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Adaptive Synchronization of Uncertain Complex Networks
under State-dependent a priori Interconnections

Tian Tao1, Spandan Roy2 and Simone Baldi3

Abstract— We address a distributed adaptive synchronization
problem for complex networks composed of nonlinear nodes
under state-dependent a priori interconnections, i.e. intercon-
nection terms acting before control design. The interconnection
terms are uncertain and the heterogeneous dynamics of the
network nodes further contain state-dependent uncertainty
and uncertain input matrix gain. Adaptive distributed control
laws are proposed to tackle such an unsolved design. The
proposed controller is verified in simulation via a multi-area
load frequency control for power systems.

I. INTRODUCTION

Complex networks are used to describe multi-agent sys-
tems that can interact with each other in order to achieve a
common desiblack goal, such as synchronization. Synchro-
nization of complex networks has wide application, including
cooperative vehicles [1], robotic systems [2], social networks
[3], smart grids [4]. Synchronization can be achieved without
[5]–[7] or with a leader [8], [9], whose dynamics can be
known or unknown [10]–[12].

With the increasing number of nodes in many modern
networks, it is often impractical to have every node com-
municate with the leader. Pinning control was thus proposed
in synchronization for complex networks, where only a
small fraction of network nodes is directly controlled by the
leader (which is often referblack to as pinner) [13] [14]–
[16]. Network nodes might have different (heterogeneous)
dynamics in most situations [17], and it is known that hetero-
geneity and uncertainty may destabilize synchronicity [18].
Heterogeneity and uncertainty can affect both the drift terms
but also the input matrix gain [11], [19]. Typical uncertainty
structures in the literature include linear-in-the-parameter
(LIP) structure [10], [19] or Lipschitz-like condition [14]–
[16].

While uncertainty is often consideblack in node dynamics,
interconnection terms acting a priori before control design
are often overlooked [11], [19], [20]. In fact, standard lit-
erature considers a posteriori linear or nonlinear couplings,
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which are the result of the control design but are nonexistent
before design. However, in many practical applications,
e.g. Kuramoto dynamics in power systems [21]–[24], state-
dependent interconnection terms exist a priori. In some
literature, a priori interconnection is taken to be known either
in linear form [14], [18], [25] or in nonlinear (typically
sinusoidal, i.e. a priori bounded) form [6], [17], [26].

The main contribution of this paper is proposing a novel
adaptive distributed protocol targeting the synchronization
for complex networks under heterogeneity, uncertainty and
state-dependent interconnections. We focus on second-order
nonlinear heterogeneous dynamics with uncertainty in the
drift terms and the input matrix gain; most importantly, we
consider state-dependent interconnection which is also un-
certain. Synchronization is shown in the uniform ultimately
bounded (UUB) sense, which is in line with the few existing
literature considering a priori interconnection [5], [6], [14],
[17], [18], [25], [26].

The rest of this paper is organized as follows: Section
II presents some basic notation and the synchronization
problem we want to address. In Section III, uncertainty
is analyzed and the adaptive synchronization controller is
designed. A numerical simulation is given in Section IV.

II. PROBLEM FORMULATION

The following notation is used: I represents the identity
matrix of appropriate dimension; ‖ · ‖ and (·)g denotes the
2-norm and generalized inverse of (·); λ(·) and λ(·) are the
minimum and maximum eigenvalues of a symmetric matrix.

A complex network can be described by a graph G =
(V, E), where V , (v1, . . . , vN ) is the set of N nodes (or
agents) in the network and E ⊆ V × V is the set of edges
interconnecting the nodes. A pair of nodes (vj , vi) represents
that agent i has access to the information from agent j, i.e.
agent j is a neighbour of agent i. Accordingly, Ni denotes
the set of the neighbors of agent i.

The topology of a weighted graph is represented by the
adjacency matrix A = [aij ] ∈ RN×N with aij > 0 if
(vj , vi) ∈ E and aij = 0 otherwise. We assume there are
no self-loops, that is, aii = 0 for i = 1, . . . , N . When
the graph G is undirected, aij = aji. The Laplacian matrix

L = [lij ] of G is defined as lii =
N∑

j=1,j 6=i
aij and lij = −aij

for i 6= j. The augmented graph Ḡ = (V̄, Ē) contains
the aforementioned N agents and a leader node v0, where
V̄ = {v0, v1, . . . , vN} and Ē = E ∪ {(vi, v0) : bi > 0}, with
bi being the pinning weight of the edge from the leader node
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to node i; if agent i is pinned, then bi > 0 and agent i can
obtain information from the leader node. Otherwise, bi = 0.

Assumption 1. The augmented graph Ḡ is connected, and
contains a spanning tree with the root being the leader node.

A. Synchronization Problem

We consider a complex network with N second-order
agents. The nonlinear dynamics of each agent i for i =
1, . . . , N are given as:

ẍi(t) = fi(xi(t), ẋi(t)) + hi(ei(t), ėi(t)) + Liui(t) (1)

where xi, ẋi ∈ Rn are the states, ui ∈ Rm with m ≥ n is the
control input, fi : Rn×Rn → Rn is the unknown drift term,
Li ∈ Rn×m is an uncertain full rank input gain matrix, and
hi : Rn × Rn → Rn denotes the nonlinear interconnection
term dependent on the local synchronization errors ei ∈ Rn
and on its derivative ėi ∈ Rn defined as [9]

ei(t) =

N∑
j=1

aij
(
xi(t)− xj(t)

)
+ bi

(
xi(t)− x0(t)

)
(2a)

ėi(t) =

N∑
j=1

aij
(
ẋi(t)− ẋj(t)

)
+ bi

(
ẋi(t)− ẋ0(t)

)
. (2b)

Finally, x0 is the desiblack trajectory of the leader node,
which, as standard in complex network literature [11], is gen-
erated by autonomous bounded dynamics, i.e. x0, ẋ0, ẍ0 ∈
L∞.

To describe the uncertainty in Li, let us decompose Li =
L̂i+ ∆Li into a known (nominal) L̂i and an unknown ∆Li.
The following assumption on a priori knowledge is made:

Assumption 2. There exists a known scalar J̄ such that for
Ji , (LiL̂

g
i − I) the following holds

‖Ji‖ ≤ J̄ < 1. (3)

Assumption 2 is common for practically relevant fully-
actuated (m = n) [27], [28] and over-actuated (m > n)
systems [29], [30].

The assumptions on the uncertain terms fi(xi, ẋi) and
hi(ei, ėi) are:

Assumption 3. There exist unknown scalars f̄0i, f̄1i, f̄2i, h̄0i,
h̄1i, h̄2i ∈ R+ such that ‖fi(xi, ẋi)‖ ≤ f̄0i + f̄1i‖xi‖ +
f̄2i‖ẋi‖, ‖h(ei, ėi)‖ ≤ h̄0i + h̄1i‖ei‖+ h̄2i‖ėi‖.

A few remarks on the importance of Assumption 3, as
compablack to the state-of-the-art, are given.

Remark 1. The upper bound structure in Assumption 3
appears in mechanical dynamics, power flows, biochemical
reactions (e.g. with Monod dynamics) [28], [31], [32].
However, we are not aware of works studying how to address
such upper bounds when the agents are interconnected in a
network.

Remark 2. Heterogeneous nodes are sometimes conside-
black in the literature [10], [11], [19], [20], but without
interconnection terms before the control design. It is an open

problem to consider heterogeneous agents interconnected by
heterogeneous terms without a priori constant bound.

From (2), we can obtain that

e = −(L+B)⊗ (x− x0) = −(L+B)⊗ δ (4)

where B = diag (b1, . . . , bN ) ∈ RN×N , e =
[e1, . . . , eN ]T ∈ RnN , x = [x1, . . . , xN ]T ∈ RnN ,
x0 = (1N ⊗ x0) ∈ RnN , and δ = (x− x0) ∈ RnN
represents the global synchronization error with the leader
state.

Lemma 1. [33] Owing to Assumption 1,

‖δ‖ ≤ ‖e‖
λ(L+B)

(5)

with λ(L + B) being the minimum eigenvalue of (L + B),
which is positive.

III. CONTROLLER DESIGN

A. Uncertainty Analysis

Define a local error state ξi = [ei ėi qi q̇i]
T and a variable

ri = [Pi In]ξi (6)

where Pi ∈ Rn×n is a user-defined positive definite matrix.
The controller for each agent is designed as

ui = L̂gi (−Kiri −∆ui) (7a)
∆ui = ρisgn(ri) (7b)

ρi =
1

(1− J̄)

(
θ̂0i + θ̂1i‖ξi‖+ γi

)
(7c)

where Ki ∈ Rn×n is a user-defined positive definite matrix,
sgn(ri) = ri

‖ri‖ . The variables θ̂li and γi for l = 0, 1 are
updated by adaptive laws that will be designed in Section
III.B.

The dynamics of ėi can be calculated from (2b) as

ëi = ǎiẍi −
N∑
j=1

aij ẍj − biẍ0 (8)

where ǎi = (bi +
N∑
j=1

aij) > 0. We multiply (8) by 1
ǎi

, and

calculate the dynamics of the local synchronization error:

1

ǎi
ëi = ẍi −

N∑
j=1

aij
ǎi
ẍj −

bi
ǎi
ẍ0

=fi(xi, ẋi) + hi(ei, ėi) + (LiL̂
g
i − I)(−Kiri −∆ui)

− bi
ǎi
ẍ0 − (Kiri + ∆ui)−

N∑
j=1

āij

[
fj(xj , ẋj) + hj(ej , ėj)

+ (LjL̂
g
j − I)(−Kjrj −∆uj) + (Kjrj + ∆uj)

]
=−Kiri− ei− (I + Ji)∆ui+

N∑
j=1

āij(I + Jj)∆uj+ψij (9)



where āij =
aij
ǎi

and ψij acts as an aggregate uncertainty

ψij ,
[
fi(xi, ẋi) + hi(ei, ėi)− JiKiri

]
− bi
ǎi
ẍ0 + ei

−
N∑
j=1

āij
[
fj(xj , ẋj) + hj(ej , ėj)− JjKirj

]
. (10)

According to (6), we get

1

ǎi
ëi =

1

ǎi
ṙi −

1

ǎi
Piėi. (11)

Substituting (11) into (9), the dynamic of ri are

ṙi
ǎi

=−Kiri−(I + Ji)∆ui+

N∑
j=1

āij(I + Jj)∆uj+ψ̄ij

(12)

where ψ̄ij = ψij + 1
ǎi
Piėi.

According to the definition of ‖ξi‖, it holds that
‖ei‖ ≤ ‖ξi‖, ‖ėi‖ ≤ ‖ξi‖, ‖xi‖ ≤ ‖ξi‖, ‖ẋi‖ ≤ ‖ξi‖.
Combined with ‖ri‖ ≤ (1 + ‖Pi‖)‖ξi‖, we obtain

‖ψ̄ij‖ ≤
(
f̄0i+ f̄1i‖xi‖+ f̄2i‖ẋi‖+h̄0i+h̄1i‖ei‖+h̄2i‖ėi‖

)
+
bi
ǎi
‖ẍ0‖+

N∑
j=1

āij

(
f̄0j + f̄1j‖xj‖+ f̄2j‖q̇j‖+

h̄0j + h̄1j‖ej‖+ h̄2j‖ėj‖
)

+ ‖Ji‖‖Ki‖‖Pi‖‖ξi‖

+

N∑
j=1

āij‖Jj‖‖Kj‖‖Pj‖‖ξj‖+
1

ǎi
‖Pi‖‖ėi‖+ ‖ei‖

≤ θ∗0i + θ∗1i‖ξi‖+

N∑
j=1

ϕ∗1j‖ξj‖ (13)

where θ∗0i, θ
∗
1i, ϕ

∗
1j ∈ R+ defined as

θ∗0i = f̄0i + h̄0i +
bi
ǎi
x̌0 +

N∑
j=1

āij
(
f̄0j + h̄0j

)
(14a)

θ∗1i = f̄1i + f̄2i + h̄1i + h̄2i + ‖Pi‖
( 1

ǎi
+ J̄‖Kj‖

)
+ 1

(14b)

ϕ∗1j = āij
[
(f̄1j + f̄2j) + h̄1j + h̄2j + J̄‖Kj‖‖Pj‖

]
(14c)

are unknown constants with x̌0 ∈ R+ such that ‖ẍ0‖ ≤ x̌0.

B. Adaptive Synchronization Controller Design

The adaptive laws in (7c) are designed as:

˙̂
θ0i = ‖ri‖ − α0θ̂0i (15a)
˙̂
θ1i = ‖ri‖‖ξi‖ − α1θ̂1i (15b)

γ̇i = −(ε0 + ε1‖ξi‖5 − ε2‖ξi‖3)γi + βi (15c)

initial condition θ̂0i(0) > 0, θ̂1i(0) > 0, γi(0) > νi (15d)
α0, α1, ε0, ε1, ε2, βi, νi ∈ R+ (15e)

with the following inequalities
ε0 ≥ 1 + ε2, ε1 ≥ ε2. (15f)

Fig. 1: Network topology for five-area load frequency control

The inequalities in (15f) are designed to guarantee that the
term ’ε0 +ε1‖ξi‖5−ε2‖ξi‖3’ in (15c) is positive for all ‖ξi‖.

Theorem 1. Under Assumptions 1-3, the trajectories of
the closed-loop composed of the complex network dynamics
(1), the distributed control law (7) and distributed adaptive
law (15) are Uniformly Ultimately Bounded (UUB) with the
ultimate bound on the local synchronization error e as

U =

√
2χ

(ζ − κ)
(16)

where χ =
N∑
i=1

(
α0θ
∗
0i

2

2 +
α1θ
∗
1i

2

2

)
+

N∑
i=1

2ζγ̄i
γ
i

; κ is

a scalar satisfying 0 < κ < ζ with ζ =
min

{
min
i∈Ω

λ(Ki),min
i∈Ω

λ(Pi), α0/2, α1/2
}

max{1/2â, 1/2}
, where â =

min
i∈Ω
{ǎi}.

Proof. See Appendix.

According to Lemma 1, the UUB on local synchronization
error e implies the UUB on global synchronization error δ.

IV. SIMULATION EXAMPLE

To validate the proposed design, we consider the power
network dynamics of a five-area load frequency control
(LFC). The five areas are connected as in Fig. 1.

The dynamics of LFC can be written as (1) where
f(xi, ẋi) = (− 1

Tpi
− kpi

TpiRi
)ẋi − kpi

Tpi
(∆Pdi + ∆Ei),

h(ei, ėi) = ∆Pij , Li =
kpi
Tpi

. These parameters represent
generator inertias for each area (Tpi) and local droop gains
(kpi, Ri): the interested reader is referblack to [22], [34] for
more details in the model and its parameters.

Here xi, ẋi ∈ R represent the deviation of phase and
frequency of each area from the operating point; ∆Pij is
power flow coming from the interaction among neighbour
areas; ∆Pdi is an unmeasurable load disturbance and ∆Ei
is the measurable area control error. We consider both
• linear interconnection ∆Pij =2πTi

∑
j∈Ni

(xi−xj);
• nonlinear interconnection ∆Pij =2πTi

∑
j∈Ni

sin(xi−
xj).

Power dynamics are a special case of (1) with the uncertain-
ties f(xi, ẋi), h(ei, ėi) conforming to Assumption 3. These
interconnection terms exist before the control design, and
they are unknown for control purposes.



(a) Phase and frequency devia-
tion of the five areas with linear
interconnection

(b) Phase and frequency devia-
tion of the five areas with non-
linear interconnection

(c) Adaptive gains θli, l = 0, 1
of the five areas with linear in-
terconnection

(d) Adaptive gains θli, l = 0, 1
of the five areas with nonlinear
interconnection

Fig. 2: Synchronization performance with both linear (1st and 3rd plot) and nonlinear (2nd and 4th plot) interconnection

Without loss of generality, Area 0 is taken as the leading
area, with autonomous dynamics x0 = 1, ẋ0 = 0, ẍ0 = 0.
For each area, the parameters are:
Area-1: Tp1 = 10,

kp1

Tp1

= 0.1, R1 = 0.05, T1 = 2, B̃1 = 41, k1 = 0.5

Area-2: Tp2 = 8,
kp2

Tp2

= 0.083, R2 = 0.05, T2 = 5, B̃2 = 81.5, k2 = 0.5

Area-3: Tp3 = 8,
kp3

Tp3

= 0.063, R3 = 0.05, T3 = 8, B̃3 = 62, k3 = 0.6

Area-4: Tp4 = 10,
kp4

Tp4

= 0.09, R4 = 0.03, T4 = 2, B̃4 = 50, k4 = 0.4

Area-5: Tp5 = 7,
kp5

Tp5

= 0.075, R5 = 0.06, T5 = 3, B̃5 = 55, k5 = 0.7

These parameters are used for simulation purposes, but
unknown for control design.

We select Pi = 3.3, Ki = 60, ε = 0.1, ∆Pdi =
−0.1 sin((0.5t)i). The parameters in adaptive distributed
control law (15) are ε0 = 55, ε1 = 3, ε2 = 0.003, α0i =
α0i = 9, βi = 3150.

The simulation results shows that the synchronization
behavior of network nodes with linear interconnection and
nonlinear interconnection follows a similar pattern. The
phase and frequency deviation of five areas converge to the
desiblack values both for linear and nonlinear interconnec-
tion, cf. Figures 2a and 2b. The adaptive gains θli, l = 0, 1
for i = 1, . . . , 5 for linear and nonlinear interconnection are
shown in Figures 2c and Figures 2d, respectively.

V. CONCLUSION

An adaptive synchronization problem for complex net-
works with state-dependent uncertainty and uncertain non-
linear interconnection has been consideblack under the chal-
lenging assumption that the interconnection terms are state
dependent and exist before control design. This work is a
preliminary study and further investigations are of interest:
it is of interest to generalize the approach in the sense of
handling more general dynamics and more general structures
of the interconnections. In view of the bounded error result,
it is also of interest to replace the sign function with a
saturation function so as to avoid discontinuities in the ontrol
action.

APPENDIX

Proof of Theorem 1. Construct a Lyapunov function as:

V (t) =
1

2

N∑
i=1

{
1

ǎi
rTi (t)ri(t) + eTi (t)ei(t) +

2γi(t)

γ
i

+ (θ̂0i(t)− θ∗0i)2 + (θ̂1i(t)− θ∗1i)2

}
. (17)

Investigating the adaptive laws (15a)-(15c) and the initial
gain conditions (15d)-(15e), it can be verified that there exists
positive fixed scalars γ

i
such that

θ̂li(t) ≥ 0, γi(t) ≥ γi > 0 ∀t ≥ 0 (18)

with l = 0, 1. In the following, we ignore the argument (t)
of time-varying variables, i.e., V = V (t) to simplify the
notation.

From (12), the time derivative of (17) is obtained as

V̇ ≤−
N∑
i=1

rTi Kiri + (I + J̄)

N∑
i=1

∑
j∈Ni

āijρjr
T
i sgn(rj)

−
N∑
i=1

{
(1− J̄)ρir

T
i sgn(ri)−

∑
j∈Ni

‖ri‖‖ψ̄ij‖+ eTi Piei

}

+

N∑
i=1

{
γ̇i
γ
i

+

1∑
l=0

(θ̂li − θ∗li)
˙̂
θli

}
. (19)

According to (13), and according to (6) we have ‖ri‖ ≤
(1 + ‖Pi‖)‖ξi‖, it follows that

‖ri‖‖ψ̄ij‖ ≤ ‖ri‖
{
θ∗0i + θ∗1i‖ξi‖+

∑
j∈Ni

ϕ∗1j‖ξj‖
}

(20)

ϕ∗1j‖ri‖‖ξj‖ ≤ ϕ∗1j(1 + ‖Pi‖)‖ξi‖‖ξj‖. (21)

Since ‖ sgn(rj)‖ = 1 and θ̂0j ≤ θ̄0j + θ̌0j‖rj‖, θ̂1j ≤ θ̄1j +



θ̌1j‖rj‖‖ξj‖ with θ̄lj , θ̌lj ∈ R+, l = 0, 1, we have

(1 + J̄)

N∑
i=1

∑
j∈Ni

āijρjr
T
i sgn(rj)

≤(1 + J̄)

N∑
i=1

∑
j∈Ni

āijρj‖ri‖

≤J
′
N∑
i=1

∑
j∈Ni

{
āij θ̄0j(1 + ‖Pi‖)‖ξi‖

+ āij θ̌1j(1 + ‖Pi‖)(1 + ‖Pj‖)‖ξi‖‖ξj‖3 + āijγj‖ri‖
}

+ āij
[
θ̌0j(1 + ‖Pj‖) + θ̄1j

]
(1 + ‖Pi‖)‖ξi‖‖ξj‖ (22)

where J
′

=
1 + J̄

1− J̄
is a constant.

Similarly, define an overall term ∆ij coming from agents
j as

∆ij =

N∑
i=1

∑
j∈Ni

{
(1 + J̄)āijρjr

T
i sgn(rj) + ϕ∗1j‖ri‖‖ξj‖

}

≤J
′
N∑
i=1

∑
j∈Ni

{
āij(θ̄0j + γ̄j)(1 + ‖Pi‖)‖ξi‖

+
[
āij
(
θ̌0j(1 + ‖Pj‖) + θ̄1j

)
+ ϕ∗1j

]
(1 + ‖Pi‖)‖ξi‖‖ξj‖

+ āij θ̌1j(1 + ‖Pi‖)(1 + ‖Pj‖)‖ξi‖‖ξj‖3
}
. (23)

According to (7c), we have

− (1− J̄)

N∑
i=1

ρir
T
i sgn(ri) = −(1− J̄)

N∑
i=1

ρi‖ri‖

=−
N∑
i=1

[(
θ̂0i + θ̂1i‖ξi‖+ γi

)]
‖ri‖. (24)

According to (19), (23) and (24), we obtain

V̇ ≤−
N∑
i=1

rTi Kiri −
N∑
i=1

{ 1∑
l=0

(θ̂li − θ∗li)‖ξi‖l‖ri‖
}

+

N∑
i=1

∑
j∈Ni

∆ij −
N∑
i=1

eTi Piei

+

N∑
i=1

{ γ̇i
γ
i

+

1∑
l=0

(θ̂li − θ∗li)
˙̂
θli

}
. (25)

Using (15a)-(15c), we have

(θ̂li − θ∗li)
˙̂
θli = (θ̂li − θ∗li)‖ξi‖l‖ri‖+ (αliθ̂liθ

∗
li − αliθ̂2

li)
(26)

for l = 0, 1 and i = 1, . . . , N . The last terms of (26) can be
written as

αliθ̂liθ
∗
li − αliθ̂2

li ≤ −
αli(θ̂li − θ∗li)2

2
+
αliθ

∗
li

2

2
. (27)

Similarly, with γi(t) ≥ γi > 0, (15c) leads to

N∑
i=1

γ̇i
γ
i

=

N∑
i=1

1

γ
i

− (ε0 + ε1‖ξi‖5 − ε2‖ξi‖3)γi + βi

≤
N∑
i=1

[
−
(
ε0 + ε1‖ξi‖5 − ε2‖ξi‖3

)
+
βi
γ
i

]
. (28)

Substituting (26)-(28) into (25) yields

V̇ ≤−min
i∈Ω

λ(Ki)

N∑
i=1

‖ri‖2 −min
i∈Ω

λ(Pi)

N∑
i=1

‖ei‖2

−
N∑
i=1

1∑
l=0

[αli(θ̂li − θ∗li)2

2
− αliθ

∗
li

2

2

]
+Z(‖ξ‖) (29)

where Ω = {1, . . . , N} and ξ = [ξ0, . . . , ξN ]T with

Z(‖ξ‖) , −ε1
N∑
i=1

‖ξi‖5 + ε2

N∑
i=1

‖ξi‖3+

N∑
i=1

(
− ε0 +

βi
γi

)
+ J

′
N∑
i=1

∑
j∈Ni

{
āij(θ̄0j + γ̄j)(1 + ‖Pi‖)‖ξi‖

+
[
āij
(
θ̌0j(1 + ‖Pj‖) + θ̄1j

)
+ ϕ∗1j

]
(1 + ‖Pi‖)‖ξi‖‖ξj‖

+ āij θ̌1j(1 + ‖Pi‖)(1 + ‖Pj‖)‖ξi‖‖ξj‖3
}
. (30)

Using Descartes’ rules of sign change and Bolzano’s The-
orem [35], the polynomial Z has exactly one positive real
root η ∈ R+. The coefficient of the highest degree of Z is
negative, −ε1. Therefore, Z(‖ξ‖) ≤ 0 when ‖ξ‖ ≥ η, where
ξ = [ξ1, . . . , ξN ]T .

Lyapunov function (17) satisfies

V ≤ 1

2ǎ

N∑
i=1

‖ri‖2+
1

2

N∑
i=1

‖ei‖2

+
1

2

N∑
i=1

[2γi
γ
i

+

1∑
l=0

(
θ̂2
li − θ∗li

)2]
(31)

where ǎ = mini∈Ω(ǎi). Let us define a positive scalar κ
such that 0 < κ < ζ. Then combined with (31), V̇ in (29)
is further simplified to

V̇ ≤ −ζV +

N∑
i=1

[2ζγ̄i
γ
i

+

1∑
l=0

αliθ
∗
li

2

2

]
+ Z1(‖ξ‖). (32)

Using 0 < κ < ζ, (32) is further simplified to

V̇ ≤ −κV − (ζ − κ)V + χ (33)

where χ =
∑N
i=1

[
2ζγ̄i
γ
i

+
∑1
l=0

αliθ
∗
li

2

2

]
.

Combine (33) and define Y = χ/(ζ − κ) when ‖ξ‖ ≥ η.
It can be concluded that V̇ ≤ −κV when V ≥ Y . These
two cases leads to the bound

V ≤ max{V (0), Y }. (34)



The definition of the Lyapunov function (17) satisfies

V ≥ 1

2
‖e‖2 (35)

where e = [e1, . . . , eN ]T . Using (34) and (35), it can be
obtained ‖e‖2 ≤ 2 max{V (0), Y }. Finally, an ultimated
bound U in (16) on the local synchronization error e is
obtained, implying an UUB on the global synchronization
error δ from Lemma 1.
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