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1. Introduction
The displacement of large volumes of air leads to low-frequency acoustic waves in the atmosphere. This so-called 
infrasound is inaudible to humans as it has frequencies lower than 20 Hz. Infrasound measurements are conducted 
as a verification technique for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in order to detect nuclear test 
explosions. A world wide network of 60 infrasound arrays is being constructed as part of the International Moni-
toring System (IMS) (Dahlman et al., 2009). Currently, 53 arrays are certified and sending continuous recordings 
to the International Data Center (IDC) in Vienna (status of November 2021).

I18DK is one of the operational International Monitoring System (IMS) infrasound arrays. It consists of eight 
microbarometers and is situated in northwestern Greenland near the town of Qaanaaq (see Figure 1). Infrasonic 
recordings of I18DK are available from the International Data Center (IDC) from early 2004 up to the present 
date. In order to reduce the noise levels caused by wind, each microbarometer is equipped with an analog noise 
reducer (Hedlin & Alcoverro, 2005). At I18DK, a configuration of metal pipes with discrete inlets has been 
applied.

Infrasound measurements from I18DK have been previously used in studies: to passively probe sudden strat-
ospheric warming events (Evers & Siegmund, 2009; Smets & Evers, 2014), to assess the performance of the 
International Monitoring System (IMS) (Le Pichon et al., 2009), in detecting the 2010 Eyjafjallajökull eruption 

Abstract A period of 18 years of infrasonic recordings was analyzed from a microbarometer array (I18DK) 
in northwestern Greenland, near Qaanaaq. A huge number of infrasonic detections, over 700,000, have 
been made in I18DKs soundscape during the Arctic summers. Simultaneously identified were both calving 
events from marine-terminating glaciers and discharge related acoustics from a land-terminating glacier. This 
infrasonic activity is correlated to sea-surface and atmospheric temperature, respectively. Inter-yearly to daily 
variations were retrieved showing a strong variability in infrasonic detection rates and hence glacier activity. 
The highest number of infrasonic detections were found in recent years from the land-terminating glacier. The 
latter is supported by actual discharge measurements and partly by a discharge model. It is concluded that 
monitoring infrasound from glaciers can complement other techniques to remotely and passively get insights 
into glacier dynamics with high temporal and spatial resolution.

Plain Language Summary Infrasound is inaudible sound and created when large volumes of air 
are displaced in the atmosphere. Such infrasound is continuously measured in northwestern Greenland, near 
the village of Qaanaaq. Recordings over 18 years have been analyzed. Both land and marine-terminating 
glaciers were identified, being active at the same time. Variations in activity of the glaciers were found between 
different years and also on a daily basis. The activity is related to calving of pieces of ice from the glacier 
and material running off the glacier. In recent years, the highest activity in discharge was observed. The 
latter is support by modeling and measurements of discharge which have been taken locally over 3 years. It is 
concluded, that infrasound measurements can help in gaining more insights into glacier dynamics, with high 
temporal and spatial resolution. As such, the detection and identification of inaudible sound complements other 
(remote) monitoring techniques.
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observedover 18 years

•  Infrasound activity related to glacier 
discharge was highest in recent years, 
supported by both modeling and 
actual discharge measurements
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(Green et  al.,  2012; Matoza et  al.,  2011), to quantify the effect of inter-array altitude variations (Edwards & 
Green, 2012) and for the yield estimation of the 2013 Chelyabinsk fireball (Brown et al., 2013).

In this study, it will be shown that I18DK is capable of detecting infrasound from nearby land and marine-ter-
minating glaciers during 18 summer seasons, starting in 2004. Source mechanisms are likely related to calving 
and discharge.

Calving related acoustic signals have also been identified at the Bering glacier in Alaska (Richardson 
et al., 2010, 2012). Murayama et al. (2017) have shown examples of infrasonic signals in the Antarctic cryosphere 
from: ice quakes, discharge and calving events.

Podolskiy et  al.  (2017) monitored the Bowdoin Glacier, near I18DK, with infrasound and identified signals 
related to calving, ice chasm and run-off in a river from a terminus. The latter was observed at the nearby Mirror 
Glacier, however, both glaciers are acoustically blocked for I18DK due to topography.

Here, inter-annual, seasonal and daily variations in glacier activity will be discussed as derived from the contin-
uous infrasonic recordings at I18DK. The infrasonic activity will be compared to discharge measurements, 
modeled discharges and specifications of oceanic and atmospheric temperature.

2. Infrasound Processing and Results
Events of interest in array recordings with N instruments can be detected based on the correlation of the associated 
signals. Melton and Bailey (1957) proposed a so-called Fisher detector. The resulting Fisher ratio (F) is obtained 
by evaluating both the statistical variances in the individual recordings and the variances between the recordings. 
F is a measure of the signal-to-noise ratio (SNR) of the array recordings, following: F = N ⋅ SNR 2 + 1. In this 
study, F was evaluated through beamforming on time-windowed recordings and by setting a detection threshold 
of SNR = 1. This array processing approach has been earlier described in, for example, Evers (2008). Prior to 
beamforming and detection, the detrended recordings were band-pass filtered with a second-order Butterworth 
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Figure 1. Maps showing the location of International Monitoring System infrasound I18DK near the city of Qaanaaq in 
northwestern Greenland. I18DK is configured with eight microbarometers in an array with an aperture of ∼1,000 m. In the 
background, a Landsat 8 scene is shown of 09 September 2021 (Roy et al., 2014). The red lines indicate the retrieved back 
azimuths from infrasound array analysis. The back azimuth labeled with number 1 points to the Qaanaaq glacier, its land-
terminating tongue is situated 2 km to the northeast of I18DK (at 25°). The marine-terminating glaciers (2–4) are located on 
Steensby Land to the south of I18DK (at ∼30 km, between 175 and 210°). Herbert Island lies to the west of I18DK in the bay 
at ∼25 km.
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filter with corner frequencies of 1.0 and 5.0 Hz. Array processing was done on windows of 12.8s with 50% over-
lap. As shown in Figure 1, N = 8 for I18DK, however, not all eight microbarometer recordings were continuously 
available, due to gaps in the data. Therefore, N ≥ 7 was chosen in the processing to guarantee a consistent image 
of the infrasonic soundscape surrounding I18DK over 18 years. This consistency is further assessed by analyzing 
the detection rate at SNR = 1. No significant changes or trends were found in the signal-to-noise ratio (SNR) over 
time, which might have indicated sudden or gradual changes in the systems response.

Figure 2 shows the soundscape resulting from array processing for the period 27 February 2004–05 October 
2021. The detection density is presented as a function of the retrieved back azimuth, which is the direction-of-ar-
rival of a signal with respect to the north. The detection density is calculated by summing the number of detec-
tions per day, per half a degree in back azimuth. Both vertical and horizontal bands of high detection densities 
can be seen in Figure 2. The vertical bands correspond to detections in the total of 18 summer seasons. Hardly 
any detections are made in winter, while the infrasonic detections are abundant in summer. The horizontal bands 
represent persistent sources throughout the years from specific directions. Variations between the different years 

Figure 2. Infrasound detections from I18DK (Greenland) over 18 years of recordings. The detection density is shown as function of back azimuth (degrees) and time 
(years) from 2004 to 2021. The color coded detection density is the number of detections summed per day and half a degree in back azimuth (chosen such for plotting 
purposes). The back azimuth is the direction of arrival of the detection, where 0° means a source to the north of I18DK and 90° for a source to the east. Histograms with 
the number of detections are given to the left and on top of the main frame. The histogram to the left follows from a summation (along the horizontal) of the detections 
over all years, binned per two degrees in back azimuth. For plotting purposes the maximum is limited to 15,000; the actual maximum of the peak labeled as 1 is 226,386 
detections. The distinct peaks in back azimuth labeled as 1–4 are also plotted in Figure 1. The top histogram is the result of (along the vertical) summing the number of 
detections per day. The red line within this histogram is the cumulative number of detections.
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in source activity follow from the changes in color brightness. This is further quantified in the histogram above 
the detection density graph, where the number of detections per day are shown. For example, in the summer 
of 2012, 2019 and 2020 large numbers of detections were made, while the summers of 2004, 2006 and 2013 
were infrasonically far quieter with fewer detections. From the cumulative sum in the histogram it follows that 
2019 was overall the year with the most infrasonic detections. A total of 743,280 detections has been made over 
18 years. To the left, the total sum of detections over the years are shown as a function of back azimuth. The 
persistent sources lead to distinct peaks in the histogram. Most activity appears from the northeast (∼25°) with a 
total of 226,386 detections. At least three other peaks can be identified and labeled as 2–4, these detections have 
their origin to the south of I18DK.

The nature of these sources will be discussed in the next section.

3. Glacier Infrasound
A relation between ice and snow related processes in the Arctic cryosphere and the infrasonic detections is 
hypothesized, based on the location of I18DK in northwestern Greenland and the seasonal variations, that is, high 
activity in summer and low in winter. Some of the distinct back azimuths (labeled 1–4) in Figure 2 are plotted 
in the regional map shown in Figure 1. The back azimuth of 25° (1) points to the direction of a land-terminating 
tongue of the Qaanaaq glacier. Three distinct azimuths (2–4) are retrieved for southerly directions. Here, on the 
northern shore of Steensby Land three marine-terminating glaciers are located, between 175 and 215°. Although, 
a single array can not resolve distance under a plane wave assumption, it seems probable that these glaciers are the 
source of the infrasonic detections. Further evidence will be given by considering possible source mechanisms. 
In the following, the beamforming is repeated and focused on a narrow azimuthal range of 10° (for direction 1) 
and 5° (for 2–4) around the direction of interest.

3.1. Qaanaaq Glacier

Figure 3 shows the cumulative number of infrasonic detections as a function of time from the direction of the 
Qaanaaq glacier. Recall that an detection is a coherent infrasonic signal that traveled over I18DK and was made 
by a minimum of seven microbarometers with SNR ≥ 1. Both years with few detections (e.g., 2006, 2010 and 
2013) and years with many detections (e.g., 2012 and 2019) can be seen. The linear and quadratic fit shows that 
the number of detections per year is increasing over time. Especially, 2019 and 2020 have a large contribution to 
the increasing rate of growth.

Figure 3. Infrasound detections, discharge measurements and model results for the Qaanaaq glacier. The cumulative number of infrasonic detections from the direction 
of the Qaanaaq glacier is shown in black. The gray dashed line represents a linear fit to the infrasound observations. The gray solid line is a quadratic polynomial fit. 
Discharge measurements from the Qaanaaq glacier are given in red. The blue and light blue lines follow from the Modèle Atmosphérique Régional (MAR) model and 
show the modeled discharge and its linear and quadratic fits. The measured and modeled discharges are scaled to the cumulative detections by aligning on the start and 
end time of both. The Qaanaaq glacier is indicated by the back azimuth direction 1 in Figures 1 and 2.
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Discharge measurements have been conducted at the Qaanaaq glacier and are given in Figure  3 (Kondo 
et al., 2021). These measurements are available for 2017 up to 2019 and seem to be in correlation with the number 
of infrasonic detections. The length of the melt season, that is, beginning and end time, that follows from both 
datasets is similar. Furthermore, years with large discharges result in a high number of detections, while smaller 
discharge volumes lead to fewer detections.

Mankoff et  al.  (2020) provide discharges from the regional climate models, like the Modèle Atmosphérique 
Régional (MAR). These modeled discharges are also shown in Figure 3. There is a agreement between the infra-
sonic detections and discharge measurements and modeled values regarding the length of the melt season. On 
average, it lasts from the end June to the beginning of August and peaks mid-July. Years with a high number of 
infrasonic detections (e.g., 2012 and 2019) and years with low numbers (e.g., 2013 and 2018) also appear as years 
of high and low discharges in the model. However, the variability in the number of infrasound detections between 
2004 and 2010 is not seen in the model.

Further correlations between the infrasonic detections and glacier discharge comes from the comparison with 
European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA5 specifications. Figure 5a shows the 
average number of infrasonic detections and average atmospheric temperature (T2m) for the period 2004–2021. 
The European Centre for Medium-Range Weather Forecasts' (ECMWF) specifications are taken near Qaanaaq at 
(77.5°N, 69.25°W). There is a clear agreement between the phase and the number of the detections and tempera-
ture. An increase in temperature leads to an increase in the number of detections and vice versa. On average, both 
the detections and the temperature reach their maxima in July (although there is a yet unexplained difference of 
2 weeks). The detections are highest early July, while the temperature reaches its maximum halfway July.

3.2. Marine-Terminating Glaciers

The directions 2–4 to the marine-terminating glaciers on Steensby Land (see Figure 1) are also individually 
beamformed in azimuthal ranges of 5°. The resulting cumulative number of detections are shown in Figure 4, 
over the period 2004–2012. Also shown are the linear and quadratic fits. In general, it follows that infrasonic 
detections occur in the same period, as found previously, during summer. Infrasonic activity varies for each 
summer, however across the 18 years a clear increase in the rate of activity over time is observed. There are short 
periods of intensified infrasonic activity, for example, in direction 2 in 2015 and in direction 4 in 2017. Closer 

Figure 4. Infrasound detections from the direction of the marine-terminating glaciers to the south of I18DK. Shown are: the cumulative number of infrasonic 
detections (solid line), linear fit (straight dashed line) and quadratic fit (curved line). The sets of lines are labeled 2–4 conform the labeling in Figures 1 and 2 and 
indicate the different glaciers.
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inspection shows that for direction 2 the activity lasted from 18 May 2015 04:45 to 13:39 UTC, while activity 
from direction 4 took place between 16 July 2017 07:42 up to 09:53 UTC.

Figure 5b shows the average number of infrasonic detections and the sea-surface temperature (SST) derived from 
the ERA5 model for the period 2004–2021. The infrasonic activity peaks in late August/early September. This is 
clearly 1.5 months out of phase with the T2m, which peaks in July (Figure 5a). However, the phase and amplitude 
of the sea-surface temperature (SST) correlates well with the infrasonic activity, that is, the increase, decrease and 
peak occur at the same time. Even the shape of a slow increase and fast decrease is similar in both datasets. The 
distinct peaks in detections in direction 2 (May) and 4 (July) correspond to the above identified intensification in 
resp. 2015 and 2017.

4. Discussion
In Section 2, the soundscape surrounding I18DK (Figure 2) contains an enormous amount of infrasonic detec-
tions and hence sources. In this study, detection statistics from a few persistent back azimuths have been investi-
gated to gain insight into the sources and source mechanisms responsible for some of the infrasonic detections. 
However, more interesting findings can be expected from further studying the long-term soundscape. For exam-
ple, the back azimuth range 240°–270° points in the direction of Herbert Island (see Figure 1). Infrasonic activity 
is highly variable between the different years. A first analysis shows that the activity is in phase with the sea-sur-
face temperature (SST). Marine-terminating glaciers on Herbert Island or sea-ice interactions with the island's 
shores might be sources of infrasound.

Figure 2 also shows that during the winter of 2010 a source has been temporarily active to the east of I18DK 
(∼104°). (Slight activity was also detected in 2011.) Another source more continuously present in winter is situ-
ated to the east at ∼282°. The nature of the sources is unknown. However, it is hypothesized that these sources 
have an anthropogenic origin as natural infrasound is limited in the Arctic winter.

In Section 3, the beamforming was focused on specific glaciers by only considering a narrow azimuthal range 
of 5° around the back azimuth of interest. This optimizes the array sensitivity to that direction, as other and 
possibly more coherent sources from different back azimuths can no longer be detected as coherent arrivals. In 
other words, the associated delay times of these signals over I18DK are no longer evaluated in the beamforming. 
However, the signals are still present as noise in the recordings, which reduces the signal-to-noise ratio (SNR) of 
the beam. This effect is equally present in all azimuthal ranges (1–4) and, therefore, does not influence the overall 

Figure 5. The European Centre for Medium-Range Weather Forecasts' (ECMWF) specifications for atmospheric temperature (a, T2m, red line) and sea-surface 
temperature (b, SST, orange line) are taken near Qaanaaq (77.5°N, 69.25°W). The mean values per day are averaged over the period 2004–2021. The sets of lines 
corresponding to the infrasonic detections are labeled 1–4 conform the labeling in earlier figures and indicate the different land and marine-terminating glaciers. The 
number of detections are averaged per day between 2004 and 2021. The standard deviations of the T2m and SST are also given.
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findings. However, a true separation of multiple sources simultaneously active in array recordings can be realized 
with high-resolution beamforming (den Ouden et al., 2020).

Furthermore, in Section 3, agreement is found between the absolute values of the measured discharge and the 
number of infrasonic detections for the Qaanaaq glacier. This agreement is not found for the modeled values and 
number of detections. Furthermore, the absolute values of the measured and modeled discharges differ by a factor 
of 100. Possibly, the spatial resolution of the regional climatological models is too coarse to resolve atmospheric 
variations for the relatively small Qaanaaq Glacier (2 km wide and 7 km long). Although the model data has been 
downscaled to a one-km grid size Mankoff et al. (2020), the original resolution is 7.5 km for Modèle Atmosphéri-
que Régional (MAR). The topography (e.g., elevation) of the original grid as well as the ice mask might cause 
such biases. A lack of long-term meteorological data in the region may also affect the accuracy of calibration 
and validation procedures of the regional model. The nearest weather station is in Thule, which is 100 km from 
the glacier. It is beyond the scope of this paper to further discuss the difference in models and measurements. 
The aim is to provide insight into the causal relations between glacier dynamics (i.e., discharge and calving) and 
infrasonic detections.

An increase in measured discharge corresponds to more detections (Section 3). In signal detection terms: the like-
lihood of a signal being detected in a short time window with SNR ≥ 1 increases, when more coherent infrasound 
is generated due to a larger discharge. However, as shown by Marchetti et al. (2019) for debris flows, an increase 
in the flow rate leads to an increase in the infrasonic amplitudes but not necessarily to more coherent infrasound, 
that is, a higher number of detections. Of importance are the in-phase components of the infrasonic wavefield, 
which appeared to be connected to persistent sources. Therefore, it is hypothesized that the increase in discharge 
of the Qaanaaq glacier leads to more coherent infrasound (at SNR ≥ 1) being excited by acoustic resonators like 
cavities and pipes. Stable sources in the river, at for example, discontinuities in topography, can further contribute 
by generating more coherent infrasound under an increasing discharge.

5. Concluding Remarks
Infrasonic activity around IMS station I18DK, as shown through its soundscape, has been studied for the period 
2004–2021. It has been found that infrasonic activity is correlated with atmospheric and SST. Partial agreement 
has been found with measured and modeled glacier discharges. Based on this evidence, a causal relation between 
infrasonic activity and glacier dynamics is posed.

For the land-terminating Qaanaaq glacier, an increasing rate of growth in infrasonic activity over time is obtained. 
Discharge in the form of melt water run-off is the most probable source, which is confirmed by its relation with 
atmospheric temperature. Infrasound is expected to be generated by the melt water flowing over and within the 
glacier through channels, cavities and pipes. Furthermore, the river formed at the glaciers terminating point will 
generate infrasound (Podolskiy et al., 2017).

The marine-terminating glaciers on Steensby Land also show a more than linear increase over time in activity. 
The activity is controlled by the SST, which makes calving the expected source (Richardson et al., 2010, 2012). 
Hence, the Modèle Atmosphérique Régional (MAR) model is not used for comparison. The larger source-re-
ceiver distance (30 km instead of 2 km for the Qaanaaq glacier) makes the infrasonically modest process of melt 
water run-off less likely to be notable over such long ranges. Periods of high activity of a few hours have been 
identified and may corresponds to large and long-lasting calving events.

Knowledge on individual glaciers based on in-situ measurements is important for addressing the impact on the 
environment and society (Sugiyama et al., 2021) and for assessing long-term changes in glacier behavior (Young 
et al., 2022). The latter citations and references therein serve as recent examples. Here, it is found that each glacier 
shows a distinct behavior on the basis of the long-term infrasonic detections, which is most likely indicative for 
glacier-specific dynamics.

It is concluded that, infrasound measurements can serve as an independent proxy for monitoring glacier dynamics. 
Long-time series allow for assessing changes in relation to climate change. Multiple glaciers can be monitored 
simultaneously, both in the near (km) and far field (tens of km) as well as at high temporal resolution. Therefore, 
infrasound can complement other techniques to remotely gain information on changes in the cryosphere. Such 
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information is obtained by passively listening with an ear (i.e., microbarometer array) sensitive to inaudible sound 
and mapping its detected soundscape to the surrounding environment.

Data Availability Statement
The infrasonic detections per glaciers as a function of time are provided as Supporting Information S1 and in 
the 4TU. ResearchData repository under https://doi.org/10.4121/19390835. For research purposes, infrasound 
data from the International Monitoring System are available through the CTBTO's virtual Data Exploitation 
Centre (vDEC https://www.ctbto.org/specials/vdec/), through a zero-cost agreement. Data are thus freely availa-
ble and can be requested online (http://www.ctbto.org/index.php?id=4701). European Centre for Medium-Range 
Weather Forecasts' (ECMWF) ERA5 re-analysis can be obtained from: https://www.ecmwf.int/en/forecasts/data-
sets/reanalysis-datasets/era5. Landsat 8 scenes are available from http://earthexplorer.usgs.gov.
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