
Musical
NAO
Instrument Playing Humanoid
Using Monocular Vision
Ioannis
Papakonstantinopoulos

Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft

Musical NAO

Ioannis
Papakonstantinopoulos

Musical NAO
by

Ioannis
Papakonstantinopoulos

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday November 28, 2018 at 9:00 AM.

Student number: 4631838
Project duration: January 1, 2018 – November 28, 2018
Thesis committee: Dr. K. Hindriks, TU Delft, supervisor

Dr. J. Broekens, TU Delft
Dr. J. A. Mora, TU Delft

This thesis is confidential and cannot be made public until November 30, 2018.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This thesis is a culmination of my two years as a computer science student at the Delft University of Tech-
nology. Throughout my ten-month work, in Interactive Intelligence group, I developed my knowledge about
robotics. This work would not have been possible without the advice and support of many people. First and
foremost, I would like to express my sincere gratitude to my supervisor Dr. Koen Hindriks, for keeping me
motivated in a thesis topic related to robotics and specifically humanoids. Without his guidance and feed-
back, I would not have gained as much insight and my research would not have taken shape. I am deeply
grateful to him also for getting me in touch with Museum Speelklok in Utrecht where my work was used. That
was an extra stimulus which kept me motivated until the completion of my work. Furthermore, I would like
to thank Ruud de Jong for helping me out on managing resources for the experiments and for his patience on
encountering technical issues with the robots.

All gratitude is also uttered to all participants who were willing to join the experiment. Your time and
feedback are really appreciated and useful to make the study happened. I thank my fellow student Maria
Gatou for providing me with unfailing support and continuous encouragement throughout my two years of
study and through the process of researching and writing this thesis. I would like to say thank you to my
friends Alexandros Kouris and Ioannis Tsenempis for some nice brainstorming discussions about robotics,
which helped me to take decisions during my research.

Lastly, I would like to thank my family: my parents and to my brothers for supporting me spiritually
throughout my years of study and through the process of researching and writing this thesis.

Ioannis
Papakonstantinopoulos

Delft, January 2013

iii

Abstract

Humanoid robots are becoming part of modern societies mainly involving the education and entertainment
fields. Therefore, providing techniques that enable a humanoid to autonomously play instruments like the
metallophone we enrich its usefulness.

In this work we present an approach for making humanoid robot NAO play the metallophone. Specifically,
we provide an application which can be used by everyone owned a NAO robot. In our approach, no markers
are necessary to be attached on the robot, making the procedure of playing music, seems natural. We propose
an efficient real-time approach for recognizing and estimate the metallophone in 3D space using a single
camera. Our vision approach performs well in camera displacements, illumination and aspect changes.

For accurate playing, the robot automatically validates the computed IK configurations based on a vision-
based robot control approach and adapts its arm configurations if it is necessary. To achieve this, we rely on
the estimated pose of the musical instrument and the detection of the beaters in 2D, based on natural features
and then we apply inverse kinematics. Concerning kinematics, we use singularity-robust approach by pre-
computing forward kinematics which are used to efficiently solve inverse kinematics (IK) problems.

In our approach we limited on moving only NAO’s arms for playing the metallophone. Therefore, we
developed a human-robot interaction phase in which the robot uses its perception about the position of
the instrument in 3D space and it guides a human in order to place it in a reachable for the robot position.
Moreover, in our system we provide a simple way to add songs, which NAO can immediately play.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Problem Definition . 1

1.1.1 Vision-Based position estimation of the musical instrument. 2
1.1.2 Inverse Kinematics for playing the metallophone . 3
1.1.3 Low precision in NAO’s actuators . 3

1.2 Research Objective . 3
1.2.1 Research Questions . 3

1.3 Contribution . 5
1.4 Outline . 5

2 Background 7
2.1 Instrument Playing Humanoid NAO . 7
2.2 Model-Based Object Pose Estimation . 7

2.2.1 Mathematical Model . 8
2.2.2 Estimating the External Parameters Matrix. 9
2.2.3 The Perspective-n-Point (PnP) Problem . 11
2.2.4 Monocular 6-DOF Pose Estimation . 11
2.2.5 Overview of model-based pose estimation from natural features implementations on

NAO robot . 12
2.2.6 NAO’s Vision Hardware . 12

2.3 Robot Kinematics . 13
2.3.1 NAO Kinematics . 14
2.3.2 Forward Kinematics . 18
2.3.3 Inverse Kinematics. 18
2.3.4 Affine Transformations. 18
2.3.5 Denavit-Hartenberg (DH) Parameters . 20
2.3.6 Overview of Kinematics applied on NAO. 20

2.4 Vision-Based Control . 21
2.4.1 Overview of Visual-Servoing methods applied on NAO 22

3 Instrument Playing NAO 23
3.1 Pose estimation using NAO’s Monocular Vision . 23

3.1.1 Key-Frames Model Acquisition. 23
3.1.2 Image Processing . 24
3.1.3 Real time 2D Image Matching based on Image Features 25
3.1.4 3D Pose Estimation . 27

3.2 NAO Kinematics . 28
3.2.1 Forward Kinematics . 28
3.2.2 Inverse Kinematics. 30
3.2.3 Offline Calculation of Inverse Kinematics Based on Reachability Analysis 30

3.3 Monocular Vision Based Control . 31
3.3.1 Visual-servoing approach . 31
3.3.2 Technical implementation . 33

3.4 Real-Time Application for playing the metallophone . 33

vii

viii Contents

4 Evaluating the robustness of our approach 35
4.1 Tracking the musical instrument in different light conditions 35

4.1.1 Experimental setup . 35
4.1.2 Measures. 35
4.1.3 Results . 35

4.2 Transferability of our software to different robots - differences between robots’ motors. 36
4.2.1 Experimental setup . 36
4.2.2 Measures. 36
4.2.3 Results . 36

4.3 Robustness against inaccurate grasping of the beater . 37
4.3.1 Experimental setup . 37
4.3.2 Measures. 37
4.3.3 Results . 38

4.4 Final evaluation with Human-robot interaction. 38
4.4.1 Experimental Setup . 38
4.4.2 Measures. 38
4.4.3 Results . 38

5 Discussions and Conclusions 41
5.1 Findings . 41

5.1.1 Pose estimation based on key-points. 41
5.1.2 Pre-Calculation of Inverse Kinematics . 41
5.1.3 Visual-Servoing Based on 3D Pose estimation and 2D Image Detection 41
5.1.4 Human Assistance for Placing the metallophone and the beaters 41

5.2 Limitations and Future Research . 42
5.3 Conclusion . 42

A Instructions for preparing themetallophone (speech and visual cues) 45
B Post-experiment questionnaire 47
Bibliography 49

List of Figures

1.1 Humanoid NAO playing the metallophone . 2
1.2 The metallophone used for this project . 2

2.1 Pinhole Camera Model [4] . 8
2.2 Calibration procedure of NAO’s camera . 9
2.3 Cameras’ position on NAO . 13
2.4 Example of revolute and prismatic joints . 14
2.5 A schematic representation of forward and inverse kinematics. 14
2.6 NAO’s hardware lengths . 15
2.7 Lengths of NAO’s Parts . 16
2.8 NAO’s arm lengths . 17
2.9 NAO’s left and right arm joints . 17
2.10 Denavit-Hartenberg parameters: d, θ, a, α (from www.tekkotsu.org) 21
2.11 Closed–loop control . 21

3.1 Four points used for the 2D-3D correspondences . 24
3.2 The edge A considered as a strong edge since it is above the maxVal and even if the edge C is be-

low maxVal, it is connected to edge A, thus edge C is also considered as valid edge and we get that
full curve. Edge B is above the minVal but it is not connected to any strong edge, thus, it is dis-
carded. OpenCV documentation (https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html). 25

3.3 Image processing steps . 26
3.4 Image returned from NAO’s bottom camera . 26
3.5 Matching key-frame (left) with current image (right) . 27
3.6 Connection between the coordinate systems . 28
3.7 Five 3D points on the metallophone . 28
3.8 Kinematic chain of NAO’s left arm . 31
3.9 Kinematic chain of NAO’s right arm . 32
3.10 Vision-Based Control . 33
3.11 Overview of the proposed system. 33

4.1 Input image in dark condition . 36
4.2 Success rate with visual-servoing activated and deactivated on V5 and V6 robots 37
4.3 This is an example of a correct placement for the beater . 37
4.4 Success rate with visual-servoing activated and deactivated . 38
4.5 Flowchart of the experimental procedure . 39
4.6 Percentages of successful hits among 80 attempts to play . 40
4.7 Completing time per attempt . 40

A.1 Example of metallophone’s position in front of NAO . 45
A.2 Robot’s view from lower camera . 46
A.3 This is an example of a correct placement for the beater . 46

ix

List of Tables

2.1 Frames per second for different network communication . 13
2.2 NAO arms joints and their operational range . 14

3.1 DH parameters for the left arm chain of NAO robot . 29
3.2 DH parameters for the right arm chain of NAO robot . 30

xi

1
Introduction

Humanoid robots are used in a range of application domains like domestic, entertainment, health care and
education [6]. Humanoids are getting more and more popular in these applications because they can interact
and cooperate with humans.

The last few years there has been a raise of interest in Humanoid robots in the education and entertain-
ment field. Without any doubt, it is very interesting and fun, for people, to see a machine act like humans, but
it is still a very challenging task to make a robot behave as natural as possible, since most of the time these
robots are pre-programmed to perform particular tasks and interactions, as a consequence the robots will
start repeat themselves.

Many humanoid robots have been used for playing musical instruments [2]. For instance, Hubo hu-
manoid, Honda’s Asimo, Toyota’s musical robots have been used in playing different kind of musical instru-
ments [32]. In addition, Chida developed a robotic flutist [8], Weinberg presented the musical playing robot
Shimon [52] and Mizumoto presented the HRP-2 robot [40]. As we mentioned before, entertainment is not
the only field that humanoid robots are popular, they could also be used in teaching musical instruments to
children or in the treatment of people with special needs [21] [48].

In this work, we present an approach for making the humanoid robot NAO, be able to play a musical
instrument like the metallophone, autonomously, after a preparation stage in which a human interacts with
the robot. NAO robot is commercially available and it is designed for a wide range of multimodal expressive
gestures and behaviors, therefore it is a good platform to develop our software on. NAO has plenty of sensors
for perceiving the environment around of it, as well as it integrates speakers and four kinematic chains, two
legs and two arms, which make it capable of walking, grasping things and talking. The metallophone is a
musical instrument which produce sounds by hitting it using two beaters. Since NAO is able to hold the two
beaters as well as to move its arms, it is feasible to make it play the metallophone.

In our approach, NAO uses only its arms to play the metallophone (Figure 1.1), and its positioning behind
the musical instrument happens after an interaction phase with a human. More specifically, in the prepara-
tion phase, a human must give the beaters to the robot’s hands and place the metallophone in the appropriate
position according to the robot’s instructions. We aim to develop a system which will conveniently run on any
computer and on any NAO robot, so that it will be possible for anyone,who has a NAO, to use it. The work
presented in this thesis, aims to build a system which will be able to work robustly in different NAO robots and
environments so that it can be used by people without any expertise in robotics for education or entertaining
purposes.

1.1. Problem Definition
The metallophone (Figure 1.2) is a musical instrument consisting of tuned metal bars which are struck with
a mallet (beater) to make sound. For this project, we use a metallophone, consisting of 12 metal bars, and
since NAO has two arms of a particular length, the size of the metallophone must meets the requirement of
this length. Therefore, we chose a metallophone which the robot is able to reach all of the metal bars.

The robot must hit the appropriate metal bar, on the musical instrument, quite precisely with a mallet in
order to make it produce the desired musical note. For human music players, this task seems just a simple
movement of an arm, however, a NAO robot is able to achieve this, after completing a series of complex

1

2 1. Introduction

Figure 1.1: Humanoid NAO playing the metallophone

Figure 1.2: The metallophone used for this project

tasks. The first challenge for the robot is to hit accurately the metal bars in the right spot. Consequently,
our kinematic implementation must have precision of millimeters. However even if we achieve that, due
to variances in the actuators of the robot, the hitting procedure is not going to be completed precisely. In
addition, before the robot decide about its actions, there must be a perception phase. In this phase the robot
must estimate precisely the exact position of the musical instrument in 3D space and then it decides where
to move its arms in order to produce the appropriate sound by hitting the metallophone.

1.1.1. Vision-Based position estimation of the musical instrument
Starting with the perception of the metallophone’s position, in relation to the robot, the challenging task
that we need to complete is to make the robot estimate the position and orientation of the metallophone.
It is necessary for the robot to detect the position of the metallophone in 3D space in order to decide about
its actions. Moreover, we want to develop a robust approach in different light conditions. The robustness

1.2. Research Objective 3

against light conditions it is always a challenging task for vision approaches, since cameras are sensitive in
illumination changes.

In general, stereo vision approaches are used to estimate accurately the position of an object in the 3D
space. However, we are not able to apply a stereo vision algorithm in NAO robot, because it does not provide
stereoscopic camera pair. Thus, we approach the problem of position estimation of an object in the 3D space
using a model-based approach, based on single camera. In this approach, which is explained in more detail
in Chapter 2, some prior knowledge is necessary about the 3D dimensions of the object. After the robot
estimates the position and orientation of the metallophone with respect to its body, it is able to know if it can
hit the metallophone using kinematics.

1.1.2. Inverse Kinematics for playing the metallophone
Since the robot "knows" the 3D position of the instrument in relation to its body, hitting the metal bars,
seems to be a simple inverse kinematic problem. However, we need to calculate the inverse kinematics for
the kinematics chains of both arms holding the beaters which length is approximately 16cm.

1.1.3. Low precision in NAO’s actuators
The precision of NAO’s motors is not the appropriate to complete the hitting task successfully, when the robot
knows where to move its arms. There is always an error in the position of the end-effector (end of beater)
which sometimes makes the robot hit the wrong metal bar. This problem becomes worse when we integrate
the same software in different robots. This issue is the main challenge of this work and we aim to solve it
without using extra markers attached on the robot. Solving this problem without using markers makes the
procedure more demanding but it seems more natural.

1.2. Research Objective
In order to make NAO play the metallophone, we use the robot’s on-board camera for detecting the position
of the instrument in relation with the robot’s position. Then, using robot’s arms we make the robot hit the
musical instrument and produce the sound. At the end the robot automatically validates the computed IK
configurations, using vision for detecting the beater’s position.

The work presented in this thesis is inspired by Daniel et al.’s [13]. They presented an approach for mak-
ing NAO play the metallophone by deploying self-calibration on the robot’s kinematic model, a particle filter
framework for model-based pose estimation of the instrument and the beaters and an auditory feedback
method for determining the accuracy of the beating motion. During the self-calibration on the robot’s kine-
matic model, Daniel et al. [13] use markers attached on robot’s arms, which make the procedure seems less
natural. Moreover, they do not refer to the robustness of their vision approach.

In our work, we divide the pose estimation problem in: i)2D image matching based on reference images
(key-frames) of the object’s view and ii)the position estimation of the object in 3D space. To achieve this, we
use some prior knowledge of the 3D model of the object (metallophone) and some offline work for creating
the key-frames. A reference-image contains the metallophone in a particular viewpoint and the coordinates
of five 2D points which are used for the 3D pose estimation. In the online part, we use a feature extraction
algorithm to find points, on the input frames and key-frames, with descriptive features. Then we use a fea-
ture matching algorithm to match similar points in both images and using these matches we calculate the
homographies between the two images. The homographies allow us to map key-frames with input frames
and according to metallophone’s view in the current frame we use key-frames to extract the 3D information.

Given the pose estimation of the instrument in the 3D space, we use inverse kinematics to calculate
the appropriate configurations of the arms in order to execute the beating motion. We pre-calculate the
inverse kinematics by deploying a reachability analysis for both kinematic chains (arms) and we store the
pre-computed forward kinematics solutions.

Finally, we use a vision-based control technique in order to precisely place the end-effector above the
appropriate metal bar. In this part, the robot places the beaters above two particular metal bars. Then, the
robot uses its camera and it detects the actual beaters position by using a vision approach. Finally, if the
actual position of the beaters is not the same as the desired, the robot moves its arms appropriately to correct
this error. In our approach, only natural features are used for the adaptation of the kinematic configurations.

1.2.1. Research Questions

4 1. Introduction

Pose Estimation and Kinematics
The main goal of this project is to make NAO observe the position and orientation of the metallophone and
hit the metal bars. However even if the robot holds the beaters and the metallophone is placed in front of it,
the robot must find a way to hit the metal bars precisely in order to produce the appropriate sound. Hence,
the first research question that arose is:

• RQ1: How can we make the NAO autonomously and reliably hit the right note (metal bar)?

At first we investigated methods for 3D pose estimation using a single camera, as well as we tried to find ways
to use these methods on NAO. As far as the pose estimation of musical instrument is concerned, we wanted to
achieve it without using any extra markers on the instrument, and this made the research more challenging
considering the robustness of the system. For the kinematic part, we had to calculate the kinematics of NAO’s
arms from scratch, since the beaters had to be added in the kinematic chain, as well as the numerical solution
provided by the manufacturer of the robot, is prone to singularities. At the end we have a vision system which
returns the 3D position and orientation of each metal bar in relation to robot’s body and a kinematic system
with which we can move the robot’s arms (end-effector) above the appropriate metal bar.

Model-based position estimation
Since there are many different methods to use for estimating the position and orientation of an object, we
could complete this task in many different ways. However, as we mentioned before, we aim to develop a
vision system which works robustly in different environments. Hence, we need to investigate if our approach
is mainly robust against illumination changes. With the following research question, we wanted to focus on
the robustness of the chosen vision approach.

• RQ2: How can we make the pose estimation task robust to different light conditions?

Approaching this task with an image matching approach based on key-frames we expect a robust out-
come. However, the drawback of this approach is that some prior work is required in order to create the
key-frames with different illumination.

Vision-Based Control (Visual-Servoing)
In theory, the approach described above seems to be enough to make the robot able to play the metallophone.
However, in practice we faced some expected difficulties. The first one had to do with the kinematics part.
Due to the low precision of NAO’s motors, there is a variance at the movements of the actuators (Motors are
precise up to a limit). Additionally, this variance becomes even worse when we integrate our software in
different NAO robot. Thus, an arising question is:

• RQ3: How can we correct the variance in robot actuators?

To resolve this issue we investigated methods around of the vision-based robot control. In general, a
vision-based control technique uses feedback information, extracted from the camera of the robot, to control
the motion of a robot. This task is very challenging since we need to achieve accuracy of millimeters by
cooperating a vision and a kinematic system. Moreover, we need to find a reliable way to detect the end-
effector (head of the beater) using a vision approach.

Human-Robot Interaction
In our approach, there is a preparation phase in which a user has to help the robot by placing the metallo-
phone in an appropriate position for it and then the user has to put the beaters in the robot’s hands. Since
the robot is able to walk, it could place itself behind the metallophone using its legs, as well as it could grasp
the beaters on its own, however, in this work we do not focus on how to make NAO walk in such an accurate
way that it could place itself in good position behind the metallophone. Thus, the preparation phase, it is
necessary to be accomplished with human assistance.

The research question that arose from the above is:

• RQ4: How can the robot help the user place the metallophone in an appropriate position?

To answer this question, we created a human-robot interaction phase in which the robot guides a non-
expertise person (i.e. without expert knowledge of the robot’s workings) to help the robot set up the musical
instrument in order to be able to play it. More specifically, the robot estimates the position of the metallo-
phone and then it uses auditory feedback to guide the user for the appropriate placement of the instrument.
Apart from the auditory feedback, we implemented also a section in which the user receives feedback from
the computer’s screen, which shows what the robot sees by its camera.

1.3. Contribution 5

1.3. Contribution
Our main contribution is the development of software for making any different NAO (V5, V6) able to play the
metallophone in different environments. In contrast with previous work [13] we do not use any checkerboard-
markers attached in robot’s arms since it makes the procedure seems less natural. Daniel et al. [13] used
checkerboard-markers for calibrating the kinematic parameters and a particle filter framework for estimat-
ing the instrument’s pose. In our approach, we use a visual-servoing technique, in order to adjust errors in
kinematic configurations, by detecting the beaters’ actual position. We achieve a robust outcome, without
using any markers, making our software more accessible to simple users and the same time we achieve a
more natural result. In addition, for the 3D pose estimation of the metallophone we use an approach based
on multiple key-frames expecting to have a more robust outcome in different light conditions. Finally, we aim
to make this software easy usable by simple users in order to use it for education or entertainment purposes.

1.4. Outline
The organization of the thesis is as follows. In Chapter 2, we summarize literature related to our study and
present key ideas we adopt in our work. In Chapter 3 we describe the approach we followed in order to
develop our system. In Chapter 4, we describe the experiments that we deployed for evaluating our approach
and we present our results. In Chapter 5 we discuss the findings and limitations we observed in the results,
as well as we propose related future work.

2
Background

In this chapter we present the background on which our research is based on and we briefly summarize
some instrument playing humanoid robots. Especially, we describe the basic theory behind i)the 3D pose
estimation based on monocular vision, ii)the robot kinematics and the iii)vision-based control. In addition,
we present an overview of other researches in which these methods are applied on NAO.

2.1. Instrument Playing Humanoid NAO
As we mentioned in the introduction, a lot of research has been conducted for creating humanoid robots that
can play a musical instrument. However, in most cases these robots are not available for commercial use.
Daniel et al. [13] presented a novel approach to enable the humanoid robot NAO to play the metallophone.
Specifically, they developed a technique for self-calibration of the robot kinematic model, a particle filter
framework for model-based pose estimation of the instrument and the beaters. Moreover, they presented
an auditory feedback method for determining the accuracy of the beating motion. Their robot was able to
play the metallophone, however they did not give details about the conditions under which the robot is able
to detect the position of the metallophone and play it accurately. In addition, they did not mention if their
application is ready to use by users without experience with robots. We aim to create an application, for the
commercially available humanoid robot NAO, which will be easy for users without experience in robotics to
use it. More specifically, we aim to develop a user friendly application, by creating a human-robot interaction
interface for the phases that the robot needs the human assistance as for example grasping the beaters and
place the metallophone in a appropriate for the robot position.

2.2. Model-Based Object Pose Estimation
Tracking an object in a video sequence means continuously identifying its location when either the object or
the camera are moving. There are a variety of approaches, depending on the camera, the type of object, the
degrees of freedom of the object and the target application. The term pose refers to the position and orienta-
tion of a rigid object in space which is defined by three components of translation and three components of
rotation. Because of these 6 components, a 3D pose is also called six degrees of freedom (6-DOF) pose.

People use their eyes to observe the position and orientation of the object and then they move their arms
in an appropriate way which allows them to grasp or hit that object. Similarly, we want to make the robot
perceive the metallophone’s position through its camera in order to play it.

In our case we need to track the musical instrument in 3D space and extract information about the pose
of it in relation with the robot. One of the most appropriate ways to estimate accurately the position and
orientation of an object in 3D space is to use a stereo vision approach. 3D depth perception can be achieved
by using two cameras, similar to how we as humans use our two eyes. Then, using triangulation we can
perceive the third dimension. Stereo vision allows people to see an object as solid in three spatial dimensions
x, y and z and the perception of the depth dimension makes stereo vision so rich and special. However, we are
not able to develop a stereo vision algorithm in NAO robot, since it does not provide stereoscopic camera pair.
Thus, we solve the problem of the 3D pose estimation by developing a model-based 3D tracking approach
using a single camera [36].

7

8 2. Background

2.2.1. Mathematical Model
It is not possible to extract 3D information just from a 2D image. However, if the dimensions of the depicted
object in the image are known, there are methods for estimating the pose of an object just from a single
image. In this section we present the basic knowledge needed for understanding our approach for observing
the metallophone in 3D space.

The Pinhole Camera Model
The pinhole camera model describes the mathematical relationship between the coordinates of a point in
three-dimensional space and its corresponding projection onto the 2D image plane of an ideal pinhole cam-
era.

Figure 2.1: Pinhole Camera Model [4]

Perspective Projections
Mathematically, image formation can be defined as the projection from the 3D space to the image plane
as it is illustrated in Figure 2.1. The coordinates of a 3D point PW = [X,Y,Z]T expressed in Euclidean world
coordinate system and the corresponding 2D point x = [u, v]T in the image are related by the equation:

x̃ = P × P̃W (2.1)

where = [u, v, 1]T and PW = [X, Y, Z, 1]T are the homogeneous coordinates of points x and PW , and P
is a 3×4 projection matrix. Projection matrix is usually taken to be a perspective projection matrix since it
describes the behavior of a simple camera. A perspective projection matrix can be decomposed as follows:

P = K × [R|t] (2.2)

The 3×3 matrix K is called the calibration matrix and describes the camera intrinsics. We also refer to this
matrix as camera matrix or calibration matrix, since it is derived from the calibration of the camera. Moreover,
in this project we treat this matrix as an upper triangular.

[R | t] matrix is the 3×4 external parameters matrix, and corresponds to the Euclidean transformation from
a world coordinate system to the camera coordinate system. More specifically, R represents a 3×3 rotation
matrix, and t is a 3×1 translation vector.

The Camera Calibration Matrix
The camera calibration matrix contains the intrinsic camera parameters, also called internal parameters.
There are several ways to write the upper-triangular form of K. In this project we use the representation de-
scribed below:

K =
 fx s cx

0 fy cy

0 0 1

 (2.3)

2.2. Model-Based Object Pose Estimation 9

which uses independent focal lengths fx and fy for the sensor x and y dimensions. The entry s is referred
as the skew and it is non-zero only if the sensor axes are not perpendicular, which is rare in modern cameras.
The parameters cx and cy denotes the optical center expressed in pixel coordinates also called the principal
point. Thus, the center of the image is the principal point.

Estimating the Camera Calibration Matrix
The internal parameters of the NAO’s camera were not available and we had to estimate them by deploying
an offline camera calibration [54].

At this step, using the lower camera of NAO, we captured several images with a checkerboard and then we
used the function calibrateCamera() of the OpenCV library which returns the camera matrix and the distor-
tion coefficients which are necessary for the 3D tracking phase. Distortion coefficients indicate the distortion
of the lens. The distortions that we need to eliminate are radial distortion and tangential distortion. Radial
distortion makes the straight lines to appear curved and usually its effect is more as we move away from the
center of image.

Figure 2.2: Calibration procedure of NAO’s camera

The External Parameters Matrix
The 3× 4 external parameters [R | t] matrix defines the position (x, y, z) and the orientation (α,β,γ) of the
camera and we will often refer to it as the camera pose. Since we have the matrix K by the camera calibration,
we just need to estimate the R and t, or, equivalently, the target object’s position and orientation with respect
to the camera.

More specifically, we need to define the Euclidean transformation from a world coordinate system to the
camera coordinate system. Equation 2.1, shows how we can project a 3D point onto the 2D image plane.
From this relation, we can easily recover the expression of the camera center, or optical center C in the world
coordinate system. It must satisfy:

0 = [R|t]×C =⇒ 0 = R ×C + t (2.4)

which implies:
C = R−1 × t = RT × t (2.5)

Equation 2.5 defines the camera position in relation to the object.

2.2.2. Estimating the External Parameters Matrix
After retrieving the calibration matrix, the External Parameters matrix [R|t] can be calculated. The External
Parameters matrix, allows us to move from the 3D world points to 2D image plane points using the equation
2.1.

There are several approaches to estimate the external parameters, from images taken by a calibrated cam-
era. The estimation of these parameters is achieved by using some correspondences between 3D points in

10 2. Background

the world coordinate system and their projections in the image plane. Estimating the external parameters
when the internal parameters are known is also referred to as the pose estimation problem.

The pose estimation problem is solved by using n correspondences between 3D points PW , and their pro-
jections x onto the image plane. Then the perspective projection matrix P can be used to solve the equation
2.1 up to a scale factor.

At this point it is necessary to define the number of correspondences which are required for the pose
estimation. For n = 3 known correspondences, there are four possible solutions. For n = 4 or n = 5 correspon-
dences, [20] shows there are at least two solutions, but when the points are coplanar and there is no triplets
of collinear points, the solution is unique for n Ê 4. Finally, there is a unique solution for n Ê 6.

Direct Linear Transformation (DLT)
Direct Linear Transformation can be used to estimate matrix P of equation 2.1 by solving a linear system when
some correspondences between 3D and 2D points are available [18] [28]. Each correspondence between Pw

and x gives rise to two linearly independent equations in the entries Pi j of P, that is:

ui = P11Xi +P12Yi +P13Zi +P14

P31Xi +P32Yi +P33Zi +P34
(2.6)

vi = P21Xi +P22Yi +P23Zi +P24

P31Xi +P32Yi +P33Zi +P34
(2.7)

In order to compute the 12 (or 11)unknowns in P, at least six correspondences between 3D and 2D loca-
tions must be known. Once the entries in P have been recovered, we have both the intrinsic calibration matrix
K and the rigid transformation [R | t] by observing Equation 2.2. Since we have already calculated the internal
parameters (Camera calibration), we can extract the orientation and position [R | t] (pose) up to a scale factor.
In cases that the camera is already calibrated, we can perform pose estimation using as few as three points
[20] [25].

In reality there is noise in pixels’ position x̃ = [u, v], and it is necessary for the camera parameters estimated
by the DLT algorithm to be refined by iterative optimization of the non-linear reprojection error.

Iterative methods
As shown in the equation 2.2, if we knew the right pose ([R|t]), we could predict the 2D locations of the corre-
sponding 3D points on the image by projecting the 3D points onto the 2D image. Specifically, if matrix R and
vector t were known, we could find the point p on the image for every 3D point P.

In our case we have some corresponding points, between the 2D image and 3D object, and we want to
find the pose ([R|t]). Looking at the distance between the projected 3D points and 2D points, in cases where
the estimated pose is perfect, the 3D points projected onto the image plane line up almost perfectly with
the 2D corresponding points. When the pose estimation is incorrect, we can calculate a re-projection error
measure — the sum of squared distances between the projected 3D points and 2D points.

To conclude, an approximate estimate pose [R|t] can be found using the DLT solution. A naive way to
improve the DLT solution would be to randomly make small changes into the pose [R|t] and check if the re-
projection error decreases. If it does, we can accept the new estimate of the pose. This method, could find
better estimates, however it will be very slow. There are principled ways to iteratively change the values of R
and t so that the re-projection error decreases.

The iterative approaches consider pose estimation as a nonlinear least squares problem by iteratively
minimizing specific error function. This error function usually has a geometrical meaning.

Levenberg–Marquardt algorithm
In mathematics and computing, the Levenberg–Marquardt algorithm [41] (LMA or just LM), also known as
the damped least-squares (DLS) method, is used to solve non-linear least squares problems. These mini-
mization problems arise especially in least squares curve fitting.

The LMA is used in many software applications for solving generic curve-fitting problems. However, as
with many fitting algorithms, the LMA finds only a local minimum, which is not necessarily the global min-
imum. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient de-
scent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it
starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the
LMA tends to be a bit slower than the GNA. LMA can also be viewed as Gauss–Newton using a trust region
approach.

2.2. Model-Based Object Pose Estimation 11

2.2.3. The Perspective-n-Point (PnP) Problem
Since we can have n correspondences between 2D and 3D points, we can track the pose of the object in 3D
space by solving the Perspective-n-Point (PnP) problem. Solving the PnP problem allows us to estimate the
pose of a calibrated camera given a set of n 3D points in the world and their corresponding 2D projections
in the image. In addition, the DLT method aims at estimating all 11 parameters of the projection matrix,
thus it might also be applied to pose estimation, as we have mentioned above. However, when the internal
parameters have been estimated separately, a more satisfactory approach is to explicitly use this knowledge.

The 3 point pose problem, that is the estimation of the camera pose from 3 point correspondences also
known as the perspective-3-point problem (P3P) has up to 4 real solutions in most cases. For 4 more points,
the solution is in general unique whether or not they are coplanar, as long as they are not aligned. However,
in unfavorable cases there can be infinitely many solutions no matter how many points are supplied. In these
cases, some points are hidden behind others, and then there are infinitely many solutions. These singular
cases are explained in detail in Haralick et al.’s [25] work.

There are different approaches in literature, that solve the perspective-n-point problem [20] [47]. They
usually attempt to first estimate the distances between the camera center C and the 3D points PW i , from
constraints given by the triangles formed by the camera center and the 3D points.

Another popular method to solve the pose estimation problem for n Ê 4 non-coplanar points is POSIT
[14]. This method is a combination of two algorithms. The first one, POS (Pose from Orthography and Scal-
ing), approximates the perspective projection with a scaled orthographic projection and finds the rotation
matrix and the translation vector of the object by solving a linear system and the other uses in its iteration
loop the approximate pose found by the first in order to compute better scaled orthographic projections of the
feature points, then applies POS to these projections instead of the original image projections. This method
is quite simple to implement [5], but is relatively sensitive to noise.

In this project, we use a DLT algorithm followed by an iterative optimization of the non-linear re-projection
error, for estimating the pose of the object. More specifically, we use the iterative version of the solvePnP
function, provided by the openCV library. It is essentially a DLT solution followed by Levenberg-Marquardt
optimization. The function finds such a pose that minimizes re-projection error, that is the sum of squared
distances between the observed projections image points and the projected object points .

2.2.4. Monocular 6-DOF Pose Estimation
In the previous subsection we referred to the fundamentals of the 6-DOF pose estimation based on monoc-
ular vision. Pose estimation based on an image plane requires additional knowledge of the object and it is
a problem which usually researchers in robotics and augmented reality areas have employed a number of
different approaches to solve it. A simple way to retrieve the pose of an object, is by using fiducial markers. In
this method, artificial markers are attached to the object or environment as camera targets and it provides an
easy and robust solution for real-time pose estimation. However, in practice the markers make the procedure
of 3D tracking to look less natural. Therefore, researchers focused on tracking using natural features, in order
to make tracking procedure more natural. There are many methods presented on this subject and we can
categorized them in: edge-based, optical flow-based, template-based, and keypoint-based [36]. We are going
to analyze further the edge-based and keypoint-based methods.

The edge features are computationally efficient, and relatively easy to implement. In addition, edges are
usually computed by image gradients thus it is moderately invariant to illumination and viewpoint. The key-
point features are also capable of being invariant to illumination, orientation, scale, and partially viewpoint.
However, keypoint-based methods are computationally inefficient in comparison with edge features.

Edge-Based Methods
In edge-based methods, a 3D CAD model is usually employed to estimate the full pose using a monocular
camera. RAPiD (Real-time Attitude and Position Determination) is one of the first marker-less 3D model-
based real-time tracking system and was established by Harris [26].

In this method, the object is tracked by comparing the projected CAD model edges with the edges de-
tected in a gray-scale image. To project the model close to the real object, the system use the previous pose
estimate as a priori. Also this algorithm uses motion parameters which are subsequently estimated between
frames. Drummond and Cipolla [16] enhanced the robustness by using the iterative re-weighted least squares
with a M-estimator.

12 2. Background

Keypoint-Based Methods
In keypoint-based methods, a sparse 3D metric model is used. The keypoint models are the a priori knowl-
edge and they are built offline. In addition, a set of images containing a view of an object from different view-
points is used and the non-linear optimization algorithm, such as Levenberg-Marquardt, return a refined 3D
model of keypoints. In this way the 3D coordinates of each keypoint are maintained and the pose estimation
is performed by using the correspondences between the 3D points of the model and the 2D keypoints in an
input image. Using this model, Gordon and Lowe [23] proposed an augmented reality system that calculates
pose with scale invariant features [37]. Vacchetti et al. [50] used standard corner features to match the current
image and the reference frames, so called keyframes. Unlike the efforts using non-linear optimization, they
obtained 3D coordinates of 2D corner points by back-projecting them onto the object CAD model.

Various combined approaches of edge and the keypoint methods have been presented [35], [46], since the
edge and the keypoint methods are complementary to each other. Vacchetti et al. [51] presented a more ro-
bust and jitter free approach by incorporating the edge-based method with their corner point-based method.
As part of the edge-based tracking, they used multiple hypotheses to handle erroneous edge correspondence,
however it is equivalent to the nearest hypothesis of RAPiD-like approaches. Similarly, Rosten and Drum-
mond [49] combined corner points with lines, but they only used corner points to estimate motion parame-
ters between frames.

2.2.5. Overview of model-based pose estimation from natural features implementations
on NAO robot

Daniel et al. [13] use a model-based technique within a particle filter framework. The main idea, which is
based on Choi and Christensen’s [9], Michel et al.’s [39], Gonzalez-Aguirre et al.’s [22], is, given a hypothesis
about an object’s pose, one can project the contour of the object’s model into the camera image and compare
them to actually observed contour. In the aforementioned approach, they estimate the likelihood of the pose
hypothesis. They use a tracking method based on natural features. In general, edge-based methods have a
fairly low computational complexity because they only work for a small fraction of the image pixels. However,
they can become confused in the presence of texture or of a cluttered background.

Moreover, matching 3D models with 2D scene images is commonly used for solving the self-localization
problem in mobile robots which provide single camera vision [19], [34]. Moughlbay et al. [42] used 3D visual
feedback data and Model Based Tracking (MBT) techniques to execute, in real-time and closed loop, many
tasks on the humanoid mobile robot NAO in a semi structured environment. More specifically, the robot
solves the self-localization task by searching the corresponding set of models in its environment. After de-
tecting a known object, the robot uses the Model Based Tracking technique to estimate the object’s position
and orientation.

In addition, real-time pose estimation and object tracking of rigid objects, based on image matching with
natural landmarks has been presented by other researchers. Papanikolopoulos and Kanade [44] proposed al-
gorithms for robotic real-time visual tracking using sum-of-squared differences (SSD) optical flow. Choi and
Christensen [9] proposed a method that combines scale invariant features matching with optical flow based
tracking, KLT tracker, for real-time 3D pose tracking. More specifically, they used a scale invariant features
extraction method to estimate the initial pose (using some prior knowledge) and then the KLT tracker to track
the object. KLT tracker calculate 3D pose consecutively from initially estimated pose with cheap computa-
tional cost, however, this tracker shows poor performance in significant change of scene, illumination, and
occlusions.

2.2.6. NAO’s Vision Hardware
NAO provides two identical video cameras which are located in the front of its head as you can see in Figure
2.3. In this project only the lower camera is used, since the metallophone will be always placed in the front
and lower area of the robot. As a result, the robot is not able to capture the whole object using the upper
camera.

These cameras can provide a 1280x960 resolution at 30 frames per second, however the number of frames
per second are less when we request images remotely using the getImageRemote function. Ideally, we would
like to get enough frames per second so that the robot could process more data, but we want to work in a
wireless environment for making the instrument playing looks more natural. Hence, at this point we need to
decide the resolution of the images that are best for our project, since we are using a wireless communication.
After tests, we concluded that our vision approach operates well in 640x480 pixels images and 2.5 frames per
seconds are enough for our purpose. Using images with lower resolution, our approach failed to detect the

2.3. Robot Kinematics 13

Figure 2.3: Cameras’ position on NAO

object, and using higher resolution images we did not observe better performance in our vision approach.
The table 2.1 illustrates the number of frames with the corresponding network communication.

Table 2.1: Frames per second for different network communication

Resolution in pixels Gb Ethernet 100Mb Ethernet WiFi
40x30 (QQQQVGA) 30fps 30fps 30fps
80x60 (QQQVGA) 30fps 30fps 30fps
160x120 (QQVGA) 30fps 30fps 30fps
320x240 (QVGA) 30fps 30fps 11fps
640x480 (VGA) 30fps 12fps 2.5fps
1280x960 (4VGA) 10fps 3fps 0.5fps

Image Retrieving
For retrieving an image from the camera of the robot, we create a vision module which sends a request via the
broker to subscribe to ALVideoDevice with parameters such as the size of the image in pixels, and we call the
getimageRemote() function. After that the image is provided by the ALVideoDevice which manages the video
source. The ALVideoDevice first opens the camera device, communicating through I2C bus, then it launches
the V4L2 driver in streaming mode. The V4L2 driver will create a circular buffer of n elements to grab the
video stream. After that, the ALVideoDevice receives subscriptions from Vision Modules by creating for each
one an ALImage to encapsulate raw data buffer from the V4L2 driver and an ALImage to store converted data.
The returned image is actually an array of ASCII characters which we transform it into a .PNG file using the
PIL (Library for image processing) library in python and we save it to the local computer.

2.3. Robot Kinematics
In this section we provide basic background information about generic robot kinematics, affine transforma-
tion matrices, and the Denavit-Hartenberg (DH) parameters. Using affine transformation matrices, and the
DH parameters, we can describe the position and movements of NAO’s arms in 3D space. In this way, we
calculate the position of the beaters in 3D space, which is necessary for hitting the metallophone.

Kinematics is the science of geometry in motion [31]. More specifically kinematics or robot kinemat-
ics combine geometry with the study of the movement of multi-degree of freedom kinematic chains that
form the structure of robotic systems [45] [38]. A robot kinematic chain is an assembly of rigid bodies (links)
connected by joints. Each joint has one degree of freedom and it can be translational (prismatic joint) or
rotational (revolute joint), as you can see in Figure 3.7. The relative pose of the connected rigid bodies (links)
changes according to the motion of the joint. The one end of the chain is called the base and it is generally
fixed and the other end of the chain is called the end-effector or tool and it is free to move in the space. The
term degrees of freedom (DOF) refers to the number of joints in a kinematic chain and more DOF imply a
more flexible chain.

Robot kinematics can be separated into forward kinematics and inverse kinematics (Figure 2.5). The
problem of forward kinematics is straightforward and more simple than the inverse kinematics problem

14 2. Background

Figure 2.4: Example of revolute and prismatic joints

which is computationally expensive and singularities and non-linearities make the problem more difficult
to solve.

Figure 2.5: A schematic representation of forward and inverse kinematics.

2.3.1. NAO Kinematics
NAO Structure
The NAO humanoid robot has five kinematic chains (head, two arms, two legs). It is 573.2mm tall with an arm
length of 290mm. The measurement between the shoulders is 273.3mm and it has about 5kg of mass (Figure
2.6). The version we are working on is the V6 and V5 with 21 DOF, however in the context of this thesis, only
the two arms are needed and each arm has four DOF. In more detail, the five kinematic chains and their joints
are the following:

• Head: HeadYaw, HeadPitch

• Left Arm: LShoulderPitch, LShoulderRoll, LElbowYaw, LElbowRoll

• Right Arm: RShoulderPitch, RShoulderRoll, RElbowYaw, RElbowRoll

• Left Leg: LHipYawPitch, LHipRoll, LHipPitch, LKneePitch, LAnklePitch, LAnkleRoll

• Right Leg: RHipYawPitch, RHipRoll, RHipPitch, RKneePitch, RAnklePitch, RAnkleRoll

In order to create the kinematic model for the NAO’s arms, we need to specify the joints of the robot.
According to the documentation, provided by the manufacturer of the robot, Aldebaran Robotics, we present
the length of all the links of the robot and the operational range in radians and degrees of the arm joints.

Table 2.2: NAO arms joints and their operational range

Joint Name Range in Degrees Range in Radians
LShoulderPitch -119.5 to 119.5 -2.0857 to 2.0857
LShoulderRoll -18 to 76 -0.3142 to 1.3265
LElbowYaw -119.5 to 119.5 1.5446 to 0.0349
LElbowRoll -88.5 to -2 -0.6720 to 0.5149
RShoulderPitch -119.5 to 119.5 -2.0857 to 2.0857
RShoulderRoll -38.5 to 29.5 -1.3265 to 0.3142
RElbowYaw -119.5 to 119.5 -2.0857 to 2.0857
RElbowRoll -38.5 to 29.5 0.0349 to 1.5446
LWristYaw -104.5 to 104.5 -1.8238 to 1.8238
RWristYaw -104.5 to 104.5 -1.8238 to 1.8238

2.3. Robot Kinematics 15

Figure 2.6: NAO’s hardware lengths

16 2. Background

Figure 2.7: Lengths of NAO’s Parts

2.3. Robot Kinematics 17

Figure 2.8: NAO’s arm lengths

Figure 2.9: NAO’s left and right arm joints

18 2. Background

2.3.2. Forward Kinematics
Forward kinematics is the mapping from joint coordinates, or robot configuration, to end-effector pose in the
three-dimensional Cartesian space. [11]. Given a kinematic chain with m joints and a set of joint values (θ1,
θ2, θ3, ..., θm), the forward kinematics can find the position (px , py , pz) and the orientation (ax , ay , az) of the
end-effector of the kinematic chain in the three-dimensional x-y-z space. Solving a forward kinematics prob-
lem is domain independent and it can be solved for any kinematic chain yielding a closed-form, analytical
solution.

The Forward Kinematics Problem for NAO
The forward kinematics problem is to define a mapping from the joint space of the robot to the three-dimension
space with respect to any base coordinate frame. NAO’s joints contain 12-bit encoders with an update fre-
quency of 100Hz. These encoders are able to provide the current joint values at any time.

In this project, we are interested about the kinematic problem of the robot’s arms and the corresponding
solution. The solution of the kinematic problem provides the position and orientation, of the end-effector, in
the three-dimensional space with respect to a base coordinate frame.

2.3.3. Inverse Kinematics
We have shown how to determine the position of the end-effector in space, given the joint coordinates. How-
ever, another problem which is more practical and more interesting is the inverse problem. As in our project,
we need to make the robot reach a target point in the Cartesian space and to make this happen we have to
specify the appropriate values for the joints of the kinematic chain. The inverse kinematics define ways to go
from the three-dimensional space to the joint space. More specifically, the inverse kinematics is a matching
between points in the three-dimensional space (position (px , py , pz) and orientation (ax , ay , az)) and joint
values/angles (θ1, θ2, θ3, ..., θm) in the joint space of a kinematic chain with m joints. The problem of inverse
kinematics is domain-dependent and for each kinematic chain there is a different solution. Two approaches
can be used to determine the inverse kinematics, a closed-form or analytic solution, using geometric or alge-
braic approaches, and an iterative numerical solution. As the number of robot joints increases, a point in the
three-dimensional space may have more than one matching point in the joint space.

The Inverse Kinematics Problem for NAO
The inverse kinematics problem is to define a relation between the position and orientation of an end-
effector, in the three-dimensional space, and joint values in the joint space of a kinematic chain.

Inverse kinematics represents a much more difficult problem compared to forward kinematics for at least
two reasons. First, it leads to a system of non-linear equations, which may, or may not, have an analytical
solution. Second, as the number of DOF increases and the kinematic chain becomes more flexible, a point in
the three-dimensional space may have more than one matching points in the joint space of the chain. This
multiplicity of solutions defines a complex relation, but not a mapping, between the two spaces.

The inverse kinematics problem can be solved analytically with closed-form equations or numerically
with an iterative approximation method [14]. The analytical solution is in general faster than the fastest nu-
merical solution and therefore is more appropriate for real-time execution. Numerical solutions are also
subject to singularities, which result in a failure to obtain a solution, even if one exists.

2.3.4. Affine Transformations
An affine transformation is a function that transforms points, straight lines and planes from one space to
another, maintaining the ratios of distances. The source and target spaces can be n-dimensional with n ≥ 2.
In general, an affine transformation is a composition of rotations, translations, dilations, and shears. In this
project we are going to work on the three dimensional Cartesian space thus, we are going to focus on defini-
tions about this space. Moreover, using only rotations and translations, we can fully describe our kinematic
model, therefore we will focus only on these two types of affine transformations.

Affine Transformation Matrix
An affine transformation matrix is a ((n + 1) × (n + 1)) matrix, where n is the number of dimensions in the
space the transformation is defined on and is a block matrix of the form:

T =
[

X Y[
0 ... 0

]
1

]
(2.8)

2.3. Robot Kinematics 19

where X is a (n × n) matrix, Y is a (n × 1) vector and the last line of T contains n - 1 zeros followed by a
1. Given a point p = (p1, p2, ..., pn) and an affine transformation matrix T, we can apply the transformation
to this point by multiplying the affine transformation matrix with the column vector v = (p1, p2, ..., pn , 1)T .
Hence the new point p’ can be found from the resulting vector v’:

v′ =



p ′
1

p ′
2

...

...
p ′

n
1

= T ×v =
[

X Y[
0 ... 0

]
1

]
×



p1

p2

...

...
pn

1

 (2.9)

In this project we work on the three dimensional Cartesian space, therefore, for a point p = (px , py , pz) in
the three-dimensional space, the transformation will be:

v′ =


p ′

x
p ′

y

p ′
z

1

= T ×v =


Xx x Xx y Xx z Yx

X y x X y y X y z Yy

Xz x Xz y Xz z Yz

0 0 0 1

×


px

py

pz

1

 (2.10)

Moreover, it is very common to combine two or more affine transformation matrices. In these cases we
need to multiply these affine transformation matrices and the matrix that results from the multiplication is
also an affine transformation:

T = T12 =
[

X1 Y1[
0 ... 0

]
1

]
×

[
X2 Y2[

0 ... 0
]

1

]
=

[
X1X2 X1Y2 +Y1[

0 ... 0
]

1

]
(2.11)

Translation Matrix
In Euclidean geometry, a translation is a function that moves every point by a fixed distance in a given direc-
tion. A translation is an affine transformation with no fixed points and we can describe a translation in the
three-dimensional space with a (4 × 4) matrix:

A =


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

 (2.12)

where dx , dy and dz define the distance of translation along the x, y and z axes respectively. To sum up,
translation matrix is an affine transformation with the X matrix equal to I. Thus, if we want to apply just a
displacement (dx , dy , dz) in a point p = (px , py , pz) in three-dimensional space, we need to multiply this
point with the translation matrix:

v′ =


p ′

x
p ′

y

p ′
z

1

= A×v =


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

×


px

py

pz

1

 (2.13)

Rotation Matrix
A rotation matrix, R, is a (3×3) orthogonal matrix and it describes the rotation of an object in the three-
dimensional space. More specifically, there are three distinct rotation matrices, each for one of the three-
dimensions in the three-dimensional Cartesian space x, y, z. Each of the matrices Rx , Ry , Rz represents a
rotation (θx , θy , θz), about the x, y, z axes respectively.

Rx =

1 0 0
0 cosθx −si nθx

0 si nθx cosθx

 Ry =

 cosθy 0 si nθy

0 1 0
−si nθy 0 cosθy

 Rz =

cosθz −si nθz 0
si nθz cosθz 0

0 0 1



20 2. Background

Similarly to the translation matrix, we can deploy a rotation on a vector, defined by a point p = (px , py ,
pz), by multiplying it with the appropriate rotation matrix. Thus, if we want to rotate a vector about the x axis
we have:

p′ =
p ′

x
p ′

y

p ′
z

= Rx ×p =
1 0 0

0 cosθx −si nθx

0 si nθx cosθx

×
px

py

pz

 (2.14)

If we want to deploy multiple rotations about the three axes, we just need to multiply the rotation matrices
and the result will be again a rotation matrix. However, in this case, the order of matrices in the multiplication
affects the order of the rotations. Hence, if we want to deploy a rotation on a vector,defined by a point p = (px ,
py , pz), about the x axis, then about the y axis and then about the z axis the order will be as follows:

p′ = Rz ×Ry ×Rx ×p (2.15)

In the same manner with the transformation matrix, we can represent the (3×3) rotation matrix R’ as an
affine transformation by padding the last line and the last column with (0, 0, 0, 1):

R =

 R ′
0

0
0


[
0 0 0

]
1


In this this project we will represent all the rotation and translation matrices, as affine transformations.

The X block of the affine transformation matrix, represents the rotation and the Y block represents the trans-
lation:

T =

 R ′
dx

dy

dz


[
0 0 0

]
1


2.3.5. Denavit-Hartenberg (DH) Parameters
Denavit and Hartenberg [15] [27], in 1955, introduced four parameters associated with a particular conven-
tion for describing points in one end of a joint to a coordinate system that is fixed to the other end of the
joint, as a function of the joint state. More specifically, we can use transformation matrices to describe these
changes on the coordinate frames starting from the origin joint to the end-effector. These parameters are
known as Denavit-Hartenberg (DH) parameters: a, α, d, and θ but before we can explain these parameters
we need to mention how the coordinate axes are formed for each joint i with respect to the coordinate axes
of its previous joint. We start by defining the zi axis which is always set to the direction of the joint axis or in
other words to the rotation direction. The direction of xi is derived using the right-hand rule from zi −1 to zi .
Moreover, the xi axis is parallel to the common normal between zi and zi −1. Finally, the yi axis implies from
the xi and zi axes forming a right-handed coordinate system.

Now we can describe the DH parameters based on the image 2.10:

• d is the offset along the zi−1 axis to zi axis

• θ is the angle about the zi−1 axis, from xi−1 axis to xi axis

• a is the displacement from zi−1 axis along the xi axis

• α (alpha) is the angle about the common normal (x-axis), from zi−1 axis to zi

2.3.6. Overview of Kinematics applied on NAO
Kofinas et al. [33] presented a complete, exact, analytical solution for the problems of forward and inverse
kinematics of the NAO robot. The solution that they presented resulted in a high degree of accuracy, ef-
ficiency, and in the elimination of singularities. This approach, to NAO kinematics, is based on standard
principled methods for studying robot kinematic chains and so far is the only published complete analytical
solution for all kinematic chains of NAO robot. Graf et al. [24] had presented a solution only for the kinematic

2.4. Vision-Based Control 21

Figure 2.10: Denavit-Hartenberg parameters: d, θ, a, α (from www.tekkotsu.org)

chain of the legs of NAO which is purely geometric, and cannot be generalized to other kinematic chains.
Moreover, the numerical solution [1] offered by the manufacturer of the robot, Aldebaran Robotics, is a pro-
prietary implementation, but it is prone to singularities and, therefore, is not robust.

2.4. Vision-Based Control
The hand-eye calibration of the robot is necessary in order to achieve high precision in robot’s movements.
Even if the kinematic structure is known from the construction plan, errors can occur due to imperfect man-
ufacturing or low accuracy in NAO’s actuators.

Using visual feedback to control a robot is commonly termed visual-servoing [30]. Visual-servoing in-
volves the use of one camera and a Computer Vision system, to control the position of a robotic arm relative
to a part it has to manipulate, which requires detecting, tracking, servoing, and grasping. It therefore spans
computer vision,robotics, kinematics, dynamics, control and real-time systems, and is used in a rich variety
of applications such as lane tracking for cars,navigation for mobile platforms, and generic object manipula-
tion.

Figure 2.11: Closed–loop control

A closed–loop control of a robotic system, where vision is used as the underlying perception sensor, usu-
ally consists of two intertwined processes: tracking and control (Figure 2.11). Tracking provides a continuous
estimation of the moving object. Based on this input, a control sequence is generated. Moreover, the system
requires an automatic initialization which commonly includes object recognition.

The tracking information is required to measure the error between the current location of the robot and
its reference or desired location from eye-in-hand cameras. As a consequence, the tracking algorithm must
be robust, accurate, fast, and general. Visual features such as points, lines and regions can be used to, for
example, enable the alignment of a gripping mechanism with an object. Hence, vision is a part of a control
system where it provides feedback about the state of the environment.

22 2. Background

In this project, we measure the error between the current location of the beater and the desired location.
In general this error can be measured by two dimensional information, expressed by using image plane coor-
dinates, or by three dimensional where camera/object model is employed to retrieve pose information with
respect to the robot coordinate system. Hence the three main categories of visual servo are:

• Position-based visual servo systems
In these systems, the pose of the goal with respect to camera is estimated by retrieving the three-
dimensional information about the scene where known camera model is used to estimate the position
and the orientation (pose) of the target with respect to the camera (world, robot) coordinate system.

• Image-based visual servo systems
In these systems, 2D image measurements are used directly to estimate the desired movement of the
robot. Typical tasks like tracking and positioning are performed by reducing the image distance error
between a set of current and desired image features in the image plane.

• 2 1/2 D visual servo systems
This is a combination of the previous two approaches. More specifically, in these systems the error is
specified and minimized both in the image and in the pose space.

2.4.1. Overview of Visual-Servoing methods applied on NAO
Daniel et al. [13] approached this issue based on [29] [3] by using self-calibration procedure based on checkerboard-
markers to accurately estimate these errors. More specifically, Hubert et al. [29] presented a Bayesian ap-
proach to calibrating the hand-eye kinematics of an anthropomorphic robot. In this approach, the robot
perceives the pose of its end-effector with its head-mounted camera through visual markers attached to its
end-effector. Moreover Moughlbay et al. [42] presented an approach for making NAO be able to grasp objects.
More precisely, 3D visual feedback data and Model Based Tracking (MBT) techniques were used to execute,
in real-time and closed loop, manipulation tasks on the humanoid mobile robot NAO. In our approach, the
end-effector’s actual 3D position is detected through the robot’s camera and it is compared with the estimated
3D position according to the kinematics configurations. In this way, the markers on the robot’s arms are not
necessary, making the robot looks like more natural as well as our application is more accessible to simple
users.

3
Instrument Playing NAO

In this chapter we analyze in depth the methods that we chose to combine in order to make the humanoid
NAO able to play the metallophone. First, we present our approach for making NAO detect the position of the
metallophone in 3D space. Then, we explain how we aim to make our vision approach robust to illumination
changes.

Regarding the kinematic part, we describe how we make the robot move its arms precisely by calculating
the inverse kinematics in an offline phase. Finally we describe our approach for the elimination of errors in
the kinematic configurations, which occur by the variances in the actuators among different robots, and by
the impreciseness of the motors (they’re precise up to a limit).

3.1. Pose estimation using NAO’s Monocular Vision
In this section, we present our approach based on Vacchetti et al. [50], Gordon and Lowe [23] and Choi and
Christensen [10] for making NAO estimate the position and orientation of the metallophone in 3D space. The
robot needs this information in order to decide about its actions. The robot needs to estimate the position
of the metallophone in relation to its body. Then, according to this estimate the robot moves its arms, if the
metallophone is in a reachable position.

We propose a real-time approach for estimating the pose of a known object which can handle camera
displacements, aspect changes and illumination changes. More specifically, we match frames from robot’s
current view with a limited number of reference images (key-frames). This match results in a homography
matrix which is used for extracting the pose of the object in the current frame.

As discussed in Chapter 2, for estimating an object’s pose, based on monocular vision, some prior knowl-
edge of the object is necessary. In our approach, a sparse 3D metric model is used which means that it is not
necessary to use the dimensions of the whole object (3D CAD model). We need the locations of a few points
on the image, containing the object, with their corresponding 3D locations. In an offline stage, we create
these key-point models containing this information.

We use a set of images where each image has a view of the metallophone with slightly different illumi-
nation. The non-linear optimization algorithm, returns a refined 3D model of key-points. Using this model
which has the 3D coordinates of each key-point, the pose estimation is performed by using the correspon-
dences between the 3D points of the model and the 2D marked points on an input image.

During the online stage, the robot captures the current image of the musical instrument and we use a
feature detection and a feature matching algorithm to match the current image with reference images (key-
frames). This matching allows us to update the key-points’ position according to the current frame which
results in the pose estimation of the metallophone in the current frame. In other words, the matching of
input frame with key-frames results in a map of the key-frame on the current frame. This mapping change
the pose of key-frames according to the current view, consequently we get the current pose of the object.

3.1.1. Key-Frames Model Acquisition
To estimate object’s pose, our approach requires key-frames. Key-frames are reference images which depict
the metallophone and they contain 2D and 3D information of key-points. Since key-frames will be compared
with the input image, they should contain an appearance of the metallophone similar to the one in the input

23

24 3. Instrument Playing NAO

image. We assume that the appearance of the metallophone in the input image will be normal (i.e the met-
allophone will not be upside down) in front of the robot. We do not create key-frames to cover all possible
appearances of the metallophone due to variability across scale, orientation and viewpoint. Since we want to
create a robust system against different light conditions, we create key-frames to cover the variability across
illumination.

In an offline phase, we put the robot in the initial position and we capture the reference images using the
lower camera of the robot. Lower camera is preferred because the robot has a complete view of the object
without moving its head. Due to the convenience of the lower camera, no head movement is necessary in
this work. As a result, the calculation of object’s pose in relation to the robot is simplified.

Key-Points determination
Since key-frames are used for pose estimation, we need to generate 2D-3D correspondences. As key-points
we define the 2D and 3D coordinates which we set in our key-frames. We choose five key-points on the image
plane and we manually mark them by saving their 2D coordinates (Figure 3.1). We choose the four outer
corners of Mi notes and the fifth point is the center of the metallophone. The center point is not need to be
marked manually, it is calculated automatically using the four marked corner points. In these key-points, the
center of the object is necessary for representing the position of the object in 3D world coordinates. As far
as the other four points are concerned, there is not a specific rule about their choice. We could choose also
different ones.

Figure 3.1 depicts an example of a key-frame. The 2D coordinates of the points are not always the same
and they depend on the view of the object in the image. For this reason we need to manually extract these
coordinates for each key-frame.

Figure 3.1: Four points used for the 2D-3D correspondences

However, regarding the relative 3D coordinates of the key-points, their values are fixed, since the metallo-
phone is a rigid object. We set the center of the metallophone as the (0,0,0) in the world coordinate system.
Then we set the rest of the points since we know the dimensions (in centimeters) of the metallophone.

• Upper left point: (-9, 4.5, 0)

• Lower left point: (-9, -4.5, 0)

• Upper right point: (9, 3.25, 0)

• Lower right point: (9, -3.25, 0)

We explain more about how we use this information in subsection 3.1.4.

3.1.2. Image Processing
In pose estimation procedure, we process the images to make the matching phase between the current frame
and key-frame, more efficient and robust. We use an edge detection method to transform the image since the
metallophone has a characteristic shape of multiple rectangles. With this transformation we aim to create
more descriptive feature points which is going to make the image matching phase more stable and robust. In
addition, one of our goals is to develop a robust vision approach against different light conditions. Converting
the normal image into an edged image, we expect to achieve high accuracy in our results.

3.1. Pose estimation using NAO’s Monocular Vision 25

After retrieving the image from the robot (Figure 3.4), we use a Gaussian filter to reduce image noise and
to preserve the edges in the image. Gaussian smoothing preserves boundaries and edges better than other,
more uniform blurring filters. Then we use the Canny Edge [7] detection algorithm to extract only the edges
of the image.

Canny Edge Detection Overview
The Canny edge detector, developed in 1986 by Canny [7], uses a multi-stage algorithm to detect a wide range
of edges in images and it is the most used edge detector in image processing. The Canny edge detection
algorithm can be analyzed into four steps (According to OpenCV library’s implementation [4]):

1. Apply a Gaussian filter to the image in order to remove high frequency noise.

2. Compute the image’s gradient intensity representations. Canny Edge detection algorithm uses four
filters to detect edges in all directions (horizontal, vertical and diagonal) in the blurred image.

3. Apply non-maximum suppression to remove any unwanted pixels which may not constitute the edge.
The image magnitude produced results in thick edges. Ideally, the final image should have thin edges,
hence, non-maximum suppression thins out the edges.

4. The final step is called Hysteresis Thresholding, and at this step, the algorithm decides which edges are
strong enough to keep and which are not. For this, we need to give as input to the algorithm a dual-
threshold value, the minVal and the maxVal. Given these parameters, the algorithm keeps the edges
with intensity gradient more than maxVal and discard edges below minVal. The edges that lie between
the minVal and maxVal thresholds, are discarded if they are not connected with strong edges, otherwise
they are considered to be part of edges.

Figure 3.2: The edge A considered as a strong edge since it is above the maxVal and even if the edge C is below maxVal, it is connected to
edge A, thus edge C is also considered as valid edge and we get that full curve. Edge B is above the minVal but it is not connected to any

strong edge, thus, it is discarded. OpenCV documentation (https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html).

Figure 3.2 illustrates how the dual-threshold value works. It is hard to decide manually about these val-
ues, and they need small adjustments for every different image, otherwise the Canny edge algorithm’s perfor-
mance is poor. In our approach, we use an adaptive threshold Canny edge algorithm, based on Otsu method.
Otsu method performs well in choosing threshold value automatically and is proposed in 1979 [43]. This al-
gorithm splits the image’s pixels into two classes, and confirms the best threshold value through the variance
maximum value between the two classes [17]. Using adaptive thresholding on Canny edge algorithm, we suc-
ceed well shaped edges after the image processing. The most important is that we succeed well shaped edges
even if the initial image was taken in darker or brighter environment, and this contributes to make our pose
estimation more robust. At the final step of image processing, we dilate the edged image in order to make the
lines more solid.

3.1.3. Real time 2D Image Matching based on Image Features
At the online stage of our approach, NAO captures and retrieves an image containing its current view of the
bottom camera (Figure 3.4). Then, we process the input frame in the same way we processed key-frames
3.1.2, and in a while loop we match the current input frames with pre-computed key-frames. For the image
matching procedure, we use the feature extraction SIFT algorithm (Scale-Invariant Feature Transform) [37]

26 3. Instrument Playing NAO

(a) Image after Canny edge detection method (b) Image after dilation

Figure 3.3: Image processing steps

and a feature matching algorithm and we calculate the homography matrix between the two images. In this
way, we update the position of the key-points which are used in the pose estimation step.

s

x ′
y ′
1

= H ×
x

y
1

 (3.1)

where s is a scale factor and H is the homography matrix.

Figure 3.4: Image returned from NAO’s bottom camera

SIFT (Scale Invariant Feature Transform)
Scale Invariant Feature Transform (SIFT) is an algorithm in computer vision for detecting and describing
local features in images and it is commonly used for image-based matching and recognition [37]. The rea-
son that we chose this method is because SIFT descriptor is invariant to translations, rotations and scaling
transformations in the image domain. Moreover, it works robustly against perspective transformations and
illumination variations. Experiments have proven that the SIFT descriptor is an effective method in practice,
for image matching and object recognition under real-world conditions.

SIFT algorithm, automatically detects points on images with descriptive features and each returned point
has a descriptor. More specifically a 16x16 neighbourhood around the feature point is taken. It is divided
into 16 sub-blocks of 4x4 size. For each sub-block, 8 bin orientation histogram is created and a total of 128
bin values are available. The feature points’ descriptors are represented as vectors, and these vectors are
compared in order to find similarities between these points.

3.1. Pose estimation using NAO’s Monocular Vision 27

Brute Force Matcher
After extracting 2D points, with their descriptors, in both the key-frame and the current frame, the next step
is to compare the descriptors of each feature point between the two images. To do this we use the Brute force
matcher which takes the descriptor of one feature in the first set and is matched with all other features in
second set using some distance calculation and then the closest one is returned [4].

More specifically, there is a Boolean variable in the algorithm, the crossCheck variable which is false by
default. When the crossCheck variabe it is true, the brute force Matcher returns only those matches with
value (i,j) such that i-th descriptor in set A has j-th descriptor in set B as the best match and vice-versa. That
is, the two features in both sets should match each other.

After finding enough matches (Figure 3.5) between the two images we calculate the homography matrix
using the findHomography() function of the openCV library and then we map the key-points using the per-
spectiveTransform function of the openCV library.

Figure 3.5: Matching key-frame (left) with current image (right)

3.1.4. 3D Pose Estimation
Estimating the External Parameters Matrix
Since we have the calibration matrix, we just need to calculate the External Parameters matrix ([R|t]) in order
to be able to move from the 3D world points to 2D image plane points using the equation 2.1.

In the previous subsection, we saw how we update the 2D position of the key-points by matching the input
and reference images. Now, we solve the pose estimation problem using the OpenCV function solvePnP with
our key-points. The function solvePnP implements several algorithms for pose estimation. In this project, the
SOLVEPNP_ITERATIVE was used which is the DLT solution followed by Levengerg-Marquardt optimization,
giving stable results. More specifically, the solvePnP function takes five arguments, the 2D key-points coor-
dinates, the corresponding 3D key-points coordinates of the object, the camera intrinsics, the distortion of
the lens and the algorithm that we want to use (SOLVEPNP_ITERATIVE). The output of the solvePnP function
is a rotation and a translation vector and using the Rodrigues’ rotation formula, we can find the 3x3 rotation
matrix from the rotation vector. Therefore, given the camera intrinsic parameters and the key-points of the
object, we calculate camera extrinsic parameters (pose) between the object and the robot (Figure 3.6). Figure
3.7 illustrates the estimated pose of a current frame using the solvePnP function.

After computing R and t, using the equations 2.4 and 2.5 we retrieve the position of the object (center of
metallophone) in relation to NAO’s camera. Then with a simple translation we calculate the object’s position
in relation with robot’s body. In this way the robot knows that the metallophone is placed in a x,y,z point
in relation to its body. Then, the robot checks if it can reach this 3D point with its end-effector. In the next
section we present our approach for calculating the kinematics which is necessary for the robot in order to
move its arms.

28 3. Instrument Playing NAO

Figure 3.6: Connection between the coordinate systems

Figure 3.7: Five 3D points on the metallophone

3.2. NAO Kinematics
In Chapter 2 we presented some definitions about robot kinematics and the kinematic chains that the robot
has. In this section we present our approach for calculating the inverse kinematics of both arms of the robot.
Since the robot estimates the position of a note in 3D space, it must be able to move its arm in this position,
and to do this we need inverse kinematics.

3.2.1. Forward Kinematics
Before we proceed with the calculation of inverse kinematics, we need to create the kinematic chains of both
arms of the robot, holding the beaters. In this subsection we present how we created the kinematic chains
based on the DH parameters mentioned in Chapter 2.

Forward Kinematics for the Left Arm
The left arm of NAO constitutes a kinematic chain of five joints. Therefore, we need to calculate five sets of
DH parameters, one for each joint. The first step is to transfer the origin point from the torso to the base of
the first joint and we can achieve that by making a translation along the y-axis and the z-axis. The second
step that we need to follow, is to align the coordinate frame with the rotation axis of the first joint which
is the LShoulderPitch. This can be achieved by doing a rotation of −π

2 about the x-axis of the coordinate
frame, which means that the parameter α for the LShoulderPitch is −π

2 , while the parameters d and a are
set to 0. Now, the coordinate frame, must be rotated again to become aligned with the rotation axis of the
second joint which is the LShoulderRoll and this can be achieved by doing a rotation about the x-axis by
π
2 , hence the parameter α for LShoulderRoll is π

2 , while the parameters d and a are set to 0. Next, we need

3.2. NAO Kinematics 29

to align the coordinate frame with the rotation axis of the third joint which is the LElbowYaw. In order to
achieve this, we need to rotate the coordinate frame about the y-axis, however the DH parameters do not
directly encode a rotation about the y-axis, thus, we must first rotate about the z-axis and then about the
x-axis which is equivalent with a rotation on y-axis. The rotation on z-axis can be done by subtracting by -π2
the angle θ2, which is the angle of the previous joint, and then, we rotate about the x-axis by -π2 therefore
the parameter α for LElbowYaw is -π2 . Now, we need to move along the z-axis in order to reach the position
of the LElbowYaw joint, so the parameter d is set to UpperArmLength, as well as the parameter a is set to 0.
Subsequently, we need to rotate again the coordinate frame about the x-axis by π

2 in order to align the z-axis
with the LElbowRoll which means that the parameter α for the LElbowRoll is π

2 , while the parameters d and
a are set to 0. Finally, for the fifth joint (LWristYaw), we make a rotation about the x-axis in order to align the
z-axis with the LWristYaw joint and we move along the z-axis in order to reach the position of the LWristYaw
joint, so the parameter d is set to LowerArmLength, however, we add the HandOffsetX since we want to move
the coordinate frame at the point that the robot holds the stick. At the end, we need to fix the orientation
of the coordinate frame by doing a rotation about the x-axis and then about the z-axis as well as we make a
translation on the y-axis to reach the end-effector which is the end of the mallet (stick).

Table 3.1: DH parameters for the left arm chain of NAO robot

Frame a α d θ

Base A(0, ShoulderOffsetY + ElbowOffsetY, ShoulderOffsetZ)
LShoulderPitch 0 -π2 0 θ1

LShoulderRoll 0 π
2 0 θ2 − π

2
LElbowYaw 0 -π2 UpperArmLength -θ3

LElbowRoll 0 π
2 0 θ4

LWristYaw 0 -π2 LowerArmLength + HandOffsetX θ5

Rotation Rx (π2)
Rotation Rz (π2)
End effector A(0, -Stick, 0)

Forward Kinematics for the Right Arm
The right arm of NAO constitutes a kinematic chain of five joints and it is fully symmetric with the left arm
chain. Therefore, we need to calculate again five sets of DH parameters. The first step is to transfer the origin
point from the torso to the base of the first joint and we can achieve that by making a translation along the
y-axis and the z-axis. The second step that we need to follow, is to align the coordinate frame with the rotation
axis of the first joint which is the RShoulderPitch, by doing a rotation of −π

2 about the x-axis of the coordinate
frame. Now, the coordinate frame, must be rotated again to become aligned with the rotation axis of the
second joint which is the RShoulderRoll and this can be achieved by doing a rotation about the x-axis by π

2 .
Next, we need to align the coordinate frame with the rotation axis of the third joint which is the RElbowYaw.
In order to achieve this, we need to rotate the coordinate frame about the y-axis, however, the DH parameters
do not directly encode a rotation about the y-axis, hence we must first rotate about the z-axis and then about
the x-axis which is equivalent with a rotation on y-axis. The rotation on z-axis can be done by adding by π

2
the angle θ2, which is the angle of the previous joint, and then, we rotate about the x-axis by -π2 thus, the
parameter α for RElbowYaw is -π2 . Now, we need to move reversibly along to the z-axis in order to reach the
position of the RElbowYaw joint, so the parameter d is set to -UpperArmLength, as well as the parameter a is
set to 0. Subsequently, we need to rotate again the coordinate frame about the x-axis by π

2 in order to align
the z-axis with the RElbowRoll and finally, for the fifth joint (RWristYaw), we make a rotation about the x-axis
in order to align the z-axis with the RWristYaw joint and we move reversibly along to the z-axis in order to
reach the position of the RWristYaw joint, so the parameter d is set to -LowerArmLength, however, we add
also the HandOffsetX since we want to move the coordinate frame at the point that the robot holds the stick.
At the end, we need to fix the orientation of the coordinate frame by doing a rotation about the x-axis and
then about the z-axis as well as we make a translation on the y-axis to reach the end-effector which is the end
of the mallet (stick).

30 3. Instrument Playing NAO

Table 3.2: DH parameters for the right arm chain of NAO robot

Frame a α d θ

Base A(0, - ShoulderOffsetY - ElbowOffsetY, ShoulderOffsetZ)
LShoulderPitch 0 -π2 0 θ1

LShoulderRoll 0 π
2 0 θ2 + π

2
LElbowYaw 0 -π2 UpperArmLength θ3

LElbowRoll 0 π
2 0 θ4

LWristYaw 0 -π2 - LowerArmLength - HandOffsetX θ5

Rotation Rx (π2)
Rotation Rz (−π

2)
End effector A(0, Stick, 0)

3.2.2. Inverse Kinematics
We have already shown how we can determine the position and orientation of the end-effector, given the joint
coordinates, however, as we said before, we are interested in the inverse problem: given a desired pose of the
end-effector ξE , calculate the joint coordinates [11]. The functional form of the inverse kinematics problem
is:

q = K −1(ξ) (3.2)

and the solution of this equation is not unique. There is the possibility of different coordinate vectors q to
result in the same end-effector position and orientation.

Numerical solution
We use the Robotics Toolbox in Matlab [12] in order to pre-calculate the inverse kinematics. More specifically,
we used the function ikine() of Robotics Toolbox given as input all possible values of x and y coordinates
without taking into account the rotation and orientation of the end-effector.

We can think of the inverse kinematics problem as one of adjusting the joint coordinates until the forward
kinematics matches the desired pose. The general numerical approach does not provide explicit control over
the arm’s kinematic configuration as did the analytic approach as well as the general numerical approach is
slower than the analytic approach. However, the numerical approach has the advantage that is able to work
with manipulators at singularities and manipulators with either less or more than six joints.

3.2.3. Offline Calculation of Inverse Kinematics Based on Reachability Analysis
Our approach to solve the kinematic problem, is to use forward kinematics for calculating an initial position
for both arms and then to compute the inverse kinematics, in a specific range around the initial position,
using the Robotics toolbox [12] and the DH-parameters of NAO’s arms (Tables: 3.1, 3.2). Figure 3.8 and 3.9
illustrate the kinematic chains of both arms as are calculated in the Robotics toolbox using the DH parameters
mentioned above (Tables: 3.1, 3.2).

After creating both kinematic chains in the Robotics toolbox, we calculate the position of both end-
effectors with the maximum x distance that the robot is able to reach the metallophone. We put the robot
in the initial position, we attached the beaters in its hands and manually we gave the appropriate angles to
the motors in order to reach 2 metal bars in the maximum possible distance in the x-axis. Then, using the
function fkine() in the Robotics toolbox we found the 3D coordinates of this point and using this point as
a reference point, in a double for loop, we calculate the inverse kinematics, using the function ikine(), in a
range of 6cm in the x-axis and 18cm in th y-axis for both arms.

The kinematic analysis deployed only about the position on the x and y axes since we assume that the
height (z-axis) is fixed and we do not care about the orientation (ax , ay , az) of the end-effector. At the end we
save a matrix consisting of 6 columns and each line contains the x and y coordinates, in relation with NAO’s
body, and the angles in rads for the kinematic chain. Then, in the online phase of our system, NAO observe
the 3D position of the musical instrument and then using these coordinates it searches for the pre-calculated
kinematics and it moves its arms using the matches angles in the saved matrix.

However, even if we achieve high accuracy in the pose estimation phase, NAO’s actuators are not highly
accurate. Hence, even if the robot knows where to move its arms (end-effector) the accuracy of the motors is

3.3. Monocular Vision Based Control 31

Figure 3.8: Kinematic chain of NAO’s left arm

not enough to place the end-effector in the corresponding position. We analyze how we encounter with this
problem in the next section.

3.3. Monocular Vision Based Control
We have already shown how we managed to get the pose of the metallophone in relation with the robot’s
base frame (torso). We have also calculated the inverse kinematics for our kinematic chain (arms holding the
beaters), however, the robot was not always able to hit the metal bars accurately. In this section we explain
how we approach this issue by implementing visual-servoing techniques.

3.3.1. Visual-servoing approach
In our approach, we exploit both the 3D information extracted from the pose estimation phase and the 2D
information by detecting the head of the beater in the 2D space. Initially, the robot gets the 3D position of
the center of the metallophone in relation with its base frame, from our vision approach. Then, it places
the beaters above the red metal bars (Mi notes) which are -80cm and 80cm from the center point, using the
pre-calculated inverse kinematics. Then, the beaters are somewhere above the red metal bars, but with a
small random offset (error). For example, in Figure 3.10, the head of the beater should be inside the red
circle (desired position). Assuming that the beaters are in the appropriate depth, we use the visual-servoing
technique to correct the error in the z and y axes. The desired position of the beaters is 2cm above the red
metal bars. More specifically, we use the projectPoints function of the openCV liblary to project on the image
plane the desired position of the beaters as you can see in Figure 3.10. The projectPoints function takes as
input the extrinsic parameters (R,t) and a 3D point, and it returns the 2D projection of this point. In this way,
we project the points (-8, 0, 2) and (8, 0, 2).

Then we detect the actual position of the beaters and we use image-based visual-servoing to eliminate
the error between the actual and the desired position of the beater. Figure 3.10 depicts the desired position

32 3. Instrument Playing NAO

Figure 3.9: Kinematic chain of NAO’s right arm

is red circle and the actual is black circle. More specifically, for each arm, we firstly fix the error in the z-axis
(height) and then we fix the error in the y-axis.

Detection of the beater
For detecting the actual position of the beater we use the circle Hough Transform which is a basic technique
used in Digital Image Processing for detecting circular objects in a digital image. More specifically, we use
the HoughCircles function provided by the OpenCV library, based on the Hough gradient method [53]. The
aforementioned function takes as input the image that we want to detect a circle on, and other parameters
which must be selected wisely. To make the detection of circle more robust, we create a search window in the
2D image, around the position that we expect to find the beaters.

Fixing the error in the z-axis
In our kinematic analysis we assume that the arms are in a specific height, consequently we cannot fix this
error by adjusting the inverse kinematics parameters. In a while loop, we compare the pixel position of the
desired and the actual position of the beater and the robot moves its arm up or down by adjusting the shoulder
motor in pitch axis. In each loop the robot adjust its motor by one degree and it stops when the difference
between the 3D observed actual position and 2D actual position of the beater is smaller than a set threshold.

Fixing the error in the y-axis
Again in a while loop, we compare the pixel position of the desired and the actual position of the beater and
the robot adds or subtract 1mm in the y axis of the inverse kinematics. In each loop the robot adjust the x, y
coordinates of the inverse kinematics and it moves its arm left or right until the difference of the actual and
the desired position is smaller than a set threshold.

3.4. Real-Time Application for playing the metallophone 33

(a) Right Arm (b) Left Arm

Figure 3.10: Vision-Based Control

3.3.2. Technical implementation
This project consists of a real-time application and three offline applications (Figure 3.11). Starting with
the offline applications, we developed in python a program for calibrating robot’s camera using the opeCV
library [4]. Moreover, our work contains a program in python for the key-frames acquisition and a Matlab
code in which using the Robotics Toolbox [12] we create the kinematics chains and we calculate the inverse
kinematics.

The online application consists of four components. All of these are developed in python. First, in a 2D
image matching phase, the robot maps key-frames with current image. Then it estimates the pose of the
object. After that it uses the pre-calculated kinematics to move its arms, and finally it automatically vali-
dates the computed IK configurations based on a vision-based robot control approach and adapts its arm
configurations if it is necessary. An up-to date version of Musical NAO is available on this Github repository:
https://github.com/papakonst/Musical-NAO, along with a demonstration video of our approach.

Figure 3.11: Overview of the proposed system.

3.4. Real-Time Application for playing the metallophone
Initially the robot goes to its initial position and asks the user to move the metallophone in front of it. Then
the robot captures the metallophone and search for the best matching key-frame. Then, the pose estimation
phase returns information to the robot about the position and orientation of the instrument in 3D space.

34 3. Instrument Playing NAO

Especially, the robot knows how far is the metallophone (x-axis) in relation to its body and how far is the
center of the metallophone in relation to robot’s camera center (y-axis). In addition, the pose estimation
returns the distance between the metallophone and the camera in the z-axis.

NAO is able to hit (reach) all metal bars in a specific range of the aforementioned 3D dimensions, because
of its arms work space. Consequently we set some limits in which the robot is able to hit all metal bars.
In order to create an area in which the robot can reach all metal bars and the robot can detect the beaters
without moving its head, we set some limits. In the x-axis the we set a limit between 15cm to 17.5cm. This is
a distance in x-axis in which the robot can reach all metal bars. In the y-axis the center of the metallophone
cannot be more or less than 1cm away of the center of the camera. Finally, the rotation of the metallophone
around the z-axis cannot be more than 5 degrees. In our approach, we assume that the metallophone is in a
fixed height, thus, we do not use that dimension.

4
Evaluating the robustness of our approach

This chapter elaborates on the methodology to answer our research questions. In order to evaluate the effec-
tiveness and the efficiency of our approach for making NAO robot play the metallophone, we evaluated our
approach in our lab by creating different conditions which can affect the procedure of tracking and playing
the metallophone. We will first elaborate on a detailed description of the conditions under which we are going
to do our experiments. Then we present the experimental setup, the evaluated conditions, and the evaluation
metrics.

4.1. Tracking the musical instrument in different light conditions
In this experiment we evaluate the robustness of our vision approach in different light conditions. We want
to make the robot detect the metallophone independently of the light conditions. However, the on-board
cameras of the robot have some limitations. Robot’s cameras do not operate well in extreme light conditions
(too dark or too bright). There are unlimited combinations of illumination changes, hence we are not able to
test all possible situations. From our experience during the development of the application, we observed that
one parameter that affects our approach is the position of the source of the light (light direction), as well as
the source of light (natural light, artificial light). Hence, we are going to place the musical instrument in four
different places inside the lab with only artificial lights on. Then we are planning to do the same with the lab
windows opened in order to have the interference of the natural light.

4.1.1. Experimental setup
In this experiment we test two different scenarios of our approach. We use as a baseline our 2D matching
approach with one key-frame and then we extend our 2D matching approach using 10 key-frames.

• 2D image tracking based on 1 key-frame: In a preparation step, we create a key-frame with the (artifi-
cial) light source exactly above the metallophone.

• 2D image tracking based on 10 key-frames: In a preparation step, we create 10 different key-frames.
Four out of ten key-frames are taken for each direction of the artificial light (North, South, East, West),
another four key-frames are created in the same manner but with natural light interference, one key-
frame is created with the light source be exactly above the metallophone and the last one is created in
darker light conditions.

4.1.2. Measures
We evaluate these different scenarios by making the NAO track the metallophone 30 times in 15 different
random positions inside the lab (15 only artificial lights, 15 with natural light). We measure how many times
out of 30, the robot managed to track the metallophone for each scenario.

4.1.3. Results
• 2D image matching based on 1 key-frame: The robot could detect and track the metallophone inside

the lab, with 53.33% accuracy using only one key-frame.

35

36 4. Evaluating the robustness of our approach

• 2D image matching based on 10 key-frames: The robot could detect and track the metallophone inside
the lab, with 93.33% accuracy using ten key-frames.

(a) Input image in dark conditions (b) Processed input image in dark conditions

Figure 4.1: Input image in dark condition

Figure 4.1 depicts an example of an extremely dark, for robot’s camera, environment in which the robot
could not detect and track the metallophone using 10 key-frames.

4.2. Transferability of our software to different robots - differences between
robots’ motors

In this experiment we evaluate our Position-Based Visual Servoing implementation in order to observe if it is
possible to integrate our software in different robots.

4.2.1. Experimental setup
In this experiment we work in a specific position iside the lab with good light conditions and using 10 key-
frames for detecting the metallophone. Two different NAO robots are available in our lab, a version 5 (V5) and
a version 6 (V6). We test our approach on them as follows:

In a preparation step we deactivate the visual-servoing algorithm from our code and adjust the kinematic
configurations for the V6 robot. Then we run our code with this parameterization in the V5 robot. Then the V5
robot tries to hit all of the notes and we measure the successful hits. We do the same procedure by adjusting
the kinematic configurations for the V5 robot. Then we activate our visual-servoing approach and we use the
default kinematic configurations. After that, we run our code for each robot, the robot tries to hit all of the
notes and we measure the successful hits. We repeat this procedure 10 times.

4.2.2. Measures
As a measure we use the success rate of the hits. A successful hit is considered a movement in which the head
of the beater hits only the appropriate metal bar. The robot hits all the metal bars from left to right and the
observer records the successful hits.

4.2.3. Results
Adjusted kinematic configurations for V6 Robot, deactivated visual-servoing
We observed the successful hits after deactivating the visual-servoing implementation and keeping the kine-
matic configurations adjusted for the V6 robot. The V5 robot hit the metal bars with 50% accuracy.

Adjusted kinematic configurations for V5 Robot, deactivated visual-servoing
We observed the successful hits after deactivating the visual-servoing implementation and keeping the kine-
matic configurations adjusted for the V5 robot. The V6 robot hit the metal bars with 50% accuracy.

Default kinematic configurations, activated visual-servoing
By activating the visual-servoing implementation and using the default kinematic configurations both robots
hit the metal bars with 100% accuracy.

4.3. Robustness against inaccurate grasping of the beater 37

Figure 4.2: Success rate with visual-servoing activated and deactivated on V5 and V6 robots

We performed a qualitative experiment placing the robot in an environment with normal light conditions.
However, the visual-servoing part contains an extra vision task which is the detection of the beater (circle).
We only tested the robustness, against light conditions, of the pose estimation task, however in the final
experiment the visual-servoing part will also be tested in different light conditions.

4.3. Robustness against inaccurate grasping of the beater
In this experiment we evaluate our Position-Based Visual Servoing implementation in order to evaluate whether
it can handle the error of an inaccurate beater grasping. On the beaters’ grips, there is a sign (yellow line)
which must be aligned with the middle finger of NAO’s hand (Figure 4.3). However, it is possible for the robot
to grasp the beaters with a small offset. We expect that our approach can eliminate this error.

Figure 4.3: This is an example of a correct placement for the beater

4.3.1. Experimental setup
During this experiment we work in a specific position inside the lab with good light conditions and using
10 key-frames for tracking the metallophone. Working on a V6 Robot, in a preparation step we deactivate
the visual-servoing algorithm from our code and adjust the kinematic configurations for this robot. Then
we make a demonstration with this parameterization, and we purposely give the beaters to the robot with
a random offset. The robot hits once all of the metal bars and we measure the successful hits. We repeat
this procedure 10 times. Then we activate our visual-servoing approach and we use the default kinematic
configurations. Then we make a demonstration, and we give in purpose the beaters to the robot with a ran-
dom offset again. The robot hits once all of the metal bars and we measure the successful hits as defined in
experiment 2. Then we repeat the same procedure for the V5 robot.

4.3.2. Measures
During the demonstration, the experimenter observes the robot’s hits. As a measure we use the success rate
of the hits.

38 4. Evaluating the robustness of our approach

4.3.3. Results

Figure 4.4: Success rate with visual-servoing activated and deactivated

We observed that the robot could correct the error in most cases, however, when the offset of the beater
was very high the robot was not able to hit the appropriate metal bar. In conclusion, the robot could operate
well when the offset was less than approximately ±1.5cm.

4.4. Final evaluation with Human-robot interaction
We want to evaluate whether a person without any prior experience is able to setup NAO and the metal-
lophone such that NAO can start playing a song on it. The aim of this experiment is to evaluate the task
performance of a user who is asked to (i) put the metallophone in front of the robot so it can play it and (ii)
put the sticks for playing the metallophone in the NAO’s hands.

4.4.1. Experimental Setup
For this experiment, we choose a random place inside the lab in which we are going to place the robot and the
musical instrument. Then we power up the robot, we put it in a stand by mode and we place the metallophone
in a random position in front of the robot.

In this experiment we divide the users into two different groups. The users from the first group will place
the metallophone in the appropriate for the robot position by first receiving only auditory feedback and then
by receiving both auditory and visual feedback. The users from the second group are provided first with both
auditory and visual feedback and then with only auditory feedback. We want to test the effect of visual cues
in the interaction phase. All the detailed steps of the experimental procedure are depicted in Figure 4.5.

Before the experiment starts, the participants reads a detailed instruction sheet about the experimental
procedure and the actions that they need to do. When the participants are ready, the experimenter runs the
code, and then the participants only interact with the robot.

4.4.2. Measures
We evaluate the two different approaches by measuring the time needed for task completion and by counting
the attempts of the participants for each task. The timer starts when the application starts running. The
participant will try to place the metallophone in a position that is good for the robot within a time limit of 5
minutes. If the attempt is not successful, then the participant can try again. We follow the same procedure
for the placing of the beaters. After that, we investigate which is the fastest method and we check the usability
(complexity) by comparing the completion time of the two approaches and evaluating the responses of the
Likert scale survey.

4.4.3. Results
Each participant had 4 attempts to complete the task. In an overall of 80 demonstrations, based on 20 partic-
ipants, the robot tracked the metallophone, during the interaction phase, 78 times out of 80 and the partic-
ipants failed to give the beaters accurately 6 times out of 80. Regarding the successfully finished interaction
phases, the completing times were always much lower than the set limit of 5 minutes. In the graph (Figure 4.7)
you can see the average time spent per attempt. We observed that the preparation task was getting more easy
for the participants, after a few interactions. Moreover, according to the Likert scale, most of the participants
were satisfied with the frequency of the feedback provided by the robot and they found the placement of

4.4. Final evaluation with Human-robot interaction 39

Figure 4.5: Flowchart of the experimental procedure

the metallophone and beaters simple enough. Concerning the visual feedback, the opinions differ. Approxi-
mately half of the participants said that the visual feedback helped them to place the metallophone correctly
and the other half did not find it helpful.

Regarding the attempts that the participants completed the preparation task successfully, we evaluate
the successful hits that the robot achieve after hitting all the notes for one time. In total the robot hit the
metallophone with 91.45% accuracy and the distribution of successful hits is illustrated in Figure 4.6. The

40 4. Evaluating the robustness of our approach

failed hits were due to three main reasons. In some cases the visual-servoing approach failed to fix the error.
Moreover, some of the participants had difficulties in placing the beaters accurately in robot’s hands. The final
reason has to do with extreme cases in which the metallophone was rotated slightly below the acceptable limit
and the robot hit some metal bars inaccurately.

Figure 4.6: Percentages of successful hits among 80 attempts to play

Figure 4.7: Completing time per attempt

5
Discussions and Conclusions

The primary goal of this research was the development of a software for making NAO play the metallophone.
We aimed to make this software accessible and usable for everyone who owns a NAO robot, hence in our
research, we focused on the robustness of our approach. More specifically, we investigated the robustness of
our vision approach in different light conditions as well as the integration of our code on different NAOs. In
this section, we reflect on the results and discuss our findings. Furthermore, we elaborate on the limitations
of our study, and we present future research directions based on our findings.

5.1. Findings
5.1.1. Pose estimation based on key-points
For the pose estimation of the metallophone we chose a tracking by detection method based on key-frames.
In this approach, although a preparation phase for creating multiple key-frames with different illumination
is necessary, we observed that the pose estimation in different light conditions can be achieved with high
accuracy.

5.1.2. Pre-Calculation of Inverse Kinematics
For the kinematic part of our project we tried different approaches. At first we used the kinematics pro-
vided by the manufacturer [1], however, due to singularities, the robot had many failures in its movements.
Then, based on Kofinas et al.’s [33] work and using the Robotcs Toolbox in Matlab, we created the kinematic
chains of NAO’s arms and we calculated the DH parameters. Then, using the ikine() function of the Robotcs
Toolbox we pre-calculated the inverse kinematics for a large number of possible reachable positions of the
end-effector. To handle with the kinematic part, this approach has been successful, and the result has been
very accurate and fast.

5.1.3. Visual-Servoing Based on 3D Pose estimation and 2D Image Detection
Even though in theory the pose estimation and the kinematics part should work, we observed that we had
to adjust some configurations in the kinematics dynamically, for making the robot hit the metallophone ac-
curately. Even if the inverse kinematics were well computed, due to lack of accuracy in NAO’s motors, the
end-effector was always placed some millimeters away of the desired position. Hence, for each robot, we had
to adjust that offset manually which made the integration of the same code in different robots impossible.

Applying our visual-servoing approach, we made the robot detect and correct this offset automatically.
We evaluated our approach in different light conditions and we observed a low failure rate. Moreover, we
confirmed that we can integrate the same code in different robots and we achieved a robust hand-eye coor-
dination without using any markers attached on the robot’s arms.

5.1.4. Human Assistance for Placing the metallophone and the beaters
In our approach, the robot moves only its arms for playing the metallophone, hence we created a human
robot interaction phase in which a human, guided by the robot, places the metallophone in a good position
in front of it. Moreover, in our approach, the robot is not able to grasp the beaters on its own, thus, a human
also needs to place the beaters into the robot’s arms.

41

42 5. Discussions and Conclusions

For this interaction phase, we created an instruction sheet which helps users to understand the procedure
better. Then, we performed an experiment with 20 participants, and we found that it is fairly easy for anyone
to complete this task. Some participants faced some difficulties at their first attempts, indicating there is a
short learning phase, but in total all of the participant succeeded it.

5.2. Limitations and Future Research
In this section we discuss some of the limitations of our study. In general, in our work, the robot is limited to
play only the specific metallophone that we used at a specific height. Moreover, in this project, we focused on
the robot’s arms movements and the robot is not able to autonomously place itself, by using its legs, behind
the metallophone. In addition the head of the robot is considered to be in a fixed position and orientation.
Particularly, we operate with both angles of head motors set to zero degrees. This results in more limited
object tracking procedure. There are some ideas that we would like to develop. However, we focused more
in making the robot estimate the metallophone robustly and play it by moving its arms with high precision.
Future work concerns the enrichment of NAO’s movements, according to its visual perception. The following
idea could be tested:

• It could be interesting to make NAO move its head while it tries to detect the pose of the metallophone.
In this way, NAO will have a wider field of view.

• This extra adjustment could be followed by a walking phase in which the robot, autonomously, could
take an appropriate place behind the metallophone. However, to our knowledge, the precision of NAO’s
walking steps is not high enough to complete this task in reasonable time. A good idea could be to
develop an walking approach, in which the robot will make quite small and precise steps.

• In addition, the robot could adjust its body position in the z-axis in order to play the metallophone
placed at different heights. In our work, we adjust the motors of robot’s shoulders, in order to eliminate
small offsets (approximately 2cm) in z-axis. In cases which the metallophone is at a fixed height, our
approach performs well. However, if someone wants to make NAO can have more options about the
height of the metallophone it is important to make it adjust its body position in the z-axis.

Apart from placing the metallophone in a reachable position, the robot needs someone to place the beat-
ers in its hands. It could be interesting if the robot could detect and grasp by itself the beaters.

Concerning our pose estimation approach, the offline manual procedure of creating the key-frames and
marking the key-points could be replaced by a supervised learning procedure. In addition, an idea that we
did not develop, is to make the robot create automatically additional key-frames, during the online pose esti-
mation procedure. More specifically, when the robot detects a view of the metallophone that it has significant
changes (i.e in illumination) based on its current key-frames, it could capture more frames online and use it
as a key-frame in the future. For example, let as assume that the robot is placed in an environment in which
its best key-frame has 20 matched points with the current frame. The robot could automatically save the cur-
rent frame and transform it into a key-frame. In the next loop of the online tracking phase, the robot could
replace the previous (old) key-frame with the new one. Consequently, the matches between the key-frame
and the current frame will increase succeeding a more robust tracking procedure.

In our work, the pose estimation procedure is deployed before the robot starts playing. When the robot
detects the instrument in a good position, it assigns the corresponding kinematics for each note. After that,
the robot starts playing and it is not able to update the kinematics configurations in case of a change in the
instrument’s pose. In future work, the instrument’s pose could be updated continuously.

Finally, as far as the adjustments on kinematic configurations are concerned, we currently rely on the
detection of the end-effector in 2D. Even if we achieve satisfactory results, in our experiments, the robot is
not able to perceive the depth (x-axis) of the end-effector. This also affects the estimated position in the other
two dimensions y and z axes.

5.3. Conclusion
The high interest in humanoid robots in the education and entertainment field, including music, leads to
a need for developing relative applications which can be easily used by everyone. Instrument-playing hu-
manoid robots are used in both education and entertainment fields. In this work, we have engineered an
efficient and robust approach to enable the humanoid robot NAO play the metallophone. NAO is a commer-
cially available humanoid robot and thus very popular. We aimed to create an application that can be used

5.3. Conclusion 43

by everyone who owns a NAO and also by people who are not robot expert. Moreover, our work was used
by the Speelklok Museum in Utrecht. In Museum Speelklok, there are some of the first self-playing musical
instruments. Guides in the museum, uses our application to entertain children by playing songs. In addition,
there are sessions in which the visitors (mainly children), write their own songs and then NAO plays them.

Our work had to be easily integrated in different robots and perform well in different light conditions. To
achieve this task, we developed a model-based pose estimation approach for detecting the position and ori-
entation of the instrument. The robustness of our system relies on captured key-frames which contain a view
of the metallophone in different illumination conditions. We used pre-calculated forward kinematics to avoid
singularities and make robot’s moves more robust. Moreover, to eliminate variances in robot actuators, we
developed a vision-based robot control approach in which the robot automatically validates the computed
inverse kinematics configurations and adapts its arm configurations if it is necessary. In this vision-based
robot control approach, we proposed a simple and efficient detection of the end-effector, based on natural
features and the estimated pose of the musical instrument. In this way the robot achieved high accuracy in its
movements which is necessary for playing the metallophone. Moreover, we developed a human robot inter-
action phase in which a human places the metallophone in an appropriate for the robot position, according
to robot’s auditory feedback.

We evaluated the robustness of our vision approach by creating different illumination conditions. More-
over, we integrated our software on a version 5 and a version 6 robot and we evaluated the success rate of
playing the metallophone. Finally, we evaluated the simplicity of our application by deploying an experiment
in which users had to place the metallophone and the beaters in the appropriate place according to robot’s
feedback.

Our main results reveal that, our vision approach is robust in different illumination and therefore our
application can be used in different environments. We achieve high accuracy in robot’s hits due to the vision-
based control approach that we presented as well as our software can be easily integrated into different NAO
robots. In addition, in our vision-based control approach, no markers need to be attached on the robot. As
far as the interaction phase is concerned, we observed that users without experience in robotics can use this
application without issues.

Concluding, we developed an application ready to be used by everyone who has a NAO and the metallo-
phone used in this project. The outcome of this work proves that despite NAO’s limitations, it is possible to
make the popular humanoid NAO to play a musical instrument like the metallophone, leading to directions
for future research in the field of instrument playing humanoids.

A
Instructions for preparing the

metallophone (speech and visual cues)

We have developed software for a NAO robot that enables it to play the metallophone. We ask you to prepare
the setup of the metallophone for the NAO. We have already powered up the robot, as well as we have set it in
an initial position, so you do not have to move or touch the robot itself. Your task is to put the metallophone
in a spot in front of the NAO so it can see it and it will be able to play the metallophone. The metallophone is
already placed on its base and you are allowed to move the whole base.

1. The robot will ask you to place the metallophone in front of it, then it will try to find the instrument and
when it is done, it will inform you.

Figure A.1: Example of metallophone’s position in front of NAO

2. Then the robot will give you instructions (feedback) by speech about the (position of the metallophone
and you need to follow them up in order to place the metallophone in an appropriate for the robot
position. Moreover, the robot is going to give you visual feedback about the movement that you have
to do. On the computer’s screen, you can see what the robot sees by its camera like in the Figure below:

The green cross is in a fixed position in the center of the window frame, and the blue cross represents
the current position of the metallophone. Your task is to move the metallophone until the two crosses
are as close as possible.

3. When the metallophone is in a good for the robot position, then it will inform you by saying that “The
metallophone is in a good position, stop moving it”. Then the robot will ask you to press and hold its
head button in order to move into the next step.

45

46 A. Instructions for preparing the metallophone (speech and visual cues)

Figure A.2: Robot’s view from lower camera

4. Then the robot will ask you to place the beaters in its hands. Each beater has a yellow line which must
be aligned with the middle finger of NAO’s robot.

Figure A.3: This is an example of a correct placement for the beater

B
Post-experiment questionnaire

The feedback that the robot provided:

• Should be repeated more often

• Is repeated often enough

• Should not be repeated so often

It was clear to me what the robot said:

• Strongly disagree

• Disagree

• Neither agree nor disagree

• Agree

• Strongly agree

The visual feedback was clear to me:

• Strongly disagree

• Disagree

• Neither agree nor disagree

• Agree

• Strongly agree

Rate the complexity of placing the metallophone:

• Very Simple

• Simple

• Neither simple nor difficult

• Difficult

• Very difficult

47

48 B. Post-experiment questionnaire

Rate the complexity of placing the beaters:

• Very Simple

• Simple

• Neither simple nor difficult

• Difficult

• Very difficult

Please provide some additional comments that you have on the tasks you were asked to perform: Thank

you for kindly participating in this questionnaire.

Bibliography

[1] Robotics Aldebaran. Nao documentation. 2012, only available online: www.aldebaran-
robotics.com/documentation.

[2] Alyssa M. Batula and E. Kim. Youngmoo. Development of a mini-humanoid pianist. Humanoid Robots
(Humanoids), 2010, 10th IEEE-RAS International Conference on. IEEE, 2010.

[3] Oliver Birbach, Berthold Bäuml, and Udo Frese. Automatic and self-contained calibration of a multi-
sensorial humanoid’s upper body. ICRA. 2012.

[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[5] Gary Bradski, Adrian Kaehler, and Vadim Pisarevsky. Learning-based computer vision with intel’s open
source computer vision library. Intel technology journal 9.2 (2005).

[6] Cynthia Breazeal. Emotion and sociable humanoid robots. International Journal of Human-Computer
Studies, 59.1-2 (2003): 119-155.

[7] John. Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis and
machine intelligence 6 (1986): 679-698.

[8] K. Chida, I. Okuma, S. Isoda, Y. Saisu, K. Wakamatsu, K. Nishikawa, J. Solis, H. Takanobu, and A. Takan-
ishi. Development of a new anthropomorphic flutist robot wf-4. Robotics and Automation, 2004. Pro-
ceedings. ICRA’04. 2004 IEEE International Conference on. Vol. 1. IEEE, (2004).

[9] Changhyun Choi and Henrik I. Christensen. Robust 3d visual tracking using particle filtering on the
special euclidean group: A combined approach of keypoint and edge features. The International Journal
of Robotics Research 31.4 (2012): 498-519, .

[10] Changhyun Choi and Henrik I. Christensen. Real-time 3d model-based tracking using edge and keypoint
features for robotic manipulation. Robotics and Automation (ICRA), 2010 IEEE International Conference
on. IEEE, 2010., .

[11] Peter. Corke. Robotics, vision and control: Fundamental algorithms in matlab® second, completely
revised. Vol. 118. Springer, 2017., .

[12] Peter I. Corke. A robotics toolbox for matlab. IEEE Robotics Automation Magazine 3.1 (1996): 24-32., .

[13] Maier Daniel, Ramin Zohouri, and Maren Bennewitz. Using visual and auditory feedback for
instrument-playing humanoids. Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International
Conference on. IEEE, (2014).

[14] Daniel F. Dementhon and Larry S. Davis. Model-based object pose in 25 lines of code. International
journal of computer vision 15.1-2 (1995): 123-141.

[15] Jacques. Denavit. A kinematic notation for low pair mechanisms based on matrices. ASME J. Appl. Mech.
22 (1955): 215-221.

[16] Tom Drummond and Roberto Cipolla. Real-time visual tracking of complex structures. IEEE Transac-
tions on pattern analysis and machine intelligence 24.7 (2002): 932-946.

[17] Mei Fang, GuangXue Yue, and QingCang Yu. The study on an application of otsu method in canny op-
erator. Proceedings. The 2009 International Symposium on Information Processing (ISIP 2009). Academy
Publisher, (2009).

[18] Olivier Faugeras and OLIVIER AUTOR FAUGERAS. Three-dimensional computer vision: a geometric
viewpoint. MIT press, 1993.

49

50 Bibliography

[19] C. Fennema, A. Hanson, E. Riseman, J. R. Beveridge, and R. Kumar. Model-directed mobile robot navi-
gation. IEEE Transactions on Systems, Man, and Cybernetics 20.6 (1990): 1352-1369.

[20] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM 24.6 (1981):
381-395.

[21] I. Fujimoto, T. Matsumoto, P. R. S. De Silva, M. Kobayashi, and M. Higashi. Study on an assistive robot for
improving imitation skill of children with autism. International Conference on Social Robotics. Springer,
Berlin, Heidelberg, (2010).

[22] D. Gonzalez-Aguirre, M. Vollert, T. Asfour, and R. Dillmann. Robust real-time 6d active visual localization
for humanoid robots. Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE,
(2014).

[23] Iryna Gordon and David G. Lowe. What and where: 3d object recognition with accurate pose. Toward
category-level object recognition. Springer, Berlin, Heidelberg, 2006. 67-82.

[24] C. Graf, A. Härtl, T. Röfer, and T. Laue. A robust closed-loop gait for the standard platform league hu-
manoid. In Proceedings of the Fourth Workshop on Humanoid Soccer Robots in conjunction with the (pp.
30-37), (2009).

[25] B. M. Haralick, C. N. Lee, K. Ottenberg, and M. Nölle. Review and analysis of solutions of the three point
perspective pose estimation problem. International journal of computer vision 13.3 (1994): 331-356.

[26] Chris. Harris. Tracking with rigid models. Active vision (1992): 59-73.

[27] Richard Scheunemann Hartenberg and Jacques Denavit. Kinematic synthesis of linkages. McGraw-Hill,
1964.

[28] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge uni-
versity press, 2003.

[29] Uwe Hubert, Jorg Stuckler, and Sven Behnke. Monocular model-based 3d tracking of rigid objects: A
survey. Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference on. IEEE, 2012.

[30] Seth Hutchinson, Gregory D. Hager, and Peter I. Corke. A tutorial on visual servo control. IEEE transac-
tions on robotics and automation 12.5 (1996): 651-670.

[31] Reza N. Jazar. Theory of applied robotics: kinematics, dynamics, and control. Springer Science Business
Media, 2010.

[32] Y. E. Kim, A. M. Batula, D. Grunberg, D. M. Lofaro, J. Oh, and P. Y. Oh. Developing humanoids for musical
interaction. International Conference on Intelligent Robots and Systems, (2010).

[33] Nikos Kofinas, Emmanouil Orfanoudakis, and Michail G. Complete analytical inverse kinematics for
nao. Proceedings of the 13th International Conference on Autonomous Robot Systems and Competitions
(ROBOTICA). Vol. 13, (2013).

[34] Akio Kosaka and Avinash C. Kak. Fast vision-guided mobile robot navigation using model-based reason-
ing and prediction of uncertainties. CVGIP: Image understanding 56.3 (1992): 271-329.

[35] Ville Kyrki and Danica Kragic. Integration of model-based and model-free cues for visual object tracking
in 3d. Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference
on. IEEE, 2005.

[36] Vincent Lepetit and Pascal Fua. Monocular model-based 3d tracking of rigid objects: A survey. Founda-
tions and Trends® in Computer Graphics and Vision 1.1 (2005): 1-89.

[37] David G. Lowe. Distinctive image features from scale-invariant keypoints. nternational journal of com-
puter vision 60.2 (2004): 91-110.

[38] J. Michael. McCarthy. Introduction to theoretical kinematics. MIT press, 1990.

Bibliography 51

[39] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and T. Kanade. Gpu-accelerated real-time 3d
tracking for humanoid locomotion and stair climbing. Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on. IEEE, (2007).

[40] T. Mizumoto, H. Tsujino, T. Takahashi, T. Ogata, and H. G. Okuno. Thereminist robot: Development of
a robot theremin player with feedforward and feedback arm control based on a theremin’s pitch model.
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, (2009).

[41] Jorge J. Moré. The levenberg-marquardt algorithm: implementation and theory. Numerical analysis.
Springer, Berlin, Heidelberg, 1978. 105-116.

[42] Amine Abou Moughlbay, Enric Cervera, and Philippe Martinet. Real-time model based visual servoing
tasks on a humanoid robot. Intelligent Autonomous Systems 12. Springer, Berlin, Heidelberg, 2013. 321-
333.

[43] Nobuyuki Otsu. The study on an application of otsu method in canny operator. A threshold selection
method from gray-level histograms.

[44] Nikolaos P. Papanikolopoulos, Pradeep K. Khosla, and Takeo Kanade. Visual tracking of a moving target
by a camera mounted on a robot: A combination of control and vision. IEEE transactions on robotics
and automation 9.1 (1993): 14-35.

[45] Richard P. Paul. Robot manipulators: mathematics, programming, and control: the computer control of
robot manipulators. Richard Paul, 1981.

[46] Muriel Pressigout and Eric Marchand. Real-time 3d model-based tracking: Combining edge and texture
information. Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on. IEEE, 2006.

[47] Long Quan and Zhongdan Lan. Linear n-point camera pose determination. IEEE Transactions on pattern
analysis and machine intelligence 21.8 (1999): 774-780.

[48] Daniel J. Ricks and Mark B. Colton. Trends and considerations in robot-assisted autism therapy. Robotics
and Automation (ICRA), 2010 IEEE International Conference on. IEEE, (2010).

[49] Edward Rosten and Tom Drummond. Fusing points and lines for high performance tracking. Computer
Vision, 2005. ICCV 2005. Tenth IEEE International Conference on. Vol. 2. IEEE, (2005).

[50] Luca Vacchetti, Vincent Lepetit, , and Pascal Fua. Stable real-time 3d tracking using online and offline
information. IEEE transactions on pattern analysis and machine intelligence 26.10 (2004): 1385-1391, .

[51] Luca Vacchetti, Vincent Lepetit, and Pascal Fua. Combining edge and texture information for real-time
accurate 3d camera tracking. Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and
Augmented Reality. IEEE Computer Society, 2004., .

[52] G. Weinberg, T. Mallikarjuna, and A. Ramen. Interactive jamming with shimon: A social robotic mu-
sician. Proceedings of the 4th ACM/IEEE international conference on Human robot interaction. ACM,
(2009).

[53] H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler. Comparative study of hough transform methods for
circle finding. Image and vision computing 8.1 (1990): 71-77.

[54] Zhengyou. Zhang. A flexible new technique for camera calibration. IEEE Transactions on pattern analysis
and machine intelligence 22 (2000).

	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Vision-Based position estimation of the musical instrument
	Inverse Kinematics for playing the metallophone
	Low precision in NAO's actuators

	Research Objective
	Research Questions

	Contribution
	Outline

	Background
	Instrument Playing Humanoid NAO
	Model-Based Object Pose Estimation
	Mathematical Model
	Estimating the External Parameters Matrix
	The Perspective-n-Point (PnP) Problem
	Monocular 6-DOF Pose Estimation
	Overview of model-based pose estimation from natural features implementations on NAO robot
	NAO's Vision Hardware

	Robot Kinematics
	NAO Kinematics
	Forward Kinematics
	Inverse Kinematics
	Affine Transformations
	Denavit-Hartenberg (DH) Parameters
	Overview of Kinematics applied on NAO

	Vision-Based Control
	Overview of Visual-Servoing methods applied on NAO

	Instrument Playing NAO
	Pose estimation using NAO's Monocular Vision
	Key-Frames Model Acquisition
	Image Processing
	Real time 2D Image Matching based on Image Features
	3D Pose Estimation

	NAO Kinematics
	Forward Kinematics
	Inverse Kinematics
	Offline Calculation of Inverse Kinematics Based on Reachability Analysis

	Monocular Vision Based Control
	Visual-servoing approach
	Technical implementation

	Real-Time Application for playing the metallophone

	Evaluating the robustness of our approach
	Tracking the musical instrument in different light conditions
	Experimental setup
	Measures
	Results

	Transferability of our software to different robots - differences between robots’ motors
	Experimental setup
	Measures
	Results

	Robustness against inaccurate grasping of the beater
	Experimental setup
	Measures
	Results

	Final evaluation with Human-robot interaction
	Experimental Setup
	Measures
	Results

	Discussions and Conclusions
	Findings
	Pose estimation based on key-points
	Pre-Calculation of Inverse Kinematics
	Visual-Servoing Based on 3D Pose estimation and 2D Image Detection
	Human Assistance for Placing the metallophone and the beaters

	Limitations and Future Research
	Conclusion

	Instructions for preparing the metallophone (speech and visual cues)
	Post-experiment questionnaire
	Bibliography

