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A B S T R A C T   

In this paper, we present novel algorithms for visualizing the three mutually orthogonal principal stress di-
rections in 3D solids under load and we discuss the efficient integration of these algorithms into the 3D 
Trajectory-based Stress Visualizer (3D-TSV), a visual analysis tool for the exploration of the principal stress 
directions of 3D stress field. In the design of 3D-TSV, several perceptual problems have been solved. We present a 
novel algorithm for generating a space-filling and evenly spaced set of stress lines. The algorithm obtains a more 
regular appearance by considering the locations of lines, and enables the extraction of a level-of-detail repre-
sentation with adjustable sparseness of the trajectories along a certain stress direction. A new combined visu-
alization of two principal directions via oriented ribbons enables to convey ambiguities in the orientation of the 
principal stress directions. Additional depth cues have been added to improve the perception of the spatial re-
lationships between trajectories. 3D-TSV provides a modular and generic implementation of key algorithms 
required for a trajectory-based visual analysis of principal stress directions, including the automatic seeding of 
space-filling stress lines, their extraction using numerical schemes, their mapping to an effective renderable 
representation, and rendering options to convey structures with special mechanical properties. 3D-TSV is 
accessible to end users via a C++- and OpenGL-based rendering frontend that is seamlessly connected to a 
MatLab-based extraction backend. The code (BSD license) of 3D-TSV as well as scripts to make ANSYS and 
ABAQUS simulation results accessible to the 3D-TSV backend are publicly available.   

1. Introduction 

Techniques for visualizing the three mutually orthogonal principal 
stress directions in 3D solids under load are important in a number of use 
cases in computational mechanics. In civil engineering such visualiza-
tions are used to develop and assess strategies for steel reinforcement of 
concrete support structures [38]. In mechanical engineering, where 
often massive components like engines and pumps are considered, one is 
interested in how forces “find” their way through these components. The 
development of lightweight load bearing structures is investigated in e. 
g., aerospace engineering, here stress directions provide the first in-
dicators where structures can be hollowed [5,22,23]. In bio-mechanics, 
such techniques are used to show tension and compression pathways 
simultaneously, and compare different structural designs regarding their 
mechanical properties [8]. For an overview of stress tensor visualiza-
tion, we refer to the recent review article by Hergl et al. [12]. 

An informative visualization of the stress directions in a 3D solid can 

be achieved via principal stress lines (PSLs), i.e., integral curves in 3D 
space along the principal stress directions. PSLs are effective in 
communicating the pathways along which external loads are trans-
mitted, and they show the mutual relationships between the different 
principal stress directions [8,43]. In computational engineering, PSLs 
are used in particular to show where and how loads are internally 
redirected and deflected. Such visualizations are necessary for a first 
qualitative analysis, before a quantitative analysis of certain regions 
using derived scalar stress measures is commonly performed. 

However, in computational mechanics stress trajectory visualiza-
tions are used in a rather inconsistent way, and, to the best of our 
knowledge, no standard tool for such an analysis exists. In many 
research groups in computational mechanics, own software packages for 
showing one particular principal stress direction starting at randomly 
selected locations are used. Often, CFD tools for flow visualization are 
used to show streamlines in a single principal stress direction field. 
Visualization tools that are able to show all principal stress directions 
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simultaneously are rare, and also available post-processing tools do not 
offer this functionality. 

One reason preventing a wider adoption of such tools is visual clutter 
and occlusions that are produced when showing the different types of 
PSLs simultaneously. Due to their mutual orthogonality, the visualiza-
tions appear irregular and unstructured, and perceptual coherence 
breaks up even for sparse sets of trajectories. While this effect can be 
reduced by starting trajectories from narrow regions and following only 
a single type of PSLs, this leaves large sub-domains uncovered and does 
not show the mutual variations of the stress directions. In general, 
clutter can be reduced by visualizing the single stress directions side-by- 
side, yet juxtaposition makes it difficult to effectively relate the three 
mutual orthogonal stress directions to each other. 

2. Contribution 

This paper presents the 3D Trajectory-based Stress Visualizer (3D- 
TSV), a system and methodology for the visual analysis of the PSLs in 3D 
stress fields. Fig. 1 gives an overview of the visualization options pro-
vided by 3D-TSV. With 3D-TSV, we release a system that supports a 
comprehensive integral line-based analysis of 3D stress fields. To ach-
ieve this, 3D-TSV builds upon existing techniques for line seeding in 
vector fields [16,27], and it extends them towards the specific use case 
by considering simultaneously the three principal stress directions in the 
seeding process. 3D-TSV is designed to achieve improved regularity of 
the extracted PSLs, i.e., it aims for a grid-like structure where PSLs 
roughly intersect, uniformly cover the domain, and reveal symmetries in 
the underlying fields. To achieve this, in the sequential seeding process 
every new seed point is located on an existing PSL belonging to a 
different principal stress direction. As proposed for streamlines in [16, 
27], the seeding process is parameterized using different distance 
thresholds for each type of PSL, which allows controlling separately the 
sparseness of the PSLs of each type. We use this possibility to enable a 
level-of-detail (LoD) visualization that combines a dense seeding of a 
selected PSL type with a seeding at a user-selected sparseness level of the 
respective other PSLs. 

To ease integration into existing systems and accessibility to end 
users, 3D-TSV is implemented as a client-server tool connecting a Mat-
Lab PSL extraction backend with an OpenGL rendering frontend. The 
backend extracts trajectories from a given stress field using parameters 
that are either specified via the GUI that is built into the renderer, or a 
configuration file. We have chosen a MatLab backend due to the popu-
larity of MatLab in mechanical engineering, and, thus, to enable engi-
neers to easily integrate new model representations and algorithms. 

Currently, 3D-TSV works with hexahedral simulation grids, including 
MatLab code for trilinear and inverse distance-based interpolation of 
stress tensors in such grids. If other types of basis functions are used, the 
corresponding MatLab functions simply need to be exchanged. Due to 
the cell adjacency structure that is built internally to efficiently find the 
next cell during trajectory integration in deformed hexahedral grids, 
other cell types can be supported with only minor additional effort. 

The frontend renders whatever set of lines that is sent from the 
backend using advanced rendering options such as depth cues, outlines, 
as well as ambient occlusion effects to improve the perception of the 
spatial relationships between trajectories. Furthermore, the user can 
select to visualize one pair of stress directions via ribbons. Ribbons 
follow one of the selected directions and twist according to the other 
one, and they can effectively convey regions where the assignment of the 
eigenvector directions to the type of PSL (i.e., major, medium, or minor) 
changes. 

To summarize, the contributions of this work are  

• an advanced and publicly available tool for trajectory-based stress 
tensor visualization supporting stress fields on arbitrary hexahedral 
grids,  

• the adaptation of evenly spaced line seeding to create a space-filling 
set of PSLs with improved regularity,  

• an adaptive level-of-detail visualization using varying PSL density 
and visual mappings to lines and ribbons. 

The application of 3D-TSV is demonstrated in a number of experi-
ments using datasets with different shapes and stress states. The code of 
3D-TSV is made publicly available under a BSD license, and published 
on https://github.com/Junpeng-Wang-TUM/3D-TSV. In video11, the 
seeding of trajectories by 3D-TSV is compared to the seeding of trajec-
tories separately in each principal stress direction field via evenly spaced 
seeding [16]. 3D-TSV can be used as client-server system as described 
(see video22), or as standalone tool solely in MatLab providing rudi-
mentary visualization options (see video33). Also the frontend can be 
used standalone, reading the PSL specific information from ”psl.dat” 
files (see video44). Thus, any other backend can be used to generate PSLs 
and let the frontend visualize them. We also provide a script written in 

Fig. 1. (a) The 3D Trajectory-based Stress Visualizer generates a space-filling and evenly spaced set of principal stress lines (PSLs) in a 3D domain. (b) It supports a 
regular appearance by considering already selected lines when locating new seed points. (c,d) To reduce clutter, the density of PSLs can be adapted in a hierarchical 
manner. (d) Ambiguities in the assignment of stress types to directions are visualized by merging two principal stress directions into ribbons. Different scalar stress 
measures (d) can be mapped to color. 

1 https://youtu.be/lN9CxgvfgNY  
2 https://youtu.be/h7BzP7Jg_-o  
3 https://youtu.be/99Jn938ZoVk  
4 https://youtu.be/zafBOAt9Xvs 
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the ANSYS built-in language APDL, which automatically converts the 
result of an ANSYS finite element stress analysis into the format required 
by the 3D-TSV backend (see video55). To support the output from 
ABAQUS, the mesh information needs to be read from the ABAQUS 
input file (”.inp”), and the stress data can be acquired from the result file 
(”.rpt”). We provide datasets, description and configuration files, as well 
as scripts for all use cases of 3D-TSV on the publicly available GitHub 
repository. 

3. Related work 

3.1. Stress Tensor Field Visualization 

Stress tensor field visualization can be classified into trajectory-, 
glyph- and topology-based methods [12,21]. Trajectory-based methods 
choose the PSLs as visual abstractions of the stress field, focusing on the 
directional structure of the principal stresses. Delmarcelle and Hesselink 
[6] introduced the concept of hyperstreamlines, a visual mapping of the 
medium and minor principal stresses onto a tube surface with a single 
selected major PSL as centerline. Dick et al. [8] trace the major and 
minor PSLs from randomly distributed seed points in the loading area of 
the solid object, and different types of stress state like tension and 
compression are distinguished by color. In order to identify and visualize 
regions where stress trajectories are of rotational or hyperbolic 
behavior, Oster et al. [28] proposed the concept of tensor core lines in 
3D secondorder tensor fields. Hotz et al. [15] smear out dye along the 
PSLs using line integral convolution. In this way, a density field is 
generated that resembles a grid-like structure. This approach provides a 
global overview of a 2D stress distribution, yet an extension to 3D is 
problematic due to the generation of a dense volumetric field. 

It’s worth noting that even though stresses are frequently simulated 
and analysed in engineering applications, the use of trajectory-based 
visualizations that consider the whole stress field as a tensor field 
instead of several scalar fields are not commonplace. In particular, such 
functionality seems neither provided by any of the well-established 
software packages for stress simulation, like ABAQUS and ANSYS, nor 
by dedicated environments for visualizing finite-element simulation 
results [3,24,44]. 

Glyph-based methods, on the other hand, depict the stress field by a 
set of well-designed geometric primitives – so-called tensor glyphs. 
Tensor glyphs were originally designed for glyph-based diffusion tensor 
visualization [19], and later adapted to visualize positive definite ten-
sors [18], general symmetric tensors [34], as well as asymmetric tensors 
[11,35]. Glyph-based techniques are problematic when used to visualize 
3D stress fields, due to their inherent occlusion effects. Specific place-
ment strategies can be used to reduce the number of glyphs and occlu-
sions thereof [14,20]. Tensor glyphs are effective in showing the local 
stress states, but they cannot effectively communicate the global struc-
ture of stress lines. Patel and Laidlaw [30] proposed to guide the 
placement of glyphs by principal trajectories in the underlying field, and 
thus to provide a better understanding of the global relationships in this 
field. 

Topology-based approaches for stress tensor visualization abstract 
from the depiction of stress directions and focus on revealing specific 
topological characteristics of the tensor field. Delmarcelle and Hesselink 
[7,13] studied the topology of symmetric 2D and 3D tensor fields, and 
introduced the fundamental concepts of degenerate points and topo-
logical skeletons. Zheng and Pang  [49], and later Roy et al. [33], dis-
cussed the robust extraction of these topological features. Zobel and 
Scheuermann proposed the notion of extremal points to analyze the 
complete invariant part of the tensor [50]. Raith et al. presented a 
general approach for the generation of separating surfaces in the 
invariant space [32]. Palacios et al. introduced the eigenvalue manifold 

and visualized the 3D eigenvectors as curve surfaces [29]. Qu et al. [31] 
further generalized the concepts of degenerate curves and neutral sur-
faces to a unified framework called mode surfaces. 

3.2. Streamline Seeding 

Seeding strategies to control the density and placement of trajec-
tories in vector fields are widely used in flow visualization. Turk and 
Banks [39] and Jobard and Lefer [16] were the first to introduce seeding 
strategies for generating evenly spaced sets of streamlines in 2D vector 
field. Numerous extensions and improvements of these concepts have 
been proposed since then. In particular, Vilanova et al. [41] proposed an 
extension of the approach by Jobard and Lefer to diffusion tensor fields, 
which detects the distance between the new streamline and the existing 
ones during the tracing process. They demonstrate the generation of 
evenly distributed streamlines, however, the approach suffers from 
‘unfinished’ streamlines that are caused by an artificial stopping crite-
rion and only considers a single eigenvector field at a time. For 3D flow 
visualization, dedicated approaches and frameworks have been devel-
oped to reduce the visual clutter and occlusion of densely distributed 
streamlines in 3D fields [4,17,47,48]. However, these techniques do not 
fit our goal of visualizing PSLs and their mutual relationships, which 
requires considering three sets of orthogonal PSLs simultaneously. 

3.3. Streamline Visualization 

Illuminated streamlines are often used as a means of visualizing 
streamlines in a 3D environment. The streamlines are mapped to tubes 
and then shaded, e.g., using the Blinn-Phong shading model [2]. Early 
work on illuminated streamlines was done by Zöckler et al. [51] and 
Mattausch et al. [27]. Stoll et al. [37] extended this work by introducing 
stylized line primitives, rendered by a hybrid CPU-GPU renderer. Liu 
[26] presented the DOXIV, a prototype framework for high-performance 
visual analysis of large flow data. Volpe [42] first introduced the concept 
of streamribbons for flow field visualization. 

3.4. Hexahedral Meshing 

An alternative approach to PSL-based stress field visualization is to 
generate a frame field from the principal stress field first and employ 
field-aligned hexahedral meshing to produce orthogonal edges that 
follow PSLs. The edges of such hex-meshes can follow the directions of 
PSLs excellently in situations where degenerate points are not present 
and the stress lines show low degrees of convergence and divergence. 
However, when guided with frame fields corresponding to realistic load 
situations, yet still much more benign than those demonstrated in this 
work, it is an unsolved problem to reliably produce an all-hex mesh. 
Hexahedral-dominant meshing has been resorted as an intermediate 
solution. For instance, Wu et al. [46] propose a conforming stress-guided 
lattice structure by combining topology optimization with the 
field-guided polyhedral meshing algorithm from [9]. Arora et al. [1] 
generate similar structural designs via the guidance of the principal 
stress field, where they modify the stress field to get a smooth frame 
field. However, hexahedral-dominant meshes often contain either 
T-junctions or non-hexahedral elements with non-orthgonal edges, 
significantly deviating from the PSLs and are, thus, not applicable for 
stress field analysis either. 

4. Stress tensor directions 

At each point in a 3D solid under load, the stress state is fully 
described by the stress vectors for three mutually orthogonal orienta-
tions. The second-order stress tensor 5 https://youtu.be/Yri_B7m3AWU 
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T =

⎡

⎣
σxx τxy τxz
τxy σyy τyz
τxz τyz σzz

⎤

⎦ (1)  

contains these vectors for the axes of a Cartesian coordinate system. T is 
symmetric since the shear stresses given by the off-diagonal elements in 
T are equal on mutually orthogonal planes. The principal stress di-
rections of the stress tensor indicate the three mutually orthogonal di-
rections along which the shear stresses vanish. These directions are 
given by the eigenvectors of T, with magnitudes given by the corre-
sponding eigenvalues. The signs of the principal stress magnitudes 
classify the stresses into tension (positive sign) or compression (negative 
sign). However, since there are three principal stresses acting at each 
point, the classification is with respect to a specific direction. 

In descending order, the three eigenvalues of T represent the major 
σ1, medium σ2 and minor σ3 principal stresses, with the corresponding 
eigenvectors indicating the principal stress directions at each point in 
the 3D solid. The trajectories along these directions are called the 
principal stress lines (PSLs). They are computed by numerically inte-
grating massless particles in each single (normalized) eigenvector field. 

In general, σ1, σ2 and σ3 are mutually unequal, and the eigenvectors 
are linearly independent and even mutually orthogonal due to the 
symmetry of T. However, so-called degenerate points can exist where 
two or more eigenvalues are equal. In the vicinity of these points, which 
are classified by σ1 = σ2 > σ3 or σ1 > σ2 = σ3

6, the PSL direction cannot 
be decided. Therefore, when tracing along a principal stress direction, 
we test whether the eigenvalue σi corresponding to this direction is too 

close to another eigenvalue σj, i.e., deg = 1
2

⃒
⃒
⃒
σi − σj
σi+σj

⃒
⃒
⃒ < 10− 6. If this is the 

case and the angle between the PSL tangents at the current and next 
integration point is too large, the integration is stopped. Furthermore, 
we provide the option to map deg to the color of a PSL via a color table 
(see Section 4.3), so that the proximity to a degenerate point is indi-
cated. PSL integration is also stopped when the next integration point is 
located on a boundary face, the point is closer to a previous point on the 
same trajectory than a predefined distance threshold (i.e., to avoid 
running into closed orbits), or the number of integration steps reaches 
the pre-defined threshold. 

The integration of PSLs requires to select seed points from which they 
start until they arrive at a degenerate point or the boundary. While 
uniform seeding in the entire domain is used as the default option, the 
user can select seeding from the boundary vertices as well as the vertices 
where loads are applied. Furthermore, different integration schemes can 
be used for PSL tracing, including the 1st-order Euler method, and the 
2nd- and 4th-order Runge-Kutta methods, where the fixed integration 

step size δ is used for Cartesian meshes, and an adaptive δ for unstruc-
tured hexahedral meshes. In each integration step, the stress tensor T is 
interpolated, and the eigenvalues and eigenvectors are computed from 
the interpolated tensor. If none of the mentioned stopping criteria holds, 
the next step is performed in the direction with the least deviation from 
the previous direction. 

5. PSL Seeding and level of detail 

Finding a set of PSLs that effectively convey the principal stress di-
rections in 3D stress fields requires to consider perceptual issues related 
to the visualization of large sets of trajectories. While in principle the 
PSLs of a single type, i.e., major, medium, or minor, can be visualized 
separately using techniques from flow visualization, in a stress field the 
different types of PSLs need to be shown simultaneously to understand 
their mutual interplay. However, an effective and efficient visual anal-
ysis is hindered by the mutual orthogonality of the different types, which 
is perceived as a disordered state even when a low number of PSLs is 
shown. Our proposed seeding strategy cannot completely avoid this 
problem, but it has some built-in regularity due to enforced PSL 
intersections. 

5.1. Evenly spaced PSL seeding 

The proposed seeding strategy builds upon the evenly spaced 
streamline seeding approach by Jobard and Lefer [16], and extends this 
approach in several ways to account for the application to PSLs. For the 
sake of clarity, we describe the strategy in the context of 2D stress fields, 
yet it will become clear that the extension to 3D is straightforward. 
However, when applied in 3D, the resulting PSL structures show a 
fundamental difference. Unlike in 2D, where due to the intersections 
between major and minor PSLs a fairly regular grid-like structure is 
generated, such intersections are rare or do not exist at all when seeding 
PSLs in 3D. This counteracts the impression of a consistent grid-like 
structure and results in a rather disordered appearance. We propose a 
seeding strategy that weakens this effect, but it needs to be considered 
that due to the nature of PSLs in 3D stress fields a globally consistent 3D 
grid-like structure is impossible to achieve in general. 

Our method builds upon the selection of new seed points in the spirit 
of Jobard and Lefer, where the potential candidates are those points 
which are at least a prescribed distance away from any already extracted 
PSL. Of these candidates, the one with minimum distance is selected and 
a new trajectory is started at that point. In contrast, in our approach the 
distance is always wrt. the initial seed point, so that the PSLs grow 
around that point instead of being seeded at vastly different locations. 

To adapt the seeding strategy to the situation of different types of 
PSLs, we first introduce the concept of seed valence. In 2D, the seed 
valence ϑ is a 2 × 1 binary array, which is associated to each seed point 
to indicate whether and of which type PSLs have been traced from this 

Fig. 2. Starting from a set of seeds with empty valence [0 0], the sampling process is performed until all the seed valences have been turned to [1 1]. The ocher and 
blue lines are the major and minor PSLs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

6 We do not consider triple degenerate points with σ1 = σ2 = σ3, since they 
do not exist under structurally stable conditions  [49]. 
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point. ϑ can take on four different bit combinations, i.e., empty seed 
[0 0] (passed by no PSL), solid seed [1 1] (passed by both major and 
minor PSLs) and semi-empty seed [1 0] (only passed by major PSL) or 
[0 1] (only passed by minor PSL). The sampling process is repeated until 
all valences of all possible seed points become solid [1 1]. With this 
definition of seed valence, the sampling process is performed iteratively, 
by using the seed valence to characterize the state of each seed point at a 
specific iteration. To ensure that the generated PSLs are space-filling, the 
initial candidate seed points (with ϑ = [0 0]) are located at the vertices 
of a space-filling Cartesian grid (step 0 in Fig. 2). 

Seeding starts by selecting one of the candidate seed points and 
tracing the major and minor PSLs from it (Step 1 in Fig. 2), setting ϑ =
[1 1] at this point. Per default, the system starts with the seed point 
closest to the center of the bounding box of the domain, to preserve an 
existing plane symmetry of the stress field in the PSLs (see Fig. 10 and 
Fig. 11). Then, all candidate seed points with ϑ not equal to [1 1] are re- 
classified with respect to the currently existing PSLs. To exclude can-
didates too close to an existing major or minor PSL, ϑ of these candidates 
is set to [1 0] or [0 1], respectively. If a point is classified as [1 0] or [0 1]
and closer to a minor or major PSL, respectively, its valence is set to 
[1 1]. The distance between a point and a PSL is computed as the min-
imum distance between the point and any of the integration points on 
the PSL. Proximity is decided via a distance threshold ε, which also 
controls the density of the extracted PSLs. 

To obtain a more regular PSL structure, each re-classified candidate 
point is re-located (i.e., merged) to the position of the closest integration 
point on the PSL causing its classification. This creates an ”empty” band 
around the PSLs where no candidate seed point exists. The merging 
operation enforces that newly selected seed points lie on an existing PSL, 
so that the final PSL structure appears more regular and less cluttered 
(see Fig. 3 for a comparison to the seeding approach by Jobard and 
Lefer). By placing the initial seed point in a region deemed important, 

the user can specifically enforce regularity in this region. 
If the last computed PSL was a major or a minor PSL, then the next 

seed point is selected from the set of candidates with ϑ = [1 0] or [0 1], 
respectively. Thus, we alternate the order of major and minor PSL 
extraction to obtain a uniform distribution of both types. Of all these, the 
one closest to the initial seed point is selected as the new seed point, and 
the respectively transverse PSL is computed. The entire procedure is 
then restarted until no more candidate is available (see steps 2–5 in 
Fig. 2). 

We further consider the situation where some empty seed points may 
get too close (measured by ε) to the other type of existing PSLs after they 
are merged to the current PSL, e.g., the seed valence ϑ of some empty 
seed points become [1 0] after merging them to the newly traced major 
PSL. However, it can also happen that some of these merged seed points 
might be close to some of the existing minor PSLs, which would 
unavoidably cause inappropriate placement of minor PSLs in the final 
visualization. Given this, we identify those semi-empty seed points after 
merging, and compute the distances of them to the corresponding type 
of PSLs. If there are distances less than ε, the valences of these seed 
points are set to [1 1]. By simply making ϑ a binary array with three 
elements referring to the major, medium and minor PSL, the proposed 
seeding strategy can be lifted to 3D. 

5.2. PSL LoD Structure 

To change the density of the generated PSLs, the seeding process can 
simply be re-run with an appropriately set distance threshold ε. The 
larger this threshold is, the less PSLs are extracted. However, the 
different sets of PSLs that are generated for different thresholds are not 
nested, i.e., the PSLs at a coarser representation with lower PSL density 
are not a subset of the PSLs at a representation with higher density. 
Therefore, in an exploration session where the user interactively selects 

Fig. 3. PSLs in a bridge under load (see Figure 9 for the simulated load conditions). Major (ocher), medium (green) and minor (blue) PSLs generated by (left) 
separate seeding as proposed by [16] in each principal stress direction field, and (right) by our method. Note that since the stress field is not strictly symmetric, the 
PSL set shows some asymmetry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. PSL LoD hierarchy. Top: The major and minor PSLs at different LoDs, computed separately for each level. Bottom: Simultaneous extraction of the PSL 
structure using level L2 (context) for the major and L3 (focus) for the minor PSLs. 

J. Wang et al.                                                                                                                                                                                                                                    



Advances in Engineering Software 170 (2022) 103144

6

different PSL LoDs, there are abrupt changes when transitioning from 
one level to another. To avoid this, we propose to generate a nested PSL 
hierarchy. 

The basic idea underlying the construction of a nested hierarchy is to 
let the PSLs at a level with higher PSL density ’grow out’ sequentially 
from the PSLs at a lower density level. As a side effect, this enables 
saving computations by progressively computing a new level from the 
previous coarser level. For a given set of PSLs that have been generated 
with distance threshold ε0, the refined set of PSLs according to a distance 
threshold ε1 < ε0 is computed as follows: Firstly, the candidate seed 
points are reset to their initial positions. Secondly, the candidate seed 
points are merged to the existing PSLs according to ε1, to create “empty” 
bands around the existing PSLs. The valences are updated accordingly to 
[1 0], [0 1] or [1 1] depending on the types of PSL they are merged to. 
After this, some non-solid seeds are left, because ε0 is larger than ε1. 
With these seeds the seeding is subsequently performed, including the 
iteration of seed point selection, PSL computation, and re-classification 
as described in subsection 4.1. 

To generate a full LoD PSL hierarchy, the user defines the minimum 
distance threshold ε and the number M of levels to construct. Then, the 
distance thresholds of each level are computed as 2(M− k)ε, k = 1 : M 
from coarse to fine, and the hierarchy is constructed progressively from 
the coarsest resolution level (see 1st and 2nd rows in Fig. 4). To compute 
a PSL structure with different types of PSLs at different LoDs, the dis-
tance thresholds for each PSL type are first selected by the user, and then 
the multi-type LoD is computed by alternatively considering the 
different PSL types with their respective distances. 

5.3. Ribbon-based stress visualization 

Instead of rendering lines, the user can select a PSL type (i.e., major, 
medium, minor) and visualize ribbon-shaped geometry [40] that is 
centered at the PSLs of the selected type and twists according to the 
direction of another stress type (see Fig. 5 a,b). At each integration point 
along a PSL of the selected type, two lines with adjustable length are 
traced forward and backward along the other direction. The lines’ 
endpoints at subsequent integration points are connected to form a 

ribbon. It is worth noting that the constructed ribbons don’t coincide 
with streamsurfaces that are integrated from a PSL along one other stress 
direction. As shown by Raith et al. [32], such surface might not even 
exist, i.e., when integrating from two points on the same PSL over a 
certain length along another stress direction, the two endpoints are not 
lying on a PSL in general. The mapping of two principal stress directions 
to a ribbon geometry is conceptually similar to the well-known hyper-
streamlines [6], i.e., a mapping of two principal stress directions to a 
tube centered at the PSL along the third direction. 

We let the user select a visualization using ribbons to convey changes 
in the assignment of the eigenvector directions to the type of PSL in the 
vicinity of degenerate points. When a ribbon is formed as described, flips 
often occur in the vicinity of a degenerate point (see Fig. 5 (c)). This is 
because the two directions can exchange their classification as major, 
medium, and minor, since this depends only on their position in the 
sorted sequence of eigenvalues. Thus, ribbons provide an additional 
visual cue to indicate topological changes of the PSLs in the vicinity of 
degenerate points. 

Fig. 6 compares the options to visualize principal stress directions via 
ribbons and lines, and combine them into a single visualization. As can 
be seen, twists in the ribbon geometry effectively hint to regions where 
degenerate points might exist. For lines, 3D-TSV can map the de-
generacy measure introduced in Section 3 to color. An interesting 
observation is that high degeneracy and flips thereof frequently occur 
close to the object boundaries when Cartesian simulation meshes are 
used. These flips occur due to the well-known inaccuracies at curved 
boundaries that are represented by hexahedral simulation elements in a 
Cartesian grid. 

6. System implementation 

To implement the communication between the C++ visualization 
frontend and the MatLab extraction backend, the messaging library 
ZeroMQ is utilized, which can be used for communication over a wide 
variety of protocols, like TCP/IP. 3D-TSV relies on the request-reply 
pattern implemented in ZeroMQ, where the frontend issues a new 
request to the backend when the user changes simulation settings in the 

Fig. 5. When a PSL goes through a degenerate point (a), the ribbon-shaped geometry shows a sudden twist (b). (c) Behaviour of the eigenvalues along the ribbon’s 
center PSL, from which the ribbon’s direction and orientation is determined. 

Fig. 6. Left: Ribbons are aligned along the minor PSLs and twist according to the medium principal stress direction. Middle: Minor PSLs with degeneracy measure 
mapped from blue (low) to red (high). Right: A visualization using lines for minor PSLs and ribbons for major PSLs. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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graphical user interface, and the backend sends back a reply as soon as 
the simulation is finished in order to notify the frontend of the avail-
ability of new data. 

The reason why we turned to MatLab instead of C++ for the 
implementation of the backend is, on the one hand, that the sampling 
method is an inherently sequential algorithm. Thus, it cannot benefit 
significantly from multi-threaded PSL tracing or GPU parallelization. On 
the other hand, MatLab is widely spread in engineering, where most of 
our collaborators regarding stress visualization come from, and the en-
gineers tend to use mainstream commercial software they are already 
familiar with to finish the design iteration quickly. In this case, they can 
run the MatLab backend independently without any complicated 
compilation and setup process. To this end, we also provide a slim 
MatLab visualization implementation, which can provide users a fast 
and easy way to explore the stress field, while discarding some more 
complex hardware-accelerated features from the C++ frontend, like 
depth cues or ambient occlusion effects. It is worth noting that also the 
rendering frontend can be used standalone, by reading trajectories from 
a file specifying the exchange format regarding PSL type and LoD 
representation. 

6.1. Numerical PSL integration 

3D-TSV is designed to support the visualization of PSLs in solids 
discretized by hexahedral grids, where the stress tensors are given at the 
grid vertices. When computing PSLs in Cartesian grids, component-wise 
trilinear interpolation of the tensors is used during numerical line 
integration. In deformed hexahedral cells, tensor interpolation is per-
formed via inverse distance weighting [36]. 

To integrate PSLs in Cartesian grids, the system provides fixed-step 
integration schemes with user adjustable stepsize of at least half the 
cell diameter. In deformed hexahedral grids, a different approach is 
taken since the size of the simulation elements can vary, and with a 
constant stepsize the risk increases that multiple cells smaller than this 
size are missed in one single integration step. To reduce this risk, the 
integration stepsize is automatically adapted to the size (i.e., the length 
of the shortest edge) of the cell at the current integration point Pi. These 
values are pre-computed and stored per cell. In each integration step, the 
size s of the current cell is read and multiplied by a user selected scaling 
factor δs. δs can be made smaller than 1 to obtain more accurate PSLs. 
With the stepsize s⋅δs, the PSL is integrated from the current point Pi in 
cell ei to the new point Pi+1. Then, the integration process is restarted 
with Pi+1 and the cell ei+1 containing Pi+1. 

To find ei+1, it is first tested whether Pi+1 is still contained in ei. The 
following in-out criterion is used to test whether a point is located in a 
hexahedral cell: Given a hexahedral element with the centers and out- 
facing normal of its 6 faces Ci and n→i, i ∈ {1, ⋯, 6}. Any point P0 in 
the interior or on the boundary of the element satisfies max(arccos(P0Ci

̅̅ →
,

n→i)) ≤
π
2, i ∈ {1,⋯,6}, see Fig. 7 a. In practice, the criterion is slightly 

relaxed to max(arccos(P0Ci
̅̅ →

,Vi)) ≤
91π
180, i ∈ {1,⋯,6}, to account for non- 

planar cell faces, i.e., a slight variation of the normal vectors across the 
faces. 

If ei does not contain Pi+1, the cell ei+1 needs to be determined. To 
this end, we further test whether Pi+1 lies in any of the adjacent cells eadj 

of ei. For each cell, the set of adjacent cells as well as the adjacency type, 
i.e., face-, edge-, and vertex-adjacency, is pre-computed and stored. In 
case Pi+1 is not within ei or eadj, we scale down the stepsize via a di-
chotomy strategy, i.e., Pi+1 = (Pi+1 + Pi)/2, until Pi+1 is located in ei or 
it’s adjacent cells eadj. 

In the case where ei and ei+1 are connected by a single edge or vertex, 
it may still happen that cells are skipped when going from Pi to Pi+1. In 
this situation, stepsize refinement is performed multiple times until the 
cell ei+1 shares a face with ei or is below a user-selected threshold. The 
latter situation is encountered when the PSL goes through a cell vertex or 
edge, so that face-adjacency cannot be determined. In Fig. 8, for the 
given mesh two PSLs that have been extracted without and with addi-
tional stepsize refinement are compared. As can be seen, cells that would 
be skipped when using only face-to-face adjacency are now determined 
and considered in the integration. 

6.2. Rendering 

The line and ribbon primitives are rendered in a stylized fashion 
similar to the techniques by Zöckler et al. [51], Stoll et al. [37] and 
Mattausch et al. [27], using default colors, halos and depth cues as 
shown in the first three images in Fig. 1. Focus PSLs and contextual 

Fig. 7. (a) Quantities required to test whether a 
point P0 (red ∗) is located in a hexahedral cell. 
Black ” + ” and orange arrows indicate centers 
Ci and out-facing normals n→i, i ∈ {1,⋯,6} of 
the six cell faces. Green arrows indicate the 
directional vectors P0Ci

̅̅ →
, i ∈ {1,⋯, 6} that are 

used. (b) Point re-location is subsequently per-
formed until the next integration point Pi+1 is 
within the same cell ei (grey cube) as the cur-
rent point Pi, or is within one of the cells eadj 

(cyan cubes) adjacent to ei. (For interpretation 
of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   

Fig. 8. (a) The deformed hexahedral simulation mesh. (b) A PSL (blue trajec-
tory) in the simulated stress field. It is ensured that every next integration point 
is in the previous cell or in a cell adjacent to the previous cell. (c) Same as (b), 
but now every next integration point is in a face-adjacent cell. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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ribbons are rendered in ocher and blue, respectively. The base color is 
modulated using Blinn-Phong shading [2,51], which assumes a point 
light source at the world space position of the viewer (i.e., a head light). 

The user can interactively change the color mapping—also sepa-
rately for each PSL type—and can in particular switch to a mapping of 
some scalar quantity to color, as indicated in the last image in Fig. 1 
using the scalar von Mises stress measure. The scalar values are issued 
via the backend as per-vertex attributes. The standard color scheme we 
use for the different principal stress directions (blue, green, ocher) is the 

‘3-class Set2’ transfer function from ColorBrewer7. It is colorblind safe 
and print friendly. 

For enhanced depth perception, depth cues are added, i.e., with 
increasing distance to the camera, fragments are increasingly desatu-
rated. A translucent simulation mesh outline hull can be rendered 
together with the stress field data in order to hint at the extents of the 
simulation domain. 

6.3. 3D-TSV settings 

3D-TSV provides a number of parameters that can be changed by the 
user to control the generation of PSLs. These parameters include the 
merging threshold ε and the number of levels M introduced in subsec-
tion 4.1 and subsection 4.2, respectively. Another set of parameters 
enables a user-guided interaction with the PSL distribution, including 
sliders for controlling the LoD resolution of major, medium and minor 
PSLs. In addition, the user can select the two PSL types that are used to 
generate ribbons. Via a drop-down menu, the user can select a scalar 
stress measures that are mapped to PSL color using a transfer function. 
The backend provides different stress components, such as the principal 
stress amplitudes, von Mises stress, and the six Cartesian stress 
components. 

7. Results 

In all of our experiments, PSL generation is performed on the CPU, i. 
e., a workstation running Ubuntu 20.04 with an AMD Ryzen 9 3900X 
@3.80GHz CPU and 32GB RAM. Rendering is done on an NVIDIA RTX 
2070 SUPER GPU with 8GB of on-chip memory. The rendering times are 
always below 10 milliseconds. The data sets we use in our experiments 
are shown in Fig. 9. The stress fields are simulated by a finite element 
method (FEM), using the solid objects under the shown load conditions. 
Table 1 lists the numbers of simulation elements of each of the data sets, 
the seed points that are used to generate the PSLs, the number of 
generated PSLs, and the time required for PSL generation. 

For the three models ’Bridge’, ’Cantilever’ and ’Rod’, we demon-
strate the improvements of the proposed seeding strategy over evenly 
spaced streamline seeding. 3D-TSV is used to visually analyze the stress 
fields in ’Femur’ and ’Bracket’. These two data sets that are frequently 
seen in structural design and optimization [45]. Finally, we consider the 
two mechanical parts ’Bearing’ and ’Parts1’ to demonstrate the appli-
cation of 3D-TSV to unstructured hexahedral simulation meshes. 

Figs. 10 and 11 emphasize the improvements by the proposed 
seeding strategy regarding the regularity of the extracted set of PSLs. 3D- 
TSV generates a fairly uniform space-filling PSL structure, which, in 
particular, maintains the symmetry of the stress field in ’Cantilever’. 
Evenly spaced streamline seeding, on the other hand, generates a far less 

Fig. 9. The solid objects used in this work and the applied external loads. Red and blue arrows indicate the loading positions and directions, black regions indicate 
fixed boundaries. A finite-element-based elasticity analysis has been used to compute the stress field for each model under the predicted loads. The unstructured 
hexahedral meshes ‘Parts’ and ’Bearing’ are courtesy of [25] and [10], respectively. All other meshes are Cartesian meshes. ‘Arched Bridge’ and ’Rod’ are courtesy of 
[1] and [10], respectively. All simulated stress fields are made publicly available. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 10. PSLs in the ‘Cantilever’ stress field. PSLs by the proposed seeding 
strategy (left) and evenly spaced streamline seeding (right). 

Fig. 11. Top: PSLs showing the principal stress directions in ‘Rod’. Bottom: 
PSLs in ‘Rod’ from a different view. Left: PSLs computed by 3D-TSV. Right: PSLs 
computed via evenly spaced seeding as proposed by [16]. 

7 https://colorbrewer2.org/#type=qualitative&scheme=Set2&n=3 
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regular design which introduces severe visual clutter. 
The visualization also highlights the importance of showing different 

PSL types simultaneously. In the analyzed tensor field, the signs of the 
eigenvalues along the major and minor PSLs are mostly positive and 
negative, respectively. This means that the major PSLs are mainly under 
tension and the minor PSLs mainly under compression. Thus, either of 
both effects could be shown by visualizing one PSL type, but not both. 

Fig. 12 (left) shows the space-filling PSLs in the stress field in the 
interior of ’Bracket’. From the boundary condition in Fig. 9, we see that 
the structure is mainly under tension. Thus, we choose to show the major 
PSLs at the higher level of detail (L2) and the minor PSLs at lower level 
L1 (see Fig. 12 (right)). The minor PSLs are shown via ribbons, with the 
medium principal stress direction indicating the twist. This enables a 
fine granular analysis of the major principal stress directions, and 
simultaneously provide a coarse representation of the other principal 
directions. A similar setting has been selected to visualize the stress 
directions in ’Femur’ (see Fig. 1). 

3D-TSV works with Cartesian meshes and deformed hexahedral 
meshes, which are both frequently used in mechanical engineering ap-
plications. Here we use the stress fields due to external loads in the 
interior of ‘Bearing’ and ‘Parts1’, to demonstrate the capability of 3D- 
TSV. As shown in Fig. 9, especially in ‘Bearing’ the element sizes 
change considerably over the 3D domain. The distribution of PSLs of 
‘Bearing’ is shown in Fig. 13 (left), and the right image shows the 
combination of major at the third level of detail (L3) and minor at L1, 
where the minor PSLs are shown via ribbons. The full distribution of 
PSLs of ‘Parts1’ can be seen in the Fig. 14 (left), on the right the minor 
PSLs at L3 and major PSLs at L2 are shown simultaneously, where the 
major PSLs are rendered via ribbons. 

8. Conclusion and future work 

In this paper, we have introduced 3D-TSV, a tool for visualizing the 
principal stress directions in 3D solids under load. 3D-TSV makes use of 
a novel seeding strategy, to generate a space-filling and evenly spaced 
set of PSLs. By considering all three types of PSLs simultaneously in the 
construction process, the regularity of the resulting PSL structure is 
improved. By incorporating different merging thresholds for each PSL 
type into the construction process, a consistent multi-resolution hier-
archy is formed, which can be utilized to show different PSL types with 
different resolutions simultaneously. Efficient rendering options for 
lines and ribbons on the GPU enable interactive analysis of large sets of 
PSLs. 

In the future, we intend to couple 3D-TSV with load simulation 
processes, so that dynamic changes of the stress field can be instantly 
monitored. Therefore, we will analyze whether the intrinsically iterative 
parts of the algorithm can be parallelized on modern multi-threading 
architectures. Furthermore, we are interested in using space-filling 
evenly spaced seeding to guide the material growth in topology opti-
mization. Topology optimization seeks to distribute material in a way 
that makes the object resistant to external loads. To automatically 
generate support structures that follow the major stress directions and 

Fig. 12. Stress field in ‘Bracket’. Left: PSLs at the finest level (according to Table 1). Right: major / minor PSLs at the third (L3) / first (L1) level of detail.  

Table 1 
Model and performance statistics. D0 is the length of the shortest dimension of 
the bounding box of the stress field.  

Data Set #Cells #Seeds ε/D0 M #PSLs Time (s) 

Cantilever 250K 2K 1/5 1 85 0.4 
Rod 536K 18K 1/5 1 174 2.1 
Femur 696K 10K 1/18 3 823 9.0 
Bracket 650K 9K 1/12 3 293 5.4 
Bearing 189K 55K 1/18 3 1364 33.4 
Parts1 253K 46K 1/20 3 1557 27.9  

Fig. 13. Stress field in ‘Bearing’. Left: PSLs at the finest level (according to Table 1). Right: major / minor PSLs at the third (L3) / first (L1) level of detail. Ribbons are 
along the minor PSLs and twist according to medium principal stress direction. 

Fig. 14. Stress fields in ‘Parts1’. Left: PSLs at the finest level. Right: major / 
minor PSLs at L2 / L3. Ribbons are along the major PSLs and twist according to 
medium principal stress direction. 
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eventually can form a 3D grid-like structure, we aim at combining our 
seeding strategy with the automatic growth process underlying topology 
optimization. 
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