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SUMMARY

Machine learning (ML) has become a core technology for many real-world applications.
Modern ML models are applied to unprecedentedly complex and difficult challenges, in-
cluding very large and subjective problems. For instance, applications towards multime-
dia understanding have been advanced substantially. Here, it is already prevalent that cul-
tural/artistic objects such as music and videos are analyzed and served to users according
to their preference, enabled through ML techniques.

One of the most recent breakthroughs in ML is Deep Learning (DL), which has been
immensely adopted to tackle such complex problems. DL allows for higher learning ca-
pacity, making end-to-end learning possible, which reduces the need for substantial en-
gineering effort, while achieving high effectiveness. At the same time, this also makes DL
models more complex than conventional ML models. Reports in several domains indicate
that such more complex ML models may have potentially critical hidden problems: vari-
ous biases embedded in the training data can emerge in the prediction, extremely sensi-
tive models can make unaccountable mistakes. Furthermore, the black-box nature of the
DL models hinders the interpretation of the mechanisms behind them. Such unexpected
drawbacks result in a significant impact on the trustworthiness of the systems in which
the ML models are equipped as the core apparatus.

In this thesis, a series of studies investigates aspects of trustworthiness for complex
ML applications, namely the reliability and explainability. Specifically, we focus on music
as the primary domain of interest, considering its complexity and subjectivity. Due to this
nature of music, ML models for music are necessarily complex for achieving meaningful
effectiveness. As such, the reliability and explainability of music ML models are crucial in
the field.

The first main chapter of the thesis investigates the transferability of the neural net-
work in the Music Information Retrieval (MIR) context. Transfer learning, where the pre-
trained ML models are used as off-the-shelf modules for the task at hand, has become one
of the major ML practices. It is helpful since a substantial amount of the information is
already encoded in the pre-trained models, which allows the model to achieve high effec-
tiveness even when the amount of the dataset for the current task is scarce. However, this
may not always be true if the “source” task which pre-trained the model shares little com-
monality with the “target” task at hand. An experiment including multiple “source” tasks
and “target” tasks was conducted to examine the conditions which have a positive effect
on the transferability. The result of the experiment suggests that the number of source
tasks is a major factor of transferability. Simultaneously, it is less evident that there is a
single source task that is universally effective on multiple target tasks. Overall, we con-
clude that considering multiple pre-trained models or pre-training a model employing
heterogeneous source tasks can increase the chance for successful transfer learning.

The second major work investigates the robustness of the DL models in the transfer
learning context. The hypothesis is that the DL models can be susceptible to impercep-
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tible noise on the input. This may drastically shift the analysis of similarity among in-
puts, which is undesirable for tasks such as information retrieval. Several DL models pre-
trained in MIR tasks are examined for a set of plausible perturbations in a real-world setup.
Based on a proposed sensitivity measure, the experimental results indicate that all the DL
models were substantially vulnerable to perturbations, compared to a traditional feature
encoder. They also suggest that the experimental framework can be used to test the pre-
trained DL models for measuring robustness.

In the final main chapter, the explainability of black-box ML models is discussed. In
particular, the chapter focuses on the evaluation of the explanation derived from model-
agnostic explanation methods. With black-box ML models having become common prac-
tice, model-agnostic explanation methods have been developed to explain a prediction.
However, the evaluation of such explanations is still an open problem. The work intro-
duces an evaluation framework that measures the quality of the explanations employing
fidelity and complexity. Fidelity refers to the explained mechanism’s coherence to the
black-box model, while complexity is the length of the explanation.

Throughout the thesis, we gave special attention to the experimental design, such
that robust conclusions can be reached. Furthermore, we focused on delivering machine
learning framework and evaluation frameworks. This is crucial, as we intend that the ex-
perimental design and results will be reusable in general ML practice. As it implies, we
also aim our findings to be applicable beyond the music applications such as computer
vision or natural language processing.

Trustworthiness in ML is not a domain-specific problem. Thus, it is vital for both re-
searchers and practitioners from diverse problem spaces to increase awareness of com-
plex ML systems’ trustworthiness. We believe the research reported in this thesis provides
meaningful stepping stones towards the trustworthiness of ML.
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Machine learning (ML) is een kerntechnologie geworden voor veel toepassingen in het
dagelijks leven. Hedendaagse ML-methoden worden toegepast op steeds complexere en
moeilijkere uitdagingen, waaronder grootschalige, subjectieve problemen. Toepassingen
om multimedia beter te begrijpen hebben bijvoorbeeld grote vooruitgangen geboekt. Het
is tegenwoordig al gebruikelijk dat culturele en kunstzinnige objecten zoals muziek en
videos geanalyseerd en aan gebruikers aangeboden worden op grond van hun voorkeur,
dankzij ML-technieken.

Een van de meest recente doorbraken in ML is deep learning (DL), wat zeer uitge-
breid is toegepast om zulke complexe problemen aan te pakken. DL heeft een grotere
leercapaciteit. Hierdoor wordt end-to-end learning mogelijk, wat de noodzaak voor uitge-
breide handmatige technische aanpassingen vermindert, terwijl grote effectiviteit bereikt
kan worden. Tegelijkertijd zijn DL-modellen complexer dan traditionele ML-modellen.
Rapportages uit verschillende vakgebieden geven aan dat zulke complexere ML-modellen
mogelijk kritische verborgen problemen kunnen hebben: ongelijke verhoudingen en bias
in trainingdata kunnen doorwerken in de voorspelling, en zeer gevoelige modellen kun-
nen onverwachte fouten maken, zonder duidelijke verantwoordelijkheid. De black-box-
karakteristieken van DL-modellen maken interpretatie van onderliggende mechanismen
ook moeilijker. Zulke onverwachte nadelen hebben aanzienlijke invloed op de betrouw-
baarheid van systemen, waarin ML-modellen de kern vormen.

In deze dissertatie zullen verschillende aspecten van betrouwbaarheid in complexe
ML-toepassingen worden bestudeerd, met name betrouwbaarheid en uitlegbaarheid. We
richten ons specifiek op het muziekdomein, gezien de complexiteit en subjectiviteit van
problemen in dit domein. Door deze karakteristieken van muziek, zijn complexe ML-
modellen vaak nodig om betekenisvolle effectiviteit te krijgen. Dit betekent echter ook
dat betrouwbaarheid en uitlegbaarheid van muziekgeoriénteerde ML-modellen cruciaal
zijn.

Het eerste kernhoofdstuk van de dissertatie richt zich op overdraagbaarheid (transfer-
ability) van neurale netwerken in de Music Information Retrieval (MIR)-context. Trans-
fer learning, waarin eerder getrainde ML-modellen worden ingezet als basismodules voor
een gegeven taak, is een van de belangrijkste ML-praktijken. Deze praktijk is behulpzaam
wanneer een substantiéle hoeveelheid informatie in de eerder getrainde modellen geén-
codeerd is. Hierdoor kan een model grote effectiviteit krijgen, zelfs als trainingdata voor
de taak zelf schaars is. Dit geldt echter niet, als de “brontaak” van het eerder getrainde
model weinig overeenkomsten heeft met de “doeltaak”. Een experiment met meerdere
“brontaken” en “doeltaken” werd uitgevoerd, om de situaties te herkennen die positief
effect op overdraagbaarheid hebben. De resultaten suggereren dat het aantal brontaken
een belangrijke factor voor overdraagbaarheid is. Tegelijkertijd is het minder duidelijk of
er een enkele brontaak bestaat, die universeel effectief is voor meerdere doeltaken. In het
algemeen concluderen we dat het meenemen van meerdere eerder getrainde modellen,
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of het eerder trainen van een model op basis van heterogene brontaken, de kans op suc-
cesvolle transfer learning doet toenemen.

Het tweede kernproject bestudeert de robuustheid van DL-modellen in de context
van transfer learning. De hypothese is dat DL-modellen gevoelig kunnen zijn voor niet-
waarneembare ruis in invoerdata. Dit kan vergelijkingen tussen inputs drastisch bein-
vloeden, wat ongewenst is in taken als information retrieval. We bestuderen verschillende
eerder getrainde DL-modellen voor MIR-taken, met plausibele perturbaties van data, die
in het dagelijks leven kunnen voorkomen. Op basis van een voorgestelde maat voor gevoe-
ligheid, tonen de experimentele resultaten aan dat DL-modellen gevoeliger zijn voor per-
turbaties, dan een traditionele kenmerkextractor. Ze suggereren ook dat het voorgestelde
experimentele raamwerk gebruikt kan worden om eerder getrainde DL-modellen te testen
op robuustheid.

In het laatste kernhoofdstuk wordt uitlegbaarheid van black-box ML models bespro-
ken. Het hoofdstuk focust in het bijzonder op de evaluatie van uitleg, die afgeleid is
door model-agnostische uitlegbaarheidsmethoden. Nu black-box-modellen gebruikelijk
zijn geworden, zijn zulke model-agnostische uitlegbaarheidsmethoden voorgesteld, om
een voorspelling uit te kunnen leggen. Het is echter nog een open vraagstuk hoe deze
uitleg geévalueerd moet worden. Ons werk introduceert een evaluatieraamwerk, dat de
kwaliteit van uitleg kwantificeert, op grond van getrouwheid (fidelity) en complexiteit.
Getrouwheid wordt bepaald aan de hand van de coherentie tussen de uitgelegde mecha-
nismen en het black-box model, waar complexiteit de lengte van de uitleg beschouwt.

In de hele dissertatie geven we speciale aandacht aan experimenteel ontwerp, opdat
robuuste conclusies getrokken kunnen worden. Hiernaast richten we ons ook in het bi-
jzonder op het afleveren van raamwerken voor machine learning en ML-evaluatie. Dit
is cruciaal, aangezien we de bedoeling hebben dat het experimentele ontwerp en de re-
sultaten herbruikbaar zullen zijn in algemene ML-praktijken. Onze intentie is dat onze
uitkomsten ook toepasbaar zijn buiten het muziekdomein, bijvoorbeeld in computer vi-
sion en natural language processing.

Betrouwbaarheid van ML is geen domeinspecifiek probleem. Hierom is het van vi-
taal belang dat onderzoekers en beoefenaars uit verschillende probleemdomeinen het be-
wustzijn rond betrouwbaarheid van complexe ML-systemen vergroten. We menen dat het
onderzoek in deze dissertatie op betekenisvolle wijze een springplank kan bieden, die aan
deze discussies kan bijdragen.
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2 1. INTRODUCTION

1.1. THE “RENAISSANCE ERA” OF MACHINE LEARNING

Statistical modeling forms one of the primary tools to predict and understand complex
real-world phenomena. Nowadays, this technique is frequently applied in a computation-
ally driven form, known as Machine Learning (ML). ML allows one to automate function-
alities that are too complicated to be manually engineered. For instance, complex tasks,
such as visual object recognition, can be automated due to highly capable underlying ML
models.

The effectiveness of ML can be achieved when several conditions are met: 1) a suffi-
cient amount of the data sampled from the complex phenomena to be modeled, 2) broad
availability of ML models whose learning capacity and flexibility is sufficient to accom-
modate complex patterns at scale, and 3) significant computational capacity required to
fit those models. For instance, the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [1, 2] has been one of the most influential ML challenges. In particular, it con-
firmed the effectiveness of complex ML models such as Deep Convolutional Neural Net-
work (DCNN) on the complex problem of visual object recognition [3-5]. For long, it had
been infeasible to fit DCNNs on large-scale datasets like those offered by the ILSVRC, un-
til the recent development of the General-Purpose Graphics Processing Unit (GPGPU),
which allows for massive parallel execution of the mathematical operations that are cru-
cial for fitting complex ML models.

High learning capacity of neural networks stems from their non-linearity and an im-
mense number of parameters that can be trained, while the flexibility comes from a vast
number of ways how to do this training. This makes neural network (NN) models capable
of handling a wide range of data, ML tasks, and applications. Due to the high capacity
and flexibility, it had been shown that even with relatively simple neural network architec-
ture, any arbitrary function could be approximated [6]. This property allows much more
efficient learning of highly complex problems when “deep” structure is introduced.

1.2. TRUSTWORTHINESS CONCERNS FOR MACHINE LEARNING

Unlike other engineering artifacts that humans have invented, complex ML systems are
artifacts for which the internal mechanism is increasingly unknown—even to their devel-
opers. For instance, NN models are highly complex, due to their non-linearity and many
layers. Even while technically spoken, the complete mathematical description (i.e. coef-
ficients, functions, inputs) of NN models can be considered transparent, exact decision-
making processes within these models are extremely obscure to human observers. This
problem will be magnified for systems encompassing off-the-shelf, pre-trained ML com-
ponents, which already is common practice today.

Empirical reports have revealed that there are unexplained corners of currently de-
ployed ML models, which may have negative impact on applying these models in prac-
tice. For instance, Sturm [7] showed that the NN models can seem to work correctly, while
they actually capture hidden, irrelevant patterns (confounders), leading to wrong associ-
ations drawn from data. In this way, high accuracy that is often achieved by modern ML
models can be misleading [8, 9]. For example, it can happen that the addition of imper-
ceptible noise to input data deceives a NN model, resulting in a wrong decision. One of
the well-studied special cases of this phenomenon considers noise structured “adversari-
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ally” to an expected model’s decision [10, 11]. Wrong decisions also can happen because
of hidden biases embedded in external factors surrounding the ML model training; for
example, input data that got biased during its collection, or experimental setups not con-
sidering confounding factors [9, 12].

The role of ML and artificial intelligence (Al) in our socio-economic technical infras-
tructure is expected to grow in the future. If cases discussed above are encountered in
practice, problems might arise regarding the broad adoption of ML-based solutions. It is
therefore imperative to invest sufficient effort in making ML technology trustworthy.

1.3. PRINCIPLES OF TRUSTWORTHY MACHINE LEARNING

In recognition of the problems mentioned in the previous section, several initiatives have
attempted to propose principles of trustworthy ML, which are meant to serve as guide-
lines for ML practice [13-17]. These studies focused on varying sets of values that an ML
system must comply with, in order to prevent unexpected socio-technical or ethical fail-
ures. However, their terminologies and definitions are not aligned, which may potentially
lead to confusion. In this thesis, we therefore only focus on two principles associated with
trustworthy ML, which were implicitly pointed out by the examples given in the previous
sections: reliability and explainability.

A reliablemachine learning system minimizes the probability of a surprising failure [18].
Such failures can happen due to various reasons. For example, unidentified confounders
can increase the chance that the resulting model shows unexplainable behavior. Fur-
thermore, unexpected data distribution differences between the training and deployment
phase may cause a system to be incapable of addressing changed contexts under which
an ML system needs to operate (environment shift) [18]. For instance, a model trained on
data collected from a specific time and sub-population might not be generalized to a dif-
ferent time and sub-population. Even when no such inherent distributional mismatches
exist, the data acquisition process may not be representative, which can induce unex-
pected failures of resulting ML models. In this sense, reliability can be related to robustness
or consistency, which in particular focus on the (in)consistent behavior of an ML system
due to input noise [11, 19] or adversarial input [19, 20]. However, reliability can also be
related to transferability: the extent to which a pre-trained model is useful for a newly
applied “environment”, such as a new task or ML system coupled with it.

Miller [21] defines explainability" as "the degree to which an observer can understand
the cause behind a decision". Explainability becomes increasingly important with the
growing perception of ML models as complex black boxes, in which it is less and less pos-
sible to link model elements to their influence on the model predictions. An explainable
ML system brings many benefits: easier assessment of compliance to relevant legislation,
more transparent entrances to verify and improve the system, and the possibility to en-
hance the trust between the user and the system [24]. What needs to be considered here,
however, is a potential issue of conflicting principles, such as explainability and accuracy.
Due to a larger learning capacity, a more complex, and thus less explainable model (e.g. a
deep neural network) may achieve higher accuracy than an explainable, often less com-

11t often equates to the term interpretability in a number of works [21-23]. In this thesis, the two terms are used
interchangeably as well.
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plex (e.g. linear) model. Having said this, the increasing complexity of the ML models in
order to secure the desired level of accuracy makes achieving a high level of explainability
(and thus, trustworthiness) less and less trivial. More in-depth understanding of such sys-
tems is thus a crucial diagnostic step, such that unexpected violations of trustworthiness
can be recognized and eventually handled. Focusing on this understanding also promotes
the necessary critical discussions at different stages of devising trustworthy ML systems,
making sure that the claim regarding trustworthiness is based on solid foundations. Our
intention to contribute to these discussions served as the basis of the work presented in
this thesis.

1.4. TRUSTWORTHY MACHINE LEARNING FOR MUSIC

The incorporation of principles of trustworthiness into ML practice cannot be done with-
out a context. Different tasks, applications and data domains may emphasize some prin-
ciples above others. The more complex data and use cases, the more emphasis should be
given to explainability and reliability [7, 11]. Recently, complicated models are strongly
prioritized to tackle such complex problems, which require large-scale datasets for effec-
tive training. As we will argue below, music, both as an application and data domain,
provides several desirable properties on conducting trustworthy ML research under such
settings.

Music, as multimedia category, manifests high complexity rooted in its multi-faceted
nature [25]. Music can move one to appreciate and enjoy artistic creation and perfor-
mance, but can also serve to "just" entertain us. Beyond active, immersive appreciation,
there also is evidence that music can be used as support to other contextual activities [26].
Furthermore, as a physical phenomenon, music is a complex, typically multi-modal sig-
nal. It combines multiple sources of sound, which are organized in a particular way both
in time and frequency. Most of Western popular music and a subset of classical music
contain lyrics. Furthermore, music videos have become an important medium to express
the intention of the artist and the music itself, enriching the music’s impact on users. Mu-
sic Information Retrieval (MIR) technology both focuses on describing music data and
making it digitally accessible, largely through ML-based techniques [27].

MIR technology forms the backbone of today’s music services, especially as music cat-
alogues have grown extremely large. It therefore drives and steers our preferences in a
domain with which we daily and heavily interact, and actively is studied by academic and
industrial players alike. While humans have intuitive understanding of their preferences
and perception of music, it is hard to pinpoint how human interpretation exactly relates
to patterns observed in music data. Especially when high-capacity models are employed,
the implicit complexity and subjectivity behind human music perception and preference
can easily lead to many alternative, highly sensitive ML models. These may mimic hu-
man judgements, but upon closer looks, they may have picked up patterns that humans
would certainly not have picked up. As such, principles of reliability and explainability
are both challenging and natural for this field. Indeed, literature has both raised concerns
on hidden reliability issues of ML-based music systems [7, 9, 28], and articulated the need
for explainable MIR systems [29, 30]. Adversarial learning issues observed in the music
domain [28] also were influential to the early development of the field in the broader ML
domain [20, 31].
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In [9, 32], many of the reliability issues in MIR-related ML tasks were linked to the unavoid-
able subjective aspects in annotating and consuming music, which is difficult to capture
by training data and incorporate in ML models. Similarly to computer vision [11], weak
robustness to input noise can also be a grave issue in MIR, as audio can be “polluted”
by environmental noise or various other degradations [33, 34]. Finally, due to the rapidly
increasing deployment of transfer learning in MIR R&D practice, the transferability of pre-
trained neural networks (e.g., for tasks such as music auto-tagging or recommendation)
has become critical in the MIR domain [35-38].

Explainability has increasingly been addressed in music-related ML tasks as well. Choi
et al. [39] adopted deconvolution [40] to identify sub-components of the input music sig-
nal, processed by each individual neuron within a convolutional neural network. The
results suggest that one can identify a subset of units correlated with the specific func-
tionality relevant to a given task. As an alternative to deconvolution, a saliency map [41],
computed through the gradient of the neuron activation of interest, with respect to the
input dimension, was also found effective for this purpose. Han et al. [42] deployed the
technique to identify the region of interest of a subset of the neurons that are trained for
the musical instrument recognition task, leading to a similar conclusion as in [39]. The
concept of attention [43], where a gating mechanism conditioned on the input is learned
through the training, is often considered as another way to improve the explainability of a
deep neural network. Examples of deploying this mechanism in MIR are given in [44, 45].
Recent works of Slizovskaia et al. [46] and Chowdhury et al. [30] tried to interpret the latent
activation of deep neural networks by investigating the correlation between this activation
and transparent low-level or mid-level features. Finally, Mishra et al. [29] suggested a way
to adopt local linear approximation methods [47] with a music audio signal by segment-
ing it along the frequency and/or the time axis, which is an analogy to the concept of a
"super-pixel" in image processing, as suggested in [47].

1.6. THESIS CONTRIBUTION

Despite the prior works presented above, trustworthy ML for music is still a newly emerg-
ing field, that has not necessarily been the center of attention. Instead, it would normally
be a by-product of solutions to a specific ML task. In this thesis, we seek to put questions
of reliability and explainability of music ML more front and center, and focus on related
methodological practice that both allow more systematic study, while also being practi-
cally adoptable by R&D practitioners.

Aspects of reliability and explainability for ML in MIR are addressed throughout the
technical chapters of the thesis, considering various music-related ML application scenar-
ios. In particular, related to reliability, we consider transferability and robustness. These
aspects are specifically investigated under the scenario of transfer learning, where off-the-
shelf sub-networks are used as equivalents of a feature encoder, of which the reliability is
not clearly known up front. Regarding explainability, we focus on model-agnostic explain-
ers, the evaluation of which still is not clearly established in general. While studying this in
the context of recommendation tasks, we hypothesize that our findings generalize beyond
these. In the following, we elaborate in more detail about the contribution per chapter:



1. INTRODUCTION

1. Chapter 2 focuses on the transferability of music ML. In modern ML practice, es-

pecially in computer vision and natural language processing, it is common that
a neural-network-based learning model is trusted and reused beyond the original
scope of the task it was trained for. In other words, such a pre-trained model is
often “transferred" to a future unseen task. The most common transfer-learning
practice is to pre-train a network on a single source task and deploy it for another
single target task. The core assumption is that the pre-trained patterns, typically
from a large-scale dataset, would be effective to the new task at hand. However, the
assumption might not necessarily hold if the source task is not related, or in other
words, if it shares little commonality with the target task. In that case, the effect of
the pre-trained network on the overall learning performance can be sub-optimal,
and even negatively influence this performance. It is, unfortunately, common that
such potential incompatibility is hardly validated in practice. This may be due to
the limited number of reasonably pre-trained networks being at the disposal of the
R&D community, or due to the often limited resources to explore the alternatives
(e.g., training new task-specific neural networks from scratch).

In this chapter, we propose an approach to shed light onto the transferability of the
networks pre-trained on a single task to a new target task. Furthermore, we investi-
gate how to improve the overall reliability of transfer learning in the music domain.
We build our approach on the intuitive hypothesis that increasing the number and
diversity of source tasks on which pre-training is done is beneficial for improving
the transfer-learning reliability. We investigate different ways of making use of these
multiple source tasks, either by using them simultaneously to pre-train a single net-
work, or by aggregating multiple networks each trained on a single, but different
source task. We then deploy a range of target tasks to examine the conditions un-
der which the transfer is successful. Our results indicate that the number and het-
erogeneity of tasks used in the pre-training process indeed has a positive effect on
transferability. In Chapter 3, we verified the findings from Chapter 2 in practice by
applying them to a real-world music classification problem.

. In Chapter 4, we remain in the transfer learning scenario in the music domain, but

now focusing on the robustness of the neural network. Transferability relates to the
effectiveness of a pre-trained network. Robustness, on the other hand, relates to the
extent to which a pre-trained network is capable to operate reliably in the presence
of perturbation of the new input data. Robustness cannot be taken for granted due
to highly complex non-linear transformations taking place in a neural network. It is
well studied that such high complexity can lead to unexpected erroneous results if
triggered by even the smallest perturbations at their input. Ideally, one could study
the robustness of the pre-trained network by testing its performance on the task it
was initially trained for various input perturbations. In practice, however, this is
difficult to do, as the original dataset may not be accessible. Also, testing the robust-
ness on the source task might not accurately reflect the actual robustness on the
target task.

In this chapter, we report the results of our search for an effective, practical solu-
tion to assess robustness of a pre-trained network upfront, even before testing the
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network on a target task. The suggested assessment, thus, does not require the ac-
cess to the datasets corresponding either to the source or target task. We achieve
it by a testing framework that focuses on the analysis of the internal representation
of the given pre-trained network. The hypothesis underlying our proposed testing
framework is that small, barely perceptible perturbations should not drastically shift
the corresponding latent representation of the data points from their original posi-
tion. We deployed our framework on a range of pre-trained neural networks, which
revealed that all the tested networks are vulnerable to input data perturbations. De-
ploying our framework on a network at hand can provide quick insight into the ro-
bustness of the network for transfer learning.

3. In Chapter 5, we propose an evaluation framework for assessing the quality of the
explanation given by post-hoc model explainers on “black-box systems”. We refer to
a black-box system as a model which is so complex, that human interpretation of
its internal decision-making mechanisms is virtually impossible. Several attempts
have been reported in literature to achieve post-hoc explanation of such models, by
fitting an interpretable model to mimic the complex behavior of a target black-box
model. However, the systematic evaluation of those explanation methods, in terms
of the reliability of the generated explanations, has received insufficient attention.

In this chapter, we propose a method to assess post-hoc model explainers. We do
so by looking at the correlation between the input-output behavior of the given
black-box system and the behavior of the explainer at hand, and at the complex-
ity of the generated explanation. The underlying intuition is that the best explainer
to be selected is the one with maximum correlation (fidelity) and minimum com-
plexity. This can be seen as a special case of the formalism of the explainability from
[47]. We demonstrate the effectiveness of our evaluation method by conducting an
experiment where ML-based recommender systems are applied to music recom-
mendation and book recommendation.

In the studies reported throughout the thesis, we gave special attention to the exper-
imental design, ensuring sufficient variability within the ML scenario each study consid-
ered. In particular, the studies deliberately chose a wide range of datasets and ML models,
such that the conclusions do not depend on a specific experimental choice.

Although the problems we address in the thesis are inspired by ML applications in the
music domain, it was also our intention that the experimental designs, results, and find-
ings are reusable in general ML practice. In this respect, one of the main aims of this thesis
is to provide ML practitioners with feasible frameworks encompassing trustworthy ML.
This includes the formulation of the measurements that closely relate to the principles of
trustworthy ML, and research frameworks that utilize those measurements to pursue trust
in ML. Using these measurements and frameworks, the same questions we posed in the
MIR context may be answered in other fields, such as the computer vision or the natural
language processing, with minimal adaptation.
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ONE DEEP MUSIC REPRESENTATION
TO RULE THEM ALL? A
COMPARATIVE ANALYSIS OF
DIFFERENT REPRESENTATION
LEARNING STRATEGIES

Inspired by the success of deploying deep learning in the fields of Computer Vision and Nat-
ural Language Processing, this learning paradigm has also found its way into the field of
Music Information Retrieval. In order to benefit from deep learning in an effective, but also
efficient manner, deep transfer learning has become a common approach. In this approach,
it is possible to reuse the output of a pre-trained neural network as the basis for a new learn-
ing task. The underlying hypothesis is that if the initial and new learning tasks show com-
monalities and are applied to the same type of input data (e.g. music audio), the generated
deep representation of the data is also informative for the new task. Since, however, most of
the networks used to generate deep representations are trained using a single initial learn-
ing source, their representation is unlikely to be informative for all possible future tasks. In
this paper, we present the results of our investigation of what are the most important factors
to generate deep representations for the data and learning tasks in the music domain. We
conducted this investigation via an extensive empirical study that involves multiple learn-
ing sources, as well as multiple deep learning architectures with varying levels of informa-
tion sharing between sources, in order to learn music representations. We then validate
these representations considering multiple target datasets for evaluation. The results of our
experiments yield several insights on how to approach the design of methods for learning
widely deployable deep data representations in the music domain.

This chapter was published in Neural Computing and Applications 32 (4), (2020) [1]
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2.1. INTRODUCTION

In the Music Information Retrieval (MIR) field, many research problems of interest in-
volve the automatic description of properties of musical signals, employing concepts that
are understood by humans. For this, tasks are derived that can be solved by automated
systems. In such cases, algorithmic processes are employed to map raw music audio in-
formation to humanly understood descriptors (e.g. genre labels or descriptive tags). To
achieve this, historically, the raw audio would first be transformed into a representation
based on hand-crafted features, which are engineered by humans to reflect dedicated se-
mantic signal properties. The feature representation would then serve as input to various
statistical or Machine Learning (ML) approaches [2].

The framing as described above can generally be applied to many applied ML prob-
lems: complex real-world problems are abstracted into a relatively simpler form, by estab-
lishing tasks that can be computationally addressed by automatic systems. In many cases,
the task involves making a prediction based on a certain observation. For this, modern
ML methodologies can be employed, that automatically can infer the logic for the predic-
tion directly from (a numeric representation of) the given data, by optimizing an objective
function defined for the given task.

However, music is a multimodal phenomenon, that can be described in many paral-
lel ways, ranging from objective descriptors to subjective preference. As a consequence,
in many cases, while music-related tasks are well understood by humans, it often is hard
to pinpoint and describe where the truly ‘relevant’ information is in the music data used
for the tasks, and how this properly can be translated into numeric representations that
should be used for prediction. While research into such proper translations can be con-
ducted per individual task, it is likely that informative factors in music data will be shared
across tasks. As a consequence, when seeking to identify informative factors that are not
explicitly restricted to a single task, Multi-Task Learning (MTL) is a promising strategy. In
MTL, a single learning framework hosts multiple tasks at once, allowing for models to per-
form better by sharing commonalities between involved tasks [3]. MTL has been success-
fully used in a range of applied ML works [4-11], also including the music domain [12, 13].

Following successes in the fields of Computer Vision (CV) and Natural Language Pro-
cessing (NLP), deep learning approaches have recently also gained increasing interest in
the MIR field, in which case deep representations of music audio data are directly learned
from the data, rather than being hand-crafted. Many works employing such approaches
reported considerable performance improvements in various music analysis, indexing
and classification tasks [14-21].

In many deep learning applications, rather than training a complete network from
scratch, pre-trained networks are commonly used to generate deep representations, which
can be either directly adopted or further adapted for the current task at hand. In CV and
NLP (parts of) certain pre-trained networks [22-25] have now been adopted and adapted
in a very large number of works. These ‘standard’ deep representations have typically been
obtained by training a network for a single learning task, such as visual object recognition,
employing large amounts of training data. The hypothesis on why these representations
are effective in a broader of spectrum of tasks than they originally were trained for, is that
deep transfer learning (DTL) is happening: information initially picked up by the network
is beneficial also for new learning tasks performed on the same type of raw input data.
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Figure 2.1: Simplified illustration of the conceptual difference between traditional deep transfer learning (DTL)
based on a single learning task (above) and multi-task based deep transfer learning (MTDTL) (below). The same
color used for a learning and an target task indicates that the tasks have commonalities, which implies that the
learned representation is likely to be informative for the target task. At the same time, this representation may
not be that informative to another future task, leading to a low transfer learning performance. The hypothesis
behind MTDTL is that relying on more learning tasks increases robustness of the learned representation and its
usability for a broader set of target tasks.

Clearly, the validity of this hypothesis is linked to the extent to which the new task can rely
on similar data characteristics as the task on which the pre-trained network was originally
trained.

Although a number of works deployed DTL for various learning tasks in the music
domain[26-29], to our knowledge, however, transfer learning and the employment of pre-
trained networks are not as standard in the MIR domain as in the CV domain. Again,
this may be due to the broad and partially subjective range and nature of possible music
descriptions. Following the considerations above, it may then be useful to combine deep
transfer learning with multi-task learning.

Indeed, in order to increase robustness to a larger scope of new learning tasks and
datasets, the concept of MTL also has been applied in training deep networks for rep-
resentation learning, both in the music domain [12, 13] and in general [4, p. 2]. As the
model learns several tasks and datasets in parallel, it may pick up commonalities among
them. As a consequence, the expectation is that a network learned with MTL will yield ro-
bust performance across different tasks, by transferring shared knowledge [3, 4]. A simple
illustration of the conceptual difference between traditional DTL and deep transfer learn-
ing based on MTL (further referred to as multi-task based deep transfer learning (MTDTL))
is shown in Fig. 2.1.

The mission of this paper is to investigate the effect of conditions around the setup
of MTDTL, which are important to yield effective deep music representations. Here, we
understand an ‘effective’ representation to be a representation that is suitable for a wide
range of new tasks and datasets. Ultimately, we aim for providing a methodological frame-
work to systematically obtain and evaluate such transferable representations. We pursue
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this mission by exploring the effectiveness of MTDTL and traditional DTL, as well as con-
catenations of multiple deep representations, obtained by networks that were indepen-
dently trained on separate single learning tasks. We consider these representations for
multiple choices of learning tasks and considering multiple target datasets.

Our work will address the following research questions:

* RQ1I: Given a set of learning sources that can be used to train a network, what is the
influence of the number and type of the sources on the effectiveness of the learned
deep representation?

* RQ2: How do various degrees of information sharing in the deep architecture affect
the effectiveness of a learned deep representation?

By answering the RQ1 we arrive at an understanding of important factors regarding the
composition of a set of learning tasks and datasets (which in the remainder of this work
will be denoted as learning sources) to achieve an effective deep music representation,
specifically on the number and nature of learning sources. The answer to RQ2 provides
insight in how to choose the optimal multi-task network architecture under a MTDTL con-
text. For example, in MTL, multiple sources are considered under a joint learning scheme,
that partially shares inferences obtained from different learning sources in the learning
pipeline. In MTL applications using deep neural networks, this means that certain lay-
ers will be shared between all sources, while at other stages, the architecture will ‘branch’
out into source-specific layers [3, 6-9, 13, 30]. However, investigation is still needed on
where in the layered architecture branching should ideally happen—if a branching strat-
egy would turn out beneficial in the first place.

To reach the aforementioned answers, it is necessary to conduct a systematic assess-
ment to examine relevant factors. For RQ1, we investigate different numbers and combi-
nations of learning sources. For RQ2, we study different architectural strategies. However,
we wish to ultimately investigate effectiveness of the representation with respect to new,
target learning tasks and datasets (which in the remainder of this paper will be denoted
by target datasets). While this may cause combinatorial explosion with respect to possible
experimental configurations, we will make strategic choices in the design and evaluation
procedure of the various representation learning strategies.

The scientific contribution of this work can be summarized as follows:

+ We provide insight into the effectiveness of various deep representation learning
strategies under the multi-task learning context.

+ We offer in-depth insight into ways to evaluate desired properties of a deep repre-
sentation learning procedure.

+ We propose and release several pre-trained music representation networks, based
on different learning strategies for multiple semantic learning sources.

The rest of this work is presented as following: a formalization of this problem, as well
as the global outline of how learning will be performed based on different learning tasks
from different sources, will be presented in Section 2.2. Detailed specifications of the deep
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architectures we considered for the learning procedure will be discussed in Section 2.3.
Our strategy to evaluate the effectiveness of different representation network variants by
employing various target datasets will be the focus of Section 2.4. Experimental results
will be discussed in Section 2.5, after which general conclusions will be presented in Sec-
tion 2.6.

2.2. FRAMEWORK FOR DEEP REPRESENTATION LEARNING

In this section, we formally define the deep representation learning problem. As Fig. 2.2
illustrates, any domain-specific MTDTL problem can be abstracted into a formal task,
which is instantiated by a specific dataset with specific observations and labels. Multiple
tasks and datasets are involved to emphasize different aspects of the input data, such that
the learned representation is more adaptable to different future tasks. The learning part
of this scheme can be understood as the MTL phase, which is introduced in Section 2.2.1.
Subsequently in Section 2.2.2, we discuss learning sources involved in this work, which
consist of various tasks and datasets to allow investigating their effects on the transfer
learning. Further, we introduce the label preprocessing procedure that is applied in this
work in Section 2.2.3, ensuring that the learning sources are more regularized, such that
their comparative analysis is clearer.

2.2.1. PROBLEM DEFINITION

A machine learning problem, focused on solving a specific task ¢, can be formulated as a
minimization problem, in which a model function f; must be learned that minimizes a
loss function £ for given dataset &, = {(xi’),y?)) | i €{l,---,I}}, comparing the model’s
predictions given by the input x; and actual task-specific learning labels y;. This can be
formulated using the following expression:

A

0 = argmin Eg, £ (y;, fi(x1;0)) 2.1

where x; € RY is, traditionally, a hand-crafted d-dimensional feature vector and 6 is a
set of model parameters of f.

When deep learning is employed, the model function f denotes a learnable network.
Typically, the network model f is learned in an end-to-end fashion, from raw data at the
input to the learning label. In the speech and music field, however, using true end-to-end
learning is still not a common practice. Instead, raw data is typically transformed first,
before serving as network input. More specifically, in the music domain, common input
to function f would be X € R*"*P, replacing the originally hand-crafted feature vector
x € R? from (2.1) by a time-frequency representation of the observed music data, usually
obtained through the Short-Time Fourier Transform (STFT), with potential additional fil-
ter bank applications (e.g. mel-filter bank). The dimensions ¢, n, b indicate channels of
the audio signal, time steps, and frequency bins respectively.

If such a network still is trained for a specific single machine learning task ¢, we can
now reformulate (2.1) as follows:

0 = argmin Eg, Z (y;, 1 (X;;0)). (2.2)
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Figure 2.2: Schematic overview of what this work investigates. The upper scheme illustrates a general problem
solving framework in which multi-task transfer learning is employed. The tasks ¢ € {fp, 1, -, tps} are derived
from a certain problem domain, which are instantiated by datasets, that often are represented as sample pairs of
observations and corresponding labels (X;, y;). Sometimes, the original dataset is processed further into simpler
representation forms (X¢, z¢), to filter out undesirable information and noise. Once a model or system f;(X;) has
learned the necessary mappings within the learning sources, this knowledge can be transferred to another set
of target datasets, leveraging commonalities already obtained by the pre-training. Below the general framework,
we show a concrete example, in which the broad MIR problem domain is abstracted into various sub-problems
with corresponding tasks and datasets.
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In MTL, in the process of learning the network model f, different tasks will need to
be solved in parallel. In case of deep neural networks, this is usually realized by having a
network in which lower layers are shared for all tasks, but upper layers are task-specific.
Given m different tasks #, each having the learning label y;, we can formulate the learning
objective of the neural network in a MTL scenario as follows:

0°,0* = argmin EeqEg, L (yy, f:(X1;0°,0") 2.3)

Here, 9 = {11, b, ..., t;} is a given set of tasks to be learned and 6* = {01,602,...,0™} in-
dicates a set of model parameters 0’ with respect to each task. Since the deep architecture
initially shares lower layers and branches out to task-specific upper layers, the parameters
of shared layers and task-specific layers are referred to separately as 6° and 67, respectively.
Updates for all parameters can be achieved through standard back-propagation. Further
specifics on network architectures and training configurations will be given in Section 2.3.

Given the formalizations above, the first step in our framework is to select a suitable
set 9 of learning tasks. These tasks can be seen as multiple concurrent descriptions or
transformations of the same input fragment of musical audio: each will reflect certain
semantic aspects of the music. However, unlike the approach in a typical MTL scheme,
solving multiple specific learning tasks is actually not our main goal; instead, we wish to
learn an effective representation that captures as many semantically important factors in
the low-level music representation as possible. Thus, rather than using learning labels y;,
our representation learning process will employ reduced learning labels z;, which capture
areduced set of semantic factors from y;. We then can reformulate (2.3) as follows:

0%,0" = argmin EeqEq, £ (21, f1(X1;6°,0%) (2.4)

where z; € R is a k-dimensional vector that represents reduced learning label for a
specific task ¢. Each z; will be obtained through task-specific factor extraction methods,
as described in Section 2.2.3.

2.2.2. LEARNING SOURCES

In the MTDTL context, a training dataset can be seen as the ‘source’ to learn the represen-
tation, which will be further transferred to the future ‘target’ dataset. Different learning
sources of different nature can be imagined, that can be globally categorized as Algorithm
or Annotation. As for the Algorithm category, by employing traditional feature extraction
or representation transformation algorithms, we will be able to automatically extract se-
mantically interesting aspects from input data. As for the Annotation category, these in-
clude different types of label annotations of the input data by humans.

The dataset used as resource for our learning experiments is the Million Song Dataset
(MSD)[31]. In its original form, it contains metadata and precomputed features for a mil-
lion songs, with several associated data resources, e.g. considering Last . fm social tags
and listening profiles from the Echo Nest. While the MSD does not distribute audio
due to copyright reasons, through the API of the 7digital service, 30-second audio pre-
views can be obtained for the songs in the dataset. These 30-second previews will form
the source for our raw audio input.
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Using the MSD data, we consider several subcategories of learning sources within the
Algorithm and Annotation categories; below, we give an overview of these, and specify
what information we considered exactly for the learning labels in our work.

ALGORITHM

e Self. The music track is the learning source itself; in other words, intrinsic infor-
mation in the input music track should be captured through a learning procedure,
without employing further data. Various unsupervised or auto-regressive learning
strategies can be employed under this category, with variants of Autoencoders, in-
cluding the Stacked Autoencoder [32, 33], Restricted Boltzmann Machines (RBM) [34],
Deep Belief Networks (DBN) [35] and Generative Adversarial Networks (GAN) [36].
As another example within this category, variants of the Siamese networks for simi-
larity learning can be considered [37-39].

In our case, we will employ the Siamese architecture to learn a metric that measures
whether two input music clips belong to the same track, or two different tracks. This
can be formulated as follows:

éself,és = argmin [EXI,X,NQSelf-f(J’selfrfself(Xl’Xr;gself,es)) (2.5)

(2.6)

1, if X; and X, sampled from same track
Vself = .
0 otherwise

where X; and X, are a pair of randomly sampled short music snippets (taken from
the 30-second MSD audio previews) and fi;f is a network for learning a metric be-
tween given input representations in terms of the criteria imposed by yserr. It is
composed of one or more fully-connected layers and one output layer with soft-
max activation. An global outline illustration of our chosen architecture is given in
Fig. 2.3. Further specifications of the representation network and sampling strate-
gies will be given in Section 2.3.

» Feature. Many algorithms exist already for extracting features out of musical audio,
or for transforming musical audio representations. By running such algorithms on
musical audio, learning labels are automatically computed, without the need for so-
liciting human annotations. Algorithmically computed outcomes will likely not be
perfect, and include noise or errors. At the same time, we consider them as a rela-
tively efficient way to extract semantically relevant and more structured information
out of a raw input signal.

In our case, under this category, we use Beat Per Minute (BPM) information, re-
leased as part of the MSD’s precomputed features. The BPM values were computed
by an estimation algorithm, as part of the Echo Nest API.

ANNOTATION
* Metadata. Typically, metadata will come ‘for free’ with music audio, specifying side
information, such as a release year, the song title, the name of the artist, the cor-
responding album name, and the corresponding album cover image. Considering
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Figure 2.3: Siamese architecture adopted for the self learning task. For further details of the Representation
Network, see Section 2.3.1 and Fig. 2.4.

that this information describes categorization facets of the musical audio, metadata
can be a useful information source to learn a music representation. In our experi-
ments, we use release year information, which is readily provided as metadata with
each song in the MSD.

* Crowd. Through interaction with music streaming or scrobbling services, large num-
bers of users, also designated as the crowd, left explicit or implicit information re-
garding their perspectives on musical content. For example, they may have created
social tags, ratings, or social media mentionings of songs. With many services of-
fering API access to these types of descriptors, crowd data therefore offers scalable,
spontaneous and diverse (albeit noisy) human perspectives on music signals.

In our experiments, we use social tags from Last.fm' and user listening profiles
from the Echo Nest.

* Professional. As mentioned in [2], annotation of music tracks is a complicated and
time-consuming process: annotation criteria frequently are subjective, and consid-
erable domain knowledge and annotation experience may be required before accu-
rate and consistent annotations can be made. Professional experts in categorization
have this experience, and thus are capable of indicating clean and systematic infor-
mation about musical content. It is not trivial to get such professional annotations
at scale; however, these types of annotations may be available in existing profes-
sional libraries.

In our case, we use professional annotations from the Centrale Discotheek Rotter-
dam (CDR), the largest music library in The Netherlands, holding all music ever re-
leased in the country in physical and digital form in its collection. The CDR collec-

Ihttps://labrosa.ee.columbia.edu/millionsong/lastfm
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tion can be digitally accessed through the online Muziekweb? platform. For each
musical album in the CDR collection, genre annotations were made by a profes-
sional annotator, according to a fixed vocabulary of 367 hierarchical music genres.

As another professional-level ‘description, we adopted lyrics information per each
track, which is provided in Bag-of-Words format with the MSD. To filter out trivial
terms such as stop-words, we applied TF-IDF[40].

e Combination. Finally, learning labels can be derived from combinations of the
above categories. In our experiment, we used combination of artist information
and social tags, by making a bag of tags at the artist level as a learning label.

Not all songs in the MSD actually include learning labels from all the sources men-
tioned above. Clearly, it is another advantage of using MTL that one can use such unbal-
anced datasets in a single learning procedure, to maximize the coverage of the dataset.
However, on the other hand, if one uses an unbalanced number of samples across differ-
ent learning sources, it is not trivial to compare the effect of individual learning sources.
We therefore choose to work with a subset of the dataset, in which equal numbers of sam-
ples across learning sources can be used. As a consequence, we managed to collect 46,490
clips of tracks with corresponding learning source labels. A 41,841 / 4,649 split was made
for training and validation for all sources from both MSD and CDR. Since we mainly focus
on transfer learning, we used the validation set mostly for monitoring the training, to keep
the network from overfitting.

2https://www.muziekweb.nl/
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Table 2.1: Properties of learning sources.

Identifier Category Data Dimensionality Preprocessing
self . Self MSD - Track 1

bpm Algorithm ¢ ture MSD - BPM 1 GMM

year Metadata MSD - Year 1 GMM

tag Crowd MSD - Tag 174,156  pLSA

taste Annotation Crowd MSD - Taste 949,813 pLSA

cdr_tag Professional ~ CDR - Tag 367 pLSA

lyrics Professional =~ MSD - Lyrics 5,000 pLSA, TF-IDF
artist Combination MSD - Artist & Tag 522,366 pLSA
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Table 2.2: Examples of Latent Topics extracted with pLSA from MSD social tags

Topic Strongest social tags

tagl indie rock, indie, british, Scottish
tag2 pop, pop rock,dance,male vocalists
tag3 soul, rnb, funk, Neo-Soul

tagd Melodic Death Metal, black metal, doom metal, Gothic Metal
tagd fun, catchy, happy, Favorite

2.2.3. LATENT FACTOR PREPROCESSING

Most learning sources are noisy. For instance, social tags include tags for personal playlist
management, long sentences, or simply typos, which do not actually show relevant nu-
ances in describing the music signal. The algorithmically extracted BPM information also
is imperfect, and likely contains octave errors, in which BPM is under- or overestimated by
a factor of 2. To deal with this noise, several previous works using the MSD [17, 27] applied
a frequency-based filtering strategy along with top-down domain knowledge. However,
this shrinks the available sample size. As an alternative way to handle noisiness, several
other previous works [12, 18, 28, 41-43] apply latent factor extraction using various low-
rank approximation models to preprocess the label information. We also choose to do this
in our experiments.

A full overview of chosen learning sources, their category, origin dataset, dimension-
ality and preprocessing strategies is shown in Table 2.1. In most cases, we apply prob-
abilistic latent semantic analysis (pLSA), which extracts latent factors as a multinomial
distribution of latent topics [44]. Table 2.2 illustrates several examples of strong social tags
within extracted latent topics.

For situations in which learning labels are a scalar, non-binary value (BPM and release
year), we applied a Gaussian Mixture Model (GMM) to transform each value into a cate-
gorical distribution of Gaussian components. In case of the Self category, as it basically is
a binary membership test, no factor extraction was needed in this case.

After preprocessing, learning source labels y; are now expressed in the form of prob-
abilistic distributions z;. Then, the learning of a deep representation can take place by
minimizing the Kullback-Leibler (KL) divergence between model inferences f;(X) and la-
bel factor distributions z;.

Along with the noise reduction, another benefit from such preprocessing is the reg-
ularization of the scale of the objective function between different tasks involved in the
learning, when the resulting factors have the same size. This regularity between the ob-
jective functions is particularly helpful for comparing different tasks and datasets. For this
purpose, we used a fixed single value k = 50 for the number of factors (pLSA) and the num-
ber of Gaussians (GMM). In the remainder of this paper, the datasets and tasks processed
in above manner will be denoted by learning sources for coherent presentation and usage
of the terminology.

2.3. REPRESENTATION NETWORK ARCHITECTURES

In this section, we present the detailed specification of the deep representation neural
network architecture we exploited in this work. We will discuss the base architecture of
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Table 2.3: Configuration of the base CNN. conv and max-pool indicate a 2-dimensional convolution and max-
pooling layer, respectively. We set the stride size with 2 on the time dimension of conv1, to compress dimension-
ality at the early stage. Otherwise, all strides are set as 1 across all the convolution layers. gap corresponds to the
global average pooling used in [23], which averages out all the spatial dimensions of the filter responses. fc is
an abbreviation of fully-connected layer. We use dropout with p = 0.5 only for the fc-feature layer, where the
intermediate latent representation is extracted and evaluated. For simplicity, we omit the batch-size dimension
of the input shape.

Layer Input Shape Weight Shape Sub-Sampling Activation
convl 2x216x128 2x16x5x%x5 2x1 ReLU
max-pooll 16 x 108 x 128 2%x2

conv?2 16 x 54 x 64 16 x32x3x3 RelU
max-pool2 32 x54 x64 2x2

conv3d 32 x27x32 32x64x3x%x3 RelLU
max-pool3 64 x 27 x 32 2x2

conv4 64 x13x 16 64x64%x3x%x3 ReLU
max-pool4d 64 x 13 x 16 2x2

convb 64 x6x8 64 x128x3x3 RelLU
max-poolb 128 x6x 8 2x2

conv61l 128 x3 x4 128 x256 x3 x 3 RelU
conv62 256 x3 x4 256 x 256 x1x1 ReLU
gap 256

fc-feature 256 256 x 256 RelU
dropout 256

fc-output 256 learning source specific Softmax

the network, and further discuss the shared architecture with respect to different fusion
strategies that one can take in the MTDTL context. Also, we introduce details on the pre-
processing related to the input data served into networks.

2.3.1. BASE ARCHITECTURE

As the deep base architecture for feature representation learning, we choose a Convolu-
tional Neural Network (CNN) architecture inspired by [22], as described in Fig. 2.4 and
Table 2.3.

The CNN is one of the most popular architectures in many music-related machine
learning tasks [17, 18, 21, 26, 45-56]. Many of these works adopt an architecture hav-
ing cascading blocks of 2-dimensional filters and max-pooling, derived from well-known
works in image recognition [22, 57]. Although variants of CNN using 1-dimensional filters
also were suggested by [13, 58-60] to learn features directly from a raw audio signal in an
end-to-end manner, not many works managed to use them on music classification tasks
successfully [61].

The main difference between the base architecture and [22] is the use of Global Aver-
age Pooling (GAP) and the Batch Normalization (BN) layers. BN is applied to accelerate
the training and stabilize the internal covariate shift for every convolution layer and the
fc-feature layer [62]. Also, global spatial pooling is adopted as the last pooling layer of
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the cascading convolution blocks, which is known to effectively summarize the spatial di-
mensions both in the image [23] and music domain [21]. We also applied the approach to
ensure the fc-feature layer not to have a huge number of parameters.

We applied the Rectified Linear Unit (ReLU) [63] to all convolution layers and the
fc-feature layer. For the fc-output layer, softmax activation is used. For each convolu-
tion layer, we applied zero-padding such that the input and the output have the same spa-
tial shape. As for the regularization, we choose to apply drop-out [64] on the fc-feature
layer. We added L2 regularization across all the parameters with the same weight A = 1075.

AUDIO PREPROCESSING

We aim to learn a music representation from as-raw-as-possible input data to fully lever-
age the capability of the neural network. For this purpose, we use the dB-scale mel-scale
magnitude spectrum of an input audio fragment, extracted by applying 128-band mel-
filter banks on the Short-Time Fourier Transform (STFT). mel-spectrograms have gener-
ally been a popular input representation choice for CNNs applied in music-related tasks [17,
18, 21, 27, 42, 65]; besides, it also was reported recently that their frequency-domain sum-
marization, based on psycho-acoustics, is efficient and not easily learnable through data-
driven approaches [66, 67]. We choose a 1024-sample window size and 256-sample hop
size, translating to about 46 ms and 11.6 ms respectively for a sampling rate of 22 kHz. We
also applied standardization to each frequency band of the mel spectrum, making use of
the mean and variance of all individual mel spectra in the training set.

SAMPLING

During the learning process, in each iteration, a random batch of songs is selected. Audio
corresponding to these songs originally is 30 seconds in length; for computational effi-
ciency, we randomly crop 2.5 seconds out of each song each time. Keeping stereo chan-
nels of the audio, the size of a single input tensor X* we used for the experiment ended up
with 2 x 216 x 128, where the first dimension indicates number of channels, and following
dimensions mean time steps and mel-bins, respectively. Along with the computational
efficiency, a number of literatures in MIR field reported that using a small chunk of the in-
put not only inflates the dataset, but also shows good performance on the high-level tasks
such as music auto-tagging [21, 58, 61]. For the self case, we generate batches with equal
numbers of songs for both membership categories in yse; .

2.3.2. MULTI-SOURCE ARCHITECTURES WITH VARIOUS DEGREES OF SHARED

INFORMATION
When learning a music representation based on various available learning sources, differ-
ent strategies can be taken regarding the choice of architecture. We will investigate the
following setups:

* As a base case, a Single-Source Representation (SS-R) can be learned for a single
source only. As mentioned earlier, this would be the typical strategy leading to pre-
trained networks, that later would be used in transfer learning. In our case, our
base architecture from Section 2.3.1 and Fig. 2.4 will be used, for which the layers in
the Representation Network also are illustrated in Fig. 2.5a. Out of the fc-feature
layer, a d-dimensional representation is obtained.
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Figure 2.4: Default CNN architecture for supervised single-source representation learning. Details of the Repre-
sentation Network are presented at the left of the global architecture diagram. The numbers inside the paren-
theses indicate either the number of filters, or the number of units with respect to the type of layer.

 If multiple perspectives on the same content, as reflected by the multiple learning
labels, should also be reflected in the ultimate learned representation, one can learn
SS-R representations for each learning source, and simply concatenate them after-
wards. With d dimensions per source and m sources, this leads to a d x m Multiple
Single-Source Concatenated Representation (MSS-CR). In this case, independent
networks are trained for each of the sources, and no shared knowledge will be trans-
ferred between sources. A layer setup of the corresponding Representation Network
is illustrated in Fig. 2.5b.

* When applying MTLlearning strategies, the deep architecture should involve shared
knowledge layers, before branching out to various individual learning sources, whose
learned representations will be concatenated in the final d x m-dimensional repre-
sentation. We call these Multi-Source Concatenated Representations (MS-CR). As
the branching point can be chosen at different stages, we will investigate the effect
of various prototypical branching point choices: at the second convolution layer
(MS-CR@2, Fig. 2.5¢), the fourth convolution layer (MS-CR@4, Fig. 2.5d), and the
sixth convolution layer (MS-CR®@6, Fig. 2.5¢). The later the branching point occurs,
the more shared knowledge the network will employ.

* In the most extreme case, branching would only occur at the very last fully con-
nected layer, and a Multi-Source Shared Representation (MS-SR) (or, more specif-
ically, MS-SR@FC) is learned, as illustrated in Fig. 2.5f. As the representation is
obtained from the fc-feature layer, no concatenation takes place here, and a d-
dimensional representation is obtained.

A summary of these different representation learning architectures is given in Table 2.4.
Beyond the strategies we choose, further approaches can be thought of to connect rep-
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Table 2.4: Properties of the various categories of representation learning architectures.

Multi Source  Shared Network Concatenation Dimensionality

SS-R No No No d
MSS-CR Yes No Yes dxm
MS-CR Yes Partial Yes dxm
MS-SR Yes Yes No d

resentations learned for different learning sources in neural network architectures. For
example, for different tasks, representations can be extracted from different intermedi-
ate hidden layers, benefiting from the hierarchical feature encoding capability of the deep
network [27]. However, considering that learned representations are usually taken from
a specific fixed layer of the shared architecture, we focus on the strategies as we outlined
above.

2.3.3. MTL TRAINING PROCEDURE

Algorithm 1: Training a Multi-Source CNN

1 Initialize ©: {67, 6%} randomly;
2 for epochin 1...N do

3 for iteration in 1...L do
4 Pick a learning source f randomly;
5 Pick batch of samples from learning source ;

(X;, X;) for self;
X otherwise;

6 Derive learning label z;;
7 Sub-sample chunk X* from track X;
8 Forward-pass:;

$(yself,®,Xl*,Xr*) =Eq. 2.5 for self;
£(z4,0,X*) =Eq. 2.2 otherwise;

9 Backward-pass: V(0);

10 Update model: ©® — 0 —eV(0);

Similar to [5, 12], we choose to train the MTL models with a stochastic update scheme
as described in Algorithm 1. At every iteration, a learning source is selected randomly.
After the learning source is chosen, a batch of observation-label pairs (X, z;) is drawn.
For the audio previews belonging to the songs within this batch, an input representation
X* is cropped randomly from its super-sample X. The updates of the parameters © are
conducted through back-propagation using the Adam algorithm [68]. For each neural
network we train, we set L = [m, where [ is the number of iterations needed to visit all the
training samples with fixed batch size b = 128, and m is the number of learning sources
used in the training. Across the training, we used a fixed learning rate € = 0.00025. After a
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Figure 2.5: The various model architectures considered in the current work. Beyond single-source architectures,
multi-source architectures with various degrees of shared information are studied. For simplification, multi-
source cases are illustrated here for two sources. The fc-feature layer from which representations will be
extracted is the FC(256) layer in the illustrations (see Table 2.3).
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fixed number of epochs N is reached, we stop the training.

2.3.4. IMPLEMENTATION DETAILS

We used PyTorch [69] to implement the CNN models and parallel data serving. For eval-
uation of models and cross-validation, we made extensive use of functionality in Scikit-
Learn [70]. Furthermore, Librosa [71] was used to process audio files and its raw features
including mel spectrograms. The training is conducted with 8 Graphical Processing Unit
(GPU) computation nodes, composed of 2 NVIDIA GRID K2 GPUs and 6 NVIDIA GTX
1080Ti GPUs.
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Figure 2.6: Overall system framework. The first row of the figure illustrates the learning scheme, where the
representation learning is happening by minimizing the KL divergence between the network inference f;(X)
and the preprocessed learning label z;. The preprocessing is conducted by the blue blocks which transform the
original noisy labels y; to z;, reducing noise and summarizing the high-dimensional label space into a smaller
latent space. The second row describes the entire evaluation scenario. The representation is first extracted from
the representation network, which is transferred from the upper row. The sequence of representation vectors is
aggregated as the concatenation of their means and standard deviations. The purple block indicates a machine
learning model employed to evaluate the representation’s effectiveness.

2.4. EVALUATION

So far, we discussed the details regarding the learning phase of this work, which corre-
sponds to the upper row of Fig. 2.6. This included various choices of sources for the
representation learning, and various choices of architecture and fusion strategies. In this
section, we present the evaluation methodology we followed, as illustrated in the second
row of Fig. 2.6. First, we will discuss the chosen target tasks and datasets in Section 2.4.1,
followed in Section 2.4.2 by the baselines against which our representations will be com-
pared. Section 2.4.3 explains our experimental design, and finally we discuss the imple-
mentation of our evaluation experiments in Section 2.4.4.



2.4. EVALUATION 31

2.4.1. TARGET DATASETS

In order to gain insight into the effectiveness of learned representations with respect to
multiple potential future tasks, we consider a range of target datasets. In this work, our
target datasets are chosen to reflect various semantic properties of music, purposefully
chosen semantic biases, or popularity in the MIR literature. Furthermore, the represen-
tation network should not be configured or learned to explicitly solve the chosen target
datasets.

While for the learning sources, we could provide categorizations on where and how
the learning labels were derived, and also consider algorithmic outcomes as labels, ex-
isting popular research datasets mostly fall in the Professional or Crowd categories. In
our work, we choose 7 evaluation datasets commonly used in MIR research, which reflect
three conventional types of MIR tasks, namely classification, regression and recommen-
dation:



Table 2.5: Properties of target datasets used in our experiments. Because of time constraints, we sampled the Lastfm dataset as described in Section 2.4.1; the original
size appears between parentheses. In case particular data splits are defined by an original author or follow up study, we apply the same split, including the reference
in which the split is introduced. Otherwise, we applied either a random split stratified by the label (Ballroom), or simple filtering based on reported faulty entries

(IRMAS).
Task Data #Tracks #Class  Split Method
Classification FMA[72] Genre 25,000 16 Artist Filtered [72]
Classification GTZAN[73] Genre 1,000 10 Artist Filtered [74]
Classification Ext. Ballroom([75, 76] Genre 3,390 13 N/A
Classification IRMAS[77] Instrument 6,705 11 Song Filtered
Regression Music Emotion[78] Arousal 744 Genre Stratified[78]
Regression Music Emotion[78] Valence 744 Genre Stratified[78]
Recommendation Lastfm*[79] Listening Count 27,093 (961,416) N/A
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* Classification. Different types of classification tasks exist in MIR. In our experi-
ments, we consider several datasets used for genre classification and instrument
classification.

For genre classification, we chose the GTZAN [73] and FMA [72] datasets as main
exemplars. Even though GTZAN is known for its caveats [80], we deliberately used it,
because its popularity can be beneficial when comparing with previous and future
work. We note though that there may be some overlap between the tracks of GTZAN
and the subset of the MSD we use in our experiments; the extent of this overlap is
unknown, due to the lack of a confirmed and exhaustive track listing of the GTZAN
dataset. We choose to use a fault-filtered data split for the training and evaluation,
which is suggested in [74]. The split originally includes a training, validation and
evaluation split; in our case, we also included the validation split as training data.

Among the various packages provided by the FMA, we chose the top-genre classifi-
cation task of FMA-Medium [72]. This is a classification dataset with an unbalanced
genre distribution. We used the data split provided by the dataset for our experi-
ment, where the training is validation set are combined as the training.

Considering another type of genre classification, we selected the Extended Ballroom
dataset [75, 76]. Because the classes in this dataset are highly separable with regard
to their BPM [81], we specifically included this ‘purposefully biased’ dataset as an
example of how a learned representation may effectively capture temporal dynam-
ics properties present in a target dataset, as long as learning sources also reflected
these properties. Since no pre-defined split is provided or suggested by other litera-
ture, we used stratified random sampling based on the genre label.

The last dataset we considered for classification is the training set of the IRMAS
dataset [77], which consists of short music clips annotated with the predominant
instruments present in the clip. Compared to the genre classification task, instru-
ment classification is generally considered as less subjective, requiring features to
separate timbral characteristics of the music signal as opposed to high-level seman-
tics like genre. We split the dataset to make sure that observations from the same
music track are not split into training and test set.

As performance metric for all these classification tasks, we used classification accu-
racy.

* Regression. As exemplars of regression tasks, we evaluate our proposed deep repre-
sentations on the dataset used in the MediaEval Music Emotion prediction task [78].
It contains frame-level and song-level labels of a two-dimensional representation of
emotion, with valence and arousal as dimensions [82]. Valence is related to the pos-
itivity or negativity of the emotion, and arousal is related to its intensity [78]. The
song-level annotation of the V-A coordinates was used as the learning label. In sim-
ilar fashion to the approach taken in [27], we trained separate models for the two
emotional dimensions. As for the dataset split, we used the split provided by the
dataset, which is done by the random split stratified by the genre distribution.

As evaluation metric, we measured the coefficient of determination R? of each model.
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* Recommendation. Finally, we employed the ‘Last.fm - 1K users’ dataset [79] to eval-
uate our representations in the context of a content-aware music recommendation
task (which will be denoted as Lastfm in the remaining of the paper). This dataset
contains 19 million records of listening events across 961,416 unique tracks col-
lected from 992 unique users. In our experiments, we mimicked a cold-start rec-
ommendation problem, in which items not seen before should be recommended to
the right users. For efficiency, we filtered out users who listened to less than 5 tracks
and tracks known to less than 5 users.

As for the audio content of each track, we obtained the mapping between the Mu-
sicBrainz Identifier (MBID) with the Spotify identifier (SpotifyID) using the MusicBrainz
API®. After cross-matching, we collected 30 seconds previews of all track using the
Spotify API*.We found that there is a substantial amount of missing mapping in-
formation between the SpotifyID and MBID in the MusicBrainz database, where
only approximately 30% of mappings are available. Also, because of the substan-

tial amount of inactive users and unpopular tracks in the dataset, we ultimately ac-
quired a dataset of 985 unique users and 27,093 unique tracks with audio content.

Similar to [29], we considered the outer matrix performance for un-introduced songs;
in other words, the model’s recommendation accuracy on the items newly intro-
duced to the system [29]. This was done by holding out certain tracks when learning
user models, and then predicting user preference scores based on all tracks, includ-
ing those that were held out, resulting in a ranked track list per user. As evaluation
metric, we consider Normalized Discounted Cumulative Gain (nDCG@500), only
treating held-out tracks that were indeed liked by a user as relevant items. Further
details on how hold-out tracks were chosen are given in Section 2.4.4.

A summary of all evaluation datasets, their origins and properties, can be found in
Table 2.5.

2.4.2. BASELINES
We examined three baselines to compare with our proposed representations:

* Mel-Frequency Cepstral Coefficients (MFCC). These are some of the most popu-
lar audio representations in MIR research. In this work, we extract and aggregate
MFCC following the strategy in [27]. In particular, we extracted 20 coefficients and
also used their first- and second-order derivatives. After obtaining the sequence
of MFCCs and its derivatives, we performed aggregation by taking the average and
standard deviation over the time dimension, resulting in a 120-dimensional vector
representation.

* Random Network Feature (Rand). We extracted the representation at the fc-feature
layer without any representation network training. With random initialization, this
representation therefore gives a random baseline for a given CNN architecture. We
refer to this baseline as Rand.

3https://musicbrainz.org/
4https://developer.spotify.com/documentation/web-api/
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 Latent Representation from Music Auto-Tagger (Choi). The work in [27] focused on
a music auto-tagging task, and can be considered as yielding a state-of-the-art deep
music representation for MIR. While the model’s focus on learning a representation
for music auto-tagging can be considered as our SS-R case, there are a number of
issues that complicate direct comparisons between this work and ours. First, the
network in [27] is trained with about 4 times more data samples than in our experi-
ments. Second, it employed a much smaller network than our architecture. Further,
intermediate representations were extracted, which is out of the scope of our work,
as we only consider representations at the fc-feature layer. Nevertheless, despite
these caveats, the work still is very much in line with ours, making it a clear can-
didate for comparison. Throughout the evaluation, we could not fully reproduce
the performance reported in the original paper [27]. When reporting our results, we
therefore will report the performance we obtained with the published model, refer-
ring to this as Choi.

2.4.3. EXPERIMENTAL DESIGN
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Figure 2.7: Aliasing among main effects in the final experimental design.

In order to investigate our research questions, we carried out an experiment to study
the effect of the number and type of learning sources on the effectiveness of deep repre-
sentations, as well as the effect of the various architectural learning strategies described
in Section 2.3.2. For the experimental design we consider the following factors:

* Representation strategy, with 6 levels: SS-R, MS-SR@FC, MS-CR@6, MS-CR@4, MS-
CR@2, and MSS-CR).

» 82-level factors indicating the presence or not of each of the 8 learning sources: self,
year, bpm, taste, tag, lyrics, cdr_tag and artist.

* Number of learning sources present in the learning process (1 to 8). Note that this is
actually calculated as the sum of the eight factors above.



2. ONE DEEP MUSIC REPRESENTATION TO RULE THEM ALL? A COMPARATIVE ANALYSIS OF
36 DIFFERENT REPRESENTATION LEARNING STRATEGIES

o Target dataset, with 7 levels: Ballroom, FMA, GTZAN, IRMAS, Lastfm, Arousal and
Valence.

Given alearned representation, fitting dataset-specific models is much more efficient than
learning the representation, so we decided to evaluate each representation on all 7 tar-
get datasets. The experimental design is thus restricted to combinations of representa-
tion and learning sources, and for each such combination we will produce 7 observations.
However, given the constraint of SS-Rrelying on a single learning source, that there is only
one possible combination for n = 8 sources, as well as the high unbalance in the number
of sources®, we proceeded in three phases:

1. We first trained the SS-R representations for each of the 8 sources, and repeated 6
times each. This resulted in 48 experimental runs.

2. We then proceeded to train all five multi-source strategies with all sources, that is,
n = 8. We repeated this 5 times, leading to 25 additional experimental runs.

3. Finally, we ran all five multi-source strategies with n = 2,...,7. The full design ma-
trix would contain 5 representations and 8 sources, for a total of 1,230 possible runs.
Such an experiment was unfortunately infeasible to run exhaustively given available
resources, so we decided to follow a fractional design. However, rather than using
a pre-specified optimal design with a fixed amount of runs [84], we decided to run
sequentially for as long as time would permit us, generating at each step a new ex-
perimental run on demand in a way that would maximize desired properties of the
design up to that point, such as balance and orthogonality®.

We did this with the greedy Algorithm 2. From the set of still remaining runs </,
a subset O is selected such that the expected unbalance in the augmented design
2 U {o} is minimal. In this case, the unbalance of a design is defined as the maxi-
mum unbalance found between the levels of any factor, except for those already ex-
hausted’. From @, a second subset &7 is selected such that the expected aliasing in
the augmented design is minimal, here defined as the maximum absolute aliasing
between main effects®. Finally, a run p is selected at random from 22, the corre-
sponding representation is learned, and the algorithm iterates again after updating
o/ and 2.

Following this on demand methodology, we managed to run another 352 experi-
mental runs from all the 1,230 possible.

SFor instance, from the 255 possible combinations of up to 8 sources, there are 70 combinations of n = 4 sources,
but 28 with n =2, or only 8 for n = 7. Simple random sampling from the 255 possible combinations would lead
to a very unbalanced design, that is, a highly non-uniform distribution of observation counts across the levels
of the factor (n in this case). A balanced design is desired to prevent aliasing and maximize statistical power.
See section 15.2 in [83] for details on unbalanced designs.

6An experimental design is orthogonal if the effects of any factor balance out across the effects of the other
factors. In a non-orthogonal design effects may be aliased, meaning that the estimate of one effect is partially
biased with the effect of another, the extent of which ranges from 0 (no aliasing) to 1 (full aliasing). Aliasing is
sometimes referred to as confounding. See sections 8.5 and 9.5 in [83] for details on aliasing.

“For instance, let a design have 20 runs for SS-R, 16 for MS-SR@FC, and 18 for all other representations. The
unbalance in the representation factor is thus 20 — 16 = 4. The total unbalance of the design is defined as the
maximum unbalance found across all factors.

8See section 2.3.7 in [84] for details on how to compute an alias matrix.
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Algorithm 2: Sequential generation of experimental runs.

1 Initialize o with all possible 1,230 runs to execute;

2 Initialize 98 — @ for the set of already executed runs;

3 while time allows do

4 Select O < «f s.t. Yo € 0, the unbalance in 28 U {0} is minimal;
5 Select 22 < 0 s.t. Vp € 2, the aliasing in 28 U {p} is minimal;

6 Select p € 2 at random;

7 Update o — o —{p};

8 Update 88 — B U {p};

9 Learn the representation coded by p;

After going through the three phases above, the final experiment contained 48 + 25 +
352 = 425 experimental runs, each producing a different deep music representation. We
further evaluated each representation on all 7 target datasets, leading to a grand total of
42 x 7 = 2,975 datapoints. Fig. 2.7 plots the alias matrix of the final experimental design,
showing that the aliasing among main factors is indeed minimal. The final experimental
design matrix can be downloaded along with the rest of the supplemental material.

Each considered representation network was trained using the CNN representation
network model from Section 2.3, based on the specific combination of learning sources
and deep architecture as indicated by the experimental run. In order to reduce variance,
we fixed the number of training epochs to N = 200 across all runs, and applied the same
base architecture, except for the branching point. This entire training procedure took
approximately 5 weeks with given computational hardware resources introduced in Sec-
tion 2.3.4.

2.4.4. IMPLEMENTATION DETAILS
In order to assess how our learned deep music representations perform on the various
target datasets, transfer learning will now be applied, to consider our representations in
the context of these new target datasets.

As a consequence, new machine learning pipelines are set up, focused on each of the
target datasets. In all cases, we applied the pre-defined split if it is feasible. Otherwise,
we randomly split the dataset in a 80% training and 20% test set. For every dataset, we
repeated the training and evaluation for 5 times, using different train/test splits. In most
of our evaluation cases, validation will take place on the test set; in case of the the rec-
ommendation problem, the test set represents a set of tracks to be held out during user
model training, and re-inserted for validation. In all cases, we will extract representations
from evaluation dataset audio as detailed in Section 2.4.4, and then learn relatively simple
models based on them, as detailed in Section 2.4.4. Employing the metrics as mentioned
in the previous section, we will then take average performance scores over the 5 different
train-test splits for final performance reporting.

FEATURE EXTRACTION AND PREPROCESSING
Taking raw audio from the evaluation datasets as input, we take non-overlapping slices
out of this audio with a fixed length of 2.5 seconds. Based on this, we apply the same
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preprocessing transformations as discussed in Section 2.3.1. Then, we extract a deep rep-
resentation from this preprocessed audio, employing the architecture as specified by the
given experimental run. As in the case of Section 2.3.2, representations are extracted from
the fc-feature layer of each trained CNN model. Depending on the choice of architec-
ture, the final representation may consist of concatenations of representations obtained
by separate representation networks.

Input audio may originally be (much) longer than 2.5 seconds; therefore, we aggregate
information in feature vectors over multiple time slices by taking their mean and standard
deviation values. As a result, we get a representation with averages per learned feature
dimension, and another representation with standard deviations per feature dimension.
These will be concatenated, as illustrated in Fig. 2.6.

TARGET DATASET-SPECIFIC MODELS
As our goal is not to over-optimize dataset-specific performance, but rather perform a
comparative analysis between different representations (resulting from different learn-
ing strategies), we keep the model simple, and use fixed hyper-parameter values for each
model across the entire experiment.

To evaluate the trained representations, we used different models according to the
target dataset. For classification and regression tasks, we used Multi Layer Perceptron
(MLP) model [85]. More specifically, the MLP model has two hidden layers, whose di-
mensionality is 257. As for the non-linearity, we choose ReLU [63] for all nodes, and the
model is trained with ADAM optimization technique [68] for 200 iterations. In evaluation,
we used the Scikit-Learn’s implementation for ease of distributed computing on multiple
CPU computation nodes.

For the recommendation task, we choose a similar model as suggested in [29, 86], in
which the learning objective function £ is defined as

Aaa 4 AU w
U,V,W =argmin ||P—UVT||C+7||V—XW||+ 7||U||+7||W|| (2.7

where P € R**/ is a binary matrix indicating whether there is interaction between users u
and items i, U € R¥*" and V € R¥*" are r dimensional user factors and item factors for the
low-rank approximation of P. P is derived from the original interaction matrix R € R**?,
which contains the number of interaction from users u to items i, as follows:

1, if Ru,i >0
Pyi= . (2.8)
0 otherwise

W € R?*" is a free parameter for the projection from d-dimensional feature space to
the factor space. X € R¥*? is the feature matrix where each row corresponds to a track.
Finally, || - ||¢ is the Frobenious norm weighted by the confidence matrix C € R“**! which
controls the credibility of the model on the given interaction data, given as follows:

C=1+aR (2.9)

where a controls credibility. As for hyper-parameters, we set a = 0.1, AV =0.00001,
AY =0.00001, and A" = 0.1, respectively. For the number of factors we choose r = 50 to
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Figure 2.8: Performance of single source representations. Each point indicates the performance of a representa-
tion learned from the single source. Solid points indicate the average performance per source. The baselines are
illustrated as horizontal lines.

focus only on the relative impact of the representation over the different conditions. We
implemented an update rule with the Alternating Least Squares (ALS) algorithm similar
to [29], and updated parameters during 15 iterations.

2.5. RESULTS AND DISCUSSION

In this section, we present results and discussion related to the proposed deep music rep-
resentations. In Section 2.5.1, we will first compare the performance across the SS-Rs, to
show how different individual learning sources work for each target dataset. Then, we
will present general experimental results related to the performance of the multi-source
representations. In Section 2.5.2, we discuss the effect of the number of learning sources
exploited in the representation learning, in terms of their general performance, reliabil-
ity, and model compactness. In Section 2.5.3, we discuss effectiveness of different rep-
resentations in MIR. Finally, we present some initial evidence for multifaceted semantic
explainability of the proposed MTDTL in Section 2.5.5.”
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2.5.1. SINGLE-SOURCE AND MULTI-SOURCE REPRESENTATION

Fig. 2.8 presents the performance of SS-Rrepresentations on each of the 7 target datasets.
We can see that all sources tend to outperform the Rand baseline on all datasets, except
for a handful cases involving sources self and bpm. Looking at the top performing sources,
we find that tag, cdr_tag and artist perform better or on-par with the most sophisticated
baseline, Choi, except for the IRMAS dataset. The other sources are found somewhere
between these two baselines, except for datasets Lastfm and Arousal, where they perform
better than Choi as well. Finally, the MFCC is generally outperformed in all cases, with the
notable exception of the IRMAS dataset, where only Choi performs better.

Zooming in to dataset-specific observed trends, the bpmlearning source shows a highly
skewed performance across target datasets: it clearly outperforms all other learning sources
in the Ballroom dataset, but it achieves the worst or second worst performance in the other
datasets. As shown in [81], this confirms that the Ballroom dataset is well-separable based
on BPM information alone. Indeed, representations trained on the bpm learning source
seem to contain a latent representation close to the BPM of an input music signal. In
contrast, we can see that the bpm representation achieves the worst results in the Arousal
dataset, where both temporal dynamics and BPM are considered as important factors de-
termining the intensity of emotion.

On the IRMAS dataset, we see that all the SS-Rs perform worse than the MFCC and
Choibaselines. Given that they both take into account low-level features, either by design
or by exploiting low-level layers of the neural network, this suggests that predominant
instrument sounds are harder to distinguish based solely on semantic features, which is
the case of the representations studied here.

Also, we find that there is small variability for each SS-R run within the training setup
we applied. Specifically, in 50% of cases we have within-SS-R variability less than 15%
of the within-dataset variability. 90% of the cases are within 30% of the within-dataset
variability.

We now consider how the various representations based on multiple learning sources
perform, in comparison to those based on single learning sources. The boxplots in Fig. 2.9
show the distributions of performance scores for each architectural strategy and per target
dataset. For comparison, the gray boxes summarize the distributions depicted in Fig. 2.8,
based on the SS-R strategy. In general, we can see that these SS-R obtain the lowest scores,
followed by MS-SR@FC, except for the IRMAS dataset. Given that these representations
have the same dimensionality, these results suggest that adding a single source-specific
layer on top of a heavily shared model may help improving the adaptability of the neural
network models, especially when there is no prior knowledge regarding the well-matching
learning sources for the target datasets. The MS-CR and MSS-CR representations obtain
the best results in general, which is somewhat expected because of their larger dimension-

ality.

2.5.2. EFFECT OF NUMBER OF LEARNING SOURCES AND FUSION STRATEGY
While the plots in Fig. 2.9 suggest that MSS-CR and MS-CR are the best strategies, the
high observed variability makes this statement still rather unclear. In order to gain better

9For the reproducibility, we release all relevant materials including code, models and extracted features at
https://github.com/eldrin/MTLMusicRepresentation-PyTorch.
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Figure 2.9: Performance by representation strategy. Solid points represent the mean per representation. The

baselines are illustrated as horizontal lines.
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insight of the effects of dataset, architecture strategies and number and type of learning
sources, we further analyzed the results using a hierarchical or multilevel linear model
on all observed scores [87]. The advantage of such a model is essentially that it accounts
for the structure in our experiment, where observations nested within datasets are not
independent.

By Fig. 2.9 we can anticipate a very large dataset effect because of the inherently dif-
ferent levels of difficulty, as well as a high level of heteroskedasticity. We therefore ana-
lyzed standardized performance scores rather than raw scores. In particular, the i-th per-
formance score y; is standardized with the within-dataset mean and standard deviation
scores, that is, y; = (i — Jari)/ Saiij, where d[i] denotes the dataset of the i-th observa-
tion. This way, the dataset effect is effectively 0 and the variance is homogeneous. In ad-
dition, this will allow us to compare the relative differences across strategies and number
of sources using the same scale in all datasets.

We also transformed the variable n that refers to the number of sources to n*, which is
set to n* =0 for SS-Rs and to n* = n -2 for the other strategies. This way, the intercepts of
the linear model will represent the average performance of each representation strategy
in its simplest case, that is, SS-R (n = 1) or non-SS-R with n = 2. We fitted a first analysis
model as follows:

i = PBortiatil + Prriitat - 1y +ei ei ~N(0,0%) (2.10)
Bora = Bor + Uora Ugrd ~ N(O,U(Z)r) (2.11)
Brra = Prr + Uira urra ~ N©O,0%,), (2.12)

where Bor(i141i is the intercept of the corresponding representation strategy within the
corresponding dataset. Each of these coefficients is defined as the sum of a global fixed
effect By, of the representation, and a random effect v, 4 which allows for random within-
dataset variation'’. This way, we separate the effects of interest (ie. each fo,) from the
dataset-specific variations (ie. each ug,4). The effect of the number of sources is similarly
defined as the sum of a fixed representation-specific coefficient 8;, and arandom dataset-
specific coefficient u;,4. Because the slope depends on the representation, we are thus
implicitly modeling the interaction between strategy and number of sources, which can
be appreciated in Fig. 2.10, specially with MS-SR@FC.

Fig. 2.11 shows the estimated effects and bootstrap 95% confidence intervals. The left
plot confirms the observations in Fig. 2.9. In particular, they confirm that SS-R performs
significantly worse than MS-SR@FC, which is similarly statistically worse than the others.
When carrying out pairwise comparisons, MSS-CR outperforms all other strategies except
MS-CR@2 (p = 0.32), which ourperforms all others except MS-CR@6 (p = 0.09). The right
plot confirms the qualitative observation from Fig. 2.10 by showing a significantly positive
effect of the number of sources except for MS-SR@FC, where it is not statistically different
from 0. The intervals suggest a very similar effect in the best representations, with average
increments of about 0.16 per additional source —recall that scores are standardized.

To gain better insight into differences across representation strategies, we used a sec-
ond hierarchical model where the representation strategy was modeled as an ordinal vari-

10Wwe note that hierarchical models do not fit each of the individual uy,q coefficients (a total of 42 in this model),
but the amount of variability they produce, that is, O’é , (6in total).
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Figure 2.11: Fixed effects and bootstrap 95% confidence intervals estimated for the first analysis model. The left
plot depicts the effects of the representation strategy (fo, intercepts) and the right plot shows the effects of the
number of sources (81, slopes).

able r* instead of the nominal variable r used in the first model. In particular, r* repre-
sents the size of the network, so we coded SS-R as 0, MS-SR@FC as 0.2, MS-CR@6 as 0.4,
MS-CR@4 as 0.6, MS-CR@2 as 0.8, and MSS-CR as 1 (see Fig. 2.5). In detail, this second
model is as follows:

¥i =Bo+Pra 1 + Paaiy - nf + Psa 1 n; +ei e ~ N(0,0%) (2.13)
Bra = Pio+ uig urg ~ N(0,0%) (2.14)
Paa = P20 + Uza Usq ~ N(0,03) (2.15)
B3a = Pso + Usa usq ~ N(0,0%). (2.16)

In contrast to the first model, there is no representation-specific fixed intercept but an
overall intercept By. The effect of the network size is similarly modeled as the sum of an
overall fixed slope ;¢ and a random dataset-specific effect u;,4. Likewise, this model in-
cludes the main effect of the number of sources (fixed effect §2¢), as well as its interaction
with the network size (fixed effect 83¢). Fig. 2.12 shows the fitted coefficients, confirming
the statistically positive effect of the size of the networks and, to a smaller degree but still
significant, of the number of sources. The interaction term is not statistically significant,
probably because of the unclear benefit of the number of sources in MS-SR@FC.

Overall, these analyses confirm that all multi-source strategies outperform the single-
source representations, with a direct relation to the number of parameters in the network.
In addition, there is a clearly positive effect of the number of sources, with a minor inter-
action between both factors.

Fig. 2.10 also suggests that the variability of performance scores decreases with the
number of learning sources used. This implies that if there are more learning sources
available, one can expect less variability across instantiations of the network. Most im-
portantly, variability obtained for a single learning source (n = 1) is always larger than
the variability with 2 or more sources. The Ballroom dataset shows much smaller vari-
ability when BPM is included in the combination. For this specific dataset, this indicates
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Figure 2.12: Fixed effects and bootstrap 95% confidence intervals estimated for the second analysis model, de-
picting the overall intercept (fg), the slope of the network size (81¢), the slope of the number of sources (f2),
and their interaction (830).

that once bpm is used to learn the representation, the expected performance is stable and
does not vary much, even if we keep including more sources. Section 2.5.3 provides more
insight in this regard.

2.5.3. SINGLE-SOURCE VS. MULTI-SOURCE

The evidence so far tells us that, on average, learning from multiple sources leads to bet-
ter performance than learning from a single source. However, it could be possible that the
SS-Rrepresentation with the best learning source for the given target dataset still performs
better than a multi-source alternative. In fact, in Fig. 2.10 there are many cases where the
best SS-R representation (black circles at n = 1) already perform quite well compared to
the more sophisticated alternatives. Fig. 2.13 presents similar scatter plots, but now ex-
plicitly differentiating between representations using the single best source (filled circles,
solid lines) and not using it (empty circles, dashed lines). The results suggest that even if
the strongest learning source for the specific dataset is not used, the others largely com-
pensate for it in the multi-source representations, catching up and even surpassing the
best SS-Rrepresentations. The exception to this rule is again bpm in the Ballroom dataset,
where it definitely makes a difference. As the plots shows, the variability for low numbers
of learning sources is larger when not using the strongest source, but as more sources are
added, this variability reduces.

To further investigate this issue, for each target dataset, we also computed the vari-
ance component due to each of the learning sources, excluding SS-R representations [88].
A large variance due to one of the sources means that, on average and for that specific
dataset, there is a large difference in performance between having that source or not. Ta-
ble 2.6 shows all variance components, highlighting the per-dataset largest. Apart from
bpm in the Ballroom dataset, there is no clear evidence that one single source is specially
good in all datasets, which suggests that in general there is not a single source that one
would use by default. Notably though, sources artist, tag and self tend to have large vari-
ance components.
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Table 2.6: Variance components (as percent of total) of the learning sources, within each of the target datasets,
and for non-SS-R representations. Largest per dataset in bold face.

Ballroom FMA GTZAN IRMAS Lastfm Arousal Valence

self 2 32 39 18 29 6 10
year <1 6 <1 1 2 2 <1
bpm 96 3 <1 8 16 <1 42
taste <1 <1 <1 <1 <1 <1 6

tag 1 17 21 16 20 33 14
lyrics <1 <1 <1 3 <1 11 <1
cdr_tag <1 9 12 16 2 16 14
artist 1 32 28 37 32 31 15

In addition, we observe that the sources with largest variance are not necessarily the
sources that obtain the best results by themselves in an SS-R representation (see Fig. 2.8).
We examined this relationship further by calculating the correlation between variance
components and (standardized) performance of the corresponding SS-Rs. The Pearson
correlation is 0.38, meaning that there is a mild association. Fig. 2.14 further shows this
with a scatterplot, with a clear distinction between poorly-performing sources (year, taste
and lyrics at the bottom) and well-performing sources (fag, cdr_tag and artist at the right).

This result implies that even if some SS-R is particularly strong for a given dataset,
when considering more complex fusion architectures, the presence of that one source
is not necessarily required because the other sources make up for its absence. This is
especially important in practical terms, because different tasks generally have different
best sources, and practitioners rarely have sufficient domain knowledge to select them
up front. Also, and unlike the Ballroom dataset, many real-world problems are not easily
solved with a single feature. Therefore, choosing a more general representation based on
multiple sources is a much simpler way to proceed, which still yields comparable or better
results.

In other words, if “a single deep representation to rule them all” is pre-trained, it is
advisable to base this representation on multiple learning sources. At the same time, given
that MSS-CRrepresentations also generally show strong performance (albeit that they will
bring high dimensionality), and that they will come ‘for free’ as soon as SS-R networks are
trained, alternatively, we could imagine an ecosystem in which the community could pre-
train and release many SS-R networks for different individual sources in a distributed way,
and practitioners can then collect these into MSS-CR representations, without the need
for retraining.

2.5.4. COMPACTNESS

Under an MTDTL setup with branching (the MS-CR architectures), as more learning sources
are used, not only the representation will grow larger, but so will the necessary deep net-
work to learn it: see Fig. 2.15 for an overview of necessary model parameters for the differ-
ent architectures. When using all the learning sources, MS-CR@6, which for a considerable
part encompasses a shared network architecture and branches out relatively late, has an
around 6.3 times larger network size compared to the network size needed for SS-R. In
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Figure 2.15: Number of network parameters by number of learning sources.

contrast, MS-SR@FC, which is the most heavily shared MTDTL case, uses a network that
is only 1.2 times larger than the network needed for SS-R.

Also, while the representations resulting from the MSS-CR and various MS-CR archi-
tectures linearly depend on the chosen number of learning sources m (see Table 2.4), for
MS-SR@FC, which has a fixed dimensionality of d independent of m, we do notice increas-
ing performance as more learning sources are used, except IRMAS dataset. This implies
that under MTDTL setups, the network does learn as much as possible from the multiple
sources, even in case of fixed network capacity.

2.5.5. MULTIPLE EXPLANATORY FACTORS

By training representation models on multiple learning sources in the way we did, our
hope is that the representation will reflect latent semantic facets that will ultimately allow
for semantic explainability. In Fig. 2.16, we show a visualization that suggests this indeed
may be possible. More specifically, we consider one of our MS-CR models trained on 5
learning sources. For each learning source-specific block of the representation, using the
learning source-specific fc-out layers, we can predict a factor distribution z; for each of
the learning sources. Then, from the predicted z;, one can either map this back on the
original learning labels y;, or simply consider the strongest predicted topics (which we
visualized in Fig. 2.16), to relate the representation to human-understandable facets or
descriptions.'?

HThe specific model used in the visualization is the 232th model from the experimental design we introduce in
Section 2.4.3, which is performing better than 95% of other models on GTZAN target dataset.

12Note that, as soon as a pre-trained representation network model will be adapted to an new dataset through
transfer learning, the fc-out layer cannot be used to obtain such explanations from the learning sources
used in the representation learning, since the layers will then be fine-tuned to another dataset. However, we
hypothesize it may be possible that the semantic explainability can still be preserved, if fine-tuning is jointly
conducted with the original learning sources used during the pre-training time in the multi-objective strategy.
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Figure 2.16: Potential semantic explainability of DTMTL music representations. Here, we provide a visualization
using t-SNE [89], plotting 2-dimensional coordinates of each sample from the GTZAN dataset, as resulting from
an MS-CR representation trained on 5 sources'!. In the zoomed-in panes, we overlay the strongest topic model
terms in z;, for various types of learning sources.
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2.6. CONCLUSION

In this paper, we have investigated the effect of different strategies to learn music repre-
sentations with deep networks, considering multiple learning sources and different net-
work architectures with varying degrees of shared information. Our main research ques-
tions are how the number and combination of learning sources (RQ1), and different con-
figurations of the shared architecture (RQ2) affect effectiveness of the learned deep music
representation. As a consequence, we conducted an experiment training 425 neural net-
work models with different combinations of learning sources and architectures.
After an extensive empirical analysis, we can summarize our findings as follows:

* RQ1 The number of learning sources positively affects the effectiveness of a learned
deep music representation, although representations based on a single learning
source will already be effective in specialized cases (e.g. BPM and the Ballroom
dataset).

¢ RQ2In terms of architecture, the amount of shared information has a negative effect
on performance: larger models with less shared information (e.g. MS-CR@2, MSS-
CR) tend to outperform models where sharing is higher (e.g. MS-CR@6, MS-SR@FC),
all of which outperform the base model (SS-R).

Our findings give various pointers to useful future work. First of all, ‘generality’ is diffi-
cult to define in the music domain, maybe more so than in CV or NLP, in which lower-level
information atoms may be less multifaceted in nature (e.g. lower-level representations of
visual objects naturally extend to many vision tasks, while an equivalent in music is harder
to pinpoint). In case of clear task-specific data skews, practitioners should be pragmatic
about this.

Also, we only investigated one special case of transfer learning, which might not be
generalized well if one considers the adaptation of the pre-trained network for further
fine-tuning with respect to their target dataset. Since there are various choices to make,
which will bring substantial amount of variability, we decided to leave the aspects for fur-
ther future works. We believe open-sourcing the models we trained throughout this work
will be helpful for such follow-up works. Another limitation of current work is the se-
lective set of label types in the learning sources. For instance, there are also a number of
MIR related tasks that are using time-variant labels such as automatic music transcription,
segmentation, beat tracking and chord estimation. We believe that such tasks should be
investigated as well in the future to build a more complete overview of MTDTL problem.

Finally, in our current work, we still largely considered MTDTL as a ‘black box’ opera-
tion, trying to learn how MTDTL can be effective. However, the original reason for start-
ing this work was not only to yield an effective general-purpose representation, but one
that also would be semantically interpretable according to different semantic facets. We
showed some early evidence our representation networks may be capable of picking up
such facets; however, considerable future work will be needed into more in-depth analy-
sis techniques of what the deep representations actually learned.



REFERENCES 51

REFERENCES

(1]

(6]

(10]

(11]

(12]

J. Kim, J. Urbano, C. C. S. Liem, and A. Hanjalic, One deep music representation to
rule them all? A comparative analysis of different representation learning strategies,
Neural Computing and Applications 32, 1067 (2020).

M. A. Casey, R. C. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, Content-
based music information retrieval: Current directions and future challenges, Proceed-
ings of the IEEE 96, 668 (2008).

R. Caruana, Multitask learning, Machine Learning 28, 41 (1997).

Y. Bengio, A. C. Courville, and P. Vincent, Representation learning: A review and
new perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence
35,1798 (2013).

W. Liu, T. Mei, Y. Zhang, C. Che, and J. Luo, Multi-task deep visual-semantic em-
bedding for video thumbnail selection, in IEEE Conference on Computer Vision and
Pattern Recognition CVPR (Boston, MA, USA, 2015) pp. 3707-3715.

J. Bingel and A. Segaard, Identifying beneficial task relations for multi-task learning in
deep neural networks, in Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2 (Association for Compu-
tational Linguistics, Valencia, Spain, 2017) pp. 164-169.

S.Li, Z.-Q. Liu, and A. B. Chan, Heterogeneous multi-task learning for human pose es-
timation with deep convolutional neural network, International Journal of Computer
Vision 113, 19 (2015).

W. Zhang, R. Li, T. Zeng, Q. Sun, S. Kumar, J. Ye, and S. Ji, Deep model based trans-
fer and multi-task learning for biological image analysis, in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
KDD (ACM, Sydney, NSW, Australia, 2015) pp. 1475-1484.

Z.Zhang, P. Luo, C. C. Loy, and X. Tang, Facial landmark detection by deep multi-task
learning, in Computer Vision - ECCV 13th European Conference, Proceedings, Part VI
(Springer, Zurich, Switzerland, 2014) pp. 94-108.

L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszkoreit,
One model to learn them all, CoRR abs/1706.05137 (2017), arXiv:1706.05137 .

J. R. Chang, C. Li, B. P6czos, and B. V. K. V. Kumar, One network to solve them all -
solving linear inverse problems using deep projection models, in IEEE International
Conference on Computer Vision, ICCV (IEEE Computer Society, Venice, Italy, 2017)
pp. 5889-5898.

J. Weston, S. Bengio, and P. Hamel, Multi-tasking with joint semantic spaces for large-
scale music annotation and retrieval, Journal of New Music Research 40, 337 (2011).



http://dx.doi.org/10.1007/s00521-019-04076-1
http://dx.doi.org/10.1109/JPROC.2008.916370
http://dx.doi.org/10.1109/JPROC.2008.916370
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/ 10.1109/TPAMI.2013.50
http://dx.doi.org/ 10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/CVPR.2015.7298994
http://dx.doi.org/10.1109/CVPR.2015.7298994
http://dx.doi.org/10.1007/s11263-014-0767-8
http://dx.doi.org/10.1007/s11263-014-0767-8
http://dx.doi.org/10.1145/2783258.2783304
http://dx.doi.org/10.1145/2783258.2783304
http://dx.doi.org/10.1145/2783258.2783304
http://dx.doi.org/10.1007/978-3-319-10599-4_7
https://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1706.05137
http://dx.doi.org/ 10.1109/ICCV.2017.627
http://dx.doi.org/ 10.1109/ICCV.2017.627
http://dx.doi.org/ 10.1080/09298215.2011.603834

52

REFERENCES

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Y. Aytar, C. Vondrick, and A. Torralba, Soundnet: Learning sound representations from
unlabeled video, in Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems (Barcelona, Spain, 2016) pp.
892-900.

P Hamel and D. Eck, Learning features from music audio with deep belief networks,
in Proceedings of the 11th International Society for Music Information Retrieval Con-
ference, ISMIR (Utrecht, Netherlands, 2010) pp. 339-344.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, Modeling temporal dependen-
cies in high-dimensional sequences: Application to polyphonic music generation and
transcription, in Proceedings of the 29th International Conference on Machine Learn-
ing, ICML (Omnipress, Edinburgh, Scotland, UK, 2012).

J. Schliiter and S. Bock, Improved musical onset detection with convolutional neural
networks, in IEEE International Conference on Acoustics, Speech and Signal Process-
ing, ICASSP (IEEE, Florence, Italy, 2014) pp. 6979-6983.

K. Choi, G. Fazekas, and M. B. Sandler, Automatic tagging using deep convolutional
neural networks, in Proceedings of the 17th International Society for Music Informa-
tion Retrieval Conference, ISMIR (New York City, USA, 2016) pp. 805-811.

A. van den Oord, S. Dieleman, and B. Schrauwen, Deep content-based music rec-
ommendation, in Advances in Neural Information Processing Systems 26 NIPS (Lake
Tahoe, NV, USA, 2013) pp. 2643-2651.

P.Chandna, M. Miron, J. Janer, and E. Gomez, Monoaural audio source separation us-
ing deep convolutional neural networks, in Latent Variable Analysis and Signal Sepa-
ration - 13th International Conference, LVA/ICA, Proceedings (Grenoble, France, 2017)
Pp. 258-266.

I. Jeong and K. Lee, Learning temporal features using a deep neural network and its
application to music genre classification, in Proceedings of the 17th International So-
ciety for Music Information Retrieval Conference, ISMIR (New York City, USA, 2016)
pp. 434-440.

Y. Han, J. Kim, and K. Lee, Deep convolutional neural networks for predominant in-
strument recognition in polyphonic music, IEEE/ACM Transactions on Audio, Speech
and Language Processing 25, 208 (2017).

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale im-
age recognition, in 3th International Conference on Learning Representations, ICLR
(San Diego, CA, USA, 2015).

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in
IEEE Conference on Computer Vision and Pattern Recognition, CVPR (IEEE Computer
Society, Las Vegas, NV, USA, 2016) pp. 770-778.


http://dx.doi.org/10.1109/ICASSP.2014.6854953
http://dx.doi.org/10.1109/ICASSP.2014.6854953
http://dx.doi.org/ 10.1007/978-3-319-53547-0_25
http://dx.doi.org/ 10.1007/978-3-319-53547-0_25
http://dx.doi.org/ 10.1109/TASLP.2016.2632307
http://dx.doi.org/ 10.1109/TASLP.2016.2632307
http://dx.doi.org/10.1109/CVPR.2016.90

REFERENCES 53

(24]

(25]

(26]

(27]

(28]

(29]

(30]

[31]

(32]

(33]

(34]

[35]

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, Going deeper with convolutions, in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR (IEEE Computer Society, Boston, MA, USA,
2015) pp. 1-9.

T. Mikolov, L. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representa-
tions of words and phrases and their compositionality, in Advances in Neural Infor-
mation Processing Systems 26 NIPS (Lake Tahoe, NV, USA, 2013) pp. 3111-3119.

S. Dieleman, P. Brakel, and B. Schrauwen, Audio-based music classification with a
pretrained convolutional network, in Proceedings of the 12th International Society for
Music Information Retrieval Conference, ISMIR (University of Miami, Miami, FL, USA,
2011) pp. 669-674.

K. Choi, G. Fazekas, M. B. Sandler, and K. Cho, Transfer learning for music classifi-
cation and regression tasks, in Proceedings of the 18th International Society for Music
Information Retrieval Conference, ISMIR (Suzhou, China, 2017) pp. 141-149.

A.van den Oord, S. Dieleman, and B. Schrauwen, Transfer learning by supervised pre-
training for audio-based music classification, in Proceedings of the 15th International
Society for Music Information Retrieval Conference, ISMIR (Taipei, Taiwan, 2014) pp.
29-34.

D. Liang, M. Zhan, and D. P W. Ellis, Content-aware collaborative music recommen-
dation using pre-trained neural networks, in Proceedings of the 16th International
Society for Music Information Retrieval Conference, ISMIR (Mélaga, Spain, 2015) pp.
295-301.

I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, Cross-stitch networks for multi-
task learning, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR
(IEEE Computer Society, Las Vegas, NV, USA, 2016) pp. 3994-4003.

T. Bertin-Mahieux, D. P W. Ellis, B. Whitman, and P. Lamere, The million song dataset,
in Proceedings of the 12th International Society for Music Information Retrieval Con-
ference, ISMIR (University of Miami, Miami, FL, USA, 2011) pp. 591-596.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, Greedy layer-wise training of
deep networks, in Advances in Neural Information Processing Systems 19, NIPS (MIT
Press, Vancouver, BC, Canada, 2006) pp. 153-160.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting and composing ro-
bust features with denoising autoencoders, in Proceedings of the 25th International
Conference on Machine Learning ICML (ACM, Helsinki, Finland, 2008) pp. 1096-1103.

P. Smolensky, Information processing in dynamical systems: Foundations of har-
mony theory, Tech. Rep. (University of Colorado, Boulder, Dept. of Computer Science,
1986).

G. E. Hinton, S. Osindero, and Y.-W. Teh, A fast learning algorithm for deep belief nets,
Neural Computation 18, 1527 (2006), pMID: 16764513.



http://dx.doi.org/ 10.1109/CVPR.2015.7298594
http://dx.doi.org/ 10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1162/neco.2006.18.7.1527

54

REFERENCES

(36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

(45]

(46]

(47]

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets, in Advances in Neural Infor-
mation Processing Systems 27, NIPS (Curran Associates, Inc., Montreal, QC, Canada,
2014) pp. 2672-2680.

X.Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, Matchnet: Unifying feature and
metric learning for patch-based matching, in IEEE Conference on Computer Vision
and Pattern Recognition, CVPR (IEEE Computer Society, Boston, MA, USA, 2015) pp.
3279-3286.

R. Arandjelovic and A. Zisserman, Look, listen and learn, in IEEE International Con-
ference on Computer Vision, ICCV (IEEE Computer Society, Venice, Italy, 2017) pp.
609-617.

Y. Huang, S. Chou, and Y. Yang, Generating music medleys via playing music puzzle
games, in Proceedings of the Thirty-Second Conference on Artificial Intelligence, AAAI
(AAAI Press, New Orleans, LA, USA, 2018) pp. 2281-2288.

G. Salton and M. McGill, Introduction to Modern Information Retrieval (McGraw-Hill
Book Company, 1984).

P. Lamere, Social tagging and music information retrieval, Journal of New Music Re-
search 37, 101 (2008).

P Hamel, M. E. P. Davies, K. Yoshii, and M. Goto, Transfer learning in MIR: Sharing
learned latent representations for music audio classification and similarity, in Pro-
ceedings of the 14th International Society for Music Information Retrieval Conference,
ISMIR (Curitiba, Brazil, 2013) pp. 9-14.

E. Law, B. Settles, and T. M. Mitchell, Learning to tag from open vocabulary labels,
in Machine Learning and Knowledge Discovery in Databases, European Conference,
ECML PKDD, Proceedings, Part II (Springer, Barcelona, Spain, 2010) pp. 211-226.

T. Hofmann, Probabilistic latent semantic analysis, in UAI: Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence (Morgan Kaufmann, Stock-
holm, Sweden, 1999) pp. 289-296.

J. Schliiter, Learning to pinpoint singing voice from weakly labeled examples, in Pro-
ceedings of the 17th International Society for Music Information Retrieval Conference,
ISMIR (New York City, USA, 2016) pp. 44-50.

S. Hershey, S. Chaudhuri, D. P W. Ellis, J. E Gemmeke, A. Jansen, R. C. Moore,
M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. W. Wil-
son, CNN architectures for large-scale audio classification, in IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP (IEEE, New Orleans, LA,
USA, 2017) pp. 131-135.

H. Lee, P T. Pham, Y. Largman, and A. Y. Ng, Unsupervised feature learning for audio
classification using convolutional deep belief networks, in Advances in Neural Infor-
mation Processing Systems 22, NIPS (Curran Associates, Inc., Vancouver, BC, Canada,
2009) pp. 1096-1104.


http://dx.doi.org/10.1109/CVPR.2015.7298948
http://dx.doi.org/10.1109/CVPR.2015.7298948
http://dx.doi.org/10.1109/ICCV.2017.73
http://dx.doi.org/10.1109/ICCV.2017.73
http://dx.doi.org/ 10.1080/09298210802479284
http://dx.doi.org/ 10.1080/09298210802479284
http://dx.doi.org/10.1109/ICASSP.2017.7952132
http://dx.doi.org/10.1109/ICASSP.2017.7952132

REFERENCES 55

(48]

(49]

[50]

(51]

(52]

[53]

(54]

(53]

[56]

(57]

[58]

[59]

E. J. Humphrey and J. P. Bello, Rethinking automatic chord recognition with convo-
lutional neural networks, in 11th International Conference on Machine Learning and
Applications, ICMLA (IEEE, Boca Raton, FL, USA, 2012) pp. 357-362.

T. Nakashika, C. Garcia, and T. Takiguchi, Local-feature-map integration using con-
volutional neural networks for music genre classification, in INTERSPEECH, 13th An-
nual Conference of the International Speech Communication Association (ISCA, Port-
land, OR, USA, 2012) pp. 1752-1755.

K. Ullrich, J. Schliiter, and T. Grill, Boundary detection in music structure analysis
using convolutional neural networks, in Proceedings of the 16th International Society
for Music Information Retrieval Conference, ISMIR (Mdlaga, Spain, 2015) pp. 417-422.

K.J. Piczak, Environmental sound classification with convolutional neural networks,
in 25th IEEE International Workshop on Machine Learning for Signal Processing,
MLSP (IEEE, Boston, MA, USA, 2015) pp. 1-6.

A. ]J. R. Simpson, G. Roma, and M. D. Plumbley, Deep karaoke: Extracting vocals
from musical mixtures using a convolutional deep neural network, in Latent Variable
Analysis and Signal Separation - 12th International Conference, LVA/ICA, Proceedings
(Springer, Liberec, Czech Republic, 2015) pp. 429-436.

H. Phan, L. Hertel, M. Maal}, and A. Mertins, Robust audio event recognition with
1-max pooling convolutional neural networks, in INTERSPEECH 17th Annual Con-
ference of the International Speech Communication Association (ISCA, San Francisco,
CA, USA, 2016) pp. 3653-3657.

J. Pons, T. Lidy, and X. Serra, Experimenting with musically motivated convolutional
neural networks, in 14th International Workshop on Content-Based Multimedia In-
dexing, CBMI (IEEE, Bucharest, Romania, 2016) pp. 1-6.

B. Stasiak and J. Monko, Analysis of time-frequency representations for musical onset
detection with convolutional neural network, in Proceedings of the Federated Confer-
ence on Computer Science and Information Systems, FedCSIS (Gdansk, Poland, 2016)
pp. 147-152.

H. Su, H. Zhang, X. Zhang, and G. Gao, Convolutional neural network for robust pitch
determination, in IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP (IEEE, Shanghai, China, 2016) pp. 579-583.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep con-
volutional neural networks, Communications of the ACM 60, 84 (2017).

S. Dieleman and B. Schrauwen, End-to-end learning for music audio, in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, ICASSP (IEEE, Florence,
Italy, 2014) pp. 6964-6968.

A.van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. W. Senior, and K. Kavukcuoglu, Wavenet: A generative model for raw



http://dx.doi.org/10.1109/ICMLA.2012.220.
http://dx.doi.org/10.1109/ICMLA.2012.220.
http://dx.doi.org/10.1109/MLSP.2015.7324337
http://dx.doi.org/10.1109/MLSP.2015.7324337
http://dx.doi.org/10.1007/978-3-319-22482-4_50
http://dx.doi.org/10.1007/978-3-319-22482-4_50
http://dx.doi.org/ 10.21437/Interspeech.2016-123
http://dx.doi.org/ 10.21437/Interspeech.2016-123
http://dx.doi.org/ 10.1109/CBMI.2016.7500246
http://dx.doi.org/ 10.1109/CBMI.2016.7500246
http://dx.doi.org/10.15439/2016F558
http://dx.doi.org/10.15439/2016F558
http://dx.doi.org/10.1109/ICASSP.2016.7471741
http://dx.doi.org/10.1109/ICASSP.2016.7471741
http://dx.doi.org/ 10.1145/3065386
http://dx.doi.org/ 10.1109/ICASSP.2014.6854950
http://dx.doi.org/ 10.1109/ICASSP.2014.6854950

56

REFERENCES

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]

audio, in The 9th ISCA Speech Synthesis Workshop, SSW (ISCA, Sunnyvale, CA, USA,
2016) p. 125.

N. Jaitly and G. E. Hinton, Learning a better representation of speech soundwaves us-
ing restricted boltzmann machines, in IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP (IEEE, Prague, Czech Republic, 2011) pp. 5884-
5887.

J. Lee, J. Park, K. L. Kim, and J. Nam, Sample-level deep convolutional neural networks
for music auto-tagging using raw waveforms, in 14th Sound and Music Computing
Conference, SMC (Espoo, Finland, 2017).

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by
reducing internal covariate shift, in Proceedings of the 32nd International Conference
on Machine Learning, ICML (JMLR, Inc., Lille, France, 2015) pp. 448-456.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann ma-
chines, in Proceedings of the 27th International Conference on Machine Learning
ICML (Omnipress, Haifa, Israel, 2010) pp. 807-814.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, Journal of Ma-
chine Learning Research 15, 1929 (2014).

J.Nam, J. Herrera, M. Slaney, and J. O. Smith, Learning sparse feature representations
for music annotation and retrieval, in Proceedings of the 13th International Society for
Music Information Retrieval Conference, ISMIR (FEUP Edic¢Ges, Porto, Portugal, 2012)
pPp. 565-570.

K. Choi, G. Fazekas, M. B. Sandler, and K. Cho, A comparison of audio signal prepro-
cessing methods for deep neural networks on music tagging, in 26th European Signal
Processing Conference, EUSIPCO (IEEE, Roma, Italy, 2018) pp. 1870-1874.

M. Dorfler, T. Grill, R. Bammer, and A. Flexer, Basic filters for convolutional neural
networks applied to music: Training or design? Neural Computing and Applications
(2018), 10.1007/s00521-018-3704-x.

D. P Kingma and J. Ba, Adam: A method for stochastic optimization, in 3th Interna-
tional Conference on Learning Representations, ICLR (San Diego, CA, USA, 2015).

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, Automatic differentiation in PyTorch, in NIPS-W (2017).

E Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12, 2825 (2011).


http://dx.doi.org/10.1109/ICASSP.2011.5947700
http://dx.doi.org/10.1109/ICASSP.2011.5947700
http://dx.doi.org/ 10.1007/s00521-018-3704-x
http://dx.doi.org/ 10.1007/s00521-018-3704-x

REFERENCES 57

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

(82]

[83]

B. McFee, C. Raffel, D. Liang, D. P. W. Ellis, M. McVicar, E. Battenberg, and O. Nieto,
librosa: Audio and music signal analysis in python, in Proceedings of the 14th Python
in Science Conference SciPy, edited by K. Huff and J. Bergstra (Austin, TX, USA, 2015)
pp- 18 - 24.

M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, FMA: A dataset for music
analysis, in Proceedings of the 18th International Society for Music Information Re-
trieval Conference, ISMIR (Suzhou, China, 2017) pp. 316-323.

G. Tzanetakis and P. R. Cook, Musical genre classification of audio signals, IEEE Trans-
actions on Speech and Audio Processing 10, 293 (2002).

C. Kereliuk, B. L. Sturm, and J. Larsen, Deep learning and music adversaries, IEEE
Transactions on Multimedia 17, 2059 (2015).

E Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and P. Cano, An
experimental comparison of audio tempo induction algorithms, IEEE Transactions on
Audio, Speech, and Language Processing 14, 1832 (2006).

U. Marchand and G. Peeters, Scale and shift invariant time/frequency representation
using auditory statistics: Application to rhythm description, in 26th IEEE Interna-
tional Workshop on Machine Learning for Signal Processing, MLSP (IEEE, Salerno,
Italy, 2016) pp. 1-6.

J.J. Bosch, J. Janer, E Fuhrmann, and P. Herrera, A comparison of sound segregation
techniques for predominant instrument recognition in musical audio signals, in Pro-
ceedings of the 13th International Society for Music Information Retrieval Conference,
ISMIR (FEUP Edigdes, Porto, Portugal, 2012) pp. 559-564.

M. Soleymani, M. N. Caro, E. M. Schmidt, C. Sha, and Y. Yang, 1000 songs for
emotional analysis of music, in Proceedings of the 2nd ACM International Workshop
on Crowdsourcing for Multimedia CrowdMM@ACM Multimedia (ACM, Barcelona,
Spain, 2013) pp. 1-6.

0. Celma, Music Recommendation and Discovery - The Long Tail, Long Fail, and Long
Play in the Digital Music Space (Springer, 2010).

B. L. Sturm, The state of the art ten years after a state of the art: Future research in
music information retrieval, Journal of New Music Research 43, 147 (2014).

B. L. Sturm, The “Horse” inside: Seeking causes behind the behaviors of music content
analysis systems, Computers in Entertainment 14, 3:1 (2016).

J. Posner, J. A. Russell, and B. S. Peterson, The circumplex model of affect: An integra-
tive approach to affective neuroscience, cognitive development, and psychopathology,
Development and Psychopathology 17, 715-734 (2005).

D. C. Montgomery, Design and Analysis of Experiments, 8th ed. (Wiley, 2012).



http://dx.doi.org/ 10.25080/Majora-7b98e3ed-003
http://dx.doi.org/ 10.25080/Majora-7b98e3ed-003
http://dx.doi.org/10.1109/TSA.2002.800560
http://dx.doi.org/10.1109/TSA.2002.800560
http://dx.doi.org/10.1109/TMM.2015.2478068
http://dx.doi.org/10.1109/TMM.2015.2478068
http://dx.doi.org/10.1109/TSA.2005.858509
http://dx.doi.org/10.1109/TSA.2005.858509
http://dx.doi.org/ 10.1109/MLSP.2016.7738904
http://dx.doi.org/ 10.1109/MLSP.2016.7738904
http://dx.doi.org/10.1145/2506364.2506365
http://dx.doi.org/10.1145/2506364.2506365
http://dx.doi.org/10.1007/978-3-642-13287-2
http://dx.doi.org/10.1007/978-3-642-13287-2
http://dx.doi.org/10.1080/09298215.2014.894533
http://dx.doi.org/10.1145/2967507
http://dx.doi.org/ 10.1017/S0954579405050340

58 REFERENCES

[84] P. Goos and B. Jones, Optimal Design of Experiments: A Case Study Approach, 1st ed.
(Wiley, 2011).

[85] G.E.Hinton, Connectionist learning procedures, Artificial Intelligence 40, 185 (1989).

[86] Y.Hu, Y. Koren, and C. Volinsky, Collaborative filtering for implicit feedback datasets,
in Proceedings of the 8th IEEE International Conference on Data Mining (ICDM) (IEEE
Computer Society, Pisa, Italy, 2008) pp. 263-272.

[87] A. Gelman and J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical
Models (Press, Cambridge University, 2006).

[88] S.R.Searle, G. Casella, and C. E. McCulloch, Variance components (Wiley, 2006).

[89] L.v.d.Maaten and G. Hinton, Visualizing data using t-SNE, Journal of machine learn-
ing research 9, 2579 (2008).


http://dx.doi.org/10.1016/0004-3702(89)90049-0
http://dx.doi.org/10.1109/ICDM.2008.22

TRANSFER LEARNING OF ARTIST
GROUP FACTORS TO MUSICAL
GENRE CLASSIFICATION

The automated recognition of music genres from audio information is a challenging prob-
lem, as genre labels are subjective and noisy. Artist labels are less subjective and less noisy,
while certain artists may relate more strongly to certain genres. At the same time, at pre-
diction time, it is not guaranteed that artist labels are available for a given audio seg-
ment. Therefore, in this work, we propose to apply the transfer learning framework, learn-
ing artist-related information which will be used at inference time for genre classification.
We consider different types of artist-related information, expressed through artist group fac-
tors, which will allow for more efficient learning and stronger robustness to potential label
noise. Furthermore, we investigate how to achieve the highest validation accuracy on the
given FMA dataset, by experimenting with various kinds of transfer methods, including
single-task transfer, multi-task transfer and finally multi-task learning.

3.1. INTRODUCTION

Learning to Recognize Musical Genre from Audio is a challenge track of The Web Confer-
ence 2018. The main goal of the challenge is to predict musical genres of unknown audio
segments correctly, by utilizing the FMA dataset [2] as a training set. The challenge there-
fore focuses on a classification task.

In machine learning, many classification tasks, such as visual object recognition, con-
sider objective and clearly separable classes. In contrast, music genres consider subjec-
tive, human-attributed labels. These may be inter-correlated (e.g. a rock song may also
be considered pop, many classical works are also instrumental) and dependent of a user’s
context (e.g., a French rock song is not International to a French listener). Generally, no

This chapter was published in Companion Proceedings of the The Web Conference 2018 [1].
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universal genre taxonomy exists, and even the definition of ‘genre’ itself is problematic:
what is usually understood as ‘genre’ in Music Information Retrieval would rather be char-
acterized as ‘style’ in Musicology [3]. This makes genre classification a challenging prob-
lem. In our work, considering the given labels in the challenge, we consider a musical
genre to be a category that consists of songs sharing certain aspects of musical character-
istics.

Commonly, music tracks are released with explicit mentioning of titles and artists. The
identity of the artist does not suffer from semantic taxonomy problems, and can thus be
considered as a more objective label than the genre label. At the same time, songs from
the same artist tend to share prominent musical characteristics. Considering that an artist
is commonly mapped into one or multiple specific genres, but not the whole universe of
possible genres, and that the other way around, sets of artists can be seen as exemplars
for certain music genres, the musical characteristics that identify an artist may also be key
features of certain musical genres.

Therefore, it will be beneficial to exploit artist-related information in a genre classifi-
cation task. At the same time, learning a direct mapping from artist identity to genre label
would not be practical. First of all, for an unknown audio segment for which a genre clas-
sification should be performed, the artist label may also not be available. Secondly, artist
labels may not always be informative to a system, especially when an artist is newly intro-
duced, so no previous history on the artist exists. Finally, an artist may have been active in
multiple genres at once, but not be equally representative for all these genres. Given such
constraints, we wish to employ a learning framework which only requires artist labels at
training time, but not at prediction time, and that will allow for the inclusion of newly
introduced artists, for whom not much extra information is available beyond their songs.

In this work, we therefore present a multi-task transfer framework for using artist la-
bels to improve a genre classification model. Assuming that artist labels are given for each
track in the training set, these labels are used as side information, allowing a model to
learn the mapping between audio and artists, while capturing patterns that might as well
be useful for genre prediction.

It has been shown that music representations learned from raw artist labels can effec-
tively transfer to other music-related tasks [4]. However, learning more than thousands of
artists as individual classes is not efficient for at least two reasons:

* Due to data sparsity, only a few tracks are assigned per class;

* Despite the uniqueness of each artist, it can be beneficial to group them into clusters
of similar artists, avoiding learning bottlenecks caused by large numbers of classes.

To overcome these potential problems, we therefore apply a label pre-processing step, ob-
taining Artist Group Factors (AGF) as learning targets, rather than individual artist identi-
ties.

Finally, we train Deep Convolutional Neural Networks (DCNNs) employing different
learning setups, ranging from targeting genre and various types of AGFs with individual
networks, to employing a shared architecture as introduced in multiple previous Multi-
Task Learning (MTL) works [5-12].

In the remainder of this paper, we first discuss an initial data exploration leading to
our choice for AGFs (Section 3.2). Subsequently, we will give a detailed description of the
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proposed approach (Section 3.3), followed by a discussion of experimental settings (Sec-
tion 3.4). Finally, we will present our results (Section 3.5), followed by a short discussion
and conclusion (Section 3.6).

3.2. INITIAL DATA EXPLORATION

In the beginning of the challenge, we first explored the training data, and investigated
a conventional data-driven approach using a DCNN for music genre classification, with
genre labels as targets.

First of all, we had some concerns about the reliability of the genre annotations. As
they were provided by users who uploaded the content, the users did not have access to
a single genre taxonomy and unified annotation strategy. Thus, user-contributed anno-
tations are expected to show more variability than annotations by experts. Furthermore,
the dataset included 25,000 tracks from 5,152 unique albums. For 5,028 out of these 5,152
albums, genre annotations were made at the album level. While all tracks in an album can
belong to a single genre, this is not always true. Indeed, we could discover examples of
the case in which different tracks on the same album would belong to different genres, as
well as multiple misannotations. Given these reliability issues, it is not guaranteed that by
targeting these annotations only, generalized model performance for genre classification
can be achieved.

To this end, while we will consider performance for direct (main top-)genre labels as
targets (which we will denote as learning task category g in the remainder of this paper),
in order to obtain more generalizable results obtained on more objective and consistent
labeling data, we propose a multi-task transfer framework, introducing an Artist Group
(AG) prediction task targeting AGFs.

3.3. METHODOLOGY

3.3.1. ARTIST GROUP FACTORS

The main idea of extracting AGFs is to cluster artists based on meaningful feature sets that
allow for aggregation at (and beyond) the artist level. For instance, one can collect genre
labels from songs belonging to each artist, and then construct a Bag-of-Word (BoW) artist-
level feature vector. Each dimension of the vector represents a genre, with the magnitude
of the vector indicating genre frequency among a song collection. Alternatively, a BoW fea-
ture vector can be constructed by counting latent ‘terms’ belonging to each artist, which
can be obtained by a dictionary learned from song-level or frame-level features through
K-means clustering [13] or the Sparse Coding [14] method.

Once artist-level Bow feature vectors are constructed, standard clustering methods
such as K-Means, or more sophisticated topic modeling algorithms such as Latent Dirich-
let Allocation (LDA) [15] can be applied to find a small number of latent groups of artists:
the AGFs for this particular feature set. This 2-step cascading pipeline is illustrated in Fig-
ure 3.1.

In this work, we exploit four feature sets, which reflect different levels of musical and
acoustical aspects of songs. From these feature sets, we obtain artist-level BoW vectors.
Subsequently, LDA is applied to transform artist-level BowW vectors into dedicated AGF
representations for the particular feature set. We will both consider these artist group
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Figure 3.1: Artist group factor extraction pipeline.

prediction tasks and the main genre classification task within our learning framework: an
overview summary is given in Table 3.1.

MFCCs

Mel-Frequency Cepstral Coefficients (MFCCs), which are known to be efficient low-level
descriptors for timbre analysis, were used as features of the artist grouping. The coeffi-
cients are initially calculated for short-time audio frames. Considering the coefficients
over all audio frames of tracks for all artists, we build an universal dictionary of features
using K-Means clustering. AGFs resulting from this feature set will belong to learning task
category m.

DMFCCs

Along with MFCCs, we also use time-deltas of MFCCs (first-order differences between
subsequent frames), to consider the temporal dynamics of the timbre for the artist group-
ing. AGFs resulting from this feature set will be denoted by d.

ESSENTIA

We use song-level feature vectors from Essentia [16], which is a music feature extraction
library. It extracts descriptors ranging from low-level features, such as statistics of spec-
tral characteristics, to high-level features, including danceability [17] or semantic features
learned from the data. After filtering descriptor entries that include missing values or er-
rors, we obtained a 4374-dimensional feature vector per track. Before training a dictio-
nary, we apply quantile normalization: a rank-based normalization process that trans-
forms the distribution of the given features to follow a target distribution [18], which we
set to be a normal distribution in this case. AGFs resulting from this feature set will belong
to learning task category e.

SUBGENRES

We also use the 150 genre labels, including sub-genres, as a pre-defined dictionary for
semantic description. For these, we directly build artist-level BoW vectors by aggregating
all the genre labels from tracks by an artist. AGFs resulting from this feature set will belong
to learning task category s.

3.3.2. NETWORK ARCHITECTURES

The architecture of the proposed system can be divided into two parts, as shown in Fig-
ure 3.2. We first train multiple DCNNs, targeting the various categories of learning tar-
gets (genres or various AGFs). Subsequently, transfer takes place: a multilayer perceptron
(MLP) for the final genre classification is trained, utilizing features that were derived from
the previously trained DCNNs.
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Table 3.1: Details of Learning Targets

id Category Source Dictionary Dimension
g Main Genre N/A 16

m MEFCC 25

d dMFCC K-means 25

e AGFE Essentia [16] 4374

s Subgenre N/A 150

Table 3.2: Network Architectures for Encoder f

Layers Output shape
Input layer 128x43x 1
Conv 5 x5, ELU 128 x 43 x 16
MaxPooling 2 x 1 64 x43 x 16
Conv 3 x 3, BN, ELU 64 x 43 x 32
MaxPooling 2 x 2 32x21x32
Dropout (0.1) 32x21x32
Conv 3 x 3, ELU 32x21x64
MaxPooling 2 x 2 16 x 10 x 64
Conv 3 x 3, BN, ELU 16 x 10 x 64
MaxPooling 2 x 2 8 x5x64
Dropout (0.1) 8 x5x64
Conv 3 x 3, ELU 8x5x128
MaxPooling 2 x 2 4x2x128
Conv 3 x 3, ELU 4 x2x256
Conv1x1, BN, ELU 4 x 2 x 256
GlobalAveragePooling, BN 256

Dense, BN, ELU 256
Dropout (0.5) 256

Output layer 16 or 40 16 or 40
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DCNN

We adapted DCNN models to obtain transferable features for genre classification (Table
3.2). The input size of the input layer is 128x43, which is the size of a spectrogram with
128 mel bins and 43 samples (1 second of audio). After the input layer, there are seven
convolutional layers followed by a max-pooling layer, except for the last two layers. The
first convolutional layer has 5 x 5 kernels and the last convolutional layer has 1x1 ker-
nels. Except for those two layers, all convolutional layers have 3x3 kernels. Outputs of
the last convolutional layer are subsampled by global-average-pooling. Finally, they are
connected to two dense layers for predicting AGF clusters or genres. Batch normaliza-
tion [19] and dropouts [20] are sparsely used to prevent overfitting. Exponential Linear
Unit (ELU) [21] is used as an activation function for the convolutional layers and Softmax
is used for the output layer.

SHARED ARCHITECTURE

Considering that lower layers of DCNNs usually capture lower-level features such as edges
from images or spectrograms, we hypothesized that sharing lower layers among the vari-
ous DCNNs can be effective under the scenario where multiple learning sources are avail-
able. With this approach, one can expect that it not only ensures sufficient specializa-
tion on task-specific upper layers, but also benefits from regularization effects on lower
layers[12]. Joint learning of multiple tasks with shared layers can prevent the shared layer
to overfit for a specific task, instead learning underlying factors that have commonalities
required across tasks [5, 22].

Throughout the experiment, we used the shared architecture that shares only the first
convolutional block. It consists of the first convolutional and the max-pooling layer. For
brevity, for the remainder of the paper, we use Single-Task Nets (STNs) and an Multi-Task
Net (MTN) to refer to the non-shared networks and shared networks respectively.

TRANSFER METHOD
The proposed system learns and predicts a genre of an input spectrogram by transferring
pre-trained features from Section 3.3.2. We trained an MLP with a single hidden layer; the
size of the hidden layer was 1024. ELU non-linearity was used for the hidden layer and
Softmax was used for the output layer. Dropouts of 50% were applied for the input layer
and a hidden layer.

Note that for both the feature learning phase and the transfer learning phase, we keep
using a segment-wise learning approach. Only at the final inference step, we aggregate all
the segment-level predictions, by taking the average of each segment’s predicted proba-
bility for the genres.

TRAINING
At training time, we iteratively update the model parameters with the mini-batch stochas-
tic gradient descent method using the Adam algorithm [23]. For data augmentation, we
randomly crop 1-second excerpts from the entire track included in the mini-batch. We
use 64 samples per batch and set the learning rate to 0.001 across the experiments.

For comparison between methods, experiments are run with a fixed number of epochs.
We set 1000 epochs for an MTN and 200 for STNs. Since we took a similar stochastic
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Figure 3.2: Illustration for the transfer learning scenario. Dotted lines indicate the setup for the multilayer per-
ceptron for performing final genre classification.

update algorithm to [7] for the shared architecture, for the number of updates for task-
specific layers in a shared network, the number of epochs used for training non-shared
networks should be multiplied with the number of involved learning tasks. For the trans-
fer learning phase, we also set the number of epochs to train the MLP to 50.

3.3.3. PRE-PROCESSING

We use mel spectrograms as the input representation for the neural networks. We extract
128-dimensional mel spectra for audio frames of 46ms, with 50% overlap with adjacent
frames. To enhance lower-intensity levels of input mel spectrograms at higher frequen-
cies, we take dB-scale log amplitudes of each mel spectrum.

3.3.4. IMPLEMENTATION DETAILS

The experiments were run on GPU-accelerated hardware and software environments. We
used Lasagne [24], Theano [25] and Keras [26] as main experimental frameworks'. We
used a number of different GPUs, including NVIDIA GRID-K2, NVIDIA GTX 1070, NVIDIA
TITAN X.

3.4. EXPERIMENTS

To investigate the effectiveness of various types of AGFs for transfer learning, we trained all
31 possible combinations of given learning tasks, including AGFs (m, d, e, s) and main top-
genre labels (g). For each run, to investigate the optimal feature architecture, we tested
both shared networks and separate networks for each learning task. This leads to a total
number of 62 cases, including all the combinations of learning tasks per network archi-
tecture.

IThe main code for the experiment can be found in https://github.com/eldrin/
Lasagne-MultiTaskLearning
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Figure 3.3: Average performance for the number of tasks involved in feature learning

Table 3.3: Comparison of the average performance with or without the main task

LoglLoss F1
STN MTN STN MTN
withoutg 1.0079 0.9618 0.4932 0.5168
with g 0.8540 0.8486 0.6154 0.6155

However, in all cases in which multiple tasks are considered, the networks have a larger
number of parameters compared to the case in which a network focuses on a single task.
With a subsequent experiment, we therefore tried to verify the effect of more parameters
and larger networks vs. the effect of using more tasks. To this end, we train wide Single
Task Networks (WSTNs), targeting only genre, but having an equal number of parameters
to the MTNs/STNs targeting multiple tasks. Finally, with respect to the number of tasks
involved, we compare the best performance of MTNs/STNs to the performance of wSTNs
with the same number of parameters.

As for the AGFs using song-level or frame-level features, we trained K-means algo-
rithms employing 2048 clusters. We observed that lower numbers of clusters (e.g. 1024)
can cause artists with few tracks to get a zero vector as artist-level BoW representation,
due to data sparsity. Throughout the experiments, we used a fixed number of latent artist
groups, set to 40.

Finally, for the internal evaluation, we divided the given training dataset employing a
stratified random 85/15 split.
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3.5. RESULTS

3.5.1. MULTIPLE LEARNING TASKS IN STN vs. MTN

Table 3.4: The performance of various combinations of AGFs and the top-level main genre target as a feature

learning task.

STN MTN
Logloss F1 Logloss F1

g 0.8891 0.5963

m 1.1812 0.3581

d 1.0987 0.3967 NJ/A N/A

e 1.2542 0.3437

s 0.9404 0.5218

gs 0.8606 0.6114 0.8578 0.6190
ge 0.8811 0.5953 0.8792 0.5996
gd 0.8845 0.5898 0.8803 0.5955
gm 0.8874 0.5957 0.8813 0.6037
se 0.9124 0.5537  0.9079 0.5502
sd 0.9191 0.5601 0.9146 0.5412
sm 0.9260 0.5581  0.9283 0.5458
ed 1.0557 0.4433  1.0422 0.4399
em 1.1186 0.4244 1.1060 0.4376
dm 1.0583 0.4373 1.0704 0.4280
gse 0.8361 0.6255 0.8335 0.6277
gsd 0.8579 0.6280 0.8519 0.6150
gsm 0.8486 0.6289 0.8541 0.6153
ged 0.8528 0.6051 0.8601 0.6067
gem 0.8645 0.5988 0.8701 0.6056
gdm 0.8773 0.5985 0.8845 0.5941
sed 0.8965 0.5818 0.8867 0.5640
sem 0.9104 0.5834  0.8889 0.5668
sdm 0.9211 0.5629 0.9109 0.5572
edm 1.0359 0.4879 1.0365 0.4675
gsed 0.8211 0.6343 0.8132 0.6328
gsem 0.8264 0.6352 0.8172 0.6284
gsdm 0.8407 0.6379 0.8288 0.6170
gedm 0.8466 0.6053  0.8450 0.6152
sedm 0.8906 0.5856 0.8875 0.5870
gsedm 0.7894 0.6599 0.7727 0.6571

In general, we observe that the number of learning tasks has a positive effect on both per-
formance metrics. As shown in Table 3.3, it also is found that cases in which the main
top-genre classification are included yield better results in comparison to other combina-

tions of tasks.

Considering STN vs. MTN, on the log loss metric, MTN shows better results, but in
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Table 3.5: Comparison between wSTN (single genre classification task) and STN/MTN setups (multiple tasks)
learning setups. The reported performances of STN and MTN consider the task combinations for which the best
performance was obtained, given the mentioned number N of tasks.

LogLoss F1
wSTN  STN MTN wSTN  STN MTN

0.8688 0.8606 0.8578 0.6071 0.6114 0.6190
0.8546 0.8361 0.8335 0.6629 0.6289 0.6277
0.8278 0.8211 0.8132 0.6451 0.6352 0.6328
0.8290 0.7893 0.7727 0.6528 0.6599 0.6571

QW N2

the case of the fl-measure, the opposite is shown. Generally, considering the number of
learning tasks and absolute magnitude of differences, the difference observed between the
two methods cannot be deemed significant; more experiments with additional datasets
and multiple splits would be needed to assess whether statistically significant differences
between STN vs. MTN approaches can be obtained.

For both STN and MTN, the best performance we achieved uses all the learning tasks,
as shown in the last row of Table 3.4.

3.5.2. NETWORKS FOR MULTIPLE LEARNING TASKS VS. LARGE NETWORK
ON A SINGLE TASK

We also compared the performance between the best STNs and MTNs for a given num-
ber of learning tasks, versus the performance of a wSTN that has equal model capability
to these multi-task setups in terms of parameters and architecture, but only is trained on
direct main top-genre classification. The corresponding results are shown in Table 3.5.
It can be seen that MTN representations yield better performance on the log loss met-
ric when all 5 learning tasks (all AGFs and the main top-genre) are used, although at the
same time, wSTN performs better when considering the fl1-measure for the case in which
2 learning tasks are used. In other cases, differences between the setups appear marginal;
further experiments would be needed to assess whether STNs/MTNs will give significant
performance boosts in case a larger set of tasks would be considered.

3.6. DISCUSSION & CONCLUSION

In this work, we proposed including several categories of low-rank AGFs, expressing artist-
level information, into the task of classifying music genre based on musical audio. Our
experimental results support the hypothesis that by targeting different categories of AGFs,
deep networks can learn features from musical audio that can meaningfully support genre
classification. The inclusion of multiple parallel learning tasks considering different AGF
categories, and the inclusion of both genre- and AGF-based tasks in a multi-task setup,
also both seem beneficial, although further work will need to be done to assess whether
observed effects are truly significant. For this, other datasets will have to be included for
training and testing; furthermore, alternative cluster algorithms and clustering parame-
ters should be investigated to achieve the most robust AGF-based features.
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ARE NEARBY NEIGHBORS
RELATIVES?: TESTING DEEP MUSIC
EMBEDDINGS

Deep neural networks have frequently been used to directly learn representations useful
for a given task from raw input data. In terms of overall performance metrics, machine
learning solutions employing deep representations frequently have been reported to greatly
outperform those using hand-crafted feature representations. At the same time, they may
pick up on aspects that are predominant in the data, yet not actually meaningful or inter-
pretable. In this paper, we therefore propose a systematic way to test the trustworthiness of
deep music representations, considering musical semantics. The underlying assumption is
that in case a deep representation is to be trusted, distance consistency between known re-
lated points should be maintained both in the input audio space and corresponding latent
deep space. We generate known related points through semantically meaningful transfor-
mations, both considering imperceptible and graver transformations. Then, we examine
within- and between-space distance consistencies, both considering audio space and la-
tent embedded space, the latter either being a result of a conventional feature extractor or a
deep encoder. We illustrate how our method, as a complement to task-specific performance,
provides interpretable insight into what a network may have captured from training data
signals.

4.1. INTRODUCTION

Music audio is a complex signal. Frequencies in the signal usually belong to multiple
pitches, which are organized harmonically and rhythmically, and often originate from
multiple acoustic sources in the presence of noise. When solving tasks in the Music In-
formation Retrieval (MIR) field, within this noisy signal, the optimal subset of informa-
tion needs to be found that leads to quantifiable and musical descriptors. Commonly,

This chapter was published in Frontiers in Applied Mathematics and Statistics 5, 53 [1].
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® Perturbed Sample :

Q Original Sample O

X
® o ®

@ ®

Figure 4.1: Simplified example illustrating distance assumption within a space. Circles without a cross indicate
music clips. Yellow circles with crosses refer to hardly perceptible transformations of the yellow original clip. The
top-right transformation, marked with a red outer circle, actually is closer to another original clip (green) than
to its own original (yellow), which violates the assumption it should be closest to its original, and hence may be
seen as an error-inducing transformation under a nearest-neighbor scheme.

this process is handled by pipelines exploiting a wide range of signal processing and ma-
chine learning algorithms. Beyond the use of hand-crafted music representations, which
are informed by human domain knowledge, as an alternative, deep music representations
have emerged, that are trained by employing deep neural networks (DNNs) and massive
amounts of training data observations. Such deep representations are usually reported to
outperform hand-crafted representations (e.g. [2-5]).

At the same time, the performance of MIR systems may be vulnerable to subtle input
manipulation. The addition of small noise may lead to unexpected random behavior, re-
gardless of whether traditional or deep models are used [6-9]. In a similar line of thought,
in the broader deep learning (DL) community, increasing attention is given to adversarial
examples that are barely differentiable from original samples, but greatly impact a net-
work’s performance [9, 10].

So far, the sensitivity of representations with respect to subtle input changes has mostly
been tested in relation to dedicated machine learning tasks (e.g. object recognition, music
genre classification), and examined by investigating whether these input changes cause
performance drops. When purely considering the questions whether relevant input signal
information can automatically be encoded into a representation, and to what extent the
representation can be deemed ‘reliable’, in principle, the learned representation should be
general and useful to different types of tasks. Therefore, in this work, we will not focus
on performance obtained by using a learned representation for certain machine learn-
ing tasks, but rather on a systematic way to verify assumptions on distance relationships
between several representation spaces: the audio space and the learned space.

Inspired by [6], we will also investigate the effect of musical and acoustic transforma-
tions of audio input signals, in combination with an arbitrary encoder of the input signal,
which either may be a conventional feature extractor or deep learning-based encoder. In
doing this, we have the following major assumptions:

(i) if a small, humanly imperceptible transformation is introduced, the distance
between the original and transformed signal should be very small, both in the audio
and encoded space. This is illustrated in Figure 4.1

(i) however, if a more grave transformation is introduced, the distance between
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the original and transformed signal should be larger, both in the audio and encoded
space.

(iii) thedegree of how these assumptions hold will differ for the tasks and the datasets
on which the encoder is trained.

To examine the above assumptions, we seek to answer the following research ques-
tions:

RQ 1. Do assumption (i) and (ii) hold for conventional and deep learning-based
encoders?

RQ 2. Doesassumption (iii) hold for music-related tasks and corresponding datasets,

especially when deep learning is applied?

By answering the above questions, ultimately we seek to test if considered music-
related encoders hold a desirable consistency, such that the distances between audio space
and the latent space are monotonically related.

With this work, we intend to offer directions towards a complementary evaluation
method for deep machine learning pipelines, that focuses on space diagnosis rather than
the troubleshooting of pipeline output. Our intention is that this will provide the re-
searcher with additional insight into the reliability and potential semantic sensitivities of
deep learned spaces.

In the remainder of this paper, we first describe our approaches including the details
on the learning setup (Section 4.2) and the methodology to assess distance consistency
(Section 4.3), followed by the experimental setup (Section 4.4). Further, we report the
result from our experiments (Section 5.4). Afterwards we discuss the results and conclude
this work (Section 4.6).

4.2. LEARNING

To diagnose a deep music representation space, such a space should first exist. For this,
one needs to find a learnable deep encoder f : R**? — R¥ that transforms the input audio
representation x € R*? to a latent vector z € R?, while taking into account the desired out-
put for a given learning task. The learning of f can be done by adjusting the parametriza-
tion ©/ to optimize the objective function, which should be defined in accordance to a
given task.

4.2.1. TASKS

In our work, we consider representations learned for four different tasks: autoencoder
(AE), music auto-tagging (AT), predominant instrument recognition (IR), and finally singing
voice separation (VS). By doing this, we take a broad range of problems into account that
are particularly common in the MIR field. AE is a representative task for unsupervised
learning using DNNs, and AT is a popular supervised learning task in the MIR field [4, 11—
15]. AT is a multi-label classification problem, in which individual labels are not always
mutually exclusive and often highly inter-correlated. As such, it can be seen as a more
challenging problem than IR, which is a single-label classification problem. Furthermore,



76 4. ARE NEARBY NEIGHBORS RELATIVES?: TESTING DEEP MUSIC EMBEDDINGS

IR labels involve instruments, which can be seen as more objective and taxonomically
stable labels than e.g. genres or moods. Finally, VS is a task that can be formulated as a
regression problem, that learns a mask to segregate a certain region of interest out of a
given signal mixture.

AUTOENCODER
The objective of an autoencoder is to find a set of encoder f and decoder g functions such
that the input audio x is encoded into a fixed-length vector and reconstructed as follows:

x=g(f(x) (4.1)

Here, the % = g(f(x)) is the output of a cascading pipeline of a decoder g : R? — R**?
parameterized by @8, followed by an encoder f. To obtain a desired model, a reconstruc-
tion error is typically considered as its loss function:

. .
JAE =Y -2, 4.2)
i=1

where &, is the given set of training samples for the autoencoder task.

MusiC AUTO-TAGGING

Unlike the autoencoder, a DNN model architecture for either multi-label or multi-class
classification has architectural block # to infer the posterior distribution of classes from
the encoding by f:

y=0oh(f(x)) (4.3)

Since we consider a single fully-connected layer as h in this study, & : R? — RX is the
prediction layer parameterized by @, which transforms the deep representation z into
the logit per class, which is finally mapped into p(k|x’) by the sigmoid function o.

The typical approach to music auto-tagging using DNNs is to consider the problem
as a multi-label classification problem, for which the objective is to minimize the binary
cross-entropy of each music tag k € {1,2, ..., K}, which is expressed as follows:

2" K . . .
JT==%"Y yilog(dl) + (1 -yhlog(l -7} (4.4)
i=1 k=1
where yl’; is the binary label that indicates whether the tag k is related to the input audio
signal x’. Similarly, j/,"c indicates the inferred probability of x’ and tag k. The optimal
functions f and & are found by adjusting ©/ and ©”" such that (4.4) is minimized.

PREDOMINANT MUSICAL INSTRUMENT RECOGNITION

The learning of the IR task can be formulated as a single-label, multi-class classification,
which allows one to use a model architecture similar to the aforementioned one, except
the terminal non-linearity:

y=softmax(h(f(x))) (4.5)
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Here, the softmax function softmax(o;) = ﬁ , where o € R is the output of h,
o=
substitutes the sigmoid function in (4.3) to output the categorical distribution over the
class.
To maximize the classification accuracy, one of the popular loss function especially in

the context of neural network learning is categorical cross-entropy, given as follows:

IR N j
JH==3"3 yilog() (4.6)
i=1 t=1
where t € {1,2,...,, T} is a instrument class and thus, yf is the binary label of instance xt
to the class t and ; indicates the inferred probability of x' and instrument ¢, respectively.

SINGING VOICE SEPARATION

There are multiple ways to set up an objective function for the source separation task. It
can be achieved by simply applying (4.2) between the output of the network x = g(f(x))
and the desired isolated signal s € 2"*? such that the model can infer direct isolated
sound. In this case, the objective function is similar to (4.2), except that the target is sub-
stituted from the input signal x to the isolated signal s. On the other hand, as introduced
in [16], one can learn a model predicting the mask that segments the target component
from the mixture as follows:

S=o(g(fx))ox (4.7)

where § is the estimated isolated signal and x € 2/*? is the representation of the orig-
inal input mixture, and o refers to the element-wise multiplication. o (g(f(x))) € Z**? is
the mask inferred by g and f of which the elements are bounded in the range [0, 1] by the
sigmoid function o, such that they can be used for the separation of the target source. As
introduced in [16], we applied the skip connections.

For the optimization of the encoder parameters ® and the decoder parameters Og,
[16] suggests to use the L1 loss as follows:

X .
JVS="Y st =5 4.8)
i=1

where s’ is the low-level representation of the isolated signal, which serves as the re-
gression target. Note, that both input x’ and estimated target source § are magnitude
spectra, so we use the original phase of input x' to reconstruct a time-domain signal.

4.2.2. NETWORK ARCHITECTURES
The architecture of a DNN determines the overall structure of the network, which defines
the details of the desired patterns to be captured by the learning process [17]. In other
words, it reflects the way in which a network should interpret a given input data represen-
tation. In this work, we use a VGG-like architecture, one of the most popular and general
architectures frequently employed in the MIR field.

The VGG-like architecture is a Convolutional Neural Network (CNN) architecture in-
troduced by [18, 19], which employs tiny rectangular filters. Successes of VGG-like archi-
tectures have not only been reported for computer vision tasks, but also in various MIR
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Table 4.1: Employed network architectures. A decoder g is constructed reversing the layers: convolution (Conv)
and fully-connected (FC) layers are transposed, and pooling layers repeat the maximum input values in the
pooling window.

Layers Output shape
Input 1x128x512
Conv 3x3, BN, ReLU 16x128x512
MaxPooling 2 x 2 16x64x256
Conv 3x3, BN, ReLU 32x64x256
MaxPooling 2x2 32x32x128
Conv 3x3, BN, ReLU 64 x16x64
MaxPooling 2x2 64x8x32
Conv 3x3, BN, ReLU 128x8x32
MaxPooling 2x2 128x4x16
Conv 3x3, BN, ReLU 256x4x16
MaxPooling 2 x 2 256x2x8
Conv 3x3, BN, ReLU 256x2x8
MaxPooling 2 x2 256x1x4
GlobalAveragePooling 256

fields [4, 9]. The detailed architecture design used in our work can be found in the Table
4.1.

4.2.3. ARCHITECTURE AND LEARNING DETAILS

For both architectures, we used Rectified Linear Units (ReLU) [20] for the nonlinearity, and
Batch Normalization (BN) in every convolutional and fully-connected layer for fast train-
ing and regularization [21]. We use Adam [22] as optimization algorithm during training,
where the learning rate is set for 0.001 across all models. We trained models with respect
to their objective function, which requires different optimization strategies. Nonetheless,
we regularized the other factors except the number of epochs per task, which inherently
depends on the dataset and the task. The termination point of the training is set manually,
where either the validation loss reaches to the plateau or starts to increase. More specifi-
cally, we stopped the training for each task at the epoch of {500,200, 500,5000} for the AE,
AT, IR, VS task, respectively.

4.3. MEASURING DISTANCE CONSISTENCY

In this work, among the set of potential representation spaces, we consider two specific
subsets of representation spaces of interest: the audio input space and the latent embed-
ding space. Let &« be the space where the low-level audio representation of music excerpts
belong to. & < & is the set of music excerpts in the dataset and x € & is each instance.
Likewise, £ is the latent space where the set of latent points z € Z c £ belongs to. There-
fore, an encoder f : of — £ is trained on task-specific training data & and maps points
from & to Z while it actually maps «f to £. Specifically, a fixed number of latent spaces
per task {ZLag, Lar, L1r, Lys} are considered. For all relevant encoders, we will assess
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Figure 4.2: Network architecture used in this work. The left half of the model is the encoder pipeline f, whose
architecture is kept the same across all the tasks of our experiments. The pink vertical bar represents the latent
vector z, in which all the measures we propose are tested. The right half of the diagram refers to the four different
prediction pipelines with respect to the tasks. The top block describes the decoder and the error function of the
task (where, for simplicity, detailed illustrations of decoder g of f are omitted). The second and third block rep-
resent the AT and IR task, respectively. Here, the smaller pink bar represents the terminal layer for the prediction
of the posterior distribution for K music tags or T musical instruments. Finally, the lowest block is describing
the mask predictor g, prediction process and the way the error function is calculated. Also, this architecture
includes the skip-connections from each convolution block of the encoder, which is the key characteristic of the

U-Net [23].
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their reliability by examining the distance consistency with respect to a set of transforma-
tions! I ={r;:of — o, 1€[1,2,.., L]} and a set of testing points &' c o/ .

In Section 4.3.1, we describe how distance consistency will be measured. Section 4.3.2
will discuss the distance measures that will be used, while Section 4.3.3 discusses what
transformations will be adopted in our experiments.

4.3.1. DISTANCE CONSISTENCY
For distance consistency, we will compute within-space consistency and between-space
consistency.

WITHIN-SPACE CONSISTENCY

For all audio samples x € &' and transformations 7 € 9, we obtain the transformed
points x; = 7(x) and z; = f(x;) first, and then we calculate the error function § of each
transformed sample as follows:

5.5 7.d) = {0, if d(pr, p) < d(pr, p),¥p' €2\ p @)
1 otherwise
Where p € £ can be either audio samples x € & or latent points z € Z, according to
the target space to be measured. Finally, d is a distance function between two objects.
As ¢ indicates how the space is unreliable at the exemplar-level, the within-space con-
sistency can be defined as the complement of 6:

C" =1-Epew[6(p, 2, 7,d)] (4.10)

BETWEEN-SPACE CONSISTENCY

To measure consistency between the associated spaces, one can measure how they are
correlated. The distances between a transformed point p; and its original sample p will be
used as characteristic information to make comparisons between spaces. As mentioned
above, we consider two specific spaces: the audio input space « and the embedding space
Z£. Consequently, we can calculate the correlation of distances for the points belonging
to each subset of spaces as follows:

Cp = pldl,,dy) (4.11)

where p is Spearman’s rank correlation, and d; and d;f refers to the distance array d (x;, x')
and d(z;,2"),Vx' € '\ x, respectively.
On the other hand, one can also simply measure the agreement between distances,
which is given by:
CB

e = accuracy(ﬁffﬁé’,’) (4.12)

where accuracy denotes the binary accuracy function [24], and 65:{’7 and & g denote
6(x,%,7,d) and 6(z, Z,71,d), respectively.

Note that, the term ‘transformation’ differs from the ‘maps’, which correspond to encoders f in our study. While
It is rather close to the concept of ‘input perturbation’ from literature, we intentionally avoid using the term,
since we also study more grave ranges of deformations which are not usually studied.
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4.3.2. DISTANCE MEASURES

The main assessment of this work is based on distance comparisons between original clip
fragments and their transformations, both in audio and embedded space. To our best
knowledge, not many general ways are developed to calculate the distance between raw
audio representations of music signals directly. Therefore, we choose to calculate the dis-
tance between audio samples using time-frequency representations as the potential proxy
of perceptual distance between the music signals. More specifically, we use Mel Frequency
Cepstral Coefficients (MFCCs) with 25 coefficients, dropping the first coefficient when the
actual distance is calculated. Eventually, we employ two distance measures on the audio
domain:

* Dynamic Time Warping (DTW) is a well-known dynamic programming method for
calculating similarities between time series. For our experiments, we use the Fast-
DTW implementation [25].

e Similarity Matrix Profile (SiMPle) [26] measures the similarity between two given
music recordings using a similarity join [26]. We take the median of the profile array
as the overall distance between two audio signals.

For deep embedding space, since any deep representation of input x is encoded as a
fixed-length vector z in our models, we adopted two general distance measures for vec-
tors: Euclidean distance and cosine distance.

4.3.3. TRANSFORMATIONS

In this subsection, we describe the details on the transformations we employed in our
experiment. In all cases, we will consider a range from very small, humanly impercepti-
ble transformations, up to transformations within the same category, that should be large
enough to become humanly noticeable. While it is not trivial to set an upper bound for the
transformation magnitudes, at which a transformed sample may be recognized as a ‘dif-
ferent’ song from the original, we introduce a reasonable range of magnitudes, such that
we can investigate the overall robustness of our target encoders as transformations will
become more grave. The selected range per each transformation is illustrated in Figure
4.3.

* Noise: As a randomized transformation, we applied both pink noise (PN) and en-
vironmental noise (EN) transformations. More specifically, for EN, we used noise
recorded in a bar, as collected from freesound.” The test range of the magnitude,
expressed in terms of Signal to Noise Ratio, spans from -15dB to 30dB, with denser
sampling for high Signal to Noise Ratios (which are situations in which transformed
signals should be very close to the original signal) [27]. This strategy also is adopted
for the rest of the transformations.

* Tempo Shift: We applied a tempo shift (TS), transforming a signal to a new tempo,
ranging from 30% to 150% of the original tempo. Therefore, we both slow down
and speed up the signal. Close to the original tempo, we employed a step size of
2%, as a -2% and 2% tempo change has been considered as an irrelevant slowdown

2https:/ /freesound.org
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Figure 4.3: The selected range of magnitudes with respect to the transformations. Each row indicates a transfor-
mation category; each dot represents the selected magnitudes. We selected relatively more points in the range in
which transformations should have small effect, except for the case of MP3 compression. Here, we tested all the
possible transformations (kb/s levels) as supported by the compression software we employed. The red vertical
lines indicate the position of the original sample with respect to the transformation magnitudes. For TS and PS,
these consider no transformation; for PN, EN and MP, they consider the transformation magnitude that will be
closest to the original sample.
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or speedup in previous work [6]. We employed an implementation® using a phase
vocoder and resampling algorithm.

e Pitch Shift: We also employed a pitch shift (PS), changing the pitch of a signal, mak-
ing it lower or higher. Close to the original pitch, we consider transformation steps
of £25 cents, which is 50% smaller than the error bound considered in the MIREX
challenge of multiple fundamental frequency estimation & tracking [28]. Beyond a
difference of 1 semitone with respect to the original, whole tone interval steps were
considered.

e Compression: For compression (MP), we simply compress the original audio sam-
ple using an MP3 encoder, taking all kb/s compression rates as provided by the FFm-
peg software [29].

For the rest of the paper, for brevity, we use OG as the acronym of the original samples.

4.4, EXPERIMENT

4.4.1. AUDIO PRE-PROCESSING

For the input time-frequency representation to the DNNs, we use the dB-scale magnitude
STFT matrix. For the calculation, the audio was resampled at 22,050 kHz. The window and
overlap size are 1,024 and 256 respectively. It leads to the dimensionality of the frequency
axis to be b = 513, only taking positive frequencies into account. The standardization
over the frequency axis is applied by taking the mean and the standard deviation of all
magnitude spectra in the training set.

Also, we use the short excerpts of the original input audio track with ¢ = 128, which
yields approximately 2 seconds per excerpt in the setup we used. Each batch of excerpts
is randomly cropped from 24 randomly chosen music clips before being served to the
training loop.

When applying the transformations, it turned out that some of the libraries we used
did not only apply the transformation, but also changed the loudness of the transformed
signal. To mitigate this, and only consider the actual transformation of interest, we ap-
plied a loudness normalization based on the EBU-R 128 loudness measure [30]. More
specifically, we calculated the mean loudness of the original sample, and then ensured
that transformed audio samples would have equal mean loudness to their original.

4.4.2. BASELINE

Beyond deep encoders, we also consider a conventional feature extractor: MFCCs, as also
used in [11]. The MFCC extractor can also be seen as an encoder, that projects raw audio
measurements into a latent embedding space, where the projection was hand-crafted by
humans to be perceptually meaningful.

We first calculate the first- and second-order time derivatives of the given MFCCs and
then take the mean and standard deviation over the time axis, for the original and its
derivatives. Finally, we concatenate all statistics into one vector. Using the 25 coefficients
excluding the first coefficient, we obtain zMF¢C € R'#* from all the points in 2 **. For the

Shttps: //breakfastquay.com/rubberband/
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AT task, we trained a dedicated h for auto-tagging, with the same objective as Eq. 4.4, while
f is substituted as zMFCC,

4.4.3. DATASET

We use a subset of the Million Song Dataset (MSD) [31] both for training and testing of
AT and AE task. The number of the training samples | % '"| is 71,512. These are randomly
drawn from the original subset of 102,161 samples without replacement. For the test set
X', we used 1,000 excerpts randomly sampled from 1,000 preview clips which are not
used at training time. As suggested in [4], we used the top K = 50 social tags based on their
frequency within the dataset.

As for the IR task, we choose to use the training set of the IRMAS dataset [32], which
contains 6,705 audio clips of 3-second polyphonic mixtures of music audio, from more
than 2,000 songs. The pre-dominant instrument of each short excerpt is labeled. As ex-
cerpts may have been clipped from a single song multiple times, we split the dataset into
training, validation and test sets at the song level, to avoid unwanted bleeding among
splits.

Finally, for VS, we employed the MUSDB18 dataset [33]. This dataset is developed for
musical blind source separation tasks, and has been used in public benchmarking chal-
lenges [34]. The dataset consists of 150 unique full-length songs, both with mixtures and
isolated sources of selected instrument groups: vocals, bass, drums and other. Originally,
the dataset is split into a training and test set; we split the training set into a training and
validation set (with a 7:3 ratio), to secure validation monitoring capability.

Note that since we use different datasets with respect to the tasks, the measurements
we investigate will also depend on the datasets and tasks. However, across tasks, we always
use the same encoder architecture, such that comparisons between tasks can still validly
be made.

4.4.4. PERFORMANCE MEASURES

As introduced in Section 4.3, we use distance consistency measures as primary evalua-
tion criterion of our work. Next to this, we also measure the performance per employed
learning task. For the AE task, the Mean Square Error (MSE) is used as a measure of recon-
struction error. For the AT task, we apply a measure derived from the popular Area Under
ROC Curve (AUC): more specifically, we apply AUCC, averaging the AUC measure over
clips. As for the IR task, we choose to use accuracy. Finally, as for the VS task, we choose to
use the Signal to Distortion Ratio (SDR), which is one of the evaluation measures used in
the original benchmarking campaign. For this, we employ the public software as released
by the benchmark organizers. While beyond SDR, this software suite also can calculate 3
more evaluation measures (Image to Spatial distortion Ratio (ISR), Source to Interference
Ratio (SIR), Sources to Artifacts Ratios (SAR)), in this study, we choose to only employ SDR:
the other metrics consider spatial distortion, while this is irrelevant to our experimental
setup, in which we only use mono sources.
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4.5. RESULTS

In the following subsections, we present the major analysis results for task-specific perfor-
mance, within-space consistency, and finally, between-space consistency. Shared conclu-
sions and discussions following from our observations will be presented in Section 4.6.

4.5.1. TASK-SPECIFIC PERFORMANCE
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Figure 4.4: Task specific performance results. Blue and yellow curves indicate the performance of different en-
coders for each task, over the range of magnitude with respect to the transformations. The performance of
original samples is indicated as dotted horizontal lines. For the remaining of the paper including this figure, all
the confidence intervals are computed with 1,000 bootstraps at the 95% level.

To analyze task-specific performance, we ran predictions for the original samples in
Z''S, as well as their transformations using all T € J~ with all the magnitudes we selected.
The overall results, grouped by transformation, task and encoder, are illustrated in Figure
4.4. For most parts, we observe similar degradation patterns within the same transfor-
mation type. For instance, in the presence of PN and EN transformations, performance
decreases in a characteristic non-linear fashion as more noise is added. The exception
seems to be the AE task, which shows somewhat unique trends with a more distinct differ-
ence between encoders. In particular, when EN is introduced, performance increases with
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the severity of the transformation. This is likely to be caused by the fact that the environ-
mental noise that we employed is semantically irrelevant for the other tasks, thus causing
a degradation in performance. However, because the AE task just reconstructs the given
input audio regardless of the semantic context, and the environmental noise that we use
is likely not as complex as music or pink noise, the overall reconstruction gets better.

To better understand the effect of transformations, we fitted a Generalized Additive
Model (GAM) on the data, using as predictors the main effects of the task, encoder and
transformation, along with their two-factor interactions. Because the relationship be-
tween performance and transformation magnitude is very characteristic in each case, we
included an additional spline term to smooth the effect of the magnitude for every combi-
nation of transformation, task and encoder. In addition, and given the clear heterogeneity
of distributions across tasks, we standardized performance scores using the within-task
mean and standard deviation scores. Furthermore, MSE scores in the AE task are reversed,
so that higher scores imply better performance. The analysis model explains most of the
variability (R? = .98).

An Analysis on Variance (ANOVA) using the marginalized effects clearly reveals that the
largest effect is due to the encoders (F(1,3522) = 12898, p < .0001), as evidenced by Fig-
ure 4.4. Indeed, the VGG-like network has an estimated mean performance of 0.84 +.008
(mean + s.e.) standardized units, while MFCCs has an estimated performance of —0.52 +
.009 standardized units. The second largest effect is the interaction between transforma-
tion and task (F(12,3522) = 466, p < .0001), mainly because of the VS task. Comparing the
VGG-like and MFCC encoders on the same task (F(3,3522) = 210, p < .0001), the largest
performance differences appear in the AE task, with VS showing the smallest differences.
It suggests that MFCCs loses a substantial amount of information required for reconstruc-
tion, while a neural network is capable of maintaining sufficient information to do a re-
construction task. The smallest performance differences in the VS task mostly relate to the
performance of the VGG-like encoder, that shows substantial performance degradation in
response to the transformations. Figure 4.5 shows the estimated mean performance.
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AT sl
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Standardized performance

Figure 4.5: Estimated marginal mean of standardized performance by encoders and tasks, with 95% confidence
intervals. Blue points and brown points indicate the performance of MFCC and VGG-like, respectively.

4.5.2. WITHIN-SPACE CONSISTENCY

In terms of within-space consistency, we first examine the original audio space <f. As de-
picted in Figure 4.6, both the DTW and SiMPle measures show very high consistency for
small transformations. As transformations have higher magnitude, as expected, the con-
sistency decreases, but at different rates, depending on the transformation. The clear ex-
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ception is the TS transformation, where both measures, and in particular DTW, are highly
robust to the magnitude of the shift. This result implies that the explicit consideration of
both measures on the temporal dynamics can be beneficial.

MP
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Figure 4.6: Within-space consistency by transformation on the audio space <. Each curve indicates the within-
space consistency cWv.

With respect to the within-consistency of the latent space, Figure 4.7 and 4.8 depicts
the results for both the Euclidean and cosine distance measures. In general, the trends are
similar to those found in Figure 4.6. For analysis, we fitted a similar GAM model, includ-
ing the main effect of the transformation and task, their interaction, and a smoother for
the magnitude of each transformation within each task. When modeling consistency with
respect to Euclidean distance, this analysis model achieved R?> = .98. An ANOVA analysis
shows very similar effects due to transformation (F(4,1793) = 1087, p <.0001) and due to
tasks (F(4,1793) = 1066, p < .0001), with a smaller effect of the interaction. In particular,
the model confirms the observation from the plots that the MFCC encoder has signifi-
cantly higher consistency (0.741 +.014) than the others. For the VGG-like cases, AT shows
the highest consistency (0.671 +.007), followed by IR (0.539 +.008), VS (0.331 £.007) and
lastly by AE (0.17 +.006). As Figure 4.8 shows, all these differences are statistically signifi-
cant.

A similar model to analyze consistency with respect to the cosine distance yielded very
similar results (R? = 0.981). However, the effect of the task (F(4,1794) = 1263, p <.0001)
was larger than the effect of the transformation (F(4,1794) = 913, p < .0001), indicating
that the cosine distance is slightly more robust to transformations than the Euclidean dis-
tance.

To investigate observed effects more intuitively, we visualize in Figure 4.9 the original
dataset samples and their smallest transformations, which should be hardly perceptible
to imperceptible to human ears [6, 9, 28]* in a 2-dimensional space, using t-SNE [35]. In
MEFCC space, (Figure 4.9), the distributions of colored points, corresponding to each of
the transformation categories, are virtually identical to those of the original points. This
matches our assumption that very subtle transformations, that humans will not easily rec-
ognize, should stay very close to the original points. Therefore, if the hidden latent embed-
ded space had high consistency with respect to the audio space, the distribution of colored
points should be virtually identical to the distribution of original points. However, this is
certainly not the case for neural networks, especially for tasks such as AE and VS (see Fig-
ure 4.9). For instance, in the AE task every transformation visibly causes clusters that do

4The smallest transformations are +25 cents in PS, +2% in TS, 30dB in PN and EN, and 192 kb/s in MP.
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Figure 4.7: Within-space consistency by transformation on the latent space £. Each curve indicates the within-
space consistency C" by task and transformation. The gray curves indicate C" on o, taken as a weak upper
bound for the consistency in the latent space. Confidence intervals are drawn at the 95% level. Points indicate
individual observations from different trials.
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Figure 4.8: Estimated marginal mean within-space consistency C" in the latent domain. Confidence interval
are at 95% level.

not cover the full space. This suggests that the model may recognize transformations as
important features, characterizing a subset of the overall problem space.

4.5.3. BETWEEN-SPACE CONSISTENCY
B

Next, we discuss between-space consistency according to C,.. and Cg , as discussed in
Section 4.3.1. As in the previous section, we first provide a visualization of the relationship
between transformations and consistency, and then employ the same GAM model to an-
alyze individual effects. The analysis will be presented for all pairs of distance measures
and between-space consistency measures, which results in 4 models for CZ, . and another
4 models for Cg . As in the within-space consistency analysis, we set the MFCC and other
VGG-like networks from different learning tasks as independent ‘encoder’ f to a latent

embedded space.

ACCURACY: CB

The between-space consistency, according to the C5. criterion, is plotted in the upper
plots of Figure 4.10. Comparing this plot to the within-space consistency plots for </
(Figure 4.6) and £ (Figure 4.8), one trend is striking: when within-space consistency in

o/ and Z becomes substantially low, the between-space consistency C5;. becomes high.
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Figure 4.9: Scatter plot of encoded representations and their transformations for baseline MFCC and f encoders
with respect to the tasks we investigated. For all panes, black points indicate original audio samples in the en-
coded space, and the colored, overlaid points indicate the embeddings of transformations according to the indi-
cated category.
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This can be interpreted: when grave transformations are applied, the within-space con-
sistencies in both o/ and £ space will converge to 0, and comparing the two spaces, this
behavior is consistent.

A first model to analyze the between-space consistency with respect to the SiMPle
and cosine measures (R% = .96), reveals that the largest effect is that of the task/encoder
F(4,1772) = 440,p < .0001), followed by the effect of the transformation (F(4,1772) =
285, p <.0001). The left plot of the first row in Figure 4.11 confirms that the estimated con-
sistency of the MFCC encoder (0.796+.015) is significantly higher than that of the VGG-like
alternatives, which range between 0.731 and 0.273. In fact, the relative order is the same
as observed in the within-space case: MFCC is followed by AT, IR, VS, and finally AE.

We separately analyzed the data with respect to the other three combinations of mea-
sures, and found very similar results. The largest effect is due to the task/encoder, followed
by the transformation; the effect of the interaction is considerably smaller. As the first rows
of Figure 4.11 shows, the same results are observed in all four cases, with statistically sig-
nificant differences among tasks.
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Figure 4.10: Cgcc (top) and Cg (bottom) between-space consistency by transformation and magnitude. Each

curve indicates the between-space consistency CB with respect to the task. Confidence intervals are drawn at
the 95% level. Points indicate individual observations from different trials.

CORRELATION: Cj)

The bottom plots in Figure 4.10 show the results for between-space consistency measured
with Cg . It can be clearly seen that MFCC preserves the consistency between spaces much
better than VGG-like encoders, and in general, all encoders are quite robust to the magni-
tude of the perturbations.

Analyzing data again using a GAM model confirms these observations. For instance,
when analyzing consistency with respect to the DTW and Euclidean measures (R? = 0.96),
the largest effect is by far that of the task/encoder (F(4,1877) = 6549, p < .0001), with the
transformation and interaction effect being two orders of magnitude smaller. This is be-
cause of the clear superiority of MFCC, with an estimated consistency of 0.881 +.004, fol-
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Figure 4.11: Estimated marginal means for between-space consistency by encoder f. The first and second rows
are for c}jcc and the third and fourth rows are for Cg . Confidence intervals are at the 95% level.

lowed by AE (0.209 +.005), IR (0.184 +.003), VS (0.181 +.002) and finally AT (0.08 +.003)
(see right plot of the fourth row in 4.11).

As before, we separately analyzed the data with respect to the other three combina-
tions of measures, and found very similar results. As first two rows of Figure 4.11 shows,
the same qualitative observations can be made in all four cases, with statistically signif-
icant differences among tasks. Noticeably, the superiority of MFCC is even clearer when
employing the Euclidean distance. Finally, another visible difference is that the relative
order of VGG-like networks is reversed with respect to CZ,, with AE being the most con-
sistent, followed by VS, IR, and finally AT.

4.5.4. SENSITIVITY TO IMPERCEPTIBLE TRANSFORMATIONS

TASK-SPECIFIC PERFORMANCE

In this subsection, we focus more on the special cases of transformations with a magni-
tude small enough to hardly be perceivable by humans [6, 9, 28] As the first row of Figure
4.12 shows, performance is degraded even with such small transformations, confirming
the findings from [6]. In particular, the VS task shows more variability among transfor-
mations compared to other tasks. Between transformations, the PS cases show relatively
higher degradation.

WITHIN-SPACE CONSISTENCY

The second row of Figure 4.12 illustrates the within-space consistency on the £ space
when considering these smallest transformations. As before, there is no substantial dif-
ference between the distance metrics. In general, the MFCC, AT, and IR encoder/tasks are
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Figure 4.12: Performance, within-space consistency, and between-space consistency distribution on the mini-
mum transformations. The points are individual observations with respect to the transformation types. For PS
and TS, we distinguish in the direction of the transformation (+: pitch/tempo up, -: pitch/tempo down). The
first row indicates the task-specific performance, and the second row depicts the within-space consistency C",
and finally, the third and fourth rows show the between-space consistency Cgcc and CB, respectively. The per-
formance is standardized per task, and the sign of AE performance is flipped, similarly to our analysis models.
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relatively robust on these small transformations, with their median consistencies close to
1. However, encoders trained on the VS and AE tasks show undesirably high sensitivity to
these small transformations. In this case, the effect of the PS transformations is even more
clear, causing considerable variance for most of the tasks. The exception is AE, which is
more uniformly spread in the first place.

BETWEEN-SPACE CONSISTENCY

Finally, the between-space consistencies on the minimum transformations are depicted
in the last two rows of Figure 4.12. First, we see no significant differences between pairs
of distance measures. When focusing on C2, , the plots highly resemble those from 4.5.4,
which can be expected, because the within-space consistency on < is approximately 1 for
all these transformations, as illustrated in Figure 4.6. On the other hand, when focusing on
Cff, The last row of Figure 4.12 shows that even such small transformations already result

in large inconsistencies between spaces when employing neural network representations.

4.6. DISCUSSION AND CONCLUSION

4.6.1. EFFECT OF THE ENCODER

For most of our experiments, the largest differences are found between encoders. As is
well-known, the VGG-like deep neural network shows significantly better task-specific per-
formance in comparison to the MFCC encoder. However, when considering distance con-
sistency, MFCC is shown to be the most consistent encoder for all cases, with neural net-
work approaches performing substantially worse in this respect. This suggests that, in
case a task requires robustness to potential musical/acoustical deviations in the audio in-
put space, it may be more preferable to employ MFCCs than neural network encoders.

4.6.2. EFFECT OF THE LEARNING TASK
Considering the neural networks, our results show that the choice of learning task is the
most important factor affecting consistency. For instance, a VGG-like network trained
on the AE task seems to preserve the relative distances among samples (high Cg ), but
individual transformed samples will fall closer to originals that were not the actual original
the transformation was applied to (low C2, ). On the other hand, a task like AT yields high
consistency in the neighborhood of corresponding original samples (high CZ. ), but does
not preserve the general structure of the audio space (low Cg). This means that a network
trained on a low-level task like AE is more consistent than a network trained on a high-
level task like AT, because the resulting latent space is less morphed and it more closely
resembles the original audio space. In fact, in our results we see that the semantic high-
levelness of the task (AT > IR > VS > AE) is positively correlated with C2 cc, while negatively
correlated with CJ.

To further confirm this observation, we also computed the between-space consistency
Cff only on the set of original samples. The results, in Figure 4.13, are very similar to those
in the last two rows of Figure 4.11 and 4.12. This suggests that in general, the global dis-
tance structure of an embedded latent space with respect to the original samples general-
izes over the vicinity of those originals, at least for the transformations that we employed.

Considering that AE is an unsupervised learning task, and its objective is merely to
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Figure 4.13: Cg on the original samples, including all the possible distance pairs between audio and latent do-
main.

embed an original data point into a low-dimensional latent space by minimizing the re-
construction error, the odds are lower that data points will cluster according to more se-
mantic criteria, as implicitly encoded in supervised learning tasks. For instance, in con-
trast, the VS task should morph the latent space such, that input clips with similar degrees
of ‘vocalness’ should fall close together, as indeed is shown in Figure 4.14. As the task be-
comes more complex and high-level, such as with AT, this clustering effect will become
more multi-faceted and complex, potentially morphing the latent space with respect to
the semantic space that is used as the source of supervision.

4.6.3. EFFECT OF THE TRANSFORMATION

Across almost all experimental results, significant differences between transformation cat-
egories are observed. On the one hand, this supports the findings from [6, 9], which show
the vulnerability of MIR systems to small audio transformations. On the other hand, this
also implies that different types of transformations have different effects on the latent
space, as depicted in Figure 4.7.

4.6.4. ARE NEARBY NEIGHBORS RELATIVES?

As depicted in Figure 4.7, substantial inconsistencies emerge in £ when compared to <.
Clearly, these inconsistencies are not desirable, especially when the transformations we
applied are not supposed to have noticeable effects. However, as our consistency investi-
gations showed, the MFCC baseline encoder behaves surprisingly well in terms of consis-
tency, evidencing that hand-crafted features should not always be considered as inferior
to deep representations.

While in a conventional audio feature extraction pipeline, important salient data pat-
terns may not be captured due to accidental human omission, our experimental results
indicate that DNN representations may be unexpectedly unreliable. In the deep mu-
sic embedding space, known relatives’ in the audio space may suddenly become faraway
pairs. That a representation has certain unexpected inconsistencies should be carefully
studied and taken into account, specially given the increasing interest in applying transfer
learning using DNN representations, not only in the MIR field. For example, if a system
requires to use degraded audio inputs for a pre-trained DNN (which e.g. may be done in
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(a) by "vocalness" (b) by song id

Figure 4.14: 2-dimensional scatter plot using t-SNE. Each point represents 2-second audio mixture signal chunks
that are encoded by a VS-specialized encoder. In the left plot, the color map of points is based on the loudness
of the isolated vocal signal for a given mixture signal. The red color indicates higher loudness, and the blue color
indicates smaller loudness. On the right plot, the same chunks are colored by the song each chunk belongs to.
The samples are randomly sampled from the MUSDB18 dataset.

music identification tasks), while humans may barely recognize the differences between
the inputs and their original form, it does not guarantee that this transformed input may
be embedded at a similar position to its original version in a latent space.

4.6.5. TOWARDS RELIABLE DEEP MUSIC EMBEDDINGS
In this work, we proposed to use several distance consistency-based criteria, in order to
assess whether representations in various spaces can be deemed as consistent. We see
this as a complementary means of diagnosis beyond task-related performance criteria,
when aiming to learn more general and robust deep representations. More specifically,
we investigated whether deep latent spaces are consistent in terms of distance structure,
when smaller and larger transformations on raw audio are introduced (RQ I). Next to this,
we investigated how various types of learning tasks used to train deep encoders impact
the consistencies (RQ 2).

Consequentially, we conducted an experiment employing 4 MIR tasks, and consid-
ering deep encoders versus a conventional hand-crafted MFCC encoder, to measure the
consistency for different scenarios. Our findings can be summarized as follows:

RQ 1. Compared to the MFCC baseline, all DNN encoders indicate lower consis-

tency, both in terms of within-space consistency and between-space consistency,
especially when transformations grow from imperceptibly small to larger, more per-
ceptible ones.

RQ2. Considering learning tasks, the high-levelness of a task is correlated with
the consistency of resulting encoder. For instance, an AT-specialized encoder, which
needs to deal with semantically high-level task, yields the highest within-space con-
sistency, but the lowest between-space consistency. On the other hand, an AE-
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specialized encoder, which deals with a semantically low-level task, shows opposite
trends.

To realize a fully robust testing framework, there still are a number of aspects to be
investigated. First of all, more in-depth study is required considering different magni-
tudes in the transformations, and their possible comparability. While we applied different
magnitudes for each transformations, we decided not to comparatively consider the mag-
nitude ranges in the analysis at this moment. This was done, as we do not have any exact
means to compare the perceptual effect of different magnitudes, which will be crucial to
regularize between transformations.

Furthermore, similar analysis techniques can be applied to more diverse settings of
DNN:s, including different architectures, different levels of regularizations, and so on. Also,
as suggested in [9, 10], the same measurement and analysis techniques can be used for ad-
versarial examples generated from the DNN itself, as another important means of studying
a DNN’s reliability.

Moreover, and based on the observations from our study, it may be possible to de-
velop countermeasures for maintaining high consistency of a model, while yielding high
task-specific performance. For instance, unsupervised de-noising such as [36, 37] might
be one of the potential solutions. In particular, it can be used when the noise is drawn
from the known, relatively simple distribution, such as white noise. However, we also
observed some encoders are substantially affected by a very small amount of the noise,
which implies even artifacts produced from the de-noising algorithm can cause another
unexpected inconsistency. Also, it might not guarantee more musical and structured cases
such as tempo or pitch shifts.

For those cases, it can be effective if, during learning, a network is directly supervised
to treat transformations in similar ways as their original versions in the latent space. This
can be implemented as an auxiliary objective to the main objective of the learning proce-
dure, or introducing directly the transformed examples as the data augmentation.

We believe that our work can be a step forward towards a practical framework for more
interpretable deep learning models, in the sense that we suggest a less task-dependent
measure for evaluating a deep representation, that still is based on known semantic rela-
tionships in the original item space.”
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EVALUATION FRAMEWORK FOR
MODEL-AGNOSTIC EXPLAINERS: A
CASE STUDY ON RECOMMENDER
SYSTEMS

Due to the increasing employment of complex, black-box machine learning methods, ex-
plainability of these models has become an important challenge in modern machine learn-
ing. One way to tackle this is to apply model-agnostic explanation methods, which inter-
pret the black-box models in a post-hoc manner. While various model-agnostic methods
have been introduced, solid evaluation frameworks do not exist for them yet. In this pa-
per, we address this gap, proposing a framework that allows for comparative evaluation of
model-agnostic explanation methods, employing a standardized perspective on explana-
tion effectiveness, and explicitly taking into account that the choice of target systems and
datasets will affect performance in a hierarchical, multi-level fashion. We demonstrate an
application of our framework to the recommender systems domain, considering multiple
recommenders, explainers and datasets. Our results indicate that linear recommenders,
explainers with sparsity constraints and user features have positive effects on explanation
effectiveness.

5.1. INTRODUCTION

In supervised machine learning, formerly popular models such as linear regression or de-
cision trees were interpretable: the associative rules they learned between dependent and
independent variables could easily be understood and explained by humans. These days,
in many cases, such models are deemed too simple to capture the complex nature of real-
world data. Instead, more powerful, but much more complex models have become the
standard. While in terms of performance, these models are superior, concerns have arisen
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that their decisions are black-box, and cannot easily be comprehended by users with lim-
ited resources, nor by machine learning practitioners themselves.

As a consequence, where the need for explainability has been acknowledged for long
in complex decision-making application domains, such as recommender systems [1], re-
cently, multiple works have emerged addressing the explainability of black-box machine
learning models [2—4]. In this, post-hoc, model-agnostic explanation methods can be ap-
plied, which seek to fit an interpretable model to any black-box target model. While the
interpretable model should be as close as possible to the black-box model (fidelity), at the
same time, it will be constrained to have low complexity, such that the logic explaining
the black-box target model can still be humanly understood. In optimizing the fit of the
interpretable model, a fidelity-complexity trade-off is often observed [4].

While the need for model-agnostic explainability of complex machine learning models
is increasing, it is an open problem to evaluate how good an explanation is. While the
common agreement is that model-agnostic explanations should be ‘as close as possible’
to a target model, effectiveness has been formalized in various ways, e.g. by measuring
to what extent an explanation successfully retrieves relevant attributes [4, 5], or surrogate
models are coherent with respect to the target black-box model [6, 7].

Furthermore, no solid frameworks exist yet to assess how multiple alternative expla-
nation techniques compare against one another. For example, where in the broader ma-
chine learning world, the Local Interpretable Model-agnostic Explanation (LIME) tech-
nique [4] has gained considerable attention, several years earlier, saliency maps had been
proposed in the computer vision domain [8], which also can be seen as interpretable
model-agnostic explanations.

Next to this, while the explanation methods are applied to potentially complex ma-
chine learning models, in their turn, these machine learning models often capture com-
plex underlying problems, causing multi-level variability. The performance of an explana-
tion will be closely tied to the property of the target system. However, if the target system
is the outcome of a machine learning procedure, it has been instantiated in a data-driven
manner, thus depending on the data distribution and objective function that were used
during training and validation.

Ultimately, the goal of an explanation is human understandability. However, as re-
cently was shown, humans may not be solid judges of an explanation’s effectiveness, and
can e.g. be biased by social factors when having to select a preferred explanation method [9].
Given all these considerations, a clear need is emerging for systematic, objective and com-
parative evaluation methods for assessing the effectiveness of model-agnostic explanation
techniques.

In this work, we address this need, proposing an evaluation framework for model-
agnostic explanation methods. Our framework explicitly addresses possible variability in-
duced by multiple systems and multiple datasets; as such, to the best of our knowledge,
it provides the richest perspective so far on what makes for robust explanation method
performance.

Beyond introducing the framework, we will illustrate how it can be applied, consider-
ing it in the context of Recommender Systems (RS). As argued before, RS pose complex
decision-making challenges. Operating on large collections of items, they should auto-
matically surface useful items for users; however, users may need explanations on why
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Figure 5.1: Overview illustrating the point estimation of the explainability with a single system, explainer, dataset
and use case.

certain items got surfaced [1]. With many recent successful RS having high recommenda-
tion accuracy, but lower interpretability due to the complexity of the underlying machine
learning models [10-13], they form a natural real-world application domain for our frame-
work. To account for multiple sources of variability, and to be able to do statistically ro-
bust assessments, our experiments will consider multiple types of RS, for which multiple
explaination methods are assessed, considering multiple datasets to which these RS can
be applied. As a consequence, our results will yield useful insights into how explainability
for RS can be understood and improved.

5.2. FRAMEWORK

A good explanation model should maximize the fidelity with respect to its black-box target
model, while minimizing complexity. Following [4], a score for the total explainability &
can be generally described as follows:

E(G [, Z) =Exe [Z(f, 8] —2(8) (5.1)

where f is the target black-box model instantiated from the model class F. g is the in-
stantiation of an explanation derived from the explainer class G. The complexity of the
explanation model g is represented by (2, such that an optimal solution holds minimal
complexity as well as the maximum fidelity. Practically, for the fidelity £, any function
can be chosen that quantifies how closely f(x) and g(x) match, for any input observation
x € X, where & is the dataset used for the black-box model.

Considering this definition, when seeking to find an estimate for & in case of a single
instantiation g of a model-agnostic model class G, a setup can be envisioned as illustrated
in Figure 5.1. Here, a target arbitrary black-box system f is instantiated from a dataset &,
generating prediction outputs p in response to each x of interest. Explanation is given by
g with a certain complexity w.

Specifically, in our current framework, we will assume that each input observation x
can be described by a limited vocabulary of user-understandable discrete attributes such
as tags. The explainer will need to generate weights for up to w attributes; the complexity
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of the explanation can thus be quantified by considering the size of this attribute set. From
the attribute-specific explanation, an approximation of the output scores p will be made.

In our approach, we do not actually seek an estimate for single instantiation of g; in-
stead, we seek to compare explainability for a explainer class G Fidelity £ of a G depends
on multiple factors: the complexity w we allow them, and the target black-box model f,
which in turn is typically instantiated by a dataset & which is domain-dependent. We
could test the fidelity of the G for a single target f, but that doesn’t tell us anything beyond
that one target model. If we want to estimate the expected fidelity of an explainer class G,
we need a sample of such black box models f on a sample of datasets &, to derive the
explainers g of a certain complexity w. This leads to the experimental design, for instance,
such as the crossed-design; Every explainer class G with every model class F with every
dataset Z's, which minimizes confounding.

To analyze such data, hierarchical linear models [14] will be suitable, as they will al-
low us to model fixed effects for the variables of interest (e.g. explainers and complexity),
as well as random effects for the variables that moderate the fidelity of the explainers but
should be considered as arbitrary, random instances from a larger population of interest
determined by the application domain (e.g. class of target black-box models and datasets).
Such models may be easily extended as well to incorporate other factors of interest specific
to the domain of application, such as the mainstreamness of a user in recommendation,
the query type in information retrieval, the genre of a music track in a music description
setting, the type of picture in image classification, etc. By incorporating such domain-
specific variables, we are able to analyze fidelity while controlling for factors that can po-
tentially produce confounding in our results and make us attribute general performance
to the explainers when in reality that performance depends on variables other than just
its complexity and the target model. A sample instance of such hierarchical linear model
can be as follows:

Vi = Bodlilelilsti) + Brelii®i + Boaiysti €i + Baariysti) Mi + €;

Bodes = Bo + Vods + Vodes
Boas = P2+ Vaas (5.2)
B3ads = V3ds

where y; denotes the observed fidelity for the i-th observation of the experiment, e; is the
overall effect of the class of explainers employed in that observation, w; is the effect of
complexity on the explainer, and m; is a sample domain specific variable to control for.
The intercept of the analysis model is defined as a fixed global intercept §( that models
the expected fidelity of an arbitrary explainer for an arbitrary target model, from which we
allow random deviations due to the specific target model (i.e. vogqs ~ A (0,0(2))), and due
to its interaction with the explainer (i.e. voges ~ A (0, 0;)2)).

The effect of the class of explainers is modeled with coefficient 45, which consists in
the overall fixed effect of the explainer (i.e. §2), and a random deviation once again spe-
cific of the target model (i.e. voqs ~ A (0, Ug)). The effect of the explainer complexity is
modeled with coefficient §,,, which represents a different slope for each class of explain-
ers, thus accounting for their interaction effect (i.e. the effect of complexity is more or less
pronounced across explainers). Finally, the domain specific effect of m; is modeled as a
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random effect specific of the target model (i.e. v345 ~ A (0, ag)). Throughout the model,
note that random effects sub-scripted with ds denote a different effect for each combi-
nation of dataset and class of target models, reflecting that a particular target model is
instantiated from a training dataset and does not exists in its own.

By comparing the 3, coefficients, we can make inferences about the general perfor-
mance of classes of explainers, as well as of the effect of their complexity through the S,
coefficients. Such comparisons are sound because they account for the random but irrel-
evant variations due to target models, datasets and domain-specific factors. Nonetheless,
specific cases may still be analyzed when looking at the v coefficients as well (e.g. a target
model being specially easy to explain, that is, a high v(4, value).

Subsequently, the data should be collected to fit the model and infer the effect of each
variable of interest. Significant effects with respect to the explainers can be examined.
For instance, post-hoc methods such as the estimated marginal means (EMM) allow us to
estimate main effects controlling for other variables. For the specific model suggested by
(5.2), effects of the explainers, the complexity and the interaction of those two factors can
be examined by EMM. Additionally, the random effect v3;; can be examined to assess the
potential effect of the domain-specific feature if the effect shows the substantial variability.

Another benefit of the suggested framework is its generality. For instance, under bi-
nary classification such as the spam detection, the decision is given by the binary indica-
tor p € {0,1}. Once the explanation is given with the certain complexity, approximation
can be made based on the explanation. It may be a score or the probability per each of
the decision. The fidelity then can be computed by the area under curve of the reciever
operating characteristic (AUC-ROC) against the original binary decision. On the other
hand, in a multi-class classification scheme, posterior distribution of the classes can be
explained by the explainer with respect to the input variables. Once the approximation
of the target distribution is made based on the explanation, fidelity can be computed by
the KL-divergence. Or, one can also adopt the framework where the output is given as the
ranked list of elements such as the retrieval or the recommendation. Once the ranked list
is reconstructed from the explanation, the fidelity can be measured by the rank correla-
tion.

5.3. USE CASE: RECOMMENDER SYSTEMS

In the remainder of this paper, we apply our proposed evaluation framework to the RS do-
main, considering various typical recommender models, a range of explainers, and mul-
tiple recommender datasets.

5.3.1. RECOMMENDERS

Explanations are ultimately intended for humans, who should be able to understand them
with limited resources. As discussed in Section 5.2, this can e.g. be done by employing a
discrete vocabulary of humanly understandable attributes for each data point of interest.
In RS scenarios, tags associated with items to be recommended are a natural choice for
this: they form a discrete and limited vocabulary, while still describing the items in a rich
way. In terms of digital representation, each RS item can be represented as an N-hot vec-
tor, encoding what tags are relevant to the particular item.
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While in this work, we seek to evaluate the performance of explainers, we have to be
aware that their performance will be intimately tied to the performance of the black-box
models they operated on, which in the current case will be recommender systems. Thus, it
will not suffice to consider explainers on a single RS. Instead, we choose to study a number
of representative recommenders, whose characteristics are distinctive from each other, as
discussed below. For simplicity, in the remainder of this text, we will use “model” and
“recommender system” interchangeably.

ITEM NEIGHBORHOOD (INN)

Neighborhood-based methods have been employed in RS for a long time, and can be con-
sidered as linear models, which are explainable by design [15, 16]. For instance, for a given
set of interaction records between a set of users % and a set of items .#, item-based neigh-
borhood models can be expressed as [16]:

P=RS’ (5.3)

where P € Rl is the score matrix to determine which item should be recommended
to the user. R € R%*I¥1 is the sparse interaction matrix between users and items, where
the scores either can be explicit user feedback of users (e.g. ratings) or implicit feedback
(e.g. interaction counts). Finally, the $* € R*1*I denotes the similarity matrix between
items. Ultimately, the recommendation for user u is given by the list of items that is sorted
by the scores P, in descending order.

A common approach to construct the similarity matrix is using R, applying a distance
function between two slices of vectors indicating which users interacted with the target
item. In this study, however, we employ the information of tags associated to the item to
build a linear tag-aware recommender. From a given set of tags 9~ associated with the
items, one can then construct S as follows:

T .77

s/ =— 1 5.4

S VIR o

where T € RI*I7 1 is the sparse annotation matrix of tags to the items. Each element

indicates the degree of relevance of tags to each item. And T‘i} indicates the vector cor-

responding to item i. By exploiting the high sparsity, alternatively, one can also compute
the similarity efficiently through the low-rank approximation of T as follows:

s’ =007 (5.5)
TV =UzV’ (5.6)

where U € R 'Xh, V € R ¥ are the orthonormal singular vectors that are truncated at
the dimensionality of &, and the X € R"*" is a square matrix whose diagonal entries are
the singular values of T. U denotes the truncated singular vectors U that is normalized by
the L2 norm of each row. By substituting $ in (5.3) by (5.5), (5.3) can be reformulated as
the form of an alternative matrix factorization as follows:

P~QUT (5.7)
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where Q = RO € R?*" can be seen as the user factors while U can be treated as the item
factors.

Given its linear relationships, another benefit of the tag-aware neighborhood model is
that it can operate on newly introduced items. For instance, one can compute the score of
anew item / with tags T; as follows:

P, ~Q,U; (5.8)

where U; = T;VE € R" is the inferred item factor from the tag input T;, and P,,; is the
estimated preference score for user u to the new item /.

USER NEIGHBORHOOD (UNN)
In a similar manner to the item-based neighborhood model, we can also build a user-
based neighborhood model:

P=S%R (5.9)

where $% € RI%!*1%! is the user similarity matrix, which can be derived similarly to (5.4)
by substituting the item-tag matrix T with a user-tag profile T# € R%!*171_ In this study,
due to the lack of an explicit user-tag profile, we derive it by using the interaction matrix
R and the item-tag matrix T:

T% =RT” (5.10)

Following the same procedure of (5.5) and (5.6), ultimately we can obtain another form
of matrix factorization that exploits the user-tag profile:

P~ 0%y (5.11)

where U% € R%!*" are the truncated left singular vectors decomposed from T% as (5.6)
and used as the user factors, and Y = UZTR € R"*1# are the item factors.

FACTORIZATION MACHINE (FM)

Introduced in [17], Factorization Machines are not only a generalization of the matrix fac-
torization, but also one of the flexible models that allow one to employ item or user at-
tributes to the model. In this study, a second-order factorization machine is used. For
the objective function we employ the negative sampling loss [18]. Further, item tags are
considered as a third set of entities, along with the users and items.

NEURAL COLLABORATIVE FILTERING (NCF)

Neural network models can exploit complex and non-linear relationships between enti-
ties, and thus have become an increasingly popular choice when seeking to optimize for
accuracy. In this work, we employ a model similar to the Neural Collaborative Filtering
approach proposed in [13]. To incorporate the tag information, we model the item factors
of the model as a linear combination of the raw item factors z; € R" and the tag factors
Z: € R" that are associated with the item i as follows:

1
z] =zi+— ) 2 (5.12)
|Jl| teg'i

where J; denotes the set of tags associated with the item i. Finally, we choose to use the
same objective function as the FM.
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MEASUREMENT

To assess how the recommenders perform, we will measure their accuracy and diversity, as
they represent two important aspects of good recommendations. In particular, we com-
pute the Normalized Discounted Cumulative Gain (nDCG) as the main measure for rec-
ommendation accuracy. As for diversity, we compute the entropy based diversity [19]:

p
eDiv,=-)_ qjlog(q;) (5.13)
j=1

where g; denotes the number of users who have the item j, normalized by the number of
total top- p items delivered to the subset of users. Since the range of the measure is deter-
mined by p and the number of subset of users, ultimately one can have the normalized
diversity measure:

nDiv, = eDivy,/log(p|%')) (5.14)

where %' € % may the subset or the entire set of users within the dataset.

EXPERIMENTAL SETUP

For each non-baseline recommender, we instantiated 3 models whose embedding dimen-
sionality h is {32,64,128}, respectively. For learning the FM and NCF models, we use 10
negative samples to minimize the objective function and Adam solver [20] is in particu-
lar used. To further accelerate the learning, we pre-trained the user factors and the tag
factors using Weighted Regularized Matrix Factorization [21] (WRMF), and reuse them for
FM and NCF training. Finally, we set the hidden layer dimensionalities of the NCF models
to 1024.

5.3.2. EXPLAINERS

In our work, we will consider a set of model-agnostic explainers, as explained below. For
each of the explainers, we consider explanations to be represented as a vector 8 € R,
indicating the positive or negative influence of a corresponding item attribute t € 9 for
the instance of the prediction. This assumes that the user u and the item i are fixed,
such that we can only observe the relative influence of attribute inputs. Consequen-
tially, an explainer also is able to infer the approximated score for the ranking items as
f(u,i,t) ~ g(t,0) = 0t7. Specifically, we set Q such that only top-w attributes have non-
zero coefficients following [4]. In case we cannot force this constraint while the explana-
tion vector 6 is derived, we simply keep the top-w elements, and mask rest of the elements
to zero after the fully dense explanation @ is obtained.

RANDOM

Serving as a baseline, explanations from this method are formed by values drawn from the
normal distribution:

0; ~A(0,1) (5.15)
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PARTIAL DEPENDENCE PLOT

The partial dependence plot (PDP) is useful for illustrating the marginal effect of one or
two features against the output of the model [22, 23]. It is a global explanation method,
where dependencies from the feature dimension to the output are identical for predictions
from different samples. Under the context of this study, such globality holds at the user
level. Formally, it is defined as follows:

0P —Eulf (i, 1,1)] (5.16)

where f is the recommender to be explained, and input u, i, ¢ correspond to the target
user, item, and tag, respectively. The score is the expectation over all the output of f given
its inputs, plus the additional tags ¢’ that are drawn from the powerset P(J" \ t), which is
the set of all the subsets of tag J, excluding the target tag ¢. By the marginalization, Hf ap
only depends on the given user, item, and the target tag t. However, the size of powerset
|P(9 \ 1)| exponentially increases with the number of unique ¢. An efficient estimation of
function Hf P can be obtained through a Monte-Carlo approach, using the samples from
the dataset:

0" ~ 1S i et (5.17)
\Tul yieT,
where .#, is the set of items from the histories of user u, T; is the N-hot tag vector of item
i. fu,; refers to the recommender, operating for a specific user u and item i. Note that
the explanation is obtained by the marginalization over the items that are interacted with
each u. It eventually makes the explanation as the user-level explanation.

SALIENCY
If the target function is differentiable, one can approximate the linear dependency be-
tween the input variables and the score using the partial derivative [8, 24]:

_0f (i, 0
- ot

It estimates the input-output relationship between the target tag ¢ and the output score f
by computing the first-order Taylor expansion [8], yielding local explanations.

6; (5.18)

LIME

LIME [4] is a model-agnostic approach that employs an interpretable surrogate model to
explain a complex target function. Specifically, the local surrogate model g learns the
local behaviors of a given model f(x) from the near neighbors of a given sample x, by
perturbating the variables of inputs within a certain proximity boundary 7, while not
only maximizing the fidelity £ but also minimizing the complexity Q. In the context of
our study;, this can be defined as follows:

g=argmingeg L (fui, t,7) +Q(g) (5.19)

where ¢ is the set of interpretable models, £ is the loss function measuring the fidelity of
the model g to the target model f, and Q measures the complexity of the explainer g. Any
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scalar function measures the ‘faithfulness’ of g to f can be used for £, such as weighted
mean squared error:

1
Lfuitm)=— Y m)(f(ui,v-gt)? (5.20)
Mt’GZi

where t,t' € R denote the N-hot vector representations of the tags that are associated
with the item i and their random perturbation, respectively. Z; indicates the set of M
perturbed samples t'. 7¢(t') is the kernel that indicates the degree of proximity between the
perturbed sample and the original sample, which weighs the loss for each t'. Ultimately,
if g is chosen to be a linear model, such that g(t) = 87t, one can use the learned vector
6 € R as an explanation indicating the impact of each tag on f.

MEASUREMENT
For ranking prediction problems, fidelity should measure the similarity between the list
of items produced by the original recommender and the list of items approximated by the
explainer. One intuitive way to measure this similarity is by computing a rank correlation
coefficient such as Kendall’s 7 or Yilmaz’ 74, [25]. We chose the latter because it is top-
heavy, that is, differences towards the top of the list are penalized more than differences
towards the bottom. In particular, we use the coefficient 74, , [26] because it handles tied
items:

L= Tap,a(fy g (5.21)

where f,g € R" are the vectors of the function values for n items from the recommender f
with a specific user u and the explainer g that targets f, respectively. The need to handle
ties is due to the sparsity of the explanation vector. Another advantage of 74 4 is that it
is asymmetric, whereby, in our case, f is considered as a reference ranking and g as an
approximation. As such, 7,y 4 can be interpreted as a measure of the accuracy of g with
respect to f [26], which is precisely what we look for.

5.3.3. DATASETS

Each recommender model will be instantiated in a data-driven way. Thus, recommenders
may show different behaviors for different types of consumption datasets. In our current
experiment, we therefore consider multiple datasets, including both public and propri-
etary recommendation data, as summarized in Table 5.1 and further discussed below. All
these datasets contain the interaction count or ratings of each user for the items they in-
teracted with, along with tag annotations for each item. Considering the diverse noisy
characteristics for each dataset, we employed filtering for both user-item interactions and
the tags, tailored to the characteristics of each particular dataset. Details about the nature
of this filtering process are presented in the Reproducibility section.

For our analysis, to investigate the underlying potential association between user char-
acteristics and explainability, we will also consider a user-related feature: the mainstreami-
ness [27] of each user. More specifically, the mainstreaminess measures the distance be-
tween the global popularity of the songs and the individual preference distribution over
the songs [27].k

IAs outlined in our Reproducibility section, further user features were initially investigated, but all of these
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Table 5.1: Detailed properties of selected dataset.

#Users #ltems #Tags #Nonzero Density

Goodbooks 53k 10k 34k 6m 1.12%

LFM1b 107k 466k 1.3k 56.5m 0.11%

MSD 500k 90k 8.6k 28m 0.06%

Internal 332k 134k 27k 30m 0.07%
GOODBOOKS

Goodbooks-10k [28] is a book recommendation dataset. It includes the 10,000 most pop-
ular books and 5-point ratings for those books from 53k users, and also includes a rich set
of user-generated tags related to the books. We framed the ratings as implicit feedback
from users, to align this data with the further datasets considered.

MILLION SONG DATASET

The Million Song Dataset (MSD) [29] provides both the music listening history of users
and the tags per songs. The listening history has been collected until 2011 in the former
Echonest service, where the listening counts of users were accumulated over time. The tag
data is collected by cross-matching the songs with information from the LastFM platform,
in which a large number of users voluntarily annotated songs with free-form tags, thus
introducing substantial noise in the dataset. Hence, we sub-sampled the dataset to about
to the half of the original scale, by filtering less active items and users.

LFEM1B

LFM1b is another music listening dataset, collected from the LastFM platform [30]. Unlike
the MSD, the listening interactions are provided as individual events, which are accumu-
lated to one billion records. However, to employ the dataset under the same experimental
setup, we marginalize the individual listening records such that the format of the dataset
becomes identical to the MSD.

Another difference between the MSD and LFM1b is the source of tag annotation, which
is derived from acknowledged knowledge bases, such as freelmse2 [31], thus having less vo-
cabulary noise than the MSD. At the same time, the dataset provides tags at the artist level,
rather than the song level. For our work, we therefore consider each song of a given artist
to be annotated with all tags applying to the artist.

INTERNAL

Finally, we also consider proprietary music listening behavior data, which we denote as
Internalfor the rest of the work. This data is collected from an active on-line music stream-
ing service, containing the entire set of user-item transactions within 8 days during April
2019. While this is a relatively short collection period compared to other datasets, the de-
scriptive statistics show that in terms of size, the dataset compares to the other datasets,

turned out heavily cross-correlated. Given space constraints, we therefore chose to only report on mainstreami-
ness in this paper.
’https://developers.google.com/freebase
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indicating a potential discrepancy between real-world data volumes and traditional re-
search datasets. As an extra interesting aspect, unlike the other datasets, which were more
Western-focused, the Internal dataset considers a streaming service strongly tailored to
an Asian domestic market, thus being likely to show different consumption trends par-
ticular to this market. Tags in the music service are offered at the level of playlists, and
made by certified curators, who mostly perform the annotations in their domestic, non-
Western language. To move from playlist-level tags to song-level tags, for each song, we
take the union of music tags that were associated with the playlists containing this song.
Consequentially, songs that are not included in any playlists are excluded from our study.

5.4. RESULTS

5.4.1. RECOMMENDATION

We first measure the recommendation performance as explained in 5.3.1, and compare it
to several baselines.® This gives us a general overview of the model performance on this
use case, allowing us to detect irregular or outlier model behavior that would affect the
study of explainability. The baselines we compare to are:

* WRMF (Weighted Regularized Matrix Factorization) [21], developed for implicit feed-
back such as the music listening count. We tested the algorithm with the same latent
size h as in the aforementioned models.

* Most Popular method recommends the most frequently interacted items within the
dataset.

* Random method recommends items at random from the set of items not yet con-
summed by the target user.

As Figure 5.2 indicates, nDCG scores vary widely across datasets and recommenda-
tion models. The best results are observed on the Goodbooks dataset (0.3173 + 0.13), fol-
lowed by the Internal dataset (0.2126+0.10), MSD (0.1248+0.07) and LFM1b (0.1133+0.06)
dataset. On the other hand, diversity performance follows the opposite trend. Within
models, WRMF is indicated as the most accurate model in most of the cases. However,
it is not as diverse as the others, except the Most Popular algorithm and the uNN. NCF
follows WRMF in terms of accuracy, while showing slight improvement on diversity. FM,
which follows NCF in accuracy by small margin, shows also a small improvement in di-
versity. Unlike to the non-linear competitors, neighborhood-based models appear to be
substantially less accurate. In particular, we see that iNN is the least accurate model be-
sides the Random recommendation, while it achieves one of the highest diversity scores.

5.4.2. EXPLAINABILITY

We now consider how the various model-agnostic explanation methods perform on mul-
tiple datasets and recommender systems. Figure 5.3 and Figure 5.4 illustrate the explain-
ability performance as a function of complexity and user mainstreaminess, respectively.

3For consistency, we uniformly sampled 1000 users from each dataset and used only those for the purposes of
analysis. This is because it was infeasible for us to compute fidelity scores for all users of all datasets and all
recommenders due to the high computational cost of the explainer implementations [4].
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Figure 5.2: Performance of the recommenders.

Each point indicates the 74,4 score achieved by the explainer for one user. The lines show
alinear fit for each explainer. Such visualization effectively illustrates the overall distribu-
tions, which can reveal the potential interactions among the various factors contemplated
in our framework.

In general, LIME shows the best fidelity, followed by the Saliency and PDP explain-
ers. As expected, the Random explainer achieves a correlation of zero. Among recom-
mender systems, iNN and uNN achieve better overall fidelity than FM and NCF. It shows
that the linearity of the neighborhood based models generally makes them more easily
interpretable.

For all conditions, it is shown that w has a positive effect on explainability. The excep-
tion is of course the Random explainer, which is not affected by w. On the other hand,
Figure 5.4 shows that mainstreaminess has a less consistent trend compared to w. Specif-
ically, we see a larger effect for the non-linear recommender systems.

Employing the analysis model from Equation (5.2), we considered the explainers e and
the number of tags used for the explanation w as the main fixed effects, including the in-
teraction between them. As we observe sub-linearity from Figure 5.3, we will consider
the natural logarithm of w. We set the interaction of the dataset d and the RS s as the
group for the random effect, such that the model can explain the heterogeneity within
groups. Finally, we consider the mainstreaminess m to have the random effect. We com-
pute model fitness by the estimated R?, using the method introduced in [32]. From this,
it is shown that the fixed effects explain the data reasonably well (R? = 0.6023), while the
entire model including both fixed and random effects explains the most of the variance of
the data (R* = 0.9363).
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Figure 5.3: Overview of the explainability measurement. Each point represents the 74p,q measurement of each
user. Each row of panes is dedicated for each dataset, while columns are assigned per recommenders. Colors
are mapped for each explainer. The distinction between different model size / is omitted, not to make the
visualization uncluttered. The horizontal axis is plotted in the logarithmic scale.
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Figure 5.4: Overview of the explainability measurement over the mainstreaminess. The horizontal axis is plotted
in the logarithmic scale.
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Figure 5.5: The estimated marginal mean of the predicted £ 4p,, with respect to w and the explainers. The error
bars in the figure indicates the 95% confidence intervals.

Figure 5.5 illustrates the fixed effects for the w and the explainers from the analysis
model. It indicates that as expected, the number of the tags has an overall positive effect
on the explainability. At the same time, the large confidence interval suggests that other
factors, such as the choice of the recommender or explainer, further affect the explain-
ability. Considering the explainers, again, LIME clearly stands out in comparison to other
explanation model candidates, with Saliency consistently following up. However, consid-
ering the confidence interval obtained for w = 1, PDP cannot be claimed to significantly
outperform the Random explainer.

Inspecting the variance components in the fitted model, we find that mainstreaminess
shows a substantially larger variance component (0.2569) than other factors, such as the
employment of LIME (0.0439), which is the second largest variance component among all
random factors. This is followed by other factors such as Saliency explainer (0.0434), PDP
explainer (0.0101), and the intercept (0.0006).

5.4.3. DISCUSSION

NON-LINEARITY

Our results suggest that there is notable difference between the neighborhood recom-
menders and the other models. As expected, while these linear recommenders are inferior
to their non-linear competitors in terms of accuracy (as also shown in Figure 5.2), our eval-
uation results confirm that they arguably are more interpretable. Thus, there indeed is a
trade-off between explainability and accuracy, and systems may need to optimize for both
criteria.

SPARSITY

As our results show, having a sparsity constraint during the inference of the explanation
(which is a key feature of LIME) has substantial effect on the explainability. It will natu-
rally force its explanation vector 6 to have a small w during the inference, where all other
methods initially yield a dense explanation vector that has to be truncated post-hoc.
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Figure 5.6: Estimated random effect V34 for the the mainstreaminess variable. Labels on the vertical axis indi-
cates the dataset-recommender combinations of interest.*

USER MODELING
As discussed before, applying our analysis model, we find that the mainstreaminess fea-
ture explains a much larger amount of variation than the other random factors considered.
Thus, as a further exploratory study, we examined the estimated individual random effect
of mainstreaminess.

Figure 5.6 illustrates this estimated random effect. Overall, user mainstreaminess has
a positive effect when FM or NCF recommenders are used, except for the case in whiche
FM is used on the LFM1b dataset. Another general trend is that the effects are closer to 0 or
negative where linear neighborhood models are used. This indicates that the more com-
plex RS models pick up mainstreaminess information more strongly than linear models.

5.5. CONCLUSION & FUTURE WORK

In this paper, we proposed an evaluation framework for assessing various model-agnostic
explainers, and applied the framework to the context of recommender systems. As the re-
sults of our experiments show, our framework can reveal underlying differences between
explainers, despite the heteroskedasticity introduced by underlying factors such as the
type of recommender or the dataset.

Our results indicate that the local surrogate model with forced sparsity [4] leads to
significantly better explainability.As expected, we find that complex non-linear recom-
mender models generally will be more accurate, but are more difficult to explain. Further-
more, we find that user factors such as the mainstreaminess [27] may affect the explain-
ability.

In future work, several open challenges can still be addressed. First of all, the explicit
analysis model we chose to use in Equation 5.2 is an instantiation of our framework in

4For instance, “MSD:NCE” refers the the case where a NCF recommender is learned from the MSD.




118 REFERENCES

itself, and can still be further refined and improved to account for further potential factors
and interactions.

Furthermore, in existing work on model-agnostic explanation methods, explanations
were based on input features directly. Under the RS scenario, suitable input features can
have many different forms (e.g. item identity, signal properties, discrete attributes asso-
ciated to the items). In the current work, we considered discrete attributes, but our ap-
proach can be generalized to also consider continuous variables as attributes.

As one limitation of our current approach, we assumed that each possible attribute
value (i.e. each possible tag) can be considered to have an equal amount of information
and an equal level of complexity. This may not be realistic in practice, and further research
is needed to assess whether the explainability measurement will be biased in undesired
ways by this assumption.

Ultimately, a human user will always have the final word on the best explanation [9].
In our current work, we deliberately chose not to focus on user-facing studies yet; this will
require further careful consideration in how explanations will be presented, both in terms
of content and in terms of user experience. Instead, with the current work, we aimed to
offer a tool to perform offline sub-component evaluations as an intermediate step towards
final user studies. As our framework can help to systematically and objectively inform
what explanations are sufficiently effective, such explanations can be prioritized in the
further work necessary to conduct user studies and assess end-user satisfaction.
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Throughout the main body of the thesis, we delivered a series of studies addressing ways
to incorporate principles of trustworthy ML into ML practice. We conducted these studies
in the music domain, but state confidently that the main insights acquired are generally
applicable. In this concluding chapter, we reflect on the conducted research, distil the
main recommendations for the community of ML researchers and practitioners, and pro-
pose the way forward.

6.1. ON RELIABLE USE OF PRE-TRAINED NEURAL NETWORKS

One of the emerging practices in modern ML is to rely on adopting the neural networks
pre-trained on a (source) task, and apply them for learning a new (target) task. The un-
derlying assumption is that one could obtain a well-performing ML system with only a
handful of training data points at hand, if the pre-trained network is already well trained
on a relevant source task, that used a representative dataset at scale. The main question
related to the effectiveness of this transfer learning is to what extent the pre-training on the
initial task is “useful” to a new task. When answering this question, however, one needs
to know what “usefulness” means in a given context. Is it related to the overall accuracy
gain brought by the pre-trained network, or should the robustness to noise be the primary
concern over the accuracy gain? We referred to these two specific qualities as the trans-
ferability and robustness, respectively, and conducted studies that empirically assess those
two qualities of the pre-trained networks on music data and under diverse task conditions.

The investigation in Chapter 2 shows that using a neural network pre-trained on a
single source task is not likely to lead to high general transferability to different target tasks.
In other words, we found no single source task that secures transferability to all target
tasks in our experiments. We derived this conclusion based on the experiments involving
network pre-training on a range of source and target tasks, and by varying the learning
capacity of the network. Our experiments indicate that considering multiple source tasks
helps achieve more reliable transfer learning in a general case. Therefore, if the resources
allow multi-task pre-training, we advise pre-training the network using a variety of source
tasks. As an alternative option, we suggest deploying multiple pre-trained networks as
an ensemble, where each network is pre-trained on a different source task. Further, in
Chapter 3, we reassure the effectiveness of the conclusion. We employ the best transfer
learning strategy found in Chapter 3 to the independent music classification challenge
and successfully achieve the best accuracy among the participants.

The investigation in Chapter 4 points out the need to carefully check the robustness
of pre-trained networks to input perturbation, before deploying them for transfer learn-
ing. This is important, as even a hardly perceptible change in network input can lead to
substantially irregular behavior at the output. We devised a way to measure this robust-
ness, without the need for the full original data of the source task, and before deploying
the network to learn for a target task. In essence, our method measures to what extent
the internal representation of an input data point drifts away from the original position,
after introducing a perturbation. Robustness would imply that the position remains close
enough if the perturbation is barely perceptible. As the assessment procedure is indepen-
dent of either source or target task, it only requires a few input data points and the network
itself.

To our surprise, we observed that all of the considered networks violate the expec-
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tation to be robust. Even a minimum perturbation could substantially deform the rela-
tional structure between data points. We also observed that the choice of the source task
can make a substantial difference in making the network robust. Semantically high-level
source tasks (i.e., music auto-tagging) lead to relatively more robustness to input pertur-
bations than lower-level tasks (i.e., auto-encoder). These insights lead to a number of
recommendations. First, if small perturbations in input data are expected, networks pre-
trained on semantically high-level tasks should be considered more suitable for transfer
learning than the networks pre-trained on lower-level tasks. If larger perturbations are ex-
pected, a conventional feature encoder would be the preferred choice over transfer learn-
ing. Second, if it is feasible for the practitioners to pre-train the network from a source task
on their own, we recommend using the experimental elements we suggested in various
ways to ensure robust pre-training. For instance, the robustness criterion can be used as
regularization during the training, or perturbations can be used to augment the (source)
dataset. Finally, our observation that transferability and robustness of pre-trained net-
works should not be taken for granted, also points out the need for a more structured and
comprehensive approach to transfer learning. We believe the community should become
better aware of various properties of pre-trained models up front. It would be beneficial
to work together to build a centralized repository of pre-trained models, in which char-
acteristics such as robustness or general transferability are measured and registered. This
would enable identification of the right networks for a given transfer learning task. We
believe that our proposed testing method aligns well with such an approach, and could be
used in automated testing frameworks, that can report on the robustness of a network to
perturbations.

6.2. ON MAKING THE ML SYSTEMS BETTER EXPLAINABLE

High learning capacity and expressiveness of modern ML models, and in particular deep
neural networks, are crucial factors that differentiate them from the conventional ML
models. These factors, however, go together with the fact that modern ML models are
exceptionally complex, making their learning and decision-making processes hardly ex-
plainable. This may hamper wide adoption of such models as the key elements of our
socio-technical infrastructure, because explainability is the key to reliability and account-
ability of ML-automated decision-making processes.

While the issue of explainability is gaining attention in the research community, the
effort to actually improve the explainability of complex ML systems is still in its infancy.
In addition to addressing reliability issues in transfer learning, the studies introduced
throughout Chapter 2 and Chapter 4 were also intended to provide a contribution in this
respect. As discussed, multi-task learning can be useful for partially understanding the in-
ternals of the black-box models. Furthermore, provided that one can design and conduct
the pre-training stage, multiple tasks can provide multiple explanatory factors for specific
parts of the internal layers. However, in many practical transfer learning scenarios, control
over the design of the pre-training stage is rare. This implies that post-hoc testing would
be necessary to understand, for instance, the sensitivity to irregular behavior at the input.

A more promising approach would be a more explicit one, deploying post-hoc expla-
nation methods, which approximate a black-box model with an interpretable explainer [1].
While many model-agnostic explainers have already been suggested and widely deployed,
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an evaluation framework enabling the users to choose the best explainer based on ob-
jective criteria would make this approach more effective [2]. In Chapter 5, we propose
such an evaluation framework, which enables one to measure the quality of the expla-
nation provided by different post-hoc explanation methods when applied to a black-box
system. The quality is evaluated by analyzing the interplay between two relevant mea-
surements: fidelity and complexity. Fidelity refers to the extent to which the interpretable
explainer model can approximate the target black-box model in terms of its input-output
relations. Complexity, in contrast, measures how complicated (e.g., “long”) the resulting
explaination is. Intuitively, a more complicated explanation could be expected for more
complicated systems. Since, however, the complexity of the explanation may increase the
cognitive load at users, we suggest searching for the explainer with sufficient fidelity, but
minimum possible complexity.

The proposed framework is also flexible enough to allow inclusion of domain-specific
factors potentially associated with the explainability. For example, in the recommender
systems context used as the testbed in Chapter 5, we rely on “user-mainstreamness” as
a domain-specific factor. The underlying rationale is that mainstream users would likely
consume less diverse, popular items, making it easier to explain the underlying recom-
mendation mechanism. The population of niche users, by contrast, presumably are in-
terested in niche, long-tail items, the recommendation of which could be based on a less
explainable rationale.

6.3. THE WAY FORWARD

Machine learning solutions are increasingly embedded in a wide range of software solu-
tions, empowering automated decision-making. The decisions made through ML-based
algorithms are increasingly affecting the way we live. it therefore is imperative to develop
powerful evaluation frameworks for ML models, that can assess their decision-making
abilities beyond accuracy alone, in order to increase their trustworthiness.

While the research conducted for this thesis targeted music data and application do-
mains, we emphasize the “transferability” of insights from our work to other domains and
data types. For example, the use of multiple source tasks to train a network to be de-
ployed for transfer learning can help overcome typical problems of incompatibility be-
tween source and target tasks. Since such incompatibility is likely to appear in any do-
main, the suggestions from Chapter 2 can be followed in other cases and domains too.
The same can be said for the proposed testing framework to assess the robustness of a
pre-trained network with respect to input perturbations described in Chapter 4, as well as
the method proposed in Chapter 5 to assess post-hoc model explainers. All three contri-
butions are data- and application-agnostic, and therefore applicable to any given domain
with minimum adaptation.

We therefore invite researchers and practitioners from different domains to apply the
insights from this thesis, to report to which extent our frameworks and methods will in-
deed shed light on trustworthiness issues in broader ML application domains, and to use
obtained insights to help resolving these issues. We argue that ML system trustworthiness
should receive more focused attention, both as an integral part of the research process,
as well as in quality assurance processes for ML system development. Here, widespread
community effort will be critical for success.
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For example, as indicated in Chapter 2 and 4, assessing and opting for the best set of
pre-trained networks for the transfer learning scenario only is possible, if a diverse range
of networks is already available. It is, however, also important to structure this widespread
effort, so it is maximally effective. This requires an adjustment of the focus of the pub-
lications reporting such networks. For example, the networks are often published in a
research paper that typically describes the network properties and the network’s learning
setup. While this can be used as a “manual” for the users of those networks, it may be
insufficiently informative for the readers interested in applying such networks for transfer
learning. For the latter purpose, for instance, one would also expect more explicit listing
of the specific data points that were used for the training, which is essential to avoid over-
fitting during the transfer. In other words, we plead for more elaborate standardization
in assessing and reporting about a neural network model, in ways that are sufficiently in-
formative for future considerations. Unified reporting schemes, such as the model card
[3], may be a solution to this, providing examples on how to generate and document a
network’s description and its assessment from diverse angles (including trustworthiness
principles), along with the data, task, and possible confounding factors.

Furthermore, regarding trustworthiness assessment as part of quality assurance in ML
model development, we are aware of the Software Engineering community’s emerging
interest in Testing for Machine Learning [4]. We believe that interesting connections can
be made between our current contributions and the testing techniques researched in this
field, and that future work combining the fields’ insights will lead to further refinement of
systematic ways to improve ML trustworthiness in practice.

In addition to applying the insights from this thesis to other domains, it also is of vital
importance to keep a close eye on how trustworthiness will be operationalized. As briefly
discussed in the introduction, trustworthy ML principles and guidelines are not necessar-
ily sharply or consistently defined. Therefore, we expect that in many practical scenarios,
the formulation, interpretation and operationalization of these principles for use in tech-
nical frameworks will need several iterations with relevant stakeholders, in order to reach
practically relevant and workable common ground.

For instance, the research reported in this thesis builds on a specific definition of ro-
bustness, which focuses on perturbations induced by semantically relevant transforma-
tions of input data. However, the robustness can also be investigated with respect to
semantically irrelevant transformations that could hamper the expected model’s perfor-
mance [5]. Another aspect of robustness that requires attention is related to malicious
data transformations to attack a ML system in an adversarial learning context. Addressing
such diverse perspectives, and incorporating them into ML practice, is critical for broad
and effective ML trustworthiness.

Finally, as already hinted when referring to stakeholders: trustworthiness cannot be
defined or established without considering human designers and users of ML systems.
Therefore, the human factor is explicitly important to ML trustworthiness too. The per-
ception and interpretation of trustworthiness by the human designers and users of ML
systems needs conscious focus, and possible revisions throughout the development pro-
cess. Next to the technical frameworks and methods proposed in this thesis, this requires
a sufficient breadth and depth of user studies, which will help to understand how to fine-
tune and deploy these frameworks in practice, and to improve human-in-the-loop feed-
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back mechanisms. Finally, this calls for an inter-disciplinary approach to developing ML
solutions, also including insights from human-computer interaction. [6].
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