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Abstract

Experimental fluid dynamics and computational fluid dynamics have traditionally been treated as disparate
fields of study. However, each field has its own unique set of advantages and disadvantages. Data assimila-
tion is a field that can be used to leverage some of the advantages each field offers to help compensate mutual
weaknesses. In this thesis, a state observer based data assimilation method is used to assimilate 3-D exper-
imental data obtained in a wind tunnel experiment onto a steady RANS simulation. The experimental data
is considered as the ground truth and is used to condition the RANS simulation. An understanding of the
working of the method along with a study on the effect of different parameters of the state observer method
are gathered by first applying it on the 1-D viscous Burgers equation and a 2-D CFD simulation. For the 3-D
case, experimental data is obtained by performing a wind tunnel experiment using robotic PIV to map the
time-averaged velocity field around a bluff body following which the data is assimilated onto a steady RANS
simulation of the same body. Application of this method helps to recreate topological features and velocity
fields of the flow with better accuracy than a baseline CFD simulation. Finally, the effects of the different pa-
rameters on the success of the method along with recommendations for improving the method are provided.
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1
Introduction

Fluids are truly ubiquitous. From the air we breathe, the water we drink all the way up to the weather we
experience, we are surrounded by fluids. There is no debating the fact that fluids play a vital role in sustaining
life on earth and hence its study, fluid mechanics, is a discipline that has enamored centuries of scientific
minds. From an engineering perspective however, particular attention is paid to the behaviour of fluids upon
their interaction with solid objects. A brief run through the history of fluid mechanics (Calero [9]) reveal the
plethora of methods and tools were used for its study. Today, the study of fluid mechanics can be classified
into three broad categories- experimental, computational and analytical. While experimental and analytical
methods have been the most popular, especially in the years past, rapid advances in technology has allowed
computational methods to contribute significantly to the study.

Although Computational Fluid Dynamics 1 and experimental fluid dynamics adhere to the same goal, they
have traditionally been treated as disparate fields. CFD, at its core is a set of approximations for the partial
differential equations that describe fluid flow- the Navier Stokes equations, whereas experiments, when con-
ducted with care can be trusted to replicate actual fluid behaviour. Each field, however, has its own unique set
of advantages and disadvantages. Experimental techniques are not always feasible due to constraints in cost,
equipment or facilities. The veracity of the measurements themselves can also be compromised to a certain
extent by measurement noise, and the intrusiveness of the measurement techniques. Recent developments
have led to the invention of techniques like Robotic Volumetric Particle Image Velocimetry (Jux [28]) 2, He-
lium Filled Soap Bubbles (Scarano et al.[41]) 3 as tracer particles for air flows and particle tracking algorithms
like Shake the Box (Schanz et al.[43]), which make it possible to obtain large scale three dimensional velocity
flow fields. However, the measurements are always corrupted by a certain level of noise, the most glaring of
which includes the inability to conserve mass (DeSilva et al. [15]). Furthermore, current limitations in spatial
resolution and processing algorithms make these techniques more prone to errors when calculating fields
that are derived from the velocity field, for example pressure near surfaces from the Poissons equation (Patil
[35]) or vorticity. CFD on the other hand, can produce fields that satisfy continuity and can provide deriva-
tives of the velocity and pressure fields with sufficient accuracy. CFD also has the advantage of being very
versatile in that it is possible to run multiple design configurations and simulations without the excessive
costs incurred in manufacturing and wind tunnel testing, provided the computational costs are minimized.

CFD is an umbrella term encompassing many types of methods and practices (Versteeg and Malalasekara
[55]). At the most fundamental level, any type of fluid flow can be simulated using the full set of Navier Stokes
equations to represent all length and timescales in the flow. This type of simulation, also known as Direct
Numerical Simulation (DNS) is extremely expensive and is generally confined to academic research due to
current limitations in computer hardware. Another solution is to perform a Large Eddy Simulation (LES),
which uses a filter to remove the small scales of turbulent motion and model them, while still solving the
large scales. Although LES is very effective and quickly gaining popularity, it is still infeasible for many indus-
tries looking to achieve quick solutions to flow problems. The most popular method of simulating fluid flows

1Hereafter referred to as CFD
2Hereafter referred to as PIV
3Hereafter referred to as HFSB

1
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involve solving a time averaged version of the Navier Stokes equations known as Reynolds Averaged Navier
Stokes 4 equations. In RANS, the time averaged flow fields are produced and the effect of unsteady compo-
nents on the mean flow is modeled through a term called the Reynolds stresses, which manifests itself during
the derivation of the equations. Since the effect of unsteady turbulence is modeled, a lot of different models
exist to tackle different flow situations and each model has parameters which are tuned to work only in those
situations (Catalano and Amato [11]). Clearly, accuracy and computational cost are conflicting parameters
that a person has to choose between while trying to simulate any fluid flow.

With the proliferation of aerodynamics and fluid dynamics in different industries for engineering design,
the need for cheap and accurate solutions to fluid flow problems of different scales and behaviours is grow-
ing rapidly. Keeping in mind the limitations of both experimental and computational techniques, there is a
growing interest to leverage the advantages that each field provides to help compensate mutual weaknesses
in each other. Data Assimilation 5 is a technique that has emerged as an option to achieve this goal. DA
is a mathematical field that aims at combining theory with observations. It was first introduced in weather
prediction and since then, different methods of DA have been used in various disciplines including fluid me-
chanics. Different methods of DA that are used for fluid mechanics include variational methods, the use
of Kalman filters and state observer based DA (Hayase [22]). A more comprehensive review of some of the
methods of DA used for fluid mechanics are given in section 2.2.2. The state observer method, which is com-
putationally cheaper and easier to implement than other methods is based on the principle of feedback. As a
CFD solution progresses, feedback based on the deviation from empirical observation is used to correct the
simulation. Furthermore, this method does not need the measurement noise to be modeled as a parameter,
making the integration(assimilation) of experimental data easier. Previous uses of the state observer method
for DA in fluid mechanics have however been limited. That paved the way to define the research objective of
this thesis assignment:

Development and assessment of a state-observer based data assimilation method for steady
Reynolds averaged Navier-Stokes simulation using a complex 3-dimensional flow around a bluff

body as a test case.

In this thesis, the working principle of the state observer based DA method along with its implementation
for a steady RANS solver is provided in chapter 3. Then, the method is applied on the 1-D viscous Burgers
equation by assimilating a non-physical6 forcing solution 7 . Following this is an extension of the principle
to 2-D flow where a steady RANS simulation using the k-ω SST turbulence model on the flow around a half
cylinder is imposed as the ground truth on a simulation of the same half cylinder using the Spallart-Allmaras
turbulence model. The methodology and results are presented in chapter 4. Next, a wind tunnel experiment
is performed where the complex 3-D flow around a simplified car side mirror model is captured using coaxial
volumetric velocity measurements mounted on a robotic arm and the time averaged velocity field is used as
the ground truth for a steady RANS simulation of the same model. The experimental setup, procedure and
data reduction techniques are provided in chapter 5. The results of the experiment along with the results of
implementing the method on the 3-D case using the experimental data are given in chapter 6. Finally some
conclusions based on the results and recommendations for improving the method are provided in chapter 7

4Hereafter referred to as RANS
5Hereafter referred to as DA
6Here non-physical means that the forcing solution is different from the actual solution of the Burgers’ equation given a set of initial and

boundary conditions
7The forcing solution is also referred to as the ground truth or experimental velocity



2
The integration of computational and

experimental fluid dynamics

In this chapter, relevant literature and background for the present thesis assignment are provided. The first
two sections, 2.1 and 2.2 deal with the integration of computational and experimental techniques. Specifi-
cally, section 2.2 discusses briefly the history of DA and the different ways it has been used in fluid mechanics.
Section 2.3 gives a brief introduction to Particle Image Velocimetry as an experimental technique and how it
can be used to generate the experimental data required for the present thesis. Section 2.4 deals with the flow
around a car side mirror which is the experimental test case used in the present study. Finally, the chapter
ends with a discussion on the research questions and objectives in sections 2.5 and 2.6 respectively.

2.1. The use of numerical methods on experimental data
Despite CFD and experimental fluid dynamics generally being treated as separate fields, at the most fun-
damental level they both involve data manipulation. Hence it comes as no surprise that there are many
situations where the two fields overlap and common techniques are used. CFD involves solving the differ-
ential equations that govern fluid flow with some approximations and experimental techniques usually in-
volve gathering data from a physical experiment whether it is velocity using PIV or a hot wire, pressure using
probes or temperature using thermometers. It is also well accepted that experimental data will involve noise
that manifest themselves in the form of measurement errors. Furthermore, techniques like PIV or Particle
Tracking Velocimetry(PTV) which are the most widely used techniques to obtain velocity due to their abil-
ity to extract whole fields while being non intrusive, derive the velocity fields based on algorithms like cross
correlation, or iterative particle reconstruction which do not abide by the governing equations and thus may
result in spurious velocity vectors (Westerweel [56]) and fields that do not satisfy continuity. Due to this a
large number of researchers have worked to improve experimental data by applying numerical techniques to
the data.

DeSilva et al. [15] define a constrained minimization problem where the objective function is defined as the
discrepancy between the measured and filtered velocity fields and the constraint is the divergence free con-
dition.They test their method on experimental results from a turbulent channel flow and find that it reduces
the divergence error in tomographic PIV to nearly zero. Azijli and Dwight [5] investigate the use of Gaussian
process regression to filter spurious divergence. Application of their solenoidal filter to experimental and
synthetic test cases returns more accurate fields of velocity, vorticity and pressure. Numerical techniques
have been used not only to improve the spatial velocity fields but also to improve temporal information from
a time resolved PIV experiment. Scarano and Moore [40] develop an advection based model to increase the
temporal resolution of PIV. They use Taylors hypothesis of frozen turbulence and apply supersampling or in
the authors’ words, pouring Space in Time to extract velocity information at times where the physical exper-
iment does not have data thereby increasing the temporal resolution of the measurement. CFD in the more
traditional sense, that is solving the governing equations numerically, has also been used to improve exper-
imental data. PIV velocity data can often have gaps that are created by shadows or areas with lower seeding
concentrations. Sciacchitano et al. [46] outline a method where they extract velocity fields from the regions

3
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(a) Experimental Data. (b) Solenoidal filter from [15] applied.

Figure 2.1: Divergence of velocity at 0.1 Hz for flow around a car side mirror.

with no data by solving the unsteady incompressible Navier-Stokes equation in those regions. They use a
finite volume discretization scheme and use the velocity at the boundary of the gaps as the initial conditions.

Numerical methods have not only been applied to enhance experimental data but also to derive subsequent
information. Pressure is a significant physical quantity that provides important insights into flow behaviour
or force distribution around objects. Pressure is measured both directly through pressure probes, which are
intrusive, and also indirectly from PIV measurements. Pressure is calculated from a velocity field by the ap-
plication of the pressure Poisson equation. Van Oudheusden [54] in his review paper discusses different nu-
merical implementation strategies for different parts of the pressure poisson equation and how they affect
the accuracy of the static pressure computations in a flow field.

At this point it must be noted that even though experimental measurement techniques are known to be cor-
rupted by some level of noise, their importance is not diminished and their necessity cannot be understated.
Experiments provide us with true physical behaviour of fluid flows without any modeling. A classic exam-
ple and one of the most important concepts in fluid mechanics is the law of the wall which describes fluid
flow near the wall and how that affects the overall behaviour of the flow. Coles [13] gives a detailed history of
the law of the wall and although the initial formulations were based on dimensional arguments, all the early
work confirming them were experiments, mostly using hot wire probes. This concept is so significant that
most RANS formulations that use wall functions 1 base their calculations on this universal law. Several DNS
studies of either channel flows or flat plate boundary layers also validate their findings with existing exper-
imental results. A complete survey of experimental data used to either validate or provide model constants
for CFD is beyond the scope of this work, but it is well accepted that experimental data is used as the ground
truth on which the accuracy of different numerical techniques are judged. Jameson and Martinelli [27] and
Tinoco [53] discuss the different ways of reducing errors in CFD and its validation with experimental data.

2.2. The use of experimental data for numerical simulations
Clearly, there has been widespread use of numerical techniques to either improve or extract further informa-
tion from experimental data. However the use of experimental data directly in numerical simulations other
than for validation purposes has been surprisingly limited. The first real use of such techniques as men-
tioned in chapter 1 was in weather prediction. To lay the foundations for the goals of this research work, it
is essential to understand how the genesis of the technique of using experimental data for numerical simu-
lations lay in Numerical Weather Prediction 2 and its evolution and eventual propagation to other disciplines.

Lewis Fry Richardson [39] in 1922 was the first person to try and numerically forecast the weather. He used the
governing equations and a finite difference discretization scheme to integrate forward in time. The domain

1Explained briefly in section 4.2.1
2Hereafter referred to as NWP
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he used was Europe and referring to figure 2.2, pressure was defined at points marked by P and momentum at
points marked by M. He used observations from stations named with a circled cross as the initial conditions
for his simulation. His main challenge was to interpolate data from the irregular observation points to the
whole grid. Unfortunately his efforts failed but led to the development of the field of weather prediction and
data assimilation. NWP is essentially an initial value problem where observations from the atmosphere are
integrated into a numerical model as the initial conditions and future states of the atmosphere are simulated.

Figure 2.2: Richardson’s domain. Replicated from [14].

Talagrand [52] provides a very succinct definition of data assimilation as it pertains to its meteorological ori-
gins. According to him, the word assimilation was coined in the late sixties for denoting a process in which
observations distributed in time are merged together with a dynamic numerical model of the flow in order to
determine as accurately as possible the state of the atmosphere. The available information essentially con-
sists of the observations proper, and of the physical laws that govern the evolution of the flow. The latter
are available in practice under the form of a numerical model. In NWP, the initial conditions are of extreme
importance due to the non linear dynamic nature of the equations. Furthermore, with observations of the
atmosphere being so sparse and spread out compared to the scale of the world, the whole basis of DA was to
find techniques in which the observations could be integrated into the background field with as little error
as possible to serve as the initial conditions for the simulations. He further describes the two main types of
algorithms that exist for data assimilation.

• Sequential DA

• Variational DA

Sequential DA, as the name suggests is a process in which observations are sequentially integrated into the
numerical model. The simulation progresses up to the point where observations are available and then the
state vector is updated by integrating the observation using different methods outlined further in this report.
Sequential DA has the property that the integrated observations affect future states of the simulation and the
solution asymptotically converges to the observations.

Variational DA on the other hand, involves solving an optimization or minimization problem to reduce the
errors between the observations and the simulations. According to Talagrand, variational DA aims at globally
adjusting a model solution to all observations available over the assimilation period. The adjustments being
simultaneous, the adjusted states at all times are influenced by all the observations over the assimilating pe-
riod. This characteristic makes variational DA uniquely different from sequential DA in that it affects model
solutions at all times an not just in the future. Variational methods are in general computationally more ex-
pensive than sequential methods because they involve solving an optimization problem in addition to the
governing equations.

Kalnay [30] in her book describes different methods of sequential and variational DA. In sequential DA, she
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brings out a further distinction between two methods. Since observations from the atmosphere are made by
instruments which are assumed to have a known precision, many techniques of sequential DA use proba-
bilistic methods or statistical estimation to integrate these measurements with the background field onto the
whole domain. This method of statistical estimation DA is the most popular and used for weather prediction.
Many similar problems of state estimation are encountered in other fields. Talagrand provides different ex-
amples of these as well. An airplane using sensors to best estimate its position in space and time uses state
estimation theory. The Kalman filter, which originated in electrical engineering is a famous tool in this regard.
In plasma physics, researchers try to estimate the internal state of a system based on observations from the
surface. Statistical estimation DA in NWP shares many techniques with all these fields.

The other sequential DA method that Kalnay outlines is called empirical analysis schemes where the obser-
vations from the atmosphere are used directly without probabilistic methods to influence the state vectors.
Figure 2.3 shows the different forms of DA as outlined by Kalnay.

Figure 2.3: Different methods of DA.

Empirical analysis schemes are used when there are no available statistics to perform a probabilistic analysis.
One of the empirical analysis methods given in Kalnay [30] is called Nudging.

2.2.1. Nudging
Nudging or Newtonian relaxation is a method where a term is added to the governing equation of a model
that is proportional to the difference in the observations and simulations. What this term essentially does is
to “nudge" the solution to the observational values. This is represented in equation 2.1 for an incompressible
flow. The equation is basically the conservative form of the momentum equation.

∂u

∂t
=−u ·∇u − 1

ρ
∇p +ν∇2u + uobs −u

τu
(2.1)

Here, u is the velocity, t is time, ν is the kinematic viscosity, p is the pressure and τu is a time scale. The
last term on the right represents the source term added in the equation that nudges the solution towards
the observational velocity. Since in this equation the term has to be an acceleration to satisfy dimensional
constraints, the difference in velocity is divided by a timescale. The timescale that is chosen is extremely im-
portant in terms of stability of the solution. It also has to be chosen and scaled with respect to the other terms
in the equation. This model is not generally used in NWP for large domains simply because the observation
data may be too sparse over a large area. However as will be shown subsequently, this method has been used
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for fluid mechanics and is the basis of the current research work as well.

From the brief introduction to DA and its genesis, certain points can be garnered. First, NWP is an initial
value problem and the observations are sparsely distributed in both space and time. The sparsity of data is
what drove the research in DA for NWP to be centered around the goal of trying to interpolate observations
on to the numerical grid as the initial conditions for the simulations with as little error as possible. A second
observation is that the techniques used for DA can be used and have been used for a bevy of different fields.
Fluid mechanics in particular shares many similarities with NWP in both the constitutive equations and the
simulation algorithms thus making the use of DA for other fluid mechanics problems an obvious choice.

2.2.2. DA in fluid mechanics
The use of DA in fluid mechanics has been steadily on the rise. The structure of the algorithms used for
fluid mechanics has remained the same as shown in figure 2.3. Hayase [22] provides an excellent review of
the different uses of DA for fluid mechanics. The use of different methods of DA for flow related problems
are shown in figure 2.4. The Kalman filter and variational methods have been the most popular and state
observers, a technique which is explained in section 2.2.2, have not been explored as much.

Figure 2.4: Uses of DA for flow related problems in publications. Reproduced from [22].

DA based on statistical estimation theory
Statistical estimation theory is a field that has been used by a lot of disciplines. It is based on the theory
of least-square estimation, maximum likelihood, bayesian techniques and other probabilistic tools. The
Kalman filter, which was introduced in electrical engineering is a popular estimation tool. It is an algorithm
that best produces the estimated state of a dynamical system using measurements that are known to be noisy
and a physical model of the system. It has been used extensively for many engineering problems and has
also been used for fluid mechanics. It has especially been used extensively for flow control related problems.
In feedback driven flow control, it is necessary to estimate the state of a system and then provide a feedback
signal to an actuator to modify the flow accordingly. A lot of work has been done on flow control using the
Kalman filter including controlling wall bounded flows. Since flow control involves physical measurement of
a flow parameter and using that to generate a feedback, the Kalman filter is ideal to estimate the flow state
using the limited noisy measurements. Hoepffner et al.[25] and Chevalier et al. [12] discuss the use of the
Kalman filter along with a linearized version of the Navier-Stokes equations for wall bounded laminar and
turbulent flows respectively.

Takao Suzuki and his group have developed a hybrid algorithm that combines PTV measurements and DNS
simulations. They have done this using three different algorithms with increasing levels of fidelity. These in-
clude a POD-Galerkin approach [50] , what they describe as a “conventional" approach [51] and the highest
fidelity algorithm which uses a reduced order Kalman filter approach [49]. The conventional algorithm uses
a state observer based method and will be discussed further in section 2.2.2. Basically, they conduct a time
resolved PTV experiment on a planar jet at Re 2000 and integrate the measurements obtained from the exper-
iment onto a DNS simulation of the same flow. They match the acquisition rate of the experiment to match
a multiple of the time step of the CFD simulation. In their method, they apply DA on an unsteady flow and
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hence the Reynolds number of the flow becomes an important parameter. If the Reynolds number increases,
the computational time step decreases and it becomes harder for the PTV to maintain that resolution. To
extend the applicability to noisy time- resolved PIV data, the proposed algorithm optimizes the data input
temporally and spatially by introducing a reduced-order Kalman filter.

Typically, statistical estimation theory is used in situations where a large state vector is to be reconstructed
from limited and noisy measurements. This is why it is the most popular in NWP and in flow control. Fur-
thermore, all the methods must model measurement error as a parameter in the models.

DA based on Variational methods
The variational method is a computationally intensive method requiring the solution of an optimization
problem along with the numerical simulation. However while sequential methods like statistical estimation
methods and the state observer reduce the error asymptotically, variational methods provides solution that
agree with the measurement data throughout the simulation. Foures et al. [21] define a data assimilation
method based on a variational formulation and Lagrange multipliers to enforce the Navier Stokes equations.
It is applied for reconstructing the mean flow around an infinite cylinder at Re 150. The base solution is taken
by time averaging instantaneous flow fields from a DNS simulation of the same flow. The method is imple-
mented by applying a forcing term in the steady RANS equations. For their study they choose the Reynolds
stress as the control parameter and arrive at an optimal forcing where the error between the simulation and
measurement is minimized. The steady RANS equation is shown in equation 2.2. When deriving the RANS
equation, the source term comes out as the Reynolds stresses. The Reynolds stresses constitute the closure
problem for turbulent flows. Since they do not explicitly depend on the mean flow, it can be considered as an
independent forcing term and the authors have chosen that term as the control parameter.

ū ·∇ū +∇p̄ −Re−1∇2ū = f

f =−∇·R

Ri j = ui
′u j

′
(2.2)

An advantage this method has is that the algorithm is defined in such a way that even partial measurements,
such as encountered in actual experiments can be used to recreate with low error the full state vector. The
method has also be tested with noise and was found to be robust even with a signal to noise ratio of 100 %.

DA based on the state observer
The state observer is an element of control theory. It is based on the principle of feedback. Based on the
difference between measurement and computation, a signal is sent to the model through a feedback law. The
principle of operation is very similar to nudging as discussed in section 2.2.1. The state observer offer an
advantage over other methods of DA due to their simplicity and flexibility in the design of the feedback gain.
The Kalman filter and variational methods have been popular in both NWP and DA used for fluid mechanics
mainly due to the fact that observations were scarce and sometimes not evenly distributed in time or space.
However, with the advent of large scale PIV mesurements as will be discussed in section 2.3, the use of a state
observer becomes much more intriguing. The following section discusses the different uses of the state ob-
server method for fluid flows in different literature.

Hayase and Hayashi [23] use a state observer to replicate the physical flow in a turbulent flow through a
duct of square cross section. A SIMPLER algorithm is used as the mathematical model for the real flow. The
dynamical behaviour of the flow is governed by the incompressible Navier-Stokes equations. The flow do-
main is shown in figure 2.5. For the “measured physical solution" a plane is taken downstream of the inlet
and an output is taken as the x component of velocity at 10x10 grid points at the plane for a simulation on the
same grid without any forcing. The error e is calculated as the difference between the physical solution and
the hybrid solution. For the input condition, the pressure boundary condition is modified through a simple
proportional feedback control law as shown in equation 2.3. The pressure correction is added to the bound-
ary elements which correspond to the grid nodes where the error is measured. It must be noted here that the
authors did not use a source term in the Navier Stokes equations as the feedback was given directly to the
boundary condition of the flow.

δp j k = KP e j k

∆p j k =∆p +δp j k , ( j ,k = 1,2,3..10)
(2.3)
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Figure 2.5: Domain used . Reproduced from [23].

Here, ∆p j k is the pressure correction at the inlet boundary condition. KP is the proportional feedback gain.
The authors take a plane 7.5 % of the domain from the inlet boundary. Figure 2.6 shows the average estima-
tion error over all the points for different gains. The error is seen to decrease with the use of the observer

Figure 2.6: Average estimation error vs time . Reproduced from [23].

and the authors claim reduced error in estimation of the velocity by a factor of 0.6 in the whole domain or a
factor of 0.3 behind the output measurement plane in comparison with the ordinary flow simulation without
feedback.

Imagawa and Hayase [26] follow up the previous paper with a more detailed study on the effect of the number
of forcing points and the value of the feedback constant. In the previous study, an adhoc feedback law was
designed by taking a random plane and using velocity in that plane to calculate the error and using that to
update the pressure boundary condition at the inlet. In the current study, they change two features of their
model. First, they add a source term in the Navier Stokes equation and model it on the velocity difference at
each control volume similar to what is shown in equation 2.1 with the difference being that the inverse of the
timescale is interpreted as the feedback gain to the system. Second, they calculate the velocity difference at
all grid points of the model and then perform three case studies.

• The first case study is to apply feedback at all the control volumes using all three velocity components.

• The second case is to force at all the control volumes but only using partial velocity components.

• The final case is to force at only a few control volumes but using all the velocity components.

Figure 2.7 shows the norm of the estimation error vs time for case 1 where all the points and all the velocity
components are forced. The error drops drastically for Kp between 1-16 but slows down upto 40. For higher
gains, the model is unstable. Figure 2.8 shows the norm of the estimation error for cases with only partial
velocity components forced. Here, u1 corresponds to streamwise direction, u2 is the spanwise component
and u3 is the vertical component of velocity. From the graphs, the importance of forcing the streamwise
direction is highlighted. For the case with only partial points forced, they used a single point at the center of
the domain as the forced control volume. Their analysis showed that the error reduced downstream of the
point but the time taken to reach a steady state solution was much longer. They also found that increasing
the feedback gain at some point destabilizes the feedback control leading to diverging solutions.
Nisugi et al. [33] apply the technique implemented by Hayase and Hayashi[23] for a real flow where the
data is taken from a physical experiment. They call their technique a hybrid wind tunnel which integrates
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Figure 2.7: Error norm vs time for case 1. Reproduced from [26].

(a) u1 and u3. (b) u2 and u3.

(c) u1. (d) u2.

Figure 2.8: Error norm vs time for the different components of velocity (case 2). Reproduced from [26].

experimental measurement with a wind tunnel with a corresponding numerical simulation. They perform
the analysis for the fundamental flow of the Karman vortex street in the wake of a square cylinder at an ReD

of 1200. For this model, the authors choose to provide two signals. One feedback signal to compensate the
error the pressure on the side walls of the cylinder and the feed-forward signal to adjust the upstream velocity
boundary condition. The pressure term forcing is applied by adding a body forcing term in the Navier Stokes
equations to the concerned control volume where the error is calculated. The forcing is calculated as shown
in equation 2.4 The authors perform a physical experiment in the wind tunnel where they measure pressure
in the points shown in figure 2.9 by using pressure taps . They also measure the x component of velocity with
a Laser Doppler Anemometer(LDA) system at 413 points which are depicted as the grid points in figure 2.9.
Figure 2.10 shows the hybrid wind tunnel system along with the control volumes A and B where the forcing is
applied. S represents the stagnation point.

f A =−K AC ∗ (P AS −P AS
∗)

fB =−K AC ∗ (PBS −PBS
∗)

(2.4)

Here, P AS represents the difference in pressure between the control volume A and the stagnation point. The
star indicates the experimental value while the terms without the star represent the value from the hybrid
model. The main aim of the authors is to replicate the shedding characteristics of the wind tunnel experi-
ment in the numerical simulation. For the given Re shedding was observed at 2.75 Hz. As compared with
the ordinary simulation, the hybrid wind tunnel substantially improves the accuracy and the efficiency in
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Figure 2.9: Wind tunnel experiment in [33].

Figure 2.10: Hybrid model setup in [33].

the analysis of the relevant flow. Especially, the oscillation of the flow with the hybrid wind tunnel exactly
synchronizes with that of the experiment, while that with the ordinary simulation never behave like that. In
comparison with the experiment, the hybrid wind tunnel provides more detailed information of the flow than
the experiment does. The analysis performed in this study is for an assumed 2-dimensional flow.

With measurement techniques like PIV/PTV emerging to map whole flow fields, their use in DA has become
imminent for some time. Suzuki et al. [51] develop a technique that uses velocity fields from a PTV exper-
iment as the ground truth. The hybrid simulation they run is to integrate PTV velocity fields onto a DNS
simulation by matching the acquisition frequency of the PTV with the time step of the DNS. The investigated
problem is a flow past a NACA 0012 airfoil at an angle of attack of 15 degrees and a Re of 1300.The schematic
of their method and the numerical domain are shown in figure 2.11 The velocity fields obtained from the PTV
experiment are first pre-processed to ensure that they satisfy continuity. This is done by minimizing a cost
function that involves the rms error between measured and hybrid velocity fields and the continuity con-
straint multiplied by a lagrange multiplier.

The hybrid velocity field is calculated as shown in equation 2.5.

uhybr i d = r ∗uDN S + (1− r )∗ (uPT V )

vhybr i d = r ∗ vDN S + (1− r )∗ (vPT V )
(2.5)

Here, r is the weight function and is assigned a value between 0 and 1. It is constant in space and time. For
this study it was assigned a value of 0.75 so that the weight of the PTV field is 25 percent. Since the PTV data is
available only in the field of view of the camera, and the domain of the CFD simulation is typically larger than
that of the PTV domain, Suzuki uses a patch function f (x, y) which takes a value of unity of 1 in the middle of
the domain where the PTV data is available and 0 outside of it. Equation 2.5 is modified as shown in equation
2.6.

The authors find that with the application of the hybrid method, the flow field gradually converges to the
PTV field. The original DNS simulation predicts large scale vortex shedding, while the PTV data does not.
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(a) Schematic of hybrid method.
(b) 2D domain used for both the DNS and the hybrid
simulations.

Figure 2.11: Left: Schematic showing the working of their method, Right: Domain on which analysis was conducted. Reproduced from
[51].

the hybrid simulations show that fluctuations of the shear layer are significantly suppressed and vortices are
generated farther downstream. Thus the hybrid simulation is able to reconstruct the PTV flow field.

uhybr i d = (1− (1− r ) f )∗uDN S + (1− r ) f ∗ (uPT V )

vhybr i d = (1− (1− r ) f )∗ vDN S + (1− r ) f ∗ (vPT V )
(2.6)

To compare the different techniques and methods that have been used for state observer based DA, refer
to figure 2.12. It can be seen that the use of the state observer in DA for fluid mechanics is still in its nascent
stage. There are a few points that can be noted here

• The studies performed till now have either used CFD as the ground truth or in cases where experiments
are used only a 2-D flow is considered.

• It is also clear that there is no single accepted way to adopt a forcing technique. Forcing at different
points of the domain using different forcing functions have all produced fairly successful and varied
results.

• All the studies have performed DA on unsteady flows.

There is a large scope for taking forward this technique to make it useful for industry purposes. In the industry,
where computationally cheap and accurate solutions of the flow are desired and the aerodynamics typically
involve complex three dimensional features, it becomes imperative that any technique that is designed for
use in the industry must be able to extend the method to 3 dimensional flows at low computational costs. The
lowest computational cost for CFD at the moment are RANS solvers. Thus, the logical step to take is to study
the feasibility and extension of this technique to 3 dimensional flows and the integration of 3 dimensional
velocity fields derived from experiments into RANS simulations.
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Figure 2.12: Different methods of state observer based DA used in fluid mechanics.

2.3. Particle Image Velocimetry
Quantitative analysis of fluid flow in theory is not difficult. It is not hard to imagine a leaf floating on a river
and trying to calculate the velocity of the water by estimating the distance the leaf travelled in a set time. How-
ever, accurate analysis of fluid velocity at a large number of points simultaneously is a technique that has only
been developed in the last few decades. Particle Image Velocimetry or PIV is a non-intrusive, quantitative,
optical technique of flow visualization. Basically, a fluid flow is seeded with tracer particles that adequately
follow the flow, a source of illumination to highlight the tracers, and an optical system to capture the motion.
The idea is that a camera captures in quick succession two pictures of the flow seeded with particles and by
analysing the displacement of the particles by use of a statistical method called cross correlation, the velocity
of the flow field can be deduced(Displacement divided by the time between two images∆t ). Originally, PIV as
introduced by Adrian [2] presented a planar technique where a laser sheet illuminated a plane on which the
camera was focused(Field of View 3). This technique is referred to as 2C-2D(2 Components 2 Dimensions).
Figure 2.13 depicts the principles involved in planar PIV and the post processing of the images to acquire the
velocity fields. For a comprehensive read on PIV techniques the reader is encouraged to refer to Raffel et al.
[37].

(a) Experimental Setup of PIV experiment. Reproduced from [37]. (b) Cross correlation to produce velocity vectors. Reproduced from [59].

Figure 2.13: Basics of PIV.

The main components in a typical PIV experiment as described in Raffel et al. [37] include:

• Tracer Particles or Seeding

• Illumination

• Recording

3 Hereafter referred to as FOV
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• Calibration

• Evaluation

• Post-Processing

Clearly, PIV depends on a lot of external factors that have little to do with fluid mechanics and the develop-
ment of the field has echoed this fact. The development of PIV has hinged on the advancements in techniques
in other fields like digital imaging and image processing algorithms. Despite 2C-2D PIV being instrumental
to a number of research works and understanding of fluid behaviour, there was a need to extend the tech-
nique to three dimensional flows. Since most flows encompass large scale three dimensional behaviour (3C-
3D), PIV could only be viable for the industry if this requirement could be met (Jux([28])). The first notable
breakthrough to volumetric PIV was provided by Elsinga et al. [19] called tomographic PIV which was able
to reliably produce 3C-3D information of the flow, but there were numerous intermediate steps between the
first introduction to planar PIV and tomographic PIV, a good review of which can be found in [3].

2.3.1. Tomographic PIV and its limitations
Due to the inherent property of cameras projecting the images they take onto a single plane, it becomes hard
to reconstruct a 3D volume from 2D images. The most intuitive way to do this is to reconstruct particles
based on triangulation by intersection of lines of sight from different cameras. However this method suffers
from the production of “ghost particles" as the triangulation error is increased thus making it unsuitable for
large particle concentrations. In this form of particle reconstruction, the particle information is stored in
the form of position and intensity only. There is another way to perform particle reconstruction where in-
stead of individual particles, the volume to be reconstructed is discretized into “voxels". The voxel is then
used to represent light intensity. One of the methods using the voxel approach is the Multiplicative Algebraic
Reconstruction Technique(MART) as introduced by Herman and lent [24]. MART uses an algebraic iterative
technique where the 3D volume is discretized into “voxels" and the intensity of the particles distributed in the
voxels are related to the intensity of the 2D projections using a linear relationship. MART has been proven as
a successful technique for reconstructing particles even at image densities up to 0.05 particles per pixel(ppp).
MART was one of the most widely used method in the initial stages of tomographic PIV. In a typical tomo-
graphic PIV experiment, three or more camera are focused on an illuminated volume. Following the capture
of the multiple images, the particle distribution is calculated and finally the extension of the 2D cross correla-
tion technique to 3D enables the calculation of the velocity vectors in the volume. A schematic of the process
is shown in figure 2.14 Tomographic PIV however, despite being a major breakthrough in quantitative flow
visualization, still presented many limitations. First, the setup required for an experiment is very involved
and limits optical access sometimes. Second, the MART algorithm, especially if used for time resolved exper-
iments can be prohibitive. Another limitation is the small volumes that can be measured due to limited pulse
energy from the lasers and the scattering efficiency of the tracer particles (Scarano et al. [41]).

Figure 2.14: Schematic of tomographic PIV. Reproduced from [19].
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2.3.2. PIV moving to larger volumes
Tomographic PIV as it was initially used was extremely important in the research community, but due to the
aforementioned limitations, was still not feasible for industries looking to perform large scale measurements.
Up till the publication of Scarano et al.[41], the maximum volume that was measured was reported to be
16x22x8 cm3. As mentioned in the limitations in section 2.3, the developments in PIV were due to advance-
ments in fields other than fluid mechanics. The increase in measurement volume too was spearheaded by
two changes in the process and these are discussed in brief detail below.

Tracer particles
For a tracer particle to be useful for a PIV experiment, it must satisfy two main criterion. First, it should
be able to adequately follow the flow. In technical terms, a parameter called slip velocity, whose formula is
shown in equation 2.7( where dp is the particle diameter,ρp is the particle density,ρ f is the fluid density, U is
the fluid velocity, V is the particle velocity andµ is the dynamic viscosity of the fluid), is used to judge whether
a particle can follow a flow. The formula is derived by conducting a force balance on a particle in a fluid. From
inspection of the formula, it is clear that if the particle density matches that of the fluid, or in other words if
the particle is neutrally buoyant, the slip velocity is zero and the particle can adequately follow the flow. This
makes sense intuitively as a particle with the same inertial property as the fluid (density) can be considered
as a packet of the fluid itself. However, most particles are not neutrally buoyant if air flows are considered
and their density is generally orders of magnitude higher than the fluid (ρp >> ρ f ). Solution of equation 2.7
which is a differential equation provides a parameter called the time response (τp ) of the particle as given
in equation 2.8. For the particle to adequately follow the flow, the time response should be smaller than the
smallest time scale of the flow. Clearly, as the particle diameter increases, the time response also increases,
mandating the particle size to be kept as small as possible.

Usl i p =U −V =−dp
2
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ρp −ρ f

µ

∂U

∂t
(2.7)

τp = dp
2 ρp −ρ f

18µ
(2.8)

The second parameter used to judge the feasibility of a tracer particle is its scattering properties. For a tracer
to be captured by the cameras, it should be able to effectively scatter the limited light from the laser in the
direction of the cameras and this in turn affects the final image intensity and contrast with the surroundings
of a particle in an image. Intuitively, it makes sense that a larger particle would be able to scatter more light,
a fact that is in direct opposition to the tracer fidelity requirement as shown in section 2.3.2. Melling [32] pro-
vides a comprehensive study on the scattering properties of tracers. One of the major challenges in PIV was to
balance the scattering requirements with the loss in tracing fidelity by increasing the diameter of the particle.
For PIV to move on to larger volumes, it was apparent that a large particle diameter with as close to neutral
buoyancy as possible would be the best fit. This led to the selection of Helium Filled Soap Bubbles(HFSB) as
the best choice for moving towards large scale volumetric measurements in air.

HFSB particles as the name suggests are particles of soap that are filled with a mixture of air and helium
in proportions that make them neutrally buoyant. These particles have diameters between 200 and 400 µm
which is hundreds of times as large as the conventional fog particles used in PIV and have a time response
of around 10 µs (Scarano et al. [41]) making them quite suitable for quantitative studies in air flows. Due to
their large size, they provide ample scattering even at low light intensities , thus allowing the laser light to be
spread over a larger area thereby increasing the measurement volume.

Particle tracking algorithms
With HFSB providing the impetus to increase the measurement volumes in experiments, computational
power required by algorithms like MART still proved too prohibitive to extend the range of measurable vol-
umes. As previously explained, MART uses a voxel based approach to reconstruct the position of particles
in 3D space. The other approach is the reconstruction of individual particle positions through triangulation
of the lines of sight from different cameras which fall under the category of particle based approaches to re-
construction. Even though particle based tracking approaches were present since the beginnings of PIV, their
main disadvantage was that the reliability of tracking was compromised with increasing particle image con-
centrations and this limited particle concentrations to a measly 0.001 ppp (Wieneke ([58])). However, this
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changed with the introduction of Iterative Particle Reconstruction (IPR) by Wieneke [58], an iterative particle
tracking algorithm that allows particle image concentrations of up to 0.05 ppp, which is what is obtainable
with classical tomographic PIV using MART and cross correlation algorithms.

In IPR, the particle positions obtained from triangulation are reprojected back on to the 2D images using
a predefined Optical Transfer Function (OTF) (Schanz et al. [42]). The projected images are then subtracted
from the original images to produce residual images which are then used to find corrected particle positions.
Once the particle positions are corrected, those with intensity below a selected threshold are deleted from
the volume. New particles can be found from the residual images and added. This whole process can be
repeated iteratively for better accuracy. Figure 2.15 shows the flowchart of the process. The key feature of
IPR is its ability to sustain high image concentrations while still being accurate, making the reconstruction of
particle position computationally much cheaper.
Shake the box 4 as introduced by Schanz et al. [43] is a Lagrangian particle tracking algorithm for obtaining

Figure 2.15: Schematic of IPR. Reproduced from [58].

time resolved 3D PTV data. The algorithm takes IPR one step further by using temporal information to predict
future states of the flow. STB is capable of handling image density concentrations of the same order as tomo-
graphic PIV. The working principle is briefly explained as follows. The computation of Lagrangian tracking
with STB involves three phases of the algorithm: Initialisation, convergence and converged phase. In the ini-
tialization step, no temporal information is available and particles are reconstructed using algorithms similar
to IPR. This is done for about 4 time steps in order to facilitate the creation of a particle “track". This track is
used to extrapolate the position and predict the particle in the next time step. The predicted images are then
compared to the original and a process referred to as “shaking" is performed to minimize the residuals. This
is the convergence step. The residual image after shaking contains untracked particles which are likely the
new particles that have entered the domain. These are again tracked using the same process. The benefit of
the prediction and shaking procedure is that the information density in the residual images is significantly
lower as in the raw particle images. A schematic of the STB process is shown in figure 2.16.

Figure 2.16: Schematic of the STB process for a single time-step in the convergence state. Reproduced from [43].

4Hereafter referred to as STB
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2.3.3. Robotic Volumetric PIV
While the introduction of HFSB and new algorithms like STB allowed volumetric PIV to expand to new limits,
there were still problems of optical access and complexity of setup involved. This prohibited large scale use
of tomographic PIV in industries where planar and stereo PIV still constituted a majority of used the experi-
mental techniques (Jux [28]). The use of a Coaxial Volumetric Velocimetry 5 probe mounted on a robotic arm
as introduced by Schneiders et al. [44] opened up the possibility of obtaining time-averaged velocity fields
in a domain as large as can be reached by the robot by ensemble averaging different overlapping sub volumes.

The CVV system consists of four cameras mounted together with low tomographic apertures and large focal
lengths along with an optical fibre which provides the illumination from along the cameras’ viewing direction
in an expanding beam. This configuration allows the system of cameras and laser to be moved simultaneously
without the need for continuous recalibration as their positions are fixed with respect to each other. This con-
figuration is quite different to the standard tomographic system where the viewing directions are generally
perpendicular to the laser axis. Figure 2.17 shows the difference between both systems. As a result of this sys-
tem, it is possible to mount the setup on a robotic arm thereby ensuring an increased measurement volume
by dividing the entire domain into smaller subvolumes and then later stitching the subvolumes together as
shown in figure 2.18 Furthermore, the robotic system can negate problems of optical access. A proof of the
versatility of the system is provided in Jux et al. [29] where the time averaged flowfield around a full scale
cyclist is mapped.

(a) Conventional tomographic setup. (b) CVV setup.

Figure 2.17: Difference between a conventional tomo setup and the CVV. The cameras are represented in blue, the laser in orange and
the red dotted line represents the measurement volume. Reproduced from [44].

Figure 2.18: Full volume divided into subvolumes. Reproduced from [29].

The CVV system however has its own disadvantages. Due to the low tomographic aperture, errors in capturing
the exact position in the depth direction are increased. Particles which are originally spherical in shape are
now viewed as elongated diamonds. The smaller the aperture angle, the more pronounced this effect.

5Hereafter referred to as CVV
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2.4. Flow around car side mirror
The flow around a car side mirror is chosen as the experimental test case due to the complex three dimen-
sional flow that develops in its wake. De Villiers [16] in his PhD thesis describes the flow around a car side
mirror model. The car mirror is mounted on a flat plate as shown in figure 2.19 and simulated using a Large
Eddy Simulation at a Reynolds number based on chord diameter of 5X 105. The author notes that at those
flow conditions and a time averaged sense, there is a massive separation and recirculation region directly be-
hind the mirror and a reattachment point of approximately 2.25 diameters downstream of the model. Figure
2.20 shows the velocity contours and the streamlines of the flow around the object. Due to the mirror being
placed on a flat plate, a distinct horseshoe vortex is formed around the model visualized in figure 2.21 as the
second invariant of the velocity gradient Q∇Ū = 5X 105.

Figure 2.19: Top and side view of computational domain around car side mirror used in [16].

(a) Side View. (b) Top View.

Figure 2.20: Time averaged velocity contours and streamlines of flow around car side mirror. Reproduced from [16].

Figure 2.21: Horseshoe vortex wrapped around the model.
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2.5. Research Questions
From the literature study it is clear that the state observer based DA technique for fluid mechanics is still in its
nascent stage. Furthermore, the availability of techniques like robotic volumetric PIV enable capturing the
complete time averaged flowfield around objects with relative ease, making their integration into the state
observer technique feasible. The research questions thus are defined to help integrate volumetric PIV and
the DA technique and also to provide a structure to the process. The main research question can be stated as
follows:

Can a state observer based data assimilation method for steady RANS based on robotic volumetric
PIV data be used to improve computational efficiency and decrease errors in CFD data for 3-D

flow around a bluff body?

The main research question can be broken down into different questions that will be answered throughout
the course of this thesis. Two main divisions of sub questions can be generated from the main question.
These are related to the assimilation of experimental data and the performance of the technique.

2.5.1. Assimilation
1. How will the data from PTV be included in a RANS simulation? More specifically, how will the feedback

term be mathematically constructed?

2. What are the different ways to assimilate data into a CFD simulation? More specifically, at what points
will the forcing/feedback terms be applied and how strong will they be?

3. Can velocity fields obtained directly from PTV without the use of a solenoidal filter be integrated into a
CFD simulation without causing divergence?

2.5.2. Performance
1. Can DA faithfully reproduce the main flow topological features around the car side mirror model?

2. Can DA decrease the error in CFD simulations?

• Does the error (defined as the rms of error for velocity at all points between CFD and experimental
data ) decrease upon the application of DA?

• What is the minimum achievable error in terms of percentage, with 0% implying CFD data com-
pletely replicates PTV data?

3. How does applying DA affect the convergence characteristics of a CFD simulation?

2.6. Research Objectives
The main research objective as given in chapter 1 is :

Development and assessment of a state-observer based data assimilation method for steady
Reynolds averaged Navier-Stokes simulation using a complex 3-dimensional flow around a bluff

body as a test case.

A successful implementation of this objective could prove as a launching pad to new techniques where data
assimilation improves the quality of data that can be achieved independently from either CFD or a physical
experiment. To meet the main objective, it is broken down in to sub objectives as follows:

1. Detailed literature study on the state observer based DA technique and PIV.

2. Design and perform experiment of flow around car side mirror model using robotic volumetric PIV.

3. Design the construction of the state observer based DA technique and its implementation in Open-
FOAM

4. Test the technique on the 1D viscous Burgers equation as well as a 2D CFD case.

5. Implement DA for the flow around the side mirror
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Principles of the state observer technique

In this chapter, the fundamental equation describing the operation of the state observer used in this thesis is
provided in section 3.2. Further, different implementation strategies of the forcing term along with its use in
the CFD solver are discussed in section 3.3. Section 3.6 briefly discusses turbulence modeling in RANS. This
chapter also defines key terminology that will continue to be used throughout the course of this thesis.

3.1. Basics of the state observer
The state observer is an element of control theory (Ellis[18]). In the basic form, it is used when only partial
measurements of an actual physical system are available and the function of the observer is to reconstruct the
full state of the system through a model by incorporating the measurements in a way in which they guide the
model to the physical solution. Consider a physical system that is represented by the equation 3.1 where x is
the state variable, n is the discrete time , u is the input to the system and y is the outputs of the system. This
equation simply states that the future states of a system depend on its present state and the input conditions.
Here A,B and C represent system coefficients.

xn+1 = Axn +Bun

y =C xn
(3.1)

However, mathematical models of a system generally contain approximations and the equations of the sys-
tem can be modified to accommodate for the estimated variables. The equations representing a model of the
system are shown in equation 3.2 where the hat over the variables means that they are the estimated values
from the model and not the true physical values.

x̂n+1 = Ax̂n +Bun

ŷ =C x̂n
(3.2)

The idea behind a state observer is that by observing the outputs of a physical system, they can be incorpo-
rated into the model in order to guide the model to the physical state of the system. Typically, the outputs
generated by the model ŷ are different from the measured outputs y and this difference is what is incorpo-
rated into the model. Mathematically this is expressed through equation 3.3 and can be seen visually in figure
3.1a. The L in equation 3.3 is the distribution matrix for incorporating the measurements(which are typically
sparse) into the model. This matrix also usually includes a gain which controls the rate of convergence of the
system.

x̂n+1 = Ax̂n +Bun +L(ŷ − y) (3.3)

Specifically for application of the technique in this thesis, there are some points to be noted. First, the objec-
tive is to perform the DA on a steady RANS solver, meaning that the physical measurement is to be taken from
an experiment and the measurements are averaged in time. However, most steady state CFD solvers perform
their calculation in iterations or steps, meaning the mathematical construction is similar to the general for-
mulation as shown in equation 3.3. In this work, the mathematical model is represented by the Navier Stokes
equations for fluid flow, the input conditions can be interpreted as the boundary conditions and the output
from a physical PIV experiment is the velocity field at discrete locations. The flowchart roughly depicting the
process used for the present work is given in figure 3.1b

21
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(a) General state observer. (b) Flowchart for present work.

Figure 3.1: Basic principle of state observer.

3.2. Mathematical formulation
The constitutive equations for fluid flow are the Navier Stokes equations. In the present study as well, the
Navier Stokes equations are used as the mathematical model, albeit with a few assumptions. Firstly, due to
the low speeds 1, the flow is considered incompressible. Also, no thermal effects are considered meaning the
energy equation is left out of the model. Finally, all the time derivatives are neglected under the assumption
of steady flow. The Navier Stokes equations in general are considered to include both the momentum and
the mass conservation equations. However, the dynamics of the equation are contained in the momentum
equation and the mass conservation serves as a mathematical constraint that is to be satisfied. Thus, when
constructing the feedback term, it is placed in the momentum equation. The feedback term is modeled using
the experimental velocity (also referred to as the ground truth) u∗. The final form of the mathematical model
is given in equation 3.4 which is the vector form of the steady incompressible momentum equation with an
extra feedback term. The feedback term is highlighted with a box.2

u ·∇u =−∇p

ρ
+ν∇2u + K

(u∗−u)(|u∗−u|)
l

(3.4)

Here, u is the velocity , p is the static pressure, ρ is the density,l is a length scale and K is the feedback gain.
The feedback term in the equation represents an acceleration/deceleration. If the term is positive, the fluid
accelerates and vice versa. The reasons for choosing this term and its implications are discussed further.
It must be noted that in this thesis, all available velocity components are used for forcing and the effect of
forcing only partial components is not studied.

3.2.1. Choice of feedback term
In theory, the feedback term can be modeled using two parameters in an incompressible fluid flow, namely
the pressure or the velocity. Previous studies have used both the terms as seen in figure 2.12, but no conclusive
evidence has been provided as to why one may be more beneficial than the other. Velocity is the primary vari-
able obtained from a PIV experiment and even though it is possible to extract pressure, it is derived through
a further set of approximations thereby increasingly a layer of uncertainty. Thus velocity obtained from the
experiment is considered as the ground truth and also used in the feedback term.

The construction of the feedback term consists of three terms, namely the error term in the numerator,the
gain K and the length scale l .

Error term
Multiple variations of the feedback term can be constructed, as long as it includes the observations and guides
the model to the observations and also satisfies dimensional constraints(the feedback term should be an
1The experiment is conducted at 12 m/s
2Here, feedback is used in the context of solving this equation in iterations in CFD, where this term then acts like a feedback term for

subsequent iterations
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acceleration with the units m/s2). The error term can be modeled linearly, quadratically or even of higher
orders as long as it is able to switch signs when the error switches sign. The dimensionality is maintained
by using an appropriate scaling term, here referred to as the length scale(although it is not restricted to only
length). In general, it can be represented as:

|(u∗−u)n−1|(u∗−u)

Here, n is the order.The choice of the error term significantly affects the dynamics of the system. Consider
a simple example to show the impact of each choice. Since the final experiment is a flow around a car side
mirror assume the freestream velocity is 10 m/s, and due to the complex nature of the flow the dispersion of
velocity can be assumed to go anywhere between -5 m/s in the wake to slightly greater than the freestream
value. Now, in a CFD simulation, the solution can be initialized by assuming a constant velocity in the entire
domain and the velocity at each point is updated at successive iterations. The difference in velocity at each
control volume or the error as defined by the feedback term can also vary between -5 to 10 (assuming a 0
initial velocity). Figure 3.2 shows the impact of the order of the polynomial on the error term. For velocities
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Figure 3.2: Impact of the error term.

outside (-1 1), the cubic term “explodes". The quadratic term is still much larger than the linear term implying
that any regions where there is a large error has a stronger feedback than a linear term.

Feedback gain
The feedback gain can be implemented in various ways. The Kalman filter is an example where the feedback
gain is made to vary both spatially and temporally based on the solution (Suzuki [49]). However, for the
present study only a constant feedback gain both spatially and temporally has been employed. The value of
the gain is however varied and its impact is quantified.

Length scale
The length scale is another parameter that can be subjected to arbitrary definition. The length scale is used
to satisfy dimensional constraints in a case where the quadratic error term is considered. For higher orders,
the length scale can be modified as a reference velocity times a reference length un−1l . If a linear error term
is used, then a time scale is required. The length scale can be chosen based on local scaling like the vol ume

ar ea of
a cell or on a global scale. The former would mean the forcing term again changes based on the local size of
the cell making it harder to isolate the actual contributing mechanism to the feedback control. Thus, a global
constant length scale of 1 is chosen to simplify the analysis.

3.3. Implementation
The objective of the present work is to run the state observer method for a steady RANS simulation and thus a
choice had to be made on the solver. There are many CFD solvers available to choose from but for this thesis
it was decided to use OpenFOAM v1706 (Open-source Field Operation And Manipulation)3. OpenFOAM is a
collection of tools for computational continuum mechanics. It is not only limited to CFD but has capabilities
to extend to problems such as but not limited to combustion, solid mechanics, electromagnetics and even
finance. It is written in C++, and its code is publicly available on GitHub, under the GNU General Public Li-
cense v3.0. OpenFOAM despite having a steep learning curve compared to other black box commercial CFD

3https://www.openfoam.com/

https://www.openfoam.com/
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software, offers the flexibility to essentially create your own solver along with complete control on the solu-
tion methods. Furthermore, due to the multiple levels of abstraction offered, the user does not have to bother
with the inner workings of each solver, and instead simply can build the high level commands for the solver.
It is for this reason that OpenFOAM was chosen as the most appropriate software for the purpose of this thesis.

Running an OpenFOAM simulation puts the user directly or indirectly in touch with different parts of the
software. These include the executable applications (solvers, preprocessing and post processing utilities), the
configuration system (dictionary files) , the boundary conditions and the numerical operations (discretization
schemes). A detailed review of the different parts of the software and programming options is beyond the
scope of the present work and the reader is encouraged to refer to Maric et al. [31]. The executable applica-
tions further consist of solver, test and utilities. For this thesis, the solver used is the steady incompressible
Semi-Implicit Method for Pressure Linked Equations (SIMPLE) solver. SIMPLE is an algorithm used for solv-
ing the coupled pressure and momentum equations in an iterative way and was introduced by Patankar [34].

A solver consists of a code that contains the main() function and possibly some subsidiary header files re-
quired by that particular solver. One of the header files is used to create the fields needed for the solver. For
the present work, the code has been modified as follows. First, three new vector field variables are created:

• U∗ which contains the ground truth velocity values (u∗) interpolated onto the mesh(CFD grid).

• E which is the error term (u∗−u)|(u∗−u)|.
• EV ol which is the final dimensionally correct feedback term that is added to the equations. K (u∗−u)(|u∗−u|)

l

EV ol is calculated using E and U∗ as will be shown in section 3.4 and is inserted into the final discretized
equation as a forcing term. The code containing the modifications is provided in Appendix A.

3.4. Forcing strategies
OpenFOAM uses a finite volume approach of discretization in order to solve the Navier Stokes equations. In
the finite volume approach, the entire fluid domain is divided into control volumes and the equations are
integrated over each control volume. One of the research questions (section 2.5) of this assignment is to
evaluate what the best forcing strategy is. In other words, how will the forcing or feedback term be applied.
Since the domain is split into control volumes, this provides the flexibility of choosing the control volumes
where forcing is applied. To obtain a clear picture of the effect of forcing at different control volumes, two
main parameters are varied and studied. These are:

• The total number of control volumes that are forced in comparison to the total mesh size (N)

• Feedback gain (K)

Number of control volumes (N)
The selection of control volumes to apply forcing has to be done with care due to the many permutations
that exist. Instinctively, it would make sense to apply forcing wherever there is information available (ground
truth velocity). However, studying the effect of forcing at a limited number of control volumes offers the
opportunity to understand if forcing at only a few points can steer the simulation towards the ground truth
even in control volumes where forcing is not applied. This is very important as it can possibly answer the
question of what is the minimum number of control volumes or percentage of control volumes that need to
be forced for the solution to approach the ground truth at all points faithfully? From an experimental point of
view, it could mean that acquiring data in a limited domain or only at a few locations is sufficient. Throughout
the remainder of this thesis, this parameter will be denoted by N, where N is the percentage of points in the
domain that are forced.

Feedback gain (K)
The strength of the feedback term as discussed in section 3.2.1 depends on the error term, the length scale
and the feedback gain. Of all the three terms, the feedback gain is the term that is chosen as the control
parameter and is varied to study its effect. The value of the feedback gain is stored in a dictionary file as a
variable that can be changed easily.
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To this end, two main strategies of forcing are applied. First, forcing is applied to a fixed percentage of points
where information is available. The points are chosen randomly to ensure there is no bias based on the lo-
cation of forcing (in a wake, upstream/ downstream of an object). Figure 3.3 shows different percentage of
forcing points applied on the 2D half cylinder case. The blue regions show where forcing is not applied. As
the percentage of forcing increases, the ground truth solution of the flow across the half cylinder comes into
sharper focus. For this, first, the field u∗ is created based on the percentage of forcing points required in
MATLAB. To achieve this, the ground truth is interpolated using the MATLAB function griddata(using linear
interpolation) only on the randomly selected points (centers of the control volumes) and the rest of the points
are assigned a 0 value. In the solver code, the error term E is calculated at all points and a conditional state-
ment is written where only the cells with a non zero u∗ are assigned an EV ol and the remaining are assigned
0. Finally, this field is inserted into the momentum equation. The second forcing strategy is to apply a volume
forcing where all the forcing points are together and not sparsely distributed. This is shown in figure 3.4.

(a) N=1 % . (b) N=25 %.

(c) N=50 % . (d) N=75 %

Figure 3.3: Random forcing of points where N is the percentage of forced points from available ground truth data.

Figure 3.4: Volume forcing around half cylinder.

3.5. Physical significance of distributed forcing
Forcing at randomly distributed points or even volume forcing at only specific locations is counter-intuitive
to the notion of a forcing term. Generally, a forcing term like gravity or an electric field affects the whole
domain, thereby justifying their names as body forcing terms. In that sense forcing a fluid at only specific
locations does not seem to draw parallels with a real world fluid flow. However, taking inspiration from the
origins of DA in weather prediction, it is possible to draw some parallels for this technique to a real world
flow at a global scale. At the global scale, atmospheric flow is one continuous complex flow. Due to the enor-
mous scale of the earth, phenomena like localized heating or cooling cause differential pressure gradients at
those locations leading to localized “winds". Different regions experience different forcing mechanisms but
because of continuity, what happens in one region directly or indirectly affects the state of another region of
the world. In other words, each region cannot exist independently of the other regions. A similar analogy to
this is the butterfly effect which is a term that is derived from the metaphorical example of the details of a
tornado (the exact time of formation, the exact path taken) being influenced by minor perturbations such as
the flapping of the wings of a distant butterfly several weeks earlier. Although the butterfly effect was used to
describe the sensitivity of the atmospheric equations to initial conditions and is used as a classical example
in chaos theory, it draws similar analogies as to how one event can cascade into another both in time and
space. A similar argument can be constructed for the present work, where even though the flow is invariant
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in time, the forcing applied at discrete locations not only affects those regions and their neighbours, but to a
certain extent, influences the flow in the entire domain through continuity. This is also a reason for forcing at
only a few regions to see if the forcing is strong enough to drive the flow in the non-forced regions toward the
ground truth.

3.6. Turbulence modeling
The governing equations of fluid flow, the Navier Stokes equations are a set of non-linear, coupled partial
differential equations. The conservation form of the equations for incompressible flows are:

∇·u = 0 (3.5)

∂u

∂t
+∇· (uu)+ 1

ρ
∇p −∇· (ν∇u) = 0 (3.6)

Though DNS solves these equations without modeling, it is generally too computationally expensive for pur-
poses other than academic research, especially when dealing with high Reynolds numbers. Turbulence in-
troduces a wide range of time and length scales and the computational power required to resolve all these
scales with Re2.7 (Reynolds [38]) in terms of the grid requirement. Thus for engineering interest, simpler so-
lutions of the flow equation have been developed of which one is the RANS formulation. RANS equations are
the Navier Stokes equations subjected to time averaging. In the derivation of RANS equations, the velocity is
decomposed into a mean(ū) and a fluctuating component(u′).

u(x, t ) = ū(x, t )+u′(x, t ) (3.7)

Here, x is the position in space and t is time. Substitution of this into equations 3.6 and 3.5 and then applying
time averaging4 produces the RANS equations.

∇· ū = 0 (3.8)

∂ū

∂t
+∇· (ūū)+ 1

ρ
∇p̄ −∇· (ν∇ū) =−∇·u′u′ (3.9)

The RANS equation, although solving for the mean flow, introduces an extra variable called the Reynolds
stress term, which is the term on the right in equation 3.9. This term represents the effect of the turbulence
on the mean flow and introduces what is called as the closure problem. To successfully solve the RANS equa-
tions, it is necessary to model the Reynolds stresses and various methods for this have been proposed. It
has previously been mentioned that in this thesis two turbulence models are used: the k −ω SST and the
Spallart-Allmaras models. Both these models use the Boussinesq hypothesis where the Reynolds stresses are
related to the mean velocity gradients through an eddy viscosity. These models are also thus known as eddy
viscosity models. The k −ω SST model solves two additional equations for the turbulent kinetic energy k
and the specific turbulence dissipation rate ω to solve for the eddy viscosity field. Thus it is also part of the
family of two-equation turbulence models. The Spallart-Allmaras turbulence model on the other hand is a
one-equation model and solves modeled transport equation for the kinematic eddy turbulent viscosity νt .
Due to the different equations solved, model constants and formulations, these two turbulence models can
give different results in different situations (Bardina et al.[6]).

This chapter introduced the methodology and implementation of the state observer. The next chapter deals
with the application of this method to a 1-D and a 2-D case along with the results.

4Time averaging is defined as X̄ = l i mt−∞ 1
T

∫ t0+T
t0

xd t



4
Numerical assessment

Comparing the research questions (section 2.5) and the previous work done in state observer based DA (fig-
ure 2.12), it may seem as though the present work is “skipping" a few steps. All the previous work has been
done for unsteady flows and this work attempts to work with time averaged flows and a steady CFD solver.
Furthermore, the previous work has dealt with predominantly 2D flows or even in cases where 3D flows have
been used, the ground truth has been constructed from previous CFD results. In cases where experimental
data has been used, it has been subjected to further numerical treatment like the application of solenoidal
filters. One of the objectives of this work is to directly apply experimental data without solenoidal filtering for
a complex 3 dimensional flow around a simplified car side mirror. Before going to 3-D, the first step of this
thesis is to prove that the method works for 1-D and 2-D cases before going into the final case. This chapter
provides the numerical assessment of the technique by considering the 1-D viscous Burgers’ equation for the
1-D assessment in section 4.1 then considering the steady 2-D flow around a half cylinder model using the
RANS equations for the 2-D assessment in section 4.2.

In the 1-D case, a “non-physical" solution , which basically means a solution which is not the final solu-
tion of the Burgers’ equation(but is still continuous) given a certain initial condition, is applied as the ground
truth u∗. The equation is not steady, but is used to gauge how enforcing a non-physical solution, specifi-
cally, applying forcing at different points(N) and using different feedback gains(K), affects the final solution.
The next step is to apply the technique to a 2-D steady case and perform the same analysis. For this case,
the steady state flow around a half cylinder is used. To generate the ground truth solution, the flow around
the half cylinder is first solved using the k −ω SST turbulence model and this solution is enforced onto a
simulation using the Spal l ar t − All mar as turbulence model.

4.1. 1D case: The viscous Burgers’ equation
The Burgers’ equation is a non-linear convection diffusion equation and involves a balance between time
evolution, viscous diffusion and non-linearity. It was studied by Burgers [8] to gain insights into the behaviour
of turbulence described by the interaction of the effects of convection and diffusion. The equation is given in
1-D as follows:

∂u

∂t
+u

∂u

∂x
−ν∂

2u

∂x2 = 0 (4.1)

To appreciate the behaviour of the equations, a simple example is shown. Consider equation 4.1 solved in the
domain x ∈ [0,2] with the initial conditions represented by:

u = 1+a ∗e
−(x−b)2

2c2 (4.2)

with the three variables a,b and c defined as:

• Case 1: a=0.25,b=1,c=0.15 (shown in blue)

• Case 2: a=1,b=1,c=0.15 (shown in red)

• Case 3: a=2,b=1,c=0.15 (shown in yellow)

27
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The initial conditions are depicted in figure 4.1c. The equation is solved with Dirichlet boundary conditions
at either end of the domain with u=1 m/s. Two different values of viscosity are considered- ν = 0.02m2/s
is chosen for the first trial and ν = 0.2m2/s for the second trial. Figures 4.1a and 4.1b show the evolution
of the solution after t=0.3125 s for both the trials respectively. The effect of both convection and diffusion
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(c) Initial conditions,t=0.

Figure 4.1: Behaviour of Burger’s equation.

is seen clearly in both cases. Since the initial profiles are positive velocities, all the “humps" travel to the
right. An interesting effect occurs due to the non-linearity of the equations. From figure 4.1a, it can be seen
that the front side of the propagating wave steepens compared to the back side. This can sometimes lead
to a phenomena known as wave breaking ( Pomeau[36]) where the top portion of the wave moves beyond
the regions below it and beyond this point a continuous function cannot be maintained anymore. When the
viscosity is high, as in figure 4.1b, diffusion provides a “smoothing" and this phenomena can be avoided. In
the subsequent analysis, high viscosity has been used to ensure no discontinuities occur in the flow and the
state observer is applied.

4.1.1. Application of state observer
The state observer for the Burgers’ equation is applied using the formulation shown in equation 4.3. This
equation is solved numerically. Time is discretized using an explicit forward finite difference scheme, the non
linear convection term with a backward difference in space and the diffusion term with a central difference
scheme. The discretized version of the equation is shown in equation 4.4. Here, n denotes the time step and
i denotes the spatial coordinate. The details of the simulations are provided in table 4.1. To understand the
effect of forcing, it is applied at all the points in the domain (N=100%). The quadratic error term is chosen for
analysis.

∂u

∂t
=−u

∂u

∂x
+ν∂

2u

∂x2 +k(u −u∗)|u −u∗| (4.3)

un+1
i −un

i

∆t
=−(un

i )
un

i+1 −un
i

∆x
+νun

i+1 −2un
i +un

i−1

∆x2 +k(un
i −u∗n

i )|(un
i −u∗n

i )| (4.4)
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No. of points 81
Domain length 2 m
Time step 4e-4 s
Viscosity 0.3 m2/s
No. of time steps 25000
No. of points forced 81
Feedback gain 2
Boundary Conditions Dirichlet

Table 4.1: Details of simulation.

Ground Truth u∗
For equation 4.1, using one of the initial conditions (case 1) and in the same domain, the solution will diffuse
and eventually (after infinite time) the whole domain will attain a constant steady state solution. The ground
truth function that is enforced is given by equation 4.5 and is shown with the initial condition as given in the
aforementioned case 1 in figure 4.2.

u∗ = 1+ sinπ
x

2
(4.5)
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Figure 4.2: Initial Condition and non-physical forced solution.

Results
The result of the simulations without and with forcing are shown in figure 4.3a and 4.3b. When no forcing is
applied, the initial solution convects and eventually diffuses leading to a steady state solution that is constant
throughout the domain and equal to the velocities at the boundaries (1 m/s in this case). When forcing using
the ground truth as in equation 4.5 is applied, the behaviour of the solution is significantly different. As seen
in figure 4.3b, the initial “hump" appears to grow while advecting and finally obtains a steady state solution
that tends to have approached the forced solution. The comparison between the final iteration of the forced
solution and the forcing function is shown in figure 4.4.
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Figure 4.3: Time evolution of the initial solution.
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Figure 4.4: Initial and final solutions compared to the ground truth (u∗).

Role of forcing term
Referring to equation 4.3, it can be seen that the time evolution of the velocity is a balance between three
terms, namely the convection, diffusion and the forcing term. The sum of these individual components con-
tribute to the progression of the solution. Therefore analysis of these terms can provide some insights into its
behaviour.

Consider two points A and B whose position is shown in figure 4.5. For both these points, the individual
terms of the Burgers’ equation have been plotted for every iteration for both the forced and the unforced
case. The results are shown in figure 4.6. When the solution is not forced, the values of the individual terms
at both locations eventually tends to 0. For point A, which is behind the hump of the initial solution, the
convection term is negative since the wave moves to the right but the viscous term is positive and more dom-
inant initially meaning that the total, which is basically the final acceleration of the point, is initially positive.
However, this quickly changes as the convection term then dominates the viscous term and they both then
slowly tend to 0 as the solution diffuses out of the domain. For point B, which is on the right side of the hump,
both the viscous and the convection terms are initially positive and after the hump passes over it, the viscous
term quickly changes sign and finally both terms taper off. Despite the initial differences between points A
and B that arise purely due to their position in space, in both cases, the final values of the individual terms
tends to zero.

When forcing is applied, the behaviour of the solution changes. For point A, which is initially far from the
ground truth, the forcing term is large and dominates the other two terms. This trend continues throughout
the simulation and at one point, the sum of all three terms approaches 0, indicating a balance. For point A,
this happens when the viscous and convection term are negative, meaning that both the terms try to produce
a deceleration in point A, but due to the point still being quite far away from the forcing solution, the forcing
term produces an acceleration. For point B, a similar trend is observed where the forcing term dominates the
other two terms, but due to this point being on the right side of the hump, the convection term is positive
throughout and the forcing term has a smaller magnitude that at point A.

Clearly, applying forcing changes the dynamics of the system. There are some points worth noting regarding
the behaviour of the solution when forcing is applied:

• The forcing term tries to “pull" the solution towards the forcing function and if other terms have the
opposite effect, there is a point when equilibrium between all the terms will be reached and the solution
attains a steady state.

• This further implies that if the forcing is “non-physical" then the final steady state cannot completely
reach the forcing solution because of the tendency of the other terms to move the solution in a different
direction.

• The magnitude of forcing can be altered by changing the feedback gain K and this will further dictate
the relative magnitude of the forcing term with respect to the other terms.
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Figure 4.5: Location of points A and B.
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(c) Unforced Point B.
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(d) Forced Point B.

Figure 4.6: Location of points A and B and behaviour of solution at those points.

4.1.2. Random forcing for the Burgers equation
The previous section dealt with forcing at all the points of the domain. However an objective of this thesis is
to quantify the effect of distributed forcing. To help meet this objective, the same simulation is run but this
time with different number of forcing points. N denotes the percentage of points that are forced. At the same
time, the gain K is also varied and the effect of both these parameters is quantified through the rms error er ms

which is defined as in equation 4.6. This definition ensures that the value of error remains dimensionless.
The rms error is calculated after the final iteration for all simulations (u f i nal ).

er ms = r ms
(u f i nal −u∗

ur e f

)
wi th ur e f = 1m/s (4.6)

The forcing strategy is applied as follows: Since the domain is divided into 81 points, the number of points
forced is increased at every run from 1 to 81. For each run, the value of K is changed from 0.1 to 25 in 500
steps and in each of those steps, the points to be forced are selected randomly. This ensures that the effect
of forcing at the randomly chosen points is repeatable and is not biased based on the spatial position of the
points.

The results of the simulation are shown in figure 4.7. From the contour plot it can be seen that as both the
feedback gain and the number of forcing points increase, the rms error decreases. Figures 4.7b and 4.7c shows
how each parameter individually affects the rms error. From the figures, it can be seen that even when the full
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volume is forced and the gain keeps increasing, the rms error asymptotically approaches a fixed value which
is higher than 0, implying that there will still be error in the final steady state solution even for high gains. An
interesting observation is that for the random forcing, due to the asymptotic nature of both the variables, K
and N, the increase in either does not correspond to a linear reduction in error. For example, for a gain of 15,
doubling the number of forcing points from 24 % to 48 % results in an rms error reduction of only around 15
% whereas increasing the number of forced points from 0 to 24 % reduces the rms error by almost 43 %.

(a) Contour plot of rms error as defined in equation 4.6 with Varying K and N.
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Figure 4.7: RMS error for varying values of N and K.

Figure 4.8 shows a few examples of the effect of forcing on the final solution. The red dots show the points
where the solution was forced (not shown for N=100 %). Since the points were chosen randomly, they vary
between different runs. An interesting observation from the figures is how the function becomes locally non-
smooth wherever forcing is applied. Since an explicit scheme is used in time for this analysis, the forcing
affects only the cell where it is enforced at any particular iteration. If the forcing is not too strong, the jump
in the velocity between iterations is small enough for the overall function to still remain continuous although
the smoothness is compromised. The effect of forcing at a point is then spread to neighbouring points in the
subsequent iteration through the effect of convection and diffusion and can be visualized easily by noting
that spatial gradients take information from their neighbourhood points. If the forcing is too strong, then the
function becomes discontinuous and stability issues arise. Furthermore, when N is low, the spatial position
of the points significantly affects the final solution. This trend is also observed in fig 4.7, where for low values
of N, increasing the K does not necessarily reduce the error.
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(b) N = 25%.
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(c) N = 50%.
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Figure 4.8: Solutions of DA applied to Burgers’ equation. Red dots represent the locations of forcing.

4.1.3. Volume forcing for the Burgers’ equation
Volume forcing is essentially one of the possible realizations of random forcing but with the added advantage
of knowing that in the case of volume forcing the final solution can be influenced by the spatial locations of
the forcing points. The exercise of choosing a location for volume forcing can also be random, however the
volumes can be chosen with some scientific intuition. Due to the presence of the convection and the diffusion
term, it is interesting to understand how these terms help propagate the influence of forcing at a few locations
to other parts of the domain. Therefore, in the present study, the domain is divided into two regions: upstream
and downstream, which represent the first half and the second half of the domain respectively. The forcing
strategy is as follows: For the upstream case, the forcing points are increased in steps of 10, always starting
from the first point and for the downstream case, the points are forced starting from the last point in steps
of 10. The rms error of the total solution is then compared for the two cases. For the sake of simplicity, the
gain K is maintained at a constant value of 15 for all the simulations. The result(rms error) of the simulations
are shown in figure 4.9a.Upstream forcing for all cases produced smaller errors than downstream forcing and
this can primarily be attributed to convection and can clearly be seen in figures 4.9b and 4.9c where 30 points
(N=36 %) were forced for each case and the evolution of the solution is shown.

4.1.4. Convergence
Convergence for the case of the Burgers’ equation is defined as the iteration number where the rms value of
error as defined in equation 4.6 changes by less than 0.1 % for the subsequent iteration. The results are shown
in figure 4.10. The trend shown is very similar to that seen in figure 4.7, however for low values of K and N, the
convergence is erratic.
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Figure 4.9: Difference between upstream and downstream forcing.

(a) Contour plot of number of iterations required for convergence.
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Figure 4.10: Convergence plots for Burgers’ equation with DA. Shown only for random forcing.

4.2. 2D case: Steady flow around a half cylinder
For application of the state observer to a 2-D flow, the steady state flow around a half cylinder is chosen. In this
study, the half cylinder implies that a full cylinder is cut in half in a direction parallel to the flow, essentially
giving rise to a bluff body. This geometry is chosen as opposed to a full cylinder to avoid unsteady effects
such as vortex shedding. Even though the proposed technique should in theory work even when applied to
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cases where the flow may exhibit unsteady characteristics, this geometry is chosen to simplify the analysis.
Furthermore, a half cylinder still exhibits some complex dynamics like separation and reattachment with a
long wake. As mentioned earlier, all the simulations are performed using OpenFOAM v1706. In the present
study, the ground truth is acquired from a simulation of the half cylinder using the k −ωSST model and the
state observer is applied to the Spallart-Allmaras model to try and replicate the former. When solved with
both these models, the solution showed quite noticeable differences in the flowfield thus providing grounds
for application of the state observer. The flow is solved at a Reynolds number based on cylinder diameter of
1000.

4.2.1. Computational setup
The computational domain is illustrated in figure 4.11. Sufficient distance is provided downstream of the
cylinder to prevent boundary effects from the outlet. The domain consists of 7 boundary patches: inlet,
outlet, top, ground , cylinder wall and sides. Even though the solution is performed in 2-D, OpenFOAM always
works with 3-D meshes by adding one cell in the third dimension, which cannot be seen in the illustration.
The outlet is placed at around 30D downstream of the cylinder, and both the top and the inlet are placed
around 15D away from the centre of the cylinder.

Figure 4.11: Computational domain for half cylinder.

Boundary and initial conditions
Boundary conditions are a very important part of a CFD simulation as they can influence the dynamics of
the partial differential equations. Therefore specifying appropriate boundary conditions is of extreme impor-
tance. The boundary conditions used in both simulations are shown in table 4.2. The Neumann boundary
condition has been used primarily at the outlet while the inlet has been assigned Dirichlet boundary condi-
tions. The units of pressure are m2/s2 because due to the incompressibility assumption, pressure is divided
by the density. The symmetry boundary condition acts like a wall with slip and the empty boundary condition
implies that the equations are not solved in that direction. Extra boundary conditions arise for specification

Variable Units Inlet Outlet Top Ground Side Cylinder Initial Field
p m2/s2 0 0 symmetry symmetry empty ∂p/∂n = 0 0
u m/s (1 0 0) ∂u/∂n = 0 symmetry symmetry empty no-slip (1 0 0)
ω 1/s 9 ∂ω/∂n = 0 symmetry symmetry empty Wall function 9
k m2/s 0.00135 gradient=0 symmetry symmetry empty 1E-10 0.00135
νt m2/s 15e-5 ∂νt /∂n = 0 symmetry symmetry empty 0 15e-5
EV ol m/s2 (0 0 0) (0 0 0) symmetry symmetry empty (0 0 0) (0 0 0)

Table 4.2: Boundary conditions for the simulations.

of turbulent properties. For all the properties, the formulas are taken from Stringer et al.[48] and Derksen [17]
and are shown below:

k = 3

2
(uI )2 (4.7)
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ω= ρk

µ
(
µt

µ
)
−1

(4.8)

kw all = 0 (4.9)

ωw all =
6µ

β1 y2
w all

(4.10)

Here, β = 0.075, u is the freestream velocity, I is the turbulent intensity, µt
µ is the turbulent viscosity ratio.

The turbulent intensity is chosen as 3% which corresponds to a medium-turbulence case, and the turbulent
viscosity ratio has been set to 15. For the turbulent kinetic energy at the wall, to avoid problems with the
solver it is set to 1E −10 instead of 0. Wall functions are used when the mesh is not completely resolved up
to the wall. (More details are provided in section 4.2.1). However, in this case, the mesh is resolved up to the
wall and low Re formulations for the wall functions which are available in OpenFOAM are used. Here, low Re
corresponds to the flow near the wall and not the general flow.

Discretization
The mesh is generated using ANSYS ICEM CFD v 16.0. Meshing is performed by dividing the domain into
blocks on which a structured grid was defined. Meshing affects all subsequent steps of a CFD process and
thus must be performed with care. For engineering interest, it is important to simulate what happens close to
walls of objects and areas directly downstream of them. The interface between a solid object and a fluid is of
utmost importance as it dictates the momentum exchange and the flow phenomena which in turn affects the
flow downstream. The size of the cells near the boundary is usually dictated by the non dimensional number
y+, which is given by:

y+ = yw all uτ
µ

(4.11)

uτ =
√
τw

ρ
(4.12)

Here uτ is the skin friction velocity. A universal boundary layer profile called the “law of the wall" dictates the
flow behaviour near the wall. This profile is divided into different regions namely, the viscous sublayer, the
buffer layer, the log layer and the outer layer(Bradshaw and Huang [7]). The viscous sublayer is the region
where y+ < 5. The buffer layer is the region < 5y+< 30. To completely simulate boundary layer flow and dy-
namics, it is essential to resolve the boundary layer well into the viscous sublayer. However, this can prove to
be too expensive in terms of computational cost due to the number of cells required to achieve this. Instead,
wall functions are used to approximate the velocity field close to the wall and the first cell should be placed
outside the buffer layer, typically in the log layer. For the half cylinder, since only a 2-D solution is required
and also to avoid approximation wherever possible, the mesh is resolved with a y+ ≈ 1. The total number of
cells in the domain is around 200000. The mesh is made fine in the wake region and all the transitions are
made smooth. The maximum aspect ratio is 3.16, average non-orthogonality is 10.14 degrees and maximum
skewness is 0.71. The final mesh is shown in figure 4.12.

(a) Domain divided into different blocks. (b) Near wall mesh

Figure 4.12: Mesh for half cylinder.

Discretization schemes
The discretization schemes used for converting the partial differential equations to algebraic equations are
shown in table 4.3. More information about each scheme can be found at the OpenFOAM 1 website

1https://cfd.direct/openfoam/user-guide/v6-fvschemes/

https://cfd.direct/openfoam/user-guide/v6-fvschemes/
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Term Scheme
Gradient Gauss linear

Divergence
u-Bounded Gauss linear
k-Bounded Gauss linear limited
ω- Bounded Gauss linear limited

Laplacian Gauss linear corrected
Interpolation linear
Surface normal gradients corrected

Table 4.3: Discretization schemes.

Solver settings
After discretization, the equations, which are now in a system of linear algebraic equations, have to be solved.
These are usually solved using iterative methods. The objective of solving in iterations is to reduce the equa-
tion residuals (which in simple terms is the error in the result). The smaller the residual is, the more accurate
the solution. Before solving an equation for a particular field, the initial residual is evaluated based on the
current values of the field. After each solver iteration the residual is re-evaluated. There are three ways in
which a solver can be stopped:

• The residual falls below a specified solver tolerance.

• The ratio of current to initial residuals falls below a relative tolerance.

• The number of iterations exceeds a set maximum number.

For the present study, all the tolerances have been specified as 1E-10, along with relaxation factors for velocity
of 0.9 and 0.8 for pressure. The maximum number of iterations allowed for each solver is 5000, except for the
baseline cases to generate the ground truth which were solved till convergence (tolerance of 1E-7). Since
such a low tolerance is set, for all the DA simulations, the iteration limit is reached. This is done to facilitate
analysis of the convergence characteristics.

4.2.2. Baseline results
To provide a means of comparing the effect of DA, simulations using the two aforementioned turbulence
models are performed and their differences noted. The contours of velocity magnitude provided by each
simulation is shown in figure 4.13 where the half cylinder is shown in white. From the figure, it can be seen
that the two cases produce different flowfields despite the fact that they were simulated on the same mesh
using same boundary and initial conditions (except for the turbulence properties). Furthermore, the k −
ω SST simulation shows some oscillations in the velocity near the cylinder and above the wake. Although the
exact reason for this could not be pinpointed, it could be a manifestation of the interaction of the turbulence
model with the mesh since it did not appear with the Spallart-Allmaras model. Furthermore, the objective
of applying DA was to understand if a CFD simulation can be driven to a result that is different than what
it would lead to if not forced, and not too much emphasis is placed on the physical feasibility of the forcing
solution. Thus, it was decided to use the solution provided by the k −ω SST as the ground truth. Comparing
the two velocity fields, it can be seen that the most prominent difference between the solutions is the larger
wake region in the k −ω SST model. Figure 4.14 shows the difference in the wake profiles of streamwise
velocity between the two simulations at 3D downstream of the half cylinder. These differences in the velocity
field are large enough to justify the application of DA and check if the resulting solution can approach the
ground truth velocity.
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(a) k −ω SST . (b) Spallart-Allmaras

Figure 4.13: Contours of velocity magnitude (m/s) for the two turbulence models.
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Figure 4.14: Streamwise velocity profile comparison in the wake 3D downstream of half cylinder.

4.2.3. Random forcing for half cylinder
Random forcing for the half cylinder is applied using the same strategy as shown in figure 3.3. As in the case
of the Burgers’ equation, the two parameters N and K are varied. However, due to constraints in time, only a
few values of K and N were selected. Table 4.4 shows the different runs that are conducted and whether the
runs converged or not. As the percentage of points increased along with the feedback gain, some simulations
started to diverge. Divergence can be caused by a lot of factors but for the DA, it is assumed that the stability
of the solution was compromised due to the high magnitude of forcing.

To evaluate the effectiveness of the DA, the same measure for error as defined in equation 4.6 is used but
with all the components of velocity. To ensure that the results are not biased by the spatial positions of the
random points, runs with lower percentage (1,5 %) are repeated 4 times and their average is considered. Fig-
ure 4.15 shows the rms error values for the different runs. It must be noted here that the magnitude of the rms
error is small when compared to that observed in the Burgers’ equation analysis and this is due to the fact
that in the majority of the domain, the differences in velocities are negligible and only in the wake regions
is where the velocities show appreciable differences. The black dotted lines in figure 4.15 represent the rms
error for an unforced simulated. That is, the rms error in velocity between the unforced Spallart-Allmaras and
the k −ω SST simulations.

The trend for the half cylinder resembles the trend for the analysis with Burgers’ equation. The error again
asymptotically approaches a value higher than 0. Another point worth noting is that even for a small percent-
age of points and a low feedback gain, the error reduces compared to the baseline case. Figure 4.16 shows
the contours of velocity magnitude of the flow around the half cylinder with DA compared to an unforced

N|K 2 5 10 15 20
1% 3 3 3 3 3
5% 3 3 3 3 3
10% 3 3 3 3 3
25% 3 3 3 3 7
50% 3 3 3 7 7

Table 4.4: Different runs for half cylinder DA. Tick mark indicates that the simulation converged.
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(a) rms error vs N for different K.
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Figure 4.15: rms error for different runs with DA.

solution and the ground truth. The results are shown for the case where N=50% and K=10. Figure 4.17 shows
the streamwise velocity profile comparison for both the unforced simulations and the DA assisted simula-
tion. Clearly, the velocity approaches the ground truth velocity, and also does not share the same problems
of oscillation as seen in the ground truth velocity. A point to note for the forcing in the 2D case as compared

(a) k −ω SST . (b) Spallart-Allmaras.

(c) DA (N=50%,K=10).

Figure 4.16: Contours of velocity magnitude (m/s) for original simulations and DA assisted simulation.
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Figure 4.17: Streamwise velocity profile comparison in the wake 3D downstream of half cylinder.

to the Burgers’ equation is that in this case, there are no smoothness problems in the velocity field that occur
due to forcing. This is due to the fact that in addition to solving the momentum equation which contains the
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forcing term, the continuity equation has to be satisfied and this is achieved by solving a pressure equation
(Patankar [34]). This places a constraint on the velocity field obtained from the momentum equation and
thus within the same iteration, the velocity field is recalculated in order to satisfy continuity and smoothness
is maintained. Also the freestream velocity for the case with DA is slightly higher than both the baseline cases
with a maximum difference of around 2% of the freestream velocity, although no particular reason for this
behavior could be determined.

4.2.4. Volume forcing for half cylinder
For volume forcing, similar to the Burgers’ analysis, two regions are chosen: upstream and downstream. Up-
stream in this case does not refer to the region directly upstream of the cylinder but includes the flow around
the cylinder and the wake. Figure 4.18 shows the two domain used for volume forcing. Both the domains are
chosen such that the total cell count approximately corresponded to N=25 % and because the mesh is much
finer near the cylinder, the downstream region appears much larger in volume. Both simulations are run with
K = 5 to ensure convergence. Figure 4.19 shows the contours of velocity magnitude of the two volume cases
compared to the original unforced simulations. Downstream forcing again is worse than upstream forcing as
was observed in the Burgers’ equation analysis. Also, the same slight increase in freestream velocity is again
observed in the case of upstream forcing. Figure 4.20 shows the difference between forcing upstream and
downstream by comparing velocity profiles at locations 1 and 2 which are marked in figure 4.18. Location 1 is
around 2D downstream while location 2 is around 15D downstream of the half cylinder. Figure 4.20a shows
the profiles at location 1 where upstream forcing is applied and figure 4.20b shows the profiles at location 2
which coincides with where the downstream forcing is applied. It is clear that in case of upstream forcing,
the region that is forced closely follows the ground truth and also follows a similar trend downstream, but in
case of downstream forcing, the profiles are farther away from the ground truth both in locations where it is
forced and not forced.

(a) Upstream forcing with location 1 marked as the black line. (b) Downstream forcing with location 2 marked as the black line.

Figure 4.18: Forcing domains for volume forcing

(a) k −ω SST . (b) Spallart-Allmaras.

(c) Upstream forcing. (d) Downstream forcing

Figure 4.19: Contours of velocity magnitude (m/s) for original simulations and DA assisted simulation.
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(a) Velocity profile comparison at location 1.
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(b) Velocity profile comparison at location 2.

Figure 4.20: Difference in wake velocity profiles for upstream and downstream forcing.

4.2.5. Convergence
Figure 4.21. shows the convergence characteristics for the DA compared to the baseline SA and the ground
truth simulation. The results are shown for the first 5000 iterations. The DA simulations show stable con-
vergence behaviour after the initial convergence. This stabilization occurs faster if the forcing is high as can
be seen in figure 4.21d where the velocity residuals stabilize after around 1000 iterations. The values of the
residuals remains in the same order as the baseline simulation.
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Figure 4.21: Contours of velocity magnitude (m/s) for original simulations and DA assisted simulation.

4.3. Conclusions
Both the 1-D and the 2-D analysis presented very similar behaviours after the application of DA. In summary:

• The reduction in error (measure of how the solution approaches the ground truth) asymptotically
reaches a value greater than zero for both parameters K and N.

• Forcing applied downstream, due to convection of the solution, cannot sufficiently affect upstream
regions whereas the converse is true.

• Forcing using the current method causes the solution to reach an “equilibrium" that lies between the
forcing solution and the original simulation without forcing.

• Excessive forcing, both in N and K can lead to stability issues.
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• The rate of convergence increases upon application of DA.

The present chapter dealt with the application of the state observer method in 1-D and 2-D. Before moving
on to a 3-D assessment using experimental data, the details of the experimental setup and data reduction are
covered in the next chapter.



5
Experimental setup and data reduction

Part of the novelty of the present work is the use of 3-D velocity field information for use in DA. The 3-D
velocity field information is procured by performing an experimental campaign of the flow around a car side
mirror model. This chapter presents the experimental set up and methodology used for obtaining the velocity
field around the model using robotic volumetric PIV. The first part of the chapter deals with the experimental
setup including the wind tunnel specifications, details of the model, specifications of the robotic PIV system
and the test conditions (section 5.1 and 5.2). The next part of the chapter, section 5.3 deals with the calibration
and the test methodologies and the final section (5.4) provides a description of the data reduction techniques.

5.1. Wind tunnel, test section and model
The experiments are conducted in the W-Tunnel of the High Speed Laboratory at TU Delft. The W-Tunnel is
a low speed open-circuit wind tunnel with nozzle exit areas that can be changed between 40 cm X 40 cm, 50
cm X 50 cm and 60 cm X 60 cm. The air flow is driven by a centrifugal fan powered my a motor, whose rota-
tion rate is adjustable and can result in a maximum velocity of 35 m/s for the 40 cm X 40 cm cross section for
which the minimum achievable turbulence intensity is reported to be 0.5 % ([1]). For the present study, the 60
cm X 60 cm nozzle exit section is used for which the maximum achievable velocity is approximately 15 m/s.
The velocity is manually adjusted by observing and setting the dynamic pressure obtained from a pitot-static
probe placed near the nozzle exit to the desired value. The final nozzle exit used results in a contraction ratio
of 4.

The test model is a simplified car side mirror geometry that is fixed onto a flat wooden plate. The model
consists of a quarter sphere of diameter 100 mm on top of a half cylinder. The engineering drawings of the
plate and the model are shown in figure 5.1. The model has 4 M6 holes drilled into it that attach onto the
middle set of holes drilled into the plate, which sets the flat side of the side mirror model 375 mm from the
leading edge of the plate. The plate is placed such that the leading edge is 120 mm inside the nozzle exit and
placed 100 mm above the floor of the nozzle exit to create a fresh boundary layer and avoid the wind tunnel
boundary layer. The model is in an open-jet and causes a blockage of approximately 4.2 %. The flatness of
the plate is ensured by using an anglemeter and ensuring that no part of the plate is inclined at more than 0.1
◦ to the base reference (ground). To further ensure that there is no leading edge separation, a tuft is probed
along the length of the leading edge and is seen to follow the flow. A tripping device is placed 50 mm from
the leading edge to promote a fully developed turbulent boundary layer near the model. The boundary layer
thickness δ99 is later calculated from PIV results to be 18 mm, 300 mm downstream of the leading edge when
the model is not present. Both the car side mirror and the flat plate are painted black to avoid reflections
while performing PIV. The final setup is shown in figure 5.2. Experiments are conducted using a single speed
of 12 m/s.

5.2. PIV setup
The robotic PIV system used for the present study comprises of two main components, namely the seeding
system, and the robotic PIV system which further comprises of the robot , the cameras and the illumination.
The following sections will discuss each component briefly.

43



44 5. Experimental setup and data reduction

(a) Flat plate dimensions in mm. (b) Side mirror model dimensions in mm.

Figure 5.1: Flat plate and model dimensions.

Figure 5.2: Setup of the experiment showing the model located at the wind tunnel exit, and the robotic PIV system.

5.2.1. Seeding system
Helium Filled Soap Bubbles (HFSB) are used as the tracer particle for the present study. These are bubbles
that are produced by mixing air, helium and soap in such a proportion that the bubbles become neutrally
buoyant . They are generated by small nozzles and the three constituents are supplied from a Fluid Supply
Unit 1 by LaVision. The FSU controls the supply of the three constituents by means of pressure in the supply
lines. For the present study all three constituents were maintained at 2 bar pressure. A total of 200 nozzles are
placed on an aerodynamic rake. The rake consists of ten parallel wings placed 50 mm apart and 1 m in total
height. Each wing contains 20 nozzles. The rake is placed in the settling chamber and is shown in figure 5.3.
Due the contraction, the final seeded streamtube is around 50 cm X 25 cm in cross section area.

The seeding concentration of tracer particles is an important parameter in PIV and is estimated following
Caridi et al.9[10].

CHF SB = Ṅ

V̇
= Ṅ

AU0
(5.1)

Here, Ṅ is the number of bubbles produced per second, V̇ is the volumetric flow rate, A is the seeded area
and U0 is the velocity in the settling chamber. The bubbles are estimated to be generated at a rate of 30,000
/s per nozzle (Faleiros et al.[20]). Assuming only 60 % of the nozzles to be working, the production rate is
Ṅ = 3.6 ·106 bubbles/s, giving a seeding concentration of 9.6 ·106 bubbles/m3 or 9.6 bubbles/cm3.

1Abbreviated as FSU
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Figure 5.3: Seeding rake.

5.2.2. Robotic PIV system
The robotic PIV system as introduced by Schneiders et al.[44] consists of a Coaxial Volumetric Velocity 2 probe
which houses four CMOS cameras along with an optical fibre for illumination, all of which are mounted on a
robot.

CVV probe
The velocity probe used is the LaVision MiniShaker Aero which consists of an oval shaped housing for reduc-
ing aerodynamic interference (Jux [28]). Along with the cameras and the optical fibre, it contains a fixture for
attaching onto the robot arm. The dimensions of the system (wxhxd) are 132x106x276 mm3. The different
parts of the system are shown in figure 5.4 and table 5.1 shows the specifications of the system used for the
experiments.

Figure 5.4: LaVision MiniShaker Aero CVV probe.

Illumination
The laser light is provided by a Quantronix Darwin Duo Nd:YLF high speed laser. The laser contains two
cavities and is capable of producing 25 m J of energy when operating at 1 kH z. The frequency can be adjusted
between 0.2 and 10 kH z and the light is emitted at λ= 527 nm , which is green colored light on the visible
spectrum. The light is routed to the CVV probe by means of an optical fibre which is connected to the laser
head. The light from the probe expands and takes the shape of a cone as shown in figure 5.5. Although the
light expands indefinitely, the portion shown in the figure represents the usable region of the light. The total
volume amounts to approximately 16 L.

2Abbreviated as CVV
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Symbol Specification Unit
Optics Focal length fi 4 [mm]

Numerical aperture (at z=400mm) f# 8 [−]
Imaging X tomographic aperture βx 8 [·]

Y tomographic aperture βy 4 [·]
Sensor size sx xsy 640 x 452 [px2]
Pixel pitch δpx 4.8 [µm]
Magnification M 0.01 [-]
Bit Depth b 10 [bit]
Acquisition frequency f 857 [Hz]

Table 5.1: Specifications for experiment.

Figure 5.5: Laser cone along with its dimensions.

Robot
The CVV probe is mounted on a Universal Robot-UR5 arm 3. The robot cobtains six joints, namely, Base,
Shoulder, Elbow, Wrist1, Wrist2 and Tool and has a maximum reach of 850mm along with six degrees of
freedom. The specified accuracy of the robot is ±0.01mm with a repeatability of ±0.1mm. The robot is
shown in figure 5.7a. The robot comes with a tablet used for its positioning and is also accessible through the
RoboDK software 4.

Figure 5.6: UR5 robot.

Apart from the components mentined above, an acquisition PC is used to synchronize and manage all the
components. The synchronization, storing and processing of data is achieved through LaVision Davis 10.05
software used along with a LaVision Programmable Timing Unit.

3https://www.universal-robots.com/products/ur5-robot/
4https://robodk.com/index

https://www.universal-robots.com/products/ur5-robot/
https://robodk.com/index
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5.3. Experimental procedures
Apart from setting up the different components of the experiment, procedures like calibration and the cre-
ation of a test matrix have to be followed. The following section describes the different experimental proce-
dures used.

5.3.1. System calibration
Geometric and Optical calibration
A geometric calibration using the pinhole model (Soloff et al. [47]) is used to triangulate three-dimensional
particles from two-dimensional projections captured by the cameras. A LaVision calibration plate as shown
in figure 5.7a is used and the plate is imaged at a distance of 400 mm from the camera lens plane at multiple
positions around the plate. The geometric calibration is followed by a volume self calibration (Wieneke [57])
on the previously obtained calibration in a freestream flow to further reduce the mapping errors. Finally, an
Optical Transfer Function 5 (Schanz et al. [42]) is obtained. The OTF is used for reprojection from 3-D space
to 2-D.

Robot Position Calibration
For all the experiments, the “origin" is considered to be at the base of the flat side of the side mirror model as
shown in figure 5.7b along with the coordinate reference frame. This reference frame is defined as the global
reference frame and all the data is defined using this frame. The position of the robot base is determined by
imaging (around 100 images) a black plate marked with white dots which is placed on the back of the side
mirror model and then using IPR to reconstruct the position of the dots. The average position of the dots is
then used to determine the exact position of the robot base from the global reference frame and is shown in
its final position in figure 5.7b. It must be noted that in the actual measurement campaign, the robot is placed
in two positions, one which is shown in figure 5.7b and the other position is the mirror image of this poisition
around the x-z plane. This is done to ensure complete measurement of the full volume around the model and
enhance measurements which may have been obscured by shadows when measuring from the first position.

(a) Calibration plate. (b) Robot position.

Figure 5.7: Calibration plate and position of robot with respect to the model.

5.3.2. Measurement Volume
In the previous study using a similar geometry (DeVilliers [16]) discusses the main flow features that can be
expected around a car side mirror model including the position of the reattachment point approximately 2.25
D downstream of the model. In the present study, which is conducted at a lower Reynolds number than that
of DeVilliers, it was decided that the measurement volume should include a region that extends up to 2.5 D
downstream of the model. In total, 15 overlapping sub-volumes are measured around the car side mirror,
with a larger overlap percentage in the wake region to form a total measured region of approximately 40L.
The measured volume is shown in figure 5.8.
A typical measurement run includes starting the wind tunnel, letting the flow stabilize, switching on the HFSB
seeder and using the live view option in DaVis to monitor the seeding concentration. Once the seeding is al-
lowed to stabilize and the seeding concentration looks nominal, the model is cleaned for contamination of
soap and the images are acquired. Once the images are obtained, the seeder is turned off and the images
are quickly inspected visually followed by moving the robot to the next position and then repeating the same

5Abbreviated as OTF
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Figure 5.8: Total measured volume along with dimensions.

procedure.

For each sub-volume, 20,000 images are acquired at 857 H z. The number of images acquired is large to
reduce the uncertainty in velocity in the wake region. The maximum standard deviation of velocity from the
mean in the wake region is observed at around 40%. For obtaining a velocity field, not all 20,000 images are
used at every point since some images might not have particles in them at a particular location. Rather, the
number of particles in the region over the entire imaging time is what is used to calculate the velocity field
through ensemble averaging (covered in section 5.4.3). For the wake region, the number of particles is ob-
served to be around 5000, therefore for a freestream velocity of 12 m/s the uncertainty in velocity with a 95 %
confidence level is εu= 0.14 m/s or a relative uncertainty of 1 %.

5.4. Data Reduction
Once the raw images from the experiment are obtained, they are subjected to a series of procedures to finally
obtain a velocity field. These include pre-processing, particle tracking and ensemble averaging.

5.4.1. Image pre-processing
Pre-processing techniques are applied on the raw images to enhance the quality of the images are reduce
any background noise that might be present due to reflection of the laser light from the model or parts of the
wind tunnel. For the present study, a Butterworth high pass filter (Sciacchitano and Scarano [45]) with a filter
length of seven images is used. The difference in the raw image and the image obtained after pre-processing
is shown in figure 5.9.There is a stark difference between the two images as the reflections from the model
and the background which are clearly seen in the raw image are removed in the filtered image.

(a) Raw image. (b) After application of Butterworth filter.

Figure 5.9: Image before and after pre-processing.

5.4.2. Particle Tracking
After pre-processing, the images are then subjected to the next step of processing that is particle detection
and tracking. Once the position of the particles is reconstructed from the images, they are processed with the
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Group Parameter Value Unit
Volume settings X min -230 [mm]

X max +250 [mm]
Y min -130 [mm]
Y max +180 [mm]
Z min 215 [mm]
Z max +600 [mm]

Particle detection
2D particle detection
intensity threshold

10 [counts]

Allowed triangulation error 1.5 [px]
Shaking Outer loop iterations 4 [-]

Inner loop iterations 4 [-]
Particle shaking 0.1 [vox]
Remove particles if closer than 15 [vox]
Weak intensity particle removal threshold 10 [%]

Particle image shape and intensity OTF size factor 0.5 [-]
Residuum OTF radius 1 [px]

Acceleration limits Maximum absolute particle shift 7 [vox]
Maximum relative particle shift 35 [%]

Tracking Minimum track length 4 [-]
Polynomial fit order 2 [-]

Velocity limits Vx -15 ± 38 [vox]
Vy 0 ± 20 [vox]
Vz 0 ± 20 [vox]

Table 5.2: Parameters for STB

STB algorithm in DaVis 10.05 which uses temporal information of the particles to construct particle tracks.
The algorithm contains different settings which can be optimized. The final settings are shown in table 5.2.
Interested readers are encouraged to go through the DaVis manual 6 for an understanding of what each pa-
rameter signifies.

6https://www.lavision.de/en/downloads/manuals/systems.php

https://www.lavision.de/en/downloads/manuals/systems.php
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5.4.3. Ensemble averaging
The velocities obtained after STB are particle tracks otherwise known as a Lagrangian description of the flow
as shown in figure 5.10a. However, it is often convenient to work with an Eulerian description, especially for
the purpose of the present study where the experimental data is interpolated onto a CFD grid. This operation
is performed by discretizing the domain into interrogation volumes, commonly referred to as bins, and then
averaging the data over these bins. Different methods of ensemble averaging are presented in Aguera et al.
[4]. For the purpose of the present study, a Gaussian filter is employed. A bin size of 15 mm has been chosen
as the final grid size based on making a trade-off between better spatial resolution and data convergence.
Better spatial resolution can be obtained by using smaller bin sizes but it comes at the cost of not having fully
converged data as smaller bin sizes mean lower number of particles. This tradeoff was made after evaluating
different bin sizes between 5 and 30 mm. Even though the spatial resolution is limited, the number of data
points on the grid is increased by using an overlap of 75 % between bins. This effectively provides a data point
every 3.75 mm. The grid points are shown in figure 5.10b.

(a) Example of the particle tracks obtained after STB.
(b) Top view of the experimental mesh around
the car side mirror.

Figure 5.10: Conversion from a lagrangian to an eulerian description of the flow.

After obtaining the velocity field, the final stage of the present work is to apply the experimental data as
ground truth for 3-D DA. The results from the experiments and the DA are provided in chapter 6.
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Once the data from the experiment has been processed and is represented on an eulerian grid, it can be used
for DA. This chapter firsts presents the experimental results and the important topological features that can
be observed in section 6.1, then a brief discussion of the numerical grid and boundary conditions for the 3-D
steady RANS around the side mirror model will be provided in section 6.2 followed by application of DA and
its results in section 6.3.

6.1. Flow topology of experimental results
Even though the experimental velocity obtained is ensemble averaged, it can be considered as the time aver-
aged flow due to the long measurement times for each cone (≈ 25s). Due to the geometry of the body (quarter
sphere on top of a half cylinder), there is vortex shedding observed in the wake of the side mirror across the
half cylinder region. Assuming a Strouhal number of 0.2 and considering the length scale to be the diameter
of the model, for a freestream velocity of 12 m/s the frequency of shedding is 24 H z meaning that for each
measurement around 620 cycles of shedding are captured thereby justifying the assumption of time-averaged
flow.

6.1.1. Velocity contours and streamlines
The time averaged streamwise velocity contours and streamlines for the flow are shown in figure 6.1. The flow
is from left to right and exhibits some key features.

• There is a large wake region behind the model which contains a distinct recirculation zone that is
bounded on all side by free shear layers.

• The reattachment point which is defined as the stagnation point of steamwise velocity in the Y=0 plane
at a height of the first grid point from the ground (Z/D=0.0375) is at a distance of X/D=2.4±0.0375.

• The flow is symmetric on either side of the mirror as is expected and can be seen from figure 6.1b.

6.1.2. Vortical structures
The time-averaged flow around the car side mirror exhibits many vortical structures and these are shown in
figures 6.2 as isosurfaces of streamwise vorticity in figures 6.2a and 6.2c and isosurfaces of spanwise vorticity
in figure 6.2b. Since the model is placed on a flat plate, the boundary layer that develops over the flat plate
is under the influence of an adverse pressure gradient from the model resulting in its roll-up and wrapping
around the model forming a distinct horseshoe vortex. The horseshoe vortex does not exhibit a significant
effect on the mean flow except to draw higher momentum fluid to the base. A secondary vortex is also visible
near the base of the model and is of opposite sign to the horseshoe vortex. Another prominent structure is a
pair of counter-rotating vortices and are referred to in the present study as tail vortices. Figure 6.2c shows that
the origin of these vortices coincides with the downwash in the recirculation region which is visible when the
streamlines from the top shear layer start to diverge. A vortex is formed at the foot of the model and below the
recirculation region and is shown in figure 6.2b and is further referred to as the base vortex. The main flow
features discussed bear resemblance to those found in [16]. However, no mention of the tail vortices found
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in the present study are found. Furthermore, the author also finds a secondary horseshoe vortex around the
base of the model which could not be resolved in the present study.

One of the objectives of the present study is to apply experimental data directly as it is obtained from the
experiment and not to apply any filters to reduce the divergence error in the data. Figure 2.1a shows the
divergence error at 0.1 H z around the model for the original data. This is the same data that is used for DA.

(a) Streamlines and velocity contours at Y/D=0. (b) Streamlines and velocity contours at Z/D=0.3.

(c) Velocity contours at X/D=0.5.

Figure 6.1: Streamwise velocity contours and streamlines of time-averaged flow around car side mirror. All dimensions are in mm.
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(a) Iso surfaces of streamwise vorticity at +85 Hz (orange) and -85
Hz(blue) displaying the different vortical structures around the model.

(b) Iso surfaces of spanwise vorticity at -100 Hz displaying the
different vortical structures around the model.

(c) Iso surfaces of streamwise vorticity along with 3-D streamlines. Side view of the model is
shown.

Figure 6.2: Vortical structures around model.

6.2. Computational setup for 3-D RANS
RANS simulations for the 3-D case are also performed using OpenFOAM v1706. The computational domain
used for the simulations is shown in figure 6.3. The origin for the domain has been considered as the middle of
the base of the flat surface of the side mirror to facilitate easy data comparison when used with experimental
data. The domain extends for 20 D downstream of the origin, 10 D upstream, 10 D on either side and 10 D
above the mirror. The domain consists of 7 boundary patches namely, inlet , outlet, ground, top, 2 sides and
the side mirror.

6.2.1. Boundary and initial conditions
The boundary and initial conditions used follow the same principles as in the 2-D half cylinder case covered
in section 4.2.1. However, in the 2-D half cylinder case, the ground is assigned a slip velocity. In the 3-D case,
the ground is assigned as a no-slip wall to replicate the conditions experienced in the experiment. The inlet
velocity is assigned a uniform velocity and no profile is specified. The k−omeg a SST model has been used for
all the simulations. Additionally, a new field variable called U Av g is defined that computes the average of the
velocity field for every iteration after stabilization of the solution which is specified by starting the averaging
after a set number of iterations have progressed. Averaging is required since the side mirror exhibits unsteady
behavior that resembles vortex shedding. Table 6.1 shows the different boundary and initial conditions used
in the 3-D simulations.

6.2.2. Discretization
Discretization or meshing of the domain is done by dividing the domain into different blocks that grow in
size starting from the side mirror to the boundaries of the domain. The different blocks are assigned different
element sizes and the jump between blocks is made smooth. The mesh is made finest near in the block closest
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Variable Units Inlet Outlet Top Ground Sides Side mirror Initial Field
p m2/s2 0 0 symmetry symmetry symmetry ∂p/∂n = 0 0
u m/s (12 0 0) ∂u/∂n = 0 symmetry no-slip symmetry no-slip (12 0 0)
ω 1/s 1.8 ∂ω/∂n = 0 symmetry symmetry symmetry Wall function 1.8
k m2/s 0.086 gradient=0 symmetry symmetry symmetry 1E-10 0.086
EV ol m/s2 (0 0 0) (0 0 0) symmetry symmetry symmetry (0 0 0) (0 0 0)

Table 6.1: Boundary conditions for 3-D case.

Figure 6.3: Computational domain for 3-D simulations.

to the side mirror and subsequently increased in coarseness. The element size of the smallest mesh is around
3 mm 1. This roughly corresponds to the same spatial resolution of the experimental mesh and ensures
minimal errors when interpolating experimental data onto the CFD grid. Furthermore, this mesh was able
to provide converged results in a baseline simulation of the side mirror where no forcing was applied, thus
proving its suitability for DA. The total number of elements in the domain is ≈ 3.5 million. The maximum
aspect ratio is 470, average non-orthogonality is 2.5 degrees and maximum skewness is 2.53. The final mesh
is shown in figure 6.4 and its comparison to the experimental mesh is shown in figure 6.5. In the present
study, no analysis has been made on the effect of the grid size on the working of DA and only the mesh shown
has been used for all simulations.

Figure 6.4: Computational Mesh shown in two planes.

6.2.3. Solver settings
For all the simulations performed, the k − omeg a SST model has been used. The required tolerance for
convergence has been specified as 1E-8 for all variables and relaxation factors of 0.9 for velocity and 0.8 for

1This does not include the prism layers added near the walls
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(a) Experimental mesh. (b) Computational mesh near side mirror.

Figure 6.5: Comparison of experimental and computational meshes.

pressure. The low tolerance ensures that the simulation does not converge before the iteration limit, which is
set to 5000, is reached thereby ensuring all simulations run for the same number of iterations, making their
convergence analysis easier. The velocity field is averaged for every iteration starting from 3000.

6.3. Random forcing for side mirror
Random forcing for the side mirror case is different from the Burgers equation and the half cylinder case in
that those two cases had the possibility of generating u∗ for the entire domain. However, for the side mirror
case, the u∗ can only be generated in the volume where data from the experiment is available. The compar-
ison of the domain size for the computational grid and the domain where experimental data is available os
shown in figure 6.6a where the blue box indicates the region available from experimental data. If all the exper-
imental data is interpolated onto the CFD grid around 32 % of the total number of cells in the domain contain
u∗. For random forcing, the same two parameters ,N and K , are varied and their effects studied. However,
as mentioned, here N=100 % corresponds to only 32 % of the total mesh and is shown in figure 6.6b. Figure
6.5 shows a key difference between the experimental and computational grid. In the computational grid, the
mesh near the boundary is refined to capture boundary layer effects while it remains the same as the other
parts of the domain in the experimental grid. The experimental results are not resolved enough to capture the
velocity profiles near the boundary layer and ensemble averaging over bin sizes that are large compared to
the boundary layer thickness, smoothens gradients. CFD on the other hand needs to have a good estimate of
the boundary layer profile and using experimental data which is not resolved enough near boundaries as u∗
causes divergence of the solution. Thus for all the CFD simulations, a buffer layer of 1.5 cm from all no-slip
wall boundaries and 2 cm from the ground is provided where forcing is not applied. The different cases that
are simulated are shown in table 6.2. In addition to the different cases that are run, a baseline simulation is
run where no forcing is applied.
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(a) Experimental domain (blue) compared to computational domain. (b) N=100 % interpolated onto the CFD grid.

Figure 6.6: Comparison of experimental and computational domains.

N|K 10 20 30 50
15% 3 3 3 3
30% 3 3 3 3
45% 3 3 3 3
60% 3 3 3 3
100% 3 3 3 3

Table 6.2: Different runs for DA on side mirror. Tick mark indicates that the simulation converged.

6.3.1. Comparison of topological features- A qualitative assessment
Qualitative analysis of the DA is performed for the case with the highest forcing (N=100 %, K=50). The stream-
wise velocity contours for the case with DA, the baseline case and the PIV results are shown in figures 6.7,6.8
and 6.9. When no forcing is applied (baseline simulation), there are significant differences between the exper-
imental result and the simulation, especially in the wake region. In the baseline simulation, the wake region
is longer, with the reattachment point at X/D=3.07 ± 0.0375, differing by almost 28 % from the experimental
value. The wake is more elongated and shaped differently than the experimental wake as seen from an iso-
surface plot of zero velocity in figure 6.10. In general, the wake of the baseline case is more V-shaped while
that of the experiment is oval. When forcing is applied, the simulation starts emulating the experimental ve-
locity although there are still noticeable differences. With the highest forcing, the reattachment point is at
X/D= 2.7 ± 0.0375 downstream, constituting a reduction in error in position of the reattachment point from
28 % to 12.5 % from the experimental value. The shape of the wake also changes from the V-shape and comes
closer the shape exhibited by the experimental results.

A comparison of the vortical structures are shown in figure 6.11. Both the baseline and the DA simulation
produce horseshoe vortices that are farther away from the model than the experimental data. While the core
of the horseshoe vortex is around 1 D away from the centreline of the model on each side for the experimental
data, it is around 1.3 D away from the model for the baseline case and does not change significantly in posi-
tion or structure in the DA simulation. The main differences occur in the secondary and the tail vortices. The
secondary vortex for the DA resembles that of the experiment in structure. It should be noted here that the
actual magnitudes of vorticity are not compared since vortex cores, particularly in the present study are small
regions of high velocity gradients and the relatively large bin size and the gaussian filter used for ensemble av-
eraging smoothens gradients. The tail vortex in the baseline case moves outbound with respect to the median
Y/D=0 plane as it propogates downstream. The DA simulation however exhibits a structure similar to that of
the experiment where the tail vortex propgates dowstream while also moving towards the ground. A notice-
able difference occurs further downstream where in the experiment, the tail vortex seems to start interacting
with the horseshoe vortex and in the DA simulation, a different structure arises where another vortex with
the same orientation of the horseshoe and the tail vortex appears under the tail vortex and merges with the
tail vortex downstream. Another difference between the DA simulation and the experimental result shows
the tail vortices moving closer towards each other in the simulation while this effect though present, is not as
pronounced in the experimental results This is also seen in figure 6.12.
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(a) DA simulation (K=50,N=100 %). (b) Baseline CFD simulation with no forcing.

(c) Ground truth u∗

Figure 6.7: Comparison of streamwise velocity profiles at Y/D=0. All dimensions are in mm.

(a) DA simulation (K=50,N=100 %). (b) Baseline CFD simulation with no forcing.

(c) Ground truth u∗

Figure 6.8: Comparison of streamwise velocity profiles at Z/D=0.3. All dimensions are in mm.
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(a) DA simulation (K=50,N=100 %). (b) Baseline CFD simulation with no forcing.

(c) Ground truth u∗.

Figure 6.9: Comparison of streamwise velocity profiles at X/D=0.5. All dimensions are in mm.

(a) DA simulation (K=50,N=100 %). (b) Baseline CFD simulation with no forcing.

(c) Ground truth u∗

Figure 6.10: Iso-surfaces of zero streamwise velocity.
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(a) DA simulation (K=50,N=100 %). (b) Baseline CFD simulation with no forcing.

(c) Ground truth u∗

Figure 6.11: Iso-surfaces of streamwise vorticity at +85 Hz (orange) and -85 Hz(blue) around model.

(a) DA simulation (K=50,N=100 %) (b) Baseline CFD simulation with no forcing.

(c) Ground truth u∗

Figure 6.12: Iso-contours of streamwise vorticity at X/D=1.8.
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It comes as no surprise that the horseshoe vortices are not affected by the DA. Since the DA is not applied at a
height below 2 cm, where the horseshoe vortices exist (see figure 6.12), the velocity field in those regions does
not conform to what the experimental results show. Figure 6.13 shows the difference in velocity u∗−uD A and
u∗−uC F D for two different Z locations. The first (figures 6.13a and 6.13b) are taken at Z=17 mm which is a
region where forcing is not applied, and the second (figures 6.13c and 6.13d) are taken at Z=24 mm which is
just above where the forcing starts. At the first height, the error in velocity for both the DA and the baseline
case is approximately the same while in the second location, the error in DA is significantly lower than that of
the baseline case. All the figures for DA are plotted for the case of N=100 % and K=50. The base vortex as well
is not replicated due to its proximity to the boundary.

-50 0 50 100 150 200 250

X

-100

-50

0

50

100

Y

-2 -1 0 1 2 3 4 5

(a) CFD Z=17 mm

-50 0 50 100 150 200 250

X

-100

-50

0

50

100

Y

-2 -1 0 1 2 3 4 5

(b) DA Z=17mm

-50 0 50 100 150 200 250

X

-100

-50

0

50

100

Y

-2 -1 0 1 2 3 4 5

(c) CFD Z=24 mm

-50 0 50 100 150 200 250

X

-100

-50

0

50

100

Y

-2 -1 0 1 2 3 4 5

(d) DA Z=24 mm

Figure 6.13: Contour plot of error in streamwise velocity (m/s) for two different heights comparing baseline CFD and DA (K=50,N=100
%).

Figure 6.14 shows the rms error in velocity for different values of N and K. The error shows similar behaviour
to the 1-D and 2-D cases. Here the rms error is defined in the same way as equation 4.6 but with ur e f = 12m/s
and considering all three components of velocity. The error asymptotically reduces to a value above zero er-
ror and even the simulation with the least forcing reduced the error in velocity as compared to the baseline
case, which is shown as the dotted black line.

6.4. Comparison of wake profiles

The performance of varying the different parameters of the DA is assessed by analyzing the wake profiles at
a distance of 0.25 X/D downstream and a height of 0.5 Z/D from the ground. The results from the differ-
ent parameters are shown in figure 6.15 and are shown only for one side (Y/D=0 to Y/D=1) as the other side is
symmetric. The profiles are shown for three cases of N(15,45 and 100 %) for the sake of clarity, but the remain-
ing profiles also follow the same trend. From the profiles it can be seen that the DA simulations approach the
PIV velocity. Increasing the values of either of the parameters brings the profile closer to the experimental
result.
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Figure 6.14: RMS error for different values of N and K for the 3-D case. The back dotted line represents the rms error for the baseline
case.
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Figure 6.15: Wake streamwise velociyty profiles for different values of N and K. Each individual plot is for a single K.

6.5. Convergence analysis
Forcing affects the convergence characteristics of the DA simulations. All the simulations are run for 5000
iterations. An example of the convergence plots for a few of the simulations are shown in figure 6.16. In the
baseline simulation, it takes around 1300 iterations for the solution to stabilize and even then, the residuals
for spanwise velocity and pressure are quite high. As the forcing increases, the time taken for the solution to
stabilize reduces and the value of the residuals also drop. Between the baseline simulation and the one with
the highest forcing, the residuals drop by almost two orders of magnitude. The oscillation of the residuals
also decreases with increased forcing.

6.6. Conclusions
The DA has succesfully been implemented onto a 3-D case using experimental data despite the ground truth
comprising velocity that is not divergence free. It is seen that with sufficiently high forcing, the velocity in
the CFD simulations approaches that of the ground truth and in the process is able to better recreate with
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Figure 6.16: Residual plots for different simulations.

reasonable accuracy, some of the topological features of the experimental result as compared to a simulation
without forcing. Furthermore, forcing helps converge the solution faster and also decreases the residuals as
compared to a simulation with no forcing.



7
Conclusions and Recommendations

In this chapter, a brief summary of the motivation for the project, the methodology applied and the results
obtained are provided followed by some recommendations for future work.

7.1. Conclusions
The integration of computational and experimental fluid dynamics is a subject that is widely researched for
its promise of compensating mutual weaknesses in both domains by leveraging their individual advantages.
Out of the many methods of DA outlined in section 2.2, the state observer method is the simplest in terms
of implementation and computational cost but has not been studied in great detail. Previous studies of the
state observer method have not followed a consistent approach to forcing techniques and have applied the
method only on simplified 2-D models (Nisugi et al. [33],Suzuki et al. [51]) or in cases where it has been
applied on 3-D, the ground truth velocities have been taken from other numerical experiments (Hayase and
Hayashi [23], Imagawa and Hayase [26]). Furthermore, they have all only applied the method for unsteady
flows. The present work has applied the state observer method for a time averaged flow around a 3-D bluff
body and simulations have been performed using a steady RANS solver. Particular attention has been paid
to the method in which the forcing term is implemented into the governing equations and how the forcing is
applied on the entire control volume. The main research objective as stated previously is:

Development and assessment of a state-observer based data assimilation method for steady
Reynolds averaged Navier-Stokes simulation using a complex 3-dimensional flow around a bluff

body as a test case.

To fulfill this objective, the present work has been carried out in different steps. First, the equations used for
the method and its implementation are discussed in chapter 3. The method works on the principle of pro-
portional feedback in the momentum equation. In terms of implementation, two different methodologies for
forcing are used. The first is random forcing, where points in the control volume are chosen randomly and
forcing is applied only at those points and the second method is volume forcing, where a complete region of
the domain is forced. All simulations are performed using the open source CFD solver OpenFOAM v1706.

Chapter 4 deals with the application of the state observer method to 1-D and 2-D cases. From the 1-D case
(the viscous Burgers equation), an understanding of the physical mechanisms involved while forcing are gar-
nered and the effect of forcing at different control volumes (N) and strength of feedback term (K) are studied.
The same analysis is carried out for the 2-D case (steady flow over a half cylinder). Both analysis showed that
the error as both N and K are varied reduced asymptotically and there is always a residual error even when
the full domain is forced at the highest forcing possible to maintain stability of the solution. The rate of con-
vergence increased for both the 1-D and 2-D cases.

To apply the method to 3-D steady flows, an experiment was conducted in a wind tunnel to capture the time
averaged flow over a simplified car side mirror model using the robotic volumetric velocimetry technique
with HFSB as tracer particles. The velocities are averaged onto a grid which has a grid size of 3.75 mm. Key
topological features from the experiment including the location of the reattachment point and the different
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vortical structures over the body are observed. DA is then applied using the random forcing method onto a
3-D computational grid. Despite the experimental data not being divergence free, application of the method
did not result in any divergence or issues in continuity. The resultant velocity fields are forced to satisfy diver-
gence and also approach the velocity fields specified by the experiment. A very similar behaviour to the 1-D
and 2-D cases in terms of reduction in error is observed as both N and K are increased. Also, the main topo-
logical features were better represented when DA was applied as opposed to a baseline case where no forcing
was applied. The error in position of the reattachment point was reduced by more than 50 %. The horseshoe
vortices found from the experiment were not replicated in DA due to the fact that forcing was not applied
close to the walls which is where the horseshoe vortices exist. The shape of the wake and the tail vortices
were able to approach the structures found in the experiment. The 3-D simulation converged successfully for
all values of K applied and no stability issues arose predominantly due to the fact that the experimental data
existed only in a small region of the entire computational domain. Applying DA also showed better conver-
gence characteristics both in terms of the value of the residual and the rate of convergence.

Overall, the working mechanisms of the state observer based technique were understood and it was suc-
cessfully applied to three different cases which all showed successful reduction in error when forcing using a
ground truth were applied. The main topological features from the experiment were replicated with reason-
able accuracy wherever forcing was applied.

7.2. Recommendations
On conclusion of the present work, many avenues of improvement can be investigated. First, an extension of
the method by adding an integral term to the present construction of the feedback term can be studied. With
only a proportional term, the solution attempts to reach an equilibrium of sorts between its original solution
and the ground truth and as the error decreases, the magnitude of the forcing term decreases. Furthermore,
to reduce the error to a minimum, the forcing term and the number of forcing points should be increased to
their maximum possible value, creating issues of stability. An integral term, like in a PID controller, would
ensure that the magnitude of the forcing term does not decrease as the solution progresses, and also reduce
the risk of going into stability issues as the forcing term gradually builds up to its maximum value. This would
also permit the use of even fewer points to achieve the same reduction in error as compared to a proportional
term.

In engineering applications, fluid interaction with a surface influences development of the flow. Capturing of
velocity near no-slip boundaries can improve the results of DA significantly. However, resolution of the flow
up to the wall is a challenge in PIV and could increase the complexity of the experiment. A possible solution
is the use of pressure taps on a model to get information at the boundary and using that as an input for DA.

While this method has proven to improve both numerical and experimental data, it can still be a cumber-
some task to perform experiments using a complex setup and then perform simulations. However, this work
lays the foundation for the application of the steady state observer method in the hope that further improve-
ments in the method will lead to the point where minimal information from an experiment can be used to
generate accurate flowfield information in large domain domains using minimal computational effort.
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Appendix A

This appendix contains the code used in the file main.C which contains the implementation of the state
observer. This file calls the other requisite functions to run the SIMPLE solver. The main code also calls the
header files UAvg.H and DataAssimilationConstantReader.H which contain the code for calculating the field
average of velocity and the different constants used throughout the different files respectively. The main code
calculates the forcing term EVol which is added to the momentum predictor (sectionA.2).

A.1. Main Code

/ *−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
========= |
\ \ / F i e l d | OpenFOAM: The Open Source CFD Toolbox

\ \ / O peration |
\ \ / A nd | Copyright (C) 2011−2016 OpenFOAM Foundation

\ \ / M anipulation |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
License

This f i l e i s part of OpenFOAM.

OpenFOAM i s f r e e software : you can r e d i s t r i b u t e i t and / or modify i t
under the terms of the GNU General Public License as published by
the Free Software Foundation , e i t h e r version 3 of the License , or
( at your option ) any l a t e r version .

OpenFOAM i s d i s t r i b u t e d in the hope that i t w i l l be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
f o r more d e t a i l s .

You should have received a copy of the GNU General Public License
along with OpenFOAM. I f not , see <http : / /www. gnu . org / l i c e n s e s / > .

Application
DasimpleFoam

Group
grpIncompressibleSolvers

Description
Steady−s t a t e s o l v e r f o r incompressible flows with turbulence modelling .
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\ heading Solver d e t a i l s
The s o l v e r uses the SIMPLE algorithm to s ol ve the continuity equation :

\ f [
\ div \ vec {U} = 0

\ f ]

and momentum equation :

\ f [
\ div \ l e f t ( \ vec {U} \ vec {U} \ r i g h t ) − \ div \ gvec {R}

= − \ grad p + \ vec { S }_U
\ f ]

Where :
\ vartable

\ vec {U} | V e l o c i t y
p | Pressure
\ vec {R} | S t r e s s tensor
\ vec { S }_U | Momentum source

\ endvartable

\ heading Required f i e l d s
\ plaintable

U | V e l o c i t y [m/ s ]
p | Kinematic pressure , p / rho [m2/ s2 ]
\< turbulence f i e l d s \> | As required by user s e l e c t i o n

\ endplaintable

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

#include "fvCFD .H"
#include " singlePhaseTransportModel .H"
#include " turbulentTransportModel .H"
#include " simpleControl .H"
#include " fvOptions .H"
#include " wallDist .H"

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

int main( int argc , char * argv [ ] )
{

#include " postProcess .H"

#include " setRootCase .H"
#include " createTime .H"
#include "createMesh .H"
#include " createControl .H"
#include " createFields .H"
#include " createFvOptions .H"
#include " initContinuityErrs .H"

turbulence−>v a l i d at e ( ) ;

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
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dimensionedScalar onemeter
(
"onemeter" ,
dimensionSet ( 0 , 1 , 0 , 0 , 0 , 0 , 0 ) ,
s c a l a r ( 1 . 0 )
) ;

Info << " \ nStarting time loop\n" << endl ;
y = wallDist (mesh ) . y ( ) ;

/ / Reading the DataAssimilation constants
#include " dataAssimilationConstantReader .H"

while ( simple . loop ( ) )
{

Info << "Time = " << runTime . timeName ( ) << nl << endl ;

/ / Reading the DataAssimilation constants
#include " dataAssimilationConstantReader .H"
i f ( runTime . value () > s t a r t I t e r A v g _ )
{
#include "UAverage .H"
}

i f ( runTime . value () > s t a r t I t e r _ )
{

/ / Calculation of the v e l o c i t y d i f f e r e c e E
E = ( UStar − U) *mag( UStar−U) ;

/ / Calculation of the d i f f e r e n t i a l term
f o r A l l ( EVol , c e l l I )
{

i f ( ( UStar [ c e l l I ] . component( 0 ) == 0 . 0 ) | | ( y [ c e l l I ] < wallDist_ ) )
{

EVol [ c e l l I ] . component( 0 ) = 0 ;
EVol [ c e l l I ] . component( 1 ) = 0 ;
EVol [ c e l l I ] . component( 2 ) = 0 ;

}
else
{

EVol [ c e l l I ] . component( 0 ) = kDADiff_/onemeter . value ( ) * E[ c e l l I ] . component ( 0 ) ;
EVol [ c e l l I ] . component( 1 ) = kDADiff_/onemeter . value ( ) * E[ c e l l I ] . component ( 1 ) ;
EVol [ c e l l I ] . component( 2 ) = kDADiff_/onemeter . value ( ) * E[ c e l l I ] . component ( 2 ) ;

}
}

}
/ / −−− Pressure−v e l o c i t y SIMPLE c o r r e c t o r
{

#include "DaUEqn.H"
#include "pEqn .H"

}
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laminarTransport . correct ( ) ;
turbulence−>correct ( ) ;

runTime . write ( ) ;

Info << "ExecutionTime = " << runTime . elapsedCpuTime ( ) << " s "
<< " ClockTime = " << runTime . elapsedClockTime ( ) << " s "
<< nl << endl ;

}

Info << "End\n" << endl ;

return 0 ;
}

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

A.2. Momentum Predictor
The main function calls upon the momentum predictor DaUEqn.H which is where the EVol term is added to
the momentum equation. This is given below:

/ / Momentum predictor

MRF. correctBoundaryVelocity (U) ;

tmp<fvVectorMatrix > tUEqn
(

fvm : : div ( phi , U)
+ MRF.DDt(U)
+ turbulence−>divDevReff (U)

==
fvOptions (U)

) ;
fvVectorMatrix& UEqn = tUEqn . r e f ( ) ;

UEqn. r e l a x ( ) ;

fvOptions . constrain (UEqn ) ;

i f ( simple . momentumPredictor ( ) )
{

solve (UEqn == −fvc : : grad (p) + EVol ) ;

fvOptions . correct (U) ;
}
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