavior. In this dissertation, stochastic networks (i.e. stochastic link capacities) are modeled, 
which lead to stochastic travel times and travel costs experienced by travelers between days. 
This part of research focuses on how to model the influence of the travel time/cost uncertainty 
on travelers’ departure time and route choices. Several approaches have been proposed in the 
literature to model travelers’ choice behavior under uncertainty, for instance the scheduling 
approach (Noland and Small 1995) and the mean-variance approach (Jackson and Jucker 
1981). Briefly, the scheduling approach assumes that travelers make their departure time/route 
choice decisions in order to minimize their individual disutility, which is composed of the 
expectation of the travel time and the expectation of the schedule delay early and late. While 
the mean-variance approach assumes that travelers try to minimize their individual disutility 
which consists of the expectation of the travel time and the variance of the travel time (or 
standard deviation of travel time). Both approaches are based on different hypothese. The 
research questions/objectives involved in this part are: 
 

Research objective 1: Clarify the relationships among the different behavioral modeling 
approaches currently available for incorporating travel time uncertainty. 
 

Research objective 2: Develop an appropriate way to model travelers’ route/departure 
time choice behavior under uncertainty and derive the disutility components that should be 
included in the utility function.  
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For modeling traveler’s choice behavior, the term of utility is used. This dissertation will deal 
with the choice modeling and traffic assignment. Therefore, in Chapter 2 in terms of choice 
behavior modeling, the term of utility function is used. Since in the utility function we defined, 
all the components are disutilities (i.e. costs), in the traffic assignment part, travel cost 
function is then used. By achieving the first research objective on the relationships among the 
currently available approaches for modeling travelers’ choice behavior under uncertainty, the 
second research objective aims to derive a utility function which is appropriate for modeling 
travelers’ route/departure time choice behavior under uncertainty. This derived utility function 
will be used to model the long term dynamic user equilibrium, based on which the road 
network is designed. 
 
Part 2: Theoretical investigations on the long term dynamic user equilibrium under 
uncertainty 
 
With the derived utility function for modeling travelers’ departure time/route choice behavior 
under uncertainty, the long term dynamic user equilibrium is defined and investigated 
analytically. It puts forward a few research objectives/questions:  
 

Research objective 3: Prove the existence of the long term dynamic user equilibrium with 
stochastic capacities. 
 
If the long term dynamic user equilibrium indeed exists, then the following research question 
comes up: 
 

Research question 4: Are there significant differences in departure patterns resulting from 
adopting the reliability-based and non-reliability based utility functions?  
 
The reliability-based utility function is derived by the second objective. The non-reliability 
based utility function is the traditional utility function in the deterministic capacity case, 
where travel time is deterministic. With answers from question 4, a decision will be made on 
which user equilibrium type will be modeled for the network design problem under 
uncertainty. In the process of investigating the departure patterns with reliability-based utility 
function, a few sub-questions are solved, for instance the question of the relationship between 
travel time reliability and the expected travel times.  
 
Part 3: Establishment of network assignment procedures for general stochastic network 
modeling 
 
Theoretical analysis of the long term dynamic user equilibrium is quite complicated for 
general road networks. A comprehensive approach for modeling the long term dynamic user 
equilibrium is eagerly needed for general network modeling, which should be able to capture 
the stochastic natures in capacities between days and to capture the consideration of this by 
travelers. It puts forward a few research objectives in this part, among which: 
 

Research objective 5: Establish a network assignment procedure to derive the long term 
dynamic user equilibrium with stochastic networks, which is able to model stochastic and 
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correlated link capacities and to incorporate travel time reliability in the utility function in 
which simultaneous departure time and route choices are modeled.  
 
The established network assignment procedure from achieving the long term dynamic user 
equilibrium under stochastic capacities will be utilized to model the equilibrium constraint for 
the network design problem. 
 
Part 4: Establishment of a reliability-based dynamic network design methodology with 
stochastic networks 
 
A network design approach is established, with which travelers’ departure time and route 
choice behavior under uncertainty is modeled on the demand level and network reliability is 
considered on the network design level. Numbers of lanes on a set of potential links are the 
design variables. The research objectives involved in this part are: 
 

Research objective 6: Formulate the reliability-based dynamic network design approach 
with discrete design variables and a construction budget constraint. 
 
For comparison purpose of the traditional static network design approach and the proposed 
dynamic network design approach, the following research objective comes up: 
 

Research objective 7: Formulate the reliability-based static network design approach with 
discrete design variables and a construction budget constraint. 

 
Research objective 8: Establish a network assignment procedure to derive the long term 

static user equilibrium with stochastic networks.  
 
For solving the proposed reliability-based dynamic network design problem with discrete 
design variables, the properties of the design problem need to be clarified. Appropriate and 
efficient approaches need to be developed to solve the design problem. The research objetives 
involved in this part are: 
 

Research objective 9: Develop a network-oriented approach to solve the proposed 
dynamic discrete network design problem.  
 
The proposed discrete network design problem is a combinatorial problem. Many 
combinations of the possible numbers of lanes on the potential links are not feasible, or 
unconnected, or illogical (see the definitions in Chapter 6). Evaluating these lane designs 
loses the efficiency and costs a lot of computation times. The following research objective 
therefore needs to be solved: 
 

Research objective 10: Develop a systematic approach to filter the solution space by 
eliminating the infeasible, unconnected, and illogical lane designs prior to the design step. 
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The proposed dynamic network design approach will be applied to a specific road network. 
To assess the merits of a dynamic design approach, a static network design approach will be 
applied as well. The related research objective thus is: 
 

Research objective 11: Investigate the differences in the design solutions from static and 
dynamic network design approaches. 
 
Research objective 11 aims to find out whether the design solutions from the proposed 
dynamic network design approach are significantly different from and better than that 
achieved with static network design approach, and whether the application of a dynamic 
design approach really matters for the design decisions. The deficiency and the advantages of 
the dynamic and static network design approaches need to be explored.  

  
Research objective 12: Investigate the value and the impacts of departure time choice 

modeling on the network performance evaluations and network designs.  
 
Objective 12 aims to find out whether modeling departure time choice is of importance and 
necessary in terms of network designs.  
 
Two different network design objective functions are proposed, one of which takes into 
account travel time reliability implicitly in the network performances and the other defines 
network reliability explicitly in the objective function. The related research question is: 
 

Research question 13: Do different network design objectives lead to significantly 
different design solutions? 
 
In order to investigate the influence of including travel time reliability in travelers’ choice 
behavior on the network performance evaluations and network designs, different levels of 
capacity variations are modeled and compared. In case that the capacity variations equal zero, 
the reliability-based dynamic network design approach boils down to a dynamic network 
design approach with deterministic capacities, giving rise to the following research objective: 
 

Research objective 14: Investigate the influence of including travel time reliability in 
travelers’ choice behavior on network designs and differences in the design solutions from 
stochastic and deterministic dynamic network design approaches. 
 
Below we will describe with which methodologies we intend to tackle the various research 
questions. 

1.3 Research Approach 

The research approach for solving the research questions and for achieving the research 
objectives will be presented for the four groups respectively and sequentially. 

1.3.1 Research approach for questions/objectives in part 1: modeling travelers’ choice 
behavior under uncertainty 
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For achieving the research objectives 1-2, a theoretical approach is adopted to investigate the 
relationship between currently available approaches for modeling travelers’ choice behavior 
under uncertainty. Based on the theoretical analysis, the generalized utility function will be 
derived with appropriate utility components for modeling travelers’ route/departure time 
choice behavior under uncertainty.  

1.3.2 Research approach for questions/objectives in part 2: dynamic user equilibrium 
under uncertainty 

 
For achieving the research objective 3 and solving the research question 4, again a theoretical 
approach is adopted with continuous time and continuous flows by extending Vickrey’s 
deterministic bottleneck model (Vickrey 1969) in a twofold way: incorporating the stochastic 
capacities and modeling travel time reliability in the (dis)utility function. Due to the 
complexity of the mathematical formulations for solving the long term dynamic user 
equilibrium caused by the reliability term and stochastic capacities, a closed solution is not 
possible. A numerical solution approach is applied to solve the systematic mathematical 
equations to derive the equilibrium departure patterns with stochastic capacities.   

1.3.3 Research approach for questions/objectives in part 3: dynamic network 
assignment procedures for stochastic networks 

 
A simulation-based approach is developed to model stochastic link capacities and to derive 
the travel time reliability on any specific route at any departure time interval. An iterative 
method is applied to gradually achieve the long term dynamic user equilibrium (research 
objective 5). Stochastic link capacities are modeled by the quasi-Monte Carlo approach with 
Halton draws while Cholesky decomposition is utilized to generate correlated link capacities 
by decomposing the link capacity covariance matrix.  
 
Dynamic network loading (DNL) modeling approaches are established for both vertical and 
horizontal queues for different comparative purposes.  

1.3.4 Research approach for questions/objectives in part 4: a reliability-based dynamic 
network design methodology 

 
The reliability-based dynamic discrete network design problem is formulated mathematically 
as a bi-level problem and MPEC (research objective 6). So is the static network design 
problem (research objective 7).  A similar simulation-based approach is adopted to derive the 
long term static user equilibrium as for dynamic long term user equilibrium (research 
objective 8).  
 
A combined road network-oriented genetic and set evaluation approach is developed to solve 
the reliability-based dynamic discrete network design problem (research objective 9). For a 
detailed description, see Chapter 6.  
 
A new systematic approach is developed to eliminate the infeasible, unconnected, and 
illogical lane designs (for the definitions, see Chapter 6) and to reduce the solution space prior 
to the design step, thus to save computation time (research objective 10).  
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To achieve the research objectives 11-14, a case study is carried out by applying the proposed 
dynamic network design approach and the static network design approach on a hypothetical 
network with different levels of capacity variations.  

1.4 Research Scope 

Given the challenging research questions, we have to limit the research scope in this 
dissertation in various ways. Firstly, the road networks we are focusing on in this dissertation 
are limited to freeways. The developed network design approach and the network modeling 
procedure are applicable to urban road networks as well. However the simulation program 
needs extensions with intersections.  
 
The population of travelers is assumed to be homogeneous having the same (dis)utility 
function and an identical preferred arrival time.  
 
It is assumed that the travel demand is deterministic and constant from day to day. Stochastic 
travel times and travel costs are mainly caused by stochastic link capacities. The reason why 
fluctuating travel demand is not considered is that a more refined definition of the user 
equilibrium and the flow conservation constraint with stochastic travel demand need to be 
carefully established in case the departure time choice is modeled (see the detailed discussions 
in Section 4.1). Once the definition of the user equilibrium with stochastic travel demand and 
departure time choice is clearly established, stochastic travel demand can be easily integrated 
into our framework of the reliability-based dynamic network design approach.  
 
The impacts of the limitations listed above on the general validities of the conclusions drawn 
from this research will be discussed in the dissertation on occasions the issues are encountered 
(see discussions with Figure 3.9 in Section 3.3.5 for heterogeneous travelers and Section 4.1 
for the discussions on the demand fluctuations) and in the conclusion Chapter 8.  

1.5 Main Research Contributions 
The contributions of the research in this dissertation will be elaborated from a scientific and a 
practical perspective respectively. 

1.5.1 Scientific contributions 
The scientific contributions of this dissertation can be summarized for the four groups as 
follows: 

Group 1: modeling travelers’ departure time/route choice behavior under uncertainty 

• The principal equivalence of the mean-variance approach and the scheduling approach 
conditional to departure times are proven analytically for linear schedule delay cost 
functions without any assumptions on the travel time distributions.  

 
• The expectation of the schedule delay costs for any given departure time t in case of a 

linear schedule delay cost function can be decomposed into a linear function of the 
schedule delay cost based on the expectation of travel time and the standard deviation 
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of travel times. It is analytically proven that the scheduling approach indeed partly 
captures risk aversion attitudes.  

 
• A new generalized utility function is proposed for modeling travelers’ route/departure 

time choice behavior under uncertainty, of which the mean-variance and the 
scheduling approaches are special cases. 

 
• A new concept and understanding of the disutility parameters in the utility function is 

established, which states that the (dis)utility parameters contain two kinds of 
information: heterogeneity of travelers (different reactions to the same situation) and 
attribute dependence (the same traveler may have different reactions to different traffic 
situations or to different values of the attribute values). 

 
Group 2: dynamic user equilibrium under uncertainty 

 
• A dynamic long term user equilibrium with joint departure time and route choices is 

specified for stochastic networks. 
 
• Theoretical foundations are established on the departure patterns under uncertainty by 

extending Vickrey’s bottleneck model toward the stochastic capacity case with 
reliability-based utility function.  

 
• The non-linear relationship between the standard deviation of travel time and the 

expectation of travel time is established analytically.  
 
Group 3: dynamic network assignment procedures for stochastic networks 

 
• A simulation-based network assignment approach is established, which is able to 

model stochastic and correlated link capacities and reliability-based departure 
time/route choice behaviors. This approach is very flexible for achieving both 
dynamic and static user equilibria with stochastic capacities.  

 
Group 4: a reliability-based dynamic network design methodology 
 

• A dynamic road network design approach is established with stochastic networks, 
where travel time reliability is considered on both the network design level and 
individual departure time/route choice behavior. 

 
• Departure time choice under uncertainty is modeled explicitly, which has significant 

impacts on the network performance evaluations and network designs.  
 
• Instead of the traditional continuous network design approach, a discrete network 

design problem is established in which network structures and numbers of lanes on a 
set of potential links in a network are the design variables.  

 



37

Chapter 1. Introduction  13 

• A combined road network-oriented genetic and set evaluation approach is developed 
to solve the dynamic network design problem.  

 
• The concepts of a universal set and a master set of lane designs are established, using 

the notions of infeasible, unconnected, and illogical lane designs. A systematic 
approach is developed to reduce the solution space by eliminating the infeasible, 
unconnected, and illogical network solutions. 

 
• A comparison of the reliability-based dynamic network design approach and static 

network design approach has been performed, which shows the deficiency of the 
traditional static network design approach. 

1.5.2 Practical relevance 
 
Some achievements listed above, besides their scientific contributions, have their potential 
practical relevance as well.  
 

• The derived utility function for modeling travelers’ departure time and route choice 
behavior can be used in general network modeling with stochastic networks and 
fluctuating travel demand. 

 
• The established simulation-based network assignment approach can be directly used to 

model network equilibrium with stochastic networks, which can be used to evaluate 
dynamic traffic management measures in stochastic networks, for instance dynamic 
speed limit, peak hour lanes, etc. 

 
• The proposed reliability-based dynamic network design approach with stochastic 

networks is capable of: 1) providing a completely new network design (a kind of 
network structure design since a link can have zero lanes) given the spatial land use 
pattern, 2) an improvement design on an existing network structure. 

 
• The proposed dynamic network design approach can be applied to dynamic lane 

design problems. For instance the peak hour lane, a dynamic lane configuration to 
meet the dynamic travel demand, can be designed with the proposed design approach 
in this dissertation. The only modification is that the design variables are changed to a 
matrix of numbers of lanes on a set of potential links in different time intervals.  

 
• The proposed dynamic network design approach can be utilized to dynamic speed 

limit design problems in which stochastic capacities are taken into account. The only 
difference is that the design variables are changed to the speed limits on a set of 
potential links in the network in different time intervals.  

 
• The proposed dynamic network design approach can be adapted and then used for 

static or dynamic toll design problems on a set of potential links in the network with 
stochastic networks. The utility function needs modifications by including the levies 
as a disutility component. The design objective function could be adapted according to 
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the design purposes. The design variables are a matrix of toll levels on a set of 
potential links in different time intervals. For an example on dynamic toll designs, see 
(Joksimovic 2007) with deterministic road networks. 

 
• The systematic approach developed to eliminate the infeasible, unconnected, and 

illogical lane designs can be directly used for general discrete network design 
problems to reduce the solution space and to save computation time. 

 

1.6 Thesis Outline 

This thesis is gradually built up from behavioral modeling under uncertainty, network 
modeling under uncertainty, to constrained reliability-based dynamic network design 
problems and applications. The thesis is mainly divided into five parts: 1) introduction; 2) 
travelers’ choice behavior modeling under travel time uncertainty; 3) theoretical and 
comprehensive network modeling under uncertainty; 4) reliability-based dynamic network 
design problem including applications; 5) conclusions.  
 
Figure 1.1 shows the setting up of the chapters in this dissertation. Chapter 2 focuses on the 
travelers’ choice behavior under uncertainty. An analytical investigation on the principal 
equivalence of the scheduling approach and the mean-variance approach will be performed 
for given departure time instant t. A new generalized utility function for modeling travelers’ 
departure time/route choice behavior is proposed which is more behaviorally sound (i.e. have 
face validity) and can be used flexibly for different purposes and in different contexts of 
adopted approaches.  
 
Based on the generalized utility function, an analytical investigation of the departure pattern 
under stochastic capacities is performed in Chapter 3 with continuous time and continuous 
flows, as an extension of Vickrey’s bottleneck model towards stochastic capacities with 
reliability-based utility function. The travel time reliability in relation to the expectation of 
stochastic travel times is explored as well.  
 
Due to the complexity of theoretical derivations of departure time equilibrium together with 
stochastic capacities and reliability, a comprehensive simulation-based network assignment 
approach is developed for more general network modeling under uncertainty, given in 
Chapter 4. Different models and their assumptions, purposes are presented in detail in Chapter 
4. The simulation-based approach with SN-DDDUEV (Stochastic Network and Departure 
time and Dynamic Deterministic User Equilibrium with Vertical queues) model is applied to 
the single bottleneck as well to validate the theoretical findings from Chapter 3.  
 
The findings from Chapters 3 and 4 motivate our network approach. Chapter 5 defines and 
formulates a reliability-based dynamic discrete network design approach with stochastic 
networks, with which departure time choice under uncertainty is explicitly modeled. Numbers 
of lanes for all the potential links are the design variables. 
 
Approaches for solving the proposed network design problem are elaborated in Chapter 6. A 
combined road network-oriented Genetic and set evaluation approach is proposed to solve the 
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dynamic network design problem. A new systematic approach is proposed to eliminate the 
infeasible, unconnected and illogical lane designs in order to reduce the solution space and to 
save computation time. 
 

Chapter 2
Modeling travelers’ departure time/route

choice behavior under uncertainty 

Part II: Travelers’ choice behavior modeling under travel time uncertainty 

Chapter 3
Theoretical investigation on dynamic user 

equilibrium with stochastic bottleneck model  

Chapter 5
Reliability-based dynamic network design 

with stochastic networks 

Chapter 6
Approaches for solving the dynamic 

network design problem 

Chapter 7
Design of complete networks, applications

Chapter 4
Dynamic user equilibrium with 

a simulation-based approach 

Chapter 8
Conclusions and future research

Part IV: Network design methodology including reliability 

Part V: Conclusions 
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Figure 1.1: Outline of the dissertation 
 
Applications of the proposed dynamic network design approach on a hypothetical network for 
a complete new network design will be presented in Chapter 7. The proposed reliability-based 
dynamic network approach will be compared with the traditional reliability-based static 
network design approach. Different capacity variation levels are modeled and compared to 
investigate the impacts of modeling travel time reliability in travelers’ choice behavior on 
network designs.  
 
Finally conclusions drawn and future research will be discussed in Chapter 8. 
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2 Modeling Traveler’s Departure Time/Route 
Choice Behavior under Uncertainty 

2.1 Introduction 

Continuous fluctuations in the roadway environment cause travel times to vary on the same 
facility in the same time period from day to day (Emam and Al-Deek 2005; Tu 2008). 
Stochastic travel times within-day and between-days can be attributed to two main sources: 
variations in road capacities and fluctuations in travel demand within-day and over-days. Of 
course, uncertainty and diversity in travelers’ behaviors (for instance driving behavior) lead to 
variations and unpredictability in travel times as well, thus in travel costs. Traveler’s choice 
behavior, for instance route choice, departure time choice and mode choice, under uncertainty 
has gained increasing attention. Especially in the context of uncertainty, departure time 
adaptation appears even more significant than route choice adaptation for the sake of 
attempting to arrive on time at work and to reduce the schedule delay, and minimizing the 
disutility by departing earlier. Thus, the impacts of travel time unreliability on traveler’s 
choice behavior, especially on departure time choice behavior, are badly needed to be 
investigated. Modeling travelers’ departure time/route choice behaviors is crucial in network 
modeling, network evaluation and network designs under uncertainty. Especially a main task 
in the modeling is to determine which components should be included in the utility function 
and what the parameter value is for each component.  
 
Currently, many different theories are applicable to describe and model human choice 
behavior under uncertainty, such as expected utility theory, prospect theory, cumulative 
prospect theory, extended prospect theory (Van de Kaa 2008), etc. The difference of expected 
utility theory from other theories is that it does not account for the cognitive tasks in traveler’s 
decision making. However, in general the expected utility theory is sufficiently widely 
accepted as useful to deal with choices made under uncertainty. In addition, the expected 
utility theory can be straightforwardly applied to the transport situation and traffic assignment 
models. Therefore, this research works in the framework of expected utility theory. For 
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research on the choice behavior under uncertainty using prospect theory, we refer to for 
example (Avineri and Prashker 2006; Van de Kaa 2008). For a review of different theories for 
modeling traveler’s choice behavior under uncertainty, we refer to for example (Fujii and 
Kitamura 2004). 
 
This chapter will firstly address how travel time unreliability may influence traveler’s 
departure time/route choice behavior and how travelers might cope with the uncertainty. Then 
several existing approaches and potential hypotheses are formulated, representing travelers’ 
perceived utilities and their mental reasoning on the choice decisions. After that, the utility 
functions based on the behavioral hypotheses are investigated and compared. The equivalence 
among different utility function specifications, especially between the mean-variance 
approach and the scheduling approach, and related parameter values is analytically explored. 
Based on this equivalence, a generalized utility function is derived, which is more 
behaviorally sound and can be used flexibly due to different purposes and in different 
contexts of adopted approaches. The underlying meaning of the parameters in the utility 
function is discussed and the non-linearity in scheduling costs is analyzed as well. Finally 
some conclusions are drawn. 

2.2 Behavioral Investigation of Uncertainty Considerations 

In transport networks, due to the stochastic supply and fluctuating travel demand, travel times 
and travel costs experienced by traveler’s within-day and between-days are stochastic. The 
influence of travel time variability on travelers’ choice behavior under uncertainty has gained 
increasing attention (Bates et al. 2001; De Palma and Picard 2005; Batley 2007; Liu and 
Polak 2007). A lot of studies (Van Amelsfort et al. 2008) have been carried out analyzing the 
impacts of travel time variability on travelers’ departure time/route choice behavior and on 
how to model their choice behaviors under uncertainty. Several empirical studies (e.g., 
(Abdel-Aty et al. 1996; Lam 2000; Ghosh 2001; Brownstone et al. 2003; Bogers and van 
Zuylen 2004; Brownstone and Small 2005; Bovy et al. 2008)) suggest that travelers are 
interested not only in travel time savings but also reduction of travel time variability. Most 
travelers prefer reliable travel times. The reason why the travel time variability is so important 
can be explained at least from two aspects: the anxiety or stress caused by uncertainty, 
additional cognitive burden associated with planning activities, and sensitivity to the 
consequences of the uncertainty, for instance late arrivals, etc (Bates et al. 2001). 
 
A hypothesis of a ‘safety margin’ being selected by travelers has once been specified by 
(Gaver 1968; Knight 1974), which assumed that travelers make their choice decisions by 
considering the expected travel time and adding an extra time budget, the so-called safety 
margin, to cope with the uncertainties. Travelers might also trade off their expected travel 
time and travel time variability based on their past experiences. However with these 
hypotheses, the impacts of travel time variability on scheduling costs and travelers’ reaction 
on the scheduling cost uncertainty are not explicitly modeled, which turns out to be very 
important in representing travelers’ choice behavior under uncertainty (Small 1982).  
 
A mean-variance approach has been proposed (Jackson and Jucker 1981) (see Equation (2.1)), 
in which the individual utility function is composed of expected travel time and travel time 
variance (or standard deviation of travel time). It hypothesizes that travelers are interested not 
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only in travel time savings but also a reduction of travel time variability. Variability of travel 
time is usually measured by the standard deviation of travel time (Small et al. 1999). The 
mean-variance approach does not explicitly model the effect of travel time variability on 
scheduling decisions. 1 
 

( ) ( ) ( ) ,   ( , ), , ,α τ β τ⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ ∀⎣ ⎦ ⎣ ⎦
od od od
p p pu t E t Std t o d p t  (2.1)

 
where ( )od

pu t , ( )τ od
p t  denote the individual’s (dis)utility and stochastic travel times on route 

p between OD pair (o, d) departing at t under uncertainty respectively. In this dissertation all 
stochastic variables are denoted with a tilde. ( )τ⎡ ⎤⎣ ⎦

od
pE t  and ( )τ⎡ ⎤⎣ ⎦

od
pStd t  denote the 

expectation of travelers’ experienced travel times and the standard deviation of travel times on 
route p between OD pair (o, d) departing at t respectively. Parameters α  and β  are value of 
time and value of reliability respectively. 
 
Due to the stochastic properties of travel times, a traveler departing everyday at the same time 
instant t may arrive early, late or on time as preferred, largely relying on the traffic situations 
on that specific day. Travel time variability directly leads to uncertainty in arrival times at the 
destination. Departure time shifts are very important reactions of travelers to travel time 
unreliability, since travel time unreliability causes uncertainty of their arrival time, which 
cause punishment for delays. Travelers attempt to depart earlier in order to arrive at the 
destination on time and reduce the schedule delay costs. Several empirical studies show that 
scheduling costs play a major role in the timing of departures (Small 1982).  
 
A scheduling approach based on the expected utility theory (Polak 1987) has originally been 
specified (Noland and Small 1995), which hypothesizes that scheduling delay cost plays a 
very important role in the timing of departures under uncertainty. A related (dis)utility 
function may be formulated as: 
 

( ) ( ) ( )( )( )
( )( )

1

2                                  ,  ( , ), , ,

α τ γ τ

γ τ

+

+

⎡ ⎤⎡ ⎤= ⋅ + ⋅ − +⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤+ ⋅ + − ∀⎢ ⎥⎣ ⎦

od od od
p p p

od
p

u t E t E PAT t t

E t t PAT o d p t
 (2.2)

 
PAT denotes the preferred arrival time. The second and the third component are the expected 
schedule delay costs of being early and late respectively. Function (x)+ is equivalent to 

{ }max 0, x , since there is either early schedule delay or late schedule delay on a specific day. 
It can never occur that travelers experience both delay costs at the same time. Parameters 

,α 1,γ  and 2γ  represent value of time, value of early schedule delay and late schedule delay 
respectively. It has been shown that scheduling costs explain the aversion to uncertain travel 
times (Small et al. 1995). They conclude that in models with a fully specified set of 
scheduling costs, it is unnecessary to add an additional disutility for unreliability of travel 
time. Expected scheduling costs account for all the aversion to travel time uncertainty.  
 

                                                 
1 There are other travel costs which might be considered by travelers, for instance fuel cost, tolls, etc. In our research, we will 
not consider these disutility components. 
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However it is found that scheduling delay costs cannot capture the travel time unreliability 
completely (Noland and Polak 2002; Van Amelsfort et al. 2008). Besides a scheduling effect, 
travel time unreliability appears to be a separate source of travel disutility. Travelers may not 
only consider the expected travel time (i.e. duration of their trip), the expected schedule delay 
costs, but also the variability in travel times as an indicator representing travelers’ perceived 
uncertainty. Therefore an alternative utility function might be expressed as: 
 

( ) ( ) ( )( )( ) ( )( )
( )

1 2

                                                                               ,  ( , ), , ,

α τ γ τ γ τ

β τ

+ +⎡ ⎤ ⎡ ⎤⎡ ⎤= ⋅ + ⋅ − + + ⋅ + −⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤+ ⋅ ∀⎣ ⎦

od od od od
p p p p

od
p

u t E t E PAT t t E t t PAT

Std t o d p t
 (2.3)

 
Due to the complexity of human decision making, travelers make their choice decisions based 
on different reasoning about the traffic situation and perceive different utilities. With regard to 
travelers’ mental representations, different measures, different indicators and different 
disutility components can be chosen, thus different models based on the hypotheses can be 
adopted to represent travelers’ choice behavior under uncertainty.  
 
Based on the past cumulative experiences under uncertainty, travelers might have an image of 
the distributive properties of their perceived travel time distributions at a departure time 
instant t. We hypothesize that travelers attempt to minimize a weighted function of the 
expected travel time, the schedule delay costs, which is derived based on their perceived 
expected travel time, and the variability in travel time, and schedule delays, which can be 
formulated as: 
 

( ) ( ) ( )( )( ) ( )( )
( )

1 2

                                                                                  ,  ( , ), , ,

α τ γ τ γ τ

β τ

+ +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ − + + ⋅ + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤+ ⋅ ∀⎣ ⎦

od od od od
p p p p

od
p

u t E t PAT t E t t E t PAT

Std t o d p t
 (2.4)

 
Travelers make a trade-off between all the disutility components. 
 
The models we have discussed are mainly for purpose of our research to investigate the 
relationship between the typical mean-variance approach and the scheduling approach. There 
are many other models based on different hypotheses on travelers’ departure time/route 
choice behavior under uncertainty. The full overview of these models is out of the scope of 
this dissertation. 

2.3 A Generalized Model for Traveler’s Departure Time/Route Choice 
Behavior Under Uncertainty 

Based on above models representing travelers’ choice behavior under uncertainty, some 
questions come up, for instance which utility function performs best, which disutility 
components should be included, what are the relationships among different utility functions, 
is there any better utility function and forth alike. Already in 1994, the relationship between 
the expected utility approach and the mean-standard deviation approach has been analyzed 
(Senna 1994), but in his work, the utility does not account for any scheduling costs. Some 
analytical investigations on the utility function (2.2) has been performed by (Fosgerau and 
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Karlstrom 2008), which showed that in case the travel time distribution is independent of 
departure times, the expected scheduling cost is linear in mean and standard deviation of 
travel time by assuming normally distributed travel time. The equivalence between the travel 
time budget approach and the scheduling approach has been demonstrated by (Siu and Lo 
2007) for a given travel time distribution. The travel time budget approach is proposed by (Lo 
et al. 2006), which is defined based on the probability requirement of arrivals within the travel 
time budget. This approach shares a similar form as the mean-variance approach, but carries 
an entirely different interpretation. In case the travel time distribution is known, the parameter 
of the standard deviation in the travel time budget function can be derived given a probability 
that a trip completes within the travel time budget.  
 
In this section, we analyze the relationship between the expected utility approach including 
scheduling costs (the so-called scheduling approach) and the mean-variance approach without 
specific assumptions on the travel time distribution and we prove the principal equivalence of 
the mean-variance approach and the scheduling approach conditional on departure times, 
which is the same conclusion as from (Fosgerau and Karlstrom 2008), but for general travel 
time distributions. Based on these results, a new generalized utility function is proposed for 
modeling travelers’ departure time and route choice behavior under uncertainty. 

2.3.1 Equivalence of the mean-variance approach and the scheduling approach 
 
In this section, we will prove the equivalence of the mean-variance approach and the 
scheduling approach conditional on departure times.  
 
Let’s start with the scheduling approach based on Equation (2.2). Its utility function assumes 
linearity of schedule delays, which means that travelers have constant values for early and late 
schedule delays. This assumption will be relaxed later in Section 2.5. With this utility 
function, it is assumed that travelers have perfect knowledge on the distributive properties of 
their future travel times and the schedule delay early and late due to their past experiences, for 
all departure time instants and all available routes.  
 
In the following, we will analytically prove the equivalence of the mean-variance approach 
and the scheduling approach from a totally different approach without any assumption on the 
travel time distribution. 
 
Theorem 2.1: If schedule delay cost is a linear function, then for any departure time t, the 
expected schedule delay cost on route p between OD pair (o, d) can be decomposed into a 
linear function of schedule delay cost with expected travel time on route p between OD pair 
(o, d) when departing at t and the standard deviation of travel time on route p between OD 
pair (o, d) when departing at t.  
 
This theorem can be expressed by Formula (2.5), where ξt  is a constant for any departure 
time instant t. In case the travel time distribution ( )τ od

p t  at any departure time instant t 
follows a normal distribution, ξt  can be derived directly and expressed mathematically. 
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(2.5)

 
For any given departure time instant t, PAT and t are constants.  
 
Proof: Let’s assume a function ( )( ) ( ){ } ( )( )max 0,

+
= =g x t x t x t , where ( )x t is a time 

dependent random variable that follows a general distribution expressed as 
( ) ( ) ( )( )2~ ,μ σx t P t t  with mean ( )μ t  and standard deviation ( ).σ t  We aim to investigate 

the relationship between ( )( )⎡ ⎤⎣ ⎦E g x t  and ( )⎡ ⎤⎣ ⎦E x t . 
 
The function ( )g x  can be transformed into: 
 

( )( ) ( ) ( )
2
+

=
x t x t

g x t  (2.6) 

 
Therefore, 
 

( )( ) ( ) ( ) ( ) ( )1 1
2 2 2
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It holds that: 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2μ σ⎡ ⎤ ⎡ ⎤⎡ ⎤≤ ≤ = = +⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
E x t E x t E x t E x t t t  (2.8) 

 
Substituting expression (2.8) into Formula (2.7), we get: 
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2 2

2 2

1 1 1 1 1 1
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1 1
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t E g x t t t t
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It can be seen that ( )( )⎡ ⎤⎣ ⎦E g x t  is always larger than or equal to ( )⎡ ⎤⎣ ⎦E x t . 
Due to the fact that: 
 

( ) ( ) ( ) ( )2 2μ σ μ σ+ ≤ +t t t t  (2.10)
 
we further get that: 
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Therefore, ( )( )⎡ ⎤⎣ ⎦E g x t  for any departure time instant t can be expressed by a linear function 
of ( )μ t  and ( )σ t  at departure time instant t such as: 
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where λt  and δ t  are constants for any combination of ( )μ t  and ( )σ t  at departure time 
instant t. ( )( )⎡ ⎤⎣ ⎦E g x t  is a linear function of ( )μ t  and ( )σ t  for any departure time instant t.  
 
As can be seen in Formula (2.12), λt  and δ t  are constants for any travel time distribution with 
a combination of ( )μ t  and ( )σ t  at departure time instant t, but are different for different 
travel time distributions. Therefore, these parameters are attribute dependent (attributes 
denote the distulity components in the utility function). Formula (2.12) has the very important 
implication that the expectation of schedule delay costs for a given travel time distribution 
with a given combination of ( )μ t  and ( )σ t  can be expressed as a linear function of 
expectation of ( )x t  and standard deviation of ( )x t  at time instant t. In our case, ( )x t  
represents the schedule delay cost with ( ) ( )( )od

px t PAT t tτ= − + or ( ) ( )od
px t t t PATτ= + − . 

Since the standard deviation of the schedule delay is the same as the standard deviation of 
travel time with ( )( )( ) ( )( ) ( )( )od od od

p p pVar PAT t t Var t t PAT Var tτ τ τ− + = + − = , the 
expectation of the (dis)utility can be expressed as: 
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Formula (2.13) can be simplified to: 
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(2.14)
 
where ξt  is a constant for any travel time distribution with a combination of ( )μ t  and ( )σ t  
at departure time instant t, but is different for different travel time distributions with 
combinations of ( )μ t  and ( )σ t . ξt  has a range of: 
 

( )1 20 1 2ξ γ γ≤ ≤ ⋅ +t  (2.15)
 
Formula (2.14), except for the first disutility component of ( ) ,α τ⎡ ⎤⋅ ⎣ ⎦

od
pE t  appears to be 

identical to Formula (2.5).  

2.3.2 A new generalized utility function 
 
During the process of the proof in previous section, better understanding of the schedule delay 
costs is gained, which inspires an idea of a generalized utility function for modeling travelers’ 
departure time/route choice behavior under uncertainty. We propose a new generalized 
(dis)utility function, formulated as: 
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(2.16)
 
where βt  is a parameter of the standard deviation, instead of a constant. The generalized 
(dis)utility function (2.16), from the mathematical formulations, is different from the 
scheduling approach. The schedule delay cost in the generalized utility function is calculated 
based on the expectation of travel time, rather than the expected schedule delay cost in the 
scheduling approach. There is a separate disutility component of the standard deviation of 
travel time. The generalized utility function is also different from the mean-variance approach, 
since it explicitly includes the schedule delay early and late disutility.  

2.3.3 Conclusions 
 
This section discusses the advantages and disadvantages of the different approaches of 
modeling traveler’s choice behavior under uncertainty and draws some conclusions. 
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Conclusion 1: We have proven analytically the principal equivalence of the scheduling 
approach and the mean-variance approach in traveler’s choice behavior modeling for any 
arbitrary departure time given a combination of ( )μ t  and ( )σ t , without assuming any type 
of the travel time distributions. The uncertainty is predominantly captured by travel time 
variability since the uncertainty on the arrival time at destination is caused by the uncertainty 
in travel time. The variability of arrival time is strongly correlated to variability in travel time. 
Thus in the utility function traveler’s perceived uncertainty can be reflected by the variability 
in travel time.  
 
Conclusion 2: A new generalized utility function (2.16) is proposed. Although the new 
generalized utility function (2.16) is consistent with the scheduling approach (see utility 
function (2.2)) when βt  is well chosen to be the same as ξt , their behavioral explanations are 
quite different. With the scheduling approach, travelers consider the expected schedule delay 
costs, where the average values of both schedule delay early and late are positive. It means 
that travelers will experience both schedule delay early and late on the same trip and will 
never expect to be on time, which is not logical. However, with the generalized utility 
function, travelers consider the schedule delay costs based on the expectation of travel time. 
This is more plausible and behaviorally sound since travelers based on their expected travel 
time anticipate that they will be either early or late or on time. Travelers are assumed to be 
able to know the expected travel time based on their past accumulative experiences. Then they 
infer when they will arrive at the destination.  
 
Conclusion 3: Scheduling costs account for the aversion to travel time unreliability as found 
by (Small et al. 1999; Hollander 2006; Van Amelsfort et al. 2008). From Formula (2.14), the 
expectation of schedule delay cost already includes travel time variability, which proves their 
empirical findings analytically. The scheduling approach indeed represents travelers’ risk 
aversions since based on our derivations the expected utility is larger than the utility of 
expected values:  
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 (2.17)

 
Adding a separate component of variability in travel time as shown in Equation (2.3) together 
with expected schedule delay cost seems unnecessary and may overestimate the impacts of 
uncertainty on traveler’s departure time/route choice behavior. 
 
Figure 2.1 shows the curves of schedule delay early and late respectively for departure time 
instant t. The horizontal axis denotes the stochastic travel times when departing at time instant 
t. Both curves are convex, according to Jensen’s inequality, inequality (2.17) holds. The 
expected schedule delays and the schedule delays based on expected travel time are illustrated 
by dots in Figure 2.1 to show the relative relationships. 
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Figure 2.1: Illustration of the schedule delay early and late curves for departure time 
instant t 
 
Conclusion 4: It is concluded from (Noland and Polak 2002) based on empirical studies that 
there is a fundamental link between the travel time variability and scheduling costs. However 
in some limited circumstances there appear to be some residual effects of reliability that are 
not completely subsumed by scheduling considerations. Similar results are also found by 
(Van Amelsfort et al. 2008) showing that travel time unreliability cannot be captured 
completely by scheduling delay costs, and besides a scheduling effect, travel time reliability is 
a separate source of travel disutility. The new generalized utility function (2.16) is able to 
overcome above shortcoming of the scheduling approach since the disutility parameter of 
travel time variability βt  can be very flexible. The scheduling approach is a special case of 
the generalized utility function (2.16). 
 
Conclusion 5: Compared to the mean-variance approach, the generalized utility function 
(2.16) explicitly accounts for the scheduling delay early and late. Thus the mean-variance 
approach is also a special case of the generalized utility function (2.16). The generalized 
utility function (2.16) is more general for modeling travelers’ departure time/route choice 
behavior under uncertainty. 
 
The proposed generalized utility function needs calibration by conducting empirical studies.  

2.4 Two-dimensional Parameters in the Utility Functions 

This section discusses the underlying two dimensional meanings of ξt  in the Formula (2.14). 
 
As discussed for the equivalence that ξt  is a constant for a given travel time distribution with 
a combination of ( )μ t  and ( )σ t  at departure time instant t. For different travel time 
distributions, ξt  will be different (we call it attribute dependent), but bounded. This attribute 
dependency of the parameters is different from varied parameter values representing 
heterogeneity of travelers. 
 
Normally we assume that travelers’ parameters of the attributes follow distributions 
representing the taste variations among travelers in a population. It is mostly neglected that 
the parameters also should depend on the attribute values for instance travel time, schedule 
delay and travel time variability. So, modeling travelers’ behavior should take into account: 
heterogeneity of travelers and time dependent traffic situations (travel time and travel time 
variability). The parameter of each (dis)utility component should contain two forms of 
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information, namely stemming from heterogeneity of travelers (different reactions to the same 
situation) and attribute dependence (same travelers may have different reactions to different 
traffic situations or to different values of the attribute over time). Therefore the parameters 
have a two-dimensional distribution, one is crossing the population and the other is a 
dimension in attribute values. The second one is helpful in capturing the non-linearities of 
different (dis)utility components. For instance, the parameter of schedule delay should be 
schedule delay dependent. This might hold for many other (dis)utility attributes like travel 
time or travel time variability. If the travel time variability is very small, travelers might not 
care that much (variability will be insignificant in the utility function). If the variability is 
very high, travel time variability might be overwhelming in the utility function and appears 
fairly significant. All these behavioral thinking can be explained by the attribute dependent 
parameters, such as the parameters δ t  and ξt  in Formulae (2.13) and (2.14). Another example 
is that a lot of surveys investigate the percentage of risk neutral, risk aversion and risk prone 
travelers. It is hypothesized here that the results may depend on the degree of risks. With 
different degrees of risk, a traveler can be risk neutral, risk aversion and risk prone, which 
means that the way travelers treat risk or uncertainty depends on the degree (i.e. attribute 
value, like variability, travel time, schedule delay, etc). It helps generalize the utility function 
with attribute dependent parameters especially when modeling departure time choice with 
scheduling costs.  
 
However it will make the modeling problem even more complicated. Depending on the 
purposes of the research, appropriate parameter values will be adopted. 

2.5 Non-linearity in Schedule Delay Costs 

This section relaxes the assumption on the linearity in the schedule delay costs made in 
Section 2.3.  
 
A lot of empirical surveys indicate the non-linearity in the scheduling cost (Small et al. 1999). 
Different approaches are available to capture the non-linearity. One option is assigning 
attribute dependent parameter value distributions to schedule delay early or late depending on 
the schedule delay, as discussed in the previous section. Another option is assuming a non-
linear function in scheduling delay costs. It is found that a quadratic rather than linear 
function in scheduling cost will improve the models (Small et al. 1999), especially for 
modeling schedule delay early, which suggests a utility function such as: 
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(2.18)
 
Equation (2.18) is an improved scheduling approach with quadratic scheduling cost function. 
Although it is suggested that specifying a quadratic term in schedule delay late is inferior to 
allowing for an additional penalty for lateness beyond a particular point (Small et al. 1999), 
we just employ quadratic terms in both schedule delay early and late to capture the non-
linearity in schedule delay costs for the sake of simplicity.  
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This section mainly aims to investigate the relationship between the improved scheduling 
approach and a transformed mean-variance approach in case of quadratic scheduling costs. 
 
Theorem 2.2: For any departure time t, the expectation of the quadratic schedule delay cost 
on route p between OD pair (o, d) can be decomposed into a quadratic function of schedule 
delay cost with the expected travel time on route p between OD pair (o, d) when departing at t 
and of the standard deviation of travel time on route p between OD pair (o, d) when departing 
at t.  
 
This theorem can be expressed by Equation (2.19). ρt  and ς t  are constants for a given travel 
time distribution at departure time instant t: 
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Proof: We will explore the relationship between ( )( )2⎡ ⎤⎣ ⎦E g x t  and ( ) ,⎡ ⎤⎣ ⎦E x t  where 
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It holds that:  
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According to Formula (2.11): 
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(2.22)

 
Combining inequations (2.21) and (2.22), it is derived that: 
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With Equation (2.20), we derive: 
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Thus ( )( )2⎡ ⎤⎣ ⎦E g x t  can be expressed as a quadratic function of ( )μ t  and ( )σ t  with 

constants ϕt  and φt  for departure time instant t such as: 
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Therefore, the improved scheduling approach (2.18) can be expressed as: 
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Expression (2.26) can be simplified as: 
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where 1 20 ς γ γ≤ ≤ +t  and is dependent on the travel time distribution at time instant t. 
 
In case the quadratic schedule delay cost function is considered, the schedule delay costs can 
still be expressed as a function of the expected travel time and the standard deviation of travel 
time.  

2.6 Conclusions 

This chapter mainly investigates the relationship between the expectation of schedule delay 
costs and the expectation of travel time and standard deviation of travel time. The principal 
equivalence of the scheduling approach and the mean-variance approach in choice modeling 
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under uncertainty has been proven analytically for any travel time distribution at departure 
time instant t. 
 
The expectation of schedule delay costs at departure time instant t can be decomposed into a 
linear function of the expected travel time and the standard deviation of travel time at 
departure time instant t in case assuming linearity in schedule delay costs.  
 
Scheduling costs already account for the aversion to travel time unreliability. A new 
generalized utility function, composed of expected travel time, schedule delays based on the 
expected travel time and travel time variability, is proposed and formulated. This utility 
function, compared to the mean-variance approach, explicitly accounts for the schedule delay 
costs. Compared to the scheduling approach, the new generalized utility function is more 
flexible in terms of capturing risk aversions caused by travel time uncertainty and is more 
behaviorally sound. The scheduling approach and the mean-variance approach are special 
cases of the proposed generalized utility function.  
 
A special case of the non-linear schedule delay cost function, i.e. a quadratic function, is 
considered. It turns out that the improved scheduling approach is equivalent to a transformed 
mean-variance approach since the quadratic schedule delay costs can be expressed as a 
quadratic function of the expected travel time and the standard deviation of travel time.  
 
The new generalized utility function will be adopted to model travelers’ departure time/route 
choice behavior under uncertainty. The departure pattern with stochastic networks will be 
investigated analytically for a single bottleneck and with a simulation-based approach for 
larger networks in the upcoming two chapters respectively. With the modeled departure 
pattern under uncertainty, the network performance will be evaluated and road networks will 
be designed. 
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Part III: Theoretical and Simulation-based 
Comprehensive Network Modeling under 
Uncertainty 
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 35 

3 Theoretical Investigation of Dynamic User 
Equilibrium in a Stochastic Bottleneck Model 

3.1 Introduction 

As discussed in Chapter 2, scheduling costs play a very important role in modeling traveler’s 
choice behavior under uncertainty. Due to the variability in travel times, a crucial decision 
travelers have to make is their departure time, which together with travel time and travel time 
reliability will directly determine their scheduling costs. Modeling departure time choice and 
traveler’s departure adaptation under uncertainty is very important. The real life traffic 
situation can only be represented realistically when the dynamics in travelers’ departures are 
captured. A lot of empirical investigations have been carried out to obtain the departure 
patterns under uncertainty directly from observations (Van Amelsfort 2009). However based 
on our best knowledge, in network modeling no attention has been paid and no research has 
been carried out on the analysis of departure time patterns under uncertainty. Most research 
on network modeling related to uncertainty focus on route choice modeling and static 
assignment (Bell 2000; Yin and Ieda 2001; Lo and Tung 2003; Yin et al. 2005; Shao et al. 
2006; Sumalee and Kurauchi 2006; Dimitriou et al. 2008; Zhang and Levinson 2008).  These 
studies mostly model travel time reliability in the choice behavior by introducing a reliability 
index or using exponential or quadratic forms of the travel time function. Reliability is only 
indirectly encapsulated in the utility function.  
 
Analytical research on dynamic network equilibrium with departure time choice under 
uncertainty has been quite limited. Therefore this chapter will mainly investigate the departure 
patterns with modeling travel time reliability in travelers’ choice behavior under uncertainty 
analytically. It is assumed that travel time variability is caused by stochastic capacities 
representing between-days dynamics. Within-day peak-hour capacity is assumed constant. It 
is assumed that travelers are aware of the stochastic properties of their experienced travel time 
and schedule delays at any departure time t and attempt to adapt their departure times in order 
to minimize their future long trip disutility as expressed in Formula (2.16) in Chapter 2. The 
research questions in this chapter are: How does the departure pattern with including travel 
time reliability in the choice behavior differ from that without including travel time reliability? 
Does a long term temporal equilibrium exist? How does the travel time reliability develop 
along with departure time during the peak hour?  
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In order to gain insights into the fundamental relationships and solve aforementioned 
questions, an analytical investigation is performed by extending Vickrey’s bottleneck model 
towards the stochastic capacity case.  The challenge of this chapter is to develop a theoretical 
analysis of departure patterns including travel time reliability in the travel cost function in 
stochastic networks.  
 
This chapter firstly presents a brief introduction into Vickrey’s bottleneck model with 
deterministic capacity and some basic notions and formulations. Then the theoretical analyses 
of departure pattern with stochastic bottleneck model are given with the mathematical 
derivations and analytical results. A comparison will be made between the departure patterns 
with and without an inclusion of travel time reliability. Finally some conclusions will be 
drawn. Since the utility function proposed in Chapter 2 is only composed of travel costs, 
travel costs and travel cost function will be used in the rest of the dissertation. 

3.2 Dynamic User Equilibrium with a Deterministic Bottleneck Model 

A widely used model to study the departure pattern is Vickrey’s bottleneck model (Vickrey 
1969). This model assumes a single bottleneck with constant capacity with a given constant 
total demand larger than capacity during a limited time period, the usual peak, and known 
identical preferred arrival times of all travelers with the same origin and destination. The 
model predicts the within-day equilibrium temporal distribution of demand based on the 
behavioral hypothesis that all travelers choose their departure times so as to minimize their 
total individual travel costs consisting of travel (queuing) time and schedule delay costs of 
arriving early or late than preferred. Due to a single bottleneck, there is only departure time 
choice and no route choice. Thus in this chapter all notations in the Formulae are simply time 
specific without any index on route and OD. It is assumed that travelers have perfect 
information about the traffic conditions they may encounter at all potential departure times. 
Vickrey’s travel cost function, assuming linearity in the schedule delay costs, is given as: 
 

( ) ( ) ( )( )( ) ( )( )1 2c t t PAT t t t t PATα τ γ τ γ τ
+ +

= ⋅ + − + + + −  (3.1) 

 
where ( )c t  denotes the travel cost at departure time instant t. ( )tτ  denotes the queuing travel 
time (i.e. delay in the bottleneck) at departure time instant t. PAT denotes the preferred arrival 
time. Again the function ( )( ) ( ){ }max 0, .x t x t

+
=  Parameters α , 1γ  and 2γ  denote value of 

travel time, values of schedule delay early and late, respectively. Homogeneous travelers are 
assumed with an identical PAT and the same parameter values. This travel cost function 
assumes linearity in schedule delay costs which simplifies the reality.  
 
Based on the travel cost function (3.1), there is a transition point, defined as tt , at which both 
schedule delay early and late are equal to zero, mathematically expressed as: 
 

( )( ) ( ) 0t t t tPAT t t t t PATτ τ− + = + − =  (3.2) 
 
Travelers departing at tt  will arrive exactly on time at their destination. Travelers departing 
before tt  will arrive early at their destination, while those who depart after tt  will arrive late 
at the destination relative to their PAT.  
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The original Vickrey model assumes a vertical queue at the head of the bottleneck without 
spillback. Thus the travel time for travelers departing at time t simply equals the queue length 
at time t divided by the bottleneck capacity (see (Vickrey 1969)): 
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where ( )Q t  denotes the queue length at time instant t. C is the deterministic constant capacity 
rate of the bottleneck. ( )1D t  denotes cumulative early departures since all travelers departing 
before tt  will arrive early at destination, ( )2D t  denotes the cumulative late departures, which 
are expressed as: 
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(3.4) 

 
( )1r t  and ( )2r t  denote early departure rate and late departure rate respectively. 0t  denotes the 

start time for the first departure at which queueing starts. et  denotes the time of the last 
departure experiencing delays. This travel time function is really simple. Of course, other 
travel time functions can be adopted.  
 
The dynamic user equilibrium for departure time choice results when no traveler can reduce 
his/her travel cost by unilaterally altering its departure time (Mahmassani and Herman 1984), 
which can be expressed mathematically as / 0dc dt =  for all time instants t with non-zero 
departures. From the first order derivative of Formula (3.1), the early and late departure rates 
in the deterministic case are derived as (Vickrey 1969):  
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It can be seen that the early and late departure rates are constant, which is a consequence of 
the linearity assumption in the schedule delay costs and the simple travel time function.  
Assume an inelastic total demand N uses the bottleneck with 
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0
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t e

t

t t

t t
r t dt r t dt N+ =∫ ∫  (3.6) 

 
and assume the continuity of the travel costs at the critical time points, then 0t , tt , and et can 
be derived. For details, see (Vickrey 1969). Figure 3.1 shows the within-day equilibrium 
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departure pattern for the case with total demand N and deterministic capacity C. 
Homogeneous travelers are assumed with an identical PAT. The critical time points are 
indicated. Travelers departing at tt  have the longest travel time but will arrive exactly on time. 
Travelers departing before tt  will arrive earlier than desired, while the travelers departing 
after tt  will arrive late at the destination. Values of 1.0, 0.8, 1.2 have been chosen for 
parameters α , 1γ  and 2γ  respectively.  
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Figure 3.1: Cumulative departures and arrivals in the deterministic case with constant 
demand N and capacity C 
 
Figure 3.2 presents the cumulative departures and arrivals for different capacities relative to 
the capacity C presented in Figure 3.1 with the same constant travel demand N and the same 
PAT.  
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Figure 3.2: Cumulative departures and arrivals with different capacity rates C and 
constant demand N 
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As expected, earlier departure rates increase with increasing capacity C, while the peak 
duration decreases with increasing C. With larger C, the starting time for departures shifts to 
the right with late departure. All the cumulative curves from different C values cross the same 
two points at PAT, which implies that the number of travelers arriving early or late than 
preferred is constant and independent of capacities. The total travel time lost in queuing 
decreases with increasing C. This can be proven theoretically since it can be derived that: 
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γ
γ

=
late

early

N
N

 (3.7) 

 
where earlyN  and lateN respectively denote the number of travelers arriving earlier and later 
than the preferred arrival time.  
 
This bottleneck model, further elaborated by (Fargier 1983), has been extended by many 
others. Hendrickson and Kocur explored the bottleneck model for several cases: lateness is 
not allowed; system optimal with tolls; PAT follows a distribution instead of being identical 
and fixed (Hendrickson and Kocur 1981). The analyses of the bottleneck model with a 
uniform distribution of PAT has also been presented by (Small 1992). The bottleneck model 
has been extended by (Mahmassani and Herman 1984) with an additional dimension of choice 
by considering joint departure time and route choices. However only one origin and one 
destination with parallel routes is considered and travelers are assumed to pass only one 
bottleneck to their destination. The departure time pattern for a network with two origins and 
one destination and for a network with two consecutive bottlenecks has been studied by 
(Kuwahara 1990). The departure patterns for a network with overlapping routes as an 
extension of the single bottleneck model have been analyzed by (Zhang et al. 2008). The 
departure pattern for non-identical travelers with different cost functions (i.e. different 
parameter values for the cost components) has been  studied analytically (Newell 1987), while 
a numerical approach has been adopted to obtain the equilibrium for finite groups of 
heterogeneous travelers with elastic and fixed demand (Van der Zijpp and Koolstra 2002). 
Various toll schemes with the bottleneck model have been investigated (Vickrey 1969; Arnott 
et al. 1989). The bottleneck model was used to analyze ramp metering (Arnott et al. 1993a). 
Extensions of the bottleneck model for heterogeneous travelers with the same relative cost of 
late to early arrival have been performed by (Arnott et al. 1994; Arnott et al. 1998). They also 
did analyses of bottleneck model for travelers with different parameters for the late arrivals 
and for discrete PAT’s among travelers. The bottleneck model has been extended with 
predictable and unpredictable fluctuations in capacity and demand (Arnott et al. 1997), where 
the effects of information on participation and departure time choices were analyzed. A 
review on the extensions of the Vickrey’s bottleneck model has been provided by (Arnott et al. 
1998), including modeling of stochastic demand, stochastic capacity, multiple routes and OD 
pairs, toll schemes, ramp metering, system optimum, heterogeneous travelers, discrete PAT 
and PAT distributions. In this chapter, we will add two extensions of this deterministic 
bottleneck model by incorporating stochastic capacities over days and modeling travel time 
reliability in the travel cost function (Li et al. 2008b; Li et al. 2008d). 
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3.3 Dynamic User Equilibrium with a Stochastic Bottleneck Model 

Day-to-day capacity and demand fluctuations lead to travel time variations over days. The 
travel times experienced by the travelers departing at the same time instant vary over days. 
The travel time for a specific departure time instant follows some probability distribution. In 
Chapter 2 a generalized (dis)utility function has been proposed to model travelers’ choice 
behavior under uncertainty. This section will adopt the derived (dis)utility function and 
analytically investigate traveler’s departure time choice and the resulting long term departure 
pattern by extending Vickrey’s bottleneck model. The travel cost defined by the generalized 
mean-variance scheduling approach is named long term future trip cost, which is based on 
traveler’s past cumulative experiences. Since the added reliability component (i.e. travel time 
standard deviation) is a function of a series of within-day traffic situations, which also 
depends on the reliability in the (dis)utility function, an analytical analysis of the departure 
pattern with including reliability in the choice behavior is quite challenging. We restrict 
ourselves to day-to-day fluctuations in capacity and assume that the total daily travel demand 
using the bottleneck is fixed. For elastic demand, see (Arnott et al. 1993b; Van der Zijpp and 
Koolstra 2002). A long term equilibrium departure pattern is derived by assuming that 
travelers make their strategic departure time choice based on their past experiences. A 
deterministic departure pattern will result in which no traveler can reduce his/her long term 
future trip costs by unilaterally changing their departure time. With this deterministic long 
term departure pattern, the number of travelers suffering bottleneck delays however may vary 
from day to day and is a random variable due to the stochastic capacities on specific days. The 
within-day traffic situation is however not necessarily an equilibrium due to the varied 
capacities from day to day. It is assumed that travel time variability is only caused by 
stochastic capacities representing day-to-day dynamics, while within-day capacity is assumed 
constant.  

3.3.1 Behavioral assumptions 

We assume a bottleneck with random fluctuations of the capacity from day-to-day and a fixed 
number of travelers N using that bottleneck, constant from day-to day, such as a fixed number 
of daily commuters. Due to the past accumulative experiences in using the bottleneck, 
travelers are assumed to be aware of the stochastic properties of the waiting time (i.e. travel 
time) distributions at all departure times (i.e. expectations and variances) that emerge from 
day to day due to the random capacities, without being able to predict the daily traffic 
situation before starting its trip. As discussed in Chapter 2, it is assumed that travelers make 
their strategic departure time choice so as to minimize their long term future trip cost ( )c t , 
which is defined and formulated as (3.8) according to the generalized mean-variance 
scheduling approach (see Formula (2.16)), including travel cost components such as expected 
waiting time, schedule delays based on the expected waiting time, and standard deviation of 
waiting times.  Based on their accumulative experienced travel costs, it is assumed that 
travelers are aware of their future trip costs at any departure time and make their strategic 
departure time choice accordingly.  
 

( ) ( ) ( )( )( ) ( )( ) ( )1 2c t E t PAT t E t t E t PAT Std tα τ γ τ γ τ β τ
+ +

= ⋅ + ⋅ − + + ⋅ + − + ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.8) 
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For the sake of simplicity, we still assume a fixed number of N homogeneous travelers, all 
having the same travel cost function and identical preferred arrival time. A fixed parameter β  
is assumed for the underlying analytical analysis instead of the attribute dependent parameter 
βt  in Formula (2.16). Not all of these travelers will suffer delays on arbitrary days. The 
number of travelers experiencing delays on a specific day depends on the capacity on that day, 
so does the delay at departure time t.  

3.3.2 Existence of a long term equilibrium 

We assume that each of the travelers chooses his/her departure time t in order to minimize its 
long term future trip cost. We will show that a kind of long term equilibrium however 
emerges from day-to-day capacity variations and travel time variations. Continuous time and 
continuous flows are dealt with in this chapter. Notice that the equilibrium may be different 
for continuous flows and discrete flows. ( )* / 0dc t dt =  ( ( )*c t  denotes equilibrium costs at t 
for the bottleneck) holds at the long term departure time equilibrium for the time instants with 
positive departure flow rates. For the formulation of the single bottleneck in this chapter, the 
equilibrium variables are denoted by a superscript *. For the general network equilibrium 
formulation dealt with in the next chapter, the equilibrium variables are denoted by a bar.  
 
The long term equilibrium for a single bottleneck model can also be formulated as an infinite-
dimensional continuous-time Variational Inequality Problem (VIP) aimed to determine the 
vector of the equilibrium departure flow rates *f  for all t ( ( )* * ,  ⎡ ⎤≡ ∀⎣ ⎦f f t t , where ( )*f t  
denotes the departure flow rate at time instant t at equilibrium): 
 

( ) ( ) ( )( )* *, 0,     − ≥ ∀ ∈∫ df f Ωc t f t f t dt  (3.9) 

 
where ( )*,fc t  denotes the equilibrium cost at time instant t as a function of the vector *f  
representing the departure flow rates at all t. Especially the departure flow rates before t play 
important roles in ( )*,fc t  since the travel cost at t is mainly determined by the cumulative 
departure flows from previous time instants. Ω  denotes a bounded infinite feasible set of 
departure flow rates satisfying flow conservation (3.10) and nonnegativity constraints (3.11), 
respectively: 
 

( ) ,f t dt N=∫  (3.10)
 

( ) 0,f t t≥ ∀  (3.11)
 
Since this chapter only deals with the single-bottleneck model, there is no route choice. The 
objective of this VI formulation is to find the optimal departure pattern * ∈ df Ω  with which 
no traveler would be better off by changing his/her departure time. The formulation for a 
general network equilibrium with continuous time and joint departure time/route choices will 
be slightly different by incorporating routes and OD pairs (discrete variables) in above 
formulations. Ω  defined by expressions (3.10) and (3.11) is a nonempty and closed convex 
set.  
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Under stochastic bottleneck capacities, the experienced travel times over days are stochastic 
for any departure time t and follow a general distribution. In order to derive the long term 
future trip costs, we firstly start with the general formulation of the stochastic travel time 
(stochastic travel times at equilibrium are a special case of Formula (3.12) with equilibrium 
departure flow rates ( )*f t  instead of ( )f t ), which is formulated as: 
 

( )
( )

( )*
0 *

0 ,    

t

t
f x dx

t t t
C

τ = − −
∫

 (3.12)

 
where *

0t  denotes the deterministic time instant for the first departures at the long term 
equilibrium. C  denotes the stochastic capacities. ( )tτ  is a continuous function of .f  
 
The cost function (3.8) is a function of ( )tτ  and thus a continuous function of the departure 
flow rates .f  Together with the condition that Ω  is a nonempty and closed convex set, the 
VIP (3.9) is equivalent to a fixed point problem. With the additional property that Ω  is also 
bounded defined by (3.10), the fixed point problem has at least one solution according to 
Brouwer’s fixed point theorem. See Theorem 3.1 taken from (Chen 1999) and the detailed 
proof. Thus a long term equilibrium exists and will emerge from day-to-day capacity 
variations. Because of its long-term orientation, this assumed departure time choice behavior 
is called strategic. 
 
Theorem 3.1 (Existence of solutions to the VIP) (Chen 1999)  If Ω  is a compact convex 
set and ( )c f  is continuous on Ω ,  then the VIP admits at least one solution .f  
 
The uniqueness of the equilibrium is difficult to prove in general, while as seen later in 
Chapter 4 with simulations, it always converges to a unique equilibrium state at which the 
long term future trip costs for travelers departing at any used time t are equal and minimal. 
With this long term equilibrium departure pattern, a within-day user’s departure time 
equilibrium is not necessarily achieved as travelers are not able to know the traffic situation 
they will encounter and cannot predict what will happen without any information before 
making a trip. 

3.3.3 Random capacities  

It is assumed in this chapter that travel time uncertainty is caused by day-to-day capacity 
variations. Day-to-day capacity variations are the major factor leading to stochastic travel 
time variations over days (Tu et al. 2007b). We assume a certain random distribution in the 
capacity (see (Chen et al. 2002a)) due to all kinds of causes such as weather volatility, 
relatively minor incidents, traffic composition, and so on. Extreme cases caused by accidents, 
disasters, etc. are not intended to be modeled.  
 
To model daily disturbances, one must consider various levels of capacity degradation. In 
other words, roadway capacities are continuous quantities subject to routine degradation due 
to physical and operational factors. A reasonable way to capture these variations and their 
impact on the network performance is to model roadway capacities using probability 
distributions (Chen et al. 2002a). Current research applies different assumptions of the 
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distribution of stochastic link capacity, such as uniform (Li et al. 2008b; Li et al. 2008d), 
normal (Li et al. 2007a; Li et al. 2008a; Li et al. 2009b), exponential (Lo and Tung 2003), 
gamma (Brilon and Zurlinden 2003), weibull (Brilon 2005), etc. Depending on characteristics 
of road facilities in a specific area, different link capacity distributions might be chosen. It is 
found that the weibull distribution, apart from its theoretical attractiveness, is the function that 
best fitted the capacity observations (Brilon 2005). 
 
For the sake of simplicity, the stochastic capacity (denoted as C ) is assumed uniformly 
distributed with an upper bound maxC and a lower bound minC . Of course more realistic 
distributions like weibull can be assumed. For the impact of different classes of capacity 
distributions on the departure patterns under uncertainty, further research needs to be carried 
out. Without loss of generality, we assume that the minimum capacity is proportional to the 
maximum capacity with a fraction factor θ , (i.e., min max ,0 1C Cθ θ= < < ). A larger θ  value 
indicates a smaller capacity variation. The following properties then hold in general: 
 

( )
max

max max max max max

1 1 1 1 1 1ln
1θ

θθ θ θ
⎛ ⎞ = ⋅ = =⎜ ⎟ − − ⋅⎝ ⎠ ∫

C

C
E dC

C C C f CC C
 (3.13)

 

with a capacity distribution parameter ( ) 11 / ln ,     0 <  1.f fθ θθ
θ

= − <  

Since  
 

( )
1 1

1lim lim 1 / ln 1,fθθ θ
θ

θ→ →

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 (3.14)

 
the deterministic capacity case is a special case of the random capacity case.  
 

( )
max

max
22 2

max max max max max max

1 1 1 1 1 1 1
1θ θ θ θ θ

⎛ ⎞⎛ ⎞ = ⋅ = − =⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎝ ⎠
∫

C

C
E dC

C C C C C CC C
 (3.15)

 
These properties are needed to derive the stochastic temporal travel time distributions. 

3.3.4 Formulation and analytical solutions to the dynamic user equilibrium 

In this subsection, we will derive the long term equilibrium temporal demand distribution 
(departure time pattern) that emerges in the stochastic capacity case.  
 
A three-regime approach will be adopted, which differs from the two-regime approach used in 
the deterministic bottleneck model. The analysis will be performed for the three possible 
regimes ( * *

0 ,tt t t≤ ≤  * *,t ct t t≤ ≤  and * *
c et t t≤ ≤ ) separately.  

 
Again let’s define the transition time point at the long term equilibrium *

tt , at which it holds 
that the schedule delay based on the expected travel time is equal to zero: 
 

( )( ) ( )* * * * 0t t t tPAT t E t t E t PATτ τ⎡ ⎤ ⎡ ⎤− + = + − =⎣ ⎦ ⎣ ⎦  (3.16)
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which is equivalent to saying that the summed schedule delay early and late based on the 
expected travel time is zero if departing at *

tt . 
 
Travelers departing at *

tt  are expected to arrive exactly on time (PAT) at the destination, 
while travelers departing before *

tt  will arrive early at their destination, and after *
tt  will 

arrive late based on the expected travel time. Thus the division of the first two-regimes is 
determined by different schedule delay functions.  
 
We define *

ct  as the time instant at which the maximum capacity line intersects with the long 
term cumulative departures at equilibrium, expressed as: 
 

( )* * * * * *
0 max 1 2( ) ( )c t ct t C D t D t− = +  (3.17)

 
where ( )*

1D t  denotes cumulative early departures (based on the expected travel time) at the 
long term equilibrium state during time period * *

0 tt t t≤ ≤ , while ( )*
2D t  denotes the cumulative 

late departures at long term equilibrium state in the second regime * *
t ct t t≤ ≤ , expressed 

respectively as: 
  

( ) ( )*
0

* *
1 1= ∫

t

t
D t r x dx  

( ) ( )*
* *
2 2= ∫ t

t

t
D t r x dx  

(3.18)

 
( )*

1r t  and ( )*
2r t  denote the equilibrium early departure flow rate and late departure flow rate 

during * *
0 tt t t≤ ≤  and * *

t ct t t≤ ≤  respectively. Of course the existence of the intersection 
between the cumulative departures and the maximum capacity line (i.e. existence of *

ct ) 
strongly depends on the capacity distributions. If capacity factor θ  is smaller than a threshold 
value, implying very large variations in the capacities, then there is no intersection between 
the cumulative departures and the maximum capacity line. Since we model daily fluctuations 
in the capacities caused by the weather and minor incidences, θ  will be larger than the 
threshold value. So, *

ct  will always exist. A detailed discussion will be given later in this 
chapter. 
 
Departing after time instant *

ct , it may occur that travelers experience no queues on some days 
with large capacities, implying that the outflow rate equals the departure flow rate rather than 
the capacity. Travel times are directly influenced by the outflow rate on the bottleneck instead 
of the given capacities. Therefore the stochastic travel times will be calculated differently due 
to the varying outflow rates. So does the long term future travel cost. Thus the third regime 
division, divided by *

ct , is due to the changed outflow rate distribution. Before *
ct , the outflow 

rate distribution is equivalent to the capacity distribution, uniformly distributed with an upper 
bound maxC  and a lower bound min .C  After *

ct , the outflow rate distribution becomes time-
dependent, partly following a uniform distribution with a time-dependent upper bound ( )bC t  
and partly equal to the departure rate. Therefore *

ct  is defined to distinguish the outflow rate 
distributions. In the deterministic case, the outflow rate always equals the bottleneck capacity. 
The definition of  ( )bC t  and other critical time points are illustrated in Figure 3.3: 
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Figure 3.3: Illustration of critical time instant *

ct  and time-dependent upper boundary 
capacity ( )tbC  
 
The time-dependent boundary capacity ( ) ,bC t  with which travelers departing at t experience 
exactly zero delays, is expressed as: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
* * * * * *
1 2 3 * * * * * *

1 2 3* *
0 0

t ,  with 
+ +

= = = + +
− −

t c T
b T t c

D t D t D t D t
C D t D t D t D t

t t t t
 (3.19)

 
( )*

3D t  denotes the cumulative late departures at long term equilibrium state during * *,c et t t≤ ≤  
expressed as: 
 

( ) ( )*
* *
3 3= ∫

c

t

t
D t r x dx  (3.20)

  
( )*

3r t  denotes the equilibrium late departure rate during * *.c et t t≤ ≤ On days with capacities 
larger than ( )bC t  and smaller than maxC , travelers departing at t will experience no delays.  
  
Let’s define ( )v t  as the stochastic outflow rate for time instant t, then the properties of ( )v t  
in each of the three regimes can be derived. As aforementioned, before *

ct  the outflow rate 
distribution is equivalent to the capacity distribution since the outflow rate is always equal to 
the capacity on any specific day, thus we have:   
 

( )( ) ( ) ( )max * *
0

1
,    

2 c

C
E v t E C t t t

θ+
= = ≤ ≤  (3.21)

 

( )
* *
0

max

1 1 1 ,    cE E t t t
v t f CC θ

⎛ ⎞ ⎛ ⎞= = ≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠
 (3.22)
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( )
* *
02 22

max

1 1 1 ,    cE E t t t
v t CC θ

⎛ ⎞ ⎛ ⎞= = ≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (3.23)

 
After *

ct , the outflow rate ( )v t will partly follow a uniform distribution with a time-dependent 
upper bound ( )bC t , denoted as ( )uv t , and partly be equal to departure rate. Therefore the 
expectation of the outflow rate at time instant t can be calculated from the two parts as:  
 

( )( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

* * *
3

min *
3

min min max *
3

max max

2 2 2
max max *

3
max max

1 ,  

              = + 1
2

              =
1 2 1

              = +
2 1 1

      

θ θ

θ
θ θ

= ⋅ + − ⋅ ≤ ≤

+
⋅ − ⋅

− + −
⋅ + ⋅

− −

− −
⋅

− −

u u u c e

b
u u

b b b

b b

E v t p t E v t p t r t t t t

C C t
p t p t r t

C t C C C t C C t
r t

C C

C t C C C t
r t

C C

( ) ( )( ) ( )

( )

2*
2 2 *

max max 3*
0

max

2 2
        =

2 1

θ

θ

⎛ ⎞
− + − ⋅⎜ ⎟−⎝ ⎠

−

T
b

D t
C C C t r t

t t
C

 

(3.24)

 
where ( )uv t  represents the part of the outflow rate following a time-dependent uniform 
distribution in the range of ( ) ( )min .u bC v t C t≤ ≤ ( )up t  is the probability of the outflow rate 
( )uv t  following an uniform distribution, which is equivalent to the probability of the non-zero 

travel times that will be experienced by travelers, expressed as: 
  

( ) ( )
( )

min * *

max

 = ,   
1

b
u c e

C t C
p t t t t

C θ
−

≤ ≤
−

 (3.25)

 
Since we mainly need to derive the non-zero experienced travel times, we will focus on the 
properties of ( )uv t  after *

ct  as following: 
 

( ) ( ) ( )
( )

( )
( )

min

* *

min min min

1 1 1 1 ln ,   bC t b
u c eC

u u b b

C t
E dv t t t

v t v t C t C C t C C
⎛ ⎞

= ⋅ = ≤ ≤⎜ ⎟⎜ ⎟ − −⎝ ⎠
∫  (3.26)

 

( ) ( ) ( )
( )

( ) ( )

( )

min
2 2

min min min

* *

min

1 1 1 1 1 1

1                                                                ,      

bC t

uC
u u b b b

c e
b

E dv
v t v t C t C C t C C C t

= t t t
C C t

⎛ ⎞ ⎛ ⎞
= ⋅ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

≤ ≤

∫
 (3.27)

 
Now let’s derive the cost components for the long term future travel cost given in Formula 
(3.8). The expectation of travel time at departure time t for each regime is derived respectively 
as:  
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( )( ) ( )
( ) ( )1 * * *

0 0,    t

D t
E t E t t t t t

v t
τ

⎛ ⎞
= − − ≤ ≤⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.28)

and                        ( )( ) ( )
( )

( )
( ) ( )

*
1 2 * * *

0 ,    t
t c

D t D t
E t E t t t t t

v t v t
τ

⎛ ⎞
⎜ ⎟= + − − ≤ ≤
⎜ ⎟
⎝ ⎠

 (3.29)

 
We define ( )u tτ  as the stochastic non-zero travel times experienced by travelers departing at t, 
caused by the stochastic ( )uv t . Then the expectation of the travel time for the third regime 
can be computed as: 
 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

* *
min

* *
1 2 3 *

0

1 0 , ,    

            

  u u u u b c e

t c
u

u

E t p t p t E t C v t C t t t t

D t D t D t
p t E t t

v t

τ τ= − ⋅ + ⋅ ≤ ≤ ≤ ≤

⎛ ⎞+ +
⎜ ⎟= ⋅ − −
⎜ ⎟
⎝ ⎠

 (3.30)

 
On an arbitrary day, queue transition and ending times vary according to the capacity on that 
day. Given a stable long term equilibrium departure pattern exists, of which the temporal 
departure flow pattern is deterministic/constant from day-to-day, implying that 
 

( )( ) ( )*E D t D t=  (3.31)
 
where ( )*D t denotes cumulative departures at long term equilibrium state.  
 
Then the expected travel time (i.e. the long-term equilibrium travel time) for each regime can 
be expressed as: 
 

( )( ) ( ) ( ) ( )* * * *
1 0 0

1 ,     tE t D t E t t t t t
v t

τ
⎛ ⎞

= − − ≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.32)

 

( )( ) ( ) ( )( ) ( ) ( )* * * * * *
1 2 0

1 ,    t t cE t D t D t E t t t t t
v t

τ
⎛ ⎞

= + − − ≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.33)

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )* * * *
0 min

1 ,  ,  τ
⎡ ⎤⎛ ⎞

= ⋅ ⋅ − − ≤ ≤ ≤ ≤⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
u T u b c e

u

E t p t D t E t t C v t C t t t t
v t

 (3.34)

 
Once we substitute the properties of the stochastic outflow rates, we get: 
 

( )( ) ( ) ( )
*
1 * * *

0 0
max

,   t

D t
E t t t t t t

f Cθ

τ = − − ≤ ≤
⋅

 (3.35)
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( )( )
( ) ( )( ) ( )

* * *
1 2 * * *

0
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,    
t

t c

D t D t
E t t t t t t

f Cθ

τ
+

= − − ≤ ≤
⋅

 (3.36)
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The variance and the standard deviation of the travel times at departure time t can then be 
derived for the three regimes respectively as: 
 
1) Regime I, for time period  * *

0 tt t t≤ ≤ : 
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(3.38)

 

( )( ) ( )
( )

* * * 2
1 0 22

max

1 1 1 1,    ,   with ln
1C t CStd t D t t t t

C
τ χ χ

θ θθ

⎛ ⎞
= ⋅ ≤ ≤ = −⎜ ⎟

⎜ ⎟−⎝ ⎠
 (3.39)

 
2) Regime II, for time period  * *

t ct t t≤ ≤ : 
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(3.40)

 
          ( )( ) ( ) ( )( )* * * * *

1 2 ,       t t cCStd t D t D t t t tτ χ= ⋅ + ≤ ≤  (3.41)

 
3) Regime III, for time period  * *

c et t t≤ ≤ :  
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(3.42)

 
All the cost components in the long term future trip cost function have been analytically 
established. According to the principle of the dynamic user equilibrium for departure time 
choice, it holds * / 0,dc dt =  which means that travel costs are equal at all used departure 
times with non-zero flows. No traveler can reduce his/her long term future trip cost by 
unilaterally changing his/her departure time. With the first order differential equation, we can 
derive the early and late departure flow rates at the long term equilibrium state. For the 
detailed derivations, we refer to Appendix A. For the first two regimes, the departure flow 
rates can be directly derived as:  
 

( )* * *max
1 0

1
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1 1

t
Cr t t t t

f fθ θ
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⋅
= ≤ ≤
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(3.43)
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It can be seen from Formulae (3.43) and (3.44) that the departure flow rates for the first two 
regimes are constant, which is a consequence of the linearity assumption in the schedule delay 
cost function, the simple travel time function and the assumption of the independence of the 
capacity from the cumulative departures. The departure flow rates strongly depend on the 
capacity factor θ . With higher capacities, departure rates in the first two periods also will 
increase. For given θ , with increasing maxC  and increasing capacity range, departure rates go 
up. For given maxC , departure rates rise along with the increase of θ . In general, the higher 
the capacities, the higher the departure rates. These two departure flow rates appear 
independent of the demand N.  
 
There is no closed-form expression for the late departure rate ( )*

3r t  during * *
c et t t≤ ≤ . The 

finite difference method is used to obtain the numerical solution for the departure pattern at 
the third time period through the differential equation derived from * / 0.dc dt =  The 
differential of the cumulative departure ( )*

3D t  over time t is approximated by the finite 
difference given as: 
 

( ) ( ) ( )* * *
3 3 3dD t D t D t
dt

+ Δ −
=

Δ
 (3.45)

 
The differential of the travel cost over t for the third regime is given as: 
  

( ) ( )( ) ( )( )*
* *

2 2
( ) 0,   c e

dE t dStd tdc t t t t
dt dt dt

τ τ
α γ β γ= + + + = ≤ ≤  (3.46)

 
Substitute Formula (3.45) into Formula (3.46), the relationship between ( )*

3D t + Δ  and ( )*
3D t  

can be derived.  
 
Since we have the initial value at *

ct  that ( ) ( )* * * *
3 2c cD t D t=  and ending condition that 

( )* *
3 ,eD t N=  the numerical solution of the departure pattern for time period * *

c et t t≤ ≤  can be 
derived. A very small numerical step Δ  of 0.01 is adopted to derive the departure pattern with 
the boundary conditions. The smaller the step is chosen, the more accurate the results will be.   
 
However there are still four unknown variables * * * *

0 ,  ,  ,  .t c et t t t  
 
Several boundary conditions (see Formulae (3.47), (3.48), (3.49)) can be used to derive the 
relationship between *

0t  and * * *,  ,  .t c et t t  
 

( ) ( )* * * *
0 ec t c t=  (3.47)

( ) ( )* * * *
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( ) ( )* * * *
0 tc t c t=  (3.49)
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(3.44)
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Because there is no-closed-form solution for ( )*
3 ,r t  we firstly initialize one of the variables 

(we choose *
0t ) satisfying Formula (3.50): 

 

( ) ( ) ( )
* * *

* * *
0

* * *
1 2 3

t c e

t c

t t t

t t t
N r x dx r x dx r x dx= + +∫ ∫ ∫  (3.50)

 
and select the value of *

0t  with which the equilibrium cost is the minimum expressed as : 
 

( )* *
0

* * *
0 0arg min

t t
t c t

≤
=  (3.51)

 
Demand N directly influences the value of *

0t . Having established *
0t , the other critical time 

points * * *,  ,  t c et t t  can be derived sequentially. So does the equilibrium departure pattern. With 
the long term equilibrium departure pattern, the real experienced travel times and schedule 
delays vary over days according to the stochastic capacities. Appendix A provides the detailed 
derivations and information on the numerical method.  

3.3.5 Graphical results on the departure pattern at long term equilibrium 
 
This subsection presents the graphical results for the long term equilibrium departure flow 
patterns under degradable capacity for a bottleneck model with a demand N, a uniformly 
distributed stochastic capacity with maxC  and  θ = 2/3, and an identical PAT. The mean 
capacity is equal to the deterministic capacity in the deterministic bottleneck case in Section 
3.2. The capacity distribution satisfies that ( ) 0.1 ( ),std C E C≈  meaning that the standard 
deviation of the capacity distribution is about 10% of the mean capacity.  Standard deviation 
and the expectation of the uniform capacity distribution are expressed as 

( ) ( )( )1/ 2
2 2 2
max max max min( ) / 3std C C C C C E C= + + −  and ( )max min( ) / 2.E C C C= + Values of 1.0, 

1.2, 0.8 and 1.2 are adopted for parameters 1 2,  ,  ,  α β γ γ  respectively.  
 
Figure 3.4 shows the equilibrium departure pattern of the stochastic capacity case including 
travel time reliability in traveler’s choice behavior and the deterministic capacity case 
(equaling the mean capacity) with a constant travel demand N. In the picture, all the critical 
times and moments are indicated. It can be seen that the departure patterns are significantly 
different with and without including travel time reliability in the travel cost function. The 
larger the capacity variation is, the more significant the departure patterns are different. 
Departure flows are more spread over a longer time period ( ( )* *

0et t− increases). Travelers 
depart earlier after a long term adaptation when they consider travel time reliability as part of 
the travel cost under uncertainty. The number of earlier arrivals based on the expected travel 
time increases due to travelers attempting to depart earlier. With inclusion of travel time 
reliability in the travel cost function, the congestion onset at the bottleneck starts earlier and 
its end is also earlier for the same PAT, compared with the deterministic case.  
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Figure 3.4: Cumulative departures with and without including travel time reliability in 
the travel cost function 
 
Figure 3.4 didn’t present the capacity line/outflow rate line at the long term equilibrium 
simply because the cumulative capacity line/outflow rate line (denoted as W*) does not exist 
at all at equilibrium. For some purposes, we define two categories of cumulative outflow lines 
at long term equilibrium. One refers to the average cumulative outflow from the bottleneck 
(i.e. ( )( ) ,E W t  named category I) and another refers to the cumulative outflow with which 

* *( ( ( )) ( )W t E t D tτ+ =  holds (named category II).  
 
Cumulative outflow category I at long term equilibrium: 
 
On a single day, the cumulative outflow can be calculated as: 
 

( )*
0

( )
t

t
W t v t dt= ∫  (3.52)

 
Then the expectation of the cumulative outflow is expressed as: 
 

( ) ( )*
0

( )
t

t
E W t E v t dt= ∫  (3.53)

 
Specifically for each regime, the expectation of the cumulative outflow is formulated as: 
 

( ) ( ) ( )( )( ) ( ) ( ) ( )max* * * * *
1,2 0 0 0

1
( ) =   with  ,   

2 c

C
W t E W t E v t t t t t v t C t t t

θ+
= = − − = ≤ ≤  (3.54)

 

( ) ( ) ( ) ( ) ( )( )*
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1
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2 c

t
c c et

C
W t E W t t t E v t dt t t t
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= = − ≤ ≤∫  (3.55)
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Cumulative outflow category II at long term equilibrium: 
 
Another capacity line is defined in order to be able to see the expected travel time for any 
time instant t directly, which is equivalent to saying that * *ˆ( ( ( )) ( )W t E t D tτ+ = .  
 
If we define  ( )*v t  as the equilibrium outflow rate, with which it holds that: 
 

( ) ( )*
0

* *t

t
W t v t dt= ∫  (3.56)

 
then for the first two regimes we have: 
 

( ) ( )
* * *
1,2 01

1 ,     cv t t t t
E C−

= ≤ ≤  (3.57)

 
For the third regime * *

c et t t≤ ≤ , ( )*
3v t  can be derived from the following equation: 

 

( )( )( ) ( ) ( ) ( ) ( )*
* * * * * * * * * * *

0 3 1 2 3
11/ ,    

c

t
c c t c c et

E t E t t v t dt D t D t D t t t t
C

τ⎛ ⎞ ⋅ + − + = + + ≤ ≤⎜ ⎟
⎝ ⎠ ∫  (3.58)

 
Figure 3.5 shows the cumulative departures and the defined two categories of cumulative 
outflow lines at the long term equilibrium.2 Since small capacity variation is defined, the two 
categories of the outflow lines are very close to each other except in the third regime. If larger 
capacity variations are chosen, these two lines are significantly different, see (Li et al. 2008b; 
Li et al. 2008d). 
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Figure 3.5: Cumulative departures and two categories of cumulative outflow lines at the 
long term equilibrium 
                                                 
2 The graphical results given in Chapter 3 show the long term equilibrium departure patterns and travel costs for general 
stochastic bottleneck models. Therefore, no scales are provided in the figures. Appendix B provides the graphical results with 
scales for a comparison with the simulation-based approach.  
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Figure 3.6 shows the expected travel times at the long term equilibrium with stochastic 
capacities and the travel times at deterministic capacity case. On average, travel times are 
shorter in the stochastic case, because the departure flows are more spread over a longer time 
period. In the third regime, the expected travel time is non-linear and convex. The decreasing 
speed of the expected travel time gradually declines. 
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Figure 3.6: Expected travel times with stochastic capacities and travel times with 
deterministic capacity 
 
Figure 3.7 presents the long term future trip costs at equilibrium (namely the long term 
equilibrium costs) by component.  
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Figure 3.7: Long term equilibrium costs by component 
 
It can be seen that at the long term equilibrium, the travel costs for any traveler departing at 
any time t are equal. This result satisfies the user departure time equilibrium principle and 
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validates the analytical analysis. It also can be seen that the schedule delays based on the 
expected travel time decrease to zero while approaching *.tt  Travel time reliability in relation 
to the departure time and to the expected travel time can be seen as well. Travel time 
variability in the experienced travel time firstly increases and then decreases, but not to zero. 
It is noticed that in the third regime after *

ct , all the cost components are non-linear.  
 
An important finding is that the standard deviation of travel time is not proportional to the 
expectation of travel time, as many assume to be, see (Daganzo and Sheffi 1977; Bovy 1990). 
Although the travel time in the bottleneck model is waiting time at a bottleneck, while 
(Daganzo and Sheffi 1977; Bovy 1990) refer to the section travel times. Given a fixed number 
of travelers, the first travelers departing at *

0t  will never experience queues and always have 
free flow travel time, thus there is no experienced travel time variability for them. The later a 
traveler departs, the larger the variability he/she might encounter between days. That is also 
one reason why travelers attempt to depart early to reduce their travel time variability and 
risks in case of stochastic capacities. Of course it is constrained to the case that all the 
travelers have an identical preferred arrival time. The findings are specifically for the peak 
hour within a time window around the PAT. If a traveler departs very late, which is out of the 
scope of our analysis period, the variability of travel time might be very low due to the 
absence of congestion. 
 
Previous pictures all present the results at the long term equilibrium. It should be born in mind 
that the resulting departure pattern at long term equilibrium is deterministic. However the 
experienced day-to-day travel times and the number of travelers experiencing queues change 
according to varied capacities over days. Figure 3.8 presents the daily experienced traffic 
situations with maximum and minimum capacities. The maximum and minimum experienced 
travel times for travelers departing at t can be derived. For instance, travelers departing at *

ct  
will encounter zero delays on the days with the maximum capacity (see the dashed line), 
while a large delay on the days with the minimum capacity (see dash-dotted line). Travelers 
departing at *

tt  may encounter the maximum delays on the days with the minimum capacity. 
On the days with maximum capacity, about 92% (out of a total demand N) travelers will 
experience delays. The rest of the travelers departing after *

ct  will not encounter any delays. 
Their experienced travel times are equal to free flow travel time on those days.  
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Figure 3.8: Range of experienced day-to-day travel times 
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Figure 3.9 presents the expected travel times and the experienced travel times with maximum 
capacity and with minimum capacity. Travelers departing at *

0t  always experience zero delays 
and *

0t  is fixed point. This is the limitation of the simple Vickrey’s bottleneck model. A lot of 
assumptions are not realistic, for instance homogeneous travelers with an identical PAT and 
the same travel cost functions. The analysis can be made more realistic by relaxing the 
assumptions and modeling heterogeneous travelers with a distribution of PAT and different 
travel cost functions. Taste diversity and PAT distribution through the population will lead to 
much wider departure patterns than derived in above analysis.  Then the queue starting point 
will vary over days as well.  
 
It is clearly seen from Figure 3.9 that the travel times are zero after *

ct  on days with maximum 
capacity, which reduces the travel time variations dramatically around the expectation of 
travel time, thus leads to decreased travel time variability after *

ct . It also leads to the non-
linearity in the expected travel time and in other cost components in the third regime. The 
maximum experienced travel time after *

ct  is also non-linear due to the non-linear departure 
pattern. Before *

ct  the range of travel time variations increases around the expectation of 
travel time, leading to rising travel time variability, which further proves the findings from 
Figure 3.7 on the travel time reliability in relation to expected travel time and departure time.  
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Figure 3.9: Extreme experienced travel times with minimum and maximum capacities 
and expected travel times 
 
As aforementioned, it may happen in Figure 3.8 that the maximum capacity value is larger 
than the early departure rate and that there is no intersection between the cumulative 
departures and the maximum capacity line. Then all travelers will have free flow travel time 
on that day. It should be clarified that the position of the resulting cumulative departure curve 
relative to the extreme positions of the capacity lines is fully depending on the capacity 
fraction factor θ . We have that ( ) ( ) ( )* * *

1 2 3r t r t r t> >  (Appendix A shows why this holds in 
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general), thus we only need to investigate the relationships between ( )*
1r t  and max ,C  and 

( )*
2r t  and min .C  

 
Table 3.1 presents the relative slope of ( )*

1r t  and ( )*
2r t  to the maximum capacity and 

minimum capacity respectively in relation to different θ  values (according to Formula (3.44), 
( )*

1 max/r t C  and ( )*
2 min/r t C  are simply a function of θ , a larger θ  value indicates a smaller 

capacity variation).  
 
Table 3.1: Departure rates in relation to the capacity variation factor θ  
 

θ  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

( )*
1 max/r t C  0.36 0.64 0.93 1.25 1.63 2.07 2.60 3.23 4.01 

( )*
2 min/r t C  1.27 0.89 0.74 0.65 0.59 0.55 0.52 0.49 0.47 

 
It is found that in the case that θ  satisfies 1/ 3 1θ≤ < , then the early departure rate ( )*

1r t  will 
be always larger than the maximum capacity, which means that the equilibrium departure 
pattern always starts to the left of the maximum capacity line so that there is always an 
intersection between the cumulative departure curve and the maximum capacity line. With 
this condition that 1/ 3 1θ≤ < , it holds as well that ( )*

2r t  will be smaller than the minimum 
capacity line, thus ( )*

3 minr t C<  holds as well. There is always an intersection between the 
cumulative departure line and the minimum capacity line, which implies that on the worst 
days with minimum capacity the queues will ultimately resolve. We think that 1/ 3θ =  
already represents a very large variation in real-world road capacities. 1/ 3 1θ≤ <  is a realistic 
range capturing the day-to-day capacity variations caused by minor incidents, weather 
volatility, etc. In a previous analysis, we had 2 / 3.θ =  For extreme case with 1/ 3θ = , see (Li 
et al. 2008d). Of course, this conclusion depend on the parameter values 1 2,  ,  ,  .α β γ γ  For 
different parameter values 1 2,  ,  ,  ,α β γ γ  different ranges of θ  values will be derived. 
 
Figure 3.10 and Figure 3.11 present a comparison of the equilibrium departure patterns, 
category II outflow lines and costs for different capacity variations with the same mean 
capacity and different θ  values respectively. The same demand N is modeled. In both figures, 
the solid lines represent the departure pattern and all the costs for capacities with max1C   and 

1 0.56.θ ≈  The dashed lines represent the departure pattern and the costs for capacities with 
max 2C  and 2 0.67.θ ≈  We have that ( ) ( )1 2 .E C E C= It can be concluded that given the same 

mean capacity, the larger the θ  is, the larger the early departure rate is and the shorter the 
time period is (i.e. * *

0et t− ). With smaller θ  and larger capacity variations, travelers depart 
much earlier due to the larger travel time variability as can be seen in Figure 3.11 that the 
travel time unreliability is much higher with capacities 1C . It is quite plausible that travelers 
depart earlier in case of dealing with high risks with larger travel time uncertainty. Comparing 
the costs from the capacity distributions, only the travel time reliability costs are significantly 
different, whereas the other cost components are very similar. The larger the θ  is, the smaller 
the equilibrium cost is.  
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Figure 3.10: Departure patterns comparison with different capacity distributions with 
the same mean capacity 
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Figure 3.11: Equilibrium travel costs comparison with different capacity distributions 
with the same mean capacity 
 
Figure 3.12 and Figure 3.13 show the equilibrium departure patterns and the equilibrium costs 
for different capacity distributions with the same maximum capacity with the same demand N. 
The solid lines present the departure pattern, category II outflow line and the equilibrium 
costs with a uniformly distributed capacities with a max1C  and 1 1/ 3.θ =  The dashed lines 
instead show the case with a max 2C  and 2 2 / 3.θ =  We have max1 max 2C C=  and 
( ) ( )1 2 .E C E C<  While the previous comparison showed the impacts of θ , this comparison 

shows the joint impacts of θ  and overall capacity (i.e. mean capacity). It can be seen that with 
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a large capacity factor θ  (i.e. a smaller capacity variation) and a smaller mean capacity, 
travelers depart much earlier and the travel costs especially the travel time reliability costs are 
remarkably higher. The departure pattern is fully dependent on the capacity variations.  
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Figure 3.12: Departure patterns comparison with different capacity distributions with 
the same maximum capacity 
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Figure 3.13: Equilibrium travel costs comparison with different capacity distributions 
with the same maximum capacity 
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3.4 Conclusions and Discussions 

Vickrey’s bottleneck model has been extended twofold toward the stochastic capacities and 
including travel time reliability in the travel cost function. Based on the generalized mean-
variance scheduling approach for modeling traveler’s departure time/route choice behavior 
under uncertainty, this chapter analytically investigated the departure pattern under stochastic 
networks. A long term equilibrium pattern emerges from day-to-day adaptation. A 
deterministic departure time and dynamic user equilibrium with stochastic network and 
vertical queues (SN-DDDUEV) is achieved.  
 
It appears that consideration of random capacity and travel time reliability leads to 
significantly different departure time patterns compared to the deterministic capacity case, 
mainly yielding shifts towards earlier departure times. Travel time unreliability appears to 
increase firstly with departure time and then decrease to a certain nonzero value. The later a 
traveler departs, the larger travel time variability he/she might encounter. This is also a reason 
why travelers depart earlier in order to reduce travel time variability.  
 
In reality, the queue starting point will change everyday according to the network capacity 
since the departure pattern in reality is more spread over a longer time period. Travelers are 
heterogeneous in PAT, in travel cost function, etc, which is more complicated than what we 
modeled. Our bottleneck model is a very simple model, a lot of assumptions are not realistic. 
We assumed homogeneous travelers with an identical PAT and the same travel cost functions. 
Linear schedule delay function and simple travel time functions are assumed. Therefore in our 
analysis the queue onset point is fixed over days (which will be proven also by the simulation-
based approach in next chapter). The analysis can be improved more realistically by relaxing 
the assumptions and modeling heterogeneous travelers with a distribution of PAT and 
different travel cost functions. Taste diversity and PAT distribution through the population 
will lead much wider departure patterns than derived in our analysis.  Then the queue starting 
point will vary over days as well.  
 
Due to the complexity of the theoretical derivations capturing dynamics within-day and over 
days considering stochastic capacity, the theoretical analysis is only carried out for a single-
link bottleneck with homogeneous travelers. The next chapter will adopt and introduce a 
simulation-based approach capable of analysis on larger and more complex networks with 
joint departure time/route choices. The simulation-based approach with the vertical queues 
assumption and horizontal queues are presented for different purposes. The departure pattern 
will be analyzed with a simulation-based approach as well in the next chapter. 
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4 Dynamic User Equilibrium and a Simulation-
based Solution Approach 

4.1 Introduction 

In Chapter 3 we have established analytical analyses of the reliability-based departure time 
user equilibrium on a single bottleneck under stochastic capacity with continuous time and 
continuous flows. Already this simple case appears to be fairly complex. Aiming at analyzing 
large and realistic networks and to be useful for real applications in network evaluation or 
network designs, we will develop a general reliability-based network modeling framework 
and establish a simulation-based approach dealing with discrete time and continuous flows to 
solve the general problem. Another purpose of developing the simulation-based approach is to 
validate the analytical analysis and its findings presented in Chapter 3.  
 
There are two major sources leading to travel time unreliability over days, namely day-to-day 
capacity variations and demand fluctuations. With regard to demand variation modeling, it is 
normally assumed by most of the researchers (Shao et al. 2006) that the OD demand follows 
normal/lognormal distributions approximated by multivariate normal/lognormal link flow 
distributions. Static user equilibrium is achieved with a flow conservation constraint for the 
mean route flows and mean OD demand. However, with dynamic traffic assignment with 
departure time choice, modeling stochastic demand will be much more complicated than with 
static assignment. Based on our best knowledge, no research has been done on the dynamic 
network modeling with stochastic travel demand. From our opinion, the queue onset points, 
ending points, the time period, route flows for any k will be all stochastic variables for a given 
PAT. A more refined definition of the long term equilibrium with stochastic demand should 
be established, especially the flow conservation at the long term equilibrium needs a clear 
definition and formulation. Based on our work (Li et al. 2007a) on network reliability-based 
optimal toll designs considering simultaneous variations in travel demand and capacities, it 
may be expected that if the demand fluctuation is considered, the travel time variation 
experienced by travelers will be significantly larger than only modeling capacity variations. 
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Given the same PAT, travelers might depart even earlier in order to reduce the probability of 
arriving late at destinations. The departure time point *

0t  and *
et  will be distributions as well, 

which will be left out for future research. Only stochastic capacity is modeled as the major 
factor causing unreliable travel times. Although day-to-day demand fluctuation is not 
considered, the amount of travelers experiencing delays is a stochastic variable over days due 
to capacity variations.  
 
It is assumed throughout this chapter that travelers are homogeneous with the same long term 
travel cost function and an identical PAT.  
  
This chapter will formulate several user equilibrium models meant for different purposes such 
as validating the simulation-based approach, validating our analytical analysis on the 
stochastic bottleneck model, more realistic modeling for general stochastic networks, and 
facilitating the investigations on the influence of reliability and dynamic modeling on the 
network designs. The models are distinguished by whether deterministic or stochastic 
capacities, deterministic or probabilistic user equilibrium, static or dynamic flows, and 
vertical or horizontal queues are modeled. Four models will be depicted, which are SN-
DDDUEV (Stochastic Network and Departure time and Dynamic Deterministic User 
Equilibrium with Vertical queues), SN-DDPUEH (Stochastic Network and Departure time 
and Dynamic Probabilistic User Equilibrium with Horizontal queues), DN-DDDUEV 
(Deterministic Network and Departure time and Dynamic Deterministic User Equilibrium 
with Vertical queues), and SN-SPUE (Stochastic Network and Static Probabilistic User 
Equilibrium). Table 4.1 summarizes the basic properties of the four models.  
 
Table 4.1: Properties of different network models 
 

 SN-
DDDUEV

SN-
DDPUEH

DN-
DDDUEV

SN-
SPUE 

Constant and 
Deterministic 

    

Demand 
Elastic and 
Stochastic 

    

Deterministic     Capacity 
Stochastic     
Deterministic     Equilibrium 
Probabilistic     
Vertical     Queue 

modeling Horizontal     
Static     Network 

flows Dynamic     
 
This chapter will firstly introduce these different models with their different assumptions. 
Then a general framework of a simulation-based approach solving the different user equilibria 
will be illustrated. The model specifications of joint departure time/route choice, the dynamic 
network loading, correlated link capacity randomization and convergence criteria will be 
provided for each model. The simulation-based approach with vertical queues is applied to the 
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single bottleneck model for both the deterministic and stochastic capacity cases. The results 
will be presented and compared to the analytical findings from Chapter 3. Finally some 
conclusions are drawn. 

4.2 Stochastic Network and Departure time and Dynamic Deterministic 
User Equilibrium with Vertical Queues 

The long term deterministic user equilibrium with stochastic capacity and deterministic 
departure time choice was formulated in Chapter 3 for a single bottleneck model in 
continuous time space, which belongs to the class of SN-DDDUEV (Stochastic Network and 
Departure time and Dynamic Deterministic User Equilibrium with Vertical queues, see (Chen 
et al. 2002a)). For the sake of validating the theoretical analysis given in Chapter 3, a more 
general formulation of the model SN-DDDUEV will be presented in this subsection for a 
general network for which a simulation-based approach will be developed. Due to this 
simulation-based approach, time will be discretized into time intervals k K∈  and flow 
propagations will be processed interval by interval. The model formulation will be presented 
in a discrete time version instead of in a continuous-time version. In case of continuous time 
formulations, departure flow rate at any time instant t is aimed to be derived, while in case of 
discrete time formulations, departure flows are derived for each time interval k. 
 
In this model, stochastic networks are modeled with stochastic link capacities. Travel time 
unreliability is caused by the day-to-day capacity variations. Within-day capacity is assumed 
constant. This model assumes that travelers are rational and have perfect knowledge of the 
distributive properties of the travel times at any departure time t and all routes and make their 
long term departure time and route choices so as to minimize their long term future trip cost 

( ).od
pc k  According to the derivation in Chapter 2 (see Formula (2.16)), the deterministic long 

term future trip cost for general networks in discrete-time is formulated in (4.1) by assuming 
linearity in schedule delay cost, which is an approximation to the reality: 
 

( ) ( ) ( )( )( ) ( )( )
( )

1 2

             

α τ γ τ γ τ

β τ

+ +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ − + + ⋅ + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤+ ⋅ ⎣ ⎦

od od od od
p p p p

od
p

c k E k PAT k E k k E k PAT

Std k
 (4.1)

 
The long term future travel cost ( )od

pc k  on route p between (o, d) when departing at time 
interval k is deterministic. Homogeneous travelers with an identical PAT and the same travel 
cost function are modeled. Again ( )( ) ( ){ }max 0,  .x k x k

+
=  ( )τ od

p k  denotes the day-to-day 
stochastic route travel times when departing at time interval k. In case of working with 
continuous time t, the stochastic travel time ( )τ od

p t  given a randomized combination of link 
capacities is unique. Whereas in case of working with discrete times, the stochastic travel time 

( )τ od
p k  for departure time interval k is an average of the travel times from all the time steps 

lying in this departure time interval.  

4.2.1 Formulation of SN-DDDUEV 

The dynamic user equilibrium with joint departure time/route choices under daily travel cost 
uncertainty can be formulated as a finite-dimensional variational inequality problem for 
discrete time: 
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( )
,

( ) ( ) ( ) 0,     .− ≥ ∀ ∈∑∑∑ df f Ωod od od
p p p

o d p k

c k f k f k  (4.2) 

 
This VI formulation simply states that given user equilibrium costs ( )( ), , , , ,∀fod

pc k o d p k  
any deviations from the dynamic user equilibrium flow matrix f  cannot reduce total costs. In 
other words, no traveler would be tempted to reduce his/her long term travel cost by changing 
his/her departure time or route, as no alterative route or departure time would offer a lower 
long term cost. Still, continuous flows are assumed instead of discrete flows (the equilibrium 
may be different for continuous flows and discrete flows). ( )od

pf k  denotes the deterministic 
equilibrium flows on route p between (o, d) departing at time interval k. ( )fod

pc k  is a 
function of the dynamic equilibrium flow matrix .f  The travel costs at k is mainly determined 
by the cumulative departure flows from previous time intervals. It should be noticed that with 
discrete time, ( )od

pf k  denotes the flows for a time interval k while with continuous time 
( )od

pf t  denotes flow rate at time instant t. dΩ is the set of feasible dynamic route flow matrix 
f  (dimension in route by dimension in time interval), defined by the flow conservation (4.3) 
and non-negativity (4.4) constraints, respectively: 
 

( )( ) , , ,
od

od od
p

kp P

f k q o d
∈

= ∀∑ ∑  (4.3) 

 
( )( ) 0, , , , .od

pf k o d p k≥ ∀  (4.4) 
 
Due to the constant travel demand, the flow conservation (4.3) holds at the long term 
equilibrium. If stochastic travel demand is modeled, a new formulation of the flow 
conservation needs to be defined. The objective of this VI formulation is to find the optimal 
departure pattern ∈ df Ω  with which no traveler could reduce his/her long term trip cost by 
changing his/her departure time or the route. The long term trip costs of the used departure 
time intervals on all the used routes are minimum and equal within each OD pair.  

4.2.2 Existence of SN-DDDUEV 

For purpose of validating the analytical analysis in Chapter 3, the same travel time function is 
used as in stochastic Vickrey’s bottleneck model, which is simply computed by the queue 
length over the bottleneck capacity. As shown in Chapter 3 in a continuous time version the 
long term trip cost at any time instant is a continuous function of the departure flow rates .f  
In a discrete time version, the stochastic travel time at time interval k, which is an average of 
the travel times from several time steps, is a continuous function of the departure flows at 
time interval k. The long term trip cost when departing at time interval k then is also a 
continuous function of the departure flows .f  dΩ  is a nonempty and closed convex set. 
According to the theorem 3.1 from (Chen 1999), the VIP has at least one solution. A long 
term deterministic equilibrium will emerge.  

4.2.3 Simultaneous departure time/route choices 

Simultaneous departure time and route choices are modeled instead of sequential modeling. 
Deterministic equilibrium assignment is performed.  
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4.2.4 DNL with vertical queues 
 
In order to capture the dynamics of the traffic and propagation of the traffic flows, a dynamic 
network loading (DNL) model is needed, which simulates the dynamic propagation of route 
flows over the links in the network and yields time-dependent link travel times 

( ) ,  τ ∀ ∈Ca k a A  with a specific capacity vector [ ],  = ∀ ∈C aC a A . The input of DNL at 
iteration i is the derived departure flows ( ) ( )od i

pf k .  
 
A DNL model simulating vertical queues without spillback is modeled for comparison 
purpose with the theoretical analysis performed in Chapter 3. A simple link travel time 
function consistent with Vickrey’s bottleneck model is applied, which is simply computed by 
the queue length on link a divided by the link capacity, given as: 
  

( ) ( ) ,  τ = ∀ ∈C a
a

a

Q k
k a A

C
 (4.5) 

 
where ( )aQ k  denotes the queue length on link a at time interval k. 
 
In contrast to the horizontal queue modeling, vertical queue modeling does not control the 
link inflows by assuming that each link does not restrict to the physical capability and can 
accommodate infinite number of vehicles without spillback to the upstream link and without 
influencing the inflow capacity into this link and the outflow rate of the upstream link. The 
link outflow rate is determined by the node model from (Bliemer 2007). The node model 
relates the inflows into and outflows out of each node, which takes into account the inflow 
capacities into the outgoing links and the potential outflow rates coming from the incoming 
links. The outcomes of the node model are the dynamic link outflow flows rates. With 
modeling vertical queue, the inflow capacity of the downstream link always equals its 
capacity. The potential outflow rate of the link may equal its inflow rate, its capacity, or the 
inflow capacity of the downstream link. 

4.2.5 Modeling stochastic capacities 

Link capacities are assumed to follow a distribution representing the day-to-day variations. 
Let X denote a vector of random draws with .=X n  For the purpose of comparing the 
simulation-based approach with the theoretical bottleneck analysis given in Chapter 3, a 
uniformly distributed link capacity is modeled. A vector of uniformly distributed link 
capacities can be drawn by: 
 

( )min max min= + − ⋅C Xa a a aC C C  (4.6) 
 
In order to well represent the capacity distribution, a quasi-Monte Carlo approach using 
Halton draws (Halton 1960) is adopted to model these stochastic capacities. In this thesis, X  
is a vector of Halton draws (also called Halton sequences). Halton sequences are designed to 
give fairly even coverage over the domain of the distribution. These sequences are 
deterministic, but of low discrepancy. They were first introduced in 1960 and are an example 
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of a quasi-random number sequence. The Halton sequences are defined with a number, for 
instance with number 2, 3, or 5.3  

4.3 Stochastic Network and Departure Time and Dynamic Probabilistic 
User Equilibrium with Horizontal Queues 

This subsection presents the SN-DDPUEH model (Stochastic Network and Departure time 
and Dynamic Probabilistic User Equilibrium with Horizontal queues). Compared to the SN-
DDDUEV, probabilistic user equilibrium is achieved and horizontal queue is modeled to 
consider the physical capacity of the link and to capture the spill back effects in the network. 
More accurate and realistic travel times can be derived with modeling horizontal queues 
instead of vertical queues. This model is used for general stochastic network modeling and 
network design problem dealt with in Chapter 5. Still stochastic networks are modeled with 
stochastic link capacities. Due to the errors that may stem from perception variations on the 
cost component, the component-specific parameters, the type of cost function and incorrect or 
missing cost components, modelers are not sure how exactly travelers make their choices, 
therefore by adding an error term in the travel cost function to capture the uncertainties. 
Travelers are assumed to make their strategic departure time and route choices so as to 
minimize their perceived long term trip costs ˆ ( )od

pc k  which includes a random component. 
The perceived long term travel cost, which is a stochastic variable (different from previously 
defined stochastic travel cost ( ),od

pc k  ( )od
pc k  is caused by stochastic capacities, while ˆ ( )od

pc k  
is due to the uncertainty in modeling from the modelers), is defined as: 
 

( ) ( ) ( )ˆod od od
p p pc k c k kε= +  (4.7) 

 
where ( )od

pc k  denotes the deterministic travel cost as defined in Formula (4.1). ( )od
p kε  is the 

random error component used by the modelers. 

4.3.1 Formulation of SN-DDPUEH 

The SN-DDPUEH model can be formulated as a finite-dimensional variational inequality 
problem (see e.g. (He 1997)) for discrete time: 
 

( )
,

( ) ( ) ( ) 0,     .
∈

− ≥ ∀ ∈∑ ∑ ∑ df f Ω
od

od od od
p p p

o d kp P

F k f k f k  (4.8) 

 
where 
 

                                                 
3 Monte Carlo, also called pseudo-Monte Carlo, is based on sequences of pseudorandom numbers, while Quasi-monte Carlo 
is based on a subsequence of a low-discrepancy sequence. For illustrations, a Halton sequence with a number 3 is constructed 
as follows (Train, K. 1999). Take the unit interval (0, 1) and divide it into 3 parts. The dividing points become the first two 
elements of the Halton sequence: 1/3 and 2/3. Now take each of the three parts and divide them into 3 parts. The dividing 
points constitute the next elements in the Halton sequence: 1/9, 4/9 (which is 1/9 above 1/3), 7/9 (which is 1/9 above 2/3), 
and 2/9, 5/9 (which is 2/9 above 2/3), and 8/9 (which is 2/9 above 2/3). The unit interval has now been divided into nine parts. 
Divide each of these nine parts into thirds. The dividing points are 1/27, 10/27, 19/27, 4/27, 13/27, 22/27, 7/27, 16/27, 25/27 
and 2/27, 11/27, 20/27, 5/27, 14/27, 23/27, 8/27, 17/27, 26/27. Each of the 27 spaces are then divided into three parts, and so 
on for as many numbers as needed in the sequence. Similar sequences are defined for other numbers, such as 2 (1/2, 1/4, 3/4, 
1/8, 5/8, 3/8, ...) and 5 (1/5, 2/5, 3/5, 4/5, 1/25, 6/25, 11/25, ...).  
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( ) ( )ˆ( ) ( ) ( ) ,
( )

∂
= −

∂

od
pod od od

p p p od
p

c k
F k f k f k

f k
 (4.9) 

 
where ( )rs

pf k  is the equilibrium flow departing at time interval k on route p between OD pair 
(o, d). ˆ ( )rs

pf k  is the intermediate departure flow, calculated by the OD demand for (o, d) 
multiplied by the proportion of travelers choosing route p among all route alternatives for an 
OD pair (o, d) and departure time interval k. The proportion can be calculated by any 
probabilistic model such as Path-Size logit model, C-logit model, Path Size Correction Logit 
(PSC-Logit) (Bovy et al. 2008), which account for the spatial overlap of routes. See Section 
4.3.3 for the formulations of ˆ ( ).rs

pf k  ( )od
pc k  denotes the equilibrium cost on when departing 

at time interval k on route p between OD pair (o, d). 
 

dΩ  is the same as defined in the model SN-DDDUEV. The long term equilibrium is also 
subject to the flow propagation constraint. 

4.3.2 Existence of SN-DDPUEH 

Dissimilar to the SN-DDDUEV with modeling vertical queues and a simple queue travel time 
function, the travel times and travel costs are much more complicated to be derived with 
horizontal queues than simply analytically derivable. We assume that any departure flow on 
route p corresponds to at least one and only one travel cost. Then the long term trip cost at any 
departure time interval is a continuous function of the departure flows .f  dΩ  is a nonempty 
and closed convex set. According to the theorem 3.1 from (Chen 1999), the VIP has at least 
one solution. A long term probabilistic user equilibrium will emerge after day-to-day 
adaptation of departure time and route choices.  

4.3.3 Simultaneous departure time/route choices 

Since a probabilistic user equilibrium is modeled, a probabilistic equilibrium approach is 
applied. Depending on the probability distribution of the random component included in the 
perceived travel cost, different models such as logit model, path-size logit model, probit 
model may be applied for calculating the flow proportions of travelers taking route p and 
departure time interval k.  
 
In case that ( )od

p kε  follow independent and identical Gumbel distributions. Then the 
intermediate departure flow on route p at time interval k at iteration i, denoted as ˆ ( )od

pf k  may 
be computed by a multinomial logit model (MNL): 
 

( )( )
( )( )

exp ( )ˆ ( ) ,   ( , ), , ,
exp ( )

od

od i
pod od

p od i
p

k Kp P

c k
f k q o d p k

c k

ω

ω
∈∈

−
= ⋅ ∀

−∑ ∑
 (4.10)

 
where ω  is a scale parameter. In case a large scale parameter is chosen, then a deterministic 
user equilibrium can be achieved as well with above model. ( ) ( )od i

pc k  denotes the 
deterministic travel cost on route p departing at time interval k between OD pair (o, d) at 
iteration i. However, MNL is the simplest model which cannot capture the correlations among 
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routes and departure time intervals. With modeling departure time choices, the correlations 
between adjacent departure time intervals are expected significant. Therefore a more 
sophisticated model is needed to calculate the intermediate departure flows.  
 
A Path Size Correction Logit (PSC-Logit) model proposed by (Bovy et al. 2008) is adopted to 
compute the intermediate departure flows. PSC-Logit is mathematically derivable and easy to 
be applied compared to other complex models such as PCL, CNL, Logit-Kernel and Probit. It 
also offers a more natural interpretation of the role of the correlation due to spatial overlap. 
The performance of PSC-logit is as good as or even better than the classical PS-Logit (Bovy 
et al. 2008). However this model only captures the correlations among routes. Correlations 
among different departure time intervals are not accounted for. No research has been done so 
far on the modeling of correlations among different departure time intervals. We assume an 
extra factor TIM  (time interval factor), similar to the path size factor, to capture the 
correlations among different departure time intervals. The model is given in Formula (4.11): 
 

( )

( )

1exp ( ) ln
ˆ ( ) ,   ( , ),

1exp ( ) ln

od
p

od od
p

od i
p PS a a TI TIod

apod od
p

od i
p PS a a TI TIod

k Kp P ap

c k d M M
d

f k q o d p

c k d M M
d

ω β β

ω β β

∈Γ

∈∈ ∈Γ

⎛ ⎞⎛ ⎞
⎜ ⎟− + +⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= ⋅ ∀
⎛ ⎞⎛ ⎞
⎜ ⎟− + +⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑ ∑ ∑
 

(4.11)

 
where od

pd  is the length of the route p between (o, d). od
pΓ  is a set of all links on route p 

between (o, d). aM  is the number of routes in the network traversing link a. PSβ  and TIβ  are 
the path size parameter and time interval parameter. If the correlations among all routes in a 
real network may cancel out, the path size factor does not influence of modeling results very 
much. We think the adjacent departure time intervals within a certain time period are highly 
correlated and outside of that time period they are weakly correlated or non-correlated. Since 
empirical analyses are needed to calibrate and validate the model with the time interval factor 
to capture the correlations among departure time intervals, we assume the correlations among 
departure time intervals cancel out in the end.  

4.3.4 DNL with horizontal queues  
 
As mentioned, DNL with modeling horizontal queues takes into account the physical 
capability of the links and captures the spillback effects, which simulates reality better and 
can provide more realistic travel times than vertical queue modeling does. The applied DNL 
model version simulating horizontal queues and spillback is taken from (Bliemer 2007). The 
reason to choose this DNL model is that it does not rely on the unrealistic restrictions made 
by other models. For instance many DNL models (Astarita 1996; Wu et al. 1998; Chabini 
2001; Bliemer et al. 2004) propagate the traffic flow using link travel time functions which 
assumes that the travel times are fixed while traversing the link and cannot deal with specific 
phenomena such as spillback and DTM measures with capacity changes. Also the delays are 
predicted inside the bottleneck instead of upstream of the bottleneck. The model proposed by 
(Ran and Boyce 1996) deals with queues and spillback by splitting a link into a free-moving 
part followed by a queuing part, but assuming the queue length and outflow capacity will not 
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change while traversing the link which is not realistic. Variable queue length is considered by 
(He 1997; Roels and Perakis 2004), but a constant outflow capacity is assumed. The model 
taken from (Bliemer 2007) does not rely on travel time functions that look forward in time, 
but it only uses queuing and exit functions that look backward in time. This model leads to a 
completely time-responsive dynamic queuing modeling without any assumptions on 
stationary flows, queue lengths, or outflow capacities. This DNL model consists of a link 
model and a node model. The link model describes the flow propagation through each link 
and assumes a dynamic horizontal queue. The node model relates the inflows into and 
outflows out of each node according to the dynamic route flow proportions, taking into 
account possible restricted flow capacities due to queue spillback. The formulation correctly 
deals with time-varying link attributes, such as inflow and outflow capacities and maximum 
speeds. Assuming first-in-first-out (FIFO) within each user class, the link travel times can 
easily be determined from the cumulative inflows ( )aU k C  and cumulative outflows 

( )aV k C  with a specific capacity vector as follows: 
 

( ) ( )( )1 ,   a a ak V U k k a Aτ −= − ∀ ∈C C C  (4.12)

 
Formula (4.12) is illustrated in Figure 4.1 showing the derivation of the link travel times. 
 

Cumulative 
link flows

Time

aU
aV

( ) ( )1a aU k V k=

k ( )( )1
1 a ak V U k−=

( )a kτ  
Figure 4.1: Derivation of link travel times 
 
Afterwards, route travel times given a specific capacity vector ( )od

p kτ C  can be calculated. 
Since the capacity vector C , representing a realization of stochastic link capacities for all 
links, is stochastic, the link/route travel times are stochastic as well. 

4.3.5 Capacity modeling  
 
As has been discussed in Section 3.3.3, different capacity distributions can be assumed. Due 
to the extreme value properties and the non-negativity of link capacities, weibull and gamma 
distributions are better to fit the capacity distributions. However, we assume that the capacity 
distribution can be sufficiently well represented by a normal distribution by controlling the 
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possible negative values. Another reason to choose normal distribution is that the apparent 
correlations among link capacities can be modeled due to the mathematical properties of 
normal distributions. Therefore the link capacities aC  in a general network is assumed to 
follow a normal distribution with a mean aμ  and a standard deviation :aσ  
 

( )2,  ,μ σ∼a a aC N  (4.13)
 
Let F  denote the cumulative distribution function of the standard normal distribution, then 
link capacities can be drawn with a vector of random draws X : 
 

( )1 ,μ σ −= + ⋅C Xa a a F  (4.14)
Based on empirical analyses (AVV Transport Research Center 1999), the standard deviation 
of the link capacity is about 10% of the mean value. When generating random capacities, the 
maximum absolute value drawn from the standard normal distribution is about 3.5. Then the 
stochastic capacity aC  is seldom negative due to ( 3.47) 10% 60% 0.a a a aC μ μ μ≥ + − ⋅ ⋅ ≈ ⋅ >  
When dealing with large capacity variations, we can control the random draws to avoid the 
negative link capacities. In case a negative capacity is drawn, the capacity is set to zero. 
 
Adjacent link capacities in a network naturally are correlated. In case of bad weather 
conditions, link capacities are prone to be positively correlated. In order to capture the 
correlations among link capacities during the quasi-Monte Carlo simulations, Cholesky 
decomposition of the covariance matrix of link capacities distribution is adopted to facilitate 
the correlated capacities draws.  
 
In a network, all the link capacities (a matrix, denoted as nC ) follow normal distributions 

( ),  C μ Σ∼n N  with a symmetric positive definite covariance matrix Σ  as: 
 

2
1 12 1

2
21 2 2

2
1 2

σ σ σ
σ σ σ

σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ

m

m

m m m

 (4.15)

 
where m is the total number of links in the network. A symmetric positive-definite matrix can 
be decomposed into a lower triangular matrix and the transpose of the lower triangular matrix. 
The matrix of link capacities can therefore be expressed as: 
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C X
C X

C Xm m m

F  (4.16)

 
where 1X m  are independent vectors of Halton draws. 1 mμ  denote the mean of link 
capacities for mth link. Δ  is a the lower triangular matrix such that the product of Δ  and its 
transpose TΔ  equals matrix :Σ  
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which is called Cholesky decomposition of Σ . Δ  is called the Cholesky triangle. The 
Cholesky decomposition is commonly used in the Monte Carlo method for simulating 
systems with multiple correlated variables.  
 
Independent distribution among all link capacities is a special case of Formula (4.17) with: 
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and  
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In the simulation, the variance-covariance matrix of link capacities needs to be firstly 
determined. Then the Cholesky decomposition is conducted with the variance-covariance 
matrix, after which the correlated or uncorrelated random capacities for all links in the 
network can be drawn simultaneously using Formula (4.16). We use a quasi-Monte Carlo 
approach using Halton draws .X  For different types of capacity distributions, Monte Carlo 
simulation is able to generate random draws for correlated variables by derivation of the joint 
CDF (Cumulative Density Function). A procedure of Monte Carlo simulation being able to 
preserve the correlations among variables for different types of distributions and for a mixture 
of different distributions has been demonstrated by (Chang et al. 1994).  

4.4 Deterministic Network and Departure Time and Dynamic 
Deterministic User Equilibrium with Vertical Queues 

This section briefly presents the DN-DDDUEV model (Deterministic Network and Departure 
time and Dynamic Deterministic User Equilibrium with Vertical queues). Compared to the 
SN-DDDUEV (Section 4.2), a deterministic network is modeled without considering 
stochasticity in capacities and travel times. Therefore there is no travel time reliability 
involved in the travel cost function and a deterministic dynamic user equilibrium is achieved. 
The purpose of establishing this model is to validate our simulation-based approach by 
comparing the analytical results from Vickrey’s bottleneck model with deterministic 
capacities with the results from simulation-based approach. Therefore vertical queues are 
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modeled. A consistent travel cost function as proposed by Vickrey is used to modeling 
traveler’s departure time/route choice behaviors, given as in a discrete time version: 
 

( ) ( ) ( )( )( ) ( )( )1 2
od od od od
p p p pc k k PAT k k k k PATα τ γ τ γ τ

+ +
= ⋅ + ⋅ − + + ⋅ + −  (4.20)

 
The formulation of the DN-DDDUEV model is the same as that of SN-DDDUEV given in 
subsection 4.2.1. The same DNL model and same deterministic assignment approach are 
applied as from SN-DDDUEV.  

4.5 Static Probabilistic User Equilibrium with Stochastic Networks 

This section presents the SN-SPUE model (Stochastic Network and Static Probabilistic User 
Equilibrium). This model assumes stochastic networks, while static traffic assignment is 
performed. A long term static probabilistic user equilibrium will emerge at which no traveler 
can reduce his/her long term route costs by unilaterally changing routes. The perceived route 
travel cost function ˆod

pc , adopted in SN-SPUE, is given as: 
 

ˆod od od od
p p p pc E Stdα τ β τ ε⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ +⎣ ⎦ ⎣ ⎦  (4.21)

 
where od

pτ  and od
pε  denote the stochastic route travel time and route-specific error term. There 

is no time dimension involved. SN-SPUE can be formulated as a VI problem, which is similar 
to the VI formulation of SN-DDPUEH (see Section 4.3.1) except that there is no time 
dimension. The VI formulation simply states that given user equilibrium route costs, any 
deviations from the user equilibrium route flows cannot reduce individual travel costs (Bell 
and Iida 1997).  
 
With static assignment, a travel time function is needed to estimate the travel time on route p. 
In this research, the BPR function is adopted to calculate the travel time on each of the routes. 
Static traffic assignment is not realistic, which can’t capture the propagation of flows and 
assumes the route flows are over all links on the same route. The capacity in the travel time 
function is normally in veh/hour, therefore the OD demand and route flows need to be 
transformed into a one-hour period to compute the route costs. Or the capacity should be 
transformed corresponding to the demand interval to make the travel time calculation realistic. 
In some cases, the time period is subdivided into small time intervals where for each time 
interval a static traffic assignment is performed with the dynamic OD demand matrix, which, 
although better than carrying out one static assignment for the whole period, is still not 
realistic and not comparable to dynamic traffic assignment model. For more discussions, see 
Chapter 7. 
 
The same assignment approach is applied as for SN-DDPUEH without departure time choice. 
Normally distributed link capacities are modeled using the same technique illustrated in 
subsection 4.3.5. This model will be used for static network design problem, which will be 
compared to the dynamic network design problem.  
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4.6 Convergence Criteria 

The method of successive averages (MSA), which is a special case of the Frank-Wolfe 
algorithm (Ortúzar and Willumsen 2000), is adopted to solve the equilibrium problem and to 
derive the deterministic equilibrium departure pattern: 
 

( ) ( )11 1 ˆ( ) 1 ( ) ( ),   ( , ), , ,od i od i od
p p pf k f k f k o d p k

i i
−⎛ ⎞= − ⋅ + ⋅ ∀⎜ ⎟

⎝ ⎠
 (4.22)

 
where ( ) ( )od i

pf k  denotes the departure flow on route p for time interval k between OD pair (o, 
d) at iteration i. Although MSA is a type of heuristic solution method, which does not 
guarantee descent for instance in the convergence criteria at every iteration, still it provides 
satisfactory convergence to the equilibrium with sufficient iterations. 
 
In order to check if the equilibrium is achieved or sufficiently achieved, some convergence 
criteria or measures are needed. Several measures are available to judge the convergence of 
the iterative simulations. Three measures are elaborated in this section: 1) gap function; 2) the 
relative changes in dynamic route flows; 3) duality gap. 

4.6.1 Gap function 
 
Since the VI problem can be transformed into an equivalent gap function minimization 
problem, many studies focus on the reformulation of the user equilibrium problem to an 
optimization problem with which many solution techniques are available. A function G is a 
gap function for the VI formulation if: 
 

( )
( )

0,  ,

0,  .

G

G

= ∈

≥ ∈

d

d

f f Ω

f f Ω
 (4.23)

 
The global minima of the gap function G coincide with the solutions of the VI problem. 
Therefore the gap function G provides a measure of convergence of the VI formulation at .f  
By minimizing G over ,f  equilibrium solutions f  are obtained. The VI formulation is 
equivalent to the minimization problem: 
 

( )min ,  G ∈ df f Ω  (4.24)
 
Different gap functions have been defined by other researchers. See some application for 
static assignment in (Facchinei and Soares 1995; Lo and Chen 2000) and for dynamic 
assignment (Smith 1993; Lu et al. 2009). 

4.6.2 Relative flow changes 
 
The measure of relative flow changes is defined as:  
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where ( ) ( ) ( ) ( )1od i od i

p pf k f k−−  indicates the absolute value of flow changes on route p between 
(o, d) at time interval k relative to the previous iteration (i-1). The relative flow change is such 
a measure to indicate how much flow is transferred to other departure time interval or other 
route at each iteration. Relative flow change is a good indicator of convergence in case of 
dealing with probabilistic user equilibrium, where travelers take into account the perceived 
travel costs. Although the duality gap will not converge to zero in case of SUE, the flow 
patterns should converge to a stable state and the relative flow change should go to zero. 

4.6.3 Duality gap 
 
The duality gap for the overall network convergence is defined instead of explicitly for each 
departure time interval since the departure time choice is modeled. The equilibrium should be 
reached among all the departure time intervals instead of within each departure time interval. 
The duality gap is a good indicator of the convergence when we model deterministic user 
equilibrium with deterministic travel costs. Travelers choose the departure time and route with 
the actual minimum travel costs. Define odπ  as the minimum route travel cost for users 
traveling from o to d among all departure time intervals ,k K∈  
 

( ){ } ( )
, 

min ,  ,  ,
od

od od
pp P k K

c k o dπ
∈ ∈

= ∀  (4.26)

 
At each iteration i, the duality gap is computed as follows:  
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where odq  is the travel demand between (o, d). The duality gap should finally converge to 
zero in case of a SN-DDDUEV, and DN-DDDUEV. In case of SN-DDSUEH, DN-DDSUEH 
and SN-SSUE however, the duality gap won’t go to zero since travellers consider the 
perceived travel cost which involves perception errors in the travel cost. The duality gap 
would decrease and stabilize at a certain positive value.  
 
The numerator of the duality gap is an example of the gap function. In this thesis, the duality 
gap is adopted to check the convergence of the equilibrium.  
  
From the simulation experiences, it is found that departure time choice equilibrium is much 
harder to be achieved than network equilibrium with route choice only. Normally with a 
dynamic OD matrix, modeling route choice only converges faster since the route costs are 
relatively independent of each other and mainly determined by the route flows. Route cost is a 
monotone increasing function of the route flow. Modifying the route flows according to the 



99

Chapter 4. Dynamic User Equilibrium and a Simulation-based Approach 75 

route travel costs leads to the convergence gradually to the equilibrium flow patterns, while 
with departure time choices, an increase or a decrease in the departure flows for a certain 
departure interval ( )od

pf k  does not mean a corresponding increase or decease in the travel 
cost ( )od

pc k  as we initially expected. The travel cost ( )od
pc k  largely depends on the 

cumulative departure pattern from previous time intervals and correlates with the departure 
flows from previous time intervals significantly. Using traditional algorithms, as done for 
route choice user equilibrium, by adjusting the departure flows based on the travel cost for 
that time interval is not very efficient leading to the equilibrium. Thus the departure time 
choice equilibrium takes much longer time and much more iterations to be achieved, 
especially for larger networks.  
 
Several simulation trials were performed to speed up the convergence. Dynamic scale 
parameters are used to converge better. For instance, start with a small scale parameter 
leading to more spread assignment among routes and departure time intervals. After a certain 
number of iterations, large scale parameters could be utilized, which indeed helps speed up 
the convergence. In order to reach SN-DDDUEV and DN-DDDUEV with a logit model being 
used, it is better to use route cost difference than route cost since a larger scale parameter can 
be used to converge better. It should be noticed that most departures occur before the PAT. 
The modeled time period and PAT should be set in such a way that the time period is best 
utilized instead of a time waste for useless calculations and sufficient departure time options 
are provided to travelers.  

4.7 Development of a Simulation-based Approach 

In this section, a simulation-based approach is developed and a framework will be established 
for solving all the elaborated models presented in previous subsections. In contrast to the 
analytical approach applied in Chapter 3, the simulation-based approach discretizes the time 
period into time intervals and time steps and traffic flow propagation is modeled per time step. 
The smaller the time step, the more accurate the travel time estimation, however the longer 
the computation time consumption. The results from the simulation-based approach are 
approximations to those from the analytical approach. Due to the complexity of the analytical 
approach, the simulation-based approach takes an advantage of the capability of modeling 
larger and complex stochastic networks. 
 
A general framework of the simulation-based approach is depicted in Figure 4.2, which is 
able to model stochastic/deterministic networks, dynamic/static user equilibria, with/without 
departure time choices.   
 
The inputs of the model are static OD demand, the travel cost function with parameter values 
and PAT, and the infrastructure network with link capacities. Firstly route set generation is 
performed to generate a predefined route set. Then the route costs are initialized for the first 
iteration based on the free flow travel times and the initial travel cost is simply composed of 
only travel time and schedule delays, so without an initial reliability cost. The outputs will be 
the equilibrium travel time reliability, departure pattern and equilibrium travel costs for all p 
and k. Of course there are other unreliabilities, however we only consider travel time 
reliability as the major explanatory factor of travelers choice behavior under uncertainty. 
There are two loops in the simulation-based approach:  
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1) an inner loop with DNL (Dynamic Network Loading), which propagates the traffic flows 
through the network and models the within-day dynamics. Each iteration loop represents a 
hypothetical day with a randomly drawn link capacity vector by repeating the within-day 
dynamics with varied link capacity vectors (representing over-day variations in capacities), 
the experienced travel time distributions and their properties can be obtained. Then the travel 
cost will be derived. 
  
2) an outer loop with simultaneous departure time/route choices. This is a typical process with 
simulation-based approaches. The departure flow on route p at k is derived iteratively with 
MSA since new travel costs will be obtained with predetermined flow patterns after each 
iteration and a new flow pattern will result. Until a certain defined convergence criterion is 
satisfied, the equilibrium is considered to be sufficiently achieved. The initial solution has 
remarkable impacts on the convergence. Some initial solutions appear not to lead to a 
convergence to the equilibrium with the heuristic approach MSA. From the simulation 
experiences, a unique equilibrium will be achieved. 
 
 

Static OD demand 

Initial route costs for all p and k

Simultaneous departure time and route 
choice modeling

Departure flows for all p and k using MSA 

Dynamic network loading

Stochastic link, route travel times

Travel time reliability, long term route 
costs

Next iteration

Equilibrium travel time reliability for all p and k Equilibrium departure pattern
Equilibrium travel costs

Convergence criteria

odq Network

( )od
p kτ

( )od
pc k

Route set generation and 
Path size factor calculation

and travel cost function with PAT

Randomize link capacities
completely exogenous

Intermediate departure flows for all p and k

 
 
Figure 4.2: Framework of the iterative simulation-based approach 
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4.8 Application to a Single Bottleneck Model with Deterministic Capacities 
and Vertical Queues 

The developed simulation-based approach has been programmed in Matlab for different 
models presented in previous sections. This section presents the application of the DN-
DDDUEV model on the single bottleneck to validate our simulation-based approach. The 
same demand N and bottleneck capacity are modeled as done in Section 3.2 on the Vickrey’s 
bottleneck model. The same travel cost function is applied with the same PAT. 
 
Figure 4.3 presents the equilibrium cumulative departures and arrivals for the single 
bottleneck with deterministic capacities from the simulation-based approach. Compared to the 
analytical results (see Figure 3.1 in section 3.2, both figures are illustrated in the same 
dimensions), consistent equilibrium departure patterns are derived from the simulation-based 
approach.  
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Figure 4.3: Cumulative departures and arrivals from the simulation-based approach for 
the deterministic single bottleneck case 
 
Figure 4.4 shows the equilibrium travel costs by components for the deterministic single 
bottleneck. It can be seen that the equilibrium has reached with the simulation-based approach, 
at which all the travel costs at the used departure times are equal and minimal. A unique 
equilibrium exists based on the simulation-based approach. 
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Figure 4.4: Equilibrium costs by component from the simulation-based approach for the 
deterministic single bottleneck case 
 
This application to the single bottleneck with deterministic capacity validates our simulation-
based approach since the results from the simulation-based approach are very much consistent 
with the theoretical solutions.  

4.9 Application to a Single Bottleneck Model with Stochastic Capacities 
and Vertical Queues 

To test the theoretical findings from Chapter 3, the validated simulation-based approach is 
applied to the SN-DDDUEV on the single bottleneck model. The same demand N and 
capacity distributions are modeled for the sake of consistency as presented in subsection 3.3.4. 
The same parameter values are adopted in the travel cost function with the same PAT. 20 
halton draws (n=20) are used to approximate the link capacity distribution.  
 
Figure 4.5 and Figure 4.6 present the cumulative departures at the long term equilibrium and 
the equilibrium costs by component respectively from the simulation-based approach for the 
single bottleneck with stochastic capacities. Figure 4.5 and Figure 4.6 are plotted in the same 
dimensions as Figure 3.5 and Figure 3.7 respectively in Chapter 3 and are totally comparable. 
Appendix B presents Figure 3.5 and Figure 3.7 with scales to facilitate the comparisons. In 
Figure 4.6 the equilibrium cost is not a straight line since the convergence criterion didn’t 
reach exactly zero. Due to the computation time, we think the equilibrium is sufficiently 
achieved. From the comparison, the solution from the simulation-based approach is highly 
consistent with the theoretical findings, which validates our theoretical analyses on the single 
bottleneck under stochastic capacities.  
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Figure 4.5: Cumulative departures and outflow line II from the simulation-based 
approach for the stochastic single bottleneck case 
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Figure 4.6: Long term equilibrium cost by component from the simulation-based 
approach for the stochastic single bottleneck case 
 
The simulation-based approach appears to give very accurate results as from the theoretical 
approach in modeling the departure time choice equilibrium under deterministic/stochastic 
capacities. Further it is easy to be applied for larger and more complicated networks. Thus the 
simulation-based approach rather than theoretical analysis with modeling horizontal queues 
will be used for large network analysis under stochastic capacities.  
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Another advantage of the simulation-based approach is its flexibility in employing different 
reliability measures which are difficult to be derived mathematically, for instance percentile 
travel times. 

4.10 Conclusions 

This chapter has formulated the long term dynamic user equilibrium under stochastic 
capacities with discrete time (SN-DDDUE and SN-DDSUE) and presented the framework of 
a simulation-based approach to solve the equilibrium problem with joint departure time/route 
choices. The detailed model specifications of simultaneous departure time/route choices, DNL 
models with horizontal queues and vertical queues, randomization of correlated link capacity 
draws, and the convergence criteria are depicted. The simulation-based approach with vertical 
queues has been applied to the single bottleneck case for comparison purpose with the 
analytical analyses performed in Chapter 3. It shows that highly consistent results are 
obtained from the simulation-based approach and the analytical analyses. The simulation-
based approach is able to derive very accurate results in modeling the long term dynamic user 
equilibrium and is very flexible and easy to be applied into more general networks. Thus the 
simulation-based approach with horizontal queues modeled in this chapter, capable of 
evaluating network performance considering travel time reliability in traveler’s departure 
time/route choice behaviors under uncertainty, will be adopted for road network designs, 
which will be the topic in the next chapter.  
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5 Reliability-based Dynamic Network Design with 
Stochastic Networks 

5.1 Introduction 

As has been concluded in Chapters 3 and 4, the departure pattern considering travel time 
reliability in traveler’s choice behavior will be significantly different from that without 
including travel time reliability in the choice behavior. As discussed in Chapter 2, modeling 
travel time reliability in the travel cost function better reflects traveler’s choice behavior under 
uncertainty. Without considering travel time reliability in traveler’s choice behavior under 
uncertainty, the network performance will be evaluated inaccurately, which will directly 
influence network assessment and network designs. Furthermore, the potential applications 
presented in subsection 1.5.2 (reliability-based dynamic toll design, dynamic peak hour lane 
design, and dynamic speed limit design) together motivate our reliability-based dynamic road 
network design approach, in which a road network is designed constrained to reliability-based 
SN-DDSUE under uncertainty as formulated in Chapter 4.  
 
The network design problem (NDP) has been recognized as one of the most difficult and 
challenging problems in the transport field. From different perspectives, the network design 
problem can be categorized in different ways. Depending on the question whether an 
equilibrium is achieved or not on the lower level, the network design problem can generally 
be divided into equilibrium network design and disequilibrium network design (Friesz and 
Shah 2001). Traditional network design problems are network designs constrained to lower 
level user equilibrium. Friesz and Shah (2001) argued that the traffic on a network is not 
necessarily in equilibrium and that capacity changes to the network must induce transient 
phenomena not captured by invocation of the static version of Wardrop’s first principle (user 
equilibrium). They modeled the day-to-day adjustments of flows and costs which guides the 
network from one disequilibrium state to another. Eventually the network settles down to a 
conventional steady static equilibrium for any given time t, which is a long term equilibrium 
for any given time t without modeling departure time choice, although we may believe that in 
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reality, equilibrium does not exist. Especially no perfect information can be provided, 
travelers cannot predict what is going to happen, travelers may reroute according to the real 
time situation. Equilibrium or disequilibrium is just a hypothesis which we need to make to 
model the complicated reality.  
 
Within equilibrium or disequilibrium network design problems, a static network design 
problem and dynamic network design problem can be distinguished relying on whether a 
static or dynamic traffic assignment is performed on the lower level. In most literature, the 
static network design problem is defined and solved. Heydecker (2002) presented a dynamic 
equilibrium network design in which the design problem is based on the joint departure time 
and route choice user equilibrium. He indicated that a static assignment limits to flows which 
are modeled without reference to their variation over time and can’t represent the real traffic 
situation. He concluded that departure time choice and arrival time-specific costs play a very 
important role and contribute to a more appropriate evaluation and ultimately design of road 
networks. 
  
With regard to the design variables, network design problems can be grouped into continuous, 
discrete and mixed network design problems. The Continuous Network Design Problem 
(CNDP) treats the design variables as continuous, for instance the capacity improvement of a 
subset of existing network links, which is particularly sensible for a road network for which 
specifically signalization and ramp metering are considered (Yang and Bell 1998). The 
Discrete Network Design Problem (DNDP) deals with discrete design variables for instance 
number of lanes for a set of virtual or existing links, determining where to add lanes or to 
delete lanes and how many lanes needed. The Mixed Network Design Problem (MNDP) 
copes with both discrete and continuous decision variables simultaneously.  
 
As known, road networks are dynamic systems in which the variations in travel demand and 
supply (i.e. capacities) lead to stochasticity in travel conditions, travel costs, etc. Travelers in 
general dislike uncertainty in travel times. Road authorities and road designers pay increasing 
attention to the reliability of the services that transport networks can provide to the users. 
Road networks are now required to have a high degree of reliability to ensure road users 
smooth travel under normal traffic flow fluctuations and to avoid serious unexpected delays. 
Depending on whether the stochastic travel demand or network is considered or not, the 
network design problem can be categorized as a stochastic network design problem or a 
deterministic network design problem. Nowadays, many studies have been performed on 
reliability related network design problems. Some research has been done on reliable network 
design problems (Yin et al. 2005; Lou et al. 2009; Ng and Waller 2009; Sharma et al. 2009), 
(Rakha and Zhang 2005; Sumalee et al. 2006; Dimitriou et al. 2008; Zhang and Levinson 
2008) or on network reliability modeling (Clark and Watling 2005), however without 
specifically considering the impact of travel time reliability on traveler’s choice behavior. 
Few research work is available on network design problem in which travel behavior under 
uncertainty is modeled (Yin and Ieda 2002). However all these network design studies are 
restricted to static traffic assignment with only route choice modeling. The network dynamics, 
spillback, and departure time choice cannot be captured at all, which is actually very 
important since a better understanding of route/departure time choice and the factors that 
influence the routes chosen are fundamental in developing the strategies to better utilize the 
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network capacity and to improve the network performance. Reliability is modeled either on 
the network level or on the individual level. Based on our best knowledge, no research tackles 
the reliable network design problem considering travel time reliability in the choice behavior 
explicitly using dynamic assignment and modeling departure time choice.  
 
This chapter proposes a reliability-based dynamic network design problem with joint 
departure time and route choice modeling, aiming to capture the dynamics in the network with 
stochastic capacities and to evaluate the network performance more reasonably. The design 
problem is a bi-level problem. Reliability will be modeled on both the network design level 
and individual travel choice level.  
 
A network design problem is an optimization problem which typically consists of three parts: 
1) the objective function specifies the goal or objective. Sometimes a multi-objective design 
problem may be formulated depending on the purpose; 2) the design variables represent the 
choices to be made; 3) the constraints restrict the choices of the decision variables to those 
that are possible or acceptable or even constrain the objective function. Therefore this chapter 
will be organized in the following order: firstly a definition of the reliability-based network 
design problem is presented. Then the objectives of the design problem will be illustrated, 
followed by a description of the design variables. Afterwards, the constraints and the 
formulation of the design problem will be given.   

5.2 Definition of Reliability-based Dynamic Network Design Problem 

Our research focuses on the stochastic and dynamic network design problem. As 
aforementioned, network conditions can be divided into normal and abnormal conditions. In 
our research, we aim to design a road network considering normal daily traffic conditions 
under stochastic capacities. We assume that the temporal travel demand is inelastic and 
deterministic. Extreme traffic conditions, for instance incidents, an earthquake, a flood, etc 
which cause serious delays due to a big drop in capacities or even non-connectivity, will not 
be explicitly accounted for. Stochasticity in traffic situations, travel times, and travel costs is 
caused by day-to-day variations in link capacities. 
 
This chapter proposes an integrative reliable network design problem with two main actors 
involved, namely road authorities/designers on the network level and individual travelers on 
the lower level. In the circumstance with uncertainties, travelers make their travel decisions 
considering travel costs and travel time reliability. Road authorities/designers also pay 
increasing attentions to the reliability of the services provided to road users. Thus the network 
design problem is a typical bi-level optimization problem. Reliability will be modeled on both 
network level and individual level, which is depicted in Figure 5.1. 
 
On the upper level, road authorities/designers design a road network aiming to optimize 
network performance, for instance network reliability aiming to provide reliable service to 
road users, total network travel time and total network costs aiming to provide efficient 
service to road users, by designing network structure and road characteristics like the numbers 
of lanes and so forth. The decision they make on the network design determines the sensitivity 
of the network to variations in link capacities, thus determines the travel time reliability under 
stochastic capacities and the travel costs. Travelers make their choice decisions not only 
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taking into account travel times, schedule delays, but also travel time reliability. The design 
strategy influences the choice behavior of travelers on the lower level, such as departure time 
choice, route choice, mode choice, and in the long term, destination choice. Reversely, the 
changes in travelers’ choice behavior affect the network performance which the road authority 
aims to optimize. The use of a network is determined by the costs and the costs are 
determined by the use of the network. This is a classical equilibrium problem. 
 

Network design (to optimize 
network performance)

Travel behavior (route, 
departure time choice) 
with fixed demand

Influence travel cost 
(reliability, travel time, 
schedule delays)

Network performance 
(network reliability, etc.)

 
Figure 5.1: The role of reliability in a bi-level network design problem 
 
As a follow up from Chapters 3 and 4 on the long term user equilibrium under stochastic 
network, a network design problem constrained to a long term dynamic user equilibrium 
including travel time reliability in a joint departure time/route choices is proposed in this 
chapter. We aim to help road authorities to optimize their network design such that network 
efficiency, network reliability and the utilization of the investment are optimized. At the same 
time, appropriate travel choice behavior in the view of travel time reliability is modeled. 

5.3 Design Objectives 

The difference between social benefits and costs of the transportation system might be chosen 
as the objective function to be maximized. The benefit is the contribution of the spatial 
structure to the well-being of the society. Due to the difficulty of defining, measuring and 
evaluating the social benefits, we assume the benefits to be the fact that people can travel and 
do travel between the different places. Since we assume temporally constant travel demand 
without thinking about the induced travel demand after constructing new road in the network, 
the social benefits may be treated as constant (Steenbrink 1974). Thus a network design 
problem with benefit maximization is transformed to an equivalent cost minimization 
problem.  
 
Generally the cost of a transport network includes: construction and maintenance costs, travel 
costs, incident costs, environment costs, operational costs, etc. The construction costs will 
refer to the use of the land, raw materials and labor for the construction and maintenance, 
which predicts long-run expenditures on infrastructure and outputs (distance traveled by 
passenger vehicle, single unit truck, and combination truck). For different types of roads and 
intersections the construction costs are significantly different. A detailed distinction of the 
construction costs is made by (Steenbrink 1974) for different road types. Environmental costs 
are difficult to define and quantify in a social evaluation, which covers the pollution of air and 
soil, noise, disturbance of the ecological balance, damage to the beauty of the landscape, etc. 
Accident costs depend on the accident type, number of accidents of a certain type driven 
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kilometer. A detailed analysis of accident cost estimations has been given by (Steenbrink 
1974). We will not further elaborate on this important aspect of road networks. The travel 
costs specifically refer to the costs experienced by the travelers, for instance travel time, toll 
charges, delays, etc. The traditional road network design model is able to prescribe optimal 
improvement schemes that minimize the total travel time. On top of that, we attempt to 
improve network reliability as a part of travel costs and optimize network efficiency with a 
given construction budget.  
 
With regard to road networks, the operational conditions could be normal and abnormal. 
Because natural resources are limited, performance of road networks under abnormal 
conditions cannot be required to be the same as that under normal conditions. In the case of 
normal daily operations, road networks should ensure that people and goods overcome the 
friction of geographic space efficiently and reliably. Network efficiency can be represented by 
a measure of total network travel time, total travel costs, congestion durations, total queue 
length, etc.  
 
Improving network reliability can be achieved by two ways: one is to define the network 
reliability in the objective function which needs to be optimized (a direct approach); the other 
is to define certain reliability criteria as constraints in the design problem (an indirect 
approach). The design problem proposed in this chapter is a budget constraint design problem 
where the network reliability is directly incorporated in the objective function. The 
construction costs will be defined in the constraints. The environment costs, accident costs, 
although form an important part of the total social costs, due to the difficulty of quantification 
and social evaluation, are not incorporated in the objective function. Therefore the objective 
function in our research will focus on the experienced travel costs.   
 
Depending on the policy objectives of road authorities, different design objective function can 
be defined. In the following subsections, some possible and acceptable objectives are 
discussed, such as optimizing network efficiency and network reliability from road authority’s 
point of view and minimizing the total network travel costs for travelers. These different 
objective functions will be compared in terms of design solutions in the applications in 
Chapter 7.  

5.3.1 Optimize network efficiency and network reliability 
 
Given the long term equilibrium departure pattern, the daily total network travel time is a 
stochastic variable, following a distribution. Road authorities, aiming to provide more reliable 
services to the road users, may not only consider network efficiency, which accounts for the 
average performance of the network, i.e. average total network travel time, but also the 
network reliability which is of importance as well to be explicitly incorporated in the design 
problem. 
 
Reliability is generally defined as the ability of a system or process to perform a required 
function under given environmental and operational conditions according to defined quality 
standards and for a stated period of time (Hoyland and Rausand 1994). In the case of road 
networks, the required function can be described in terms of performance variables like travel 
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time, throughput, accessibility, equity, and so forth. Different functions may lead to different 
reliability measures (Cassir et al. 2000).  
 
Generally there are three categories of network reliability definitions: connectivity reliability, 
capacity reliability and travel time reliability. Connectivity reliability, defined as the 
probability that network nodes are connected (Iida and Wakabayashi 1989), is a measure in 
the case of major exceptional events (abnormal conditions), such as serious natural disasters 
and huge accidents. Since we consider normal daily conditions, connectivity reliability is not 
considered. We focus on the service reliability, which could be represented by capacity and 
travel time reliability. Capacity reliability is defined as the probability that the network can 
accommodate a certain volume of traffic demand at a required service level (Chen et al. 
2002b). It is a measure to evaluate the performance of a degradable road network. Travel time 
reliability is defined as the probability that a trip between an OD pair can be successfully 
made within a specified time and a specified level-of-service (Asakura and Kashiwadani 1991; 
Bell and C.Cassir 1999). It is useful to evaluate network performance under normal daily 
demand fluctuations. A network reliability measure will somehow describe the stochastic 
properties of an outcome (e.g. total travel time, network capacity, congestion durations, etc). 
The network performance reliability was defined by (Bell 2000) as the expected total trip cost 
when travelers are extremely pessimistic about the state of the network. The trip cost was 
obtained in a mix-strategy Nash equilibrium. A network reliability indicator was proposed by 
(Clark and Watling 2005) as the probability of total network travel time does not exceed a 
certain threshold. The network effectiveness and network reliability under demand uncertainty 
were analyzed by (Yin et al. 2005). They used the standard deviation of total network travel 
time as the indicator of network reliability. A route flow weighted route travel time reliability 
was defined by (Li et al. 2008a) as an indicator for network reliability.  
 
We choose some properties of the daily total network travel time as the indicators of network 
efficiency and network reliability. A relative weight of these two measures is sufficient 
instead of evaluating them in some units. We postulate that network efficiency (average total 
network travel time) and network reliability (the variation in total network travel time) are 
both crucial involved in decision making on the design strategies. Percentile total network 
travel time could be adopted, which in some senses includes the expectation of total travel 
time and a range representing the variations (for instance 90 percentile minus 50 percentile). 
Different distributions, with different expectations and different variations, may have the 
same certain percentile travel times (for instance 90 percentile). Thus a single percentile total 
network travel time cannot capture the relative importance of network efficiency and network 
reliability. A trade-off between network efficiency and network reliability will be made. We 
adopt the standard deviation and percentile total travel time difference as indicators of 
network reliability. Therefore, our objective functions that explicitly account for network 
efficiency and network reliability are formulated as follows: 
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or: 
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where ( )od

p kτ f  denotes the stochastic route travel times when departing in time interval k 
given the long term equilibrium departure patterns. f  is a matrix of departure flows on all 
routes at all departure time intervals. The multiplication of the stochastic travel time ( )od

p kτ f  
with the equilibrium flows ( )od

pf k and summing them over all OD pairs, routes, and 
departure times yields the stochastic total network travel time experienced by all travelers. 
The first part in Formulae (5.1) or (5.2) indicates the expectation of total network travel time 
at the long term equilibrium. The second part indicates network reliability which is calculated 
by the 90th percentile minus 50th percentile in Formula (5.1), and by standard deviation of the 
total network travel time in Formula (5.2). Proportions ϑ  and ( )1 ϑ−  are the weights of 
network efficiency and network reliability in the design objective function. ϑ  is a percentage 
between 0 to 1, showing the importance of network efficiency and network reliability that the 
road authorities consider. Different road authorities with different design purposes may apply 
different ϑ  values. In case 0,ϑ =  the road authority only aims to optimize network reliability, 
while in case setting 1,ϑ =  the road authority only attempts to optimize network efficiency 
defined by average total network travel time. 

5.3.2 Minimizing total network cost for travelers 
 
Given constant travel demand and social benefits, a most common objective function for road 
authorities or road designers is to minimize the total network travel costs, as formulated in 
expression (5.3): 
 

( ) ( )
( , )
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where ( )od

pc k  and ( )od
pf k  denote the long term equilibrium travel costs and equilibrium 

departure flows on route p between (o, d) when departing in time interval k as discussed in 
Chapter 4. The equilibrium cost ( )od

pc k  consists of travel time, schedule delays and travel 
time reliability. Thus this objective function implicitly accounts for the overall travel time 
costs, schedule delay costs and travel time unreliability. 

5.4 Design Variables 

It is argued that the construction or improvement of transport infrastructure is one of the most 
important instruments for the implementation of a regional economic development policy. 
The physical transport road network is characterized by its network attributes, normally 
described by capacities, structures, lengths of roads, maximum speed, etc and is a part of the 
service network.  
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In this research we will not deal with the graphical design problem for optimal physical 
planning. Instead we aim to find the optimal capacity allocations for a given spatial 
distribution of population, employment and land-use patterns. Decision variables may be 
classified into integer variables, for instance numbers of lanes, and continuous variables, for 
instance link capacities. The traditional network design problem is treated as a continuous 
network design problem (CNDP), which treats link capacities as continuous variables and 
aiming to determine a continuous capacity expansion plan for an existing transportation 
network to optimize a certain system objective. We design the dimensions of the links, i.e. the 
numbers of lanes for a subset or a full set of road segments in a potential road network, 
denoted as [ ]aL=L , where max,  { | 0,1,2, , }∈Λ Λ = =L L …a aL L . aL  represents the number of 
lanes for link a, which is an integer value. The dimension zero is also included, so that in fact 
a network structure is also chosen from a set of possible structures.  
 
Given the number of lanes for a link in the potential network, the link capacity aC  is assumed 
a stochastic continuous variable, following a distribution, expressed as: 
 

( ) ( )( ) ( )( )( )2, ,μ σ∼a a a a a aC L P L L  (5.4) 

 
where ( )μa aL  and ( )σ a aL  are the expectation and standard deviation of the link capacity 
distribution. Clearly the characteristics of the link capacity distribution are functions of the 
numbers of lanes. The standard deviation of the link capacities is a function of the mean 
capacity depending on the number of lanes, expressed as: 
 

( )( ) ,σ μ=a a af L  (5.5) 
 
The larger the number of lanes of a link, the smaller its relative capacity variation. For 
instance, with a one-lane road, the standard deviation of its capacity is about 10% of the mean 
capacity (AVV Transport Research Center 1999), while with a two-lane road, the standard 
deviation is 8% of the corresponding mean capacity. 

5.5 Formulation of the Reliable Dynamic Network Design Problem 

A reliable road network design problem constrained to reliability-based dynamic user 
equilibrium with joint departure time/route choice modeling (i.e. SN-DDSUEH) is formulated 
as following, which is a Mathematical Program with Reliability-based Dynamic Equilibrium 
Constraints (MPRDEC). As indicated by (Luo et al. 1996; Lawphonegpanich and Hearn 
2004), MPEC (Mathematical Program with Equilibrium Constraints) is a special case of a bi-
level programming problem. 
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or  
 

( ) ( )
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p p
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L

L  (5.7) 

 
subject to reliability-based dynamic long term equilibrium constraints under stochastic 
capacities, the budget constraint, and integer solution space limitations: 
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( )I ≤L B  (5.9) 

 
max,      { | 0,1, 2, , }a aL L∈Λ Λ = =L L …  (5.10)

 
where ( , )f Lod

pF k  has been defined in Chapter 4 in Equation (4.9). The objective function 
(5.6) aims to derive the optimal lane strategies L  to minimize a weighted sum of the average 
total network travel time (TNT) and network travel time unreliability (for short, objective 
mean+std of TNT). The total network travel time distribution at long term equilibrium varies 
according to the given design strategy .L  The objective function (5.7) aims to find the optimal 
lane design L  to minimize the total network costs at equilibrium (for short, objective TNC). 
 
Expression (5.8) is the finite-dimensional VI formulation of the long term probabilistic user 
equilibrium with stochastic networks in a discrete-time version (see Expression (4.8) in 
Chapter 4). The equilibrium travel costs and equilibrium departure flows are dependent on the 
design strategies. dΩ  is the set of feasible dynamic route flow matrix f , defined by the flow 
conservation (5.11) and non-negativity (5.12) constraints, respectively: 
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where odq  is the total travel demand between (o, d). 
Expression (5.9) gives the budget inequality constraints. B is the available budget for the 
construction. The construction cost, denoted by ( ),I L  is a function of lane design L  and the 
lengths corresponding to .L  The construction cost is computed as a sum of the construction 
costs over all the links. The construction cost on link a, denoted by aI , can be formulated as a 
function of aL  and the length of link a, denoted as ad : 
 

( ),= ⋅ ⋅a a a a aI x L d L d  (5.13)
 
where ( ),a ax L d  is the average construction cost per kilometer per lane, which firstly 
decreases and then increases with the number of lanes. It is shown that the starting 
investments (up to 2×2 lanes) are generally rather high; expansion to 2×3 and 2×4 lanes is 
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assumed to be comparatively cheap, while with further expansion 2×5 and 2×6 lanes again 
high investments are involved (Steenbrink 1974).  
 
Expression (5.10) is called the domain constraint with a restriction on the maximum number 
of lanes max

aL  for each link. Note that zero-lane is also an option, which means not building a 
certain road segment. The problem must be solved for the values of the variables aL  that 
satisfy the restrictions and meanwhile minimize the objective function. A vector ∈ΛL  
satisfying all the constraints is called a feasible solution to the optimization problem. The 
collection of all feasible solutions forms a feasible region.  
 
The formulated network design problem is a constrained combinatorial optimization problem 
capable of providing a completely new network design (kind of network structure design 
since a link can have zero lanes) and of an improvement design on an existing network. 
 
Table 5.1 summarizes the properties of the proposed and formulated network design problem.  
 
Table 5.1: The classification of the proposed network design problem 
 

Uncertainty Demand Capacity 
Yes No Fixed Stochastic Constant Stochastic 

      
Design property Lower assignment Choice modeling 

Discrete Continuous Static  Dynamic Route choice Departure time 
choice 

      
Long term dimension Within-day dimension Reliability modeling 

Equilibrium Disequilibrium Equilibrium Disequilibrium Choice 
behavior Network level

      
 
The network reliability is related to the sensitivity of a road network to the variations in the 
capacities and travel demand. The sensitivity of the network actually depends on the physical 
structure and physical characteristics of the network. If the network can easily handle the 
variations in capacities and in travel demand without severe delays, the network is not 
sensitive. The less sensitive, the more reliable the network is considered to be. The proposed 
network design problem is in fact designing the network structure and network capacities in 
order to establish an insensitive and reliable road network under stochastic capacities. 

5.6  Formulation of the Static Reliable Network Design Problem  

The dynamic network design problem requires much longer computation time and more 
efforts compared to the static network design problem. Although static assignment is not 
realistic, it demands less computation time. In order to investigate and compare the optimal 
solutions from static and dynamic network designs, a reliable static network design problem is 
formulated as well, which is a special case of the formulated dynamic network design 
problem.  
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The same network design objective function is adopted to facilitate the comparison (see 
Section 5.5 in Formulae (5.6) and (5.7). The difference from the previously formulated design 
problem is that there is no departure time choice. Capacity is still the source leading to 
between-day travel time variations. Travelers, based on their past experiences, are aware of 
the distributive properties of the route travel time and make their route choices so as to 
minimize their long term future route costs (see the formulation in Section 4.5).  
 
Table 5.2 presents the experiments we aim to carry out in Chapter 7 for comparison purpose 
between static and dynamic network designs, dynamic network designs with different 
objective functions, and dynamic network designs with different levels of travel time 
reliability. 
 
Table 5.2: Experimental design 
 

 

A 7-link 
hypothetical 

network 
(Chapter 7) 

Total network costs as design 
objective 

 
High level 
capacity 
variation Network reliability and network 

travel time as design objective 
 

Total network costs as design 
objective 

 

Dynamic network 
design with stochastic 

capacity (subject to 
SN-DDPUEH) Low level 

capacity 
variation Network reliability and network 

travel time as design objective 
 

Total network costs as design 
objective 

 High level 
capacity 
variation Network reliability and network 

travel time as design objective 
 

Total network costs as design 
objective 

 

Static network design 
with stochastic 

capacity Low level 
capacity 
variation Network reliability and network 

travel time as design objective 
 

5.7 Summary 

As the real travel environment is never deterministic, a network design problem should be 
able to capture the stochasticity and its influence in choice behavior, especially the departure 
time choice behavior. Network reliability is nowadays also a big issue attracting increasing 
policy attention. This chapter proposed and formulated a reliable network design approach 
constrained to reliability-based dynamic user equilibrium with joint departure time and route 
choice modeling under stochastic networks. Reliability is incorporated in both the network 
design level and individual travel choice level in order to design an efficient and reliable road 
network with a given budget taking into account the influence of travel time reliability in 
traveler’s departure time and route choice behavior. The proposed design problem deals with 
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discrete design variables, i.e. numbers of lanes for a subset or a full set of links in the potential 
network.  
 
In order to gain insights into the importance of dynamic network modeling involved in 
network design problem, especially departure time choice modeling, a static reliable network 
design approach is formulated as well. The static reliable network design approach, dealing 
with stochastic networks, considers reliability on both network and individual level, while the 
dynamics in the flow propagation and departure time choices are neglected. The design 
solutions from different approaches will be compared in the case study in Chapter 7. 
  
The design approaches have been formulated already. The next chapter will be devoted to the 
algorithms to solve the proposed network design problem.  
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6 Solution Approaches of the Dynamic Network 
Design Problem 

6.1 Introduction 

The proposed reliability-based dynamic discrete network design problem is a typical 
combinatorial optimization problem. A number of algorithms are available to solve such a 
combinatorial optimization problem. This chapter will firstly discuss the properties and 
typical problems of the dynamic network design problem. Then a road network-oriented 
genetic algorithm (GA) is selected to solve this design problem. Specifically for the road 
network design problem, infeasible, unconnected and illogical designs massively exist. These 
will be defined and a systematic approach to eliminate the infeasible, unconnected and 
illogical designs is developed. The same types of infeasible, unconnected and illogical lane 
designs might be generated during GA operations which requires a special treatment of the 
adopted GA. Due to the long computation time of GA, a combined GA and set evaluation 
approach is proposed to derive the optimal or a fairly good design solution. Finally a 
summary of this chapter is presented.  

6.2 Properties of the Design Problem 

The formulated network design problem in Chapter 5 is a bi-level problem and a 
combinatorial optimization problem, whose decision variables (numbers of lanes on a set of 
potential links, zero-lane is allowed as well) are discrete. Combinatorial optimization 
problems are characterized by a finite number of feasible solutions. The goal is to find an 
optimal arrangement, grouping, ordering or selection of discrete objects usually finite in 
numbers (Lawler 1976). 
 
In a road network, a combination of lane numbers for a particular set of links, called a Lane 
Design, has its physical meaning. A typical problem of a lane design is that it may lead to an 
unconnected network structure, which is attributed to the zero lanes leading to disconnectivity 
between any Origin-Destination (OD) in the network. Besides, with a certain lane design, a 
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certain number of constructed links may never be used by any travelers. All these lane designs, 
specifically for road networks, are unrealistic and illogical. 
 
As already clarified, the discrete decision version of the design problem is a NP-complete 
problem (Johnson et al. 1978). The class NP stands for "Nondeterministic Polynomial" time. 
A problem is NP-complete if it can be used to efficiently solve any other problem in NP. In 
essence, any NP-complete problem is as hard as any problem in NP, see (Evans and Minieka 
1992). In the work of (Jeroslaw 1985), it is already mentioned that bi-level problems are in 
general NP-hard, which implies that the proposed dynamic network design problem is NP-
hard and cannot be solved with any existing algorithm in polynomial time (which means the 
time for solving the problem is not a polynomial function of the number of the decision 
variables). We challenge this NP-hard problem by tackling an even more difficult problem in 
which on the lower level departure time choice is modeled under stochastic capacities instead 
of traditional network design problems which are constrained to a static assignment with route 
choice modeling only. 
 
An algorithm is a sequence of steps designed to solve a problem. Well known algorithms for 
solving the optimization problem can be classified as either exact or approximate algorithms. 
An exact algorithm is the one which always produces an optimal solution if it exists. For 
finding the exact optimal solution for the formulated dynamic network design problem in 
Chapter 5, a systematic search in the solution space is needed, for instance the exhaustive 
search and full enumeration of all possible designs. However such algorithm involves 
exponential asymptotical computational complexity. For large networks, it is inefficient and 
infeasible to apply this exhaustive search algorithm. To increase efficiency, all modern exact 
methods use pruning rules to discard parts of the search space in which the (optimal) solution 
cannot be found. These approaches are doing an implicit enumeration of the search space 
(Stutzle 1998). For optimization problems the best known examples are branch & bound 
algorithms, and dynamic programming.  
 
Therefore approximate or heuristic algorithms, which sacrifice the guarantee of finding the 
optimal solution and produce a feasible and hopefully very good solution in polynomial-time, 
are frequently adopted for finding a sufficiently good solution (Evans and Minieka 1992). 
Promising feasible heuristic algorithms to solve the combinatorial problem are among others: 
local search (LS), simulated annealing (SA) (Kirkpatrick et al. 1983), genetic algorithm (GA) 
(Obitko 1998; Gen and Cheng 2000), ant colony optimization (ACO) (Colorni et al. 1991; 
Dorigo et al. 1996), tabu search (TS) (Glover 1989; Glover 1990), particle swarm 
optimization (PSO) (Kennedy and Eberhart 1995; Eberhart and Shi 2001), etc. SA, GA, ACO 
and PSO are naturally inspired metaheuristics.  
 
Often one uses heuristics when an exact algorithm is not available or when it is 
computationally impractical. Due to the NP-hardness of the proposed network design problem 
and since many decision variables needed to be designed simultaneously, a heuristic 
algorithm, GA, is adopted in this thesis to solve the network design problem. GA is 
characterized by the flexibility in dealing with the constraint of a multi-variable design 
problem and is a global search algorithm instead of local search algorithm.  
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6.3 Generation of the Master Set of Lane Designs 

Prior to the application of the Genetic Algorithm for solving the dynamic network design 
problem, the set of lane designs firstly is filtered. Such a filtering is especially useful in a 
transport network design context where trips between origin and destination have to be served. 
A universal set of lane designs is defined, which contains all possible combinations of the 
numbers of lanes on all the potential links in the network satisfying the domain constraint 
with max

aL  for each link. The size of the universal set can be easily computed as a product of 
the possibility for link a over all links, expressed as: ( ),max 1 .a

a
L +∏  Since zero-lane is also a 

possibility, the possible numbers of lanes for link a therefore is ,max 1.aL +  Each lane design in 
this universal set can be represented as a point in a multidimensional space where the links are 
the axes and the numbers of lanes are the values on these axes.  
 
The master set is defined as the subset of the universal set (i.e. a subset of points in the 
multidimensional space), which contains all feasible, connected, and logical lane designs. A 
design satisfying the budget constraint is defined as a feasible design. An unconnected design 
is defined as a lane vector L, which disables the connectivity between any OD pair in the 
network. Illogical designs are defined by lane vectors with which the roads constructed will 
never be used. The size of the master set is strongly dependent on the network structure.  
 
An example grid network shown in Figure 6.1 with the link numbers is adopted to illustrate 
the concepts of the universal set, the master set and their sizes. In addition, the demonstration 
of the infeasible, unconnected, and illogical lane designs will be given with this network. In 
this network, a lane design is a vector of lane numbers on all 12 links in a sequence as [ 1L  2L  

3L  4L  5L  6L  7L  8L  9L  10L  11L  12L ].  
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Figure 6.1: An example grid network 
 
A maximum max 2,  = ∀ ∈aL a A  is defined for all the 12 links in the network. Since all the links 
are equal in length, a construction budget of 8 lanes is defined instead of the monetary costs. 
The size of the universal set equals 123 531, 441.=  The size of the subset of feasible designs 
satisfying the construction budget however only is 57,720. Figure 6.2 illustrates the infeasible 
designs, unconnected designs and illogical designs with examples. The first example design 
consists of 10 lanes, which exceeds the budget constraint, thus is an infeasible design. The 
second example design does not provide any connectivity from the origin to the destination, 
thus is an unconnected design. With the third example design, link 1 will never be used. The 
lane designs [2 0 1 0 0 1 0 1 1 0 1 1] and [1 0 1 0 0 1 0 1 1 0 1 1] are equivalent to [0 0 1 0 0 1 
0 1 1 0 1 1] in terms of the network performance evaluation. Therefore [2 0 1 0 0 1 0 1 1 0 1 1] 
and [1 0 1 0 0 1 0 1 1 0 1 1] are illogical designs and should be eliminated from the design set 
for evaluations. 
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Infeasible design 

[1 1 1 1 1 0 0 1 1 1 1 1] 
Unconnected design 

[1 1 1 1 1 0 0 1 1 0 1 0] 
Illogical design 

[2 0 1 0 0 1 0 1 1 0 1 1] 
 
Figure 6.2: Illustrations of infeasible, unconnected, and illogical lane designs 
 
A new systematic approach of generating the master set is developed to eliminate the 
infeasible, unconnected, and illogical lane designs, to reduce the solution space to a 
considerable extent, thus to save computation time. 
 
Figure 6.3 presents the systematic approach to eliminate the infeasible, unconnected and 
illogical designs and to derive the master set. Due to the construction budget constraint, a 
finite number of feasible designs can be derived from the universal set. As shown in the 
example network in Figure 6.1, 57,720 feasible designs are derived from the universal set 
with a size of 531,441.  
 
The unconnected designs, which disable the connectivity between any OD pairs, are 
distinguished and deleted by checking the number of OD pairs as a result of the designs. A 
given potential network has a predefined OD matrix and a certain number of OD pairs. An 
OD-Route-Link matrix consists of information on all OD indices, route indices, and a series 
of links on each of the route in sequence. With each feasible design, the zero-lane links are 
extracted and the routes traversing these zero-lane links are deleted from the OD-Route-Link 
matrix, after which a new OD-Route-Link matrix is derived for this specific feasible design. 
The number of OD pairs in the new OD-Route-Link matrix can be derived. If the number of 
OD pairs in the new OD-Route-Link matrix is smaller than the predefined number of OD 
pairs in the potential network, implying that some OD pairs are disconnected due to the zero-
lane links, then this feasible design is an unconnected design and deleted. By eliminating the 
unconnected designs from the feasible design set, a complete set of feasible and connected 
designs is created.  
 
With the example network in Figure 6.1, 7,588 connected designs are derived from 57,720 
feasible lane designs, i.e. the size of the feasible and connected design set is 7,588. 
 
For each design in the feasible and connected subset, an OD-Route-Link-lanes matrix can be 
generated, which differs from the OD-Route-Link matrix in such a way that the numbers of 
lanes on the links for each route instead of link numbers are included in the matrix. The 
feasible and connected design set can be grouped into different subsets. Within each subset, 
all the designs lead to the same OD-Route-Link-lanes matrix, i.e. the same physical network. 
Due to the existence of zero-lane links, some links on the routes traversing these zero-lane 
links might not be used due to disconnectivity. Therefore different numbers of lanes on these 
unused links do not change the physical network and will not influence the network 
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performance. These designs are illogical since some roads constructed will never be used. A 
design with the minimum construction costs from each subset is the design with which all the 
unused links have zero-lanes, which is called the logical design in this subset. The remaining 
designs in this subset are illogical designs. By collecting the logical designs from all the 
subsets, the master set is generated, which is an exhaustive set of all feasible, connected and 
logical designs, i.e. the master set.  
 

Select a lane design L 
from the universal set

Calculate the construction
cost for L

Feasible?

Yes

Generate the OD-Route-Link 
matrix with L

No

Calculate the number of 
OD pairs with L

Equal to the 
predefined number of 

OD pairs?

Yes

No

Infeasible, not included 
in the design set

Unconnected, not included 
in the design set

Connected design, included 
in the design set

All designs 
from the universal set 

evaluated?

Yes

No

Find groups of designs leading to the
same physical network by checking 

the OD-Route-Linklanes matrix

Select the design from each group 
with the minimum construction costs

Master set

Enumerate the universal set

 
 
Figure 6.3: A systematic diagram of deriving the master set of lane designs 
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Again with the example network in Figure 6.1, by eliminating the illogical designs from the 
feasible and connected design set, a master set with a size of 654 is derived from 7,588 
feasible and connected designs. This example network shows that the solution space can be 
reduced dramatically from 531,441 to 654 (i.e. the size of the master set is only 0.12% of the 
size of the universal set, and 1.13% of the size of the feasible and connected design set), 
which can reduce the computation time for the optimization problem considerably. With this 
example network, it only takes a few minutes to generate the master set.  
 
Of course, the size of the master set depends on the construction budget and the network 
structures. For large and complex networks with many overlaps among routes, eliminating 
unconnected and illogical designs enables to decrease dramatically the solution space for the 
design problem and saves considerable computation time, as shown with the example grid 
network.  

6.4 A Road Network-oriented Genetic Algorithm 

Upon the derived master set, a Genetic Algorithm (GA) is applied to find a fairly good or 
even the optimal design. A Genetic algorithm is firstly developed by Holland in 1975 
(Holland 1975). In the past decades, GA has been extensively dealt with and widely applied in 
many fields (Obitko 1998; Gen and Cheng 2000), therefore this section will not elaborate on 
GA in general, but rather only describe the intelligence and parameter settings of the approach 
used in this thesis. The framework of solving the dynamic discrete network design problem 
with GA is illustrated in Figure 6.4.  
 

GA produces an initial population 
of lane designs

DTA model simulates the reliability-based 
long equilibrium departure patterns 

Evaluate the equilibrium network
performances for each considered lane design

GA produces new feasible, connected, 
logical, and unrepeated lane designs

Stopping criteria Optimal or a fairly good lane design L

Generate the master set

Enumerate the universal set of lane designs

Yes

No

 
 
Figure 6.4: Framework of solving the network design problem with GA 
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With the master set derived from the universal set, GA is used to produce and evolve the lane 
designs from the master set toward a fairly good or the optimal solution for the network 
design problem. The fitness of each lane design is evaluated based on the user’s long term 
equilibrium considering travel time reliability in departure time and route choices, which is 
simulated by the DTA model. GA iteratively evolves the lane designs until reaching the 
predefined stopping criteria. 
 
An initial set of lane designs, namely a population, is randomly selected from the master set. 
All the designs are different in the population. The size of the population is predefined 
according to the number of design variables.  
 
There are three GA operators: crossover, mutation, and reproduction, with which the new lane 
designs (so-called offspring) are created from the designs from the previous generation (so-
called parents). The behavior of GA is characterized by a balance between exploitation and 
exploration in the search space. The balance is strongly affected by several parameters such as 
size of the design set at each generation, coefficient of reproduction selectivity (a parameter 
involved in the fitness function), probability of crossover, probability of mutation, and 
maximum generations. Fixed parameters are used in most applications of genetic algorithms. 
Since a genetic algorithm is an intrinsically dynamic and adaptive process, the use of constant 
parameters is thus in contrast to the general evolutionary spirit. Therefore, it is natural to try 
to modify the values of the parameters during the run of the algorithm. There are three 
principal categories of adaptation: deterministic, adaptive and self-adaptive (Gen and Cheng 
2000). A deterministic adaption is taken in our study. The mutation probability mp  is 
decreased gradually along with the elapse of generations to facilitate the exploration in the 
whole solution space at the beginning and convergence at the end using the following 
equation (similar function, see (Gen and Cheng 2000)):  
 

max

0.5 0.4= −m
gp

G
 (6.1) 

 
where g denotes the current generation number and Gmax denotes the maximum number of 
generations. The mutation probability will decrease from 0.5 to 0.1 as the number of 
generations increases to Gmax. 
 
At each generation, the best two designs from the previous generation (the so-called parents) 
are kept in the set for current generation (the so-called offspring). Each design is characterized 
by its fitness derived from the simulation with the DTA model. The fitness of each design L is 
defined as the inverse of the objective function in the optimization problem: 

 

( ) ( )
1

=L
L

v
Z

 (6.2) 

 
where ( )LZ  has been defined by either Formula (5.2) or (5.3) in Chapter 5. The fitness 
function in some literature is calculated as a negative exponential transformation of the 
objective function. According to the fitness, each design has a probability of being selected to 
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generate new designs. The higher the fitness, the higher the possibility it will be selected. 
Whether to perform crossover or not and the selection of designs are random processes. The 
selection process used in this study is the so-called ‘roulette wheel’ (Obitko 1998). Crossover 
point and mutation position are all randomly chosen. 
 
All the evaluated designs after each generation are stored in a pool with the fitness, all the 
network cost components (for instance, average total network travel time at equilibrium, 
standard deviation of total network travel time, total schedule delay early and late, 
construction costs, etc) and the duality gap. At each generation, the newly generated designs 
are checked before the evaluation to make sure that whether it has already been evaluated in 
previous generations or not. If so, the fitness can be directly retrieved from the pool to avoid 
repeated evaluations.  
 
Dealing with generated infeasible, unconnected and illogical designs  
A problem encountered in applying GA to the constraint optimization problem is that the 
genetic operators may yield infeasible, unconnected or illogical designs, already excluded in 
the master set generation step. The example network given in Figure 6.1 is again used to 
demonstrate the process of crossover, mutation and the generation of infeasible, unconnected, 
and illogical designs. Figure 6.5 shows a crossover between two lane designs at a randomly 
chosen crossover point at link 7 and the generated lane designs, one of which is infeasible.  
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[0 0 1 0 0 1 0 1 1 0 2 2] [2 0 1 1 0 0 0 1 1 0 2 2]
[2 0 1 1 0 0 0 1 1 0 1 1] [0 0 1 0 0 1 0 1 1 0 1 1]

⇒  

 
Figure 6.5: Generation of infeasible design after crossover 
 
Figure 6.6 shows an example of generating unconnected and illogical lane designs after the 
crossover with a crossover point at link 11. 
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Figure 6.6: Generation of unconnected and illogical designs after crossover 
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After crossover, a mutation is performed on the generated lane designs with a mutation 
probability. The mutation points (link numbers) are randomly chosen for randomly selected 
lane designs with randomly generated integer numbers of lanes on that link. With this 
mutation, infeasible, unconnected, and illogical designs may be generated as well. Figure 6.7 
illustrates the process of mutation and the generated infeasible, unconnected, and illogical 
designs. However it is also possible that the infeasible, unconnected, and illogical designs 
generated after crossover may become designs in the master set after the mutation. For 
instance with the generated illogical design after crossover presented in Figure 6.6, if a 
mutation point at link 12 is selected and the number of lanes on link 12 is changed to zero, 
then this illogical design becomes logical. The unconnected design in Figure 6.6 will become 
a connected design after the mutation takes place at link 12 to one or two lanes.  
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Mutation point at link 9
[2 0 1 1 0 1 0 0 0 0 0 1]

Mutation point at link 3
[2 0 0 1 0 1 0 0 2 0 0 1]  

 
Figure 6.7: Generation of infeasible, unconnected, and illogical lane designs after 
mutation 
 
Existing techniques to handle this problem can be roughly classified as follows: 1) rejecting 
methods, 2) repairing methods, and 3) penalty methods (Gen and Cheng 2000).  
 
A rejecting method discards all infeasible, unconnected and illogical designs created 
throughout the evolutionary process.  
 
Repairing methods involve taking an infeasible design and generating a feasible solution 
through a repair procedure.  
 
The penalty technique is used to keep a certain number of infeasible solutions in each 
generation so as to enforce the genetic search toward an optimal solution from both sides of 
feasible and infeasible regions and mixture of both regions. Some infeasible solutions may 
provide more useful information about the optimal solutions than some feasible solutions do.  
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The rejecting method is the simplest way to handle the problem and is adopted in this thesis. 
At each generation, the generated designs are checked before the reproduction of a new 
population. All previously evaluated designs are recorded in a pool so that in case that a 
generated design is infeasible, or unconnected or illogical, a new design from the set (master 
set – pool) is randomly selected to take place in order to avoid the repeated selection. This 
step is specific for transport network designs. 
 
The encoding of the designs can be evaluated by several principles: Nonredundancy, Legality, 
Completeness, Lamarckian property and Causality (Gen and Cheng 2000). In our study, a real 
value encoding is adopted which satisfies all the properties. Therefore the GA can be called a 
real-coded genetic algorithm. 
 
The convergence of GA is considered to be achieved when the average of the set performance 
will not be significantly improved for M successive generations, or a maximum number of N 
generations has been performed. 
 
During the applications, some practical problems are encountered. Different max

aL  could be 
defined for different links. Then in case of mutation, the randomly generated number of lanes 
for different links should be defined differently depending on the max .aL   
 
Intermediate flow patterns from previously evaluated designs at equilibrium can be used as 
the initial solution for the convergence to save computation time. However, different designs 
lead to different network structures, so flow patterns among routes need to be adjusted. For 
instance the flows on the deleted routes are added to another route of the same OD.  
 
Attention must be paid to convergence which possibly influences the optimal solution 
generation. An ideal case is that all the evaluated designs converge to the same duality gap 
value, since some designs are very close in terms of the network performance at equilibrium. 
Different convergence may lead to different evaluations, ordering of the designs and the 
selection of the best strategy. However the computation time is also enormous if a same small 
duality gap value is required for all the designs. Computation time and convergence should be 
traded off. In our study, a maximum number of iterations is defined to terminate the 
simulation. If the maximum iterations are performed, the equilibrium is considered achieved. 
A sufficiently large number for the maximum iterations is defined to ensure the convergence 
and to reduce the influence of the convergence on the network performance evaluations. 
Although the equilibria from different designs still do not converge to the same degree, the 
influence of the convergence can be neglected.  
 
It is also tried to provide a good initial design set. Since a static assignment costs much less 
computation time, a complete evaluation of the designs in the master set is practically feasible 
which will be discussed in Chapter 7. Several good solutions from the static network design 
approach could be included in the initial design set for solving the dynamic network design 
problem. However it turns out that including good designs in the initial design set is not a 
good solution as expected, since the good designs are too dominating which hinders the 
generation of better designs and explorations in the solution space.  
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6.5 A Combined Genetic Algorithm and Set Evaluation Algorithm 

In order to find a fairly good solution or the optimal solution, more generations are needed 
with GA. However it takes very long computation time due to the time consuming 
simulations to reach the dynamic user equilibrium with randomized capacities. Therefore a set 
evaluation approach is proposed and combined with GA. This means that firstly a full 
evaluation of all the designs in the master set is performed with a reliability-based static 
assignment with stochastic capacities. Then, a number of the top designs in terms of network 
performance are selected and evaluated by the reliability-based dynamic traffic assignment 
model. The best design is derived with the set evaluation. The GA is also applied. If the 
solution derived from GA is found in the top design set from static network design approach, 
then we think the set is sufficiently large and the set evaluation derives a better solution than 
GA. Set evaluation is quite efficient in terms of computation time and enables a better 
solution for the dynamic network design problem.  
 
It will be discussed in Chapter 7 that static assignment is deficient from an empirical point of 
view. Good solutions based on static network evaluation might be week solutions based on 
the dynamic network evaluation. However if the set selected from the static network design 
approach is sufficiently large, a good or even the optimal solution could be found within this 
set for the dynamic network design problem. Combined with GA, it is believed that the set 
evaluation results in a better solution than GA. It can be explained that due to the good 
solutions and the optimal solution for both static and dynamic network design problems lie in 
a region which more or less make the maximum utilization of the construction budget. A very 
bad solution from the static assignment evaluation must be a design with low construction 
costs, which cannot be a good solution for the dynamic design problem neither.  

6.6 Summary 

This chapter focused on the approaches and algorithms adopted to solve the reliability-based 
dynamic network design problem. A universal set and a master set of lane designs have been 
defined. A new systematic approach is proposed to establish a master set by a priori 
eliminating the infeasible, unconnected and illogical designs to reduce the solution space and 
to save computation time. An example grid network has been applied to demonstrate the 
definitions of the infeasible, unconnected and illogical designs and the process of the 
crossover and mutations. It showed that the solution space can be reduced dramatically in this 
way. With the example network the derived master set size is only 0.12% and 1.13% of the 
sizes of the universal set and the feasible, connected design set respectively. The crucial 
parameters for the GA operators are presented. Some critical issues influencing the design 
solution are emphasized, for instance the influence of the equilibrium convergence on the 
network performance evaluations. 
 
A combined genetic and set evaluation algorithm is proposed to solve the dynamic network 
design problem. A set of top designs is selected based on the reliability-based static network 
evaluation for a complete master set. This set is evaluated by the reliability-based dynamic 
assignment model and the best design within this set is derived. GA is applied as well. If the 
solution from GA is found in the set, then the set evaluation gives a better solution than GA 
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for the dynamic network design problem. The combined GA-Set evaluation approach is 
efficient in terms of the computation time and the quality of the solution.  
 
The GA and the set evaluation approach will be applied to the reliability-based dynamic 
network design problem on a hypothetical network in Chapter 7. The solution from static and 
dynamic network design approaches will be compared with different reliability degrees and 
different objective functions. 
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7 Design of Complete Networks 

7.1 Introduction 

This chapter will present a series of applications of the proposed dynamic network design 
approach to a hypothetical network for a complete design. All the potential links in the 
network are designed with the possibility to have zero lanes. The dynamic and static network 
design approaches formulated in Chapter 5 will be applied to the network. The purpose of this 
chapter is to show the feasibility and the merits of the proposed reliability-based dynamic 
network design approach. Furthermore this chapter aims to compare the designs from:  

1) static reliability-based network design approach and dynamic reliability-based network 
design approach,  

2) dynamic network design approach with difference levels of capacity variations and 
travel time reliability,  

3) reliability-based dynamic network design approach with different objective functions, 
in order to investigate the impacts of the travel time reliability and departure time choice 
modeling on the network designs. The GA and the set evaluation approach as discussed in 
Chapter 6 are adopted to solve the design problem. The lower level long term equilibrium 
with stochastic networks is modeled by the simulation-based approach.   
 
This chapter will firstly start with the impacts of link independence on the network 
performance evaluations. Then the hypothetical network for the design application will be 
described. After that the design solutions from the static and dynamic network design 
approaches with two levels of capacity variations will be elaborated respectively. 
Comparisons among different design approaches will be used to draw conclusions.  

7.2 Impacts of Link Independences 
In case of modeling stochastic link capacities, it should be born in mind that link divisions in 
a network have impacts on the network performance evaluations, which differs from the 
deterministic capacity case. An example is presented to explain the influences of link 
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divisions. Figure 7.1 shows a three-link network with link numbers and link lengths in the 
brackets in kilometers.  
 

O D

Link 1 [10] Link 2 [10]

Link 3 [20]  
 
Figure 7.1: Three-link network example 
 
At first thought, strategies [2 2 0] and [0 0 2] should be equivalent. However it is only true in 
the deterministic capacity case. With stochastic capacities, it is found that design strategy [0 0 
2] performs better than [2 2 0] with independent link capacities given the same demand and 
the same travel cost functions with the same PAT. It is due to the bottleneck capacity of a 
single route consisting of two links in series is determined by the minimum of the stochastic 
capacities of these two links. Thus in general the outflow capacity is lower than the route with 
[0 0 2], which leads to longer travel times and thus higher total travel costs. Dividing one link 
into two links will lead to different network equilibria and network performance in case of 
modelling stochastic capacities.  
 
In the deterministic capacity case, the design strategies of [1 1 1], [2 1 1] and [1 2 1] will give 
exactly the same equilibrium given the same demand and the same travel cost functions with 
the same PAT, thus the same total network travel time and total travel costs. It is quite easy to 
understand because the route performance is determined by the bottleneck on the route. With 
all the three designs, the bottleneck on the upper route is always the one-lane link. However, 
in the stochastic capacity case, all these strategies will not reach exactly the same equilibrium. 
Since with design strategy [1 1 1], the upper route performance is determined by the 
minimum of the capacities on the two links. While with strategies of [2 1 1] and [1 2 1], the 
upper route performance is determined by the one-lane link. Thus the stochastic travel times 
will be different. So are the expected travel time, travel reliability, schedule delays and 
equilibrium travel costs. 
 
This can be explained with the result from extreme value theory that the expectation of the 
minimum of a set of distributions is always smaller or equal to the minimum of the 
expectation of each distribution (Bovy 1984; Li et al. 2007a; Li et al. 2007b). In stochastic 
networks, the expectation of the bottleneck capacity on a route is smaller or equal to the 
minimum of the mean capacities of all links on this route. 
 
Since capacity is a local characteristic of a road, normally we define link capacity by 
assuming a homogeneous road section with the same capacity at all locations. Link divisions 
should be carefully determined in a network in case of modeling stochastic capacities, 
depending on the road geometry, speed limits, etc. Of course, positive link capacity 
correlations between the upper two links in case of the strategies [2 2 0] will reduce the 
difference between the designs [2 2 0] and [0 0 2]. An extreme case would be that the 
capacities of the upper two links are completely positively correlated. In this case designs [2 2 
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0] and [0 0 2] are totally equivalent in case stochastic capacities are considered. Therefore, 
when working with stochastic link capacities, a capacity covariance matrix is very important 
to define the link independences, as we will do in Section 7.4.  

7.3 Network Description 

The proposed reliability-based dynamic discrete network design approach will be applied to a 
hypothetical network with 7 potential links, as depicted in Figure 7.2, given the land use 
patterns.  

Link 1 
[40]

Link 2 
[40]

Link 3 [10]

Link 4 [10]

O1

Link 6 [15]

Link 7 [15]

O2

D1

D2

Link 5 
[25]

 
Figure 7.2: Network description 
 
The length of each link is given in square brackets with a unit of kilometer. In total 6 routes 
are potentially available between the two origins and destinations. Routes are numbered from 
1 to 6 with the route-link table given as: 
 
Table 7.1: Link incidence matrix for the potential complete network 
 

  Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
(O1, D1) Route 1 1 0 0 0 0 0 0 
(O1, D1) Route 2 0 0 1 0 1 1 0 
(O1, D2) Route 3 0 0 1 0 1 0 1 
(O2, D1) Route 4 0 0 0 1 1 1 0 
(O2, D2) Route 5 0 0 0 1 1 0 1 
(O2, D2) Route 6 0 1 0 0 0 0 0 

 
The total travel demand for each OD pair are given in Table 7.2 in vehicles.   
 
Table 7.2: OD Demand (unit in vehicles) 
 
 D1 D2 
O1 5000 1000 
O2 2000 5000 

 
Each link capacity is assumed to follow a normal distribution. The correlation among link 
capacities and the impacts of the covariance matrix will be analyzed in the next section.  
 
Fifty Halton draws are used to replicate the link capacity distribution in the quasi-Monte 
Carlo process. The domain constraint is defined as max 3,L =  restricting a maximum number 
of lanes for each potential link to three.  
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Two levels of capacity variations are modeled to investigate the influence of reliability on the 
network design problem. One level assumes that the standard deviation is equal or less than 
10% of the mean capacity, depending on the number of lanes. The mean capacities for one-
lane, two-lane, and three-lane are 2150, 4300 and 6900pcu/hour, and the standard deviations 
are 215, 350, and 500 respectively (for short, level 10%). The second level assumes that the 
standard deviation is equal or less than 20% of the mean capacity, depending on the number 
of lanes. The standard deviations for one-lane, two-lane, and three-lane are 430, 700, 1000 
respectively (for short, level 20%). 
 
The path-size factor depends on the network structure and the route sets in this potential 
network. Different designs will result in different network structures and route sets, thus 
changed path-size factors. If all the potential links are built, the path-size factors are computed 
for all the 6 routes sequentially as [0, 1.0397, 1.0397, 1.0397, 1.0397, 0]. For general 
networks, path-size factors need to be recomputed for different designs.  
 
According to the definition of unconnected designs given in chapter 6, links 3, 4, 5, 6, 7 
cannot have zero lanes to preserve the connectivity between OD pairs (O1, D2) and (O2, D1) in 
the network. Illogical routes do not exist for this hypothetical network. Therefore the path size 
factors will remain the same regardless of the network structures and designs for this 
hypothetical network. For this hypothetical network, PSC-logit is applied for the traffic 
assignment.  
 
A value of time of 10 euros/hour has been adopted. Relative parameters of 1.2, 0.8 and 1.2 are 
utilized in the travel cost function for travel time reliability, schedule delay early and schedule 
delay late respectively. The impact of the different parameter settings on the design solution 
will be investigated in future work. A time period of 90 minutes is modeled with PAT = 80 
[min]. The maximum speed on each link is 100km/hour. A time step of 30 seconds is adopted 
in the dynamic network loading, while the minimum link travel time in the network is 6 
minutes. A departure time period of 1 minute is used in modeling the departure flows. 
 
A construction cost of about 210,000 euros/km/lane/year is taken from (Meeuwissen 2003). 
Lack of cost information forced us to use only rough cost factors. Since we work on a 
constrained network design, for this hypothetical network the construction cost calculation 
does not influence the designs since the budget and the construction costs are scalable and not 
a component in the objective function. The demand modelled in this case is assumed 20% of 
the daily total demand, 5 days a week and 52 weeks per year are accounted for. Thus the total 
travel cost for a year is computed by multiplying the total travel cost derived from the 
simulation for 90 minutes by 1300. 
 
With the genetic algorithm, a decreasing mutation probability from 0.5 to 0.2 is taken. The 
convergence of GA is considered to be achieved with M=10 and N=50. 

7.4 Impacts of Covariance Matrix on The Evaluations 

Depending on the network structure and the modeling situations, a different covariance matrix 
Σ  of the link capacities (see section 4.3.5) in this network may be defined. For instance when 
it is rainy, it is found that all the link capacity decreases at the same time by a 10-20%, which 
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means that all the link capacities are completely positively correlated (Brilon and Ponzlet 
1996; Maze et al. 2006; Tu et al. 2007c; Tu et al. 2007a). Since link capacity is determined by 
many factors such as the weather conditions, the traffic composition, driving behavior, etc, 
link capacity covariance matrix may change over time. For purpose to show the impacts of the 
covariance matrix on the network performance evaluation, four link capacity covariance 
matrices are defined for this hypothetical network, given as: 
 
Table 7.3: Covariance matrices (unit in vehicles) 
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Covariance matrices 1,Σ  2 ,Σ  3,Σ  4Σ  assume independent link capacities, completely 
positively correlated link capacities, and partly correlated link capacities to different degrees 
respectively. The reliability-based dynamic traffic assignment model with joint departure time 
and route choices are performed for a lane design [2 2 1 2 3 2 1] with each of these covariance 
matrices. The network performances at equilibrium are compared with different covariance 
matrices. 
 
Table 7.4 presents the distributive properties of the total network travel time and total network 
travel costs by components for the four different link capacity covariance matrices. A value of 

0.6ϑ =  is adopted in the objective function (see Formula (5.6)). 
 
It is noticed that the most remarkable case is the network with covariance matrix 2Σ  
assuming all links are positively correlated to model for instance the bad weather. The 
network with 2Σ  outperforms the rest cases with the other three covariance matrices, with 
which the total network travel cost is much less and the total network travel time is on average 
much smaller and more reliable than that with the other three covariance matrices. With 
covariance matrix 2 ,Σ  the relative differences and variations among the link capacities will 
be less due to the positive correlations, thus more reliable and more efficient. The difference 
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among the independent link capacity case with 1Σ  and few correlated link cases with 3Σ  and 
4Σ  are not significant. 

 
Table 7.4: Impacts of covariance matrices 
 

 1Σ  2Σ  3Σ  4Σ  
Mean+std of TNT (hours) 8346017.4 8066295.7 8347828.1 8332811.2

Mean of TNT (hours) 13551742.7 13095250.4 13556175.5 13532446.5

Std of TNT (hours) 537429.4 522863.7 535307.1 533358.2

Total travel costs (euros) 188994415.6 183820854.6 189223152.2 188971867.2

Total travel time costs (euros) 135517427.1 130952503.6 135561754.8 135324464.8

Total reliability costs (euros) 9403592.4 9209375.3 9393415.0 9370989.6

Total schedule delay early costs (euros) 29190189.5 30078294.9 29091356.8 29127604.4

Total schedule delay late costs (euros) 14883206.6 13580680.8 15176625.6 15148808.5

 
Therefore, considering capacity correlations have impacts on the network performances and 
network evaluations. Different covariance matrices exhibit different impacts. In this example 
the difference is about 5% at most. There is no unique link capacity covariance matrix for a 
given network over time and the influence of a specific covariance matrix depends on the 
network structures. For the design problem, all different designs will be evaluated with the 
same covariance matrices. We assume that a specific covariance matrix will have the same 
influences on the network performances of all different designs. The consequence of this 
assumption is that the selection of the covariance matrices does influence the network 
performance for a specific design, while it does not influence the relative goodness of the 
different designs and thus the optimal solutions to the network design problem. Any 
reasonable covariance matrix may be chosen. In following design applications, an 
independent covariance matrix 1Σ  is selected to model the stochastic link capacities.  

7.5 Design Solution in Case of SN-SPUE 

This section starts with the static network design problem with stochastic capacities (see the 
formulation of the static network design problem in Section 5.6 and the travel cost function in 
(4.21)). Parameters of 0.15 and 4 are chosen for the BPR function to estimate the route travel 
time.  
 
An exhaustive set of feasible lane designs (master set) contains 2964 possibilities, satisfying 
the construction budget constraint and excluding the unconnected and illogical designs. Since 
the static assignment is enormously fast to reach equilibrium and a full evaluation of the 2964 
possibilities only takes few minutes for this hypothetical network. Therefore all the 2964 
designs are evaluated and the optimal solution is found.  
  
The two levels of capacity variations are modeled and the two different design objective 
functions are considered. Table 7.5 illustrates the top 10 lane designs in terms of the objective 
function of mean+std of TNT in hours, which turns out to have similar construction costs. An 
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optimal design sL  (denotes the optimal solution from static network design) of [2 3 1 1 2 2 1] 
is found with which the weighted network efficiency and network reliability is optimized. The 
expectation and the standard deviation of the total network travel time at equilibrium are 
presented as well. It is noticed that the variation of the total network travel time is relatively 
small, which is on average only 2.2% of the mean total network travel time (i.e. the 
coefficient of variation of TNT is about 2.2%).  
 
Table 7.5: Design evaluations with level 10% capacity variations on a yearly basis 
 

Lane designs 

Weighted 
mean+std of 

TNT 
(hours/year) 

Total travel 
costs  

(Millions of 
Euros/year) 

Mean of 
TNT 

(Hours/
year) 

Std of TNT
(Hours/year)

Total travel 
time costs

(Millions of 
Euros/year)

Total 
reliability costs 

(Millions of 
Euros/year) 

Construction 
costs 

(Millions of 
Euros/year)

[2 3 1 1 2 2 1] 5041101 85.77 8278582 184878.5 82.79 2.98 65.63 
[3 2 2 2 2 1 1] 5044122 85.87 8288688 177274.3 82.89 2.98 66.68 
[3 2 1 3 2 1 1] 5046498 85.92 8289389 182162.3 82.89 3.02 66.68 
[3 2 1 2 2 1 1] 5049941 85.96 8291679 187334.8 82.92 3.04 64.60 
[3 2 1 1 2 2 1] 5097991 86.96 8354704 212922.3 83.55 3.4 65.63 
[3 2 1 1 2 1 2] 5117852 87.36 8391531 207333.1 83.92 3.45 65.63 
[2 3 2 2 2 1 1] 5118624 87.43 8386537 216755.3 83.87 3.58 66.68 
[3 2 3 1 2 1 1] 5123687 87.44 8399110 210553.1 83.99 3.45 66.68 
[2 3 1 3 2 1 1] 5123973 87.54 8391606 222524.6 83.92 3.63 66.68 
[3 2 2 1 2 1 1] 5124443 87.50 8397241 215245.5 83.97 3.53 64.60 
 
Therefore explicitly including the network travel time unreliability (as in objective of 
mean+std of TNT) does not contribute to network reliability unless a very high weight is 
chosen for the network unreliability.  
 
As can be seen that optimizing the weighted mean+std of TNT leads to the same optimal 
design and similar sequence of the 10 designs (except for the three designs which are not in 
the correct order, see the bolded mean of TNT) as optimizing the mean of TNT since network 
reliability is relatively too small. However if only network reliability is optimized (with 

0ϑ = ), the design [3 2 2 2 2 1 1] leads to the most reliable network.  
 
It is found that the standard deviation is not a monotone function of the expectation of the 
total network travel time. Large expectation of the total network travel time does not 
necessarily lead to large variations for the same network. With the same degree of capacity 
variations, the standard deviation of the total network travel time strongly depends on the 
network structure as a result of the designs.  
 
It is also found that the two different objective functions in the stochastic and static network 
design problem lead to the same optimal solution and the same order of the 10 designs. Due to 
the small scale of this hypothetical network and low demand, the network performance 
differences among different designs are not large. For larger networks and realistic networks, 
the network performance among different designs may be very significant. The value of 
choosing an optimal design for a specific potential network becomes more remarkable.  
 
Table 7.6 compares the equilibrium flow patterns and route costs for the optimal design sL  
and the most reliable design [3 2 2 2 2 1 1] to investigate the sensitivity of the network 
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structure and its influence on the network reliability. With the optimal design ,sL  there are 
two bottlenecks on both route 3 and 5 (although route 5 is not used by travelers) with one-lane 
links, therefore the variability of the route outflow capacity is larger than that on the same 
routes with the most reliable design [3 2 2 2 2 1 1]. The remaining routes in both designs are 
similar. Therefore the design [3 2 2 2 2 1 1] would be more reliable than the optimal design 

.sL  
 
Table 7.6: Route flows and route costs at equilibrium with level 10% capacity variations 
 

[2 3 1 1 2 2 1] [3 2 2 2 2 1 1]  Route Flows Route Costs Route Flows Route Costs 
Route 1 4545.5 32.36 5000 26.67 
Route 2 454.5 33.07 0 34.15 
Route 3 1000 32.98 1000 32.97 
Route 4 2000 33.71 2000 34.26 
Route 5 0 33.63 454.5 33.07 
Route 6 5000 26.67 4545.5 32.22 

 
Larger capacity variations are modeled to investigate the influence of reliability on network 
design. Table 7.7 presents the mean and standard deviation of the total network travel time 
and the total network travel costs by component with 20% variations in link capacities.  
 
An optimal design of [3 2 2 2 2 1 1] is derived, which is different from that with 10% 
variations in link capacities, implying that modeling travel time reliability in traveler’s choice 
behavior has significant influence on the network equilibrium and network designs.  
 
Table 7.7: Design evaluations with level 20% capacity variations on a yearly basis 
 

Lane designs 

Weighted 
mean+std of 

TNT 
(hours/year) 

Total travel 
costs  

(Millions of 
Euros/year) 

Mean of 
TNT 

(Hours/
year) 

Std of TNT
(Hours/year)

Total travel 
time costs

(Millions of 
Euros/year)

Total 
reliability costs 

(Millions of 
Euros/year) 

Construction 
costs 

(Millions of 
Euros/year)

[3 2 2 2 2 1 1] 5252511 93.07 8453662 450784.2 84.54 8.53 66.68 
[2 2 1 1 2 2 1] 5273378 93.69 8449840 508685.3 84.50 9.19 65.63 
[3 2 1 3 2 1 1] 5285039 94.15 8468919 509219.5 84.69 9.47 66.68 
[3 2 1 2 2 1 1] 5296127 94.30 8470636 534363.2 84.71 9.59 64.59 
[3 1 1 3 3 1 2] 5341332 94.71 8686654 323350.3 86.87 7.84 66.68 
[2 2 2 2 3 2 1] 5349559 95.19 8635028 421355.4 86.35 8.84 66.68 
[2 2 1 3 3 2 1] 5411885 97.35 8687630 498267.8 86.88 10.48 66.68 
[2 2 1 2 3 2 1] 5425970 97..65 8704423 508289.2 87.04 10.60 64.59 
[3 2 1 1 2 2 1] 5430382 97.86 8604016 669930.3 86.04 11.82 65.63 
[2 3 2 2 2 1 1] 5436732 97.71 8632186 643551.2 86.32 11.39 66.68 
 
Compared to Table 7.5, it is noticed that the top 10 designs are different from different 
capacity variations. Again the two objective functions lead to the same optimal solution and 
similar sequences of the 10 designs.  
 
The standard deviation of the total network travel time is relatively small, for which a 
coefficient of variation of TNT is about 5.3%. If only the network reliability is aimed to be 
optimized, the most reliable design will be [3 1 1 3 3 1 2]. The reliability of a network 
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depends on the sensitivity of the network to the variations in link capacities. The less sensitive, 
the more reliable the network is. The sensitivity of the network depends on the network 
structure. 
 
Table 7.8 compares the equilibrium flow patterns and route costs of the optimal design and 
the most reliable design respectively.  
 
Table 7.8: Route flows and route costs at equilibrium with level 20% capacity variations 
 

[3 2 2 2 2 1 1] [3 1 1 3 3 1 2]  Route Flows Route Costs Route Flows Route Costs 
Route 1 5000 27.80 5000 27.79 
Route 2 0 37.46 0 37.93 
Route 3 1000 35.88 1000 36.71 
Route 4 2000 37.66 2000 38.17 
Route 5 714.3 36.10 2903.2 36.97 
Route 6 4285.7 35.83 2096.8 37.10 

 
Figure 7.3 and Figure 7.4 plot the distributive properties of the total network travel time and 
total network travel costs for all the feasible, connected and logical lane configurations (all the 
designs in the master set) in relation to the construction costs with 20% capacity variations. 
Mean+std of total network travel time has a similar pattern as total network travel costs in 
relation to construction costs.  
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Figure 7.3: Network performances in relation to construction costs with 20% capacity 
variations 
 
It can be seen that when the investment is small, extra investment on the construction 
improves dramatically the network performance, which is to say that the marginal benefit of 
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investment is very large. However when the investment reaches a certain amount, the 
marginal benefit of the investment on the network performance is rather limited.  
 
The same construction costs may lead to different designs, thus highly different network 
performances. Larger investment may lead to worse network performance than smaller 
amount of investment, depending on the network structures. Therefore the optimal capacity 
allocation over space should be determined with which the investment is optimally and 
maximally utilized. 
 
Figure 7.4 shows the means and standard deviations of total network travel time of all the 
feasible, connected and logical networks in the master set in relation to construction costs. It 
can be seen that the standard deviation of total network travel time of all the designs have 
larger variability than the expectations of total network travel time, since std of TNT can be 
very large or very small as seen in the right figure. Therefore the reliable designs and the 
reliable network structures can be derived with which the network reliability is high.  
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Figure 7.4: Expectations and standard deviations of total network travel times in 
relation to construction costs 
 
Among the 2964 designs in the master set, more than 13000 pairs of designs are found which 
have only one-lane difference in the physical network. In order to investigate the network 
performance with adding an extra lane in the network at any location, Figure 7.5 presents the 
frequency of the network performance differences of the 13491 pairs of designs.  
 
A negative difference in the network performance means that adding one extra lane in the 
network improves the network performances, vice versa. It is found that most pairs have 
differences in performance which are close to zero from both sides, implying that adding one 
extra lane does not change the network performance efficiently. Some differences are positive, 
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meaning that adding one extra lane in the network may deteriorate the network performances. 
This shows that the so-called Braess paradox appears in reliability-based static networks. 
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Figure 7.5: Network performance changes with adding one extra lane in the network 
 

7.6 Design Solution in Case of SN-DDPUEH with Low Capacity 
Variations 

In contrast to the previous section on a static network design, this section presents the design 
solution from the reliability-based dynamic road network design approach with 10% capacity 
variations. The purpose is to investigate the effects of dynamic network modeling and 
departure time choice on network designs and to determine whether a dynamic network 
design approach indeed outperforms the static network design approach.  
 
The GA approach has been tested with static network designs showing that GA is able to find 
good solutions which however are not necessarily the optimal solution, while each run with 
GA may generate different solutions. If the optimal is desired, the GA is required to be run 
many times and the solutions need to be compared. For practical purpose, we adopt the 
combined GA and set evaluation approach to derive a fairly good design or even the optimal 
design with dynamic networks.  
 
A sufficient set of the top 100 designs from static designs with 10% capacity variations is 
evaluated with dynamic traffic assignment model. The GA is also applied to the reliability-
based dynamic network design problem. The solution given by GA appears to be one of the 
designs in the 100 designs, which means that the evaluation of the set of designs will lead to a 
better solution than the GA algorithm. 
 
Table 7.9 presents the mean+std of total network travel time and total network travel costs by 
components of the top 10 designs. Both objective functions lead to the same design solution 

dL  (denotes the design solution from dynamic network design) of [3 2 2 2 2 1 1], which is 
different from the solution sL  from static network design with 10% capacity variations.  
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It appears that the static solution sL  [2 3 1 1 2 2 1] from the static network design with 10% 
capacity variation not even is a good solution in the top 10 best designs from dynamic 
network design approach. Because of its poor travel time estimations, a static traffic 
assignment may lead to incorrect approximation of the network performance, thus to poor 
network designs. Again, the two objective functions lead to the same design solution, but 
different order of the 10 design in terms of network performance.  
 
Compared to Table 7.5, in general the estimated total network travel times from dynamic 
traffic assignment expectedly are much higher than from static assignment since the dynamics 
and spillbacks are captured. It is also noticed that larger variations of total network travel time 
(the coefficient of variation of TNT is about 3-4%) appear than in the static network design 
case (about 2.2%) with 10% capacity variations. Static traffic assignment significantly 
underestimates the total network travel time and the variability of total network travel time, 
thus also underestimates the value of the investments. 
 
Table 7.9: Dynamic design evaluations with level 10% capacity variations on a yearly 
basis 
 

Lane designs 

Weighted 
mean+std of 

TNT 
(Hours/year) 

Total travel 
costs  

(Millions of 
Euros/year) 

Mean of 
TNT 

(Hours/year)

Std of 
TNT 

(Hours/
year) 

Total travel 
time costs

(Millions of 
Euros/year)

Total reliability 
costs 

(Millions of 
Euros/year) 

Construction 
cost (Millions 
of Euros/year)

[3 2 2 2 2 1 1] 7040815 158,10 11489484 367812 114,89 7,72 66.68 
[3 2 1 2 2 1 1] 7116073 160.94 11615972 366226 116,16 8,21 64.59 
[2 2 3 2 2 2 1] 7238355 170,79 11736390 491302 117,36 8,86 63.55 
[2 2 3 3 2 2 1] 7238411 170,49 11735793 492339 117,36 8,91 65.63 
[2 2 2 3 2 3 1] 7288140 171,65 11816261 495960 118,16 8,92 66.68 
[2 2 2 3 2 2 2] 7293935 171,69 11827147 494116 118,27 8,94 66.68 
[2 2 1 3 2 2 2] 7295356 171,56 11829379 494322 118,29 8,96 64.59 
[2 2 2 2 2 1 2] 7295545 172,85 11848845 465595 118,49 9,25 61.47 
[2 2 2 2 2 1 3] 7302294 172,93 11857264 469840 118,57 9,29 64.59 
[2 2 3 2 2 3 1] 7314904 171,98 11857998 500262 118,58 8,92 66.68 
 
Travelers make a trade-off between the route travel times, route travel time reliability, 
schedule delay costs at all available departure time intervals and make their route and 
departure time choice accordingly. For comparison, Figure 7.6 and Figure 7.7 present the 
equilibrium departure patterns on all routes in the network with the dynamic design dL  and 
the static design sL  (see Section 7.5).  
 
Different equilibrium departure patterns over time appear for both designs, which directly 
influence the network performance. With designs for instance sL , departures from different 
OD pairs start and finish within almost the same time region whereas with designs for 
instance ,dL  the departures from different OD pairs appear relatively separate over time. As 
seen in Figure 7.6, with the dynamic design solution dL  travel demand between OD pairs (O2, 
D1) depart much earlier than the demand departing from (O2, D2), followed by that from (O1, 
D2) and (O1, D1). The departures from different OD pairs avoid each other over time. The 
dynamic design solution dL  leading to relatively separate departures among the 4 OD pairs, 
explains the best network performance. A wider distribution of departures over time among 
different OD pairs will generate lower total network travel time and total network travel costs. 
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The distribution of departures is a result of the designs. Therefore the design solution, leading 
to the best network performance, makes the maximum utilization not only of the physical 
capacity itself, but also the efficiency over time. 
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Figure 7.6: Dynamic equilibrium 
departure patterns with dL  [3 2 2 2 2 1 1]

Figure 7.7: Dynamic equilibrium 
departure patterns with sL [2 3 1 1 2 2 1] 

 
A static assignment model cannot capture the dynamics over time, even not mention the 
departure dynamics over time which has significant influence on network performance. A 
static network design approach only attempts to utilize the physical capacity, not the capacity 
over time. Utilizing network capacity over the time dimension can reduce congestions, thus 
result in a better network performance. That’s the reason why some research has suggested 
that a wider distribution of PAT from the employer may help alleviate the congestions (Arnott 
et al. 2005). A wider distribution of PAT will lead to relatively separate departures from 
different OD pairs, which has been shown to lead to lower network costs and better network 
performances. 
 
For comparison, Figure 7.8 and Figure 7.9 present the total network travel time distributions 
based on the dynamic assignment caused by the stochastic link capacities with the design 
solutions dL  and sL . It is found that with the dynamic solution ,dL  the total network travel 
time at long term equilibrium is narrowly distributed, while with static solution sL the total 
network travel time exhibit much larger variability. It means the design dL  is much more 
reliable than .sL  In this sense also a static network design approach may lead to a poor 
network design.  
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Figure 7.8: Total network travel time 
distribution with the dynamic solution dL  
based on the dynamic assignment 

Figure 7.9: Total network travel time 
distribution with the static solution sL  
based on the dynamic assignment 

 
Figure 7.10 presents the network performances in relation to construction costs with dynamic 
networks based on the evaluation of the 100 designs. Since these designs are the best designs 
from static network design approach, they have similar construction costs. The spots are 
widely scattered. The same construction cost may lead to very different network performance 
in terms of mean+std of TNT and total network travel costs. Higher construction cost may 
lead to worse network designs than with lower construction costs.  
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Figure 7.10: Dynamic network performance in relation to construction costs with a set 
size of 100 
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From the evaluated 100 designs, 183 pairs of designs are found having only one-lane 
difference in the network structure at any location. Figure 7.11 shows the network 
performance differences of the 183 pairs.  
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Figure 7.11: Network performance differences with adding one extra lane  
 
Negative differences in network performance in Figure 7.11 denote that adding one extra lane 
improves the network performances. About 63% of the pairs have negative differences in total 
network costs while 61% in mean+std of the total network travel time. About 37% and 39% 
of the pairs have positive differences in the total network travel costs and mean+std of total 
network travel time respectively, showing that network performance is worse by adding one 
extra lane in the network. This shows that the Breass paradox thus also appears in the 
reliability-based travel cost function in dynamic networks. 

7.7 Design Solution in Case of SN-DDSUEH with High Capacity 
Variations 

This subsection presents the design solution from the proposed reliability-based dynamic road 
network design approach with level 20% capacity variations, compared with 10% variations 
in previous section. 
 
Again 100 top designs from the static design approach with 20% capacity variations are 
selected and evaluated by the reliability-based dynamic assignment. Table 7.10 presents the 
network travel time and network travel costs by components of the top 10 designs.  
 
A different design solution dL  of [3 2 1 3 2 1 1] is derived from that with dynamic network 
design with 10% capacity variations. 
 
Still the two objective functions lead to the same design solution. Compared to the 
evaluations with 10% capacity variations (see Table 7.9), the expectations of the total network 
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travel times are similar. While the standard deviations of total network travel time increases 
with a Coefficient of Variation (CoV) of about 7-8%. 
 
Table 7.10: Dynamic design evaluations with level 20% capacity variations on a yearly 
basis 
 

Lane designs 

Weighted 
mean+std of 

TNT 
(Hours/year) 

Total travel 
costs  

(Millions of 
Euros/year) 

Mean of 
TNT 

(Hours/ 
year) 

Std of 
TNT 

(Hours/
year) 

Total travel 
time costs

(Millions of 
Euros/year)

Total reliability 
costs 

(Millions of 
Euros/year) 

Construction 
cost (Millions 
of Euros/year)

[3 2 1 3 2 1 1] 7176719 171.79 11432486 793067 114.32 16.43 66.68 
[2 3 2 2 2 1 1] 7368276 174.99 11748856 797406 117.49 16.33 66.68 
[2 3 1 3 2 1 1] 7508894 178.11 11986206 792927 119.86 16.25 66.68 
[3 2 2 2 2 1 1] 7587431 177.74 12060172 878320 120.60 16.84 66.68 
[2 3 1 2 2 1 1] 7698630 180.80 12270011 841559 122.70 17.32 64.59 
[3 2 1 2 2 1 1] 7701104 181.13 12238948 894339 122.39 18.65 64.59 
[3 2 1 1 2 1 2] 7730374 182.89 12201332 1023937 122.01 19.29 65.63 
[2 2 1 1 3 3 1] 7867659 196.16 12237819 1312418 122.38 22.29 65.63 
[3 2 3 1 2 1 1] 7933741 188.56 12360740 1293243 123.61 22.89 66.68 
[2 2 1 1 3 2 2] 7944800 197.56 12389640 1277539 123.90 21.86 65.63 
 
It can be seen that the mean of the total network travel time is equal to the sum of all flow 
weighted mean of all route travel times at all departure time intervals (due to the mean of 
TNT equals the total travel time costs divided by VOT=10euros/hour). However the variance 
of the total network travel time is not simply a sum of all flow weighted route travel time 
variances at all departure time intervals, which could be a consequence of the correlations of 
travel times among routes and time intervals. 
 
Table 7.11 collects the design solutions and the most reliable designs from static and dynamic 
network design approaches with difference capacity variations.  
 
Table 7.11: Overview of the design solutions and the most reliable designs from different 
design approaches 
 

Design solution [2 2 2 2 3 2 1] 10% capacity variations
Most reliable design [2 2 2 2 3 2 1] 

Design solution [2 2 2 2 3 2 1] 
Static network 

design approach 
20% capacity variations

Most reliable design [2 2 2 2 3 2 1] 
Design solution [3 2 2 2 2 1 1] 10% capacity variations

Most reliable design [3 2 1 2 2 1 1] 
Design solution [3 2 1 3 2 1 1] 

Dynamic 
network design 

approach 20% capacity variations
Most reliable design [2 3 1 3 2 1 1] 

 
Based on the comparisons, different design solutions are derived from the static and dynamic 
network design approaches. Different capacity variations also lead to different design 
solutions, which implies that modeling travel time reliability in traveler’s choice behavior has 
significant impacts on the departure pattern and the network performance evaluations. The 
design solution is very sensitive to the approach adopted. The knowledge of the capacity 
distributions is very important for network designs. 
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Figure 7.12 presents the departure pattern with the design solution from the 10% capacity 
variation case [3 2 2 2 2 1 1], in case of 20% capacity variations are modeled. Compared to 
Figure 7.6, it can be seen that with larger capacity variations and larger travel time 
unreliability, travelers attempt to depart much earlier than that with 10% capacity variations.  
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Figure 7.12: Equilibrium departure patterns with design [3 2 2 2 2 1 1] with PAT= 110 
 
Again it is concluded that modeling travel time reliability in traveler’s choice behavior has a 
significant influence on the departure pattern and network performance evaluations, thus the 
network designs. 
 
Figure 7.13 presents the dynamic network performances in relation to the construction costs 
in the case of 20% capacity variations for all the 100 designs.  
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Figure 7.13: Dynamic network performances in relation to construction costs 
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Due to the fact that spots are widely scattered, the same construction cost may lead to 
different network performances. In addition, higher construction cost does not necessarily 
mean an improvement in the network performance. The appropriate allocation of the 
construction cost and capacity distribution over space will make the maximum utilization of 
the infrastructure, even over time dimension. 
 
Figure 7.14 presents the frequency distribution of the network performance changes by adding 
one extra lane in the network at any location, based on the evaluations of the top 100 designs 
selected from the static network design with 20% capacity variations. Negative difference 
means that adding one lane decreases costs, i.e. improves network performance. It can be seen 
that both negative and positive network performance changes are observed. Adding lanes in 
the network sometimes deteriorates the network performances. This again is an instance of 
Braess paradox in case of reliability-based cost functions in a dynamic network. 
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Figure 7.14: Frequency distribution of network performance changes by adding one 
extra lane at any location in the network 
 
Figure 7.15 presents the network performance elasticity of construction costs computed from 
the pairs of designs with one lane difference in the network structure. Large absolute values of 
elasticity imply that a change in the construction cost leads to significant changes in the 
network performances. Elasticity around zero means the investment is not efficient, which 
from the figure occurs with a large frequency. In most cases the investment is not efficient.  
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Figure 7.15: Network performance elasticity of construction costs 

7.8 Conclusions  

This chapter applied the proposed reliability-based dynamic network design approach to a 
hypothetical network with 7 potential links. Different capacity covariance matrices are 
defined and tested. It is found that covariance of disturbances have significant influence on 
the network performance evaluation for a specific network design, while it is assumed that it 
does not influence the network design solution in case the same covariance matrix is adopted 
for the evaluation of all different designs.  
 
The design solutions from a static network design approach with two levels of capacity 
variations are investigated and compared with that from dynamic network design approach 
with two levels of capacity variations.  
 
It is found that a static network design may lead to a poor approximation of the network 
performances and to poor network designs. A static network design only aims to make the 
best utilization of the physical capacity, regardless of the utilization over time dimension 
based on unrealistic assumptions. The static assignment underestimates the total network 
travel time and the variability of total network travel time, thus underestimates the 
effectiveness of the investment. 
  
Modeling departure time choice is crucial when dealing with the network design problem. A 
dynamic network design approach aims to derive a fairly good allocation of the capacity over 
space, at the same time making the best utilization of the network over time. Relatively 
separate departures among different OD pairs, as a result of the designs, lead to better network 
performances. This effect cannot be captured by static network design approach. 
 
It is found that the two objective functions (minimize mean+std of total network travel time 
and minimize total network travel cost) lead to the same design solution with this small 
network. Different level of capacity variations leads to different design solutions, implying 
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that modeling travel time reliability in traveler’s choice behavior has significant influence on 
the network flow patterns over space and time, thus on the network performance evaluations 
and the network design. The knowledge of the capacity distribution is important in network 
designs.  
 
The experimental results also showed that the appearance of Braess paradoxes when applying 
reliability-based traffic flow assignments.  
 
In conclusion, network designs should be based on the dynamic network modeling with 
considering travel time reliability in traveler’s choice behavior, especially departure time 
choice behavior. Such an approach offers in addition ample apportunities in designing 
dynamic link properties as part of a dynamic traffic management policy, such as dynamic lane 
configuration, dynamic speed limits during peak hours, dynamic toll design, etc.  
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Part V: Conclusions 
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8 Conclusions and Future Research 

8.1 Introduction 

This concluding chapter, as the epilogue of this dissertation, summarizes the research that has 
been performed, the approaches adopted to solve the research questions given in Chapter 1, 
and the main achievements. The findings and conclusions having their scientific and practical 
implications will be presented. Some recommendations and potential values of our research to 
the practitioners and decision makers are given. This chapter will discuss the general validity 
of our developed approaches and a few potential research subjects to enhance our 
methodology. Finally a few research topics which are of highly scientific interest will be 
given for future research.  

8.2 Summary 

Transportation systems are stochastic and dynamic systems. The road capacities and the travel 
demand are fluctuating from time to time within a day and at the same time from day to day. 
We focus on the two main stakeholders involved in the stochastic transportation systems: the 
road authorities or the designers, and the road users. For road users, the travel time and travel 
costs experienced over time and space are stochastic, thus desire reliable travel times and low 
travel costs by altering routes or departure times. Road authorities and designers aim to design 
road networks such that they provide efficient and reliable services to the road users. 
Traveler’s choice behavior under stochastic travel times/costs and the design of the road 
networks are mutually affecting each other. While on the one hand travelers’ choice behavior 
determines the network traffic situations and thus the network performances, the design of the 
road network influences the choice behaviors of travelers on the other hand. 
 
Traveler’s choice behavior under stochastic travel times, especially route/departure time 
choice behaviors has attracted increasing attentions in the last decade. However, in most 
studies on network design problems with stochastic capacity or travel demand, traveler’s 
choice behavior, especially their departure time choice behavior under stochastic travel times 
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are not considered. Instead, static traffic assignment is followed in most network design 
studies with stochastic travel times, which from our point of view is not realistic in terms of 
network performance assessments. This motivated our research direction. We aim to establish 
a network design approach with which dynamic traffic assignment is followed to capture the 
dynamics in flow propagations and spillback effects. Traveler’s departure time/route choice 
behavior under stochastic travel times is explicitly modeled. Travel time reliability is taken 
into account on both the individual choice behavior and network performance evaluation with 
stochastic networks. 
 
We started the research with modeling traveler’s departure time and route choice behavior 
under uncertainty. In general two approaches are available to model traveler’s choice behavior 
under uncertainty, namely the mean-variance and the scheduling approach. We theoretically 
investigate the relationship between these two approaches. We proved the principal 
equivalence of the mean-variance and the scheduling approach conditional to departure times. 
Through the mathematical derivations based on these two approaches, we propose a 
generalized travel cost function for modeling traveler’s departure time/route choice behavior 
under uncertainty. The generalized travel cost function, compared to the scheduling approach, 
is more behaviorally sound (has face validity) and plausible. It is also more flexible to capture 
more complete risk aversion attitude. Compared to the mean-variance approach, the 
generalized travel cost function explicitly accounts for the schedule delay cost, which is very 
important in the timing of departures for travelers.  
 
Compared to the dynamic user equilibrium without capturing traveler’s choice behavior under 
uncertainty, we defined in the second part a type of long term dynamic user equilibrium with 
stochastic networks, at which no traveler can reduce his long term accumulated trip cost by 
unilaterally altering routes and departure times. The long term trip cost is formulated as the 
derived generalized travel cost function. We analytically derive the long term dynamic user 
equilibrium by extending Vickrey’s bottleneck model to the stochastic capacity case and 
including travel time reliability in the travel cost function, given uniformly distributed link 
capacities with continuous time and continuous flows. Compared to the two-regime division 
with Vickrey’s deterministic bottleneck model, our analyses with stochastic capacities adopt a 
three-regime division in the analyzed time period. We compared the equilibrium departure 
patterns with and without modeling traveler’s choice behavior under uncertainty. The long 
term equilibrium travel costs at all departure time instants t by component are derived 
analytically and presented graphically.  
 
Due to the mathematical complexity inherent of the theoretical approach of deriving the long 
term dynamic user equilibrium with stochastic networks, we established a comprehensive 
dynamic network assignment procedure with discrete time and continuous flows. This 
procedure is able among other matters to capture the correlated stochastic link capacities and 
traveler’s departure time/route choice behavior under uncertainty. We established a new 
method to generate correlated link capacities realistically by using the Cholesky 
decomposition with predefined link capacity covariance matrix. 
  
We defined and formulated four different user equilibrium models with their assumptions and 
specifications for different comparative purposes. These models are distinguished by whether 
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deterministic or stochastic capacities, deterministic or probabilistic user equilibrium, static or 
dynamic flows, and vertical or horizontal queues are modeled. The established dynamic 
network assignment procedure is capable of deriving the four different user equilibria with 
stochastic capacities.  
 
In the third part we established a reliability-based dynamic discrete network design 
methodology under stochastic capacities. Its purpose is to design completely new (from 
scratch) or redesign existing networks given a policy objective and policy constraints. Travel 
time reliability is considered on both the network design level and individual choice behavior. 
Dynamic network modeling with joint departure time/route choice is adopted. The design 
variables are the network structure and numbers of lanes on a set of potential links in the 
network. The design problem aims to minimize a weighted network inefficiency and network 
unreliability.  
 
We developed a combined network-oriented genetic and set evaluation approach to solve the 
reliability-based dynamic discrete network design problem. A new concept of the universal 
set and the master set of lane designs is defined. We established a new systematic approach to 
derive the master set by eliminating the infeasible, unconnected and illogical lane designs in 
order to reduce the solution space and to save computation time. We adopted an example grid 
network to demonstrate the notions of the infeasible, unconnected and illogical lane designs 
and the process of crossover and mutation. The example network gives a general impression 
on the relative sizes of the universal set and the master set. 
 
We investigated the feasibility and the merits of the established dynamic network design 
approach by a case study on a 7-link hypothetical road network. We compared the design 
solutions from the reliability-based dynamic and static network design approaches with 
different capacity variation levels. The influence of two different objective functions on the 
design solutions has been investigated. We tested the network performances with different 
link capacity covariance matrices to get insight into the influence of link correlations on 
network performances. 

8.3 Findings and Conclusions 

After the summary of the research and the main methodological achievements given in the 
previous section, this section summarizes the important findings and main conclusions which 
can be useful for other researchers and meaningful in both practical and scientific aspects. 
 
This section is organized following the structure of the dissertation and presents the findings 
and conclusions for each group sequentially. 

8.3.1 Modeling traveler’s departure time/route choice behavior under uncertainty 
 
From the theoretical derivations, we established that the scheduling approach and the mean-
variance approach are equivalent, conditional to departure times. We showed that the 
expectation of the schedule delay costs at any departure time instant t can be decomposed into 
a linear function of the expected travel time and standard deviation of the travel time at 
departure time instant t in case of assuming linearity in schedule delay costs. We proved 
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analytically that the scheduling approach indeed already represents traveler’s risk aversion 
attitudes. 
 
The proposed generalized travel cost function, from its mathematical implications, is more 
behaviorally sound (has face validity) and more plausible compared to the scheduling 
approach. The reason is that with the scheduling approach, the expectations of schedule delay 
early and late are both positive, implying that travelers would experience schedule delay early 
and late at the same trip and will not arrive at destination on time, which is not realistic. 
Whereas with the generalized travel cost function, travelers will expect to be either early, late 
or on time based on the expected travel times. 
 
Since the scheduling approach only partly captures the risk aversion attitudes based on others’ 
research, the generalized travel cost function is more flexible in terms of capturing a more 
complete risk aversion attitude caused by travel time uncertainty. 
 
The generalized travel cost function, compared to the mean-variance approach, accounts for 
the schedule delay costs explicitly. The scheduling approach and the mean-variance approach 
are special cases of our generalized mean-variance scheduling approach.  
 
With regard to quadratic schedule delay cost functions, we showed that the expectation of the 
quadratic schedule delay cost when departing at any time instant t can be decomposed into a 
quadratic function of the schedule delay cost based on the expected travel time when 
departing at time instant t and the standard deviation of the travel time when departing at time 
instant t.  
 
We claim that the cost parameters in this cost function have a two dimensional meaning, 
where one dimension reflects the heterogeneity of travelers in terms of taste variations, while 
the other depends on the prevailing attribute values. 

8.3.2 Dynamic user equilibrium under uncertainty 
 
We showed that the equilibrium departure pattern under uncertainty is significantly different 
from the deterministic capacity case. The larger the capacity variation is, the more significant 
the difference will be from the departure pattern in the deterministic capacity case. 
Consideration of random capacities and travel time reliability yields systematic shifts towards 
earlier departures. The later a traveler departs in the congested period, the larger the travel 
time variability he/she might encounter between days. This finding may be interpreted as a 
reason why travelers attempt to depart early to reduce their travel time variability in case of 
stochastic travel costs.  
 
We established analytically that the standard deviation of travel time under congested 
conditions is not proportional to the expectation of travel time, as most sources assume to be 
the case. 
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8.3.3 Dynamic network assignment procedures for stochastic networks 
 
By applying the simulation-based dynamic network modeling approach to a single bottleneck 
with deterministic capacity, we showed that the results (i.e. equilibrium departure pattern and 
equilibrium travel costs by component) from our established simulation-based approach are 
consistent with the analytical results from Vickrey’s deterministic bottleneck model, which 
validates our established simulation-based dynamic network modeling approach. 
 
By applying the simulation-based dynamic network modeling approach to a single bottleneck 
with stochastic capacities, we showed that results from our established simulation-based 
approach for stochastic capacities are consistent to that from our analytical derivations with 
stochastic bottleneck model, which validates our theoretical findings on the dynamic user 
equilibrium with stochastic capacities. 

8.3.4 A reliability-based dynamic network design methodology 
 
The developed combined genetic and set evaluation approach for solving dynamic network 
design problem appears to be a feasible approach. It is applicable for general networks. 
 
The application of the developed systematic approach for deriving the master set of lane 
designs on an example grid network showed that the solution space for a network design 
problem can be reduced considerably by eliminating the infeasible, unconnected and illogical 
lane designs.  
 
The established reliability-based dynamic network design methodology is applied to a 
hypothetical road network and appears to be feasible. By comparing our dynamic network 
design approach to the static network design approach, it is found that static traffic assignment 
significantly underestimates the total network travel time and the variability of total network 
travel time compared to the dynamic traffic assignment, thus also underestimates the value of 
the investments in reducing these network costs. The static and dynamic network design 
approaches lead to significantly different design solutions. Since static traffic assignment 
cannot capture the dynamics in flow propagation and spillback effects, a dynamic traffic 
assignment is more realistic. So is the dynamic network design approach. We found that the 
static network design approach may lead to poor designs compared to the dynamic network 
design approach. 
 
It is found with the small network that minimizing total network travel cost leads to the same 
design solutions as from minimizing mean plus standard deviation of total network travel 
times. It is expected to be the case in general, since the network travel time cost is dominating 
to other network costs.  
 
We showed that the same construction cost budget may lead to significantly different design 
solutions with highly different network performances. Larger construction cost does not mean 
better network performances. It is shown that adding one extra lane sometimes deteriorates 
the network performances. This is a new evidence of the Braess paradox appearing in 
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reliability-based static and dynamic networks. The marginal benefit of the investment is very 
small when the investment reaches a certain amount, which is quite common.  
 
The results from the hypothetical network exercise showed that modeling departure time 
choice plays a very crucial role in network designs. Different designs lead to different 
departure patterns, which have significant impacts on the network performances. Our dynamic 
network design approach with departure time choice modeling results in a lane design which 
gives the best allocation of the capacity distribution over space given the construction budget. 
In addition, it gives the maximum utilization of the link capacities over time. Static network 
design approach however cannot capture these dynamics in departures, nor can make use of 
the time dimension. 
 
By comparing the design solutions from our dynamic network design approach with different 
capacity variation levels, we conclude that modeling traveler’s choice behavior under 
uncertainty has significant impacts on the departure patterns and network performance 
evaluations, thus on the network designs. 
 
We applied the Cholesky decomposition to generate realistically correlated link capacities 
with different link capacity covariance matrices in the same network. We showed that 
considering link capacity correlations significantly influences the network performance 
evaluations. A fully positive correlated link capacity covariance matrix outperforms other 
kinds of matrices by having less total network travel cost and less total network travel time on 
average. 

8.4 Recommendations and values to practical applications 

The research in this dissertation and its findings and conclusions has potential values to 
practitioners and decision makers.  
 
Based on the research, dynamic network design approach is recommended to the road 
authority/designers instead of current static network design approach, since static traffic 
assignment leads to poor evaluations of the network performance, thus to poor network 
designs.  
 
Modeling traveler’s choices under uncertainty has significant influences on the network 
equilibrium performances. It is recommended that network designs should be based on 
reliability-based choice modeling, especially departure time choices taking into account the 
impact of the stochastic nature of the transport systems.  
 
The generalized travel cost function for modeling traveler’s departure time and route choices 
under uncertainty can be used in general network modeling with stochastic networks and 
fluctuating travel demand. 
 
The established dynamic network modeling procedure, which captures the stochastic 
properties of the road networks and the consideration of this by travelers, can be directly used 
to assess road network performances and dynamic traffic management measures, for instance 
dynamic speed limit, dynamic lane configurations, etc.  
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The established reliability-based dynamic road network design approach can help road 
authorities to optimize their network designs such that network efficiency, network reliability 
and the utilization of the investment are optimized with realistic travelers’ choice modeling 
under uncertainty.  
 
The dynamic network design approach proposed in this dissertation offers in addition ample 
apportunities in designing dynamic link properties as part of a dynamic traffic management 
policy, such as dynamic lane configuration design, dynamic speed limit design during peak 
hours, dynamic toll design, etc., considering stochastic networks. 
 
The systematic approach of filtering the design solution space by eliminating the infeasible, 
unconnected, and illogical designs can be directly used by the road designers to save the 
computation time for solving the design problem, irrespective to the design approaches (static 
or dynamic).  

8.5 Discussion 

Our established reliability-based dynamic discrete network design methodology is a 
comprehensive and realistic network design approach compared to other existing network 
design methodologies in the literatures. It takes into account stochastic natures of the road 
networks and explicitly models traveler’s departure time/route choice behavior under 
uncertainty. Correlated link capacities can be modeled quite flexibly according to the link 
capacity covariance matrix. Travel time reliability is considered on both the network design 
level and individual choice behavior. Our methodology is capable of designing network 
structures and numbers of lanes on a set of potential links by making the best utilizations of 
the construction cost budget and the network capacities over time dimension. It also offers 
ample opportunities in the context of dynamic traffic management such as with respect to 
dynamic lane configuration, dynamic speed limits, and dynamic toll designs.  
 
However, given a number of assumptions adopted, our methodology might be enhanced and 
be more complete by performing more research in several ways. Firstly our generalized travel 
cost function for modeling travelers’ choice behavior under uncertainty so far has been 
derived based on mathematical derivations. Since the scheduling approach and the mean-
variance approach are widely used and empirical studies have been carried out to calibrate 
and validate these two approaches, and since these two approaches are special cases of our 
generalized travel cost function, it is logical that our generalized travel cost function 
represents travelers’ choice behavior under uncertainty. To be more convincing, empirical 
analyses are required to testify the generalized travel cost function.  
 
Secondly, in our dissertation the cost parameter values in the travel cost function are selected 
based on the empirical studies in the literature which however show different values. 
Adopting such cost parameters will influence the equilibrium departure patterns and route 
flow patterns, thus the network designs. Performing sensitivity analyses of the cost parameter 
values helps generalize our network design methodology. The analytical approach can be 
adoped to study the influence of the parameters ,  ,  α β γ  on the equilibrium departure patterns 
and travel costs. 
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Thirdly, we assumed homogeneous travelers in our research having the same travel cost 
functions and an identical preferred arrival time. To be more realistic, heterogeneous travelers 
should be modeled. Taste diversity and preferred arrival time distribution in the population 
will lead to much wider departure patterns than derived in the dissertation. Modeling 
heterogeneous travelers will lead to different network equilibrium, or to more spread 
departure patterns over the time period, which influences the network performance 
evaluations and thus the network design solutions. Our methodology allows to be extended by 
modeling heterogeneous travelers.  
 
Fourthly, the number of Halton draws for representing the random capacity distributions 
might influence the equilibrium flow patterns. It is necessary to investigate the influence of 
the number of Halton draws on the network designs and to determine the appropriate number 
for the required Halton draws.  
 
With our established network assignment procedure for stochastic networks, it is very flexible 
and feasible to adopt different reliability measures in both choice behavioral modeling and 
network design objectives. Some analyses can be carried out with different reliability 
measures to investigate the influence of adopted reliability measures on the equilibrium flow 
patterns and network designs. 
 
The case study in our dissertation is performed given a certain link covariance matrix. The 
influence of different link capacity covariance matrices on the network design solutions can 
be investigated further. 

8.6 Future Research 

We deliberately confined our research to deterministic travel demand with only stochastic 
capacity variation as a source for travel time/cost uncertainty. Next to capacity, demand 
fluctuation however is another major factor leading to stochastic travel times. As discussed in 
the dissertation, modeling demand fluctuations together with stochastic network capacities 
will lead to larger travel time variability, which will lead to even earlier departures. It is 
expected that different network design solutions will be derived. It is very important to 
establish a more refined definition of the long term dynamic user equilibrium with departure 
time choice in case of stochastic demand as well. We need the formulation of the dynamic 
user equilibrium with departure time choice for stochastic capacity and stochastic demand. 
 
The convergence of the dynamic traffic assignment is paramount in dynamic network design 
problems. Faster convergence saves considerable computation time for solving the dynamic 
network design problems and enlarges the scalability of the road networks to be designed. It 
will contribute substantially to develop new and efficient algorithms for the convergence of 
the dynamic traffic assignment, with departure time choice. 
 
Our established network design methodology so far has been only applied to a hypothetical 
network. It is very important and meaningful to apply our methodology to real-sized realistic 
road networks in order to show the feasibility of our network design methodology for real and 
practical uses. 
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Appendix A: Detailed Derivations of the Analytical 
Analyses in Stochastic Bottleneck Model 

The analytical analyses in stochastic bottleneck model are quite complicated. In the 
dissertation, the detailed derivations are not presented. Therefore, this appendix provides 
more detailed derivations for readers who are interested.  
 
In Chapter 3, Formulae (3.35)-(3.42) provide the cost components for the travel cost function 
(3.8) for all three regimes.  
 
We start with the derivations of departure flow rates in the first and second regimes. The long 
term travel costs for regimes I and II are given as: 
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According to the definition of user equilibrium, we have * / 0.=dc dt  By calculating the 
differential equations with the travel cost functions given in Equation (A.1) and (A.2), we 
derive: 
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From Equations (A.3)-(A.5), we can derive the departure flow rates for regimes I and II, as 
given in Equations (3.43) and (3.44) in Chapter 3.  
 
Now we discuss the derivation of the departure flow rate ( )*

3r t  in regime III. The travel cost 
function in regime III is given as:  
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where ( )bC t  and ( )*

TD t  are defined in Equation (3.19) in Chapter 3 with 
( ) ( ) ( ) ( )* * * * * *

1 2 3 .= + +T t cD t D t D t D t  
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The differential of the Expression (A.6) is very complicated. There is no closed form solution 
for ( )*

3r t  by solving * / 0=dc dt  for regime III. Therefore, we adopted the finite difference 
method to obtain the numerical solution for this stochastic bottleneck model. We define: 
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The differential of the travel cost in regime III is given as: 
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Solving the equation * / 0=dc dt , we derive ( )+ Δf t  as a function of ( )f t :  
 

( ) ( )( ) ,+ Δ =f t g f t  (A.12)
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We firstly initialize *
0t , then we can derive * *,  t ct t  and A in Equations (A.10) and (A.11). The 

point at ( *
ct , A) is the initial point of the ( )*

3D t  curve. We choose a small Δ =0.01. The 
smaller the Δ  value is, the more accurate the result will be. With the derived Equation (A.12) 
and the initial point, we can gradually get the numerical coordinates of the points on the 

( )*
3D t  curve. The calculation will stop when the accumulative number of departures reaches 

N, from which *
et  is derived. However, most of the initial values of *

0t  cannot lead to a 
solution which satisfies the Equation (3.50) in Chapter 3. Since the ( )*

3D t  curve derived from 
the differential equation in regime III is concave, which means the departure flow rate ( )*

3r t  
decreases with the departure times. Therefore ( ) ( ) ( )* * *

1 2 3 .> >r t r t r t  The maximum values of 
( )*

3D t  with different initial values of *
0t  sometimes cannot reach N. Only a few values of *

0t  
satisfies the Equation (3.50) in Chapter 3. Then we choose the value of *

0t  which gives the 
minimum long term equilibrium costs. The stochastic bottleneck problem is solved.  
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Appendix B: Analytical Results on Stochastic 
Bottleneck Model with Scales 

Since the analytical results presented in Chapter 3 hold for general stochastic bottleneck 
models, the graphical results are given without scales. However, for a comparison of the 
analytical and the simulation-based results, an example stochastic bottleneck is adopted as 
seen in Chapter 4. It is important to have scales in the graphical presentations. Therefore, in 
this appendix we provide graphical results of the equilibrium departures and equilibrium 
travel costs with scales from the analytical approaches, which facilitates the comparisons of 
Figures 3.5, 3.7 in Chapter 3 and Figures 4.5, 4.6 in Chapter 4.  
 
Figure B.1 and Figure B.2 present the cumulative departures and long term equilibrium costs 
respectively for the stochastic bottleneck from the analytical approach with scales.  
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Figure B.1: Cumulative departures and two categories of cumulative outflow lines at the long 
term equilibrium from the analytical approach 
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Figure B.2: Long term equilibrium costs by component from the analytical approach 
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Summary 

Transportation systems are stochastic systems where the road capacities and the travel 
demand are fluctuating within a day and between days. The traffic situations experienced by 
travelers are stochastic as well. It is known that the economy of a nation or region depends 
heavily upon an efficient and reliable transportation system to provide accessibility and to 
promote the safe and efficient movement of people and goods. In the context of varying 
capacities and travel demand, road authorities/designers need a network design approach 
which is able to capture the stochastic nature of the transport system, and the consideration of 
this by its users.  
 
Despite the important role of uncertainty in travel decision making, in most studies of road 
network design problems considering stochastic capacities or travel demand, traveler’s choice 
behavior under uncertainty, especially their departure time choices, are not modeled, which is 
however a very important aspect of travel choices that need to be modeled in the context of 
uncertainty. In addition, static traffic assignment is followed in most network design studies 
with stochastic travel times, which is not appropriate in terms of network performance 
assessments.  
 
We established a comprehensive network design approach in which dynamic traffic 
assignment is adopted (named as dynamic network design approach) to capture the dynamics 
in departure time choice and in flow propagations and spillback effects. Stochastic capacities 
are modeled, with which traveler’s departure time/route choices under stochastic travel times 
are explicitly modeled.  
 
We started developing the dynamic network design approach with modeling traveler’s 
departure time and route choices under uncertainty. Generally, two approaches are available, 
namely the mean-variance and the scheduling approaches. We analytically proved the 
principal equivalence of the mean-variance and the scheduling approaches conditional on the 
departure times. We showed that the expectation of the schedule delay costs at any departure 
time instant t can be decomposed into a linear function of the expected travel time and the 
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standard deviation of the travel time at departure time instant t in case of assuming linearity in 
schedule delay costs. Based on this result we proposed a generalized (dis)utility function for 
modeling traveler’s departure time/route choices under uncertainty. The generalized utility 
function, from its mathematical implications, is more behaviorally sound (has face validity) 
compared to the scheduling approach. It is also more flexible to capture the risk aversion 
attitude. Compared to the mean-variance approach, the generalized utility function explicitly 
accounts for the schedule delay cost, which is very important in the timing of departures for 
travelers. The scheduling approach and the mean-variance approach are special cases of our 
generalized mean-variance scheduling approach.  
 
A long term dynamic user equilibrium is defined by assuming that travelers make their 
strategic departure time and route choices in order to minimize their accumulated travel costs 
over a longer period which are defined by our generalized utility function. 
 
We analytically derived the long term dynamic user equilibrium by extending Vickrey’s 
bottleneck model to the stochastic capacity case and including travel time reliability in the 
travel cost function (i.e. disutility function), given uniformly distributed link capacities with 
continuous time and continuous flows. The analyses with stochastic capacities adopted a 
three-regime division in the analyzed time period due to different schedule delay cost 
functions and capacity distribution changes. We showed that the equilibrium departure pattern 
with modeling traveler’s choices under uncertainty is significantly different from the 
deterministic capacity case. The larger the capacity variation is, the more significant the 
difference will be. Consideration of random capacities and travel time reliability in traveler’s 
choices yields systematic shifts of trips towards earlier departures. The later a traveler departs 
in the congested period, the larger the travel time variability he/she might encounter between 
days. That’s the reason why travelers attempt to depart early to reduce their travel time 
variability. We found that the standard deviation of travel time under congested conditions is 
not proportional to the expectation of travel time, as most sources assume to be. 
 
We established a dynamic network assignment procedure with discrete time and continuous 
flows for modeling different user equilibria under stochastic capacities, for instance dynamic 
or static user equilibrium, deterministic or probabilistic user equilibrium, with or without 
reliability in the choices, dynamic user equilibrium with vertical or horizontal queues. This 
procedure is able to capture the correlated stochastic link capacities and traveler’s departure 
time/route choice behavior under uncertainty. A simulation-based solution approach was 
applied to the deterministic bottleneck and the stochastic bottleneck, from which we found 
that the simulation-based approach gives results consistent with the theoretical approach. It 
validates our theoretical findings of the long term departure patterns with stochastic capacities. 
 
A reliability-based dynamic discrete network design methodology under stochastic capacities 
has been developed, which is an optimization problem constrained to the long term dynamic 
user equilibrium as we defined. Dynamic network modeling with joint departure time/route 
choice is adopted. Travel time reliability is considered on both the network design and 
individual choice level. The design variables are the network structure and numbers of lanes 
on a set of potential links in the network.  
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To solve the reliability-based dynamic discrete network design problem, we developed a 
combined network-oriented genetic and set evaluation approach. New concepts of the 
universal set and the master set of lane designs are defined. We developed a new systematic 
approach to derive the master set by eliminating the infeasible, unconnected and illogical lane 
designs in order to reduce the solution space and to save computation time. An example grid 
network was adopted to demonstrate the notions of the infeasible, unconnected and illogical 
lane designs and the process of crossover and mutation. With the example network, we 
showed that the solution space for a network design problem can be reduced substantially by 
eliminating the infeasible, unconnected and illogical lane designs.  
 

We applied the dynamic network design approach to a hypothetical road network to 
investigate the feasibility and the merits of our proposed design approach. The combined 
genetic and set evaluation approach for solving the dynamic network design problem appears 
to be a feasible approach. We compared the design solutions from the reliability-based 
dynamic and static network design approaches. We found that static traffic assignment 
significantly underestimates the total network travel time and the variability of total network 
travel time, compared to the dynamic traffic assignment. The static and dynamic network 
design approaches lead to significantly different design solutions. Since static traffic 
assignment cannot capture the dynamics in flow propagation and spillback effects, the static 
network design approach may lead to poor designs. A dynamic traffic assignment is more 
realistic, thus the dynamic network design approach is recommended. We tested the network 
performances with different link capacity covariance matrices, from which we found that 
considering link capacity correlations significantly influences the network performance 
evaluations. We showed a new instance of the Braess paradox, namely that adding one extra 
lane in reliability-based static and dynamic networks sometimes deteriorates the network 
performances. We found that modeling departure time choice plays a very crucial role in 
network designs. The dynamic network design approach with modeling departure time 
choices gives a solution which maximizes the utilization of the link capacities over space and 
time. A static network design approach however cannot capture these dynamics in departures, 
nor can make use of the time dimension. We compared the design solutions with different 
capacity variation levels, form which we conclude that modeling traveler’s choices under 
uncertainty has significant impacts on the departure patterns and network performance 
evaluations, thus on the network designs. 
 
It is recommended to the road authority/designers that the dynamic network design approach 
should replace the current static network design approach. Traveler’s choices under 
uncertainty, especially departure time choices, should be explicitly modeled in the network 
design problems. The established reliability-based dynamic road network design approach can 
support road authorities to design a completely new network or to improve the existing 
networks with considering the stochastic networks and consideration of this by the travelers. 
Our dynamic network design approach offers in addition ample opportunities in designing 
dynamic link properties as part of a dynamic traffic management policy, such as dynamic lane 
configuration design, dynamic speed limit design during peak hours, dynamic toll design, etc., 
considering stochastic networks. 
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Samenvatting 

Transport systemen zijn stochastisch van aard. Niet alleen de capaciteit van wegen maar ook 
de verkeersvraag fluctueert binnen een dag en tussen dagen. De verkeerssituaties waarmee 
reizigers geconfronteerd worden zijn eveneens stochastisch. Het is bekend dat de economie 
van een land of regio sterk afhankelijk is van een efficiënt en betrouwbaar transport systeem 
om in de toegankelijkheid van het gebied te voorzien en veilige en efficiënte stromen van 
goederen en mensen te faciliteren. In de context van variërende wegcapaciteiten en een 
fluctuerende verkeersvraag, hebben wegbeheerders/ ontwerpers een netwerkontwerp 
benadering nodig, die rekening houdt met de stochastische aard van een transportsysteem en 
de manier waarop de gebruikers van het systeem hiermee om gaan. 
 
Ondanks de belangrijke rol van onzekerheid in het maken van verplaatsingskeuzes wordt in 
de meeste studies over het ontwerpen van wegennetwerken met stochastische capaciteiten of 
een stochastische verkeersvraag het keuzegedrag van reizigers bij onzekerheid en in het 
bijzonder de keuze van de vertrektijd niet gemodelleerd. Dit is echter een zeer belangrijke 
component van de keuzes die een reiziger moet maken. Deze component moet derhalve 
worden gemodelleerd in de eerder genoemde context van onzekerheid. Daarnaast wordt in de 
meeste studies over het ontwerpen van netwerken met stochastische reistijden gebruik 
gemaakt van statische verkeerstoedelingen, hetgeen niet geschikt is wanneer de prestaties van 
een netwerk moeten worden beoordeeld. 
 
We hebben een veelomvattende benadering voor het ontwerpen van netwerken ontwikkeld, 
die gebruik maakt van dynamische verkeerstoedeling (dynamische netwerkontwerp 
benadering genoemd) om rekening te kunnen houden met de dynamiek in vertrektijdkeuzes, 
in verkeersstromen en met terugslageffecten. Stochastische wegcapaciteiten worden 
gemodelleerd, waarbij de route- en vertrektijdstipkeuzes van reizigers in het geval van 
stochastische reistijden expliciet worden gemodelleerd. 
 
Bij het ontwikkelen van deze dynamische netwerkontwerp benadering is begonnen met het 
modelleren van het route- en vertrektijdstipkeuzegedrag in het geval van onzekerheid. Grof 
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gesteld zijn er hierbij twee benaderingen mogelijk, namelijk de zog. variantie-gemiddelde en 
de zog. tijdstipaanpassingsbenadering. We hebben analytisch aangetoond dat de variantie-
gemiddelde benadering en de tijdstipaanpassings benadering in principe equivalent zijn bij 
gegeven vertrektijden. We hebben aangetoond dat de verwachting van de vertragingskosten 
op elk vertrektijdstip t opgedeeld kan worden in een lineaire functie van de verwachte reistijd 
en de standaarddeviatie van de reistijd op vertrektijdstip t onder de aanname van lineaire 
vertragingskosten. Hierop gebaseerd hebben we een gegeneraliseerde reiskostenfunctie voor 
het modelleren van de gecombineerde vertrektijd- en routekeuze onder onzekerheid opgesteld. 
Deze gegeneraliseerde kostenfunctie is, door zijn mathematische implicaties, meer valide in 
vergelijking met de tijdaanpassingsbenadering. De functie is ook flexibeler in het omgaan met 
een risicomijdende houding van de reizigers. In tegenstelling tot de variantie-gemiddelde 
benadering houdt de gegeneraliseerde kostenfunctie expliciet rekening met de 
vertragingskosten, die zeer belangrijk zijn voor de tijden waarop reizigers vertrekken. De 
tijdaanpassingsbenadering en de variantie-gemiddelde benadering zijn speciale gevallen van 
onze gegeneraliseerde variantie-gemiddelde tijdaanpassingsbenadering. 
 
Een lange termijn dynamisch gebruikersevenwicht is vervolgens gedefinieerd door aan te 
nemen dat reizigers hun strategische vertrektijd en route kiezen met het doel om hun 
geaccumuleerde reiskosten, die door onze gegeneraliseerde kosten functie gedefinieerd zijn, 
over een langere periode te minimaliseren. 
 
We hebben het lange termijn dynamische gebruikersevenwicht analytisch afgeleid door het 
bottleneckmodel van Vickrey uit te breiden naar de situatie met stochastische capaciteiten en 
het toevoegen van reistijdbetrouwbaarheid in de reiskostenfunctie, gegeven uniform verdeelde 
wegcapaciteiten, waarbij de tijd en verkeersstroom als continu-grootheden zijn verondersteld. 
De analyses met stochastische capaciteiten maken gebruik van een verdeling van te 
analyseren tijdsperiode in drie regimes met verschillende vertragingskostenfuncties en 
veranderingen in de verdeling van capaciteiten. We hebben aangetoond dat het 
evenwichtsvertrekpatroon waarbij de keuzes van reizigers onder onzekerheid worden 
gemodelleerd significant afwijkt van de situatie met deterministische capaciteiten. Hoe groter 
de variantie in capaciteiten, des te significanter zal het verschil zijn. Het incorporeren van 
variërende capaciteiten en reistijdbetrouwbaarheid in de keuzes van reizigers resulteert in 
systematische verschuivingen van reizen naar vroegere vertrektijden. Hoe later een reiziger 
vertrekt in de periode met congestie, des te groter de dag-tot-dag variatie van reistijden 
waarmee hij/zij geconfronteerd wordt. Om die reden proberen reizigers vroeger te vertrekken 
om zo de reistijdvariatie te verminderen. We hebben onder meer gevonden dat de 
standaarddeviatie van de reistijd tijdens congestie niet proportioneel is met de verwachte 
reistijd, zoals de meeste bronnen aannemen. 
 
We hebben een dynamische netwerktoedelingsprocedure ontwikkeld met discrete tijden en 
continue stromen voor het modelleren van verschillende gebruikersevenwichten in het geval 
van stochastische capaciteiten, zoals onder meer met een dynamisch of een statisch 
gebruikersevenwicht, met een deterministisch of een probabilistisch gebruikersevenwicht, met 
of zonder betrouwbaarheid in de keuzes, en een dynamisch gebruikersevenwicht met verticale 
of horizontale wachtrijen. Deze procedure houdt rekening met correlaties tussen stochastische 
wegcapaciteiten en de vertrektijd/ routekeuze onder onzekerheid. Een op simulatie gebaseerde 



183

Samenvatting 159 

oplossingsbenadering is toegepast op een deterministische en een stochastische bottleneck 
situatie. De resultaten tonen aan dat de op simulatie gebaseerde benadering consistent is met 
de theoretische benadering. Dit valideert onze theoretische bevindingen over de lange termijn 
vertrekpatronen in het geval van stochastische capaciteiten. 
 
Gegeven deze nieuwe toedelingsmethode is een op betrouwbaarheid gebaseerde dynamische 
discrete netwerkontwerpmethode ontwikkeld die rekening houdt met stochastische 
capaciteiten. Dit is geformuleerd als een optimaliseringsprobleem met als randvoorwaarde het 
door ons gedefinieerde lange termijn dynamisch gebruikersevenwicht. Een dynamische 
netwerkmodellering met een gecombineerde vertrektijd/ routekeuze is toegepast. De reistijd 
onbetrouwbaarheid is zowel op het netwerkontwerpniveau als op het individuele keuzeniveau 
meegenomen. De ontwerpvariabelen zijn de structuur van het netwerk en het aantal rijstroken 
op een set van potentiële links binnen het netwerk.  
 
Om het op betrouwbaarheid gebaseerde dynamische discrete netwerkontwerpprobleem op te 
lossen, hebben we een gecombineerde netwerkgeoriënteerde genetische en set evaluatie 
benadering ontwikkeld. Nieuwe concepten voor de universele set en de feasible set van 
strookontwerpen zijn gedefinieerd. We hebben een nieuwe systematische benadering 
ontwikkeld voor het afleiden van de feasible set door het elimineren van onmogelijke, niet-
verbonden en onlogische strookontwerpen met als doel om de oplossingsruimte te beperken 
en de rekentijd te verkorten. Een voorbeeld roosternetwerk is gebruikt om de noties van 
onmogelijke, niet-verbonden en onlogische strookontwerpen en het proces van overgang en 
mutatie te illustreren. Met dit voorbeeldnetwerk laten we zien dat de oplossingsruimte voor 
een netwerkontwerpprobleem substantieel ingeperkt kan worden door het elimineren van 
onmogelijke, niet-verbonden en onlogische strookontwerpen. 
 
We hebben de dynamische netwerkontwerpbenadering toegepast op een hypothetisch 
wegennetwerk om de haalbaarheid en de verdiensten van de door ons voorgestelde ontwerp 
benadering te onderzoeken. Het blijkt dat de gecombineerde genetische en set evaluatie 
benadering voor het oplossen van dynamische netwerkontwerpproblemen haalbaar is. De 
ontwerpoplossingen voor de op betrouwbaarheid gebaseerde dynamische en statische netwerk 
ontwerpbenaderingen zijn vergeleken en er is gevonden dat een statische verkeerstoedeling de 
totale netwerkreistijd en de variabiliteit van de totale netwerkreistijd significant onderschat in 
vergelijking met dynamische verkeerstoedeling. De statische en dynamische netwerkontwerp 
benaderingen resulteren in significant verschillende ontwerpoplossingen. Omdat een statische 
verkeerstoedeling geen rekening houdt met de dynamiek van verkeersstromen en terugslag 
effecten, leidt de statische netwerkontwerpbenadering tot slechte ontwerpen. Dynamische 
verkeerstoedeling is realistischer, vandaar dat een dynamisch netwerkontwerp aanbevolen 
wordt.  
 
We hebben de prestaties van het netwerk getest met verschillende wegvakcapaciteit 
covariantie matrices. Deze analyses tonen aan dat het meenemen van correlaties tussen 
wegvakcapaciteiten de evaluatie van de netwerkprestaties significant beïnvloedt. Ook een 
nieuw voorbeeld van de zog. Braess paradox aangetoond, dat wil zeggen dat toevoeging van 
een strook in op betrouwbaarheid gebaseerde statische en dynamische netwerken de prestatie 
van een netwerk soms drastisch vermindert. We hebben aangetoond dat het modelleren van de 
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vertrektijdstipkeuze een cruciale rol speelt in het netwerkontwerp. De dynamische netwerk 
ontwerpbenadering waarin vertrektijdstipkeuzes gemodelleerd worden resulteert in een 
oplossing waarbij het gebruik van de wegcapaciteiten over ruimte en tijd gemaximaliseerd 
wordt. Een statische netwerkontwerpbenadering kan daarentegen niet omgaan met de 
dynamiek in de vertrektijdstipkeuzes en de tijdsdimensie. We hebben de ontwerpoplossingen 
vergeleken voor verschillende niveaus van capaciteitsvariatie. Hieruit valt te concluderen dat 
het modelleren van de keuzes van reizigers onder onzekerheid significante effecten heeft op 
vertrekpatronen en netwerk prestatie evaluaties, dus op de netwerkontwerpen. 
 
Wegbeheerders en wegontwerpers wordt aanbevolen om de dynamische netwerkontwerp 
benadering te gebruiken in plaats van de huidige statische benadering. De verplaatsingskeuzes 
bij onzekerheid, in het bijzonder de vertrektijdkeuzes, moeten expliciet gemodelleerd worden 
in netwerkontwerpstudies. De ontwikkelde op betrouwbaarheid gebaseerde dynamische 
wegennetwerk ontwerpbenadering kan wegbeheerders steunen in het ontwerpen van een 
geheel nieuw netwerk of in het verbeteren van bestaande netwerken waarbij rekening wordt 
gehouden met stochastische netwerken en de wijze waarop reizigers daarmee om gaan. Onze 
dynamische netwerkontwerpbenadering biedt daarnaast een grote hoeveelheid aan 
toepassingsmogelijkheden bij het ontwerpen van dynamische kenmerken van wegvakken als 
onderdeel van een dynamisch verkeersmanagement beleid, zoals het ontwerp van dynamische 
rijbaanconfiguraties, van dynamische snelheidslimieten gedurende de spits, van dynamische 
tolheffing, enz., met in acht neming van stochastische netwerken. 
 
 
 
 
 
(Dutch translation by Saskia Ossen) 
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概述(Summary in Chinese)  

交通运输系统所具有的随机特性主要是指道路通行能力和交通需求随时间变化所表

征的变异性和不确定性。因此道路使用者经历的交通状况也是随机的。一个国家或地

区的经济状况很大程度上依赖于有效、可靠的交通运输系统来提供可达性，并促进人

和货物安全有效的运转。由此可见，道路管理部门和规划设计人员需要一种基于可靠

度的双层次（bi-level）设计方法。一方面，这种方法需要能捕捉体现路网的随机性；

另一方面这种方法也需要考虑道路使用者的路径和出行时间选择行为对路网的的影

响。 
 

尽管随机交通状况在道路使用者的出行抉择行为中起着重要的作用，但是大部分针

对路网设计的研究都没有考虑交通状况随机特性对此抉择行为的影响，尤其是出行时

间选择的影响。然而在面对路网的随机特性，这种出行时间选择对路网性能的影响是

不能忽略不计的。而且，大部分关于路网设计的研究是基于静态交通分配模型的。静

态交通分配模型有很多不切实际的假设：假设任意路径上流量在时间和空间上是没有

变化的、交通拥挤往往发生在瓶颈内部，而不是瓶颈的上游路段、不能模拟交通拥挤

（水平）排队及其回溢效应 (spillback effects)，等等，直接导致了不准确的路网性能评

估及不精确的路网设计结果。 
 

本文建立了一个全面的、系统的、基于动态交通分配模型的路网设计方法（称之为

动态路网设计方法）。 动态交通分配模型可以模拟道路使用者的出行时间选择，以及

交通流在路网上的传播 (propagation)和回溢效应。除此之外，本文提出的动态路网设计

方法也模拟了道路通行能力的变异性。由于道路通行能力的变异性直接导致了行程时

间的不可靠性，因此模拟行程时间可靠度对道路使用者的出行抉择行为的影响是该动

态路网设计方法的关键所在。 
 

本文首先着手于道路使用者在基于路网随机性的路径和出行时间选择行为研究。通

常有两种方法可以用来模拟在随机交通状况下道路使用者的出行抉择行为。一种是均

值方差法 (the mean-variance approach)，另一种是预达时间延误法  (the scheduling 
approach)。 本文通过理论方法证明了这两种方法在给定出行时间的等同性，并得出在
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一定出行时刻中，预达时间延误的均值可以分解成行程时间均值和行程时间方差的线

性方程。基于此结论，本文提出了一种新的广义的效用方程来模拟道路使用者路径及

出行时间的选择行为。从数学含义来看，新的广义效用方程比预达时间延误法更符合

道路使用者的行为逻辑，而且这个效用方程更具备模拟道路使用者对不可靠度不选择

偏好的灵活性。与均值方差法相比较，新的广义效用方程明确模拟了预达时间延误费

用在道路使用者出行时间选择行为中的重要性。因此，均值方差法或预达时间延误法

是新的广义效用方程的特殊情况之一。 
 

在每天随机变化的交通状况和行程时间情况下，本文假设一种长期用户平衡会逐渐

形成。道路使用者基于自身经历，做出路径和出行时间的决策性选择，以达到他们的

长期费用最小化的目的。在一定出行时间和路径上，新的广义效用方程所定义的长期

费用包括几个元素：行程时间的均值、行程时间的标准方差、以及基于行程时间均值

的预达时间早到费用和预达时间晚到费用。 
 

为了通过理论方法研究长期出行时间用户平衡的特性，本文使用了 Vickrey 瓶颈模

型。传统的 Vickrey 瓶颈模型是基于确定性的道路通行能力，因此没有行程时间的不可

靠度和随机特性的问题。该论文从两个方面拓展并延伸了 Vickrey 瓶颈模型：引入道路

通行能力的变异性以及考虑道路使用者在随机性路网的长期费用，包括行程时间可靠

度。与传统的 Vickrey 瓶颈模型相比，本文提出的随机 Vickrey 瓶颈模型将出行时段划

分为三个区域。这些时间段的划分主要是取决于不同的预达时间延误方程以及道路通

行能力分布。本文通过以上理论推断得出以下结论：不考虑行程时间可靠度对道路使

用者出行选择行为影响下所得出的出行分布完全不同于考虑行程时间可靠度所得出的

出行分布。道路通行能力分布的变异性越大，出行分布的差别越显著。道路出行者会

出发的更早，以达到降低行程时间的不可靠性的目的。在高峰期间，越晚出发，越有

可能经历更不可靠的行程时间。同时也发现行程时间的方差并不是与目前很多研究人

员所假设的随行程时间的均值而线性增长或降低的规律相符合。 
 

本文建立的基于可靠度的动态路网分配模型模拟了连续形交通流和离散的时间段。

所建立的路网分配模型可以灵活运用到不同的路网模型，比如基于可靠度的静态及动

态路网分配、确定性或者概率形的用户平衡、考虑可靠度或者不考虑可靠度的选择行

为模拟、基于垂直排队(vertical queues)或者水平排队(horizontal queues)的动态分配模

型。动态路网分配模型也可以捕捉相关联的路段通行能力，以及基于可靠度的路径和

出行时间的选择行为。本文利用仿真的方法模拟了传统的 Vickrey 瓶颈模型和新的随机

Vickrey 瓶颈模型。比较仿真结果与理论结果显示本文提出的仿真模型得出了与理论方

法完全一致的结果，与此同时也证明了随机 Vickrey 瓶颈模型的理论分析的正确性。 
 

本文提出了基于可靠度的动态离散路网设计方法来模拟道路通行能力的变异性。该

路网设计方法是一种基于用户平衡约束条件的优化问题、是对道路使用者在随机交通

状况下的路径和出行时间选择行为的模拟。可靠度在路网设计目标及出行选择行为的

模拟中都得到了充分的体现。路网设计的变量是路网结构及所有路段的车道数量即路

段通行能力。 
 

为了解决所提出的动态路网设计问题，本文设计了针对路网的遗传算法及集评估的

组合算法、提出了关于车道分布设计总集(the universal set of lane designs)和优化集(the 
master set of lane designs)的概念。在此基础上，提出并建立了一种系统性的、产生车道
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分布设计优化集的方法。该方法通过剔除不可行的、不连接的、以及不符合逻辑的车

道分布设计来得到优化集。通过这种方法，路网设计的解空间可以得到很大程度的缩

减。这样不仅可以提高解决路网设计问题的效率而且大大节省计算时间。该方法运用

到一个小型路网上来演示不可行、不连接、不符合逻辑的车道分布设计的定义，以及

演示遗传算法中交叉和突变的过程。 
 

本文将基于可靠度的动态路网设计方法运用在一个假设的路网之上。其目的在于测

试该设计方法的可行性及突出该方法的优点。所提出的遗传算法和集评价法的组合算

法显示了其有效性和可行性。然后，对传统的基于静态分配模型的路网设计方法和本

文提出的动态路网设计方法进行了对比。结果表明基于静态分配模型的路网评价远远

低估了实际的路网费用，从而严重影响了投资效益的评估。从对比分析中可以看出，

静态路网设计方法和动态路网设计方法得出完全不同的最优路网设计方案。由于静态

分配模型是基于很多不合实际的假设基础上，因此静态路网设计方法可能会得出很差

的路网设计方案。由此，本文推荐使用动态路网设计方法。此外，分析表明路段通行

能力协方差矩阵不同性对路网性能评价产生了很大的影响。值得提出的是 Braess 
paradox 同样出现在基于可靠度的动态路网当中。在某些路网中添加路段，可能会导致

整体路网的服务水平下降。研究进一步表明，模拟道路使用者的出行时间选择行为对

路网设计至关重要。基于出行时间选择的动态路网设计方法不仅可以优化路网在空间

上的分配，而且可以充分利用路网在时间上的可使用性。这也正是静态分配模型所不

能模拟的。本文还针对不同的道路通行能力分布的变异性等级(capacity variation levels)
对路网设计的影响进行了分析。结果表明模拟可靠度及交通状况随机性对道路使用者

的出行选择行为的影响和对于路网评估和设计都是至关重要的。 
 

综上所述，本文建议道路设计者使用基于动态分配模型的路网设计方法，从而取代

当前广泛使用的静态路网设计方法，以克服静态分配模型对路网造成的错误评估以至

于得出很差的路网设计方案。在随机性路网设计时，对道路使用者的出行选择行为，

尤其是出行时间选择行为的模拟是至关重要的。本文所建立基于可靠度的动态路网设

计方法可以用来设计全新的、更符合道路使用者逻辑的路网结构，同时也可以用来改

善现有的路网结构。此外，对该方法进行稍加修改便可用于设计其他的动态路段特

性：比如动态的高峰车道分布设计、动态限速设计、动态拥挤收费费用设计等等，以

达到支持动态交通管理决策的目的。 
 
 
 
(Summary in Chinese has been checked by dr. Huizhao Tu: 涂辉招) 
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