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Introduction

During the last decades the application of composite materials in engineering
structures has become increasingly popular. Especially in aircraft and space struc-
tures composites are preferred above conventional materials because of their ad-
vantageous strength/stiffness versus weight ratios. In addition, the search for new
and improved materials in aerospace industry has stimulated the development of
hybrid materials partly made out of composites, such as Fibre-Metal Laminates
(FMLs). These materials are composed of alternatively stacked aluminium and
fibre-reinforced composite layers, see Figure 1.1, such that the best features of
both constituents are combined. The development of FMLs came forward from
the manufacturing of metal laminates, which originally started with the English
aircraft manufacturer De Havilland as the first company bonding metal sheets to-
gether. Later, after the production plant of Fokker was destroyed in the Second
World War, Fokker could not afford to invest in large milling machines for produc-
ing integrally stiffened panels, as a result of which Fokker engineers were stimu-
lated to search for new technologies. Accordingly, a different structural concept
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CHAPTER 1. INTRODUCTION

was adopted to tailor the local strength of aircraft components: laminated struc-
tures with bonded stiffeners and doublers. This was the start of the manufacturing
of metal laminates that eventually led to the development of FMLs [78].

1.1 Fibre metal laminates

In the early days of laminated structures, it was not known that the fracture tough-
ness and the fatigue properties of a laminated sheet are superior to those of a
monolithic metal sheet. After performing different types of fatigue tests on the
Fokker F-27 centre wings, it was found that laminate structures have a favorable
resistance to fatigue crack growth. Cracks start to grow in a single layer, but the
intact, adjacent layers effectively bridge the crack, thereby considerably reduc-
ing crack growth. Numerous experiments performed on FMLs with large fatigue
cracks in the aluminium layers confirmed the excellent fatigue performance of
this material [78]. Under realistic cyclic loading conditions, FMLs show crack
growth rates that are 10 to 100 times lower than those in monolithic aluminium.
The ’crack bridging’ mechanism responsible for the improved fatigue resistance
causes the stress intensity at the crack tip in the aluminium layers to be reduced by
crack closing stresses in the intact fibres in the wake of the crack. Substantial fibre
failure does not occur under fatigue loading, because the generation of controlled
delamination at the interfaces between the metal and fibre-epoxy layers relaxes
the fibre stresses.

The first generation of FMLs is represented by a laminate called ARALL1.
This laminate is reinforced by aramid fibres and was developed primarily for
wing applications. Nevertheless, studies performed on a full scale Fokker 27 wing
panel showed that ARALL is quite sensitive to strength reductions caused by holes
drilled in the material and that locations with thickness strengthening (i.e., dou-
blers bonded on the structure to increase the strength) are susceptible to premature
fatigue cracking. However, the large wing panel made of ARALL was subjected
to three times the design load duration for an F-27, i.e., a cyclic loading repre-
sentative of 270.000 flights. The tests showed that only minor cracks appeared

1ARALL is an acronym for Aramid Reinforced ALuminium Laminates
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1.1. FIBRE METAL LAMINATES

Figure 1.1: Typical lay-up of a fibre-metal laminate (reprinted from [56] with kind
permission of Joris Remmers).

in some of the outer layer of ARALL. Essentially, an equivalent aluminium part
would have failed dramatically under these loading conditions. In addition to the
increased safety level, a weight saving of 33% was achieved in comparison to the
original aluminium design [78].

Unfortunately, ARALL appeared not to be a good candidate for fuselage struc-
tures. Testing related to the application of ARALL in fuselage structures showed
that the aramid fibres around a fatigue crack break relatively easily, as a result
of which a reduction of crack growth in the aluminium layers can no longer be
warranted. The explanation of this phenomenon was found in the poor connec-
tion of the aramid fibres with the adhesive, resulting in fibre pull-out. When the
pulled out fibres are subsequently loaded under compression, they break due to
their relatively low compressive strength. This set-back, however, did not stop the
development of fibre-metal laminates, and in 1987 a new laminate variant called
GLARE2 was introduced. GLARE is reinforced by glass fibres, which have a
higher compressive strength and a better damage tolerance behaviour than the
aramid fibres in ARALL [17]. This material, which was developed at the Delft
University of Technology, is ideally suited for being applied in fuselage structures.

Research on impact resistance showed that under relatively low loading ve-

2GLARE is an acronym for GLAss fibre REinforced laminate
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CHAPTER 1. INTRODUCTION

locities GLARE behaves as good as aluminium and is superior to carbon fibre
composites [77]. In addition, under relatively high loading velocities the impact
resistance of GLARE is much better than that of aluminium. It was further con-
cluded that damage in terms of denting of the aluminium layers can be easily
detected due to clearly visible plastic deformations. This is a difference with
composites, which typically fail in a more abrupt, brittle fashion, such that it is
much more difficult to detect damage (on time). The first commercial applica-
tion of GLARE goes back to 1990 when, due to its excellent impact properties, it
was used in the cargo floor of the Boeing 777. Extensive fire resistance tests per-
formed by Boeing demonstrated that GLARE also has an excellent burn-through
resistance. The fire resistance tests were carried out up to temperatures of 1200◦

Celsius, and demonstrated that GLARE prevents complete penetration of fire for
more than fifteen minutes [77].

In the early nineties, Airbus Industry started a design study for a very large
passenger aircraft. This aircraft was intended for short and long range passenger
transport with a capacity between 550 and 800 passengers, as well as for pure
freight and combined freight passenger missions. The final aircraft design was re-
leased in 1996, and was named A3XX. At that time GLARE was already regarded
as a potential candidate for being applied in the construction of the fuselage of
this aircraft. Consequently, in The Netherlands (i.e., at the Delft University, the
National Aerospace Laboratory and Stork Fokker) research on GLARE increased
significantly. Studies on fuselage structures of the A320 showed that with GLARE
a weight saving of 25.9% could be reached over aluminium. In addition, investi-
gations on the Airbus A330 and A340 demonstrated a weight saving of 20% and
14 − 17%, respectively, as reported in [78].

A disadvantage of GLARE is that this material is more expensive than a tra-
ditional aluminium alloy, which appeared to be the main obstacle for its direct
application. Nonetheless, after an extensive cost study it was indicated that, al-
though the material costs of GLARE are high, the total costs of a finished GLARE
product come very close to those of an aluminium product. This led to the con-
clusion that GLARE should not be produced as a sheet material, which has to be
shaped and machined into a product as is done for aluminium, but as a compo-
nent. Accordingly, the material is laid-up and cured in a curved mould such that

4



1.1. FIBRE METAL LAMINATES

Figure 1.2: GLARE panel used in the upper part of the fuselage of the Airbus
A380 (reprinted from [40]).

after processing a product comes out of the autoclave with the right shape for a
specific aircraft application. The final product thus includes the appropriate local
fibre orientations and reinforcements with respect to the application it is meant for.
With such a manufacturing procedure, the number of production steps, and thus
the costs, are reduced significantly. This finally led to the application of GLARE
in a significant part of the Airbus A380 fuselage, see Figure 1.2, and in the leading
edges of the vertical and horizontal tail planes.

1.1.1 GLARE lay-up

Nowadays GLARE is produced in six different standard grades. These grades
are all based on (various) fibre-epoxy (prepreg) layers composed of unidirectional
S-glass fibres embedded in a FM94 adhesive. The S-glass fibres have a diameter
of approximately 10μm. An individual prepreg layer with UniDirectional (UD)
fibres has a nominal thickness of 0.127 mm and a nominal fibre volume fraction
of 0.59. It is possible to stack prepreg layers with different fibre orientations in
between two aluminium layers, resulting in different standard GLARE grades. As
an example, the fibre-epoxy layer of the grade GLARE 4 has been presented in
detail in Figure 1.3. The GLARE grades, the grade and thickness of the metal lay-
ers, the orientation of the UD-prepreg layers, the total thickness of the composite
layer and the most important beneficial characteristics, are listed in Table 1.1.

A coding system is used to comprehensively define the laminate grades in
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Figure 1.3: Fibre-epoxy layer in a GLARE 4 laminate. The thickness tr represents
the resin-rich area in the fibre-epoxy layer, whereas tf represents the fibre-rich
area (reprinted from [17]).

Table 1.1. This coding system is important for design, production and material
qualification. For example, the cross-ply laminate schematised in Figure 1.1 is
coded as:

GLARE 3 − 3/2 − 0.3
Indicates the thickness of the aluminum layer
in mm.3

Indicates the number of aluminium (3) and
fibre-epoxy (2) layers.

Indicates the grade of GLARE, see Table 1.1.

The configurations GLARE 1 and GLARE 2 only have fibres oriented in one di-
rection. These configurations are ideally suited for applications with unidirection-
ally loaded structural components, such as stringers, stiffeners and crack stoppers.

3In the case where aluminum layers of different thickness are used, the thicknesses of the indi-
vidual layers are denoted in the order of appearance in the aluminium lay-up.
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1.1. FIBRE METAL LAMINATES

Table 1.1: GLARE grades, composition and main beneficial characteristics
[1, 28].

GLARE Metal layers Prepreg layersa Main beneficial

grade Grade Thickness Orientationb Thickness characteristics

[mm] [◦] [mm]

GLARE 1 7475-T761 0.3 - 0.4 0/0 0.25 fatigue, strength
yield stress

GLARE 2A 2024-T3 0.2 - 0.5 0/0 0.25 fatigue, strength

GLARE 2B 2024-T3 0.2 - 0.5 90/90 0.25 fatigue, strength

GLARE 3 2024-T3 0.2 - 0.5 0/90 0.25 fatigue, impact

GLARE 4A 2024-T3 0.2 - 0.5 0/90/0 0.375 fatigue, strength
in 0◦ direction

GLARE 4B 2024-T3 0.2 - 0.5 90/0/90 0.375 fatigue, strength
in 90◦ direction

GLARE 5 2024-T3 0.2 - 0.5 0/90/90/0 0.5 impact

GLARE 6A 2024-T3 0.2 - 0.5 +45/–45 0.5 shear, off-axis
properties

GLARE 6B 2024-T3 0.2 - 0.5 –45/+45 0.5 shear, off-axis
properties

GLARE HSc 7475-T761 0.3-0.4 see see fatigue, strength
GLARE 2 - 5 GLARE 2 - 5 yield stress

a The number of orientations in this column is equal to the number of unidirectional prepreg
layers in each composite layer. The thickness corresponds to the total thickness of a fibre-epoxy
layer in between two aluminium layers.

b The (axial) rolling direction is defined as 0◦, the transverse rolling direction is defined as 90◦.
c High Strength (HS) GLARE has similar standard fibre lay-ups as in GLARE 2 to GLARE 5, but

contains aluminium 7475-T761 and FM906 epoxy (instead of aluminium 2024-T3 and FM94
epoxy).

GLARE 1 has been replaced by a whole new family of laminates that contains
aluminium 7075-T761 (which has a relatively high yield strength) in combina-
tion with FM906 epoxy (instead of FM904 epoxy). This family is characterised
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CHAPTER 1. INTRODUCTION

by similar lay-ups as GLARE 2 to GLARE 6 listed in Table 1.1. GLARE 3 is
suitable for applications with equibiaxially loaded structural components, such as
parts of a fuselage skin and bulkheads. GLARE 4 is suitable for locations in the
fuselage where the load in one direction is twice the load in the other (perpendic-
ular) direction. GLARE 5 has a particularly good impact resistance and therefore
has been used in impact critical components, such as floors and cargo lines. Fi-
nally, GLARE 6 has a strong off-axis and shear failure resistance, and thus can be
applied to structural parts subjected to high shear loading.

1.1.2 Mechanical properties of GLARE constituents

The mechanical behaviour of GLARE is based upon the mechanical properties of
its constituents, i.e., the aluminium and fibre-epoxy layers. The main properties
of the constituents are listed in Table 1.2. The effective mechanical properties
of GLARE, in general, vary with the Metal Volume Fraction (MVF), which is
defined by the ratio between the total thickness of the n aluminium layers,

∑n
i ti,

and the laminate thickness ttot, i.e.,

MVF =
∑n

i ti
ttot

. (1.1)

Experimental studies have demonstrated that most basic mechanical properties of
GLARE, such as the ultimate failure strength, yield strength, Young’s modulus,
shear modulus, gross blunt notch strength, bearing strength and specific weight,
relate in a (approximately) linear fashion to the MVF [17].

1.1.3 Characteristic properties of GLARE

As already mentioned briefly, the characteristics of GLARE are generally bet-
ter than those of individual aluminium and fibre-epoxy layers. The most impor-
tant thermal-mechanical characteristics of the GLARE constituents, as reported
in [17], are summarised in Table 1.2.

8



1.1. FIBRE METAL LAMINATES

Table 1.2: The thermo-mechanical mechanical properties of the constituents of
GLARE, as reproduced from [17]. Subscript 1 refers to the rolling direction of
the aluminium while subscript 2 refers to the direction perpendicular to the rolling
direction, i.e., the transverse direction.

Property Dimension UD prepreg Aluminium
(Vf = 60%) 2024-T3

Young’s modulus, E1 [GPa] 54.0 72

Young’s modulus, E2 [GPa] 9.4 72

Ultimate strength, σult [MPa] 2640 455

Ultimate strain, εult [%] 4.7 19

Poisson’s ratio, ν12 [-] 0.33 0.33

Poisson’s ratio, ν21 [-] 0.0575 0.33

Shear modulus, G12 [GPa] 5.55 27.6

Density, ρ [kg/m3] 1980 2770

Thermal expansion coefficient, α1 [1/◦C] 6.1·10−6 23.4·10−6

Thermal expansion coefficient, α2 [1/◦C] 26.2·10−6 23.4·10−6

Corrosion

GLARE possesses a good corrosion resistance. This behaviour can be ascribed to
the usage of relatively thin aluminium sheets. Thin aluminium sheets are manu-
factured by following the rolling process with a relatively fast quenching process,
which leads to less alloy elements at the crystal boundaries of the aluminium and
thus to an improvement of the corrosion resistance. Furthermore, the aluminium
sheets are anodised and coated with a corrosion-inhibiting primer prior to bonding
these to prepreg layers. The outer aluminium layers can be supplied cladded in-
stead of anodised/primed in order to improve the surface corrosion resistance. In
addition, through-the-thickness corrosion in a FML is prevented due to the barrier
role of the fibre-epoxy layers.

9



CHAPTER 1. INTRODUCTION

Damage tolerance

The damage tolerance of GLARE is higher than that of the individual aluminium
and fibre-epoxy layers. The strength of GLARE structures remains preserved
for conditions causing significant strength reduction in aluminium or composite
structures, such as those occurring at rivet holes during fatigue loading.

Fatigue

The fatigue resistance of GLARE is substantially higher than that of aluminium
due to the crack bridging effect explained previously. As a consequence, the crack
growth rates remain very low and at an approximately constant level, thus simpli-
fying the determination of inspection intervals. Further, it has been found that the
fatigue crack initiation period in the aluminium layers of GLARE is significantly
less that of a comparable aluminium 2024-T3 sheet. In monolithic aluminium the
largest part of the fatigue life is characterised by crack initiation while for FMLs
this is characterised by crack growth.

Fire resistance

GLARE has shown to have better fire resistance properties than its constituents.
Although the matrix of composite layers melts, the glass fibres stay intact at tem-
peratures of 1000 ◦C to 1100 ◦C, acting as a fire barrier. Further, GLARE demon-
strates an additional benefit in firewall testing: The heat of the fire enforces thick
laminates to delaminate, which creates a large improvement in insulation. Since
the metal layers behind the first fibre-epoxy layer do not melt, the temperature
inside the laminate remains at an acceptable level. In addition, the intact metal
layers provide some coherence to the structure, preventing its deterioration that
leads to final collapse.

Impact

The impact properties of GLARE grades with biaxial fibre layers are better than
those of aluminium, despite the fact that the impact behaviour of glass fibre com-
posites lies below that of aluminium. The impact properties of GLARE are es-
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1.1. FIBRE METAL LAMINATES

pecially good if the loading is characterised by relatively high strain rates, such
as occurring during hail strike or bird impact. After impact has taken place, it
is possible to observe a dent in the surface of GLARE, which makes the visual
inspection of damage due to impact loads rather simple (as in aluminium).

Others characteristics

• The specific weight of GLARE is approximately 10% lower than that of
aluminium.

• GLARE can be formed and manufactured in a wide variety of shapes.

• GLARE can be machined and repaired using similar tools and procedures
as those used for aluminium alloys.

• Like composites, GLARE is affected by hot-wet ageing under accelerated
conditions. However, since in GLARE there is a large amount of unaffected
aluminium, moisture absorption and property reduction are less in compar-
ison to glass fibre composites.

1.1.4 Possible applications of GLARE

The feasibility of GLARE as an aerospace material is determined by its potential
to establish significant weight savings and reduce maintenance costs for a com-
petitive price. The properties of GLARE listed in the previous section allow for
the applications listed below [78].

Bulkheads

The combination of fatigue, strength and damage tolerance properties makes GLA-
RE attractive for this application.

Cargo barriers

The good impact properties make GLARE very attractive for this application.
Cargo barriers are heavy structures that separate the cargo from the cockpit. They

11



CHAPTER 1. INTRODUCTION

prevent the cargo from seriously damaging the cockpit under crashing conditions.

Cargo containers

The superior impact properties of GLARE provide a good blast resistance.

Firewalls

The excellent fire resistance properties combined with a high impact resistance
and a good formability make GLARE a serious candidate for firewall applications.

Floors in passenger and cargo areas, aircraft doors, lower flap skin, wheel
doors, leading edge of tail planes and cockpit roof

The impact properties of GLARE, in particular those of GLARE 5, allow for
using this material in areas that are sensitive to impact due to, for example, human
handling or bird striking.

Fuselage skin

The good fatigue properties and the high damage tolerance make GLARE espe-
cially suitable for fuselage skins.

Stringers and frames

The extremely high strength and good fatigue properties of GLARE grades with
unidirectional fibre-epoxy layers allow for the application of this material in struc-
tural parts with one dominant loading direction.

Thermal protection systems for space vehicles

The excellent fire resistance of GLARE allows for using this material for the ther-
mal protection of space vehicles.

12
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Upper and lower wing skins

A high fatigue resistance, a high strength and a high damage tolerance combined
with the latest developments in the manufacturing of large-curved panels make
the material ideal for this type of applications.

From the possibilities mentioned above the use of GLARE in fuselage skins,
floors and forward bulkheads has resulted in series applications [78]. Since the
aircraft industry is somewhat conservative, for a new material a long evaluation
and analysis is considered necessary in order to make the application of the ma-
terial possible. Furthermore, for the realisation of new applications of GLARE,
some additional conditions have to be fulfilled, i.e., manufacturers must have con-
fidence in the material concept, GLARE must provide clear benefits over other
materials against acceptable costs, and the material must be sufficiently available.

1.1.5 Long term behaviour of GLARE

It is important that materials used for the construction of aircrafts maintain opti-
mal properties during the entire lifetime of the aircraft. One of the main threats to
aircraft materials are environmental effects, i.e., moisture combined with temper-
ature, ranging from cold, dry air conditions at cruise altitude to hot, humid air con-
ditions in tropical environments. When GLARE is used in humid environments,
it may be susceptible to corrosion. In order to decrease/eliminate the amount of
corrosion, a protective layer can be applied onto the surface of the material. This
may be done through anodisation, by applying a clad layer of pure aluminium
and/or by using a paint system, such as a primer combined with a top coat. The
usage of GLARE in humid conditions may also lead to moisture absorption in
the fibre-epoxy layers, which is undesirable from the aspects of weight increase
and its deteriorating effect on the mechanical properties. The effect of moisture
on epoxy materials is typically notable through processes like swelling, plasticiz-
ing, hydrolysis and physical ageing can occur. Moisture effects may be reversible
or irreversible, which for a large part depends on how moisture is present in the
material. If moisture appears in the form of free molecules, the process is gener-
ally reversible. Conversely, if water molecules are chemically bonded to polymer
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molecules, the process is typically irreversible.
Although under most circumstances the influence of moisture on GLARE is

expected to be relatively small, especially in comparison to conventional compos-
ites, further research is needed for obtaining a more detailed understanding of the
influence of moisture. Nevertheless, this type of research falls beyond the scope
of the present thesis.

1.1.6 Manufacturing of GLARE

For practical applications GLARE was initially produced as flat sheets. The idea
was that aircraft manufacturers would use these flat sheets in order to manufacture
specific components using conventional methods developed for metal structures,
such as forming, bonding, riveting, etc. Several studies showed the benefits of
GLARE in performance and weight saving, but also indicated the high production
costs in comparison to those of conventional aluminium structures. As a conse-
quence, a series of developments related to manufacturing were initiated in order
to reduce the production costs [78]. The main manufacturing developments are
summarised below.

Splicing concept

In the years 1990-1995 GLARE laminates were manufactured as flat sheets. How-
ever, the width of the aluminium sheets used in the manufacturing of GLARE was
limited to 1.65 m, while fuselage skin sheets with sizes up to 2 m and more were
needed. As a solution to this problem the splicing concept was developed. This
manufacturing method consists of positioning aluminium sheets side by side with
a narrow gap of about 1 mm in between, such that 3 to 4.5 m wide GLARE panels
can be obtained. The gaps between the metal sheets are positioned slightly stag-
gered across the thickness of the laminate to prevent substantial strength loss in
a specific cross section. A drawback of the splicing concept is the occurrence of
sudden delamination, especially in the outer aluminium layers of the laminate at
which the transverse stress may exceed 400 MPa. To solve this problem, doublers
were bonded over the spliced area by means of a second autoclave cycle, which
locally reduce the stress and thus the material damage. A disadvantage of these
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spliced panels is that their manufacturing process includes (at least) two cure cy-
cles. However, this problem can be solved by using a self-forming technique, see
below.

Self-forming technique

This technique allows for manufacturing a complete spliced panel (including dou-
blers) in only one cure cycle (thus avoiding the difficulty of manufacturing spliced
GLARE panels in two cure cycles). Under static and cyclic loading conditions
the splices manufactured with the self-forming technique are no longer critical in
terms of delamination. This is due to the fact that the adhesive, which is added
to the locations of load transfer between metal layers, has a much higher shear
strength than the prepreg layers.

Single-curved panels

Single-curved panels can be produced by performing the lay-up of the metal and
prepreg layers in a single curved mould. This technique does not add extra costs
to the GLARE production beyond the costs of the lay-up mould. Additionally,
this method avoids the production step where the panel needs to be roll-formed to
the required curvature, as typical for aluminium panels.

Double-curved panels

Double-curved GLARE panels are obtained by laminating all metal and prepreg
sheets in a double-curved mould and forming these to the required shape in a
single autoclave cure cycle. This method eliminates the need for a difficult and
costly forming process.

1.1.7 New generation of fibre-metal laminates

In theory, laminates may be composed of arbitrary components. However, prob-
lems following from high internal stresses, galvanic corrosion and voids creation
may happen when the components are not chosen appropriately. Other bound-
ary conditions in the composition of laminates are provided by the availability
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of components and their costs; i.e., a laminate will not be applied if its price is
exceptionally high or its components are difficult to acquire.

There are a large number of different (potential) type of fibres that can be used
in fibre-metal laminates. Initially, aramid fibres were utilised (ARALL). However,
due to their inferior bonding and strength properties under compressive loading,
these fibres were replaced by glass fibres (GLARE). The usage of carbon fibres
in FMLs is another option. The combination of carbon fibres and aluminium may
lead to galvanic corrosion, but a combination with titanium does not have this
problem and results in a laminate with a high stiffness. Other fibre options are
ceramic, synthetic, organic or silicon carbide fibres.

The metals most commonly used in FMLs are aluminium and titanium. Other
metals, such as stainless steel, high strength steel or niobium, can be applied as
well. Furthermore, different adhesives are available, such as epoxy, bismaleide,
phenolics, cyanate esters and thermoplastics. The main requirements for the ad-
hesive used in FMLs are a good shear and toughness behaviour. Additional points
of attention in the selection of an adhesive are its bonding properties with the fi-
bres and the metal layers, the sensitivity to temperature and moisture, the flow
properties, and the glass transition temperature.

The specific application of a laminate eventually determines the selection of
its individual components. For example, if GLARE were to be used at higher
temperatures, the standard 120 ◦C curing epoxy may be replaced by a 177 ◦C
curing epoxy and the 2024-T3 aluminium may be replaced by a 2024-T81 alloy.
Such a laminate can be used in applications with temperatures up to 180 ◦C, such
as engine covers or fighter applications. Supersonic aviation, in which subsonic
heating plays an important role, is also one of the possible applications of this
laminate.

Carbon-titanium laminates were investigated in the early nineties. The good
combination of high stiffness, high yield strength, good fatigue and impact prop-
erties at both room and elevated temperatures is an important advantage of this
type of laminate. Since both titanium and carbon fibres can be exposed to temper-
atures up to 300 ◦C, this combination makes the laminate extremely suitable for
high temperature applications. Carbon-titanium laminates are very attractive for
applications in space structures, due to their good mechanical and thermal prop-
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erties combined with a low density, a high damage tolerance and various manu-
facturing possibilities. Compared to GLARE, carbon-titanium laminates have a
higher strength and stiffness and better fatigue properties. Moreover, the density
of this laminate is lower than that of GLARE, due to the lower density of the
carbon fibres, which means that a greater weight reduction is possible in aircraft
applications.

FMLs can also be attractive for applications other than those aerospace en-
gineering. In fact, it is the freedom of choosing its components and lay-up in
accordance with the specific requirements that makes the concept of FMLs flexi-
ble and competitive in many practical applications.

1.2 Typical failure modes in FMLs

Failure processes in FMLs are rather complicated and often involve multiple fail-
ure modes. Failure typically takes place in one of the constituents (constituent
failure) or at the interface between different plies or constituents (delamination
failure).

1.2.1 Constituent failure

Several important failure modes of the GLARE constituents can be distinguished,
as observed experimentally in various GLARE grades [15, 17, 76].

Failure modes in the metal layer

The dominant failure mechanisms in the metal layers are cracking and plasticity.
These failure mechanisms are identical to those of a monolithic metal sheet. In
its elastic range the aluminium attracts more load than the prepreg. Increasing the
load will cause the aluminium to yield, as a result of which a plastic zone develops.
A further continuation of the loading can induce cracking, which normally occurs
in the outer metal layers. Nevertheless, under specific circumstances cracking
may (also) happen in the inner layers of the laminate. When a layer is cracked,
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the load is transferred by the adjacent layers. This redistribution of loading may
lead to interfacial delamination between layers.

Failure modes in the composite layer

In fibre-epoxy layers the following failure mechanisms can take place: matrix
cracking, fibre-matrix debonding, fibre-matrix interfacial shear failure, fibre frac-
ture, fibre pull-out and fibre splitting. Fibre failure is expected, for example, at the
edges of a delamination zone, as a result of a strong local clamping of fibres in this
region. Another source for fibre failure is when a crack in the aluminium layer
is bounded by an adjacent layer and delamination at the layer interface remains
absent. This may induce significant stress concentrations in the fibres, eventually
leading to fibre failure and continued growth of the aluminium crack.

1.2.2 Delamination failure

In FMLs generally two types of delamination can be distinguished, as described
below.
(i) Static delamination. This type of delamination occurs without fibre failure and
develops as a result of an increasing shear load between the metal and prepreg
layers. This type of delamination relaxes the stress concentration in the (intact)
fibre-epoxy layer, and increases the local stress in the aluminium layers, resulting
in the development of a substantial plastic zone. Static delamination can also take
place between the fibres and the epoxy (adhesive failure), in the epoxy itself (co-
hesive failure) or between the epoxy and the aluminium layers (adhesive failure).
(ii) Dynamic delamination. This type of delamination is accompanied by sudden
debonding between fibre and epoxy and by fibre failure. It is observed experi-
mentally that the area of dynamic delamination is small compared to that of static
delamination.

A typical example of delamination is buckling delamination, where one or
more layers separate from the remainder of the laminate due to high compressive
loads. Interlaminar shear failure is another source for delamination, where an
interface fails due to a lack of shear strength. This may occur when the specimen
is subjected to a high out-of-plane (transverse) shear load. Another delamination
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mode is free-edge delamination, which happens as a result of the specific stress
distribution at laminate edges, where the net result is the emergence of a peel force
at ply interfaces.

1.2.3 Failure by cracking

Essentially two types of cracking may be distinguished in a GLARE laminate
[2, 78]:
(i) Part-through cracks. These are cracks arising in one or more aluminium layers.
When the fibres in the prepreg layers remain intact, these may bridge the crack
resulting in a reduced stress intensity at the crack tip. The part-through cracks
are mainly caused by fatigue loading and they originate, for example, from rivet
holes, scratches, corrosion damage or lightening strikes.
(ii) Through-the-thickness cracks. These are cracks that develop in the prepreg
and aluminium layers simultaneously. Through-the-thickness cracks typically ap-
pear when an object penetrates the structure, for example under the impact of a
bird strike or a runway debris.

1.3 Modelling aspects

In order to ensure maximum reliability of FMLs under service conditions, the
failure mechanisms of these materials, as occurring at different scales of obser-
vation, must be well understood. On the structural or macroscopic level, fracture
may be regarded as a structural defect that is characterised by failure mechanisms
developing at lower scales of observation. At the mesoscopic level, the main fail-
ure mechanisms are delamination between metal and prepreg layers and crack
propagation and plasticity in the metal layers. Figure 1.4(a) gives an example
of delamination between two adjacent laminate layers. At the microscopic level,
the prominent failure mechanisms are cracking in the epoxy matrix, debonding
between fibres and matrix, fibre breakage and pull-out of broken fibres. Figure
1.4(b) shows an example of failure at the microscale, namely matrix cracking and
fibre-matrix debonding.

In this thesis the finite element method is used to simulate the static failure
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behaviour of FMLs, in particular GLARE, at the meso- and microscales. At the
mesoscale, the individual layers of the laminate are modelled as homogeneous
materials. The aluminium and fibre-epoxy layers are discretised with solid-like
shell elements, see [29, 53, 56], and delamination and crack growth are modelled
in a discrete fashion, using interface elements equipped with a mixed-mode dam-
age model, see also [3–5, 29, 56–58].

Interface elements equipped with a cohesive-zone model serve as a convenient
tool for describing mesoscale fracture in layered materials. In a cohesive-zone for-
mulation, the fracture process is modelled by a traction-separation relation speci-
fied along a discrete line (in 2D) or plane (in 3D). The traction-separation relation
used for modelling the fracture process is often chosen in a pure phenomenolog-
ical or mathematically convenient manner. Commonly used traction-separation
relations have a bilinear [13, 72], trapezoidal [73] or exponential [79] shape.

The details of small-scale fracture processes within prepreg layers are gener-
ally not taken into account in mesoscale traction-separation relations for laminate
failure. However, it is one of the objectives of this thesis to connect the complex
microscale fracture behaviour in a fibre-epoxy layer to a mesoscopic traction-
separation law with the aid of a numerical homogenization approach. To accom-
plish this goal, at the microscale a representative sample of the prepreg layer is
analysed. The epoxy matrix and the fibres are discretised using continuum ele-
ments and the microscopic failure mechanisms are simulated with the cohesive
surface methodology. Matrix cracking is modelled by placing interface elements
furnished with a mixed-mode damage model in between all continuum elements
in the epoxy matrix. In the same fashion, debonding between fibres and matrix
is modelled by introducing interface elements at the physical interface between
fibres and epoxy.

1.4 Aims and scope of the study

The main objectives of this thesis are to analyse the fracture behaviour of lami-
nated materials at the meso- and microlevels and to couple the failure mechanisms
at both scales by means of a numerical homogenization method. In order to fulfill
those objectives the following steps are performed:
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(a) Mesoscale level. Local bucking of the top
layer of a GLARE 2-3/2-0.3 specimen after
being subjected to a three point bending test.

(b) Microscale level. Debonding between fi-
bres and matrix and cracking in the matrix of
the prepreg layer. The crack propagates in the
transition zone between fibre-low and fibre-
rich parts of the prepreg layer.

Figure 1.4: Failure mechanisms of a GLARE laminate at different scales of ob-
servation (reprinted from [16]).

(i) An interface damage model is developed that can be used for simulating dis-
crete cracking and delamination in FMLs, both at the meso- and microscales.
(ii) Finite element simulations are performed at the mesoscale in order to study
the failure mechanisms at this scale, such as interfacial delamination between two
adjacent layers and cracking and plasticity in metal layers.
(iii) Finite element simulations are performed at the microscale to analyse the
failure mechanisms present at this scale, such as cracking in the epoxy matrix and
debonding between the fibres and the epoxy matrix.
(iv) A computational homogenization method is developed in order to relate the
complex microscale fracture behaviour in the fibre-epoxy layer to a mesoscale
traction-separation relation that can be used to model adhesive failure in lami-
nates.

1.5 Outline

The outline of this thesis is as follows.
Chapter 2. In this chapter, the static failure behaviour of the fibre-metal lam-
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inate GLARE is examined using 3D finite element simulations. The configuration
analysed is a centre-cracked tensile specimen composed of two aluminium layers
sandwiching a cross-plied, fibre-epoxy layer. The crack and delamination growths
are simulated by means of interface elements equipped with a mixed-mode dam-
age model. The formulation and time discretisation of the interface damage model
used for the simulation of fracture is presented. The results from the numerical
simulations are discussed, starting with the response of a ’quasi-brittle’ GLARE
laminate with elastic aluminium layers (where the fracture strength is compared
to a closed-form expression presented in [62]), followed by the response of a ’duc-
tile’ GLARE laminate with elasto-plastic aluminium layers. The failure response
is computed for two different types of boundary conditions at the vertical edges
of the specimen. Further, a study of the effect of the initial crack length on the
laminate failure strength is performed, where the results are compared with ex-
periments of de Vries [17]. The chapter ends with summarising the main analyses
results.

Chapter 3. In this chapter, the failure behaviour of unidirectional fibre-epoxy
systems is analysed with 2D (plane-strain) finite element simulations. The fibres
and matrix are discretised using continuum elements. To simulate matrix crack-
ing and fibre-matrix debonding, interface elements furnished with a mixed-mode
damage model are placed in between the continuum elements. The interface dam-
age model used in the numerical simulations is the damage model proposed in
Chapter 2. As a start, numerical simulations are discussed of a single fibre em-
bedded in an epoxy matrix and loaded under uniaxial tension. A mesh refinement
study is performed in order to examine the objectivity of the numerical results as
a function of the finite element discretisation. The effect is examined of the ratio
between the fibre-epoxy interfacial strength and the epoxy strength on the failure
behaviour of the system, as well as the influence of the ratio between the tough-
nesses of the fibre-epoxy interface and the epoxy matrix. Further, an assessment
of the validity of the usage of symmetry boundary conditions for the single-fibre
matrix configuration is performed. Subsequently, numerical simulations on uni-
axially loaded epoxy systems containing multiple fibres are presented. As for
the single-fibre epoxy system, the influence of the ratio between the fibre-epoxy
strength and the epoxy strength on the failure response is studied. In addition,
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the effect of the fibre volume fraction and the fibre distribution on the failure be-
haviour of the system is analysed. The chapter ends with a summary of the main
conclusions of the study, and a qualitative comparison of the simulation results
with experiment results presented in the literature.

Chapter 4. In this chapter, a numerical homogenization method is presented
that connects the microscopic fracture behaviour in fibre-epoxy samples to a meso-
scopic traction-separation law. The homogenization method is applied to fibre-
epoxy samples loaded under uniaxial tension. It is studied how the traction-
separation response and the corresponding microscopic failure pattern are influ-
enced by the finite element discretisation, the specimen size, the fibre volume
fraction and the number and position of imperfections. The chapter ends with a
summary of the results.
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Analysis of fracture and
delamination in laminates using 3D

numerical modelling

2.1 Introduction

Failure under tensile loading is a design limiting characteristic of fibre-reinforced,
layered composites. Experimental studies have shown that the effective tensile re-
sponse of these materials is bounded by the development of various failure mech-
anisms at a lower scale, such as transverse matrix cracking, fibre decohesion and
fracture, and interfacial delamination, see for example [12, 17, 21, 46, 55, 71, 78]
and references therein. In addition, modelling studies have demonstrated that
the cracking and delamination patterns typically observed in layered composites
depend upon local geometrical and material properties, such as the number, loca-
tion and size of initial flaws, the stacking sequence, the fibre volume fraction, the
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#2

Mode   crack

Tunneling directionTunneling directionTunneling direction
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H−shape crack with

I
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in all directions

#2
#1 #2

#2
#1 #2

#2
#1
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Figure 2.1: Three possible failure scenarios for a brittle laminate composed of two
dissimilar, isotropically elastic materials subjected to uniaxial tension (taken from
Suiker and Fleck [62]). Mechanism 1: Tunneling of a stable mode I crack with
delamination absent. Mechanism 2: Tunneling of a stable H-shape crack with
constant delamination length. Mechanism 3: A tunneling crack with unstable
delamination developing in all directions.

toughness and stiffness characteristics of the individual plies, the interfacial de-
lamination toughness, and the presence of residual stresses [8, 14, 18, 32, 36, 42,
43, 47, 66]. Recently, Suiker and Fleck [62] studied the competition of three pos-
sible failure mechanisms for a laminate composed of two dissimilar isotropically
elastic layers, subjected to uniaxial tension, see Figure 2.1. These failure mecha-
nisms are assumed to have grown from a large pre-existing flaw in the mid-layer
(material #1), where ’mechanism 1’ reflects the tunneling of a stable mode I crack
in the mid-layer with delamination absent, ’mechanism 2’ represents the tunneling
of a stable H-shape crack with constant delamination length and ’mechanism 3’
relates to a tunneling crack with unstable delamination growth in all directions.
It was found that the operative failure mechanism is strongly determined by the
relative toughness of layer and interface, and to a lesser extent by the stiffness
mismatch of the layers, the location(s) of the initial flaws(s), and the number of
plies.
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The results presented in [62] were determined combining 2D linear elastic
fracture mechanics solutions for the problems of (i) plane-strain delamination of
an H-shape crack and (ii) steady-state tunneling of an H-shape crack. In line
with this approach, the crack nucleation phase was ignored, as well as the pres-
ence of plastic deformations in the individual layers. These effects, however, may
contribute to the static failure behaviour of laminates containing ductile layers,
such as the fibre-metal laminates ARALL and GLARE. In the present chapter,
the effects of plasticity and crack nucleation on the tensile failure response of
GLARE are examined by means of 3D finite element analyses. The configuration
studied is composed of two aluminium alloy sheets sandwiching a cross-plied,
fibre-epoxy layer, where a horizontal initial crack is placed at the centre of the
specimen, across the thickness of the aluminium sheets, i.e., a centre-cracked ten-
sile specimen is studied. After imposing the tensile loading, the centre crack
starts to tunnel in the aluminium layers and induces delamination at the inter-
faces between the aluminium and fibre-epoxy layers, effects that are simulated
by means of interface elements equipped with a mixed-mode damage model, see
also [3–5, 29, 56–58]. For the interface damage model used in the present study,
the formulation of the mode-mixity is based upon an energy criterion regularly
applied in linear elastic fracture mechanics studies [43, 44], using a derivation
procedure similar to the one proposed recently by Turon et al. [72]. In addi-
tion, the kinetic law describing the evolution of the damage process is taken as
rate-dependent. This is done to account for rate effects generated during interfa-
cial delamination, and to avoid numerical convergence problems induced by crack
bifurcations. The incorporation of these two features in the interface damage for-
mulation distinguishes the present model from most other models presented in the
literature. The individual aluminium and fibre-epoxy layers of the laminate are
modelled by solid-like shell elements [29, 53, 56]. These elements allow for a lin-
ear strain field in thickness direction, which avoids the effect of Poisson-thickness
locking that appears in conventional volume elements with a high aspect ratio
in spatial dimensions, i.e., ’slender’ volume elements [9]. The isotropic, elasto-
plastic behaviour of the aluminium layer is simulated using a J2-plasticity model
with an exponentially saturating hardening law. The cross-plied, fibre-epoxy layer
is modelled as isotropically elastic. This simplification, which is reasonable if the
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elastic mismatch between fibres and matrix is moderate, allows part of the numer-
ical results to be quantitatively compared to those presented in Suiker and Fleck
[62]. Furthermore, the fracture mechanisms observed in the present study can
then be adequately validated against the failure scenarios depicted in Figure 2.1.

The chapter is organised as follows. Section 2.2 contains the formulation of
the interface damage model used for the simulation of fracture within the laminate
layers, and mixed-mode delamination along the interfaces between the layers. The
traction-separation law and the rate-dependent kinetic law for interfacial damage
are specified, where the mode-mixity for damage growth is derived from linear
elastic fracture mechanics concepts. In Section 2.3 the time discretisation of the
model is discussed, which is based on a backward Euler approach. In Section 2.4
the interface damage model is incorporated into a three-dimensional finite element
model for a centre-cracked GLARE specimen subjected to uniaxial tension. The
geometry and boundary conditions are specified, followed by a discussion of the
finite element discretisation and the material properties. The numerical results
obtained with the model are discussed in Section 2.5, starting with the response of
a ’quasi-brittle’ GLARE laminate with elastic aluminium layers (where the results
are compared to those presented in [62]), followed by the response of a ’ductile’
GLARE laminate with elasto-plastic aluminium layers. The failure response is
computed for two different types of boundary conditions at the vertical edges of
the specimen. The section ends with a study of the effect of the initial crack length
on the laminate failure strength, where the results are compared with experiments
of de Vries [17]. In Section 2.6 the main analysis results are summarised.

2.2 Formulation of the interface damage model

In the current section the governing equations of the interface damage model are
presented. The arrangement and treatment of these equations within a consecutive
algorithmic framework can be found in Section 2.3. For cohesive zone models
used in 3D solid mechanics analyses, the tractions ti at the interface modelling
the cohesive zone and the relative displacements vi across the interface consist of
three components: i ∈ {1, 2, 3}, with the numbers denoting the normal direction
and the two tangential directions at the interface, respectively. For convenience,
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the tangential directions in the plane of crack propagation are taken parallel (index
’2’) and perpendicular (index ’3’) to the direction of crack. The tractions and
relative displacements are related by means of a constitutive formulation, which,
in the present study on interfacial damage, has the form

ti = (1 − d)Cijvj − dCijδ1j〈−v1〉 where i, j ∈ {1, 2, 3}, (2.1)

with the damage parameter d bounded as 0 ≤ d ≤ 1. Here, d = 0 corresponds
to the initial, undamaged state, and d = 1 to the state at which the integrity of the
interfacial material point is fully lost. Further, Cij is the elastic stiffness tensor,
given by

Cij = Kδij , (2.2)

with K a stiffness parameter and δij the Kronecker delta symbol. Observe from
the last term in Eq.(2.1) that crack penetration of two opposite crack faces is
avoided, by prescribing these faces to interact elastically in the normal direction
of the interface during contact, with the elastic contact stiffness being equal to K.
The fact that crack face contact is characterised by a negative value of the normal
crack face displacement v1 is accounted for by the Macaulay brackets 〈·〉, which
are defined as 〈x〉 = 1

2(x+ |x|).
During a loading process, the damage in an interfacial material point evolves

with deformation, as formally expressed by d = d̂(κ) with κ a deformation his-
tory variable that is monotonically increasing (since damage is an irreversible
process). The specific form of d̂(κ) corresponds to the shape of the softening
curve of the traction-separation law. In the present study a linear softening law
is adopted, as schematised in Figure 2.2, where the onset of damage relates to
κ = v0 (corresponding to d = 0) and the completion of damage is reflected
by κ = vu (corresponding to d = 1), with v0 and vu the equivalent crack face
displacements at which damage is considered to be initiated and completed, re-
spectively. Although the softening law may have other forms (e.g., multi-linear,
exponentially decaying), the shape of the softening law commonly has a minor
influence on the characteristics of the fracture process, especially in the case of
ductile fracture [65, 73, 74]; the fracture process is mainly determined by the ul-
timate traction tu and the fracture toughness Gc (which equals the area under the
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Figure 2.2: Traction-separation law.

traction-separation curve, see Figure 2.2). As further shown in Figure 2.2, for a
specific value of κ the equivalent traction is equal to Kv0(vu − κ)/(vu − v0), or,
alternatively, in terms of the damage parameter d, equal to (1 − d)Kκ. Equating
these two expressions for the traction leads to the following expression for the
damage parameter:

d = d̂(κ) =
vu(κ− v0)
κ(vu − v0)

. (2.3)

In contrast to rate-independent damage processes, for rate-dependent damage
processes the evolution of the damage parameter d is not set by the deformation
only, but also by its rate, as described by a specific kinetic law. The actual value
of the corresponding history variable κ is then obtained by the inverted form of
Eq.(2.3). In the present study, the following rate-dependent kinetic law is pro-
posed:

ḋ =

⎧⎪⎨
⎪⎩
F̂ (λ, κ)

η
for λ ≤ κ and v0 ≤ κ < vu,

0 for 0 ≤ λ < κ or κ = vu,

(2.4)

where η is a relaxation parameter (with dimension of time) and F̂ (λ, κ) is the
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damage loading function. In Eq.(2.4), the upper expression reflects the rate of
damage when the effective deformation λ exceeds the threshold κ, whereas the
lower expression sets the rate of damage equal to zero when (i) the threshold
value has not (yet) been reached, (ii) the interfacial material point is in a state
of unloading, or (iii) the damage process has completed. The deformation mea-
sure λ is taken here as the Euclidean norm of the vector of relative crack face
displacements, λ = ‖v‖ =

√
v2
1 + v2

sh, with vsh the total shear displacement,

vsh =
√
v2
2 + v2

3 . Furthermore, the loading function has the form

F̂ (λ, κ) = f̂(λ) − d̂(κ) =
vu(λ− v0)
λ(vu − v0)

− vu(κ− v0)
κ(vu − v0)

, (2.5)

where the right expression is obtained by substituting Eq.(2.3) for d̂(κ), and
choosing the form of f̂(λ) to be similar as d̂(κ).

The specific form of the kinetic law, Eq.(2.4), is analogous to the form of-
ten used in visco-plasticity modelling (see for example [33]), with the equivalent
plastic strain rate being replaced by the damage rate and the static yield function
by the damage loading function. In the limit of the relaxation parameter going
to zero, η → 0, the kinetic law, Eq.(2.4), turns into the rate-independent loading
condition, F̂ (λ, κ) = 0, which, as can be observed from Eq.(2.5), is identical to
λ = κ. Under these circumstances, the loading-unloading conditions are repre-
sented by the Kuhn-Tucker relations

(λ− κ)κ̇ = 0 , λ− κ ≤ 0 , κ̇ ≥ 0 . (2.6)

Hence, the present interface damage model can be used for describing both (virtu-
ally) rate-independent fracture in the metal layers of GLARE and rate-dependent
delamination at the metal-prepreg interfaces, by setting the relaxation parameter
η accordingly.

In mixed-mode fracture processes, the equivalent crack face displacements v0

and vu appearing in Eq.(2.5) are dependent on the relation between the normal
and shear displacements at the interface. As recently proposed by Turon et al.
[72], this relation may be captured by the following mode-mixity parameter:

β =
vsh

vsh + 〈v1〉 . (2.7)
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In this definition, pure mode I loading is reflected by vsh = 0, and thus by β = 0,
whereas pure shear loading relates to v1 = 0, and thus to β = 1. Turon et al.
[72] demonstrated that the functions v0 = v̂0(β) and vu = v̂u(β) can be com-
puted adopting a specific mixed-mode failure criterion from linear elastic fracture
mechanics. The mixed-mode criterion adopted in the present study is a model
regularly used to characterise mixed-mode toughness data for brittle interfacial
fracture [43, 44], i.e.,

GI

GI,c
+

GII

GII,c
+

GIII

GIII,c
= 1 , (2.8)

where GI , GII and GIII are the mode I, mode II and mode III energy release
rates, and GI,c, GII,c and GIII,c are the toughnesses under pure mode I, pure
mode II and pure mode III loading conditions. For simplicity, the mode II and
mode III fracture toughnesses are assumed to have a common value, Gsh,c =
GII,c = GIII,c, as a result of which the criterion (2.8) reduces to

GI

GI,c
+

Gsh

Gsh,c
= 1 , (2.9)

with Gsh = GII + GIII . Essentially, the above fracture criterion is an exten-
sion of the well-known Griffiths’ criterion, G = Gc, where G is the total energy
release rate measured at the crack tip and Gc is the effective fracture toughness
(which thus depends on the mode-mixity of the loading). As already mentioned,
the fracture toughness Gc is represented by the area under the traction-separation
curve in Figure 2.2, and thus can be computed as

Gc = Ĝc(β) =
1
2
Kv̂0(β) v̂u(β) . (2.10)

In the limits of pure mode I loading (β = 0) and pure shear loading (β = 1), the
fracture toughness in Eq.(2.10) respectively reduces to

GI,c = Ĝc(β = 0) =
1
2
Kv0

1 v
u
1 ,

Gsh,c = Ĝc(β = 1) =
1
2
Kv0

sh v
u
sh ,

(2.11)
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where v0
1 = tu1/K is the displacement at which damage is initiated under pure

mode I loading, with tu1 being the ultimate normal traction, v0
sh = tush/K is the

displacement related to damage initiation under pure shear loading, and vu
1 and vu

sh

are the corresponding ultimate displacements at which damage is completed, with
the ultimate shear traction tush being computed from the two tangential traction
components as tush =

√
(tu2)2 + (tu3)2. In order to find expressions for v0 and vu

in terms of the mode-mixity β, Griffiths’ criterion, G = Gc, is incorporated into
Eq.(2.9), which leads to

GI

GI,c
+

Gsh

Gsh,c
=

G

Gc
. (2.12)

This expression can be further developed by writing the total energy release rate
as1 G = GI +Gsh and substituting this form into the right-hand side of Eq.(2.12).
In line with this decomposition, the individual crack mode components of the
energy release rate are expressed in terms of the relative crack face displacements
as GI = γv2

1 and Gsh = γv2
sh, with γ a proportionality factor (with dimension

of force × length−3) that depends on the stiffness and geometry properties of
the configuration under consideration and on the actual position along the crack
faces at which the relative crack face displacements are evaluated (commonly
measured with respect to the origin of the crack tip, see [43]). Invoking Eq.(2.10),
and using the definition of the mode-mixity parameter β, Eq.(2.7), to express
the relative normal displacement in terms of the relative shear displacement as
v1 = vsh(1 − β)/β, Eq.(2.12) can be elaborated into an expression for vu:

vu = v̂u(β) =
2(1 + 2β2 − 2β)

Kv0

[(
(1 − β)2

GI,c

)
+
(

β2

Gsh,c

)]−1

, (2.13)

1An additive decomposition of the energy release rate into its individual crack mode components
is allowed if the stiffness properties of the two elastic bulk materials separated by a propagating,
brittle interfacial crack are in agreement with the second Dundur’s stiffness mismatch parameter
being equal to zero, see [43]. This condition is not met strictly for most of the elastic fracture con-
figurations studied in this chapter. Moreover, the present interface crack model is used in boundary
value problems where the bulk materials experience plastic yielding. However, based on heuristic
reasoning it may be assumed that the effect of this discrepancy on the computational results remains
relatively small.
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with GI,c and Gsh,c given by Eq.(2.11). An explicit expression for the parameter
v0 can be found by substituting Eqs.(2.11)1,2 into Eq.(2.13), replacing vu, vu

1 and
vu
sh by the corresponding initial values v0, v0

1 and v0
sh, and solving for v0. This

results in

v0 = v̂0(β) = v0
1 v

0
sh

√
1 + 2β2 − 2β(

βv0
1

)2 +
(
(1 − β)v0

sh

)2 . (2.14)

Note from Eqs.(2.13) and (2.14) that the mode-mixity β is indeed the only variable
in the expressions for vu and v0 (since the other parameters represent interfacial
fracture data).

2.3 Time discretisation of the interface damage model

In order to perform finite element simulations with the interface damage model
presented in the previous section, the model formulation needs to be discretised in
time. Using a backward Euler approach, for each discrete time interval [tn, tn+1]
the model variables in an interfacial integration point are evaluated at time tn+1

(= tn+Δtn+1) assuming the corresponding values at the previous time step tn are
known. In a displacement-based finite element method, the incremental update at
integration point level is governed by the relative displacements vn+1 across the
interface. These displacements are provided as input from the global iterative
procedure at the system level. With the relative displacements, the deformation
measure λ is updated as λn+1 = λ̂(vn+1) = ‖vn+1‖. This value is compared
against the history parameter κn computed at the previous time step, where for
λn+1 > κn damage is assumed to occur, and for λn+1 ≤ κn the response is
considered to be elastic (i.e., no damage has occurred (yet), or the integration point
is subjected to elastic unloading). The history parameter is initialised as κ0

n =
v0

n+1 = v̂0(βn+1), using Eq.(2.14) with βn+1 = vsh,n+1/(vsh,n+1 + 〈v1,n+1〉).
Subsequently, the damage increment Δdn+1 is computed by combining Eqs.(2.4)
and (2.5) (with all parameters evaluated at tn+1), with the time discretisation of
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the damage rate in accordance with Δdn+1 ≈ ḋn+1Δtn+1. This leads to

Δdn+1 =

⎧⎨
⎩

(fn+1 − dn) Δtn+1

η + Δtn+1
for λn+1 > κn,

0 for 0 ≤ λn+1 ≤ κn.
(2.15)

where fn+1 is given by

fn+1 =
vu
n+1

(
λn+1 − v0

n+1

)
λn+1

(
vu
n+1 − v0

n+1

) , (2.16)

and vu
n+1 = v̂u(βn+1) is calculated from Eq.(2.13). Formally, the damage pro-

cess is completed if the damage parameter reaches unity. Correspondingly, in the
present algorithm completion of damage is checked by means of the condition:
dn + Δdn+1 > 1 − ε, where ε is a small positive value (0 < ε� 1), introduced
here to improve the global numerical convergence behaviour when locally dam-
age has completed. If the above condition holds, the damage process is considered
to have finished and, accordingly, the damage parameter is then set equal to the
maximum value, dn+1 = 1 − ε. Hence, the update of the damage parameter can
be concisely formulated as

dn+1 = min (dn + Δdn+1, 1 − ε) . (2.17)

For any damage value within the range 0 ≤ dn+1 ≤ 1 − ε, the traction vector,
tn+1 = t̂(vn+1, dn+1), is computed by substituting the relative displacement
vector, vn+1 together with the updated damage variable, dn+1 = d̂(vn+1), into
Eq.(2.1), which results in

ti, n+1 = (1−dn+1)K vi, n+1−dn+1K δ1i〈−v1, n+1〉, i ∈ {1, 2, 3}, (2.18)

where use has been made of Eq.(2.2). In addition, the history parameter κ is
updated using the inverted form of Eq.(2.3), i.e.,

κn+1 =
v0
n+1v

u
n+1

vu
n+1 − (vu

n+1 − v0
n+1)dn+1

. (2.19)

From the above expression, it can be confirmed that completion of damage cor-
responds to κn+1 = vu

n+1 (when ignoring the contribution by the small value ε
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in Eq.(2.17)). Note that the present time integration procedure can be performed
without any iterations, due to the use of the specific damage loading function,
Eq.(2.5), in the kinetic law, Eq.(2.4). Alternative, more complex forms of the
damage loading function require an iterative time integration procedure at the in-
tegration point level, which obviously is computationally more expensive.

The tangent operator necessary for constructing the stiffness matrix at the sys-
tem level follows from

dt̂n+1

dvn+1
=
∂t̂n+1

∂vn+1
+
∂t̂n+1

∂dn+1

∂d̂n+1

∂vn+1
, (2.20)

which, with Eq.(2.18), leads to

dt̂i, n+1

dvj, n+1
= Kδij − dn+1K

(
δij + δ1i

〈−v1,n+1〉
v1,n+1

δ1j

)
+

− ∂d̂n+1

∂vj,n+1
K
(
vi,n+1 + δ1i〈−v1,n+1〉

)
.

(2.21)

Here, the derivative ∂d̂n+1/∂vn+1 can be determined from Eqs.(2.15) to (2.17)
as

∂d̂n+1

∂vj,n+1
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v0
n+1v

u
n+1

λ3
n+1(v

u
n+1 − v0

n+1)
Δtn+1

η + Δtn+1
vj,n+1

(
1 +

〈−v1,n+1〉
vj,n+1

δ1j

)

for λn+1 > κn and 0 < dn+1 < 1 − ε ,

0 else ,

(2.22)

where the multiplication factor (1 + δ1j〈v1,n+1〉/vj,n+1) has been added in the
upper expression to account for the fact that the derivative in the normal direction
of the interface, ∂d̂n+1/∂v1,n+1, is zero during (elastic) crack face contact. For
reasons of simplicity, the extensive terms related to the derivatives ∂v̂0

n+1/∂vj,n+1

and ∂v̂u
n+1/∂vj,n+1 are ignored in Eq.(2.22). This simplification is acceptable if

the mode-mixity β varies rather slowly with deformation, causing these deriva-
tives to remain relatively small. However, for boundary value problems where
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the mode of fracture changes abruptly with deformation, additional computations
not presented here have shown that the tangent operator given by Eq.(2.22) may
induce a drastic collapse in the global convergence rate (i.e., a transition from
a quadratic to a quasi-linear convergence rate). Under these circumstances it
may be preferential to compute the tangent operator numerically (see [54] for
the case of small deformations and [49, 64] for the case of finite deformations),
in order to preserve the quadratic convergence rate at the system level and to
avoid the analytical determination of the extensive derivatives ∂v̂0

n+1/∂vj,n+1 and
∂v̂u

n+1/∂vj,n+1.

2.4 Numerical model of a centre-cracked 2/1 GLARE la-
minate subjected to uniaxial tension

2.4.1 Geometry and boundary conditions

The interface damage model presented in the previous section is used to study
mode I fracture and interfacial delamination in a centre-cracked 2/1 laminate sub-
jected to uniaxial tension, see Figure 2.3. The 2/1 lay-up refers to a laminate com-
posed of two aluminium layers sandwiching a single fibre-epoxy layer. Laminates
reinforced by glass fibres are commercially known as GLARE. For this mate-
rial the aluminium and fibre-epoxy layers commonly have thicknesses of 0.3 mm
and 0.25 mm, respectively (see for example, [17]), which leads to a total specimen
thickness of 0.85 mm. The specimen length is taken as L = 60 mm and its width
equals W = 40 mm. The initial pre-crack at the centre of the specimen is placed
across the complete thickness of the two aluminium layers, and has a length of
2a0 = 0.12W = 4.8 mm. The tensile loading is imposed by prescribing a remote
normal displacement u∞ at the top and bottom edges of the laminate, which in-
duces a uniform remote tensile stress σ∞ in the aluminium layer at short distance
from the top and bottom edges. Quasi-static loading conditions are warranted by
applying a relatively small nominal strain rate u̇∞/L = 10−5 s−1. As demon-
strated by experimental and modelling studies on the static and fatigue failure
behaviour of centre-cracked laminates [17, 60, 62, 63, 68, 78], under the applied
remote tensile loading the initial pre-crack will start to tunnel as a mode I crack
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u∞
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2a0

L
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m

m

2/1 GLARE laminate

Figure 2.3: Dimensions of a centre-cracked tensile specimen made of 2/1
GLARE. The length of the centre crack is: 2a0 = 4.8 mm.

through the aluminium sheet, thereby initiating delamination along the interface
between the aluminium (material #1) and fibre-epoxy (material #2) layers. The
complete fracture mechanism has been sketched in Figure 2.4 (Left), and can be
denoted as a tunneling, doubly-deflected crack [62]. Since the doubly-deflected
cracks in the two outer layers of the 2/1 specimen taken together resemble an
H-shape crack, this fracture mechanism is comparable to the failure scenarios de-
picted in Figure 2.1.

In order to examine how plasticity in the aluminium layer affects the failure
characteristics of the specimen, simulations in which the aluminium layer behaves
isotropically elastic are compared to simulations where the aluminium is modelled
as isotropically elasto-plastic. In both cases the fibre-epoxy layer is modelled as
isotropically elastic. This is an acceptable simplification if the internal structure
of the fibre-epoxy layer is cross-plied, i.e., made of two sublayers of 0.125 mm
thickness with the uni-directional fibres oriented under 0o and 90o, respectively,
see Figure 2.4 (Left), and the elastic mismatch between the fibres and the epoxy
is moderate. The assumption of an isotropic fibre-epoxy layer increases the de-
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gree of symmetry of the problem, such that only one octant of the actual geometry
can be modelled, see Figure 2.4 (Right). This significantly reduces the computa-
tional time of the analysis. Furthermore, this simplification allows the present
computational results to be compared to results reported by Suiker and Fleck
[62], which relate to fracture and delamination processes in lay-ups composed
of brittle, isotropic elastic layers. The symmetry of the configuration depicted in
Figure 2.4 (Right) is warranted by fixed and roller supports, and by using a cus-
tomised interface element that relates the interface tractions of the mode I crack
in the aluminium (propagating along the horizontal x-y symmetry plane half-way
the specimen) to half of the relative crack face displacements across the interface.

The effect of the boundary conditions at the right edge of the specimen on
the failure response is studied by considering two cases. The first case, referred
to as ’BC1’, reflects the unconstrained situation, where the normal traction at the
right vertical edge of the specimen (i.e., the normal traction in the x-direction) is
prescribed as zero. The second case, referred to as ’BC2’, reflects a constrained
situation, where the normal displacement at the right vertical edge of the specimen
(i.e., the displacement in x-direction) is set to zero. For both cases the shear
tractions at all specimen boundaries are prescribed to be zero.

2.4.2 Finite element discretisation

The numerical analyses are performed within a large-displacement, small-strain
framework, where the aluminium and fibre-epoxy layers are meshed with sixteen-
node, iso-parametric solid-like shell elements, with a 2 × 2 × 2 Gauss quadrature
[29, 53, 56]. As illustrated in Figure 2.5, these elements have eight nodes at their
element corners (indicated by the solid circles ’1-8’) and eight nodes half-way
each element side (indicated by the open circles ’9-16’). In addition, they have
four internal nodes (indicated by the open squares ’a-d’), which are positioned at
the four corners of the mid-surface that is located half-way the element thickness.
The internal nodes are used for constructing a linear strain field in the thickness
direction (i.e., the ζ-direction) of the element, which remedies the problem of
Poisson-thickness locking that characterises conventional volume elements with
a high length-to-thickness ratio see [29, 53, 56] for more details. At the plane at
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Figure 2.4: Left: Doubly-deflected crack in the two outer layers of a 2/1 GLARE
laminate subjected to uniaxial tension (imposed by a remote displacement u∞).
The laminate is composed of two aluminium (material #1) layers sandwiching
a single, cross-plied, fibre-epoxy (material #2) layer. Right: One symmetrical
octant of the centre-cracked tensile specimen, used in the numerical simulations.
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Figure 2.5: Geometry of a sixteen-node, iso-parametric solid-like shell element.
The element is composed of sixteen geometrical nodes (indicated by the cir-
cles ’1-16’) and four internal nodes (indicated by the squares ’a-d’).
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which interfacial delamination between the aluminium layer and the fibre-epoxy
layer is expected, the top (or bottom) surface of the solid-like shell element, which
is spanned by eight nodes in the ξ − η plane, is connected to a sixteen-node inter-
face element, see Detail A in Figure 2.6. This interface element has eight nodes
per surface, and is equipped with a 3×3 Newton-Cotes quadrature. The numerical
formulation of the geometrically non-linear interface element is based on [57, 58],
see also [29]. At the plane along which mode I fracture in the aluminium layer de-
velops, the side surface of the solid-like shell element, which consists of six nodes
in the η−ζ (or ξ−ζ) plane, is attached to a twelve-node interface element (which
has six nodes per surface), equipped with a 3 × 2 Newton-Cotes quadrature. The
total number of solid-like shell elements used for meshing the aluminium layer
and the fibre-epoxy layer is 2 × 700 = 1400, see Figure 2.6. Correspondingly,
the number of sixteen-node interface elements used for meshing the plane along
which delamination is expected equals 700. In addition, the number of twelve-
node interface elements used for modelling the plane along which the mode I
crack in the aluminium develops is 22. This results into a total number of 2122
elements.

As further illustrated in Figure 2.6, the finite element mesh is relatively fine
close to the plane along which the mode I crack propagates, and becomes coarser
towards the top edge of the specimen at which the loading is applied. The rela-
tively small interface elements capturing the mode I crack growth and the initial
part of the interfacial delamination process are approximately square-shaped, hav-
ing a size Δ. For the fracture problems studied in [11], convergence of the numer-
ical results upon mesh refinement was observed when the value of Δ was chosen
smaller than 4 times the ultimate separation vu used in the traction-separation law.
Accordingly, in the present study the size of the interface elements at the mode I
crack tip and at the delamination tip is chosen such that Δ/vu is approximately
equal to 1.5 and 2.5, respectively.

2.4.3 Material properties

The material data used in the numerical model is listed in Table 2.1. The elasto-
plastic response of the aluminium layers is simulated using a standard J2-flow
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Figure 2.6: Finite element mesh and boundary conditions for the GLARE 2/1
specimen. The case ’BC1’ refers to a specimen where the horizontal displace-
ment at the vertical specimen edge is unconstrained, i.e., a traction-free boundary,
whereas for the case ’BC2’, depicted in the lower right inset, these horizontal dis-
placements are fully constrained. The upper right inset shows the details of the
connection between the solid-like shell (sls) elements and the interface elements,
close to the initial pre-crack.

theory (Von Mises plasticity), where the yield strength σy evolves in accordance
with an exponentially-saturating hardening law,

σy = σ̂y (κp) = σ0
y +
(
σu

y − σ0
y

)
(1 − exp (−ξκp)) . (2.23)
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Table 2.1: Material properties of a GLARE laminate.

Parameter(s) Value(s)

Aluminium layer

Young’s modulus E = 72 [GPa]
Poisson’s ratio ν = 0.33 [-]
Initial yield strength σ0

y = 305 [MPa]
Ultimate yield strength σu

y = 430 [MPa]
Hardening rate parameter ξ = 27 [-]

Fibre-epoxy layer

Young’s modulus E = 32 [GPa]
Poisson’s ratio ν = 0.20 [-]

Mode I crack in aluminium

Elastic stiffness K = 1 × 108 [N/mm3]
Ultimate normal traction (3 cases) tu1 = 430 [MPa] (= 1.4σ∗),

610 [MPa] (= 2.0σ∗),
915 [MPa] (= 3.0σ∗),

with σ∗ = 305 [MPa])
Fracture toughness GI,c = 112 [N/mm]
Relaxation parameter η = 2 × 10−5 [s]
Numerical offset at damage completion ε = 10−8 [-]

Interfacial delamination

Elastic stiffness K = 1 × 106 [N/mm3]
Ultimate normal traction tu1 = 50 [MPa]
Ultimate shear traction tu2 = tu3 = 25 [MPa]
Fracture toughnesses GI,c = GII,c = GIII,c = 4 [N/mm]
Relaxation parameter η = 2 × 10−3 [s]
Numerical offset at damage completion ε = 10−6 [-]

The evolution from the initial yield strength σ0
y (= 305 MPa) to the ultimate yields

strength σu
y (= 430 MPa) (representing the saturation state) is in correspondence

with uniaxial stress-strain data reported in [76] for the aluminium alloy 2024-T3
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typically used in GLARE. The yielding saturation state of this type of aluminium
is reached at an equivalent plastic strain κp of about 15 %, which is captured by
setting the hardening rate parameter in Eq.(2.23) as ξ = 27 [-]. The effective
Young’s modulus and the Poisson’s ratio of the fibre-epoxy layer are computed
by averaging the stiffness values and Poisson’s ratios in the fibre-direction and
perpendicular to the fibre-direction, as reported in [76]. The dummy elastic stiff-
nessK of the interface elements modelling the mode I crack and the delaminating
crack is taken relatively high, such that in the elastic regime the interfacial defor-
mations remain negligibly small. Observe from Table 2.1 that the stiffness value
for the delaminating crack is taken a little lower than that of the mode I crack
in the aluminium, which has been done in order to optimise the convergence be-
haviour of the numerical simulations. The value of the mode I fracture toughness,
GI,c, is determined adopting the value for the critical mode I stress intensity fac-
tor KI,c = 89.6 MPa

√
m reported in Hashagen [29] (which was obtained by cal-

ibrating the crack mouth opening displacement and the effective crack length in
a centre-cracked aluminium sheet subjected to uniaxial tension), and substituting
this value into Irwin’s relation, GI,c = K2

I,c/E, where E is the Young’s modulus
of the aluminium. Values for the ultimate normal traction of the mode I crack in
the aluminium, tu1 , have not been widely reported in the literature. In Hashagen
[29], the ultimate normal traction was taken approximately 1.3 times higher than
the initial yield strength of the aluminium layer. Furthermore, the studies of Tver-
gaard and Hutchinson [73] and Chen et al. [11] showed that the ratio between the
ultimate normal traction of the crack and the initial yield strength of the surround-
ing elasto-plastic bulk material may have a significant influence on the effective
crack growth resistance. Correspondingly, in the present analysis the ultimate
traction is varied, considering the following three values: tu1 = 1.4σ∗, 2.0σ∗ and
3.0σ∗, with the reference stress taken as σ∗ = 305 MPa (which equals the initial
yield strength σ0

y in the elasto-plastic model for the aluminium). The mode I frac-
ture toughness of a delaminating crack is obtained from test data for a 2/1 GLARE
specimen subjected to mode I delamination [75]. For simplicity, the mode II and
mode III delamination toughnesses are chosen to have the same value as the mode
I toughness, so that the effective delamination toughness Gc becomes indepen-
dent of the mode-mixity. The ultimate tractions for the delaminating crack, tu1 ,
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tu2 and tu3 , are taken equal to the values reported in Hashagen [29], which were
determined from shear and tensile tests on a prepreg material typically used in
GLARE. The relaxation parameter η for the mode I crack is taken very small
such that under quasi-static loading conditions the crack advancement occurs vir-
tually rate-independently. For the delaminating crack, the relaxation parameter η
is chosen slightly larger in order to avoid convergence problems due to crack bi-
furcations; additional simulations not presented here have shown that in the limit
of a truly rate-independent fracture behaviour (i.e., η → 0) the convergence of
the present numerical simulations can not be warranted. A detailed analysis on
rate effects during interfacial delamination is considered to be a topic for future
studies. Finally, both for the mode I crack and the delaminating crack the param-
eter ε, which represents the (small) numerical offset at damage completion, see
Eq.(2.17), is taken equal to the inverse value of the corresponding elastic stiffness
K of the interface.

2.5 Modelling results

In Table 2.2 an overview of the numerical simulations is given. With the present
selection of simulations, the influence of the following four aspects on the effec-
tive failure response is studied: (i) The value of the ultimate traction of the mode
I crack in the aluminium, (ii) the generation of plasticity in the aluminium layers,
(iii) the type of boundary conditions at the vertical specimen edge, and (iv) the
initial crack length.

2.5.1 2/1 lay-up with elastic aluminium layers

For the case where the aluminium layer behaves elastically, Figure 2.7(a) depicts
the remote stress in the aluminium layer (evaluated at the top of the laminate, near
the horizontal edge at which the loading is applied) plotted against the normal
opening of the mode I crack in the aluminium (measured at the tip position of the
initial pre-crack, as represented by point A in Figure 2.6) for three different val-
ues of the ultimate normal traction, tu1 , of the mode I crack (as listed in Table 2.1).
The characters ’a-f’, which indicate different deformation stages, correspond to
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(b) Delamination profiles for deformation
stages ’a-f’ (see Figure 2.7(a)), for the case
where the ultimate traction of the mode I crack
in the aluminium is tu

1 = 1.4σ∗ (= 430 MPa).
The x- and z-coordinates relate to the coordi-
nate system in Figure 2.6.
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(c) Delamination profiles for deformation
stages ’a-f’ (see Figure 2.7(a)), for the case
where the ultimate traction of the mode I crack
in the aluminium is tu

1 = 2.0σ∗ (= 610 MPa).
The x- and z-coordinates relate to the coordi-
nate system in Figure 2.6.

Figure 2.7: Failure response for a 2/1 lay-up with elastic aluminium layers.
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Table 2.2: Overview of the simulations, which are characterised by variations
of the boundary conditions, BC1 and BC2 (see Figure 2.6), different values of
the ultimate mode I traction tu1 of the mode I crack in the aluminium, different
lamellae properties, and a different relative initial crack length 2a0/W .

tu1 = 1.4σ∗ tu1 = 2.0σ∗ tu1 = 3.0σ∗

Aluminium elastic and BC1 & BC2 BC1 BC1

fibre-epoxy elastic
2a0

W
= 0.12

2a0

W
= 0.12

2a0

W
= 0.12

Aluminium elasto-plastic BC1 & BC2 BC1 BC1

and fibre-epoxy elastic
2a0

W
= 0.12

2a0

W
= 0.12

2a0

W
= 0.12

= 0.28
= 0.48

the delamination profiles in Figures 2.7(b) and c for the cases where the ultimate
traction of the mode I crack is tu1 = 1.4σ∗ and tu1 = 2.0σ∗, respectively. Since
the delamination evolution for the case with tu1 = 3.0σ∗ looks similar to that of
the case with tu1 = 2.0σ∗ (with the only difference being a somewhat stronger de-
lamination development during the initial loading stage), the former case has not
been visualised. From Figure 2.7(a) it can be observed that the remote stress ini-
tially increases, subsequently reaches a maximum value, then decreases (thus rep-
resenting an unstable, softening response) and finally asymptotes to a (residual)
stress level that remains approximately constant under continuing crack opening.
Clearly, the value of the maximum remote stress is higher for a higher value of the
fracture strength tu1 of the aluminium, i.e., σ∞max = 720, 760 and 913 MPa for
tu1 = 1.4σ∗, 2.0σ∗ and 3.0σ∗, respectively. The fact that the local ultimate traction
influences the remote stress indicates that the size of the fracture process zone of
the tunneling crack can not be ignored with respect to its length and/or the total
specimen width. If this would be the case, the crack would be of the Griffith type,
where the remote stress only depends on the local toughness characteristics of the
crack [43]. However, due to the crack bridging behaviour by the fibre-epoxy layer,
the size of the process zone of the tunneling crack is significant. A more detailed
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discussion on the size of the process zone of the aluminium crack will follow later
in this section.

The delamination profiles in Figures 2.7(b) and (c) are obtained by graphi-
cally connecting the integration points in which the damage d has just exceeded
the value of 0.99 (which thus is close to the maximum damage value d = 1).
The x- and z-coordinates used for denoting the location of the profiles are in cor-
respondence with the coordinate system depicted in Figure 2.6, with the origin
taken at the centre of the initial pre-crack. It can be observed that the differences
in delamination growth for tu1 = 1.4σ∗ and tu1 = 2.0σ∗ are small. In both cases,
the delamination profile initially develops with increasing length of the mode I
crack in the aluminium (stages ’a’ and ’b’), where the maximum delamination
takes place at the specimen centre. When the mode I crack reaches the vertical
specimen edge, the delamination starts to develop mainly in the vertical direc-
tion. After stage ’d’ the delamination profile has become almost uniform across
the specimen width (only near the free edge the delamination is slightly larger),
where the growth process closely approximates the condition of steady-state de-
lamination. In Suiker and Fleck [62] a closed-form expression has been presented
for the remote failure stress for steady-state delamination that propagates along
the two outermost plies of a uniaxially-loaded, brittle laminate. This expression is
derived from the energy difference upstream and downstream of the delamination
front, and reads

σ∞ss =

√√√√4Ē1Gc

(
(n− 2)w1Ē1 + (n− 1)w2Ē2

)
2w1

(
nw1Ē1 + (n− 1)w2Ē2

) . (2.24)

Here, σ∞ss is the remote stress in the aluminium layer, n is the number of material
#1 layers, Gc is the delamination toughness, and w1 and w2 are the thicknesses of
the material #1 and #2 layers. Further, the stiffness Ēi is defined by

Ēi =

{
Ei/(1 − ν2

i ) for plane strain

Ei for plane stress.
(2.25)

where Ei and νi are the Young’s moduli and Poisson’s ratios of materials i = 1
(aluminium) and 2 (fibre-epoxy). During uniform, steady-state delamination the
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laminate approaches a plane-stress condition, since the right edge of the specimen
is traction-free, in accordance with the boundary conditions of case BC1 depicted
in Figure 2.6. Substitution of the material parameters listed in Table 2.1 into
Eq.(2.24), with the delamination toughness taken as Gc = 4 N/mm (recall that
the effective delamination toughness is independent of the mode-mixity and thus
equals the toughness value of the individual fracture modes), and the number of
aluminium layers as n = 2 (in correspondence with a 2/1 lay-up), for a plane-
stress condition leads to a remote stress of σ∞ss = 547 MPa. This stress value,
which is represented in Figure 2.7(a) by a horizontal, dashed line, is in close
agreement with the residual strength following from the numerical analyses.

As illustrated by Eq.(2.24), the residual strength during steady-state delam-
ination mainly depends on the delamination toughness Gc, and is independent
of the aluminium fracture strength tu1 . The latter aspect can also be observed
from Figures 2.7(a), (b) and (c), which illustrate that at stages ’e’ and ’f’ both the
σ∞ − v1 response and the delamination profiles are virtually identical for the dif-
ferent fracture strengths tu1 . The brittle, almost rate-independent behaviour of the
delamination process is further confirmed by the appearance of a relatively small
process zone at the delamination tip, which actually can be ignored with respect
to the specimen length L.

The mode-mixity during steady-state delamination may be evaluated in ac-
cordance with the definition given by Eq.(2.7). An alternative measure for the
mode-mixity, typically used in linear elastic fracture mechanics [43], is

ψ = tan−1

(
σzy(r)
σyy(r)

)∣∣∣∣
r=l

, (2.26)

which is based on the shear (σzy) and normal (σyy) stresses evaluated at a spec-
ified horizontal distance r = l ahead of the crack (or delamination) tip. Note
that the definition, Eq.(2.26), assumes that the crack propagates in the z-direction
along a plane separating two (possibly dissimilar) bulk materials, with the normal
to the cracking plane pointing in the y-direction, where pure mode I conditions
correspond to ψ = 0o, and pure mode II conditions relate to ψ = 90o. In cohe-
sive zone modelling there is no standard procedure to identify the crack tip from a
traction-separation law. However, a definition regularly used is based on relating
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the crack tip to the point at which the interface traction reaches the peak value tu

[59], which is consistent with the experimental observation that micromechanical
processes are not only active ahead of the crack tip, but also in the wake of the
crack tip [41]. With this definition, the present numerical results show that during
steady-state delamination the mode-mixity, Eq.(2.26), for the case tu1 = 1.4σ∗

varies between a minimum value ψ = 31o measured at a small distance ahead
of the crack tip, and a maximum value ψ = 90o measured exactly at the crack
tip. The maximum value reflects a purely mode II condition. This condition is
reached since the crack faces at the crack tip are in contact, as a result of which
the mode I contribution vanishes. In Suiker and Fleck [62], the mode-mixity for
the case of steady-state delamination in a brittle, uniaxially-loaded 2/1 laminate
with a stiffness mismatch of Ē2/Ē1 ≈ 0.4 (which is in correspondence with the
elastic parameters of the aluminium and fibre-epoxy layers presented in Table 2.1)
has been measured as ψ ≈ 54o, where the distance l has been arbitrarily specified
as the semi-width of the mode I crack in the aluminium, l = 0.15 mm. Obvi-
ously, this value falls within the range 31o < ψ < 90o following from the present
numerical analyses. In the wake of the crack tip, the mode-mixity in the present
simulations varies between a value ψ = 90o measured exactly at the crack tip and
a value ψ = 85o measured when the damage is close to unity, d ≈ 1, and the ad-
herence between the crack faces is virtually lost. Hence, it may be concluded that
in the wake of the crack tip the failure process is mode II dominated. For the cases
with a higher maximum traction, tu1 = 2.0σ∗ and tu1 = 3.0σ∗, the mode-mixities
ahead and behind the crack tip have similar ranges, with the main difference being
that the minimum value ahead of the crack tip is somewhat larger, i.e., ψ = 38o

and ψ = 40o for tu1 = 2.0σ∗ and tu1 = 3.0σ∗, respectively.

The traction profile of the mode I crack in the aluminium is plotted in Fig-
ure 2.8(a) (tu1 = 1.4σ∗) and Figure 2.8(b) (tu1 = 2.0σ∗) across the complete
specimen width, during various deformation stages of the loading process. The
curve indicated by an asterisk, ’*’, represents the elastic response of the interface
(plotted by a dashed line) prior to cracking (i.e., before the ultimate traction tu1 is
reached at the tip of the initial pre-crack), while the curves ’a-d’, which relate to
the deformation stages ’a-d’ indicated in Figure 2.7, correspond to a mode I crack
developing in the aluminium. At deformation stage ’a’, the integration points next
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Figure 2.8: Normal traction t1 of the mode I crack tunneling in the elastic alu-
minium layer, evaluated across the specimen width, at various deformation stages.
The curve ’*’ refers to an elastic interfacial response and the curves ’a-d’ (which
correspond to the deformation stages ’a-d’ indicated in Figure 2.7(a)) reflect the
fracture process.
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to the initial pre-crack have just entered the softening regime, while the integration
points at larger distance from the pre-crack still have not reached the ultimate trac-
tion tu1 and therefore respond elastically. During deformation stages ’b’ and ’c’ all
integration points across the specimen width have reached the softening regime.
Note that during softening the tractions vary only weakly in the x-direction, such
that the size of the process zone of the aluminium crack substantially exceeds the
specimen width. As expected, close to the pre-crack the variation in the softening
profile is slightly larger for a larger ultimate traction tu1 , indicating that the fracture
process occurs a little less spread out. Finally, at stage ’d’ all integration points
across the specimen width have reached the end of the softening regime, and the
crack faces of the aluminium crack have become fully separated.

During the final phase of the crack tunneling process (i.e., between stages ’c’
and ’d’), significant delamination has developed, see Figures 2.7(b) and (c), where
the effective response of the laminate has become unstable, see Figure 2.7(a). In
the study of Suiker and Fleck [62] on laminates subjected to uniaxial tension, this
unstable tunneling mechanism was named ’mechanism 3’, see Figure 2.1. Al-
though the study in [62] relates to an ’ideally brittle’ laminate of infinite size,
where the size of the process zone of the tunneling crack is equal to zero, the typ-
ical features of mechanism 3 thus also are observed in a ’quasi-brittle’ laminate
where the tunneling crack is characterised by a process zone of substantial length.
Essentially, the appearance of mechanism 3 can be explained from the specific
material parameters that characterise the 2/1 GLARE laminate, i.e., the elastic
stiffness of the fibre-epoxy layer, which, as already mentioned, is about 0.4 times
smaller than the elastic stiffness of the aluminium layer, and the ratio between the
delamination toughness and the mode I fracture toughness, which has a rather low
value of 0.04, see Table 2.1. The analyses performed by Suiker and Fleck [62]
confirm that for these material parameters ’mechanism 3’ is indeed the operative
failure mechanism during crack tunneling in a 2/1 laminate. This failure mech-
anism map further indicates that the stiffness mismatch between the fibre-epoxy
layer and the aluminium layer has a moderate influence on the appearance of this
specific fracture mechanism, and that it is mainly determined by the relatively
low toughness for interfacial delamination. In fact, it is shown that the delamina-
tion during crack tunneling remains absent if the delamination toughness becomes
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larger than the toughness for mode I fracture in the aluminium. For such a rela-
tively high delamination toughness the tunneling crack becomes stable and of the
pure mode I type (i.e., ’mechanism 1’ in Figure 2.1), in correspondence with a
remote, steady-state tunneling stress that is about three to four times larger than
that obtained for the present delamination toughness. Obviously, this conclusion
holds as long as the aluminium layers do not deform plastically. The influence
of plasticity in the aluminium on the effective failure response of the laminate is
investigated in the subsequent section.

2.5.2 2/1 lay-up with elasto-plastic aluminium layers

In Figure 2.9(a) the remote stress in the aluminium layers is plotted versus the
normal opening of the mode I crack in the elasto-plastic aluminium layers. It
can be observed that a higher fracture strength tu1 of the aluminium leads to a
higher remote stress, i.e., at a crack opening v1 = 1.9 mm the remote stress in
the aluminium equals σ∞ = 557, 611 and 642 MPa for tu1 = 1.4σ∗, 2.0σ∗ and
3.0σ∗, respectively. For the case with the highest aluminium fracture strength,
tu1 = 3.0σ∗, at v1 = 1.9 mm the continuum elements close to the crack tip have
become strongly distorted, which is due to the generation of substantial plastic de-
formations in these elements. Consequently, at this stage the numerical procedure
fails to converge. Although it is expected that this problem can be overcome by
further decreasing the size of the elements near the crack tip, this strategy has not
been explored in more detail due to the already large computational times of the
present simulations (i.e., the solid-like shell elements used in the numerical model
are computationally expensive). Note that the curves depicted in Figure 2.9(a) do
not show a softening branch, which is in contrast to the effective response of a lay-
up with elastic aluminium layers, see Figure 2.7(a). Hence, it may be concluded
that the dissipation in the plastic zone ahead of the crack in the aluminium stabi-
lizes the effective failure response of the laminate. For a larger fracture strength
tu1 of the aluminium, the plastic zone, and thus the dissipation in this zone, be-
comes larger, as a result of which the failure response becomes more stable, see
Figure 2.7(a).

The delamination profiles for the deformation stages ’a-f’ indicated in Fig-
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tion stages ’a-f’ (see Figure 2.9(a)), for
the case where the ultimate traction of
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(c) Delamination profiles for deforma-
tion stages ’a-f’ (see Figure 2.9(a)), for
the case where the ultimate traction of
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Figure 2.9: Failure response for a 2/1 lay-up with elasto-plastic aluminium layers.
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ure 2.9(a) are plotted in Figures 2.9(b) (tu1 = 1.4σ∗) and 2.9(c) (tu1 = 2.0σ∗).
Apparently, during crack tunneling the delamination front for a specimen with
elasto-plastic aluminium layers is much steeper than for a specimen with elas-
tic aluminium layers, see Figures 2.7(b),(c). In addition, plastic deformations in
the aluminium layer induce substantial free-edge delamination along the vertical
specimen edge. Essentially, near the free edge the plastic deformations in the
aluminium layer increase the mismatch in deformation with the fibre-epoxy layer
that wants to contract laterally. This gives rise to the development of stress con-
centrations at the interface between the two layers, which are relaxed through the
appearance of free-edge delamination. When the delamination has fully devel-
oped and is approximately uniform across the specimen width (i.e., stage ’f’), for
the case tu1 = 1.4σ∗ the mode-mixity, Eq.(2.26), ahead of the crack tip on aver-
age varies between a value ψ = 60o measured at a small distance from the crack
tip and a value ψ = 90o measured exactly at the crack tip. In the wake of the
crack tip the mode-mixity varies between a value ψ = 90o measured at the crack
tip and a value ψ = 86o measured at a position where damage has approached
unity, d ≈ 1. The latter variation in mode-mixity is similar to that for the case of a
2/1 laminate with elastic aluminium layers, and indicates that the fracture process
in the wake of the crack is mode II dominated. Note that the variation of the mode
mixity ahead of the crack tip is somewhat smaller than for the 2/1 laminate with
elastic layers, from which it may be concluded that the generation of plasticity
in the aluminium reduces the mode I contribution to delamination. Furthermore,
as for the case of a specimen with elastic layers, the influence of the value of the
ultimate traction tu1 on the mode-mixity is relatively small.

The evolution of the normal traction of the mode I crack in the aluminium
has been plotted in Figures 2.10(a) (tu1=1.4σ∗) and b (tu1=2.0σ∗), for all integra-
tion points across the specimen width. The characters ’a-e’ correspond to the
deformation stages ’a-e’ indicated in Figure 2.9(a). Comparing the profiles in
Figures 2.10(a) and (b) shows that ahead of the crack tip the increase in trac-
tion with distance is stronger for a higher ultimate traction, tu1 , of the aluminium
crack. Correspondingly, the length of the fracture process zone, which relates
to the distance between the integration point in which all traction is lost and the
integration point that has just reached the maximum traction value tu1 , decreases
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Figure 2.10: Normal traction t1 of the mode I crack tunneling in the elasto-plastic
aluminium layer, evaluated across the specimen width, at various deformation
stages. The curve ’*’ refers to an elastic interfacial response and the curves ’a-e’
(which correspond to the deformation stages ’a-e’ indicated in Figure 2.9(a)) re-
flect the fracture process.
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if the ultimate traction tu1 becomes larger. A similar result was found by Tver-
gaard and Hutchinson [73] for a purely mode I crack propagating in an elasto-
plastic medium. In addition, it can be noticed that the fracture process zone for
a laminate with elasto-plastic aluminium layers is considerably shorter than for a
laminate with elastic aluminium layers, see Figures 2.7(b) and (c). Essentially, a
compliant, elasto-plastic aluminium layer is less constrained to deformation, and
therefore induces a shorter fracture process zone than a stiff elastic aluminium
layer. Combining Figures 2.10(a) and (b) with Figures 2.9(b) and (c), it can be ob-
served that a tunneling crack with a higher fracture strength and a shorter fracture
process zone (i.e., the case with tu1 = 2.0σ∗) is characterised by a steeper delami-
nation front near the crack tip. In addition, a tunneling crack with a higher fracture
strength and a shorter fracture process zone requires the application of more ex-
ternal work in order for the crack tip to reach the vertical specimen edge and to
evolve into an (almost) uniform delamination pattern. Accordingly, at the level
of uniform delamination (stage ’f’), the normal crack opening v1 and the remote
failure strength σ∞ are larger for a higher fracture strength tu1 of the aluminium,
see Figure 2.9(a). Recall that this effect has not been observed for the 2/1 laminate
with elastic aluminium layers; the strength and deformation characteristics at uni-
form delamination are independent of the fracture strength of elastic aluminium
layers, see stages ’e’ and ’f’ in Figures 2.7(a), (b) and (c) and Eq.(2.24). It is fur-
ther interesting to notice that during uniform delamination the remote strength for
a laminate containing elasto-plastic aluminium layers may be somewhat higher
than for a laminate containing elastic aluminium layers, especially for higher val-
ues of the aluminium fracture strength tu1 , see Figures 2.9(a) and 2.7(a). Hence,
the plastic deformation history developed during crack tunneling then provides a
positive contribution to the final residual strength of the laminate specimen.

2.5.3 Influence of boundary conditions on failure response

In accordance with Figure 2.6 and Table 2.2, the effect of the boundary conditions
at the right specimen edge on the effective failure response is studied by compar-
ing the cases BC1 (unconstrained boundary) and BC2 (horizontally constrained
boundary), using tu1 = 1.4σ∗ in the traction separation law for the aluminium

57



CHAPTER 2. ANALYSIS OF FRACTURE AND DELAMINATION IN LAMINATES USING 3D NUMERICAL MODELLING

crack. In Figure 2.11 the remote stress in the aluminium layer is plotted against
the normal crack opening in the aluminium (measured at point A, see Figure 2.6),
for the cases where the aluminium layer behaves elastically (Figure 2.11(a)) and
elasto-plastically (Figure 2.11(b)). For a specimen with elastic aluminium layers
the remote failure response is initially similar for both types of boundary con-
ditions. However, when the crack has tunnelled across the complete specimen
width and uniform delamination starts to develop, the remote stress related to
the constrained boundary, BC2, becomes somewhat larger than for the uncon-
strained boundary, BC1. Essentially, the boundary conditions BC1 then approach
a plane-stress condition and the boundary conditions BC2 approach a plane-strain
condition. The corresponding remote stresses respectively are σ∞ss = 547 MPa
and σ∞ss,∗ = 562 MPa, as computed with Eqs.(2.24) and (2.25) using the numer-
ical values in Table 2.1. Figure 2.11(a) illustrates that these values are in close
agreement with the numerical results.

As shown in Figure 2.11(b), the difference in failure response for the two
boundary conditions becomes negligible when plastic deformations develop in
the aluminium. The delamination patterns corresponding to case BC2 are similar
to those of case BC1 (see Figures 2.7 and 2.9 for lay-ups with elastic aluminium
layers and elasto-plastic aluminium layers, respectively), and therefore are not
presented here. The only difference between the delamination patterns for the
two cases is that for case BC2 free-edge delamination remains absent due to the
constraint of the horizontal displacement of the right specimen edge.

2.5.4 Effect of initial crack length on failure strength

In this section the effect of the initial crack length on the overall laminate strength
is examined. In addition to the configuration depicted in Figure 2.3, for which
the initial crack length is relatively small, 2a0 = 0.12W , samples with a larger
initial crack length are considered, i.e., 2a0 = 0.28W and 0.48W , for the case
where tu1 = 1.4σ∗ and the aluminium layers behave elasto-plastically, see also Ta-
ble 2.2. The results of the computations are illustrated in Figure 2.12, where the
remote gross stress σ̄∞ of the laminate is plotted against the relative initial crack
size 2a0/W . The gross stress is computed as the weighted average of the remote
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(a) 2/1 lay-up with elastic aluminium layers.
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(b) 2/1 lay-up with elasto-plastic aluminium layers.

Figure 2.11: Normal opening v1 of the mode I crack in the aluminium (mea-
sured at point A, see Figure 2.6) versus the remote stress σ∞ in the aluminium,
for a laminate with an unconstrained right specimen edge (BC1) and a hori-
zontally constrained right specimen edge (BC2), see Figure 2.6. The ultimate
traction for the mode I crack in the aluminium is tu1 = 1.4σ∗ (= 430 MPa).
The horizontal, dashed lines in Figure 2.11(a) indicate the steady-state remote
stress computed with Eqs.(2.24) and (2.25), which reflects a plane stress condi-
tion (with σ∞ss = 547 MPa) for the case BC1 and a plane-strain condition (with
σ∞ss,∗ = 562 MPa) for the case BC2.

59



CHAPTER 2. ANALYSIS OF FRACTURE AND DELAMINATION IN LAMINATES USING 3D NUMERICAL MODELLING

stresses over the total thickness of the laminate, and is evaluated when somewhere
in the prepreg layer the axial strain becomes equal to the fracture strain of 4.7 %
(as reported in [17]). The computations show that this strain value is first reached
in the wake of the aluminium crack, close to the centre of the specimen. It is
assumed that at the prepreg fracture strain the gross stress reaches its maximum,
and is going to drop under continued loading due to (substantial) fibre failure.
With this assumption, the computed gross stress may be considered as the residual
strength of the centre-cracked specimen, which is typically defined as the ultimate
static strength in the presence of damage [17]. Figure 2.12 illustrates that the cal-
culated maximum gross stress drops with about 100 MPa when the initial crack
length is increased from 2a0 = 0.12W to 0.48W . Furthermore, the numerical
predictions appear to be in good correspondence with the residual strengths mea-
sured experimentally by de Vries [17] for centre-cracked 2/1 GLARE laminates
with widths ranging from 100 mm to 400 mm. In the experiments the initial crack
is generated through the application of a fatigue load with constant amplitude,
which results in a residual strength that is about 200 MPa higher than when the
initial crack is generated by a saw cut [17]. In spite of the good correspondence be-
tween the model and the experiments, it should be mentioned that the fibre-epoxy
layers of the tested 2/1 laminates are unidirectional with the fibres oriented in the
loading direction, which differs from the cross-plied fibres-epoxy layers consid-
ered in the numerical simulations. Furthermore, the laminate widths used in the
experiments are somewhat larger than that in the simulation (i.e., W = 40 mm,
see Figure 2.3). These two discrepancies are expected to lead to, respectively,
(relatively small) under- and overpredictions of the experimental strengths, as can
be concluded from experimental variation studies on laminates with alternative
lay-ups [17]. A more detailed analysis of the effects of fibre-orientation and spec-
imen width on the overall laminate failure response is a topic for future modelling
studies.

2.6 Summary of results and concluding remarks

Three-dimensional numerical simulations have been performed on a centre-crac-
ked 2/1 GLARE laminate subjected to uniaxial tension. The laminate is com-
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Figure 2.12: Maximum gross stress σ̄∞ of the centre-cracked laminate specimen
versus the relative initial crack length 2a0/W . The experimental values are taken
from de Vries [17]

posed of two aluminium layers sandwiching a cross-plied fibre-epoxy layer. The
fracture and delamination characteristics are simulated with an interface model,
in which the mode-mixity is derived from an energy criterion typically used in
linear elastic fracture mechanics studies. The response for a lay-up with elas-
tic aluminium layers shows that during the final phase of the loading process the
delamination becomes virtually uniform across the specimen width, reaching a
steady state. The corresponding residual failure strength of the laminate strongly
depends on the delamination toughness. These results appear to be in close cor-
respondence with those obtained by Suiker and Fleck [62] for a uniaxially-loaded
laminate composed of brittle, elastic layers. During the initial, crack nucleation
phase, which can not be simulated with the model presented in [62], a higher
fracture strength of the aluminium leads to a higher ultimate failure strength of
the laminate. The transition from the deformation stage at which the ultimate
failure strength is reached to the deformation stage at which the residual failure
strength is reached is characterised by an unstable response, in correspondence
with ’mechanism 3’ depicted in Figure 2.1. This unstable behaviour vanishes
when the aluminium is able to deform plastically. Furthermore, both during the
phases of crack tunneling and uniform delamination, the strength of the laminate
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with elasto-plastic aluminium layers strongly depends upon the fracture strength
of the aluminium. Essentially, a higher aluminium fracture strength provides the
aluminium crack with a shorter fracture process zone and a steeper delamination
front at the crack tip, which leads to a higher effective failure strength of the
laminate. In addition, the final residual strength at uniform delamination may be
higher than for a laminate composed of elastic aluminium layers, especially at
higher values of the aluminium fracture strength. When the horizontal displace-
ments at the vertical boundaries of the laminate specimen are unconstrained, the
generation of plasticity in the aluminium layers induces free-edge delamination.
The free-edge delamination remains absent when the horizontal displacements at
these boundaries are fully constrained. In addition, the gross strength drops with
increasing initial crack length 2a0, and shows to be in good correspondence with
the experimental values reported in [17].

In the discussion of the simulation results, the effect of several length scales on
the overall failure response of the laminate has been addressed and analysed, i.e.,
the size of the fracture and delamination process zones, the size of the plastic zone
ahead of the mode I crack tip and the size of initial crack length. However, the
interactive effect on the response by these length scales and higher-scale, geomet-
rical lengths, such as the width of the laminate, has not been studied in detail. This
would require the variation of the laminate specimen size, which is kept constant
in the present analyses. More information about the interaction between material
length scales and geometrical length scales and their effect on the global failure
strength, as often conveniently described by means of so-called size-effect laws,
can be found in the textbook of Baz̆ant and Planas [6] and references therein.

The present interface damage model has proven to behave robustly and accu-
rately in the numerical boundary value problems studied in this chapter. It is em-
phasised that the excellent numerical performance of the interface damage model
is not limited to the specific type of boundary value problems examined here, as
it will be shown in the forthcoming chapters.
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Micromechanical study of off-axis
failure behaviour of fibre-epoxy

systems

3.1 Introduction

The macroscopic tensile failure response of fibre-metal laminates and fibre-rein-
forced composites, as often characterised by mechanisms such as transverse ma-
trix cracking and interfacial delamination, at the microscale typically is deter-
mined by a combination of various complex failure modes, such as fibre debond-
ing, epoxy cracking, and fibre pull-out. For optimising the design and manu-
facturing of these materials, it is important to understand these failure modes in
detail, which requires the development of advanced numerical models that can
simulate the microscale failure behaviour in a stable, robust and accurate fashion.
The present chapter focuses on the numerical simulation of the off-axis failure
behaviour of unidirectional fibre-epoxy systems, which is characterised by two
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out of the three microscale failure modes mentioned above, namely fibre debond-
ing and epoxy cracking. The mechanisms of fibre debonding and epoxy cracking
are modelled in a discrete fashion, using interface elements equipped with the
cohesive zone model presented in Section 2.2. To allow for arbitrary, complex
fracture patterns that develop as result of crack branching and crack coalescence,
interface elements are introduced between all continuum elements modelling the
epoxy matrix, and at the interfaces between fibres and epoxy matrix. This mod-
elling approach, which was originally proposed by Xu and Needleman [80] some-
what more than a decade ago, has since then been successfully applied in failure
analyses of various materials, such as crazing in polymers [70], and quasi-brittle
fracture in cementitious composites [69]. The main advantages of this simula-
tion technique are that (i) the nucleation and growth of cracks is entirely deter-
mined by the interaction between existing cracks and the corresponding stress
(re-)distribution in the surrounding bulk material, (ii) branching and coalescence
of cracks emerge as a natural outcome of the simulation, with no need for addi-
tional selection criteria. A disadvantage of the method is that the chosen spatial
discretisation of the actual boundary value problem may have an influence on the
location and direction of the cracking path. However, as will be shown in this
chapter, this effect can be kept small by choosing a sufficiently fine finite element
mesh.

This chapter is organised as follows. Section 3.2 discusses the numerical sim-
ulation of a sample composed of a single fibre embedded in an epoxy matrix,
which is loaded under uniaxial tension. A mesh refinement study is performed
in order to examine the objectivity of the numerical results as a function of the
finite element discretisation. Subsequently, the effect is studied of the ratio be-
tween the fibre-epoxy interfacial strength and the epoxy strength on the failure
behaviour of the system, as well as the influence of the ratio between the tough-
nesses of the fibre-epoxy interface and the epoxy matrix. The section ends with
an assessment of the validity of the usage of symmetry boundary conditions for
the single-fibre matrix configuration. Section 3.3 treats numerical simulations on
uniaxially loaded epoxy systems containing multiple fibres. As for the single-
fibre epoxy system, the influence is studied of the ratio between the fibre-epoxy
strength and the epoxy strength on the failure response. In addition, the effect of
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the fibre volume fraction and the fibre distribution on the failure behaviour of the
system is analysed. The chapter ends with a summary of the main conclusions of
the study, and a qualitative comparison of the simulation results with experimental
observations.

3.2 Simulation of a single-fibre composite

As mentioned in the above introduction, the interface damage model presented in
Chapter 2 is used in the numerical simulation of the off-axis strength of unidirec-
tional fibre-epoxy systems. As a start, the failure behaviour of a uniaxially-loaded
sample composed of a single S2 glass fibre embedded in a FM94 epoxy matrix is
studied. This combination of materials is typical for the fibre-epoxy layers utilised
in the fibre-metal laminate GLARE [78]. The modelled sample is assumed to be
under plane-strain conditions, which is representative of a fibre with a relatively
large (actually infinite) length. As a result of symmetry of the sample geometry,
one quarter of the actual configuration may be modelled. The validity of sym-
metry boundary conditions in terms of the generated sample fracture pattern will
be studied in detail in Section 3.2.4. The geometry and boundary conditions of
the model are illustrated in Figure 3.1. The symmetry is warranted by placing
fixed and roller supports at the left and bottom edges of the sample. The diameter
of the S2 glass fibre is 10μm, which is representative of the glass fibres used in
GLARE [78]. The specimen is square-shaped, with a side length of L = 28μm,
which is in correspondence with a fibre volume fraction Vf = 0.1. The tensile
loading is imposed by applying a uniform displacement u at the right edge of the
specimen. Quasi-static loading conditions are warranted by prescribing a rela-
tively small nominal strain rate of u̇/L = 4 × 10−3 s−1. The fibre and the epoxy
matrix are meshed with 6-node triangular elements equipped with a 7-point Gauss
quadrature. Debonding between fibre and matrix is simulated with the interface
damage model presented in Section 2.2, using 6-node interface elements equipped
with a 3-point Newton-Cotes quadrature. Fracture processes within the epoxy
material are also simulated with the interface damage model, placing 6-node in-
terface elements furnished with a 3-point Newton-Cotes quadrature in between
the triangular continuum elements constructing the epoxy matrix, see Figure 3.2.
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Figure 3.1: Geometry and boundary conditions of a single fibre embedded in an
epoxy matrix. Using symmetry boundary conditions only a quarter of the sample
can be simulated.

This approach for the simulation of fracture was originally proposed by Xu and
Needleman [80], and warrants that the crack initiation and propagation processes
in the sample are naturally determined by the geometry and boundary conditions
applied, and by the parameter values used in the interface traction-separation law.
The influence of the finite element discretisation on the fracture response can be
minimised by choosing a sufficiently fine, randomly oriented mesh. Nonetheless,
the mesh fineness is bounded by a maximum in order to limit artificial response
contributions related to the use of an interface ’dummy’ stiffnessK in the traction-
separation law, see Eq.(2.1). In fact, the application of interface elements with an
elastic dummy stiffness causes that the elastic response of the finite element model
does not convergence to that of an ideal continuum in the limit of an ’infinitely
fine’ mesh.

3.2.1 Mesh refinement study

In order to assess the influence of the numerical discretisation on the sample re-
sponse, three different meshes are considered, see Figure 3.3, named the ’Coarse
mesh’, ’Intermediate mesh’ and ’Fine mesh’. The number of continuum elements
and interface elements used in each of these meshes are listed in Table 3.1. The
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(fibre-epoxy)
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(epoxy)

Detail A
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Figure 3.2: Finite element mesh where interface elements are placed at the fibre-
epoxy interface and within the epoxy.

material parameters of the S2 glass fibre, the FM94 epoxy and the interfaces
within the epoxy and between the fibre and epoxy are summarised in Table 3.2.
The elastic material parameters of the fibre and the epoxy (i.e., their Young’s
modulus and Poisson’s ratio) have been taken from [28]. The value of the elastic
stiffnessK of the interfaces is chosen relatively high in order to warrant interfacial
deformations in the elastic regime to remain negligibly small. Values for the ulti-
mate strengths and fracture toughnesses of the epoxy material and the fibre-epoxy
interface have not been reported in the literature, and therefore were estimated

(a) Coarse mesh (3003 ele-
ments)

(b) Intermediate mesh (5137
elements)

(c) Fine mesh (9569 elements)

Figure 3.3: Three different meshes used in the numerical simulations of the fibre-
epoxy sample sketched in Figure 3.1.
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Table 3.1: Number of elements for the three different meshes in Figure 3.3.

Mesh Continuum Fibre-epoxy Epoxy Total
elements interface elements interface elements

Coarse 1346 31 1550 2927
Intermediate 2230 34 2775 5039
Fine 4140 44 5247 9431

from the failure response of delamination tests on double spliced GLARE spec-
imens [30]. For simplicity, both for the epoxy and the fibre-epoxy interface the
strength and toughness values were taken the same for tension (mode I) and shear
(mode II). The subscripts ’coh’ and ’adh’ used in the denotation of these parame-
ters refer to the cohesive strength (toughness) of the epoxy material and the adhe-
sive strength (toughness) of the fibre-epoxy interface, respectively. The influence
of the strength and toughness parameters on the effective failure response of the
sample will be studied in detail by means of parameter variation studies presented
in the forthcoming sections. The value of the relaxation parameter η is taken rel-
atively small in order to closely approach the limit case of rate-independent crack
growth. Additional simulations not presented here have shown that the intro-
duction of a small rate-dependency is necessary to avoid numerical convergence
problems caused during crack coalescence and bifurcation. Figure 3.4 shows the
effective sample response for the three different meshes displayed in Figure 3.3,
by plotting the prescribed displacement u (normalised by vu

coh) against the traction
t̃ averaged across the right sample boundary (normalised by tucoh). For all three
meshes the response is similar, i.e., during fracture the traction drops linearly
from a peak value of t̃/tucoh ≈ 0.92 (corresponding to t̃ ≈ 46 N/mm2) to rela-
tively small value of t̃/tucoh ≈ 0.1 (corresponding to t̃ ≈ 5 N/mm2), after which
the slope of the softening curve changes abruptly and the traction decreases fur-
ther to zero. Because the sample consists for 90 % of epoxy material, the effective
tensile strength of the sample (= 46 N/mm2) is close to the tensile strength of the
epoxy (= 50 N/mm2). The kink in the softening curve is due to the fact that the in-
terface models for fibre-epoxy cracking and for epoxy cracking have different ul-
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Figure 3.4: Effective sample response for the three different meshes in Figure 3.3.
The traction t̃ represents the average value at the right sample boundary at which
the displacement u is prescribed, see Figure 3.1.

timate relative displacements vu. Since the values of the ultimate strength and the
fracture toughness were chosen equal for mode I and mode II loading conditions,
and the softening branch in the traction-separation curve is linear, the ultimate
relative displacement for modes I and II can be simply estimated as vu ≈ 2Gc/t

u.
With the material data listed in Table 3.2, this leads to vu

coh ≈ 0.02 mm for the
epoxy interface model (which is reached in Figure 3.4 at the kink of the soften-
ing branch, when u = vu

coh) and vu
adh ≈ 0.04 mm for the fibre-epoxy interface

model (which is reached in Figure 3.4 at the end of the softening branch, when
u = vu

adh = 2vu
coh). Hence, during the deformation stage between the kink and the

end of the softening branch, the crack through the epoxy has completely opened
and the remaining load is transfered solely via the fibre-epoxy interface.

In Figure 3.5 the axial normal stress σ11 is shown in a deformed configuration
(plotted on true scale), for the three different meshes depicted in Figure 3.3. The
response states are taken at a prescribed displacement of u = 0.05 vu

coh, after
the effective peak strength is passed, but before complete failure has occurred,
i.e., there is still transfer of loading possible across the separated crack faces,
see Figure 3.4. The depicted fracture pattern nucleates at the interface between
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Table 3.2: Material properties of the fibre-epoxy sample.

Parameter(s) Value(s)

Fibre
Young’s modulus E = 86.9 [GPa]
Poisson’s ratio ν = 0.23

Epoxy
Young’s modulus E = 3.9 [GPa]
Poisson’s ratio ν = 0.37

Fibre-epoxy interface
Elastic stiffness K = 1 × 108 [N/mm3]
Ultimate normal and shear strengths tu1 = tu2 = tuadh = 25 [MPa]
Mode I and mode II fracture toughnesses GI,c = GII,c = Gc,adh = 0.5 [N/mm]
Relaxation parameter η = 0.002 [s]

Epoxy interface
Elastic stiffness K = 1 × 108 [N/mm3]
Ultimate normal and shear strengths tu1 = tu2 = tucoh = 50 [MPa]
Mode I and mode II fracture toughnesses GI,c = GII,c = Gc,coh = 0.5 [N/mm]
Relaxation parameter η = 0.002 [s]

the fibre and the epoxy, as represented by point A in Figure 3.1. After some
crack growth along the fibre-epoxy interface, the stress locally reaches the tensile
strength of the epoxy, where the crack deflects into the epoxy material. The angle
θ, at which the crack developing along the fibre perimeter proceeds into the epoxy
material (measured with respect to the horizontal axis through the fibre centre),
can be estimated using the closed-form expression reported by Parı́s et al. [52]
for an ideally brittle fibre-epoxy system subjected to uniaxial tension:

θ = −2 sgn(β) arccos

√
2 + |β|
3 + |β| , for β = 0 . (3.1)

Here, β is the second Dundur’s elastic mismatch parameter, given by [20]

β =
1
2

(1 − 2ν2)/μ2 − (1 − 2ν1)/μ1

(1 − ν2)/μ2 + (1 − ν1)/μ1
(3.2)
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Figure 3.5: Axial normal stress σ11 depicted in the deformed configuration (plot-
ted on true scale), for the three different meshes in Figure 3.3. The response states
are taken after the effective peak strength is passed, at a prescribed displacement
of u = 0.05 vu

coh, see Figure 3.4.

with μi = Ei/2(1 + νi) the elastic shear modulus of materials i = {1, 2}, where
Ei and νi are the corresponding Young’s moduli and Poisson’s ratios. Substitution
of the material parameters listed in Table 3.2 into Eq.(3.2) leads to θ = 68◦. This
value for the crack deflection angle is in close correspondence with the numerical
values computed for the Coarse mesh (θ = 67◦), the Intermediate mesh (θ = 61◦)
and the Fine mesh (θ = 63◦). It can be further observed from this figure that for
the Intermediate and Fine meshes a second crack emerges left from the dominant
crack in the epoxy. This crack, which is absent in the response for the Coarse
mesh, does not have a significant influence on the effective traction-separation
response depicted in Figure 3.4. Considering the small differences between the
fracture geometries for the Intermediate and Fine meshes, the computationally
less expensive Intermediate mesh will be used in the forthcoming computations.

3.2.2 Fibre-epoxy interfacial strength versus epoxy strength

The influence of the ratio between the fibre-epoxy interfacial strength and the
epoxy strength on the effective failure response of the single-fibre composite is
studied considering three different strength ratios: tuadh/t

u
coh = 0.5, 1.0 and 2.0.
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Figure 3.6: Effective sample response for three different strengths ratios
tuadh/t

u
coh = 0.5, 1.0 and 2.0. The traction t̃ represents the average value at the

right sample boundary at which the displacement u is prescribed, see Figure 3.1.

Here, the value of 0.5 reflects the reference case presented in Table 3.2. In the
variation study the ultimate strength of the epoxy is kept constant, tucoh = 50 MPa.

The effective sample response for the three different strength ratios is depicted
in Figure 3.6. It can be observed that for the low strength ratio, tuadh/t

u
coh = 0.5,

the softening curve has a bilinear shape, see also Figure 3.4. In contrast, for the
intermediate and high strength ratios, tuadh/t

u
coh = 1.0 and 2.0, the response is

characterised by a linear softening branch, which can be explained as follows.
When the adhesive strength of the fibre-epoxy interface is larger than the cohesive
strength of the epoxy, tuadh > tucoh, the failure response of the sample is determined
by the fracture properties of the epoxy only and, as such, the strength of the fibre-
epoxy interface becomes irrelevant. Accordingly, the curved crack along the fibre-
epoxy interface, which typically appears when tuadh < tucoh, see Figure 3.7(a),
vanishes, and the cracking pattern fully develops through the epoxy material, see
Figure 3.7(b). The (almost) straight crack here indicates that the epoxy material
(virtually) fails in mode I. Consequently, the effective failure response in Fig-
ure 3.6 closely approximates the mode I traction-separation law of the epoxy ma-
terial (which is characterised by a linear softening branch, see Figure 2.2), where
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Figure 3.7: Axial normal stress σ11 depicted in the deformed configuration (true
scale). The response states are taken after the effective peak strength is passed, at
a prescribed displacement of u = 0.05 vu

coh, see Figure 3.6.

the maximum effective traction equals t̃max = tucoh and the displacement at com-
plete failure equals u = vu

coh.

When the adhesive strength of the fibre-epoxy interface is equal to the co-
hesive strength of the epoxy, tuadh = tucoh, in principle both fracture patterns
depicted in Figure 3.7 can occur; under these circumstances the actual fracture
pattern becomes (somewhat arbitrarily) determined by the actual finite element
discretisation and (small) numerical round-off errors in the solution procedure.
For the present finite element discretisation this has led to a failure response char-
acterised by cracking through the epoxy only, in a similar fashion as depicted in
Figure 3.7(b) for the case tuadh > tucoh.

3.2.3 Fibre-epoxy interfacial toughness versus epoxy toughness

In Figure 3.8 the sample response is depicted for three different ratios of the fibre-
epoxy interfacial toughness and the epoxy toughness, namely Gc,adh/Gc,coh =
0.5, 1.0 and 2.0, where the toughness of the epoxy is kept constant, Gc,coh =
0.5 N/mm. Since for all cases tuadh < tucoh, the actual failure mechanism for
the three cases closely resembles to that depicted in Figure 3.7(a). The sam-
ple deformation capacity for the cases Gc,adh/Gc,coh = 1.0 and 2.0 is set by the
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Figure 3.8: Effective sample response for three different ratios between the fibre-
epoxy toughness and the epoxy toughness, Gc,adh/Gc,coh.

ultimate relative displacement of the fibre-epoxy interface, and corresponds to
vu

adh = 2vu
coh ≈ 0.04 mm and vu

adh = 4vu
coh ≈ 0.08 mm, respectively. For the

case Gc,adh/Gc,coh = 0.5 the ultimate relative displacements of the epoxy crack
and the fibre-epoxy crack are equal, vu

adh = vu
coh, which is the reason that the

softening branch of the sample response is linear instead of bi-linear. The effec-
tive fracture toughness of the sample can be computed from the area under the
corresponding traction-separation curve, and equals 0.46 N/mm, 0.55 N/mm and
0.74 N/mm forGc,adh/Gc,coh = 0.5, 1.0 and 2.0, respectively. Hence, an increase
of the toughness of the fibre-epoxy interface by a factor of 2.0/0.5 = 4.0 increases
the effective toughness of the sample by a factor of only 0.74/0.46 = 1.6. This
is, because most of the fracture occurs in the epoxy material, and therefore the
effective sample toughness is not much influenced by a change in the fibre-epoxy
interfacial toughness.

3.2.4 Symmetry of fracture pattern

In order to check the validity of symmetry boundary conditions in the computation
of the effective sample response, the fracture pattern of the uniaxially loaded sam-
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Figure 3.9: Geometry and boundary conditions for the model of the complete
sample of a single fibre embedded in an epoxy matrix.

ple modelled with symmetry boundary conditions, see Figure 3.1, is compared
to the response of a model of the complete sample, see Figure 3.9. In the model
of the complete sample, the uniaxial tensile loading occurs by means of simulta-
neously prescribing the displacement u at the left and right edges of the sample.
The centre point of the sample (which equals the centre point of the embedded
fibre) is kept fixed by constraining the horizontal and vertical displacements. The
response of the complete sample is computed for two different meshes, see Ta-
ble 3.3, which have approximately the same mesh density but small differences in
the discretised geometry. In terms of the mesh density, the two finite element dis-
cretizations are comparable to the Intermediate mesh depicted in Figure 3.3. The
material parameters used in the simulations are equal to those of the reference
case, as presented in Table 3.2.

Figure 3.10 shows the axial normal stress σ11 for three different deformed
configurations (plotted on true scale), corresponding to prescribed displacements
of u = 0.05vu

coh, 0.19vu
coh and 0.29vu

coh, respectively. It can be observed that
at u = 0.05vu

coh the responses for the two finite element discretizations are ap-
proximately similar, and are comparable to that of the symmetric model plotted
in Figure 3.5(b). Nevertheless, at larger axial deformations, u = 0.19vu

coh and
0.29vu

coh, differences arise in the stress and deformation responses, which are
caused by differences in the cracking path (as triggered by the different mesh ge-
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Table 3.3: Number of elements for two different meshes, ’Case 1’ and ’Case 2’, of
a complete model of the single-fibre embedded in an epoxy matrix, see Figure 3.9.

Mesh Continuum Fibre-epoxy Epoxy Total
elements interface elements interface elements

Case 1 7498 136 9443 17077
Case 2 7076 136 8787 15999

σ11 [MPa]
0 10 20 30 40 50

(a) Case 1.

σ11 [MPa]
0 10 20 30 40 50

(b) Case 2.

Figure 3.10: Axial normal stress σ11 for two different finite element discretiza-
tions, ’Case 1’ and ’Case 2’ (see Table 3.3), depicted in the deformed configu-
ration (true scale). The response states are successively taken at prescribed dis-
placements of u = 0.05 vu

coh, 0.19 vu
coh and 0.29 vu

coh.

76



3.2. SIMULATION OF A SINGLE-FIBRE COMPOSITE

t̃/
tu co

h
t̃/
tu co

h

u/vu
coh

(a) Quarter of the sample

(b) Complete sample (Case1)

(c) Complete sample (Case2)

(a),(c)

0
0

0.2

0.4

0.5

0.6

0.8

1.0

1.0

1.5 2.0 2.5

Figure 3.11: Effective sample response for the symmetric model (quarter of spec-
imen, see Figure 3.1) and complete model (see Figure 3.9) of a single fibre em-
bedded in an epoxy matrix. The traction t̃ is the average traction measured at the
right specimen edge at which the displacement u is prescribed.

ometries). Correspondingly, as illustrated in Figure 3.11, the effective sample
responses for the two finite element discretizations are also different. In compar-
ison to the response of Case 2, which is bi-linear and virtually identical to the
response of the symmetric (quarter of the) specimen, the traction variations in the
response for Case 1 are stronger, with a rather brittle response (characterised by a
strong drop in traction) at the initial part of the softening branch, and a more duc-
tile response at the end of the softening branch. These strong traction variations
are caused by part of the epoxy remaining in contact with the fibre during failure,
see Figure 3.10. This results in a more non-uniform stress distribution across the
specimen width, which in the initial stage of cracking substantially reduces the
effective traction of the sample. Conversely, near complete failure the connection
between the epoxy and fibre warrants that more deformation needs to be applied
in order to reduce the effective traction to zero, causing the sample ductility near
complete failure for Case 1 to be larger than for the symmetric specimen (and
Case 2).

The good correspondence between the responses of the symmetric specimen
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Figure 3.12: Geometry and boundary conditions for an epoxy sample that contains
multiple, randomly placed fibres and is subjected to uniaxial tension.

and the full specimen represented by Case 2 validate the use of symmetry bound-
ary conditions in the studies performed in Sections 3.2.1 to 3.2.3. However, as
demonstrated by the simulation results for Case 1, small modifications in the finite
element discretisation can substantially break the symmetry of the overall fracture
response, under which circumstances the effective traction-separation curve of the
sample becomes rather different than that of the symmetric specimen.

3.3 Simulation of a multiple-fibre composite

In this section, the off-axis failure response of epoxy samples containing multiple,
randomly placed fibres is analysed. The geometry and boundary conditions of one
such sample are sketched in Figure 3.12. The sample is square-shaped, and has
a side length of 125 μm. The diameter of the fibres is 10 μm. The sample width
and the fibre diameter are representative of fibre-epoxy layers typically used in
the fibre-metal laminate GLARE [78]. As sketched in Figure 3.12, in the tensile
direction (i.e., the x1−direction) the internal material structure of the sample is
modelled as periodic.
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Figure 3.13: Uniaxially-loaded samples with different fibre volume fractions Vf .

3.3.1 Influence of the fibre volume fraction

In order to study the influence of the fibre volume fraction on the failure re-
sponse of the sample, four different fibre volume fractions are considered, namely
Vf = 0.1, 0.3, 0.5 and 0.6. The fibre distributions related to these volume frac-
tions are sketched in Figure 3.13, and the number of elements used in the simu-
lations are summarised in Table 3.4. From the analyses on the single-fibre epoxy
samples performed in the previous section, it has been concluded that the actual
fracture pattern strongly depends on the relation between the strength of the fibre-
epoxy interface and the strength of the epoxy. Accordingly, for the present simula-
tions two strength ratios are considered, i.e., tuadh/t

u
coh = 0.5 and tuadh/t

u
coh = 1.0.
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Table 3.4: Number of elements for the three different meshes in Figure 3.13.

Volume Continuum Fibre-epoxy Epoxy Total
fraction elements interface elements interface elements

Vf = 0.1 11192 338 14731 26261
Vf = 0.3 9566 1017 9437 20020
Vf = 0.5 9844 1678 6716 18238
Vf = 0.6 10144 2018 5609 17771

All other material parameters correspond to the values listed in Table 3.2.
For the samples with volume fractions up to and including 0.5, the fibre dis-

tributions could be created in a relatively straightforward fashion, by randomly
placing fibres within the epoxy matrix. However, for the highest volume fraction
of 0.6 this method appeared to be unsuitable, since it could not avoid the overlap-
ping of fibres that results from the limited physical space available in the epoxy
matrix. Hence, to construct a microstructure with Vf = 0.6, a more advanced
method was used, as developed by Stroeven and Stroeven [61]. In this method,
fibres are randomly placed in a computational window much larger than the de-
sirable specimen size. The total volume of the fibres (and thus, the total number
of fibres) thereby relates to the required volume fraction (Vf = 0.6) at the de-
sired specimen size. As a next step, the fibres are given random velocities, and
the computational window is shrunk until the desired specimen size is reached.
Besides the advantage of obtaining high fibre volume fractions, this method al-
lows for creating fibre distributions with clusters of fibres, which is a realistic
micromechanical feature of the fibre-epoxy systems used in GLARE.

The influence of the fibre volume fraction on the response is illustrated in Fig-
ure 3.14, showing the axial stress σ11 at three deformed states for the case where
the fibre-epoxy interfacial strength is half of the epoxy strength, tuadh/t

u
coh = 0.5.

Irrespective of the value of the fibre volume fraction, cracking in the sample starts
when the (relatively low) interfacial tensile strength of the fibre-epoxy interface
of 25 MPa is reached locally. Correspondingly, the tensile stress in the fibres can
not exceed 25 MPa, as indicated by the green colour in the stress contour plots
in Figure 3.14. When the loading is further increased up to the tensile strength
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of the epoxy matrix (= 50 MPa, as represented by the red colour in the stress
contour plots), the interfacial cracks start deflecting in the epoxy matrix. Upon
further deformation, the coalescence of these cracks leads to the development of a
dominant crack across the complete specimen width, preluding overall failure of
the sample. It can be observed from Figure 3.14 that the position of the dominant
failure crack varies for the different fibre volume fractions, and is determined by
the actual fibre distribution in the sample (i.e., the sample heterogeneity).

Figure 3.15 illustrates the effective sample response for the various fibre vol-
ume fractions. As a result of the relatively low fibre-epoxy interfacial strength,
the peak strength of the sample increases with decreasing fibre volume fraction.
Essentially, the peak strength for the smallest volume fraction, Vf = 0.1, is a
factor 0.9/0.67 = 1.34 larger than that for the largest volume fraction, Vf = 0.6.
Furthermore, for the specimens with Vf = 0.1, 0.3 and 0.5 the effective strength
has reached a value close to zero when the prescribed displacement u has become
equal to the ultimate separation of the fibre-epoxy interface, u = vu

adh = 2vu
coh.

The strength of the specimen with Vf = 0.6 at this deformation stage is still
somewhat larger, i.e., t̃ ≈ 0.1 tucoh. This is caused by the fact that the crack faces
of the dominant failure crack in the specimen are locally connected by parts of
epoxy, as a result of which transference of loading across the crack faces remains
possible at larger deformations, 2vu

coh ≤ u ≤ 3vu
coh.

Figure 3.16 shows the axial stress σ11 for samples with various fibre volume
fractions, for the case where the fibre-epoxy interfacial strength equals the epoxy
strength of 50 MPa, i.e., tuadh/t

u
coh = 1.0. In contrast to the case tuadh/t

u
coh = 0.5

depicted in Figure 3.14, the fibres now do reach the maximum stress of 50 MPa,
as indicated by the red colour in the stress contour plots. Since the stiffness of the
fibres is (much) larger than that of the epoxy, the fibres reach this maximum stress
before the epoxy does, thus acting as stress concentrators (see also, [26, 38, 81]).
Again, the dominant failure crack develops after coalescence of smaller fibre-
epoxy interfacial cracks and epoxy cracks. The corresponding effective sample
response is depicted in Figure 3.17; in contrast to the effective sample response for
the case with tuadh/t

u
coh = 0.5 shown in Figure 3.15, the curves for the different fi-

bre volume fractions are now similar. Essentially, all curves approach the traction-
separation law of the epoxy material (which here equals the traction-separation
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(a) Vf = 0.1. Axial normal stress σ11 taken at the deformed states u = 0.06 vu
coh, 0.23 vu

coh and
0.50 vu

coh.

σ11 [MPa]
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(b) Vf = 0.3. Axial normal stress σ11 plotted at the deformed states u = 0.05 vu
coh, 0.18 vu

coh and
0.44 vu

coh.

Figure 3.14: Axial stress σ11 at three deformed states, for different fibre volume
fractions, Vf = 0.1, 0.3, 0.5 and 0.6. The ratio between the fibre-epoxy interfacial
strength and the epoxy strength is tuadh/t

u
coh = 0.5.
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(c) Vf = 0.5. Axial normal stress σ11 plotted at the deformed states u = 0.03 vu
coh, 0.13 vu

coh and
0.37 vu

coh.

σ11 [MPa]
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(d) Vf = 0.6. Axial normal stress σ11 plotted at the deformed states u = 0.02 vu
coh, 0.18 vu

coh and
0.43 vu

coh.

Figure 3.14: Axial stress σ11 at three deformed states, for different fibre volume
fractions, Vf = 0.1, 0.3, 0.5 and 0.6. The ratio between the fibre-epoxy interfacial
strength and the epoxy strength is tuadh/t

u
coh = 0.5.
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Figure 3.15: Effective sample response for different fibre volume fractions. The
traction t̃ represents the average traction measured at the right sample boundary
at which the displacement u is prescribed. The ratio between the fibre-epoxy
interfacial strength and the epoxy strength is tuadh/t

u
coh = 0.5.

law of the fibre-epoxy interface), as characterised by a maximum strength tucoh, an
ultimate separation vu

coh, and a linear softening branch. This is not surprisingly;
because the ’local’ traction-separation laws of the epoxy matrix and the fibre-
epoxy interface are identical, these are reflected by the ’global’ sample response.
As explained previously, a small residual strength at relatively large deformations
u > vu

coh is caused by small parts of the epoxy connecting the two faces of the
dominant failure crack, see also Figures 3.16(a),(b),(c).

3.3.2 Influence of the fibre distribution

To asses the influence of the fibre distribution on the failure response of the
multiple-fibre specimen, two different configurations are studied for a fibre vol-
ume fraction Vf = 0.6, see Figure 3.18. Here, the first fibre distribution, abbrevi-
ated as ’Dist. 1’, has been taken from the study in the previous section, see also
Figure 3.13(d). It can be observed from Figure 3.18 that the second fibre distribu-
tion, named ’Dist. 2’, is somewhat more uniform than the fibre distribution ’Dist.
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(a) Vf = 0.1. Axial normal stress σ11 taken at the deformed states u = 0.06vu
coh, 0.23vu

coh and
0.43vu

coh.
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(b) Vf = 0.3. Axial normal stress σ11 taken at the deformed states u = 0.05vu
coh, 0.19vu

coh and
0.38vu
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Figure 3.16: Axial stress σ11 at three deformed states, for different fibre volume
fractions, Vf = 0.1, 0.3, 0.5 and 0.6. The ratio between the fibre-epoxy interfacial
strength and the epoxy strength is tuadh/t

u
coh = 1.0.
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0 10 20 30 40 50

(c) Vf = 0.5. Axial normal stress σ11 taken at the deformed states u = 0.03vu
coh, 0.16vu

coh and
0.37vu

coh.
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(d) Vf = 0.6. Axial normal stress σ11 taken at the deformed states u = 0.02vu
coh, 0.11vu

coh and
0.47vu

coh.

Figure 3.16: Axial stress σ11 at three deformed states, for different fibre volume
fractions, Vf = 0.1, 0.3, 0.5 and 0.6. The ratio between the fibre-epoxy interfacial
strength and the epoxy strength is tuadh/t

u
coh = 1.0.
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Figure 3.17: Effective sample response for different fibre volume fractions. The
traction t̃ represents the average traction measured at the right sample boundary
at which the displacement u is prescribed. The ratio between the fibre-epoxy
interfacial strength and the epoxy strength is tuadh/t

u
coh = 1.0.
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Figure 3.18: Two different fibre distributions for a volume fraction Vf = 0.6.
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Figure 3.19: Axial stress σ11 at the deformed states u ≈ 0.03 vu
coh, 0.18 vu

coh, and
0.42 vu

coh, for fibre distribution ’Dist. 2’, see Figure 3.18(b). The ratio between
the fibre-epoxy interfacial strength and the epoxy strength is tuadh/t

u
coh = 1.0.

1’. In the simulations, the traction ratio has been taken as tuadh/t
u
coh = 1.0. As can

be observed from Figure 3.19, the axial stress response σ11 of ’Dist. 2’ is similar
to that of ’Dist. 1’, plotted in Figure 3.16(d). Nonetheless, due to the different
fibre distribution (or, a different sample heterogeneity), the location of the dom-
inant failure crack has changed. However, since the failure is mode I driven, a
change in the position of the dominant failure crack does not (substantially) affect
the effective sample response, see Figure 3.20.

3.4 Main conclusions and comparison to experiments

Micromechanical simulations on the off-axis failure behaviour of fibre-epoxy sys-
tems were presented. The results of the numerical simulations were obtained us-
ing the interface damage model presented in Chapter 2. The damage model was
used for describing both fracture in the epoxy matrix and debonding of fibres.
The fracture patterns obtained for the fibre-epoxy systems were characterised by
numerous events of crack coalescence and bifurcation, and were simulated by the
interface damage model in a numerically stable and robust fashion.

The numerical results showed that the effective sample response and the corre-
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Figure 3.20: Effective sample response for different fibre distributions, ’Dist. 1’
and ’Dist. 2’, see Figure 3.18. The traction t̃ represents the average traction
measured at the right sample boundary at which the displacement u is prescribed.
The ratio between the fibre-epoxy interfacial strength and the epoxy strength is
tuadh/t

u
coh = 1.0.

sponding failure pattern are strongly determined by the ratio between the strengths
of the fibre-epoxy interface and the epoxy matrix. If the fibre-epoxy interface is
weaker than the epoxy matrix (tuadh < tucoh), the failure pattern is characterised
by a combination of fibre debonding and epoxy cracking. Conversely, if the fibre-
epoxy interface is stronger than the epoxy matrix (tuadh > tucoh), failure occurs
solely through cracking in the epoxy matrix. In addition, the toughness ratio
Gc,adh/Gc,coh also has an effect on the effective sample response, but the influ-
ence on the sample failure pattern is small.

For epoxy systems containing multiple fibres, the fibre volume fraction only
substantially affects the off-axis failure response of the sample if the fibre-epoxy
interface is weaker than the epoxy matrix. This is, since for a relatively strong
fibre-epoxy interface the only (rather small) contribution of the fibres to the failure
response comes from their relatively high stiffness affecting the overall stress dis-
tribution. Furthermore, for fibre-epoxy systems with a large fibre volume fraction
(Vf = 0.6), the failure response is only minorly influenced by the fibre distribu-
tion.

The failure patterns obtained from the numerical simulations are in good qual-
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itative agreement with experimental results from static tensile tests, as obtained by
Gamstedt et al. [23] on glass fibre-epoxy systems, see Figure 3.21, and by Hob-
biebrunken et al. [37] on carbon fibre-epoxy composites, see Figure 3.22. In both
experimental works the overall off-axis failure response of the fibre-epoxy speci-
mens was characterised by coalescence of fibre debonding cracks, thus indicating
that the fibre-epoxy interfacial strength in the test samples is lower than the epoxy
strength. For a quantitative comparison between the present model and the results
from experimental studies, it is necessary to accurately calibrate the cohesive laws
of the fibre-epoxy interface and the epoxy matrix, which can be done through the
performance of single-fibre pull-out tests and mixed-mode fracture tests on rela-
tively small epoxy specimens. The present study aims to stimulate experimental
investigators to put new efforts into this research direction.
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(a) Fibre-matrix debonding. (b) Coalescence of cracks into a dominant
failure crack.

Figure 3.21: Experimentally observed failure pattern in carbon-fibre epoxy spec-
imens loaded under uniaxial tension, taken from Gamstedt et al. [23].

Loading direction

Figure 3.22: Experimentally observed failure pattern (at different consecutive de-
formation stages) of carbon fibre-epoxy specimens loaded under uniaxial tension,
taken from Hobbiebrunken et al. [37].
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Computational homogenization for
simulating discrete fracture in

fibre-epoxy systems

4.1 Introduction

Finite element simulations serve as an important tool for studying the complex
failure behaviour of fibre-metal laminates (FMLs) and optimizing their perfor-
mance in (macroscopic) engineering applications. However, the execution of a
direct numerical simulation on the mechanical response of an engineering struc-
ture, where all the details of the underlying microstructure are incorporated, re-
quires a very fine finite element mesh, leading to an impractical amount of com-
putational time. A more efficient approach for this purpose is to use material
models that represent the mechanical response of the underlying microstructure
in an effective fashion. Such models can be obtained by applying homogenization
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techniques, where various approaches have been proposed over the years, e.g.,
[7, 10, 19, 22, 31, 34, 39].

Analytical homogenization techniques often fail to describe the effective ma-
terial response accurately when the underlying microstructure is complex and is
characterised by a non-linear constitutive behaviour. Under these circumstances
the use of a computational homogenization method is recommendable. Com-
putational homogenization is based on numerically averaging the generated mi-
crostructural stress and deformation over a representative volume element (RVE),
thereby implicitly (i.e., not in closed-form) establishing an effective, mesoscopic
constitutive relation between the average stress (or traction, in the case of an inter-
face model) and deformation [24, 25, 27, 45, 48, 50, 51, 67]. The method relies on
a local periodicity of the microstructure in the direct neighborhood of the RVE, but
does not impose periodicity over the complete macroscopic structure under con-
sideration (i.e., global periodicity is not required). Essentially, the macroscopic
structure contains mesoscopic material points for which the specific microscopic
RVEs are assumed to be periodic only in a small vicinity of the material points.

The overall failure behaviour of FMLs strongly depends on small-scale frac-
ture events occurring within individual fibre-epoxy (prepreg) layers, such as fibre
decohesion and matrix cracking, see Chapter 3. Accordingly, the present chap-
ter focuses upon the derivation of the effective mesoscale failure response of a
fibre-epoxy sample from its complex microscale fracture behaviour. The meso-
scale failure response is represented by a traction-separation curve constructed
from numerically homogenizing the fracture response of a periodic fibre-epoxy
microstructure loaded under uniaxial tension. The traction-separation curve can
be applied in material points of interface elements that are used for simulating
mesoscopic fracture in macroscopic laminate failure problems. This modelling
approach is an appealing and acceptable alternative to the (costly) direct simu-
lation of microscale fracture in macroscopic problems if the fluctuations of the
microscale crack trajectories in the thickness direction of the laminate are much
smaller than the laminate thickness itself (i.e., a separation of length scales can
be warranted). The analysis of specific macroscopic problems, however, falls be-
yond the scope of the study in the present chapter; the attention is directed here
to the numerical homogenization of the response of a microstructural RVE to a
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mesoscopic traction-separation curve, thereby considering the influence of the fi-
bre volume fraction and local imperfections. Although the numerical examples
treated focus upon uniaxial tension, the homogenization framework presented is
applicable to arbitrary loading conditions.

The organisation of this chapter is as follows. In Section 4.2 the governing
equations of the fibre-epoxy material are formulated at the meso- and microscales.
The numerical homogenization framework that connects the fracture behaviour
of the microstructural fibre-epoxy sample to a mesoscopic traction-separation re-
sponse is presented in Section 4.3. In Section 4.4 the applicability of the numeri-
cal homogenization framework is demonstrated by studying fibre-epoxy samples
loaded under uniaxial tension. The convergence of the RVE size is examined, as
well as the effect of the fibre volume fraction and the presence of imperfections
on the traction-separation response. Finally, in Section 4.5 the main conclusions
of the study are summarised.

4.2 Micro- and mesoscale modelling

Consider a mesoscopic domain ΩM ⊂ R
2 with an external boundary ΓM , see Fig-

ure 4.1. The external boundary is subjected to displacements uM and tractions tM

at ΓM
u and ΓM

t , respectively. The mesoscopic domain is crossed by an adhesive
layer ΓM

coh. The response in a material point of the adhesive layer is connected to
the lower-scale response of a heterogeneous, microscopic domain Ωm ⊂ R

2. The
microscopic domain is represented by a fibre-epoxy sample of width b. Fracture
in the microscopic domain occurs along the cracking path Γm

coh. The boundary
conditions at the outer edges Γm of the microscopic domain are assumed to be
periodic.

4.2.1 Governing equations at the mesoscale

The equilibrium condition for an arbitrary material point in the mesoscopic do-
main ΩM depicted in Figure 4.1 is

σM
ij,j = 0 in ΩM , (4.1)

95



CHAPTER 4. COMPUTATIONAL HOMOGENIZATION FOR SIMULATING DISCRETE FRACTURE IN FIBRE-EPOXY SYSTEMS

1 2

34

Γm
B

Γm
R

Γm
T

Γm
L

Γm
coh

nRnL

n

xm
1

xm
2 xm

xM
1

xM
2 xM

ΩM

Ωm

n

ΓM
u

ΓM
t

ΓM
coh

b

Figure 4.1: Mesoscopic domain ΩM and microscopic domain Ωm. The meso-
scopic domain is crossed by an adhesive layer ΓM

coh. The failure behaviour in a
material point of the adhesive layer is connected to the failure response of the mi-
croscopic domain (i.e., a fibre-epoxy sample), as characterised by cracking across
the domain width b along the internal boundary Γm

coh. The boundary conditions at
the outer edges Γm of the microscopic domain are periodic.

where σM
ij represents the Cauchy stress, with the superscript M denoting the

mesoscopic character of the variable. The tensor indices can have the values
i, j ∈ {1, 2}, in correspondence with the two-dimensional, orthogonal coordi-
nate system shown in Figure 4.1. Note that, for reasons of convenience, the body
forces have been omitted in Eq.(4.1). In addition, the boundary conditions for the
mesoscopic domain are given by

σM
ij nj = tMi on ΓM

t , (4.2)

uM
i = ûM

i on ΓM
u , (4.3)

where tMi and ûM
i respectively are the tractions and displacements, as prescribed

on the corresponding external boundaries ΓM
t and ΓM

u with outward normal ni.
Note that the total external boundary is given by ΓM = ΓM

t ∪ ΓM
u . The cohesive

surface ΓM
coh can be considered as an internal boundary, for which the tractions tMi

are related to the Cauchy stress σM
ij through the equilibrium condition

σM
ij nj = tMi on ΓM

coh. (4.4)
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Applying the standard variational method, the principle of virtual work at the
mesoscale, under the neglection of body forces, leads to the following expression∫

ΩM

σM
ij δε

M
ij dΩM +

∫
ΓM

coh

tMi δ�uM
i � dΓM

coh

︸ ︷︷ ︸
δW M

coh

=
∫

ΓM
t

tMi δuM
i dΓM

t , (4.5)

which holds for any admissible variational mesoscale displacement δuM
i . Here,

εM
ij represents the mesoscopic strain, and the symbol �•� = (•+ − •−) denotes

the jump of a quantity (i.e., the displacement) across the cohesive surface, with ±
designating the upper and lower faces of the cohesive surface1. As can be ob-
served from the above expression, the quantity δWM

coh represents the virtual work
of the cohesive surface.

4.2.2 Governing equations at the microscale

Similar to the mesoscale equilibrium condition (4.1), the equilibrium requirement
for a material point within the microscopic representative volume element (RVE)
Ωm shown in Figure 4.1 can be expressed as

σm
ij,j = 0 in Ωm , (4.6)

where the boundary conditions are

σm
ij nj = ti on Γm

t , (4.7)

ui = ûi on Γm
u . (4.8)

Here, ti and ûi are the tractions and displacements at the corresponding external
boundaries Γm

t and Γm
u of the microscopic RVE, with the superscript m indicat-

ing the microscopic character of these parameters. The total external boundary
of the RVE is given by Γm = Γm

t ∪ Γm
u . In order to keep the notation in forth-

coming sections concise, the indexm will not be used for all microscale variables

1In Chapter 2 of this thesis the relative displacement across a mesoscopic cohesive surface is
designated as vi; however, in this chapter this displacement jump is denoted as �uM

i � for conve-
nience of notation.
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introduced in this section, i.e., note that it has been omitted for the tractions ti
and the displacements ui in Eqs.(4.7) and (4.8). As a next step, equilibrium at the
microscale cohesive surface Γm

coh is prescribed by

σm
ij nj = ti on Γm

coh. (4.9)

Similar to Eq.(4.5), the principle of virtual work at the microscale leads to

∫
Ωm

σm
ij δε

m
ij dΩm +

∫
Γm

coh

ti δ�ui� dΓm
coh

︸ ︷︷ ︸
δW m

coh

=
∫

Γm
t

ti δui dΓm
t , (4.10)

which must be satisfied for any admissible variational microscale displacement δui.
In the above expression, εm

ij is the microscale strain tensor and δWm
coh is the virtual

work of the microscale cohesive interface.

4.3 Connection between the microscale and mesoscale

In order to establish a connection between the responses of the microscale and
mesoscale domains shown in Figure 4.1, the microscale displacement field ui

is expressed in terms of the mesoscale displacement field uM
i and a fluctuation

displacement field ũi as

ui(xM
j , x

m
k ) = uM

i (xM
j ) + ũi(xm

k ) , (4.11)

where, as illustrated in Figure 4.1, xM
j and xm

k denote the locations of the meso-
scale and microscale material points at which uM

i and ũi are evaluated, respec-
tively. Essentially, the fluctuation displacement field ũi accounts for the displace-
ment variations generated by the microstructural inhomogeneities, as measured
with respect to the (average) mesoscopic displacement of the microscale RVE.
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4.3.1 Formulation of boundary conditions on the RVE

In correspondence with the decomposition given by Eq.(4.11), periodic boundary
conditions for the microscale RVE can be formulated as

ũT
i (s1) = ũB

i (s1),

tTi (s1) = −tBi (s1), (4.12)

ũL
i (s2) = ũR

i (s2),

tLi (s2) = −tRi (s2),

where s1 is a local coordinate along the Γm
T and Γm

B boundaries of the RVE, and
s2 is a local coordinate along the Γm

L and Γm
R boundaries of the RVE. The first two

boundary conditions for the Top (T) and bottom (B) edges of the RVE reflect the
periodicity in the xm

2 -direction, where the second boundary condition ensures that
the total work generated by the periodic boundary conditions is zero. Similarly,
the last two boundary conditions for the left (L) and right (R) edges of the RVE
warrant periodicity in the xm

1 -direction.
The displacements of the four corner nodes of the microscale RVE in Figure

4.1 correspond to the (uniform) mesoscopic deformation of a material point in
the cohesive interface ΓM

coh. Hence, the displacement jump across the mesoscale
cohesive interface may be expressed in terms of the displacement difference of
two opposite corner nodes at the top and bottom surfaces of the RVE as

�uM
i � = uM,T

i − uM,B
i = u4

i − u1
i = u3

i − u2
i . (4.13)

In accordance with this condition, the microscale displacement fluctuations are
equal to zero at the four RVE corner nodes, i.e.,

ũn
i = 0 with n ∈ {1, 2, 3, 4}. (4.14)

When combining Eqs.(4.14) and (4.11) with Eq.(4.12), the periodic displacement
boundary conditions, Eq.(4.12), may be reformulated as

uT
i (s1) = uB

i (s1) + u4
i − u1

i (or, uT
i (s1) = uB

i (s1) + u3
i − u2

i ),

uR
i (s2) = uL

i (s2) + u2
i − u1

i (or, uR
i (s2) = uL

i (s2) + u3
i − u4

i ).
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(4.15)

The above form of the periodic displacement boundary conditions is suitable for
implementation within a finite element code.

4.3.2 Derivation of the mesoscopic interfacial traction

For establishing an expression for the mesoscopic traction, tMi , in a material point
at the mesoscale cohesive interface ΓM

coh, the averaging principle proposed by
Hill [35] is applied. This principle states that the spatial average of the virtual
work at the microscale, δWm, needs to be equal to the virtual work in a local
material point of the mesoscale cohesive interface, δwM

coh, i.e.,

δWm = δwM
coh. (4.16)

Since the local virtual work and total virtual work for the mesoscale cohesive
interface are related as

δWM
coh =

∫
ΓM

coh

δwM
coh dΓM

coh, (4.17)

where the total virtual work is given by the second term in Eq.(4.5), the local
virtual work of the mesoscale cohesive interface is expressed by

δwM
coh = tMi δ�u

M
i �. (4.18)

In addition, the average virtual work at the microscale is determined by contribu-
tions of the cohesive interface Γm

coh and the adjacent continuum Ωm as

δWm =
1
b
δWm =

1
b

⎧⎪⎨
⎪⎩
∫

Ωm

σm
ij δε

m
ij dΩm +

∫
Γm

coh

ti δ�ui� dΓm
coh

⎫⎪⎬
⎪⎭ . (4.19)

Note from the above expression that the averaging procedure is performed by
dividing the total virtual work of the microscale RVE by its width b. The height of
the RVE does not need to be taken into account here, since the actual mesoscale
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geometrical object is a cohesive surface ΓM
coh with zero thickness. Invoking Eq.

(4.10), the term in between the curly braces in Eq.(4.19) may be rewritten as

δWm =
1
b

∫
Γm

t

ti δui dΓm
t . (4.20)

Substituting the displacement decomposition, Eq.(4.11), into Eq.(4.20) then leads
to

δWm =
1
b

⎛
⎜⎝∫

Γm
t

ti δu
M
i dΓm

t +
∫

Γm
t

ti δũi dΓm
t

⎞
⎟⎠ . (4.21)

The second integral term in the right-hand side of Eq.(4.21) may be developed as

∫
Γm

t

ti δũi dΓm
t =

∫
Γm

L

tLi δũ
L
i dΓm

L +
∫

Γm
R

tRi δũ
R
i dΓm

R +

+
∫

Γm
T

tTi δũ
T
i dΓm

T +
∫

Γm
B

tBi δũ
B
i dΓm

B

=
∫

Γm
t

tTi
(
δũT

i − δũB
i

)
ds1 +

∫
Γm

t

tRi
(
δũR

i − δũL
i

)
ds2

= 0,

(4.22)

in which the boundary conditions, Eq.(4.12) are substituted to arrive at the final
result that the microscopic fluctuation field does not contribute to the average
microscale virtual work. As mentioned previously, s1 here is a local coordinate
along the Γm

T and Γm
B boundaries of the RVE, and s2 is a local coordinate along

the Γm
L and Γm

R boundaries of the RVE. As a next step, the first integral term in
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the right-hand side of Eq.(4.21) is developed as∫
Γm

t

ti δu
M
i dΓm

t =
∫

Γm
L

tLi δu
M,L
i dΓm

L +
∫

Γm
R

tRi δu
M,R
i dΓm

R +

+
∫

Γm
T

tTi δu
M,T
i dΓm

T +
∫

Γm
B

tBi δu
M,B
i dΓm

B

=
∫

Γm
t

tTi

(
δuM,T

i − δuM,B
i

)
ds1 +

+
∫

Γm
t

tRi

(
δuM,R

i − δuM,L
i

)
ds2

=
(
δu4

i − δu1
i

) ∫
Γm

t

tTi ds1 +
(
δu2

i − δu1
i

) ∫
Γm

t

tRi ds2,

(4.23)

where the periodicity conditions given by Eqs.(4.12) and (4.15) are inserted to ar-
rive at the final expression. In order to develop this expression further, the specific
boundary conditions of the microscale RVE need to be invoked. Within a finite
element setting, the boundary conditions, Eq.(4.13), can be applied in two differ-
ent ways, which are depicted in Figure 4.2 as ’Case 1’ and ’Case 2’. The essential
difference between these two cases relates to the horizontal displacement of the
right corner node at the bottom RVE edge (i.e., node 2), which is unconstrained
for Case 1 and fully constrained for Case 2. Correspondingly, the boundary con-
ditions for Case 1 introduce the following constraints on the RVE

δu1
1 = δu2

1 = 0, δu2
2 = 0,

∫
Γm

R

tR1 dΓm
R = 0, (4.24)

where the last constraint essentially corresponds to a zero average normal stress
in the xm

1 -direction of the RVE (which is in agreement with an unconstrained
displacement of node 2 in the xm

1 -direction). In contrast, the boundary conditions
for Case 2 imply

δu1
1 = δu2

1 = 0, δu1
2 = δu2

2 = 0, (4.25)
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Figure 4.2: Two different boundary conditions for the microscale RVE.

where the third constraint in the above expression corresponds to a zero displace-
ment of node 2 in the xm

1 -direction of the RVE. Despite the different boundary
conditions for Cases 1 and 2, substitution of either Eq.(4.24) or Eq.(4.25) into
Eq.(4.23) leads to an identical result, namely that∫

Γm
t

ti δu
M
i dΓm

t = δu4
i

∫
Γm

T

tTi dΓm
T . (4.26)

Subsequently, inserting Eq.(4.26) together with Eq.(4.22) into Eq.(4.21) gives

δWm =
1
b

∫
Γm

T

tTi dΓm
T δu4

i . (4.27)

In accordance with Eq.(4.16), this expression needs to be equated with the virtual
work in a local material point of the mesoscopic cohesive interface, δwM

coh, given
by Eq.(4.18), which leads to

tMi δ�u
M
i � =

1
b

∫
Γm

T

tTi dΓm
T δu4

i . (4.28)
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Since �uM
i � = u4

i for both Case 1 and Case 2, see Figure 4.2, the above expression
generally results in

tMi =
1
b

∫
Γm

T

tTi dΓm
T . (4.29)

Obviously, within a finite element discretisation the integral term in the right-hand
side of Eq.(4.29) is approximated by the summation of the nodal forces at the top
edge of the RVE. Although Eq.(4.29) is applicable to both types of RVE bound-
ary conditions depicted in Figure 4.2, the results computed with this expression
will be nevertheless different, as a result of the different responses of the two
microscale RVE’s. Here, it is difficult to say which of the two RVE’s generally
provides a more accurate representation for the behaviour at the mesoscale, since
this typically depends on the characteristics of the macroscopic boundary value
problem problem under consideration. Hence, for the numerical simulations pre-
sented in the forthcoming sections, the boundary conditions of the RVE are chosen
somewhat arbitrarily in accordance with Case 1.

4.4 Numerical simulations of a fibre-epoxy specimen sub-
jected to uniaxial tension

In the present section a mesoscale traction-separation curve is derived from the
failure response of a microscale fibre-epoxy sample using the homogenization
framework presented in Section 4.3.2. Although the homogenization framework
can be applied to samples subjected to arbitrary combinations of tensile and shear
loading, for simplicity the examples studied focus upon uniaxial tension. The
interface damage model presented in Section 2.2 is used to study matrix cracking
and debonding between fibres and matrix.
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4.4.1 Geometry and boundary conditions of the fibre-epoxy sample

In order to check whether the sample size converges to a representative volume
element, in the numerical analyses two different specimen widths are considered.
For each of these samples two different fibre volume fractions are studied, i.e.,
Vf = 0.3 and 0.5, see Figures 4.3 and 4.4. The samples are subjected to uniaxial
tension by prescribing the vertical displacement, û, at the top edge of the sam-
ple. Periodic boundary conditions are prescribed at the left and right edges of the
sample, as explained in Section 4.3.1. The displacement at the bottom edge of the
sample is constrained in the vertical direction, and the displacement of the node at
the bottom-left corner of the specimen is also constrained in the horizontal direc-
tion, see Figures 4.3 and 4.4. These boundary conditions are in correspondence
with Case 1 depicted in Figure 4.2(a).

The first sample studied is square-shaped, with a width (and height) equal
to 0.125 mm. The second sample is rectangular-shaped, where, in comparison
with the square-shaped sample, the width is chosen two times larger, i.e., 0.250
mm, while the height is kept the same, i.e., 0.125 mm. Essentially, the cho-
sen sample height is representative of the thickness of fibre-epoxy layers used in
GLARE [78]. The diameter of the S2 glass fibres is 10μm. As illustrated in Fig-
ures 4.3 and 4.4, the internal material structure of the samples relates to a random
fibre distribution that is geometrically periodic in the x1-direction.

4.4.2 Finite element model

The finite element model used for the microscale computations is plane-strain and
thus is representative of fibres with a relatively large (actually infinite) length. The
type of continuum elements and discrete elements used for simulating the failure
response of the sample are chosen the same as for the numerical analyses per-
formed in Chapter 3, see Section 3.2. In addition, the material parameters of the
S2 glass fibre, the FM94 epoxy and the interface between fibres and epoxy are
chosen the same as for the analyses in Chapter 3, see Table 3.2. However, the
values of the ultimate normal and shear strengths of the fibre-epoxy interface are
taken differently, namely tu1 = tu2 = tuadh = 50 MPa, which is in correspondence
with the adhesive strength of the fibre-epoxy interface being equal to the cohesive
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Figure 4.3: Geometry and boundary conditions of fibre-epoxy samples with a fibre
volume fraction of 0.3. The diameter of the glass fibres is 10μm.
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Figure 4.4: Geometry and boundary conditions of fibre-epoxy samples with a fibre
volume fraction of 0.5. The diameter of the glass fibres is 10μm.
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Table 4.1: Number of elements used for samples of different size and volume
fraction Vf , see Figures 4.3 and 4.4.

Sample Vf Continuum Fibre-epoxy Epoxy Total
shape elements int. elems. int. elems.

Square 0.3 5194 772 5001 10967
Square 0.5 9906 1679 6747 18332

Rectangular 0.3 10390 1549 10035 21974
Rectangular 0.5 19720 3360 13409 36489

strength of the epoxy material, tuadh/t
u
coh = 1.0. The number of continuum ele-

ments and interface elements used in the finite element meshes of the samples in
Figures 4.3 and 4.4 are listed in Table 4.1. Note from this table that the number of
elements used for modelling the rectangular sample is about two times the number
of elements used for the square sample.

4.4.3 Influence of sample size and fibre volume fraction

The failure responses of the samples with the two different widths are mutually
compared to asses the convergence of the numerical result upon an increasing
microstructural sample volume. The mesoscopic traction-separation relation ob-
tained after applying the homogenization method presented in Section 4.3.2 to the
numerical results is shown in Figure 4.5. It can be observed that for both volume
fractions the traction-separation responses of the square-shaped and rectangular-
shaped samples are similar, indicating that the square-shaped sample is suffi-
ciently large for being considered as an RVE. Essentially, the traction-separation
responses closely follow the mode I traction-separation law of the epoxy mate-
rial. This is due to the fact that the final failure crack develops mainly through the
epoxy material and is mode I dominated (i.e., the orientation of the crack is more
or less perpendicular to the direction of the tensile loading). This can be observed
from Figures 4.6 and 4.7 for the square-shaped and rectangular shaped specimens
with a fibre volume fraction of 0.3, respectively, and from Figures 4.8 and 4.9 for
the square-shaped and rectangular shaped specimens with a fibre volume fraction
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(a) Fibre volume fraction Vf = 0.3
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Figure 4.5: Mesoscopic traction-separation response for the square-shaped and
rectangular-shaped samples shown in Figures 4.3 and 4.4. a) Fibre volume frac-
tion Vf = 0.3. b) Fibre volume fraction Vf = 0.5.

of 0.5, respectively. In all these cases the crack clearly grows through the epoxy-
rich area close to the top edge of the specimen. This position of the dominant
failure crack is in correspondence with experimental observations on delamina-
tion failure in fibre-metal laminates, where mesoscale delamination between the
prepreg layer and the aluminium layer at the microscale is represented by crack-
ing through the fibre-low area located near the edge of the prepreg layer [78].
Since the fibres are hardly involved in this failure mechanism, a change in fibre
volume fraction from 0.3 to 0.5 changes the sample response only minorly. Be-
cause the present analysis shows that the square-shaped sample can be considered
as a representative volume element, this sample will be used for the forthcoming
computations in this chapter.

4.4.4 Influence of imperfections on failure response

For studying how the homogenized traction-separation response is influenced by
imperfections at fibre-epoxy interfaces, four different configurations are consid-
ered, see Figure 4.10. The fibre volume fraction of the sample is 0.3 and the
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Figure 4.6: Axial normal stress σ22 depicted in deformed, cracked configura-
tions, for the square-shaped sample in Figure 4.3(a) (which has a fibre vol-
ume fraction of 0.3). The deformed states are taken at relative displacements
�u2�

M = 0.000816, 0.00146 and 0.00257 mm, respectively.

imperfections are represented by a local absence of the adhesive bonding strength
at specific fibre-epoxy interfaces. As illustrated in Figure 4.10, the four config-
urations considered are characterised by: (i) A single imperfection in the upper
region of the sample (i.e., in the left-top quadrant), (ii) A single imperfection in
the lower region of the sample (i.e., in the right-bottom quadrant), (iii) Two im-
perfections in the upper and lower regions of the sample (i.e., a combination of
configurations (i) and (ii)), and (iv) Two imperfections in the upper and lower
regions of the sample, where the upper imperfection coincides with that in con-
figuration (i) and the lower imperfection is placed somewhat higher than that of
configuration (ii).

The mesoscopic traction-separation response for the different configurations
in Figure 4.10 is plotted in Figure 4.11. For comparison, the response of the
specimen without imperfections, plotted in Figure 4.5(a), has also been included
in this figure. The corresponding fracture patterns are depicted in Figures 4.12
to 4.15. For all studied configurations the imperfections clearly act as nucleation
sites for crack development. In addition, their location typically is included in the
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Figure 4.7: Axial normal stress σ22 depicted in deformed, cracked configurations,
related to the rectangular-shaped sample in Figure 4.3(b) (which has a fibre vol-
ume fraction of 0.3). The deformed states are taken at relative displacements
�u2�

M = 0.000815, 0.00186 and 0.00314 mm, respectively.
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Figure 4.8: Axial normal stress σ22 depicted in deformed, cracked configura-
tions, related to the square-shaped sample in Figure 4.4(a) (which has a fibre vol-
ume fraction of 0.5). The deformed states are taken at relative displacements
�u2�

M = 0.000669, 0.00136 and 0.00265 mm, respectively.

geometry of the dominant failure crack that develops upon complete failure of the
fibre-epoxy specimen. An exception in this respect, however, is the imperfection
located in the upper half of configuration (iii), see Figure 4.14; this imperfection
initially acts as a nucleation site for cracking but eventually is not included in the
geometry of the dominant failure crack, due to a local unloading behaviour during
the loading process. This is an important difference with configuration (iv), where
both imperfections are included in the geometry of the dominant failure crack, see
Figure 4.15. The net result of this behaviour is that the total crack length of con-
figuration (iv) is substantially larger than that of configuration (iii), which thus
requires more energy dissipation in order to fail the sample. Correspondingly,
the effective fracture toughness of configuration (iv) is larger than that of config-
uration (iii), see Figure 4.11, and also is larger than that of the sample without
imperfections. Hence, it may be concluded that the presence of imperfections in
a fibre-epoxy sample may have a positive effect on its effective failure character-
istics.
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Figure 4.9: Axial normal stress σ22 depicted in deformed, cracked configurations,
related to the rectangular-shaped sample in Figure 4.4(b) (which has a fibre vol-
ume fraction of 0.5). The deformed states are taken at relative displacements
�u2�

M = 0.000669, 0.00134 and 0.00345 mm, respectively.
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(i) (ii) (iii) (iv)

Figure 4.10: Four fibre-epoxy samples with different locations and/or number of
imperfections. The fibre volume fraction of the sample is 0.3 and imperfections
are indicated in red.
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Figure 4.11: Mesoscopic traction-separation law corresponding to the square-
shaped sample with a fibre volume fraction of 0.3 (shown in Figure 4.3(a)), plotted
for a different number and position of imperfections.
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Figure 4.12: Axial normal stress σ22 depicted in deformed, cracked con-
figurations, for case (i) in Figure 4.10. The deformed states are taken at
�u2�

M = 0.821, 1.940 and 5.985μm, respectively.
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Figure 4.13: Axial normal stress σ22 depicted in deformed, cracked con-
figurations, for case (ii) in Figure 4.10. The deformed states are taken at
�u2�

M = 0.821, 1.854 and 5.863μm, respectively.
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Figure 4.14: Axial normal stress σ22 depicted in deformed, cracked config-
urations, for case (iii) in Figure 4.10. The deformed states are taken at
�u2�

M = 0.821, 1.985 and 5.894μm, respectively.
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Figure 4.15: Axial normal stress σ22 depicted in deformed, cracked config-
urations, for the case (iv) in Figure 4.10. The deformed states are taken at
�u2�

M = 0.822, 1.856 and 8.041μm, respectively.
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4.5 Conclusions

In this chapter a homogenization framework has been presented that links the
microscale response of a fibre-epoxy sample to a mesoscale traction-separation
curve that can be used for simulating the failure response of a (material point in a)
cohesive interface. The formulation is based on Hill’s averaging principle, which
states that the spatial average of the virtual work at the microscale needs to be
equal to the virtual work in a local material point of the mesoscale cohesive in-
terface. Microscale numerical simulations are performed on a fibre-epoxy sample
subjected to uniaxial tension. In the simulations the cohesive epoxy strength is
taken equal to the adhesive strength of the fibre-epoxy interfaces. Two different
sample sizes are analysed for two different values of the fibre volume fraction,
Vf = 0.3 and 0.5. The numerical response is characterised by a failure pattern
that develops mainly through the epoxy matrix, as a result of which the failure
response is not very sensitive to a change in fibre volume fraction. The numerical
results converge upon increasing the sample size, confirming that the sample size
then acts a representative volume element (RVE). The influence on the effective
sample response by the number and position of initial imperfections within the
specimen is also studied. The imperfections generally trigger crack nucleation,
and their location typically is included in the geometry of the dominant crack that
develops upon complete failure of the sample. As a result of this behaviour, im-
perfections can increase the length of the dominant failure crack (as compared to
the crack length for a sample without imperfections), and thus may enhance the
effective fracture toughness of the sample.

The present numerical homogenization technique computes the complex fail-
ure response of fibre-epoxy samples in a robust and accurate manner. Although
the examples studied are limited to fibre-epoxy samples subjected to uniaxial ten-
sion, it is emphasised that the approach, in principle, can be applied to any type
of material subjected to arbitrary combinations of tensile and shear loading.
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[38] J. C. Honoré, P. Mélé, and L. Flandin. Influence of fibre clustering on
the transverse mechanical behaviour of polypropylene/glass fibre compos-
ites: experimental approach and modelling. Journal Of Physics D-Applied
Physics, 40(21):6768–6777, 2007.

[39] M. Hori and S. Nemat-Nasser. Double-inclusion model and overall moduli
of multi-phase composites. Mechanics of Materials, 14(3):189–206, 1993.

[40] http://www.innoveermetpolymeer.nl/.

[41] J. W. Hutchinson and A. G. Evans. Mechanics of materials: Top-down
approaches to fracture. Acta Materialia, 48(1):125–135, 2000.

[42] J. W. Hutchinson, M. E. Mear, and J. R. Rice. Crack paralleling an inter-
face between dissimilar materials. Journal Of Applied Mechanics (ASME),
54(4):828–832, 1987.

[43] J. W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials.
Advances In Applied Mechanics, 29:63–191, 1992.

[44] H. M. Jensen. Mixed mode interface fracture criteria. Acta Metallurgica Et
Materialia, 38(12):2637–2644, 1990.

[45] V. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens. An approach
to micro-macro modeling of heterogeneous materials. Computational Me-
chanics, 27(1):37–48, 2001.

[46] M. A. Leaity, P. A. Smith, M. G. Bader, and P. T. Curtis. The behavior of
cross-ply hybrid matrix composite laminates. Part 1: Experimental results.
Composites, 23(6):387–395, 1992.

121



BIBLIOGRAPHY

[47] T. J. Lu. Crack branching in all-oxide ceramic composites. Journal Of The
American Ceramic Society, 79(1):266–274, 1996.
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Summary

Multiscale analyses of fibre metal laminates

The advance of composites used in aerospace, civil and biomechanical engi-
neering and other technology branches over the last decades has led to a sub-
stantial increase in the application of these materials. In addition, the search
for new and improved materials in aerospace industry has stimulated the devel-
opment of hybrid materials partly made out of composites, such as Fibre-Metal
Laminates (FMLs). These materials are composed of alternatively stacked alu-
minium and fibre-reinforced composite layers such that the best features of both
constituents are combined. FMLs also have additional advantages over conven-
tional monolithic aluminium alloys and fibre-reinforced composites, such as an
excellent fatigue and damage-tolerance behaviour. Furthermore, this class of ma-
terials possesses good fire, impact, damping, insulation and corrosion-resistance
properties, which has led to their application in the construction of the upper part
of the fuselage for the Airbus A380.

To ensure a maximal reliability under service conditions, the failure mech-
anisms of FMLs must be well understood. The main mesoscale failure mech-
anisms that endanger their overall reliability are delamination between adjacent
plies, cracking, and plasticity in individual metal layers. Important failure mecha-
nisms at the microscale are debonding of fibres, fibre breakage, pull-out of broken
fibres and crack growth in the epoxy matrix.

Finite element simulations serve as an important tool for understanding the
mechanical failure behaviour of FMLs in engineering applications. However, the
performance of a direct numerical analysis of an engineering structure (e.g., an
aircraft wing), where all features of the underlying heterogeneous microstructure
are accounted for explicitly, requires an extremely fine finite element mesh and
thus an impractical amount of computational time. A more efficient approach is
to study engineering structures with the aid of mesoscale material models that
account for the underlying microstructure in an average sense. The average prop-



Summary

erties in the mesoscale model can be computed using a numerical homogenization
approach, where the microstructural stresses and deformations are averaged over
a representative material volume. The present thesis comprises a detailed study of
the failure behaviour of fibre-metal laminates at the meso- and microscale levels,
and proposes a numerical homogenization framework that links specific failure
mechanisms at these two levels of observation.

In Chapter 2 of the thesis the static failure behaviour of the fibre-metal lami-
nate GLARE under uniaxial tension is examined using three-dimensional finite el-
ement simulations. GLARE laminates are characterised by reinforcement through
glass fibres. The configuration analysed is a centre-cracked tensile specimen com-
posed of two aluminium layers sandwiching a cross-plied, fibre-epoxy layer. The
mesoscale crack growth (within plies) and delamination growth (at ply interfaces)
is simulated by means of interface elements equipped with a mixed-mode damage
model. The mode-mixity in the interface damage model is derived from an energy
criterion typically used in linear elastic fracture mechanics studies. The damage
kinetic law is rate-dependent, in order to simulate rate effects during interfacial
delamination and to avoid numerical convergence problems due to crack bifurca-
tions. The numerical implementation of the interface damage model is based on a
backward Euler approach.

In the boundary value problem studied, the failure responses of GLARE spec-
imens containing elastic aluminium layers and GLARE specimens containing
elasto-plastic aluminium layers are compared. The development of plastic de-
formations in the aluminium layers stabilizes the effective failure response, and
increases the residual strength of the laminate. For a ’quasi-brittle’ GLARE spec-
imen with elastic aluminium layers, the residual strength is mainly governed by
the toughness for interfacial delamination, and is in close correspondence with
the residual strength obtained from a closed-form expression derived from energy
considerations. Conversely, for a ’ductile’ GLARE specimen with elasto-plastic
aluminium layers, the residual strength is also determined by the relation between
the fracture strength and the yield strength of the aluminium. The amount of
constraint by the horizontal displacements at the vertical specimen edges has a
moderate to small effect on the residual strength of the laminate. Furthermore, the
ultimate laminate strength is lower for a larger initial crack length, and shows to
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be in good correspondence with experimental values.

At the microscale the failure response of FMLs is strongly determined by a
combination of complex fracture and delamination modes within the fibre-epoxy
layers. Chapter 3 studies the microscale failure behaviour of unidirectional fibre-
epoxy samples loaded under uniaxial tension, where failure is characterised by
adhesive debonding between the fibres and the epoxy matrix and by cracking in
the epoxy matrix. The analyses are performed through two-dimensional numer-
ical simulations assuming plane-strain conditions. The failure mechanisms are
modelled in a discrete fashion, using interface elements furnished with the mixed-
mode damage model presented in Chapter 2. To allow for arbitrary cracking in
the epoxy material, interface elements are introduced in between all continuum
elements constructing the epoxy matrix. Similarly, fibre-matrix debonding is sim-
ulated by placing interface elements in between the fibres and the epoxy matrix.
With this so-called cohesive surface methodology, the growth of cracks is straight-
forwardly determined by the stress field generated at crack tips. Additionally, coa-
lescence and branching of cracks emerges as a natural outcome of the simulations,
without a need for additional selection criteria. Consequently, using a sufficiently
fine, randomly oriented mesh, the fracture response of microstructures can be pre-
dicted without an a-priori assumption of the cracking path. The results of the
simulations performed at the microscale show that the effective sample response
and the corresponding failure pattern are strongly determined by the ratio between
the fibre-epoxy interfacial strength and the epoxy strength. Essentially, for a rel-
atively weak fibre-epoxy interface the overall failure behaviour of the sample is
characterised both by fibre-debonding and epoxy cracking. Conversely, when the
epoxy is stronger than the fibre-epoxy interface, the overall failure behaviour of
the sample is determined by epoxy cracking only.

In addition, the ratio between the fibre-epoxy interfacial fracture toughness
and the epoxy fracture toughness does have a substantial influence on the effec-
tive sample response, but its effect on the corresponding failure pattern is small.
The microscale computations further show that the fibre volume fraction only in-
fluences the sample failure response if the fibre-epoxy interface is weaker than the
epoxy matrix. Moreover, the fibre distribution has a minor influence on the failure
response of the fibre-epoxy sample when the fibre volume fraction is relatively
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high. The failure patterns obtained by the numerical simulations are supported by
experimental results presented in the literature.

In Chapter 4 the failure responses of a fibre-matrix composite at the meso- and
microscales are linked by means of a computational homogenization procedure.
The traction-separation law in a material point of a mesoscale cohesive interface
is found by spatial averaging of the responses in the material points of the cor-
responding microscale sample. This is done applying Hill’s averaging principle,
which states that the spatial average of the virtual work at the microscale needs to
be equal to the virtual work in a local material point at the mesoscale.

The microscale simulations consider a fibre-epoxy sample loaded under uni-
axial tension, where the adhesive strength between the fibres and the epoxy is
taken equal to the cohesive strength of the epoxy. The effect of the sample width
on the effective failure response is studied analysing two different sample widths.
The effective failure response is hardly influenced by a change in sample size
since the final (mode I dominated) failure crack runs more or less straight across
the sample width. Furthermore, the crack pattern forms mainly through the epoxy,
as a result of which variations of the fibre volume fraction and the fibre distribu-
tion only have a minor effect on the homogenized traction-separation response.
The introduction of an initial imperfection in the sample (as created by a local
absence of adhesion between fibre(s) and epoxy) typically reduces the ultimate
strength of the sample, and for specific configurations may lead to a higher over-
all sample toughness. The higher toughness can be ascribed to an extension of the
microscale cracking path, as a result of which more energy needs to be dissipated
for reaching complete failure of the fibre-epoxy sample.

Marcela Cid Alfaro
October 2008
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Multischaal analyses van vezel-metaallaminaten

De vooruitgang van composietmaterialen gebruikt in de luchtvaart- en ruimte-
vaarttechniek, civiele bouw, biomechanica en andere takken van techniek hebben
de afgelopen decennia geleid tot een significante toename in de toepassing van
deze materialen. Daarbij heeft de zoektocht naar nieuwe en verbeterde materialen
in de luchtvaartindustrie geleidt tot de ontwikkeling van hybride materialen, die
deels zijn vervaardigd uit composieten. Een voorbeeld van een type hybride ma-
teriaal is het vezel-metaallaminaat. Dit materiaal is vervaardigd uit aluminium
lagen en vezelversterkte composietlagen die afwisselend zijn gestapeld om zo
de beste eigenschappen van de individuele componenten te combineren. Vezel-
metaallaminaten hebben daarbij aanvullende voordelen ten aanzien van mono-
litisch aluminium en vezelversterkte composieten, zoals een uitstekende vermoe-
ingsweerstand en een goede verdraagzaamheid van schade. Daarbij komt dat deze
klasse van materialen goede vuurwerings-, inslag-, corrosie-, isolatie- en demp-
ingseigenschappen heeft, wat ertoe geleid heeft dat vezel-metaallaminaten con-
structief zijn toegepast in het bovenste gedeelte van de romp van de Airbus A380.

Om een optimale betrouwbaarheid tijdens de operationele levensduur te kun-
nen garanderen dienen de bezwijkmechnismen van vezel-metaallaminaten goed
te worden begrepen. De voornaamste bezwijkmechanismen op mesoschaal die de
algehele betrouwbaarheid in gevaar brengen zijn delaminatie tussen aangrenzende
lagen, scheurvorming, en plastische vervorming in individuele metaallagen. Op
microschaal zijn de belangrijkste bezwijkmechanismen het loskomen, uittrekken
en breken van vezels, en scheurgroei in de epoxylaag.

Berekeningen met de eindige-elementenmethode dienen als een belangrijk
gereedschap om het bezwijkgedrag van vezel-metaallaminaten te begrijpen. Het
uitvoeren van een directe numerieke analyse op een constructie (bijvoorbeeld een
vliegtuigvleugel) waarbij alle kenmerken van de onderliggende heterogene mi-
crostructuur expliciet worden meegenomen vereist desalniettemin een zeer fijn
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eindig-elementenrooster, hetgeen leidt tot onaanvaardbaar lange rekentijden. Het
is efficiënter om constructies te berekenen met behulp van modellen geformuleerd
op mesoschaalniveau, waarbij de informatie van de onderliggende microschaal
wordt meegenomen op gemiddelde wijze. De gemiddelde eigenschappen in het
mesoscopische model kunnen worden berekend met behulp van een numerieke
homogenisatiemethode, waarbij de spanningen en vervormingen op microschaal
worden gemiddeld over een representatief materiaalvolume. Dit proefschrift om-
vat een gedetailleerde studie van het bezwijkgedrag van vezel-metaallaminaten op
mesoscopische en microscopische niveaus, en presenteert een numerieke homoge-
nisatiemethode die specifieke bezwijkmechanismen op deze twee observatiescha-
len met elkaar koppelt.

In hoofdstuk 2 van het proefschrift is het statische bezwijkgedrag van het
vezel-metaallaminaat GLARE onder éénassige trek bestudeerd door middel van
driedimensionale eindige-elementensimulaties. Het GLARE laminaat wordt ge-
kenmerkt door een versterking door glasvezels. De configuratie die is geanaly-
seerd is een proefstuk uitgerust met een initiële centrische scheur welk op trek
wordt belast. Het proefstuk bestaat uit twee aluminium lagen met daartussen een
vezel-epoxylaag, waarbij de vezels kruislings zijn georiënteerd. Op mesoschaal
worden scheurgroei en delaminatie gesimuleerd door gebruik te maken van grens-
laagelementen die zijn uitgerust met een trek-schuif schademodel. De formu-
lering van de trek-schuif verhouding is afgeleid vanuit een energiecriterium dat
gebruikelijk is in de lineair elastische breukmechanica. De kinetische wet voor
schade is snelheidsafhankelijk, zodat snelheidseffecten tijdens delaminatie kun-
nen worden gesimuleerd en numerieke convergentieproblemen ten gevolge van
vertakking van scheuren kunnen worden voorkomen. De numerieke implemen-
tatie van het schademodel is gebaseerd op een achterwaartse Euler methode.

In het bestudeerde randwaardeprobleem is het bezwijkgedrag van GLARE
vergeleken voor proefstukken waarbij het aluminium alleen elastisch kan vervor-
men, en waarbij het aluminium zowel elastisch als plastisch kan vervormen. Het
ontstaan van plastische vervormingen in het aluminium heeft een stabiliserend ef-
fect op het algehele bezwijkgedrag en verhoogt de reststerkte van het laminaat.
Voor het ’quasi-brosse’ laminaat, waarbij het aluminium alleen elastisch kan ver-
vormen, wordt de reststerkte in hoofdzaak bepaald door de delaminatietaaiheid.
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Deze reststerkte is in overeenstemming met de waarde die wordt verkregen uit
een uitdrukking die is afgeleid op basis van energiebeschouwingen. Daarente-
gen wordt de reststerkte in het ’quasi-ductiele’ laminaat, waarin het aluminium
ook plastisch kan vervormen, aanvullend bepaald door de relatie tussen de breuk-
sterkte en de vloeigrens van het aluminium. De beperking die wordt opgelegd op
de horizontale verplaatsing van de verticale randen van het proefstuk heeft een
matige tot kleine invloed op de reststerkte van het laminaat. Verder is de maxi-
male sterkte van het laminaat lager wanneer de initiële centrische scheur groter is,
en is deze in goede overeenstemming met experimentele data.

Het bezwijkgedrag van vezel-metaallaminaten wordt op microschaal sterk
bepaald door een combinatie van complexe breuk- en delaminatiemechanismen
binnen de vezel-epoxylagen. Hoofdstuk 3 bestudeert het microscopische bezwi-
jkgedrag van vezel-epoxylagen onder éénassige trek, waarbij de vezelrichting
loodrecht op de belastingsrichting staat. Het bezwijkmechanisme kenmerkt zich
door het loslaten van vezels in de epoxy matrix en door scheurvorming in de epoxy
matrix. De analyse is uitgevoerd door middel van tweedimensionale numerieke
simulaties met de aanname van een vlakke vervormingstoestand. De bezwijk-
mechanismen zijn op een discrete manier gemodelleerd, door het toepassen van
grenslaagelementen uitgerust met het trek-schuif schademodel gepresenteerd in
hoofdstuk 2. De grenslaagelementen zijn geı̈ntroduceerd tussen alle continuüm-
elementen, om zodoende willekeurige scheurvorming in de epoxy materiaal mo-
gelijk te maken. Op overeenkomstige wijze is de onthechting tussen vezels en
matrix gesimuleerd door ter plaatse grenslaagelementen aan te brengen. Met
deze zogenaamde ”methodologie van hechtende oppervlakten” wordt het ontstaan
en groeien van scheuren direct bepaald uit het spanningsveld gegenereerd rond
een scheurtip. Daarbij worden het samenkomen en vertakken van scheuren op
een natuurlijke manier beschreven in de formulering, zodat hiervoor geen extra
condities noodzakelijk zijn. Hierdoor kan met een voldoende fijn, willekeurig
georiënteerd eindig-elementenrooster het scheurgedrag van microstructuren wor-
den bepaald zonder dat vooraf een scheurpad hoeft te worden aangenomen. De
resultaten van de simulaties op microschaal laten zien dat de algehele respon-
sie van het proefstuk en het bijbehorende bezwijkpatroon sterk gekoppeld zijn
aan de verhouding tussen de epoxysterkte en de aanhechtingssterkte tussen vezels
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en epoxy. Feitelijk wordt voor een relatief zwakke verbinding tussen de epoxy
en de vezels het algehele bezwijkgedrag bepaald door zowel het loslaten van de
vezels als scheurvorming in de epoxy. Daartegenover wordt voor een relatief
sterke verbinding tussen de epoxy en de vezels het algehele bezwijgedrag alleen
bepaald door scheurvorming in de epoxy.

De verhouding van de breuktaaiheid tussen de vezels en de epoxy en de breuk-
taaiheid van de epoxy heeft welliswaar een substantiële invloed op de algehele
responsie van het proefstuk, maar de invloed op het corresponderende scheur-
patroon is klein. De berekeningen op microschaalniveau laten ook zien dat de
volumefractie van de vezels alleen invloed heeft op de bezwijkresponsie van het
proefstuk indien de aanhechtingssterkte tussen vezels en epoxy lager is dan de
breuksterkte van de epoxy. Bovendien heeft de vezelverdeling een kleine invloed
op de bezwijkresponsie van het vezel-epoxy proefstuk wanneer de volumefractie
van de vezels relatief hoog is. De bezwijkpatronen verkregen met de numerieke
simulaties worden ondersteund door experimentele resultaten gepresenteerd in de
vakliteratuur.

In hoofdstuk 4 is het bezwijkgedrag van het vezel-matrix composiet op de
micro- en mesoschalen gekoppeld door middel van een numerieke homogenisatie-
procedure. De tractie-separatie-wet in een materiaalpunt van een cohesieve grens-
laag op mesoschaal is gevonden door het ruimtelijk middelen van de responsies
in de materiaalpunten van een proefstuk op microschaal. Dit is gedaan door het
toepassen van ”Hill’s middelingsprincipe”, welk stelt dat het ruimtelijke gemid-
delde van de virtuele arbeid op microschaal overeen moet komen met de virtuele
arbeid in een lokaal materiaalpunt op mesoschaal.

De simulaties op microschaal beschouwen een vezel-epoxy proefstuk belast
onder éénassige trek, waarbij de aanhechtingssterkte tussen de vezels en de epoxy
gelijk genomen is aan de sterkte van de epoxy. De invloed van de breedte van het
proefstuk op het effectieve bezwijkgedrag is bestudeerd door proefstukken met
twee verschillende breedtes te beschouwen. De effectieve bezwijkresponsie wordt
nauwelijks beı̈nvloed door een verandering in proefstukbreedte omdat de (mode
I gedomineerde) bezwijkscheur vrijwel recht over de breedte van het proefstuk
loopt. Verder ontwikkelt het scheurpatroon zich hoofdzakelijk door de epoxy,
zodat variaties in de volumefractie van de vezels en de vezelverdeling slechts een
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kleine invloed hebben op de gehomogeniseerde tractie-separatie-responsie. De in-
troductie van een initiële imperfectie in het proefstuk (gecreëerd door een lokale
afwezigheid van de aanhechting tussen vezels en epoxy) reduceert de breuksterkte
van het proefstuk, en kan voor specifieke configuraties leiden tot een hogere taai-
heid. De hogere taaiheid kan worden toegeschreven aan een verlenging van het
scheurpad op microschaal, als gevolg waarvan meer energie moet worden gedis-
sipeerd alvorens het vezel-epoxy proefstuk volledig bezwijkt.

Marcela Cid Alfaro
Oktober 2008
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