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HIGHLIGHTS

® The proposed methodology is independent of battery chemistries.

® The methodology is developed for Solar Home Systems (SHS) application in rural areas.
® The dynamic capacity fading model is highly practical and accurate.

® Comparison with empirical model for LiFePO4 battery shows a very close match.

® Methodology can be very useful for SHS designers for battery sizing.
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ABSTRACT

The rapid increase in the adoption of Solar Home Systems (SHS) in recent times hopes to ameliorate the global
problem of energy poverty. The battery is a vital but usually the most expensive part of an SHS; owing to the
least lifetime among other SHS components, it is also the first to fail. Estimating battery lifetime is a critical task
for SHS design. However, it is also a complex task due to the reliance on experimental data or modelling cell
level electrochemical phenomena for specific battery technologies and application use-case. Another challenge is
that the existing electrochemical models are not application-specific to Solar Home Systems. This paper presents
a practical, non-empirical battery lifetime estimation methodology specific to the application and the available
candidate battery choices. An application-specific SHS simulation is carried out, and the battery activity is
analyzed. A practical dynamic battery lifetime estimation method is introduced, which captures the fading
capacity of the battery dynamically through every micro-cycle. This method was compared with an overall non-
empirical battery lifetime estimation method, and the dynamic lifetime estimation method was found to be more
conservative but practical. Cyclic ageing of the battery was thus quantified and the relative lifetimes of 4 battery
technologies are compared, viz. Lead-acid gel, Flooded lead-acid, Nickel-Cadmium (NiCd), and Lithium Iron
Phosphate (LiFePO,) battery. For the same SHS use-case, State-of-Health (SOH) estimations from an empirical
model for LiFePO, is compared with those obtained from the described methodology, and the results are found
to be within 2.8%. The relevance of this work in an SHS application is demonstrated through a delicate balance
between battery sizing and lifetime. Based on the intended application and battery manufacturer’s data, the
practical methodology described in this paper can potentially help SHS designers in estimating battery lifetimes
and therefore making optimal SHS design choices.

1. Introduction

regions and communities have not received grid-based electricity [1].
In the absence of a central grid as an imminent solution [2], Solar Home

An estimated 1.2 billion people around the world lacked access to Systems (SHS) seem to be a promising route to address immediate
electricity as of 2016, with almost 85% of this population living in the electricity needs in the off-grid areas [3].
rural areas. Fig. 1 shows the distribution of the global population A Solar Home System is defined as a Photovoltaic (PV)-based gen-
without electricity. For various reasons, most of these unelectrified erator usually rated between 50 Wp and 250 Wp, accompanied by a
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Nomenclature
Variables

DOD Depth of discharge

I Current

t Time

Cc Battery capacity

T Temperature

n Cycle life

f Linear factor

D, Difference in cycle life between two temperatures

Do — Py, Polynomial coefficients at reference temperature

py> p, Fitting coefficients for determining the linear factor

Py, — Pg, Fitting coefficients for differences between two tempera-

ture curves

d Battery DOD
DOD Average DOD

T Average T

L Lifetime in years

Eine Energy throughput

Enom Nominal battery energy capacity

a Proportional number of cycles

D Battery damage

E Number of events until end of life is reached
cf Capacity fading

Abbreviations

LLP Loss of load probability

SHS Solar home system(s)

ZC Zero-crossing

SOC State of charge
EOL End of life
SOH State of health

LA Lead-acid
ref Reference
avg Average

dev Deviation

suitable battery storage [5]. The term has mostly come to be used in the
context of off-grid electrification, although sometimes it may be used
interchangeably with a standalone PV system. The battery is a vital
component of the SHS, enabling energy storage of the PV output.
However, the sizable proportion of upfront battery costs makes the
battery the most expensive SHS component, as seen in Fig. 2. This fact,
coupled with the low battery lifetimes (sometimes even up to 3 years
[51), makes battery-costs the most relevant in SHS design. Battery-costs
recur not just in terms of the upfront costs, but also in terms of the
replacements during SHS lifetime, thereby making battery lifetime a
critical parameter in SHS applications.

Additionally, the accurate sizing of the battery can impact the bat-
tery lifetime [1]. This is because an increase in battery size for the same
application reduces the average Depth of Discharge (DOD) for the
battery [7], as seen below in Section 3. Therefore, the sizing of the
battery in an SHS presents itself as an interesting balance between
upfront costs (size) and lifetime [3].

Battery lifetime is thus seen as a vital parameter to be considered in
SHS design, especially in the cost-sensitive context of the under-elec-
trified communities.

1.1. Literature study

Battery lifetime estimation models can be broadly classified under
two categories, viz. performance-based models and cycle counting
models.

In performance-based models, the performance values of the battery
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Fig. 1. Distribution of globally unelectrified population (data sourced from

[4D.

are simulated based on certain performance parameters. When the
particular parameter drops below a pre-determined value, the end of
life (EOL) is reached for the battery. These can be classified into 4
different categories. (i) Electrochemical Models that need extensive
information on the chemical and physical interactions occurring within
the battery in order to accurately model the battery. Despite the efforts
to simplify these models while effectively estimating the dynamically
changing states (SOC and SOH) [8], the lack of detailed information
such as Li-ion concentration, diffusion coefficients, reaction rates, ionic
conductivity, reduce the applicability of these models specially when
different battery technologies are to be compared. (ii) Equivalent
Electrical Circuit Models that represent the battery as an equivalent
electrical circuit comprising electrical elements like resistors, capaci-
tors, voltage, and current sources. These kind of models can also include
the thermal stresses related to fast charging to develop optimal char-
ging profiles [9]. A combined electrochemical-thermal model has also
helped in recent studies to develop health-aware strategies for fast
charging of Li-ion battery, underlining the importance of being able to
model SOH in battery applications [10]. (iii) Analytical Models with
empirical data fitting are constructed by interpolating and fitting em-
pirical data obtained through experiments. (iv) Artificial neural net-
works (ANN) can establish a relationship between the system outputs
and input operating conditions, given a large enough dataset [11].
Performance-based models can rely on experimental methods that
observe and measure the battery degradation through time, or on semi-
empirical approaches that represent the fade mechanisms using equa-
tions that fit a particular type of cell. These models can also be con-
structed by including the physiochemical effects behind the side reac-
tions of a particular set of chemical compounds endemic to particular
cell chemistries. Therefore, the main limitation of all of the underlying

QD PV [IBattery M BOS B Appliance
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Fig. 2. Split-up of upfront costs of SHS components for powering a 19” TV,
radio, lights and a mobile phone charger in 2014 (data from [6]).
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approaches for performance-based models is that they are constructed
for specific cells, under certain environment conditions, and tested
through a limited amount of time [12]. Additionally, some semi-em-
pirical approaches do not consider the effect of parameters like DOD
[13]. For models relying on ANN, a vast amount of data is first needed
for the neural network to be trained reliably. In general, it can be said
that to construct reliable performance-based models, it not only costs
time per specific intended application and use-case needed but also
raises concerns on the accuracy of these approaches if they were to be
used under a different set of conditions wherein the same battery
technology undergoes a different stress pattern.

Unlike performance-based models, cycle counting or weighted Ah-
throughput (charge processed by the battery) models are able to de-
termine parameters which can be linked to their EOL, for e.g., Ah-
throughput (the amount of energy processed by the battery), cycles, or
time since manufacturing [11]. A comparison study in the past has
shown accurate results for lifetime prediction with weighted Ah-
throughput model [14]. These models are mainly based on the data
provided by the manufacturers, assuming that the battery is able to
achieve an overall Ah-throughput throughout its life under certain
specific stress factors like DOD and temperature. Palmgren-Miner (PM)
rule is one of the most common examples that fit in the category of
cycle counting models. The different lifetime estimation models are
compared in Table 1.

There have been a few cycle-counting based lifetime estimation
models discussed in the past [15-17], most notably [3], where the
authors discuss a simple methodology for non-empirical battery lifetime
estimation. However, while [15] assumes an arbitrary duration of a
cycling event 6400 s long, [16] uses only temperature as a stress factor
but not for battery storage specifically, [17] employs off-line cycle-
counting through rainflow counting algorithm but using DOD as the
only stress factor for battery degradation, and [3] does not take into
account dynamic capacity fading and temperature as an additional
stress factor. Ref. [18] presents a lifetime estimation of lead-acid bat-
tery, but also does not consider dynamic capacity fading, and the ca-
pacity loss is only estimated after one entire year of simulation using
rainflow counting algorithm.

This paper focuses on a non-empirical, cycle-counting approach for
the estimation of the battery lifetime while also taking into account
important battery stress factors like DOD and temperature. Given the
off-grid SHS application, where the typical battery C-rates are C/20 to
C/10 [19,20], the C-rates are considered to be low enough to not be
included as a critical stress factor. The dynamic capacity fading model
proposed here is capable of estimating the State of Health (SOH) after
every micro-cycle based degradation while the battery is under opera-
tion. Additionally, multiple technologies are used in this study, de-
monstrating the usefulness of the proposed methodology across mul-
tiple battery technologies without having to model the electrochemical
processes at the cell level for the different technologies.

Applied Energy 228 (2018) 1629-1639

1.2. Contributions of this paper
Following are the main contributions of this paper.

e A methodology to estimate the battery lifetime in a practical way
using the application-based, expected battery usage and the battery
data provided by the manufacturer. The methodology is applicable
across battery technologies.

e Insight into performance of 4 different battery technologies for the
SHS application.

e A dynamic capacity fading model that quantifies the fractional de-
gradation caused by the micro-cycles of battery activity.

e Finally, insight into the impact of battery sizing on estimating bat-
tery lifetime, underlining the relevance of battery lifetime estima-
tion in SHS design.

2. Battery lifetime
2.1. Battery parameters

Some of the important battery parameters that this work refers to
are discussed in this section.

State of Charge and Depth of Discharge. The state of charge (SOC)
indicates battery charge as a fraction of the initial capacity, while the
depth of discharge (DOD) refers to the capacity discharged as a fraction
of the initial capacity. They are treated as a complement of each other.

The DOD can be calculated from the battery discharge current over
a discharging interval as shown in Eq. (1).

tf
'/t.i Idischarge- de

DOD =
G 1

where t; is the time at the end of the discharge interval process, t; is the
initial time, Ijischarge iS the current, and C; the initial battery capacity.

Cycle-life. Cycle-life is defined as the number of charge/discharge
cycles that a battery can undergo maintaining a specified percentage of
its initial capacity, after which batteries reach the end of life (EOL). The
EOL is usually defined as 80% of the initial rated battery capacity [21].

State of Health (SOH). State of Health refers to the fraction of the
rated battery capacity actually available for cycling. As the battery
ages, the SOH reduces, and 80% SOH is often defined as the EOL for a
battery.

The battery ageing can be classified into two categories.

Cyclic ageing. Cyclic ageing is related to the decrease in battery ca-
pacity while the battery is undergoing cycling. Cyclic ageing plays a
larger role in cases where operation times are relatively longer than idle
periods, like in off-grid SHS.

Calendar ageing. Calendar ageing is related to the decrease in battery
capacity while the battery is under storage and not in use, and there-
fore, independent of charge/discharge cycles. Calendar ageing plays a

Table 1
Comparison of the performance-based and cycle-counting models in the context of battery life estimation. Adapted from [11].
Model type Model example Merits Demerits
Performance based  Electro-chemical Very high accuracy Complex
Low-speed

Equivalent Electrical Circuit Model

Analytical model with empirical
data fitting analytical functions
Good accuracy

Artificial Neural Networks (ANN)

Good prediction of dynamic behaviour

Ease of simulation using the model due to the

Reasonable accuracy with high speed

Depends on experimental data for accuracy

Not suitable for lifetime prediction as is

Effects of various stress factors need to be combined from the
experimental data

Large amount of data needed

Adequate training of ANN requires a large dataset

Knowledge of battery mechanisms not needed

Cycle-counting Palmgren-Miner
captured well

Simple implementation

Deviations from standard operating conditions

Although non-empirical in itself, relies on empirical data
from the manufacturer
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Fig. 3. Normalized cycle life with temperature for a flooded lead-acid battery at
30% DOD with a reference temperature of 20 °C. Data sourced from [30]).

predominant role in cases where operation times are shorter than idle
periods [22].

This work takes into account only the cyclic ageing process. In other
words, this work models the application-specific, battery induced ca-
pacity fading and the resulting battery lifetime.

Active SOC/DOD. Active SOC/DOD refers to the State-of-Charge or
Depth-of-Discharge of the battery while the battery is in operation [3].
The concept of active SOC/DOD helps in looking at only those SOC/
DOD points that actively contribute towards cyclic ageing of a battery,
which is the focus of this work.

2.2. Causes of battery degradation

The loss of active lithium, principally at the anode, is the main
reason for lithium-ion cell degradation. The mechanical stresses in-
duced by cycling and temperature gradients lead to contraction and
expansion, eventually increasing the cell impedance and reducing the
cell capacity [22]. Electrode pore clogging, passive layer growth, and
lithium metal plating are consequences of the undesired side reaction
that takes place inside the Lithium-ion cells [23]. In the case of lead-
acid batteries, the major degradation processes that decrease perfor-
mance and provoke end of service life are anodic corrosion, active mass
degradation, and loss of adherence to the grid [24]. Furthermore, the
continuous loss of water in vented cells and the production of lead
sulphate (in the electrodes) out of the active materials of the cell fa-
cilitates the ageing process [25]. NiCd cells suffer from hydrogen pro-
duction when overcharged and when exposed to a temperature higher
than nominal temperature; therefore, the accurate detection of the end-
of-charge process is fundamental to avoid battery damage [26]. In NiCd
cells, Cd crystallization happens under particular cycling and storage
conditions, causing a reduction of active material while reducing the
active surface dedicated to the electrochemical reaction [21].

Battery lifetime is directly related to battery usage, and therefore
the way in which the battery cycling occurs and the environmental
conditions affect the natural ageing of batteries. One of the principal
factors to take into account is the DOD range of operation, which de-
fines the usable capacity of the battery, and therefore, the battery range
of operation. Another parameter that profoundly impacts battery
ageing is cell temperature, where an increase in temperature translates
into a higher electrochemical activity that instantaneously improves
cell performance but in the long term fosters side reactions that con-
sume the active materials, thereby diminishing battery capacity [27].
The kinetics of the electrochemical reaction also relates to the charge
and discharge rates imposed by the applications. Therefore, the

1632
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methodology introduced in the next section takes into account the in-
fluence of temperature and cycling to quantify their impact on lifetime.

3. Methodology

The methodology followed in this study is composed of multiple
steps. Section 3.1 describes the extraction of lifetime data from the
battery datasheet as a function of temperature and DOD. Section 3.2
details the SHS-based inputs used in the methodology. Sections 3.3 and
3.4 discuss the two models that are proposed and used in this study, viz.
the overall battery usage model and the dynamic capacity fading
model.

3.1. Battery data from the manufacturer

Battery manufacturers usually provide the battery cycle-life char-
acteristics as a function of DOD and temperature, for e.g., [28]. The
data from these curves are extracted, and lookup-functions are created.

Battery technology. Four different battery technologies are chosen for
this study, viz., sealed Lead-Acid or Lead-Acid gel (LA-gel), Lithium-
Iron Phosphate (LiFePO,), flooded Lead-Acid (LA), and Nickel-
Cadmium (NiCd) battery. The corresponding datasheets used are
[28-31] respectively. While the merits and demerits of using one bat-
tery technology over the other for SHS application is a different subject
of discussion altogether, the reason for including these different tech-
nologies in this study is to illustrate the usefulness of the described
methodology to estimate the battery lifetime irrespective of the un-
derlying battery chemistry.

Temperature linearity. For cycling at a given DOD level, it is observed
that the cycle life shows a linear temperature dependency, at least in
the range of 20-45°C, a temperature range typically mentioned in the
datasheets. This behaviour is illustrated in Fig. 3 for the flooded lead-
acid battery.

Polynomial approximations. The linearity on temperature de-
pendency is exploited to create polynomial approximation functions. A
4™ order polynomial approximation for the battery lifetime curves for
the above-mentioned technologies is given by the following set of
Equations.

n(T, DOD) = n(Tit, DOD)~f (Tayg) D, (DOD) @))
n(Ter) = p,d* + pyd® + p,d*> + pd + p, (3)
=P, Tavg + Py 4
Dy = py,d* + pg,d® + pg,d® + pyd + py, 5)

where

n(T, DOD)=Cycle life for a given temperature and DOD
f=A linear factor

D, = Difference of n between two temperatures

D, to p, = Polynomial fitting coefficients at T;,¢

Py Py, =Fitting coefficients for determining the linear factor

Dy, to pg,=Fitting coefficients for difference between two temperature

curves
T.vg=Average operating temperature
T..r=Reference operating temperature
d=Battery DOD

A reconstruction of the battery lifetime curves depending on tem-
perature and DOD from the battery datasheet is shown in Fig. 4 for a
flooded lead-acid battery. These curves are then approximated as
polynomial ‘lookup’ functions that can be used in battery lifetime es-
timation based on the application-specific battery usage.

It must be noted that many manufacturers do not explicitly distin-
guish between the ambient temperature and the actual battery
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Fig. 4. Reconstruction of battery cycle-life curves based on DOD for flooded
lead-acid battery (data sourced from [30]).

operating temperature, and some even mention the battery cycle-life
curves at ambient temperature [30,28]. It is difficult to accurately de-
termine the battery temperature, as it depends on several local oper-
ating conditions outside the electrical functioning of the system. In this
study, the battery operating temperatures are taken to be at ambient
levels, especially given the slow C-rates for the SHS batteries.

3.2. SHS application and load profile

A Solar Home System application was considered as the use-case for
estimating the battery lifetime.

3.2.1. Load profile

A load profile was constructed based on estimating the electrical
needs of a Tier 3 household [32] and inputs from the field [7], espe-
cially taking into account the efficient DC appliances that are on the rise
in the off-grid market. Several works in the recent past have indicated a
sharp rise in the availability as well as popularity of the so-called super-
efficient DC appliances [6,33,34]. The operational (DC) loads that make
up the load profile are LED lights, mobile phone charging, radio, TV,
fridge, and a small computer. The load profile varies from day to day,
with the average daily energy need being 1242 Wh. The daily load
profile has been plotted for a given day in Fig. 5, along with the PV
generation profile.

3.2.2. SHS PV size

The selected PV module is Jinko Solar JKM265P rated 265 Wp. One
PV module is enough to cover the average daily energy needs for the
given load profile. Additionally, the extra DC yield helps to compensate
for the system inefficiencies. The PV output is modelled and corrected
for thermal losses. The PV output is also shown for a single day in Fig. 5.

3.2.3. SHS battery size

Loss-of-Load probability (LLP) was chosen as the optimizing para-
meter for finding the desired battery size. LLP is a metric defined as the
ratio of the expected amount of downtime (system failure) of the system
while delivering the demanded power, to the total amount of time the
system was designed to deliver power for. The concept of LLP has been
explained in previous work in [7]. A battery size of 1440 Wh was
considered for the given load profile and the chosen solar panel. This
PV-battery combination guaranteed an LLP of 1.8% for the given load
profile, i.e., this was the minimum storage size with the required PV
size that could guarantee a total loss of load of 1.8% throughout the
1 year of simulation. The LLP optimization approach for the given load
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profile can be seen in Fig. 6.

3.2.4. SHS simulation

A simple model was constructed in MATLAB to simulate the func-
tioning of the SHS for a year. The meteorological inputs to the model
were obtained from the tool Meteonorm [35], which includes irra-
diance, wind speed and temperature. A sample geographical location
experiencing an average of 5.5 equivalent sun hours per day was con-
sidered. The data resolution of the inputs to the model was 1-min. Al-
though far from instantaneous, it is assumed that a one-minute data
resolution provides reasonable accuracy to incorporate the inter-
mittency of the PV generation and the load profile. Based on the load
profile and the modelled PV output, the simulation was run over an
arbitrary calendar year to obtain the battery usage pattern. It should be
noted that the battery was limited to a maximum DOD limit of 80% in
the simulation. The battery efficiency was assumed to be constant
throughout the simulation, and certain constant efficiencies were as-
sumed after a comparative study based on literature [36-40]. The ef-
ficiencies assumed are 85%, 90%, 78%, 93%, for flooded LA, LA-gel,
NiCd, and LiFePO, respectively. Additionally, a constant electronic
power conversion efficiency of 95% was assumed for the SHS. These
efficiency numbers can also be specifically changed depending on the
data from the manufacturer or the choice of a particular battery for the
application without impacting the efficacy of the described metho-
dology.

3.3. Overall battery usage model

In the overall battery usage method, the lifetime is estimated based
on the overall battery usage that is extracted from the 1-year SHS si-
mulation. The main parameters for estimating the battery lifetime are
the average DOD and average temperature in battery operation. These
were derived from the battery usage in two different ways, viz. the
coarse average DOD and the micro-cycle zero-crossings based ap-
proach.

3.3.1. Coarse average approach

This is the less computationally demanding approach of the two,
where the required average DOD and temperature values are simply
taken as the average of all the data points throughout the simulation, as
shown in Eq. (6).

— %), DOD
DOD = — N 6)
—— Load
300 .
g 200
5
5
100
0
0 ) 10 15 20 25
Time [h]

Fig. 5. One day load profile considered for a household with Tier 3 energy
access, along with PV output for a single day.
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Fig. 6. Loss of load probability (LLP) curve for the given load profile with
varying storage sizes. A battery size of 1440 Wh (marked on the graph) is
deemed sufficient through this analysis, resulting in an LLP of 1.8%.

N
Liza
N

=

T=

where DOD and T are the average DOD and temperature, N is the total
number of data points in the simulation.

While computationally less intensive, a simple average does not
capture the battery usage well. This is because not only does this
method include the extraneous, inactive battery periods, but also the
battery processes different amounts of energy throughput under dif-
ferent DODs. Therefore, a more weighted approach needs to be used for
taking this into account.

3.3.2. Zero-crossing (ZC) approach

In the micro-cycle zero-crossing (ZC) approach, micro-cycles of
battery activity are defined based on the zero-crossings of the battery
current. Therefore, only the active battery cycling periods are con-
sidered. This concept was introduced in a recent publication from the
authors [3].

A micro-cycle in this context is defined as a small cycle of variable
duration that exists between two consecutive current zero crossings;
this is typically much shorter than a full charge-discharge cycle. This
method involves taking into account all the zero current transitions
given the 1 min data resolution.

Fig. 7 illustrates this concept. In this case, the active DOD should
only be considered for the durations that the battery is cycling.
Therefore, the states with battery current lyyery = O are ignored. Note
that the concept can be equivalently explained if the battery power
Ppatiery is considered instead of Iyagery. In that case, the area of each
micro-cycle would give the energy that the battery cycles in that in-
terval.

Finally, with the micro-cycle zero-crossing data extracted from the
battery simulation, the average active DOD can be calculated as shown
in Eq. (7).

N ——
Zi:IDODi' Eir;

DOD = ~
Zi:l Ethri

()

where DOD: Combined average active DOD due to all the micro-cycles,
DOD; : Average active DOD in the i micro-cycle, Ey,,: Total energy
throughput in the i micro-cycle, N: total number of ZC-based micro-
cycles.

The average temperature is calculated based on the duration of the
ZCs as follows.

1634
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N =
N
Zi:l Tz,
where T: Combined average temperature due to all the micro-cycles, T;:

Average temperature in the i micro-cycle, Ty,: Total duration of the it
micro-cycle.

T =
®)

3.3.3. Lifetime estimation based on overall battery usage

Once the DOD is known, the cycle-life number n is then obtained
from the look-up functions described in Section 3.1. The battery life-
time is then estimated as shown in Eq. (9) below [3].

2 X Enom

N
i=1 Elhri

L =n X DOD x
9

where (L) is the battery lifetime in years, and E,,, is the nominal
battery energy capacity in Wh.

Assumptions under overall battery usage methodology. In the overall
battery usage methodology, there are a few crucial assumptions that
serve the balance between the complexity of implementation and ac-
curacy. These are as follows.

. The battery performs throughout the 1-year simulation without any
loss in capacity.

. The battery performance in terms of the dynamic SOC is irrespective
of its SOH. That is, the SOC of the battery is not corrected for its
faded capacity during the simulation.

. Only one year of intended battery usage is enough to be able to
linearly extrapolate the battery usage and hence the cycle life.

The major drawback of this method is that there is no loss in ca-
pacity of the battery during the simulation. Instead, the battery lifetime
is estimated based on the overall battery usage for one year. It would be
more accurate to estimate the battery lifetime while taking the capacity
fading into account dynamically in the battery performance, as dis-
cussed in the next section.

3.4. Dynamic capacity fading model

The dynamic capacity model fundamentally differs from the overall
battery usage method for battery lifetime estimation, in that this model
dynamically assesses the damage caused due to the stress factors after
every ZC micro-cycle. This model is implemented through a process
explained in the flowchart illustrated in Fig. 8.

The SHS simulation starts as in the overall battery usage method,
with SOH = 100%. The simulation is executed in 3 stages using the
model. In Stage A, the battery activity is probed within the SHS simu-
lation. Zero-crossings (ZCs) are recorded, and the capacity damage
computations within this model start when the battery activity data is
extracted for a ZC-based micro-cycle. This includes evaluating the

Ibattery (t)

Fig. 7. An illustrative battery current waveform showing arbitrary micro-cycle
intervals, where i is the micro-cycle number.
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Fig. 8. Flowchart explaining the dynamic capacity fading model for lifetime estimation.

average battery DOD (DOD;), the energy throughput (Ey,) and the
average temperature (T;) for the ith ZCs micro-cycle as shown in Egs.
(7) and (8).

In Stage B, the total number of cycles n(T;, DOD;) possible at the
DOD and temperature levels is calculated using the polynomial lookup
functions described in Section 3.1. Additionally, the proportional
number of cycles (¢t;(Epny;, Enom)) spent under the same DOD and tem-
perature levels for the ith ZCs micro-cycle is calculated as a function of
the energy throughput (E;,,) and the nominal battery capacity (E,om),
as shown in Eq. (10).

Emn

a=
2 X Eypom X DOD;

10)

The damage (D;) incurred to the battery life is then calculated using
the Palmgren-Miner rule. This rule states that the lifetime of a com-
ponent after undergoing a series of load events is reduced by a finite
fraction corresponding to each of the load events. This fraction is the
ratio between the number of cycles the element has undergone under a
particular stress factor (or load event) to the total expected number of
expected cycles until EOL under that stress factor [11,15]. Eq. (11)
represents the Miner’s rule.

(€8]

where «;: number of cycles spent under a stress factor o; (DOD and
temperature), n(w;): total number of cycles for the EOL to be reached, E:
number of events taken place until the EOL condition is reached, D:
total damage accumulated, and D;: damage at the battery for each one
of these events. This damage is then scaled and subtracted from the
current SOH. The damage scaling is done to ensure that when the total
damage D = 1, the SOH is 80%.

Stage C involves checking for the EOL of the battery after every ZC
micro-cycle of activity. If the SOH has reached 80% or below (or, in
other words, if the damage D equals a value of 1.), the simulation ends,
and the SOH data is extracted as a function of time. If SOH is > 80%,
the simulation continues in Stage A with the updated SOH. The stages
repeat until the battery accumulates enough damage to reach its EOL.
Note that the DOD values are all dynamic, i.e., the DOD values are
computed based on the updated battery capacity after every micro-
cycle.

3.4.1. Salient features of the dynamic capacity fading model

The dynamic capacity fading model is a significant upgrade over the
overall battery usage model both in complexity and accuracy with
which the micro-degradation per ZC micro-cycle is assessed. It has the
following salient features.

1. High resolution. Given that the model captures the micro-cycle
degradation, the dynamic capacity fading model serves with a high
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degree of resolution of the battery degradation. Thus, the model can
potentially capture the micro-degradation in a time-step as small as
the time resolution of the input data used for the application.

. Dynamic battery parameters Battery parameters like DOD and
SOC are updated after every ZC micro-cycle based on the degraded
battery capacity. Therefore, the battery performance is not in-
dependent of the capacity fading.

. SOH estimation. The model allows for SOH to be estimated after
every micro-cycle, which is not possible with the overall battery
usage model.

. Technology independent. Given that the model is independent of
electrochemical processes for its implementation, it can be used for
any battery technology. In this study it is used to estimate the bat-
tery lifetime for 4 battery technologies.

. Application independent. Without any loss of generality, this
model can be used to estimate the battery lifetimes for other ap-
plications too, especially those applications where the battery cy-
cling undergoes cycling at similar C-rates as those of SHS.

. Usefulness at battery level. Most performance-based experimen-
tally constructed models are based on cell-level experiments, and
the same battery technology might exhibit different characteristics
at the battery level. With the proposed model, one can pick a can-
didate battery product and proceed to estimate the battery lifetime
at the system design stage.

4. Results and discussions

4.1. Battery usage

The battery experiences a wide range of DOD levels due to the in-
termittent nature of the incident solar irradiance on the SHS and the
varying load profile. This can be seen from Fig. 9 that shows the nor-
malized frequency of the different DOD levels throughout the year for
the lead-acid gel battery under 2 cases, viz. considering the overall
battery DOD data and only the active battery DOD data.

The active battery data points were considered based on the zero-
crossings, as described in Section 3.3.2. As seen in Fig. 9, the two dif-
ferent cases differ in their DOD levels. Between 10% and 70% DOD the
active DOD occur relatively more frequently. However, in the very
shallow (0-10%), and very deep DODs (70-80%), the trend is reversed,
showing a lesser occurrence of active DODs, underlining the periods of
inactivity of the battery. This corresponds to when the battery was ei-
ther full (not needed to power the load) or empty (could not power the
load). Moreover, the maximum limit of the DOD shown in the histo-
gram is 80%, owing to the lower limit of the battery SOC fixed at 20%
in the simulation.

Additionally, the battery cycling related data is extracted using both
the coarse average and the ZCs approach. The results are shown in
Table 2.



N. Narayan et al.

0.25
- 02 Do AL DD Active
>

[

=

g .. .

2, 0.15 - B

E | ald .
& 2 7oA _
Q

S 01

<

g

]

“0.05

00 (020 9030 A0 g B0 (080 (0 TO 1020
DOD [%]
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Table 2
Usage statistics for the 4 battery technologies over 1 year of SHS simulation. LA:
lead-acid, CA: Coarse average based, ZC: Zero crossings based.

Battery DOD (%) T 0 Etnr

CA ZC CA /9 (kWh/ year)
Flooded LA 37.81 38.21 27.16 26.94 613.9
LA gel 36.23 36.73 27.16 26.78 589.7
NiCd 39.77 40.04 27.16 27.2 647.7
LiFePO, 35.11 35.66 27.16 26.7 575.7

A difference can be seen across the 4 battery technologies for the
various battery parameters. In general, the coarse average-based DOD is
more optimistic than the ZCs-based DOD for all the technologies. The
difference in the DOD using the same method for different batteries
comes from the fact that the different batteries have different operating
efficiency, and therefore need to cycle differently in order to meet the
storage demand of the given SHS application. Similarly, the energy
throughputs of the different battery technologies are also different. The
coarse-average temperature is the same for every battery technology
based on the meteorological data, while the ZCs-based temperature is
slightly different, depending on the duration of the ZC-cycles (refer Eq.
(8)), which differ across technologies.

LiFePO, fares the best across the different battery statistics, while
the NiCd battery fares the worst. Lead-acid gel battery performs slightly
better than its flooded counterpart. In general, the more efficient the
battery, the lower the DOD as well as temperature and energy
throughput for the exact same application. Consequently, the cycle life
will also be higher than that of a battery with lower efficiency, as seen
in Section 4.2 below.

Even though the average DOD values between the two methods
differ only by about 1-1.5%, this difference can be significantly am-
plified based on the battery size chosen and the SHS load requirements.
For example, oversizing the battery (lower LLP) would have resulted in
a larger difference between the coarse average and the ZCs-based active
DOD calculations. Going forward, the more conservative ZCs-based
battery lifetime results are discussed, as using a coarse average-based
estimation can yield to an optimistic prediction of battery lifetime.
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Table 3
Cycle life and battery lifetime in years, based on the overall battery usage based
lifetime estimation. LA: Lead-acid.

Technology Cycle life (-) Lifetime (years)
Flooded LA 3329 6
LA gel 3796 6.8
NiCd 1662 3
LiFePO4 16,450 29.4

4.2. Lifetime estimation

Based on the battery usage discussed in Section 4.1, the battery
lifetime is estimated based on the methodologies described in Section 3.

4.2.1. Overall battery usage based lifetime estimation

The results for the overall battery usage-based estimated lifetimes
are shown in Table 3.

Following the battery usage statistics discussed in Section 4.1, the
battery lifetime follows a similar relative trend. LiFePO, comprehen-
sively outperforms the other battery technologies, having an estimated
battery lifetime of nearly 5 times the lead-acid batteries and almost 10
times the NiCd battery.

4.2.2. Dynamic lifetime estimation

Based on the dynamic lifetime estimation method described in
Section 3.4, the battery lifetimes for the SHS use-case were estimated
for the 4 battery technologies. The results for the dynamic capacity
fading based lifetime estimation are shown in Fig. 10. For comparison,
the results from the overall battery usage based estimation method are
also plotted.

As seen in Fig. 10, the dynamic lifetime estimation is found to be
much more conservative, with lifetimes for LA-gel, LA-flooded, NiCd,
LiFePO, batteries as 5.6, 5.1, 2.86, and 16.7 years, which are 18%,
14%, 3%, and 43% less than the corresponding overall usage based
lifetime estimates, respectively. This is attributed to the fact that dy-
namic lifetime degradation captures the micro-degradation of the bat-
tery capacity for every micro-cycle. Consequently, the battery is pro-
gressively degraded as it enters the next micro-cycle with a faded
capacity, instead of calculating the lifetime based on overall usage of
one year where the battery performs identically without any degrada-
tion. Therefore, the dynamic capacity fading model-based lifetime es-
timation is considered more practical and realistic. Additionally, the
longer the battery lasts, the more pronounced effect of dynamic capa-
city fading. Therefore, from NiCd to LiFePO, the deviation from the

30 —o—
% 25 - @ - Overall - m - Dynamic
2
g
= .
& 15 16.7
I
2 10
k

5
2.86
LA-gel LA-flooded NiCd LiFePOy4

Battery Technology [%]

Fig. 10. Dynamic battery lifetime estimation results for the 4 battery technol-
ogies in comparison with the results using the overall battery usage method.
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overall battery lifetime estimation method is increasing.

Of course, it must be noted that the methodology described here
relies on the manufacturer’s datasheet, and therefore the relative life-
time estimation for this particular SHS application need not be ex-
tendable to all battery products from the same technology. This is be-
cause different battery products from the same technology often display
varying cycle lives depending on the construction geometry, propriety
manufacturing processes, amongst others.

A comparison of this model is also made with an experimentally
obtained empirical model for capacity fading of LiFePO,, as explained
in Section 4.3.

4.3. Comparison with an empirical battery lifetime estimation model

As an experimental validation of the dynamic lifetime estimation
model can take an impractically long time, the accuracy of the model
was compared to the results obtained from another experimentally
created, empirical-based lifetime estimation model based on LiFePO,
battery technology as described in [41]. The empirical model can been
described by Egs. (12) and (13) [41].

E Eg
o = Z (ks SOC ey, 1. €¥s250Cagt 4 fegs. ekst-SOCden), e( K

L

1 1

(T_ff)] Ah;

12)

where cf is the capacity fading experienced by the battery due to all the
cycling events E, i is an event for an arbitrary length of time, Ah; is the
total charge processed during event i, E is the total number of events.

The temperature dependence term comes from the Arrhenius
equation, where kg; to kg, are constants determined experimentally and
reported in [41], SOCyy; is the normalized standard deviation from
SOC,y in event i. This value is derived from Eq. (13) [3].

3

Al
v ./; (SOC (Ah)—=SOC )% dAh

hm—1

SOCe =
: \/ 13)

To be applied in the SHS application discussed in this study, Eq. (12)
was adapted to the battery usage obtained in the SHS use-case. Similar
to the approach discussed in Section 3.4, the capacity fading was cal-
culated per cycling event (ZC micro-cycle) with the help of Egs. (12)
and (13). Consequently, the battery lifetime was found to be 14.3 years,
about 14.2% deviation from the dynamic battery lifetime estimation
method.

The State of Health (SOH) is also calculated based on the empirical
method, which is discussed along with the other SOH results in Section
4.3.1 below.

4.3.1. State of Health (SOH)

While the lifetime results mentioned above give a measure of the
overall battery life for the given application, the SOH results over time
give a measure of the rate of the capacity fading for different battery
technologies. For the given battery lifetime estimation modelled in this
study, the State of Health (SOH) was computed for the different bat-
teries under operating conditions, i.e., taking only cyclic ageing into
account.

The results are plotted in Fig. 11. For the same starting battery
capacity, the slowest fading rate is seen to be experienced by the
LiFePQ, battery, while the fastest rate (steepest slope) is experienced by
the considered NiCd battery. The SOH results seem to show a near-
linear trend over time.

Additionally, the SOH is plotted for the empirical lifetime estima-
tion model for the same SHS use-case considered, as shown in Fig. 11.
The SOH from the empirical model follows the dynamic lifetime esti-
mation method-based SOH (both for LiFePO,) closely, especially up to
89% SOH. After year 10, the SOH estimates start to deviate. The SOH
deviations at the various year-marks differ by a maximum of 2.8%.
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However, it must be noted that the comparison with empirical model is
only valid for the LiFePO, battery technology and as such the degree of
accuracy shown by this comparison cannot be extended to other tech-
nologies solely on this basis. No empirical models were found for the
other technologies at the time of writing this article, which could en-
able a similar comparison for the SHS use-case for the exact same stress
factors as considered in the proposed methodology.

In summary, the main difference between the 2 proposed models,
viz. the overall usage model, and the dynamic capacity fading model, is
the increased complexity and accuracy of the dynamic capacity fading
model. Within the overall battery usage model, the coarse average
approach is rather crude but quick, while the ZC micro-cycle based
approach is more computationally demanding. However, the overall
battery usage model is not without its assumptions, as discussed in
Section 3.3.3. The dynamic capacity fading model is the most complex
but remarkably matches the experimentally derived empirical model
until about 89% SOH.

4.4. Relevance for SHS design

In the context of SHS application, the battery lifetime estimation
exercise is quite relevant, as explained in Section 1. This is even more
relevant in the off-grid electrification segment, where system reliability
plays a critical role in technology adoption. This study was extended to
investigate the impact of SHS battery sizing on battery lifetime to un-
derline the importance of estimating battery lifetime at the SHS design
stage.

Fig. 12 shows the impact of battery sizing on battery lifetime for the
same SHS use-case as considered in the rest of the study. The battery
lifetime was evaluated using dynamic battery lifetime estimation
methodology described in Section 3.4 for a range of battery sizes from
100 Wh (severely undersized) to 4 kWh (nearly 3 times oversized). The
curve is seen to taper at the lower end in the beginning; this is because
the battery is significantly undersized, and the SHS cycles the battery
completely to meet the load demand. A linear trend can be seen in the
lifetime with increasing battery size for the middle range of battery
sizes. Towards the end of the battery, the lifetime increase is slower.
Thus, the largest benefit of oversizing the battery is clearly seen only
after around 1 kWh and up to around 3 kWh.

Compared to a typical PV module that lasts 25 years, an SHS battery
usually lasts much less. Therefore, the battery will need to be replaced
in the SHS lifetime. Fig. 12 also explores the number of replacements
needed as the battery size changes for the same SHS application. As can
be seen, a larger battery size not only increases the lifetime but also

1¢ NiCD
—o— LA-flooded
—o— LA-gel
0.95 —— LiFePOy4
_ —e— Empirical (LiFePOy)
= 0.9
@)
N
0.85
0.8F---o--Qp--2- My By
0 5 10 15 20

Time [years]

Fig. 11. SOH for the different battery technologies as estimated by the dynamic
lifetime method. The black dashed line denotes the end of life.
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consequently reduces the number of battery replacements needed in the
SHS lifetime. This presents an interesting trade-off between the upfront
costs and battery replacement costs; the cost of having an increased
lifetime (and therefore increased battery size) for the same application
is the increased upfront costs that come along with a larger battery size.
Therefore, estimating the battery lifetime at the SHS design stage can
help optimize this delicate trade-off between upfront costs and battery
replacement costs. Additionally, based on the technology learning
curves, the decreasing battery technology costs and discounting the
future costs, it can make for an interesting optimization study to select
the best technology and size for a given SHS application for instance.
Although not part of our specific study, it is recommended to have
deeper research for exploring this further.

It must be noted that in the range of battery size considered in
Fig. 12, the SHS load demand will be satisfied to different levels, as
illustrated in the results of the LLP analysis shown in Fig. 6. Therefore,
the battery sizes lower than fixed size (1440 Wh) will lead to LLP values
significantly higher than 1.8%.

5. Conclusion

This paper described a practical methodology for estimating the
battery lifetime without needing to model the electrochemical pro-
cesses within the battery or needing dedicated experiments. Moreover,
this methodology uses available battery data from the manufacturer for
candidate battery technologies at hand. The methodology is applicable
irrespective of the battery technology, as it is independent of the
technology-specific electro-chemical processes. The methodology can
also be extended to other applications experiencing similar battery C-
rates without loss of generality. The described methodology is expected
to help SHS designers make informed decisions with respect to the
battery storage at the system sizing stage.

Dynamic capacity fading model introduced in this paper was
deemed more practical than the overall battery usage model. For a
given load profile and specific SHS system size, the estimated lifetimes
for LA-gel, LA-flooded, NiCd, LiFePO, batteries were 5.6, 5.1, 2.86, and
16.7 years, respectively using the dynamic capacity fading model.
Comparison of this proposed dynamic model with an experimentally
derived empirical model of LiFePO, battery yielded very close results,
with the SOH values over time being within 2.8%. Additionally, the
impact of SHS battery sizing on battery lifetime was investigated,
showing that higher upfront costs due to a large battery size could be
used to offset the replacement costs through increased battery lifetime.
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Future work

The study described in this paper uses constant average efficiency
values for the various battery technologies. As the battery degrades, the
battery performance in terms of efficiency and other parameters like
internal resistance is also expected to degrade. Further study is identi-
fied and underway to include the efficiency variation for quantifying
battery performance degradation along with capacity fading.
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