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Summary

Supercritical CO2 (SCO2) is a promising alternative to traditional working fluids in heat pumps and
power cycles due to its high density, thermal efficiency, and stability. These properties allow for the
design of more compact and efficient equipment. However, accurately modeling supercritical heat
transfer, especially near its pseudocritical point, is challenging because of extreme variations in its
thermophysical properties. As a result of these inaccuracies in modeling, large fault margins must be
taken into account, leading to overdesign of equipment.

Existing methods for estimating heat transfer in such systems include empirical measurements,
computational fluid dynamics (CFD), and Nusselt correlations. Although measurements provide accu-
rate data, it is not a scalable solution. CFD methods offer this scalability. However, CFD cannot be
applied in complex scenarios such as modeling of SCO2 due to the trade-off between computational
cost and accuracy. Nusselt correlations have low computational demand and are a scalable solution
but come with low accuracy, making Nusselt correlations unreliable for equipment design.

To overcome these limitations, this research applies a new model to predict heat transfer to SCO2

flowing upward in a heated vertical tube. Current prediction methods primarily rely on artificial neural
networks (ANN). This research applies a convolutional neural network (CNN) for its ability to capture
spatial context from the heat transfer trajectory. This property enables CNN to capture global and local
patterns important for accurate prediction in SCO2 heat transfer. In addition, the multiple kernels per
layer enables the model to extract various features relevant to heat transfer. The CNN model has
shown superior performance, achieving an R2 score of 0.970 and an MSE of 1477, outperforming
existing prediction methods and Nusselt correlations.

A feature importance study was performed to identify the nondimensional parameters that are im-
portant for heat transfer prediction. Furthermore, the experiments show that normalization is vital to
enhance model performance, countering issues such as bias and exploding or vanishing gradients.

The findings in this research suggest great potential for using machine learning models to design
more effective and compact heat transfer equipment. Future work will focus on a feature importance
study for normalized, dimensional, and nondimensional parameters for improved predictions. In ad-
dition, more synthetic data should be generated in the heat transfer detoriation and heat transfer en-
hancement areas for better prediction of those parts. Finally, a study into the application of machine
learning models for designing heat transfer equipment should be done to show the benefits of such
models.
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1
Introduction

Supercritical CO2 (SCO2) is emerging as a promising fluid to accelerate the energy transition. SCO2

offers significant improvements in heat pumps and power cycle performance due to its unique proper-
ties:

• High density: This allows for a more compact turbomachinery and heat exchanger design, which
reduces the cost and footprint.

• High thermal efficiency: Compared to steam, SCO2 has a much higher power density, resulting
in an increase in thermal efficiency.

• High thermal stability: SCO2 can maintain stable temperature and pressure under a wide range
of conditions, making it suitable for use in processes that require consistent heat transfer.

• Clean: SCO2 is a clean, nontoxic, nonhazardous, and stable fluid in contrast to current refriger-
ants being used. Furthermore, refrigerants used in heat pumps and power cycles are phased out
due to environmental regulations [13], positioning SCO2 as the perfect solution.

1.1. Motivation
This section outlines the challenges of designing equipment that uses SCO2 as a working fluid, which
motivates the focus of this research. SCO2 refers to CO2 in a supercritical state. A fluid enters the
supercritical state once it passes its critical point. The critical point is a combination of a specific value
for pressure and temperature. For CO2, the critical point is at Pc = 7.38 MPa, Tc = 304.2 K. Within this
supercritical state, the fluid can be in a fluid-like state or a gas-like state depending on the temperature
and pressure. When CO2 is at supercritical pressure in the fluid-like state and is heated, it transitions
to the gas-like state. During this transition, CO2 passes the pseudocritical point. The pseudocritical
point is a point above the critical pressure at pseudocritical temperature. Around the pseudocritical
point extreme variations in thermophysical properties occur [42]. Figure 1.2 shows the variations in the
properties around the pseudocritical point. This nonlinear behavior can result in heat transfer detori-
ation (HTD) or heat transfer enhancement (HTE). HTD describes a situation where the heat transfer
coefficient at the wall is lower compared to normal heat transfer conditions. This results in higher wall
temperatures. Conversely, HTE occurs when the heat transfer coefficient at the wall is higher than nor-
mal. This leads to lower wall temperatures [32]. These heat transfer behaviors make it very challenging
to model the fluid and lead to overdesign of equipment because a large fault margin must be taken into
account. To address the challenge of accurately modeling heat transfer near the pseudocritical point,
this research will focus on the prediction of heat transfer to SCO2. In this research, the test case of
SCO2 flowing upward within a uniformly heated vertical tube will be considered. The goal is to develop
accurate models for predicting heat transfer within the supercritical region, specifically focusing on the
heat transfer behavior around the pseudocritical point.

1.2. Current methods
In this section, the methods that are currently used to approximate heat transfer will be discussed:
Measurements, computational fluid dynamics (CFD), and Nusselt correlations.

1
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Figure 1.1: A 10 MW SCO2 turbine demonstrating the compact design achievable with supercritical CO2. This turbine is 20
times smaller than a steam turbine and can power 10.000 homes [38].

Measurements
Measurements play an important role in data collection. Generally, temperature, pressure, and mass
flow are measured to find the characteristics of a fluid at all locations in the process. Obtaining precise
measurements is essential to discover the behavior of SCO2 under various conditions. Table 1.1 lists
the typical measurement equipment used in a lab setup to monitor these parameters. Most studies

Table 1.1: Typical range and accuracy of measurement equipment in a test assembly [21].

Instrument Range Accuracy
Thermocouple (K-type) 0 ∼ 1260◦ C ± 0.75 %
Pressure transmitter 0 ∼ 16 MPa ± 0.25 %
Differential pressure transmitter 0 ∼ 58.8 kPa ± 0.055 %
Mass flow meter (Coriolis type) 0 ∼ 680 kg/h ± 0.15 %

choose a tube to measure the SCO2. This experimental setting is relatively simple compared to mea-
surements in a channel or heat exchanger. Figure 1.3 illustrates a typical test assembly used to gather
the measurements. While measurements can be used to design equipment, it is not a feasible solu-
tion to build a test assembly for every piece of equipment. This limitation shows the need for models
and simulations to complement empirical data, allowing for a more efficient design process in SCO2

applications.

Computational Fluid Dynamics
Fluid flow problems are described by the Navier-Stokes equations. These equations, based on the
principles of conservation of mass, momentum, and energy, are too complicated to solve analytically.
Computational fluid dynamics (CFD) offers a method for numerically solving fluid flow problems. Three
dominant methods are used in CFD modeling: Reynolds-averaged Navier-Stokes (RANS), large eddy
simulations (LES), and direct numerical simulations (DNS) each varying in resolution as depicted in
Figure 1.4.

• RANS provides the lowest resolution, relying on simplifications and assumptions to achieve high
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Figure 1.2: Thermophysical characteristics around the pseudocritical temperature of CO2 [12].

computational efficiency. RANS can be used to model turbulence in SCO2. However, the cur-
rent turbulence models developed for RANS can only model isothermal, incompressible fluids
accurately [7] [34]. These turbulence models show low accuracy when applied to SCO2 flows, as
they are not built to model turbulence within SCO2. Although methods have been developed to
improve turbulence models [28], it is still necessary to increase the performance of these models.

• LES offers a compromise between accuracy and computational efficiency by resolving large-scale
vortices and modeling smaller scales.

• DNS provides the most detailed, accurate representation of physical processes and a detailed
grid by solving all the vortices from the small- to the large-scale. However, this higher resolution
comes at the expense of high computational costs, limiting its applicability to flows with high
Reynolds numbers.

Existingmethods such as LES andDNS are restricted to scenarios with very lowReynolds numbers due
to their computational demands [25]. SCO2 flows have high Reynolds numbers limiting the applicability
of DNS and LES. While RANS simulations can be applied, their accuracy is insufficient for design of
equipment like turbomachinery and heat exchangers. These limitations show the need for alternative
methods capable of accurately predicting heat transfer at low computational cost.

Nusselt correlations
Nusselt correlations offer a straightforward approach to estimating heat transfer by calculation of the
Nusselt number. The Nusselt number Nu can be used to determine the heat transfer coefficient α as
shown in Equation (1.1).

α =
Nuk

d
=

qw
Tw − Tb

(1.1)

where k is the thermal conductivity, d is the diameter, qw is the wall heat flux and, Tw and Tb are the wall-
and bulk temperature, respectively. According to research by Pethukov and Kirillov [31], a function f
containing the following thermophysical properties is essential to approximate the Nusselt number.

Nu = f

(
Re, Pr,

µw

µb
,
kw
kb

,
cp,w
cp,b

,
ρw
ρb

)
(1.2)

where Re is the Reynolds number, Pr is the Prandtl number, µ is the dynamic viscosity, k is the thermal
conductivity, cp is the specific heat capacity and ρ is the density. w and b represent the wall and the
bulk, respectively. These properties form the basis for most Nusselt correlations used in supercritical
heat transfer. The correlations are developed by finding a form of Nusselt correlation that can indicate
supercritical heat transfer. Subsequently, the scalars of the correlation are found using line fitting tech-
niques [16]. Unfortunately, as shown in Figures 2.1 and 4.4, the Nusselt correlations are lacking in
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Figure 1.3: Vertically heated tube containing CO2 flowing upward [48]. The test assembly shows a thermocouple and a
pressure transducer at the inlet and the outlet. In addition, the heated section contains 39 thermocouples to measure the wall

temperature. The test assembly uses a Coriolis mass flow meter to measure the mass flow rate.

Figure 1.4: Comparison of three methods for CFD modeling of turbulent flow [14].
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accuracy. Furthermore, Peeters’ research [30] shows that a heat exchanger design based on Nusselt
correlations requires a significant size increase (up to 42%) to account for modeling inaccuracies and
achieve the desired performance. Therefore, it can be concluded that Nusselt correlations can only
be used when a large error margin is taken into account, and it also underscores the need for more
accurate prediction methods.

1.3. Research questions
Considering the limitations of existing methods such as measurements, CFD and Nusselt correlations,
a new method is necessary to predict heat transfer. Therefore, machine learning methods will be
investigated to find a solution. The method should be sufficiently accurate for reliable equipment design
while maintaining computational efficiency. To achieve this goal, the following research questions are
formulated:

• What type of model is best suited for predicting heat transfer?
• How can we incorporate spatial context into the prediction of heat transfer?
• How does the proposed model compare to current methods?
• What are the important features for predicting supercritical heat transfer?

1.4. Research objectives
This section describes the research objectives that will lead to the answers of the research questions.

The first research objective is to develop a model that incorporates the spatial context of a heat
transfer trajectory. The hypothesis is that such a model will lead to better results compared to current
methods, such as Nusselt correlations and prediction methods. These methods only consider one point
on the trajectory, neglecting valuable information from other locations.

The second research objective focuses on identifying the features that influences HTD and HTE.
Therefore, a parameter study will be done to find nondimensional parameters that can explain the heat
transfer in a supercritical fluid. Nondimensionalization is crucial for ensuring training convergence, as
it brings parameters to a comparable scale. Unlike statistical dimensionality reduction techniques, this
approach, based on thermophysical properties, retains the physical meaning of the parameters while
reducing their dimensionality.

1.5. Contributions
This section describes the contributions of this research, which address the challenge of accurately pre-
dicting supercritical heat transfer in SCO2 flows. In this research, a convolutional neural network (CNN)
is developed to predict heat transfer to supercritical CO2 flowing upward within a uniformly heated verti-
cal tube. A CNNmodel is chosen because of its ability to capture the spatial context of the heat transfer
trajectory. by leveraging spatial information, the model achieves significantly better performance com-
pared to traditional methods. The developedmodel achieves a coefficient of determination (R2) of 0.970
and a mean squared error (MSE) of 1477, outperforming existing artificial neural networks (ANN) and
Nusselt correlations. The contributions are as follows.

• CNN model: A CNN with its ability to learn spatial context leads to better predictions of heat
transfer compared to existing methods. Additionally, the proposed model is applicable to a wider
range of parameters than traditional Nusselt correlations, making it a more scalable solution.

• Nondimensional parameter study: A feature importance framework is developed to identify the
most relevant nondimensional parameters for CNN training. Through the feature importance
framework, a set of nondimensional parameters is selected, Q+

pc, Q+, Q+

Q+
pc
, Frb

Frpc
, Kv

Kv,pc
, Prb

Prpc
,

Reb
Repc

, which shows high performance in predicting Nusselt numbers.
• Normalization of features: Normalization of features significantly improves the performance of
models by reducing the bias and preventing issues such as exploding or vanishing gradients.
Normalization contributes to the stability of model predictions and introduces a smoothing effect
that results in more consistent outputs. Furthermore, models trained with normalized dimensional
features consistently outperform those trained with normalized nondimensional features. This
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suggests that nondimensionalization might not be essential for achieving high performance, and
using dimensional features with normalization can be a viable approach.



2
Related works

This section describes the various methods employed for prediction of heat transfer. First, applications
of condensation heat transfer are investigated. Second, it examines a method for the discovery of
parameters. Third, it discusses methods for the application of supercritical transfer.

2.1. Condensation heat transfer
The prediction of heat transfer has been a focus of research in various domains. One of these domains
is the prediction of condensation heat transfer [47] [17] [27]. A comparative review of recent studies,
shown in Table 2.1, reveals a variety of models applied. For example, Zhou et al. [47] report superior
results with an artificial neural network (ANN), achieving a mean average error (MAE) of 6.8% and an
r-squared score of 0.98, while Hughes et al. [17] apply support vector regression (SVR) and achieve a
mean average precision error (MAPE) of 5.0%. Nie et al. [27] demonstrate that a convolutional neural
network (CNN) has the highest MARD of 5.82%, but XGBoost, based on gradient boosting, has the
highest R-squared score of 0.98.

However, the applicability of these studies is limited. The models are trained on measurements
taken from various fluids and geometries. When the data set is narrowed down to a single fluid and
geometry, only a few hundred training samples are left. Consequently, comparisons between models
become unreliable due to the limited data available for each specific fluid and geometry. For example,
an ANN will beat an SVR in performance when provided with enough data, as ANNs contain more train-
able parameters. In contrast, an SVR, having fewer trainable parameters, can achieve high accuracy
with a substantially smaller data set.

In addition, each study employs unique metrics, which complicates the comparison of these meth-
ods. This highlights the need for standardized metrics that are suitable for heat transfer prediction.

2.2. Parameter discovery
The study by Scalabrin and Piazza [35] is one of the first to employ neural networks for supercritical
heat transfer. The research applies a multilayer feedforward neural network to find the optimal form
of the heat transfer correlation. The optimal form is evaluated using the average absolute deviation
(AAD).

The study proposes the following feature vector: Reduced pressure Pr, reduced temperature Tr,
mass flow ṁ and wall temperature against bulk temperature Tw

Tb
. This results in an AAD of 2.67% for the

proposed method versus 4.30% for a conventional equation defined in the research. The application

Table 2.1: Machine learning models used for prediction of condensation heat transfer. RF stands for Random Forest.

Author Models Mediums Training samples
Zhou et al. [47] ANN, AdaBoost, RF, XGBoost 17 4882
Hughes et al. [17] ANN, SVR, RF 9 4000
Nie et al. [27] KNN, ANN, CNN, RF, XGBoost 28 6604

7
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Figure 2.1: Prediction of two heat transfer trajectories are shown in the graphs. The ANN of Ye et al. [44] is compared with
various correlations and the experimental value.

of the proposed feature vector in this research is not possible, as it contains a wall temperature. In
this research, heat transfer needs to be predicted using bulk properties, mass flux, wall heat flux, and
pressure, as an iterative method to approximate wall temperature cannot be used.

2.3. Supercritical heat transfer
Building on the research by Scalabrin and Piazza [35], several researchers have developed models for
the prediction of supercritical heat transfer. The research is listed in Table 2.2. Most of these studies,
mentioned in Table 2.2, use pressure, mass flux, heat flux, bulk temperature, and tube diameter to
predict wall temperature. All studies employ an ANN to make predictions.

Two studies investigate the prediction of heat transfer to supercritical CO2 flowing upward within
a uniformly heated vertical tube [44] [51]. The study by Ye et al. [44] presents graphs in which wall
temperature is plotted against bulk enthalpy, demonstrating that their ANN model works better than the
classical correlations. However, these graphs also reveal an increase in error as trajectories become
more nonlinear, as depicted in Figure 2.1. Additionally, their study excludes trajectories with significant
buoyancy and flow acceleration effects, limiting the scope of their method.

The study by Zhu et al. [50] shows that it can accurately track most HTD and HTE cases, except for
cases with very steep peaks and troughs. In this research, the model developed by Zhu et al. [50], is
applied to predict wall temperature based on the data set. Figures C.6 and C.7 in Appendix C.4 show
the prediction of their model on our data set. Although the ANN can follow the linear trends, it fails to
predict the HTD and HTE areas.

In conclusion, several issues have been identified with existing approaches to supercritical heat
transfer.

• The studies mentioned in Table 2.2 are based solely on information from a single measurement
location to predict the wall temperature. This approach does not take advantage of the sequential
nature of the data, which could provide contextual information for accurate predictions.

• The studies lack a systematic approach to feature selection. Identifying the most relevant pa-
rameters as input features for the prediction model can significantly improve its performance and
efficiency.

• Existing research overlooks the potential of applying nondimensional features to improve predic-
tion. These features allow direct input into prediction models, thereby preserving information that
might otherwise be lost through normalization processes.

The evaluation of the aforementioned research demonstrates that there is a need to improve the
prediction of supercritical heat transfer. In particular, HTD cases should be investigated. Moreover,
conducting an in-depth study on features to identify themost effective parameters is also crucial. Finally,
research into nondimensional parameters can contribute to the predictive capability of these models.
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Table 2.2: This table shows the research papers where an ANN is developed for prediction of heat transfer for supercritical
fluids. The parameter ranges, the type and amount of data is described.

Author Pr(−) Tb(K) G(kg/m2s) qw(kW/m2) d(mm) Type of data Data
points

Ye et al.
[44]

1.02−1.25 267− 388 100− 3079 0.479−616.3 2− 22 Measurements
of SCO2 in a
heated
upward tube

7313

Zhu et al.
[48]

1.02−2.82 500 488− 1500 84− 350 2− 16 Measurements
of SCO2 in a
heated
upward tube

2674

Chu et al.
[9]

1.08−1.19 288− 310 33− 233 5− 30 2− 10 DNS of SCO2

in a heated
horizontal
tube

2100

Chen et al.
[6]

1.06−1.78 290− 340 250− 850 12− 66 10.9 Measurements
of SCO2 in a
heated
horizontal
tube

1115

Dhanuskodi
et al. [11]

0.99−1.82 348− 881 2, 083− 5170 48.5− 290 8.2 Measurements
of SH2O in
boiler

10367

Chang et
al. [5]

1.02−1.13 340− 473 700− 3500 300− 1600 8− 20 Measurements
of SH2O in a
heated
horizontal
tube

5280



3
Method

This chapter describes the method to predict heat transfer to supercritical CO2 flowing upward within
a uniformly heated vertical tube. The method involves selecting and preparing the data set followed
by a parameter study on nondimensional features. Subsequently. data preprocessing and a feature
importance method are presented. A convolutional neural network (CNN) is proposed to predict the
Nusselt number. A comparison is made with an artificial neural network (ANN) and Nusselt correlations.
Finally, a study on the normalization of parameters is done.

3.1. Data selection
This method describes the process of selecting the data. The data is selected based on the following
requirements: It should contain measurements or DNS data for CO2 in the supercritical state. Further-
more, the heat transfer should occur for supercritical CO2 flowing upward within a uniformly heated
vertical tube.

The data set for this research is obtained from the study by Ye et al. [44]. Their data set contains
data from 15 research articles with the specific papers and their parameter ranges presented in Table
A.1 in Appendix A. The data set by Ye et al. [44] relies on data captured from figures in the studies
mentioned in Appendix A. The extracted data contains pressure, diameter, bulk temperature, mass
flux, wall heat flux, wall temperature, heat transfer coefficient, and Nusselt number. In some cases, the
location of the measurement, measured from the start of the heated pipe, and the inlet temperature
are extracted. The researchers used between 20-40 thermocouples to measure heat transfer in 3-9 m
test sections. In all studies, pressure, mass flow, and wall-, bulk-, and inlet temperature are measured.
The data set contains 9957 measurements. Table 3.1 shows the parameter ranges for the data set. In
addition, Figure A.1 in Appendix A shows the data distribution of the data set.

Table 3.1: Parameter ranges of the data set used in this study which is developed by Ye et al. [44].

Author Pr(−) Tin(K) G(kg/m2s) qw(kW/m2) d(mm) Type of data Data points
Ye et al. [44] 1− 1.25 267− 388 230− 2027 19.6− 436.4 4.4− 9 Measurements 9957

3.2. Data preparation
This section describes the methods used to prepare the data for future use. Initially, heat transfer
trajectories are plotted for validation against the corresponding research articles listed in Appendix
A, ensuring alignment with the source data. The data set includes thermophysical properties, such
as thermal conductivity and dynamic viscosity. These thermophysical properties are verified using
CoolProp, a property database, to confirm their accuracy. The heat transfer coefficient and the Nusselt
number are recalculated using Equations (3.1) and (3.2), respectively.

α =
qw

Tw − Tb
(3.1)

Nu =
αd

k
(3.2)

10
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The data set occasionally lacks measurement locations. In that case, the location of the measurement
within the tube is derived from the bulk enthalpy, given in Equation (3.3).

xn =
G(hb,n − hb,0)

4qw
+ x0 (3.3)

where hb is the bulk enthalpy, x is the location in the pipe, G is the mass flux, 0 represents the first mea-
surement point and n a specific measurement point. Additionally, thermophysical properties, along with
Reynolds and Prandtl numbers, are appended to the data set using CoolProp and relevant formulas.
Table 3.2 shows all the parameters available after the data set is enhanced with the aforementioned
methods.

Table 3.2: Parameters of the data set

Parameters
hb, Tb, ρb, µb, kb, cpb

, Prb, Reb,
hw, Tw, ρw, µw, kw, cpw

hpc, Tpc, cppc
, kpc, µpc, ρpc, Prpc, Repc,

x/d, d, qw, G, Tout, Tin, P , Nu, α.

3.3. Scaling of thermophysical properties
In this section, the thermophysical properties are scaled to improve learning efficiency of the model
and prevent issues such as exploding or vanishing gradients [15]. This process involves scaling the
properties to make them nondimensional, a strategy chosen over the use of normalization to avoid the
loss of vital thermophysical information that could lead to inaccurate model predictions. Most properties
are scaled using the pseudocritical values of the heat transfer trajectory. The physical location within
the system is scaled using the pipe diameter, allowing for a standardized reference across different
system sizes.

More advanced nondimensional parameters are used for the wall heat flux and mass flux. Both
parameters have a large influence on the heat transfer behavior and are therefore important to scale
correctly. Table 3.3 shows the formulas for these nondimensional parameters, and the motivation for
the parameters is given below:

• The nondimensional heat flux, q+, serves as a scaling option for the wall heat flux. The formula
consists of the wall heat flux, the specific heat capacity, the bulk temperature, and the mass
flux. Variations in the specific heat capacity and temperature along the axial direction provide
information on whether HTD or HTE occurs and can help predict the Nusselt number. Therefore,
these parameters are selected to scale the wall heat flux.

• The nondimensional heat flux, qw
G·hb

, of the Nusselt correlation by Yang et al. [43] is chosen
because it scales the wall heat flux with a length aspect of the tube, the bulk enthalpy. Equation
(3.3) shows how the bulk enthalpy is correlated with the length of a tube. When the wall heat flux
is scaled with the bulk enthalpy, the heat flux becomes a function of the location in the pipe.

• The Froude number, Fr, is also incorporated to scale the mass flux, characterizing the ratio of
inertia to gravity. This number can provide information on flow instability or relaminarization effects
resulting from buoyancy-driven flows around the pseudocritical point. The buoyancy-driven flows
can result from density differences near the wall that are influenced by gravity and can lead to
HTD or HTE [29].

• Liu et al. [24] state that a flow acceleration parameter, Kv, can be used to indicate the transition
from turbulent to laminar flow. This parameter contains the wall heat flux and the mass flux, both
of which need to be scaled.

• The local heat flux parameter, Q+, is developed by McEligot et al. [26] to make the wall heat flux
variable with its location by scaling it with local bulk properties. This formula should account for
the transition from turbulent to laminar flow according to the research.

Combining these parameters gives insight into the behavior of HTD and HTE, which might help
the algorithm predict both situations. All of these parameters are added to the data set to expand the
options of parameters from which to learn.
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Table 3.3: Nondimensional parameters and their formulas. These parameters are added to the data set.

Author Name Formula
Liu et al. [24] Nondimensional heat flux (q+) q+ = qw

cp,b·Tb·G
Yang et al. [43] Nondimensional heat flux with length aspect qw

G·hb

Nie et al. [27] Froude number (Frpc) Frpc = G2

g·ρ2
pc·d

Liu et al. [24] Flow acceleration parameter (Kv) Kv = 4 q+

Reb
McEligot et al. [26] Local heat flux parameter (Q+) Q+ = qwd

2kbTb

3.4. Data preprocessing
The data set contains varying lengths of heat transfer trajectories. However, CNNs require input data
of uniform dimensions, as they are based on fixed-size layers and filters to apply convolutions across
the input data set. Therefore, an algorithm must be designed that brings these trajectories to the same
size. Three methods are tested to find the best performing method:

• Segmentation and padding: This method involves splitting a heat transfer trajectory when it ex-
ceeds a predetermined length and appending zeros to the end of the trajectory if it falls short of
the required length.

• Overlapped segments with interpolation and padding: This method addresses the challenge of
preserving sequential relationships, opposing the potential loss of sequential information when
the data is split. By introducing overlaps between segments, this method ensures that sequential
data from the heat transfer trajectories is not lost. If the trajectories are too short, interpolation is
applied before creating the overlapped trajectories of a data set.

• Segmentation and interpolation: This method increases the length of the trajectories by interpo-
lation, rather than padding. If trajectories are exceeding the maximum length, they are split. This
approach ensures that the trajectories maintain their physical properties throughout their entire
length, potentially offering a more accurate representation of the data for model training.

These methods ensure that all heat transfer trajectories, regardless of their original size, are trans-
formed into a uniform format suitable for CNN training. The length of the trajectories is set at 38 as
77% of the trajectories have that length. The other trajectories are transformed using one of the afore-
mentioned methods.

3.5. Feature importance
This section employs various methods to assess feature importance, thereby distinguishing influential
features from noise. These methods span from statistical techniques to model-based approaches,
offering insight into feature importance. In the following, we describe the methods utilized in the feature
importance analysis.

Correlation analysis
Correlation analysis involves the calculation of pairwise correlations between each feature and the out-
put variable utilizing the Pearson correlation coefficient. This coefficient measures the linear correlation
between these two vectors. As both vectors are normalized, the coefficient can have a value between
-1 and 1. The following shows what the coefficient means:

• 1 implies a perfect positive relationship: as one variable increases, the other variable increases
by a proportionate amount.

• -1 implies a perfect negative relationship: As one variable increases, the other variable decreases
by a proportionate amount.

• 0 implies no linear relationship: There is no linear trend between the variables.

The formula to calculate the Pearson correlation coefficient r between two variables, X and Y , is given
by:

r =

∑
(X −X)(Y − Y )√∑

(X −X)2
∑

(Y − Y )2
(3.4)
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where X and Y are the individual sample points, and X and Y are the means of the variablesX and
Y , respectively. The closer a feature is to 1, the higher the correlation with the target value. When
a feature has a score of 0 there is no correlation to be found. The feature can also be negatively
correlated. Again, the closer the feature is to -1, the higher the correlation.

The Pearson correlation is not an ideal method as it only measures the linear correlation, whereas
our data set also contains a lot of nonlinear parts. However, it is used as a first insight to assess whether
there is any correlation between input features and the Nusselt number.

Tree-based models evaluation
Tree-based models, such as Random Forest, Gradient Boosting Machines (GBM), and XGBoost, offer
insight into feature importance. The feature importance can be assessed from how features are used
to split data across trees and their contribution to improving model performance. The steps we take are
as follows. First, a random forest regression (RF) model is trained [4]. Next, the feature importance is
calculated. The process involves evaluating the decrease in node impurity across all trees in the model,
adjusted by the probability of reaching that node, which is determined by the proportion of samples
passing through the node. Node impurity quantifies how much variation there is in a node. Essentially,
features that lead to significant decreases in impurity are considered more important. This method
offers a direct metric to assess the value each feature brings to the model’s predictions, with higher
values indicating features that more effectively split the data, thus improving the model’s accuracy. A
disadvantage of using this method is that we are using feature importance based on a trained model.
When the model is overfitting on the data set and we try to employ feature importance, it may lead to
inaccurate results.

Permutation feature importance
Permutation feature importance is a model-agnostic approach that evaluates the impact of each feature
on the performance of the model. The method was first proposed in the work of Breiman et al. [4] for
RF. In this work, it is used for both the RF and the CNN. For each feature, the values are randomly
shuffled across all samples, which affects the feature-target relationship. The model performance is
then recalculated on this perturbed dataset. By randomly shuffling the values of a feature and measur-
ing the change in model performance, this method determines the importance of a feature. The idea is
that significant features, when permuted, will lead to a noticeable increase in prediction error, indicating
their importance for prediction.

Lasso Regularization
Least Absolute Shrinkage and Selection Operator Regularization, also known as Lasso Regularization,
is a type of linear regression that uses shrinkage [39]. Shrinkage is where data values are shrunk
towards a central point, like the mean. The lasso technique encourages simple and sparse models
(i.e., models with fewer parameters). The method introduces a penalty term to the loss function equal
to the absolute value of the magnitude of the coefficients. This approach can shrink some coefficients
to zero, effectively performing feature selection. The objective function of Lasso regression is given by:

min
β

 1

2n

n∑
i=1

(yi −Xiβ)
2 + λ

p∑
j=1

|βj |

 (3.5)

where n is the number of samples, Xi are the feature vectors, yi are the target values, β are the
coefficients, p is the number of features, and λ is the regularization parameter controlling the strength
of the penalty.

The intrinsic property of Lasso regularization to perform feature selection can be used for our applica-
tion. Features that are not important will have coefficients that are reduced to zero, whereas important
features will have a larger magnitude coefficient. The coefficients per feature are extracted to show
which features are important. Furthermore, the method will shrink the coefficients of features that are
highly correlated to zero. The advantage is that features that contribute exactly the same information
get a low score. However, the disadvantage is that, as these features will have low coefficients due to
similarity, it cannot be assessed whether they contribute to predicting the target. They will get a low
coefficient independent of the importance of the feature in relation to the target. Another disadvantage
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of Lasso regularization is that it might not capture complex relationships as it prefers to reduce the
feature space to a simple representation.

Input features and output
The feature importance study resulted in an input vector that can predict the Nusselt number. The input
vector consists of Q+

pc, Q+, Q+

Q+
pc
, Frb

Frpc
, Kv

Kv,pc
, Prb

Prpc
, Reb

Repc
. The Nusselt number is chosen as the output

because it is already a nondimensional number.

Procedure
The following procedure is used to find the best features for CNN training.

1. Correlation Analysis: Initially, features are analyzed for their correlation with the target variable
to identify linear relationships.

2. Random Forest Analysis: The feature vector containing all the nondimensional numbers is used
to train an RF model.

(a) Feature importance: The feature importance provided by the RF model is analyzed. This
method ranks features based on their contribution to improving model accuracy, highlighting
those with the most predictive power.

(b) Permutation Feature Importance: Following the initial feature importance ranking, permuta-
tion feature importance is applied to the trained RF model. This technique evaluates the
impact of shuffling each feature on model accuracy, further refining the understanding of
feature relevance.

(c) Lasso regularization: This method helps to identify features that can be eliminated (those
with coefficients reduced to zero), thus focusing on the most informative ones.

3. CNN-based analysis: A CNN is trained using the feature vector to further explore feature im-
portance for the CNN. After training, permutation feature importance is applied. This method
assesses how the permutation of each feature affects the performance of the model.

4. Cumulative tree-based importance: A cumulative score is compiled from the correlation analysis
and the tree-based methods, the cumulative tree-based importance.

5. Feature selection and performance: The seven feature vectors with the highest performance are
selected for each method. Subsequently, a baseline model is trained for each method based on
this selection. The metrics are reported for each method.

6. Feature refinement: A subsequent round of permutation feature importance identifies the subset
of features that contribute significantly to model performance. Top-performing features are se-
lected on the basis of a criterion: Only those with scores of at least 10% of the highest performing
feature’s score are chosen. The selected features are then used to re-train the baseline model
to refine the metrics and identify the best-performing features.

3.6. Convolutional neural network
The goal of the model is to predict the Nusselt number based on the properties available through mea-
surements. Traditionally, a CNN is used in computer vision tasks where the kernel is shifted over an
image to extract features. This research aims to leverage the ability of CNNs to capture spatial in-
formation. The data analyzed in this research, heat transfer trajectories, are of a sequential nature.
Predicting the Nusselt number based solely on isolated data points would not fully capture the underly-
ing dynamics of the process. Therefore, a CNN is proposed to capture this information.

Architecture
The core architecture of the CNN comprises seven convolutional layers. The kernels of the convolu-
tional layers slide over the input data, applying filters to capture patterns like heat transfer detoriation,
heat transfer enhancement, or other relevant characteristics in segments of the data. Fully-connected
layers are used to convert these extracted features into the desired output, the Nusselt number. Figure
3.1 shows the architecture of the algorithm. The architecture is found through a hyperparameter study.
The dimensions of the input layer can be explained as follows. The length of the trajectory is 38. The
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width of the trajectory is one, as we only have measurements in the axial direction of the tube. The
last dimension, 7, stands for the amount of input features. All the convolutional layers have a length
of 38 and a width of 1. The last dimension of the convolutional layers represents the number of ker-
nels that are used. The last dimension in the fully-connected layer stands for the amount of neurons.
Furthermore, the kernels are all one-dimensional, with the first dimension giving the length of the kernel.

Figure 3.1: Architecture of the proposed convolutional neural network

Pooling layers are usually applied in a CNN. They can be used to down sample the data so that
the data is a summarized version of the original input. It results in a model being invariant to local
translation, reduces overfitting, and speeds up computation [15]. However, we aim to learn from the
spatial information and, therefore, would like to keep the full size of the data. Furthermore, our data set
is relatively small, thus speed up of the model is not necessary. On a more practical note, we want to
output the same trajectory size as the input size. Therefore, the reduction in size is undesirable.

Activation function
Rectified Linear Activation Unit (ReLU) is used as activation function. The function returns the input
value if it is greater than zero and returns a zero if it is less than zero. Most models today use the ReLU
activation function due to its easy calculation. Furthermore, it is more robust to noise and overfitting
compared to the Sigmoid or Tanh function. Another advantage is that a ReLU can introduce sparsity
into the model by setting neurons to zero. In practice, this means that kernels specialized in heat
transfer enhancement are activated only when such behavior occurs. A disadvantage of the ReLU
function is that when the weights in the model lead to negative input into a ReLU function, the ReLU
function will output zero, also known as the ”dying ReLU” problem [10]. Once the ReLU only outputs
zero, the weights will not be updated. However, this output only occurs when all inputs become zero. If
only one input is nonzero. The weight will be updated, and the ReLU activation function will stay alive.
Using the Adam optimizer, which adapts the learning rate, the dying ReLU problem is also limited, as
it becomes only severe once the learning rate is high. Small learning rates can prevent the gradients
from driving ReLU activations below zero, thus reducing the likelihood of ”dying ReLUs”.

Bias initializer
Bias of the output layer is initialized using the mean of the training output as proposed by Karpathy [19].
This approach is intended to start off the predictions of the model in the statistical context of the data,
accelerating the convergence.

Loss function
The Mean Squared Error (MSE) has been selected as a loss function. This function is chosen because
it punishes large errors more severely. In the case of supercritical heat transfer, the model will have
difficulty predicting when HTE or HTD occurs because this behavior comes with large variations in the
parameters. A loss function that penalizes these errors in the large variations more severely will likely
have a positive effect on the prediction capability. The MSE has a limitation to evaluate the Nusselt
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number predictions. First, MSE offers limited interpretability, providing only a single value that does
not reveal how the model performs across the data set. Secondly, MSE is sensitive to the scale of the
Nusselt number. If the average value is high, errors for those high values will dominate the MSE even
if they are proportionally similar to errors for lower values. This behavior can lead to prioritization of
accurate prediction of high Nusselt numbers at the expense of lower ones.

Optimizer
The model uses an Adam optimizer that is a combination of AdaGrad and RMSProp developed by
Kingma et al. [23]. The optimizer adjusts the learning rate for each parameter by calculating the moving
averages of the gradients and the squared gradient to adjust the learning rate. The Adam optimizer
leads to faster and more stable convergence with minimal hyperparameter tuning. A disadvantage
of an Adam optimizer is that it is susceptible to noise. Through the hyperparameter study, an initial
learning rate of 0.001 is found for the Adam optimizer.

3.7. Nusselt correlations
Nine Nusselt correlations are selected, specifically designed for the approximation of heat transfer to
supercritical CO2 flowing upward within a uniformly heated vertical tube. These correlations are used
to compare performance. The Nusselt correlations used in this research are shown in Table B.1 in
Appendix B. Most correlations have some form of Equation (1.2). Their parameter ranges are shown
in Table 3.4.

All Nusselt correlations require an iterative method to find the wall temperature. Therefore, the
iterative method, developed by Peeters [29], is used to converge on the wall temperature. The iterative
method works as follows: Starting with an initial range of wall temperature between a lower bound, bulk
temperature, and an arbitrarily chosen upper bound temperature, the method iteratively narrows down
this range to find the temperature that satisfies a certain threshold.

Table 3.4: Parameter Ranges for Nusselt Correlations

Author Pressure Mass Flux Wall Heat Flux Diameter
[MPa] [kg/m2s] [kW/m2] [mm]

Gupta [16] 7.4 - 8.8 706 - 3169 9.3 - 616.6 8
Kim [22] 7.75, 8.12, 8.85 400 - 1200 0 - 150 4.4
Jackson [18] 7.85, 9.81 1100 - 7500 900 - 2600 4.4
Preda [33] 7.58 - 9.58 419 - 1200 20 - 130 0.948 - 9
Pioro [32] 8.38 - 8.8 700 - 3200 18.4 - 161.2 8
Wang [41] 7.4 - 10.3 102 - 3400 2.6 - 1053 0.95 - 29
Yang [43] 7.6, 8.4, 8.8 900 - 3000 0 - 600 8
Zhang [46] 7.5 - 10.5 50 - 200 5 - 60 16
Zhu [49] 7.52 - 21 315 - 2000 18.4 - 893 2 - 26



4
Experiments

In this chapter, the experiments are described. The CNN is evaluated for prediction of heat trans-
fer to supercritical CO2 flowing upward within a uniformly heated vertical tube. The experiments are
structured to incrementally build upon the findings of the preceding ones, encompassing:

• Development of a baseline model to serve as a reference point
• Comparison of three data pre-processing methods
• Feature importance study
• Hyperparameter search
• Evaluation of the impact of various model configurations through ablation studies
• Benchmarking the proposed CNN against ANN and Nusselt correlations
• Influence of data normalization on model performance

Each experiment follows a structured format. Initially, the aim of the experiment is described, followed
by a detailed description of the methodologies employed. Finally, the results are reported along with a
discussion of the experimental findings.

Two metrics are used for the evaluation of the developed models, the MSE and the R2 score, also
known as the coefficient of determination. MSE is chosen because it gives us insight on the perfor-
mance of the model on the outliers in the data, the HTE and HTD areas. The R2 score is defined as
the amount of variance explained by the prediction model. The R2 score measures the difference be-
tween the predicted values and the data. A higher R2 score means that the variance is better explained.
What should be taken into account when interpreting the R2 value is that it does not account for bias.
Therefore, the metric is combined with MSE to assess model performance.

The data set is divided into three parts: training, validation and testing, following an 80-10-10 per-
centage split. Training and validation data sets are used for model training, while the test data set is
reserved for qualitative and quantitative evaluations of the model performance. A random state 42 is
chosen to ensure the same split at all times.

4.1. Experiment 1: Baseline model
The primary objective of this experiment is to create a simple and effective model that serves as a ref-
erence point to evaluate the performance of more complex models in future experiments. Establishing
this baseline is crucial to providing a clear benchmark against which the effectiveness of other meth-
ods can be measured, ensuring that any improvements can be quantitatively assessed. The baseline
method is found through trial and error by varying the number of layers until acceptable results were
found.

Methodology
In this experiment, a CNN is developed to be used as a baseline model. The baseline consists of
three 1D convolutional layers, each with 32 filters, and two 1D convolutional layers with 64 filters each.
Each layer contains a kernel size of 3 and ReLU as an activation function. The last two layers consist

17
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(a) Loss curve (b) Experimental Nusselt number vs. predicted Nusselt number

Figure 4.1: Baseline model performance

of two fully-connected layers with 50 and 1 neurons, respectively. MSE is chosen as a loss function.
As metrics, R2 and MSE are selected. The model is set at 3000 epochs and a batch size of 32. In
addition, it uses an early stopping function to prevent overfitting. A bias initializer is incorporated in the
last fully-connected layer to ensure fast convergence.

The thermophysical properties of the Nusselt correlations, given in Equation (1.2), are used as inspi-
ration for the feature vector. The wall heat flux and the mass flux are also added to the feature vector.
The properties are made nondimensional using thermophysical properties at pseudocritical tempera-
ture. The resulting feature vector contains the following features: Tb

Tpc
, µb

µpc
, kb

kpc
, ρb

ρpc
, q+pc, Frpc. The

goal is to predict the Nusselt number. The data is prepared using the segmentation and interpolation
method described in Section 3.4.

Results
Table 4.1 shows the performance of the baseline model in terms of MSE and R2 scores.

Table 4.1: Performance of the baseline model on the train, validation and test data set.

Type MSE (train-val-test) R2 (train-val-test)
Baseline model 3310 3643 5479 0.934 0.916 0.896

Furthermore, Figure 4.1 presents two visualizations. First, it displays the training loss curves of the
baseline model, providing insight into the learning process of the model over time. Second, it provides
a scatter plot of the predicted Nusselt numbers versus the experimental Nusselt numbers, highlighting
the accuracy of the model in the range of the test data set. Figure C.1 in Appendix C.1 shows the heat
transfer trajectories, providing qualitative information on the overall performance of the model.

Discussion
Analyzing the data quantitatively, Table 4.1 reveals that the model generalizes effectively between the
train and the validation data. This generalization is indicated by the marginal increase between the
training and validation MSE. However, the model shows poor generalizability to the test data. This
behavior is indicated by the significantly higher test MSE. Furthermore, the decrease in R2 scores from
training through validation to the test data set suggests that model generalization to unseen data is
inadequate. Therefore, a hyperparameter study will be carried out in experiment 4.4 to increase the
generalizability of the model.

The loss curves in Figure 4.1a decrease during training. A decrease in training loss indicates that
the model can learn and adapt to the training data. The loss curve also shows that the train and
validation losses decrease at the same rate and stay close to each other, indicating that the model is
not overfitting. However, the presence of large fluctuations within the loss curves points to a potential
instability in the learning process. The fluctuations indicate that the batch size or the learning rate
should be modified. At the end of the training, the loss curves level off, indicating that the model has
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reached its learning capacity. In the hyperparameter study in Section 4.4, the batch size and learning
rate of the model will be modified. Also, the learning capacity of the model will be increased.

Figure 4.1b shows a comparison between the predicted and experimental Nusselt numbers. Gener-
ally, the predictions are close to the experimental Nusselt numbers, with minor discrepancies. However,
a significant deviation is observed around the location: Nuex = 600 where Nupred = 350. Moreover,
the greatest discrepancies are predominantly seen in the lower range of Nusselt numbers. Therefore,
these areas should be the focus of improvement during training.

Figure C.1 presents the predictions of the Nusselt number for the test data set. The model is able
to capture the linear trend in the heat transfer trajectories. However, the model performs poorly in the
troughs and peaks associated with HTD and HTE, respectively. Therefore, these discrepancies need
to be further examined in subsequent experiments.

4.2. Experiment 2: Data preprocessing methods
The CNN needs trajectories of the same length. The heat transfer trajectories in the data set are
characterized by trajectories of varying lengths. Therefore, in this experiment, three data preprocessing
methods are evaluated that standardize the trajectories.

Methodology
In this section, three methods are described to standardize the data set to a specified trajectory length.
The three methods are evaluated by training the CNN baseline model. The method with the lowest
MSE and highest R2 score will be employed in subsequent experiments. The following methods are
applied:

• Segmentation and padding
• Overlapped segments with interpolation and padding
• Segmentation and interpolation

Results
Table 4.2 shows the performance of the three methods.

Table 4.2: Performance of the baseline model trained with three different preprocessing methods. The MSE and R2 score are
used as metrics.

Category MSE (train-val-test) R2 (train-val-test)
Segmentation and padding 1101 1733 2461 0.978 0.955 0.956
Overlapped segments with interpolation and padding 554 1311 3607 0.983 0.958 0.813
Segmentation and interpolation 3093 3671 6296 0.940 0.917 0.888

Discussion
The MSE loss and the R2 score of the overlapped segments with interpolation and padding shows low
performance. Although the train MSE is very low, the model is overfitting on the test data, as indicated
by the significantly higher test MSE. Overfitting is due to overrepresentation in certain parts of the heat
transfer trajectory as a result of the overlapping sections. Segmenting and padding the data gives
the highest performance as indicated by the MSE and R2 score. This performance demonstrates that
zero padding gives better results than using interpolation to fill the missing values in the heat transfer
trajectories. Again, interpolation leads to overrepresentation in certain areas, resulting in a negative
effect on the generalizability of themodel as shown by theMSE andR2 results. Therefore, zero-padding
will be used in the hyperparameter search to optimize the model.

4.3. Experiment 3: Feature importance
This experiment focuses on evaluating the feature importance of the nondimensional parameters within
the data set. The aim is to identify the most significant features that increase the accuracy of the model
in predicting heat transfer.



4.3. Experiment 3: Feature importance 20

Methodology
In this section, the method is outlined to find the best-performing feature vector. The nondimensional
numbers, described in Section 3.3, are evaluated in this feature importance study. The procedure
applied in this experiment is described in detail in Section 3.5. An overview of the procedure is provided
below:

1. Correlation analysis
2. Random forest analysis

(a) Feature importance
(b) Permutation feature importance
(c) Lasso regularization

3. CNN-based analysis
4. Cumulative tree-based importance
5. Feature selection and performance
6. Feature refinement

Results
Figure C.5 in Appendix C.3 shows the results of correlation analysis, random forest analysis, CNN-
based analysis and cumulative tree-based importance as described in Steps 1-4. The figure shows a
bar plot with compounded normalized scores per feature. Table 4.3 presents the feature vectors and
their performance as described in Step 5. The permutation feature importance, applied in Step 5, is

Table 4.3: Performance and description of the feature vectors selected after employing feature importance methods

Vector Features MSE R2 Feature importance method

1 Q+
pc, Q+, Q+

Q+
pc
, Frb
Frpc

, 5483 0.892 Correlation analysis
Kv

Kv,pc
, Prb
Prpc

, Reb
Repc

2 Frpc, Reb, qw
Ghpc

, Tout

Tpc
, 26 529 0.660 Feature importance

Frb, Tb

Tpc
, qw
Ghb

3 Frpc, Reb, qw
Ghpc

, Tout

Tpc
, 27 816 0.645 Permutation feature importance

Frb, x
d ,

qw
Ghb

4 P
Pc
, ρb

ρpc
, Tb

Tpc
, Tb

Tpc
, 58 390 0.131 Lasso regularization

Prb
Prpc

, Q+

Q+
pc
, Frb
Frpc

5 Repc, Reb, x
d , Q

+, 46 283 0.261 CNN permutation feature importance

Q+
pc, Prb, Kv

Kv,pc

6 Frpc, Reb, Q+
pc,

qw
Ghpc

, 49 081 0.220 Cumulative tree-based importance

Q+, Q+

Q+
pc
, Frb
Frpc

shown in Figure 4.2. The bar plots show a score per feature per category. The permutation feature
importance was applied after training the baseline model with the selected feature vectors from Step
1-4.

Table 4.4 shows the performance of the CNNs after applying the 10% threshold as described in
Step 6.

Discussion
This experiment provides insight into the most critical features. Figure C.5 shows the cumulative score
of all features. The pseudocritical Froude number has the highest cumulative score. Additionally, the
Reynolds numbers at bulk- and pseudocritical temperatures achieve a high score for the permutation
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(a) Feature vector 1 (b) Feature vector 2

(c) Feature vector 3 (d) Feature vector 4

(e) Feature vector 5 (f) Feature vector 6

Figure 4.2: Evaluation of features as described in Step 5

feature importance. The local heat flux parameter, Q+, for bulk and pseudocritical properties is of im-
portance in correlation analysis. Lasso regularization scores almost all features the same, with reduced
pressure, P

Pc
, being an exception, scoring significantly higher than other features. As the reduced press-

sure, P
Pc
, alone cannot be used to predict the Nusselt number, this shows that Lasso regularization gives

us limited information and therefore is not the best feature importance method.
Table 4.3 shows the selected features and their performance after Steps 1-4. Feature vector 1

performs best by a large margin. Figure 4.2 shows the permutation feature importance scores after
prediction with the trained CNN as described in Step 5. The Froude number, Fr, the Reynolds num-
ber, Re, the local heat flux parameter, Q+, and the nondimensional location, x/d, are the parameters
that score high for the permutation feature importance. Feature vector 9 in Table 4.4 emphasizes
the essence of the Reynolds number and the Froude number in combination with the nondimensional
location. Comparing Feature vector 9 with Feature vector 8 shows that only the addition of the nondi-
mensional location significantly increases the prediction performance.

Following the feature importance study, Feature vector 1 will be chosen because it has the lowest
MSE. The importance of the features are described below.

• The importance of the Froude number, Fr, can be attributed to the fact that it scales the mass
flux to characterize the ratio of inertia to gravity, providing information on the flow instability or
relaminarization as a result of buoyancy-driven flows under pseudocritical conditions. Therefore,
this number can help to find areas where HTD or HTE might develop.

• The Reynolds number, Re, gives insight into the amount of turbulence in a fluid. Turbulence is
directly related to the amount of heat that can be transferred from one medium to another and
therefore offers insight into HTE, HTD or normal heat transfer.

• The local nondimensional heat flux, Q+, was developed to scale the wall heat flux, qw, with the
diameter, d, and make it variable with its location through the local bulk properties. The parameter
gives us insight into the heat flux at the wall compared to heat transfer at a bulk location. The
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Table 4.4: Performance and description of the feature vectors selected as described in Step 6

Vector Features MSE R2 feature importance method

7 Q+
pc, Q+, Q+

Q+
pc
, Kv

Kv,pc
6445 0.887 Correlation analysis

8 Frpc, Reb 44 285 0.281 Feature importance

9 Frpc, Reb, x
d 5517 0.908 Permutation feature importance

10 ρb

ρpc
, Q+

Q+
pc
, Frb
Frpc

58 108 0.130 Lasso Regularization

11 Reb, x
d 43 387 0.298 CNN permutation feature importance

12 Frpc, Reb 48 391 0.275 Cumulative tree-based importance

scaling with the diameter allows for a better comparison of the wall heat flux between the heat
transfer trajectories. Local bulk properties will help to indicate the amount of heat flow to CO2.

• The Prandtl number, Pr, provides insight into the speed with which the thermal energy diffuses
compared to the momentum of the fluid.

• The flow acceleration parameter, Kv, compares the nondimensional heat flux with the Reynolds
number. The nondimensional heat flux, q+, provides insight into the influence of the heat flux on
the local bulk parameters. The Reynolds number is a measure of the potential for turbulent flow.
Together, these parameters can indicate the potential for heat transfer rate.

In addition, Five out of the seven nondimensional parameters are normalized using their corresponding
values at the pseudocritical temperature of the fluid. The scaling brings the parameters to a value
around one. This makes it much easier for the CNN to predict, as there is fewer chances of exploding
or vanishing gradients. Q+ and Q+

pc are included because these parameters have a magnitude close
to one. This scale also makes it easier for the network to make predictions.

In conclusion, correlation analysis is a sufficient method to use as the feature importance method
and Feature vector 1 will be used for further training and optimization of the CNN.

4.4. Experiment 4: Hyperparameter search
This experiment aims to find the optimal hyperparameters for the CNN. Hyperparameter search involves
searching through a range of hyperparameter values to find the most optimal configuration for the CNN.

Methodology
A random search is used to find the optimal combination of hyperparameters. Random search is se-
lected because it is computationally more efficient than a grid search in which all combinations of
hyperparameters are tested. Random search chooses the set of hyperparameters at random from
a selection of hyperparameters to find the optimal configuration. The model is based on the baseline
model from Section 4.1. The following components are modified to find more optimal hyperparameters:

1. One-dimensional convolutional layer: 3, 5, 7
2. Number of filters: 8, 16, 32, 64, 128
3. Kernel size: 3, 5, 7
4. Learning rate: 10−1, 10−2, 10−3, 10−4

The other components from the model are kept as is. The model is trained for 3000 epochs. To prevent
overfitting and minimize training time, early stopping is incorporated with a patience of 200. In addition,
the batch size is optimized by running the optimal configuration for batch size of 8, 16, 32, 64, 128.

Results
After running the hyperparameter search, the following hyperparameter selection is found:

1. One-dimensional convolutional layers: 7
2. Number of filters: 8-32-8-64-16-16-128
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3. Kernel size: 5-3-7-3-7-7-3
4. Learning rate: 10−2

Table 4.5 shows the performance of the CNN with optimal hyperparameters.

Table 4.5: MSE and R2 values of model resulting from the hyperparameter search

Type MSE (train-val-test) R2 (train-val-test)
Optimal model 1999 3039 3523 0.963 0.933 0.925

Discussion
The hyperparameter search shows that the deepest model with 7 convolutional layers is capable of
achieving the best performance. This performance can be attributed to the ability of a deeper model to
uncover more complex features, resulting in better predictive performance.

In the architecture of the optimized model, an alternating amount of kernel size can be observed.
Smaller kernels can capture more localized features, while larger kernels can capture more general
features. By alternating the kernel size, the receptive field is varied and can result in capturing both
global and local patterns, which can be important for the predictive capability. Third, the smallest batch
size gives the best performance in terms of MSE and R2 score.

4.5. Experiment 5: Ablation studies
Ablation studies are performed to understand the contribution of each component or hyperparameter
to the overall performance of a model. By systematically removing or changing parts of the model, the
impact on performance can be observed.

Methodology
The following parameters will be altered to validate the performance of our method

1. Loss function: MAE
2. Layers: +2,-2 convolutional layers
3. Normalization of basic feature vector as seen in the studies in Section 2.3
4. Normalization of the nondimensional feature vector

Results
Table 4.6 shows the performance of the methods in this ablation study.

Table 4.6: MSE and R2 performance of the ablation studies

Method MSE R2

Nondimensional feature vector 3523 0.925
MAE 4408 0.919
+2 convolutional layers 6289 0.892
-2 convolutional layers 5875 0.893
Normalized basic feature vector 1477 0.970
Normalized nondimensional feature vector 2808 0.942

Discussion
The ablation study shows the performance of the methods against the proposed model trained with
the nondimensional feature vector. Applying MAE as a loss function leads to lower performance, as
it fails to heavily penalize outliers. Specifically, MAE does not adequately address the sparse regions
associated with HTE and HTD. Consequently, when themodel follows the linear trend and only deviates
significantly during HTE and HTD, such errors are not significantly penalized, hindering the ability to
learn from these critical behaviors. Furthermore, increasing or decreasing the number of convolutional
layers decreases the performance, proving that the model has the right number of layers.
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The performance of the normalized feature vectors is a significant finding. Both perform much
better than the nondimensional feature vector extracted from the experiment 4.3. As the values in the
nondimensional feature vector have very different sizes, it can lead to exploding or vanishing gradients
[15]. Normalization of the nondimensional feature vector can mitigate this problem.

4.6. Experiment 6: Benchmarking CNN against ANN and Nusselt
correlations

The model in this research is compared to the ANN of Zhu et al. [48]. This model is selected because it
has relatively high performance for HTD and HTE and is developed to predict heat transfer to supercrit-
ical CO2 flowing upward within a uniformly heated tube. The model in this research is also compared
with nine Nusselt correlations.

Methodology
The model proposed by Zhu et al. [48] has the following characteristics:

• Two hidden layers with each 40 nodes
• Activation function: Hyperbolic tangent
• Optimizer: ADAM with learning rate = 0.01
• Batch size: 32
• Training iterations: 100000

The following features are used as input: Pressure, mass flux, heat flux, bulk enthalpy, diameter. The
model attempts to predict the wall temperature. Both the input and output vectors are normalized be-
tween zero and one. The model is trained for 100000 iterations. Early stopping is also implemented
to reduce overfitting. As the output of the model is the wall temperature, the Nusselt number must be
calculated to compare it with the CNN. CNN is trained on two feature vectors. The nondimensional fea-
ture vector, presented in Section 3.5, contains Q+

pc, Q+, Q+

Q+
pc
, Frb

Frpc
, Kv

Kv,pc
, Prb

Prpc
, Reb

Repc
. The normalized

basic feature vector, presented in the ablation studies in Section 4.5, contains P , Tb, G, qw, d. Further-
more, nine Nusselt correlations are tested on the data set to validate that the model performs better
than the correlations. Most of these correlations also have specific parameter ranges, which limits the
applicability to a subset of the data set.

Results
Table 4.7 shows the performance of the ANN developed by Zhu et al. [50] compared to the methods
developed in this research. The graphs in Figure 4.3 show the trajectories taken from the test data set

Table 4.7: Metrics for Nusselt number, wall temperature and heat transfer coefficient of the ANN compared to the model
developed in this research

Type Property MSE R2

ANN [50] Nu 23 176 0.691
Tw 53 0.95
α 2 840 545 0.691

CNN trained with a nondimensional feature vector Nu 3523 0.925
Tw 69 0.987
α 690 650 0.924

CNN trained with a normalized basic feature vector Nu 1506 0.970
Tw 39 0.993
α 323 922 0.966

to evaluate the HTD for the ANN and the proposed model and method. Furthermore, the performance
of the Nusselt correlations is shown in Table 4.8. The other correlations are not included as they
have parameter ranges outside the test data set. In addition, Figure 4.4 shows an overview of the
performance of the Nusselt correlation. Finally, Figure C.8 in Appendix C.4 shows the iterative method



4.6. Experiment 6: Benchmarking CNN against ANN and Nusselt correlations 25

(a) Comparison between prediction and
experimental Nusselt number for trajectory

1

(b) Comparison between prediction and
experimental Nusselt number for trajectory

2

(c) Comparison between prediction and
experimental Nusselt number for trajectory

3

(d) Comparison between experimental heat
transfer coefficient and heat transfer

coefficient calculated using the predicted
Nusselt number for trajectory 1

(e) Comparison between experimental heat
transfer coefficient and heat transfer

coefficient calculated using the predicted
Nusselt number for trajectory 2

(f) Comparison between experimental heat
transfer coefficient and heat transfer

coefficient calculated using the predicted
Nusselt number for trajectory 3

(g) Comparison between experimental wall
temperature and wall temperature

calculated using the predicted Nusselt
number for trajectory 1

(h) Comparison between experimental wall
temperature and wall temperature

calculated using the predicted Nusselt
number for trajectory 2

(i) Comparison between experimental wall
temperature and wall temperature

calculated using the predicted Nusselt
number for trajectory 3

Figure 4.3: Evaluation of the performance of the ANN for heat transfer detoriation trajectories

from Peeters’ [29] in comparison to directly inputting the wall temperature into the Nusselt correlation.
Direct input of the wall temperature into the Nusselt correlation can be seen as the ground truth for
the iterative method. Figure C.9 in Appendix C.4 shows the correlation calculation by Wang et al. [41]
compared to the calculation by Zahlan et al. [45].

Discussion
First, performance is compared in Table 4.7 for the Nusselt number, wall temperature and heat transfer
coefficient.

• Performance on predicting the Nuselt number shows that the ANN from Zhu et al. [50] has a low
performance for the Nusselt number compared to both CNNs.

• Interestingly, for wall temperature predictions, the CNN trained with the nondimensional feature
vector is initially outperformed by the ANN. However, when a normalized basic feature vector is
used for training, the proposed model surpasses the ANN, showcasing the importance of normal-
izing the features.

• CNN model trained with the normalized basic feature vector performs best on the heat transfer
coefficient. The model trained with the nondimensional feature vector has an error twice as large
as the model trained with the normalized basic feature vector. However, the error magnitude of
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Table 4.8: MSE and R2 performance of Nusselt correlation

Method MSE R2

Nondimensional feature vector 3523 0.925
Kim et al. [22] 4886 0.521
Preda et al. [33] 180 816 0.540
Pioro et al. [32] 48 443 0.520
Wang et al. [40] 47 705 0.505
Zhu et al. [48] 10 625 0.643

Figure 4.4: Experimental Nusselt numbers against predicted Nusselt number for all correlations that fall within test parameter
ranges

the ANN is nearly tenfold larger than the error of the normalized basic feature vector. Therefore,
it can be concluded that the ANN model does not translate well to the heat transfer coefficient.

The qualitative result can be observed in Figure 4.3. From the qualitative analysis, the following can
be concluded:

• The ANN captures linear trends effectively, but has difficulty accurately capturing the troughs and
peaks associated with HTD and HTE. This behavior is particularly visible in the prediction of wall
temperatures, where, despite the high accuracy in linear fits, it fails tomimic the peaks and troughs
present in the experimental data. This observation indicates a lack of complexity within the ANN
architecture. Enhancing the ANN by adding more layers could introduce the required complexity,
or alternatively, employing a CNN could offer a better solution to capture the complexity within
the measurements.

• Although the ANN can mimic the global trend of the data, it is unable to accurately recognize
local trends. On the contrary, the CNN model demonstrates its ability to recognize global and
local trends in the data. Figure 4.3f shows that the CNN recognizes the HTD in the trajectory,
although the predicted magnitude in the trough shows some deviation. However, the ANN does
not recognize the HTD in that area. In Figure 4.3d the ANN predicts a trajectory opposite to
the heat transfer trajectory in the first HTD area. This prediction shows that the ANN is limited
in predicting these local trends in the data. The reason CNN predicts local trends better is due
to the use of kernels. The kernels enable CNN to comprehend the spatial context, allowing for
a more accurate representation of the data. The multiple kernels per layer allow for learning
various features of the data. This advantage is exhibited by its consistent alignment with data
trends, despite occasional deviations in magnitude.



4.7. Experiment 7: Impact of feature normalization on model performance 27

Figure 4.4 displays 5 correlations. The correlations from Kim et al. [22] and Zhu et al. [48] have the
highest performance with many of the data points within the 30% range. Furthermore, Table 4.8 shows
the MSE and R2 scores of the correlations. The MSE of those correlations is relatively low compared
to the other Nusselt correlations. In general, the correlations perform worse than the proposed method.
Furthermore, it should be noted that the correlations can only approximate the Nusselt number in a
specified parameter range, while the proposed method covers all the correlations.

Figure C.8 in Appendix C.4 shows the comparison between the iterative method and the direct
calculation. The iterative method can follow the linear trend of the correlation. However, it is not exact
as intended by the correlations in the nonlinear parts. Furthermore, Figure C.9 in Appendix C.4 shows
the correlation calculation by Wang et al. [41] compared to the calculation by Zahlan et al. [45]. The
wall temperature is accurately calculated using the iterative method. Unfortunately, the calculation of
the heat transfer coefficient is less accurate. The results show that the iterative algorithm should be
refined to improve the convergence of wall temperature.

In conclusion, the CNN can predict heat transfer more accurately than the ANN. Especially if nor-
malized features are used. In addition, the CNN also shows higher performance than the Nusselt
correlations. However, it should be noted that the iterative method is not as accurate as it should be.

4.7. Experiment 7: Impact of feature normalization on model per-
formance

A final experiment is performed to compare the performance of three different feature vectors. The CNN
will be trained on three different feature vectors. Normalizing the features leads to more stable results,
as is shown in the ablation study in Section 4.5. Therefore, three feature vectors are investigated to
learn more about the influence of normalization.

Methodology
The proposed model, presented in Section 3.6, will be trained on three feature vectors. The following
feature vectors are compared:

• Nondimensional feature vector, presented in Section 3.5

– Q+
pc, Q+, Q+

Q+
pc
, Frb
Frpc

, Kv

Kv,pc
, Prb
Prpc

, Reb
Repc

• Normalized nondimensional feature vector

– Q+
pc, Q+, Q+

Q+
pc
, Frb
Frpc

, Kv

Kv,pc
, Prb
Prpc

, Reb
Repc

• Normalized basic feature vector as proposed in Section 4.5

– Tb, G, qw, d, P

Normalization is achieved by subtracting the mean and dividing by the standard deviation, transforming
all inputs to have a zero mean and a standard deviation of 1. The wall temperature and heat transfer co-
efficient will also be calculated to see how the predicted Nusselt numbers translate into these properties.
Finally, three trajectories that contain heat transfer detoriation will be compared.

Results
Table 4.9 shows the performance of the proposed model using three different feature vectors to predict
the Nusselt number. Additionally, the wall temperature and heat transfer coefficient are calculated to
show the performance of those properties.
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Figure 4.5: Evaluation prediction of the properties for heat transfer detoriation

Table 4.9: Metrics for Nusselt number, wall temperature and heat transfer coefficient which are predicted and calculated using
three different feature vectors

Type Property MSE R2

CNN trained with nondimensional feature vector Nu 3523 0.925
Tw 69 0.987
α 690 650 0.924

CNN trained with normalized nondimensional feature vector Nu 2808 0.942
Tw 47 0.991
α 577 420 0.934

CNN trained with normalized basic feature vector Nu 1506 0.970
Tw 39 0.993
α 323 922 0.966

Figure 4.5 shows the trajectories selected from the test data set to evaluate the HTD.
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Discussion
Figure 4.5a, 4.5b and 4.5c illustrate the prediction of the Nusselt number for three distinct trajectories.
The normalized basic feature vector leads to the highest accuracy across the three trajectories. The
normalized basic feature vector closely matches the experimental Nusselt numbers, exhibiting mini-
mal deviation except in Figure 4.5c, where it encounters difficulty matching a trough. In addition, the
trajectory of the predictions is quite smooth. These results suggest that the normalized basic feature
vectors leads to models with lower bias and variance compared to other feature vectors. The normal-
ized nondimensional feature vector has slightly lower performance in all three trajectories compared
to the normalized basic feature vector. The model trained with the normalized nondimensional feature
vector seems to be more reactive towards the variations in the heat transfer trajectory. Between mea-
surement 0 and 10 in Figure 4.5a, the prediction follows the variation in the measurement data quite
accurately, while the normalized basic feature vector follows the trend. This behavior might not be
desirable as it indicates that the model is overfitting. Figure 4.5c shows that the normalized nondimen-
sional feature vector is better able to capture the trough around measurement 4. The nondimensional
feature vector has lowest performance in every trajectory. The nondimensional feature vector has a
large overshoot in the cases of a peak. In addition, the predictions show bias in all trajectories. Table
4.9 shows the quantitative performance of the methods. The metrics show that performance improves
when normalization is implemented. Comparing the nondimensional feature vector with the normalized
nondimensional feature vector shows that performance increases significantly. These results show that
normalization has a positive effect on prediction.

Figures 4.5d, 4.5e, and 4.5f illustrate the performance of heat transfer coefficient calculations based
on the predicted Nusselt number for the three trajectories. All feature vectors follow the trend. The
normalized basic feature vector demonstrates smooth trajectories. The normalized nondimensional
feature vector shows overfitting in all the trajectories as it tries to closely fit every measurement. In
addition, the normalized nondimensional feature vector seems to perform best for prediction of the
HTD in Figure 4.5f. The nondimensional feature vector again has a large overshoot in the HTE peaks
and has large bias in all trajectories. In general, the significant dip observed in Figure 4.5f and the
prediction of measurement 25 to 35 in Figure 4.5e is challenging for every feature vector.

Figures 4.5g, 4.5h and 4.5i show the calculated wall temperature using the predicted Nusselt num-
ber for the three trajectories. The normalized basic feature vector consistently delivers strong perfor-
mance across all trajectories, although it encounters a significant error in Figure 4.5h. This error is
characterized by a spike and subsequent dip in wall temperature. The normalized nondimensional fea-
ture vector closely matches the measurement data in Figures 4.5g and 4.5h. In addition, the normalized
nondimensional feature vector predicts the HTD peak in Figure 4.5i best. Again, the nondimensional
feature vector presents very noisy results, as is also seen for the Nusselt number and heat transfer
coefficient.

In conclusion, the results show that data normalization is essential to achieve a lower bias in the pre-
dictions. The nondimensional feature vector, which lacks normalization, shows a large bias, whereas
the normalized feature vectors are able to follow the trend in the data much better.
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Conclusion

SCO2 shows promising applications in power generation and heat pumps due to the high thermal
efficiency and compact size of the equipment. However, SCO2 cannot be accurately modeled around
the pseudocritical point. These modeling challenges lead to overdesign of equipment using SCO2 as
a working fluid. Therefore, this research proposes to predict heat transfer using machine learning.
To approach these challenges the research is guided by the following research questions:

• What type of model is best suited for predicting heat transfer?
• How can we incorporate spatial context into the prediction of heat transfer?
• How does the proposed model compare to current methods?
• What are the important features for predicting supercritical heat transfer?

In this research, a model is developed for the prediction of heat transfer to supercritical CO2 flowing
upward within a uniformly heated vertical tube. The model uses a CNN architecture to predict heat
transfer. The architecture is chosen because it incorporates the spatial context of the heat transfer
trajectory to predict the Nusselt number at one location. The developed model achieves an R-squared
score of 0.970 and an MSE of 1506, an MAE of 38 for the Nusselt number, and an MAPE of 10.7%.
The comparison in Section 4.6 shows that CNN outperforms the ANN of Zhu et al. [50]. This improved
performance can be attributed to the fact that CNN can learn local and global trends, while ANN can
learn only global trends in the heat transfer trajectory. The ability of CNN to learn these local trends
underscores the added value of kernels in a CNN. Furthermore, the presence of multiple kernels within
each CNN layer facilitates the extraction of various features from the data. Finally, the model outper-
forms the Nusselt correlations. Moreover, Nusselt correlations can only be applied in a small parameter
range. The proposed model is applicable in a wide range of parameters Pr = 1-1.25, Tin = 267-388
K, qw = 19.6-436.4 kW/m2, d = 4.4-9 mm. This broad applicability makes the proposed model a highly
scalable solution.

A nondimensional parameter study is conducted and subsequently a feature importance method is
used, leading to the following feature vector: Q+

pc, Q+, Q+

Q+
pc
, Frb

Frpc
, Kv

Kv,pc
, Prb

Prpc
, Reb

Repc
. This feature vec-

tor demonstrated superior performance compared to the nondimensional feature vector derived from
correlations as mentioned in Section 4.1. Furthermore, the feature importance study shows the critical
role of the Reynolds number, Reb, and Froude number, Frpc, in combination with the nondimensional
location, x/d. Prediction with only these parameters results in relatively high performance.

The ablation studies discussed in Section 4.5 demonstrate that normalization of features signifi-
cantly improves the performance of the model. Normalization helps improve performance by prevent-
ing issues such as bias and exploding or vanishing gradients. The model trained with nondimensional
feature vector that is not normalized exhibits erratic and jittery predictions and higher bias. In addition,
the model trained with normalized dimensional features outperforms the model trained with normalized
nondimensional features, indicating that nondimensionalization is not necessary to achieve high per-
formance.
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In future work, the following research is proposed to improve the field of prediction of heat transfer for
supercritical fluids.

• This research was based on the use of nondimensional features to predict heat transfer. Nondi-
mensional features were a focus point as it is a way to keep thermophysical information contained,
which otherwise is lost when normalization is applied. However, Section 4.7 shows that normaliza-
tion gives better results. Therefore, normalized dimensional and nondimensional features should
be taken into account as well to select the best feature vector. In addition, dropout layers should
be added which increase stability and can handle the exploding and vanishing gradients. This
addition makes it possible to use a combination of dimensional, nondimensional and normalized
features.

• To improve the prediction of very deep troughs and peaks (HTD/HTE), two approaches can be con-
sidered. First, a loss function could be specifically designed to penalize these underrepresented
regions more heavily. However, the major problem with these areas is that they are represented
by only a few data points per trajectory. On top of that, there are also many linear trajectories
in the data set that provide no information on those particular cases. This underrepresentation
of the HTD and HTE areas in the data set should be addressed. Synthetic data should be sam-
pled for the underrepresented areas. The method of Shi et al. [36] can be applied to generate
additional data using Nusselt correlations, but other methods for sampling data should also be
investigated.

• The application of machine learning models in the design of heat transfer equipment has not been
explored in the existing literature. A study on the applicability of our model can show the benefits
for desiging equipment and accelerate the field of applications of SCO2.
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A
Data set

Table A.1: The data set developed by Ye et al [44] is based on the studies described in this table. Their parameter ranges and
data points are stated.

Dataset D [mm] Tb[◦C] P [MPa] G [kg/m2s] qw [kW/m2] Data points
Kim et al. [20] 4.5 30− 115 7.53− 9.23 230− 874 52.8− 231 180
Bae et al. [3] 6.32 15− 89 7.75 400 30− 50 159
Kim et al. [21] 4.4 27− 110 7.75− 8.85 400− 1200 30− 150 740
Bae et al. [2] 6.32 15− 79 7.75− 8.12 285− 600 29.3− 70 865
Cho et al. [[8] 4.4 28− 64 8.12 1200 50− 130 72
Song et al. [37] 4.4, 9 7− 194 8.12 400 30− 50 395
Zahlan et al. [45] 8 7− 82 7.48− 8.67 402− 2027 19.6− 436.4 7485
total 4.4− 9 7− 116 7.48− 9.23 230− 2027 19.6− 436.4 9956
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Figure A.1: Data distribution of the data set retrieved from the papers in table A.1



B
Nusselt correlations

Table B.1: Nusselt Correlations for heat transfer to supercritical CO2 in an upward heated tube

Author Nusselt Correlation

Gupta [16] Nub = 0.01Re0.89b Pr
−0.14

b

(
ρw

ρb

)0.93 (
kw

kb

)0.22 (
µw

µb

)−1.13

Kim [22] Nub = 0.0182Re0.824b Pr
0.515

b

(
ρw

ρb

)0.299

Jackson [18] Nub = hD/λb = 0.021Re0.8b Pr0.4b

(
ρw

ρb

)0.3 (
cp
cp,b

)n

n =

0.4 Tb

Tpc
< Tw

Tpc
≤ 1, or , 1.2 ≤ Tb

Tpc
< Tw

Tpc

0.4 + 0.2
(

Tw

Tb
− 1

)
Tb

Tpc
≤ 1 ≤ Tw

Tpc

0.4 + 0.2
(

Tw

Tpc
− 1

) [
1− 5

(
Tb

Tpc
− 1

)]
1 < Tb

Tpc
< 1.2, and , Tb

Tpc
< Tw

Tpc

Preda [33] Nuw = 0.0015Re1.03w Pr
0.76

w

(
ρw

ρb

)0.46 (
µw

µb

)0.53 (
κw

κb

)−0.43

Pioro [32] Nuw = 0.0038Re0.96w Pr
−0.14

w

(
ρw

ρb

)0.84 (
kw

kb

)−0.75 (
µw

µb

)−0.22

Wang [41] Nub = 0.0324Re0.79b Pr0.66b

(
ρw

ρb

)0.38 (
cp
cpb

)n

n =


0.66 for Tb < Tw < Tpc, or 1.2Tpc < Tb < Tw

0.66 + 0.2
(

Tw

Tpc
− 1

)
for Tb < Tpc < Tw

0.66 + 0.2
(

Tw

Tpc
− 1

) [
1− 5

(
Tb

Tpc
− 1

)]
for Tpc < Tb < 1.2Tpc and Tb < Tw

Yang [43] NHT: Kc ≤ 0.27, Nub = 0.41179Nu1.10223
0

(
P
Pc

)−0.43274 (
Tb

Tpc

)1.84087 (
104 qw

GHb

)0.13205

×
(

µb

µw

)−0.92839 (
kb

kw

)0.16801 (
cp
cpb

)0.72487

HTD: Kc > 0.27, Nub = 1.7065Nu0.94871
0

(
P
Pc

)−0.53838 (
Tb

Tpc

)2.46823 (
104 qw

GHb

)−0.32562

×
(

µb

µw

)0.50388 (
kb

kw

)−0.54941 (
cp
cpb

)0.57156

Zhang [46] Nub =

0.00672 ·Re1.414b Pr
−0.005

b

(
ρw
ρb

)0.448 (
cp

cp, b

)0.218

·Bu0.586, hb < 0.9hpc

0.056 ·Re0.829b Pr
0.35

b

(
ρw
ρb

)−0.095 (
c̄p
cp,b

)0.214

·Bu0.142, hb ⩾ 0.9hpc

Zhu [49] Nub = 0.0012Re0.9484b Pr
0.718

b K−0.0313
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C
Experiments

C.1. Experiment 1: Baseline model

Figure C.1: Measurement location [n] plotted against predicted Nusselt number [-] per heat transfer trajectory for baseline
model
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C.2. Experiment 2: Comparison of data processing methods 39

C.2. Experiment 2: Comparison of data processing methods

Figure C.2: Experimental Nusselt number vs. predicted Nusselt number for segmentation and padding

Figure C.3: Experimental Nusselt number vs. predicted Nusselt number for overlapped segments



C.2. Experiment 2: Comparison of data processing methods 40

Figure C.4: Experimental Nusselt number vs. predicted Nusselt number for segmentaton and interpolation



C.3. Experiment 3: Feature importance 41

C.3. Experiment 3: Feature importance

Figure C.5: Bar chart of feature analysis



C.4. Experiment 6: Benchmarking CNN against ANN and Nusselt correlations 42

C.4. Experiment 6: Benchmarking CNN against ANN and Nusselt
correlations

Figure C.6: Comparison between predicted and experimental wall temperature using the ANN model from section 4.6

Figure C.7: Comparison between experimental Nusselt number and the calculated Nusselt number using the wall temperature
predicted by the ANN from section 4.6



C.4. Experiment 6: Benchmarking CNN against ANN and Nusselt correlations 43

Figure C.8: Comparison between experimental and calculated Nusselt number. It is calculated using a iterative method for the
Nusselt correlation and using the wall temperature directly to calculate the Nusselt number. The calculation is done using the

correlation of Zhu et al [48]

Figure C.9: The calculation for the Nusselt correlation of Wang et al. [41] is compared to the calculation done by Zahlan et al.
[45] to validate that the method used in this paper is correct.
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C.5. Experiment 7: Impact of feature normalization on model per-
formance

Figure C.10: Comparison between prediction and experimental Nusselt number for all trajectories



C.5. Experiment 7: Impact of feature normalization on model performance 45

Figure C.11: Comparison between experimental heat transfer coefficient and heat transfer coefficient calculated using the
predicted Nusselt number for all trajectories

Figure C.12: Comparison between experimental wall temperature and wall temperature calculated using the predicted Nusselt
number for all trajectories
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