

Delft University of Technology

3D-TSV
The 3D trajectory-based stress visualizer
Wang, Junpeng; Neuhauser, Christoph; Wu, J.; Gao, Xifeng; Westermann, Rüdiger

DOI
10.1016/j.advengsoft.2022.103144
Publication date
2022
Document Version
Final published version
Published in
Advances in Engineering Software: including computing systems in engineering

Citation (APA)
Wang, J., Neuhauser, C., Wu, J., Gao, X., & Westermann, R. (2022). 3D-TSV: The 3D trajectory-based
stress visualizer. Advances in Engineering Software: including computing systems in engineering, 170,
Article 103144. https://doi.org/10.1016/j.advengsoft.2022.103144

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.advengsoft.2022.103144
https://doi.org/10.1016/j.advengsoft.2022.103144

Advances in Engineering Software 170 (2022) 103144

Available online 13 May 2022
0965-9978/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

3D-TSV: The 3D trajectory-based stress visualizer

Junpeng Wang a, Christoph Neuhauser a, Jun Wu *,b, Xifeng Gao c, Rüdiger Westermann a

a Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Germany
b Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
c Lightspeed & Quantum Game Studios, Tencent America, Seattle, USA

A R T I C L E I N F O

Keywords:
3D stress visualization
Principal stress lines
Level of detail techniques

A B S T R A C T

In this paper, we present novel algorithms for visualizing the three mutually orthogonal principal stress di-
rections in 3D solids under load and we discuss the efficient integration of these algorithms into the 3D
Trajectory-based Stress Visualizer (3D-TSV), a visual analysis tool for the exploration of the principal stress
directions of 3D stress field. In the design of 3D-TSV, several perceptual problems have been solved. We present a
novel algorithm for generating a space-filling and evenly spaced set of stress lines. The algorithm obtains a more
regular appearance by considering the locations of lines, and enables the extraction of a level-of-detail repre-
sentation with adjustable sparseness of the trajectories along a certain stress direction. A new combined visu-
alization of two principal directions via oriented ribbons enables to convey ambiguities in the orientation of the
principal stress directions. Additional depth cues have been added to improve the perception of the spatial re-
lationships between trajectories. 3D-TSV provides a modular and generic implementation of key algorithms
required for a trajectory-based visual analysis of principal stress directions, including the automatic seeding of
space-filling stress lines, their extraction using numerical schemes, their mapping to an effective renderable
representation, and rendering options to convey structures with special mechanical properties. 3D-TSV is
accessible to end users via a C++- and OpenGL-based rendering frontend that is seamlessly connected to a
MatLab-based extraction backend. The code (BSD license) of 3D-TSV as well as scripts to make ANSYS and
ABAQUS simulation results accessible to the 3D-TSV backend are publicly available.

1. Introduction

Techniques for visualizing the three mutually orthogonal principal
stress directions in 3D solids under load are important in a number of use
cases in computational mechanics. In civil engineering such visualiza-
tions are used to develop and assess strategies for steel reinforcement of
concrete support structures [38]. In mechanical engineering, where
often massive components like engines and pumps are considered, one is
interested in how forces “find” their way through these components. The
development of lightweight load bearing structures is investigated in e.
g., aerospace engineering, here stress directions provide the first in-
dicators where structures can be hollowed [5,22,23]. In bio-mechanics,
such techniques are used to show tension and compression pathways
simultaneously, and compare different structural designs regarding their
mechanical properties [8]. For an overview of stress tensor visualiza-
tion, we refer to the recent review article by Hergl et al. [12].

An informative visualization of the stress directions in a 3D solid can

be achieved via principal stress lines (PSLs), i.e., integral curves in 3D
space along the principal stress directions. PSLs are effective in
communicating the pathways along which external loads are trans-
mitted, and they show the mutual relationships between the different
principal stress directions [8,43]. In computational engineering, PSLs
are used in particular to show where and how loads are internally
redirected and deflected. Such visualizations are necessary for a first
qualitative analysis, before a quantitative analysis of certain regions
using derived scalar stress measures is commonly performed.

However, in computational mechanics stress trajectory visualiza-
tions are used in a rather inconsistent way, and, to the best of our
knowledge, no standard tool for such an analysis exists. In many
research groups in computational mechanics, own software packages for
showing one particular principal stress direction starting at randomly
selected locations are used. Often, CFD tools for flow visualization are
used to show streamlines in a single principal stress direction field.
Visualization tools that are able to show all principal stress directions

* Corresponding author.
E-mail addresses: junpeng.wang@tum.de (J. Wang), christoph.neuhauser@tum.de (C. Neuhauser), j.wu-1@tudelft.nl (J. Wu), xifgao@tencent.com (X. Gao),

westermann@tum.de (R. Westermann).

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

https://doi.org/10.1016/j.advengsoft.2022.103144
Received 17 March 2022; Accepted 4 May 2022

mailto:junpeng.wang@tum.de
mailto:christoph.neuhauser@tum.de
mailto:j.wu-1@tudelft.nl
mailto:xifgao@tencent.com
mailto:westermann@tum.de
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2022.103144
https://doi.org/10.1016/j.advengsoft.2022.103144
https://doi.org/10.1016/j.advengsoft.2022.103144
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2022.103144&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Advances in Engineering Software 170 (2022) 103144

2

simultaneously are rare, and also available post-processing tools do not
offer this functionality.

One reason preventing a wider adoption of such tools is visual clutter
and occlusions that are produced when showing the different types of
PSLs simultaneously. Due to their mutual orthogonality, the visualiza-
tions appear irregular and unstructured, and perceptual coherence
breaks up even for sparse sets of trajectories. While this effect can be
reduced by starting trajectories from narrow regions and following only
a single type of PSLs, this leaves large sub-domains uncovered and does
not show the mutual variations of the stress directions. In general,
clutter can be reduced by visualizing the single stress directions side-by-
side, yet juxtaposition makes it difficult to effectively relate the three
mutual orthogonal stress directions to each other.

2. Contribution

This paper presents the 3D Trajectory-based Stress Visualizer (3D-
TSV), a system and methodology for the visual analysis of the PSLs in 3D
stress fields. Fig. 1 gives an overview of the visualization options pro-
vided by 3D-TSV. With 3D-TSV, we release a system that supports a
comprehensive integral line-based analysis of 3D stress fields. To ach-
ieve this, 3D-TSV builds upon existing techniques for line seeding in
vector fields [16,27], and it extends them towards the specific use case
by considering simultaneously the three principal stress directions in the
seeding process. 3D-TSV is designed to achieve improved regularity of
the extracted PSLs, i.e., it aims for a grid-like structure where PSLs
roughly intersect, uniformly cover the domain, and reveal symmetries in
the underlying fields. To achieve this, in the sequential seeding process
every new seed point is located on an existing PSL belonging to a
different principal stress direction. As proposed for streamlines in [16,
27], the seeding process is parameterized using different distance
thresholds for each type of PSL, which allows controlling separately the
sparseness of the PSLs of each type. We use this possibility to enable a
level-of-detail (LoD) visualization that combines a dense seeding of a
selected PSL type with a seeding at a user-selected sparseness level of the
respective other PSLs.

To ease integration into existing systems and accessibility to end
users, 3D-TSV is implemented as a client-server tool connecting a Mat-
Lab PSL extraction backend with an OpenGL rendering frontend. The
backend extracts trajectories from a given stress field using parameters
that are either specified via the GUI that is built into the renderer, or a
configuration file. We have chosen a MatLab backend due to the popu-
larity of MatLab in mechanical engineering, and, thus, to enable engi-
neers to easily integrate new model representations and algorithms.

Currently, 3D-TSV works with hexahedral simulation grids, including
MatLab code for trilinear and inverse distance-based interpolation of
stress tensors in such grids. If other types of basis functions are used, the
corresponding MatLab functions simply need to be exchanged. Due to
the cell adjacency structure that is built internally to efficiently find the
next cell during trajectory integration in deformed hexahedral grids,
other cell types can be supported with only minor additional effort.

The frontend renders whatever set of lines that is sent from the
backend using advanced rendering options such as depth cues, outlines,
as well as ambient occlusion effects to improve the perception of the
spatial relationships between trajectories. Furthermore, the user can
select to visualize one pair of stress directions via ribbons. Ribbons
follow one of the selected directions and twist according to the other
one, and they can effectively convey regions where the assignment of the
eigenvector directions to the type of PSL (i.e., major, medium, or minor)
changes.

To summarize, the contributions of this work are

• an advanced and publicly available tool for trajectory-based stress
tensor visualization supporting stress fields on arbitrary hexahedral
grids,

• the adaptation of evenly spaced line seeding to create a space-filling
set of PSLs with improved regularity,

• an adaptive level-of-detail visualization using varying PSL density
and visual mappings to lines and ribbons.

The application of 3D-TSV is demonstrated in a number of experi-
ments using datasets with different shapes and stress states. The code of
3D-TSV is made publicly available under a BSD license, and published
on https://github.com/Junpeng-Wang-TUM/3D-TSV. In video11, the
seeding of trajectories by 3D-TSV is compared to the seeding of trajec-
tories separately in each principal stress direction field via evenly spaced
seeding [16]. 3D-TSV can be used as client-server system as described
(see video22), or as standalone tool solely in MatLab providing rudi-
mentary visualization options (see video33). Also the frontend can be
used standalone, reading the PSL specific information from ”psl.dat”
files (see video44). Thus, any other backend can be used to generate PSLs
and let the frontend visualize them. We also provide a script written in

Fig. 1. (a) The 3D Trajectory-based Stress Visualizer generates a space-filling and evenly spaced set of principal stress lines (PSLs) in a 3D domain. (b) It supports a
regular appearance by considering already selected lines when locating new seed points. (c,d) To reduce clutter, the density of PSLs can be adapted in a hierarchical
manner. (d) Ambiguities in the assignment of stress types to directions are visualized by merging two principal stress directions into ribbons. Different scalar stress
measures (d) can be mapped to color.

1 https://youtu.be/lN9CxgvfgNY
2 https://youtu.be/h7BzP7Jg_-o
3 https://youtu.be/99Jn938ZoVk
4 https://youtu.be/zafBOAt9Xvs

J. Wang et al.

https://github.com/Junpeng-Wang-TUM/3D-TSV
https://youtu.be/lN9CxgvfgNY
https://youtu.be/h7BzP7Jg_-o
https://youtu.be/99Jn938ZoVk
https://youtu.be/zafBOAt9Xvs

Advances in Engineering Software 170 (2022) 103144

3

the ANSYS built-in language APDL, which automatically converts the
result of an ANSYS finite element stress analysis into the format required
by the 3D-TSV backend (see video55). To support the output from
ABAQUS, the mesh information needs to be read from the ABAQUS
input file (”.inp”), and the stress data can be acquired from the result file
(”.rpt”). We provide datasets, description and configuration files, as well
as scripts for all use cases of 3D-TSV on the publicly available GitHub
repository.

3. Related work

3.1. Stress Tensor Field Visualization

Stress tensor field visualization can be classified into trajectory-,
glyph- and topology-based methods [12,21]. Trajectory-based methods
choose the PSLs as visual abstractions of the stress field, focusing on the
directional structure of the principal stresses. Delmarcelle and Hesselink
[6] introduced the concept of hyperstreamlines, a visual mapping of the
medium and minor principal stresses onto a tube surface with a single
selected major PSL as centerline. Dick et al. [8] trace the major and
minor PSLs from randomly distributed seed points in the loading area of
the solid object, and different types of stress state like tension and
compression are distinguished by color. In order to identify and visualize
regions where stress trajectories are of rotational or hyperbolic
behavior, Oster et al. [28] proposed the concept of tensor core lines in
3D secondorder tensor fields. Hotz et al. [15] smear out dye along the
PSLs using line integral convolution. In this way, a density field is
generated that resembles a grid-like structure. This approach provides a
global overview of a 2D stress distribution, yet an extension to 3D is
problematic due to the generation of a dense volumetric field.

It’s worth noting that even though stresses are frequently simulated
and analysed in engineering applications, the use of trajectory-based
visualizations that consider the whole stress field as a tensor field
instead of several scalar fields are not commonplace. In particular, such
functionality seems neither provided by any of the well-established
software packages for stress simulation, like ABAQUS and ANSYS, nor
by dedicated environments for visualizing finite-element simulation
results [3,24,44].

Glyph-based methods, on the other hand, depict the stress field by a
set of well-designed geometric primitives – so-called tensor glyphs.
Tensor glyphs were originally designed for glyph-based diffusion tensor
visualization [19], and later adapted to visualize positive definite ten-
sors [18], general symmetric tensors [34], as well as asymmetric tensors
[11,35]. Glyph-based techniques are problematic when used to visualize
3D stress fields, due to their inherent occlusion effects. Specific place-
ment strategies can be used to reduce the number of glyphs and occlu-
sions thereof [14,20]. Tensor glyphs are effective in showing the local
stress states, but they cannot effectively communicate the global struc-
ture of stress lines. Patel and Laidlaw [30] proposed to guide the
placement of glyphs by principal trajectories in the underlying field, and
thus to provide a better understanding of the global relationships in this
field.

Topology-based approaches for stress tensor visualization abstract
from the depiction of stress directions and focus on revealing specific
topological characteristics of the tensor field. Delmarcelle and Hesselink
[7,13] studied the topology of symmetric 2D and 3D tensor fields, and
introduced the fundamental concepts of degenerate points and topo-
logical skeletons. Zheng and Pang [49], and later Roy et al. [33], dis-
cussed the robust extraction of these topological features. Zobel and
Scheuermann proposed the notion of extremal points to analyze the
complete invariant part of the tensor [50]. Raith et al. presented a
general approach for the generation of separating surfaces in the
invariant space [32]. Palacios et al. introduced the eigenvalue manifold

and visualized the 3D eigenvectors as curve surfaces [29]. Qu et al. [31]
further generalized the concepts of degenerate curves and neutral sur-
faces to a unified framework called mode surfaces.

3.2. Streamline Seeding

Seeding strategies to control the density and placement of trajec-
tories in vector fields are widely used in flow visualization. Turk and
Banks [39] and Jobard and Lefer [16] were the first to introduce seeding
strategies for generating evenly spaced sets of streamlines in 2D vector
field. Numerous extensions and improvements of these concepts have
been proposed since then. In particular, Vilanova et al. [41] proposed an
extension of the approach by Jobard and Lefer to diffusion tensor fields,
which detects the distance between the new streamline and the existing
ones during the tracing process. They demonstrate the generation of
evenly distributed streamlines, however, the approach suffers from
‘unfinished’ streamlines that are caused by an artificial stopping crite-
rion and only considers a single eigenvector field at a time. For 3D flow
visualization, dedicated approaches and frameworks have been devel-
oped to reduce the visual clutter and occlusion of densely distributed
streamlines in 3D fields [4,17,47,48]. However, these techniques do not
fit our goal of visualizing PSLs and their mutual relationships, which
requires considering three sets of orthogonal PSLs simultaneously.

3.3. Streamline Visualization

Illuminated streamlines are often used as a means of visualizing
streamlines in a 3D environment. The streamlines are mapped to tubes
and then shaded, e.g., using the Blinn-Phong shading model [2]. Early
work on illuminated streamlines was done by Zöckler et al. [51] and
Mattausch et al. [27]. Stoll et al. [37] extended this work by introducing
stylized line primitives, rendered by a hybrid CPU-GPU renderer. Liu
[26] presented the DOXIV, a prototype framework for high-performance
visual analysis of large flow data. Volpe [42] first introduced the concept
of streamribbons for flow field visualization.

3.4. Hexahedral Meshing

An alternative approach to PSL-based stress field visualization is to
generate a frame field from the principal stress field first and employ
field-aligned hexahedral meshing to produce orthogonal edges that
follow PSLs. The edges of such hex-meshes can follow the directions of
PSLs excellently in situations where degenerate points are not present
and the stress lines show low degrees of convergence and divergence.
However, when guided with frame fields corresponding to realistic load
situations, yet still much more benign than those demonstrated in this
work, it is an unsolved problem to reliably produce an all-hex mesh.
Hexahedral-dominant meshing has been resorted as an intermediate
solution. For instance, Wu et al. [46] propose a conforming stress-guided
lattice structure by combining topology optimization with the
field-guided polyhedral meshing algorithm from [9]. Arora et al. [1]
generate similar structural designs via the guidance of the principal
stress field, where they modify the stress field to get a smooth frame
field. However, hexahedral-dominant meshes often contain either
T-junctions or non-hexahedral elements with non-orthgonal edges,
significantly deviating from the PSLs and are, thus, not applicable for
stress field analysis either.

4. Stress tensor directions

At each point in a 3D solid under load, the stress state is fully
described by the stress vectors for three mutually orthogonal orienta-
tions. The second-order stress tensor 5 https://youtu.be/Yri_B7m3AWU

J. Wang et al.

https://youtu.be/Yri_B7m3AWU

Advances in Engineering Software 170 (2022) 103144

4

T =

⎡

⎣
σxx τxy τxz
τxy σyy τyz
τxz τyz σzz

⎤

⎦ (1)

contains these vectors for the axes of a Cartesian coordinate system. T is
symmetric since the shear stresses given by the off-diagonal elements in
T are equal on mutually orthogonal planes. The principal stress di-
rections of the stress tensor indicate the three mutually orthogonal di-
rections along which the shear stresses vanish. These directions are
given by the eigenvectors of T, with magnitudes given by the corre-
sponding eigenvalues. The signs of the principal stress magnitudes
classify the stresses into tension (positive sign) or compression (negative
sign). However, since there are three principal stresses acting at each
point, the classification is with respect to a specific direction.

In descending order, the three eigenvalues of T represent the major
σ1, medium σ2 and minor σ3 principal stresses, with the corresponding
eigenvectors indicating the principal stress directions at each point in
the 3D solid. The trajectories along these directions are called the
principal stress lines (PSLs). They are computed by numerically inte-
grating massless particles in each single (normalized) eigenvector field.

In general, σ1, σ2 and σ3 are mutually unequal, and the eigenvectors
are linearly independent and even mutually orthogonal due to the
symmetry of T. However, so-called degenerate points can exist where
two or more eigenvalues are equal. In the vicinity of these points, which
are classified by σ1 = σ2 > σ3 or σ1 > σ2 = σ3

6, the PSL direction cannot
be decided. Therefore, when tracing along a principal stress direction,
we test whether the eigenvalue σi corresponding to this direction is too

close to another eigenvalue σj, i.e., deg = 1
2

⃒
⃒
⃒
σi − σj
σi+σj

⃒
⃒
⃒ < 10− 6. If this is the

case and the angle between the PSL tangents at the current and next
integration point is too large, the integration is stopped. Furthermore,
we provide the option to map deg to the color of a PSL via a color table
(see Section 4.3), so that the proximity to a degenerate point is indi-
cated. PSL integration is also stopped when the next integration point is
located on a boundary face, the point is closer to a previous point on the
same trajectory than a predefined distance threshold (i.e., to avoid
running into closed orbits), or the number of integration steps reaches
the pre-defined threshold.

The integration of PSLs requires to select seed points from which they
start until they arrive at a degenerate point or the boundary. While
uniform seeding in the entire domain is used as the default option, the
user can select seeding from the boundary vertices as well as the vertices
where loads are applied. Furthermore, different integration schemes can
be used for PSL tracing, including the 1st-order Euler method, and the
2nd- and 4th-order Runge-Kutta methods, where the fixed integration

step size δ is used for Cartesian meshes, and an adaptive δ for unstruc-
tured hexahedral meshes. In each integration step, the stress tensor T is
interpolated, and the eigenvalues and eigenvectors are computed from
the interpolated tensor. If none of the mentioned stopping criteria holds,
the next step is performed in the direction with the least deviation from
the previous direction.

5. PSL Seeding and level of detail

Finding a set of PSLs that effectively convey the principal stress di-
rections in 3D stress fields requires to consider perceptual issues related
to the visualization of large sets of trajectories. While in principle the
PSLs of a single type, i.e., major, medium, or minor, can be visualized
separately using techniques from flow visualization, in a stress field the
different types of PSLs need to be shown simultaneously to understand
their mutual interplay. However, an effective and efficient visual anal-
ysis is hindered by the mutual orthogonality of the different types, which
is perceived as a disordered state even when a low number of PSLs is
shown. Our proposed seeding strategy cannot completely avoid this
problem, but it has some built-in regularity due to enforced PSL
intersections.

5.1. Evenly spaced PSL seeding

The proposed seeding strategy builds upon the evenly spaced
streamline seeding approach by Jobard and Lefer [16], and extends this
approach in several ways to account for the application to PSLs. For the
sake of clarity, we describe the strategy in the context of 2D stress fields,
yet it will become clear that the extension to 3D is straightforward.
However, when applied in 3D, the resulting PSL structures show a
fundamental difference. Unlike in 2D, where due to the intersections
between major and minor PSLs a fairly regular grid-like structure is
generated, such intersections are rare or do not exist at all when seeding
PSLs in 3D. This counteracts the impression of a consistent grid-like
structure and results in a rather disordered appearance. We propose a
seeding strategy that weakens this effect, but it needs to be considered
that due to the nature of PSLs in 3D stress fields a globally consistent 3D
grid-like structure is impossible to achieve in general.

Our method builds upon the selection of new seed points in the spirit
of Jobard and Lefer, where the potential candidates are those points
which are at least a prescribed distance away from any already extracted
PSL. Of these candidates, the one with minimum distance is selected and
a new trajectory is started at that point. In contrast, in our approach the
distance is always wrt. the initial seed point, so that the PSLs grow
around that point instead of being seeded at vastly different locations.

To adapt the seeding strategy to the situation of different types of
PSLs, we first introduce the concept of seed valence. In 2D, the seed
valence ϑ is a 2 × 1 binary array, which is associated to each seed point
to indicate whether and of which type PSLs have been traced from this

Fig. 2. Starting from a set of seeds with empty valence [0 0], the sampling process is performed until all the seed valences have been turned to [1 1]. The ocher and
blue lines are the major and minor PSLs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

6 We do not consider triple degenerate points with σ1 = σ2 = σ3, since they
do not exist under structurally stable conditions [49].

J. Wang et al.

Advances in Engineering Software 170 (2022) 103144

5

point. ϑ can take on four different bit combinations, i.e., empty seed
[0 0] (passed by no PSL), solid seed [1 1] (passed by both major and
minor PSLs) and semi-empty seed [1 0] (only passed by major PSL) or
[0 1] (only passed by minor PSL). The sampling process is repeated until
all valences of all possible seed points become solid [1 1]. With this
definition of seed valence, the sampling process is performed iteratively,
by using the seed valence to characterize the state of each seed point at a
specific iteration. To ensure that the generated PSLs are space-filling, the
initial candidate seed points (with ϑ = [0 0]) are located at the vertices
of a space-filling Cartesian grid (step 0 in Fig. 2).

Seeding starts by selecting one of the candidate seed points and
tracing the major and minor PSLs from it (Step 1 in Fig. 2), setting ϑ =
[1 1] at this point. Per default, the system starts with the seed point
closest to the center of the bounding box of the domain, to preserve an
existing plane symmetry of the stress field in the PSLs (see Fig. 10 and
Fig. 11). Then, all candidate seed points with ϑ not equal to [1 1] are re-
classified with respect to the currently existing PSLs. To exclude can-
didates too close to an existing major or minor PSL, ϑ of these candidates
is set to [1 0] or [0 1], respectively. If a point is classified as [1 0] or [0 1]
and closer to a minor or major PSL, respectively, its valence is set to
[1 1]. The distance between a point and a PSL is computed as the min-
imum distance between the point and any of the integration points on
the PSL. Proximity is decided via a distance threshold ε, which also
controls the density of the extracted PSLs.

To obtain a more regular PSL structure, each re-classified candidate
point is re-located (i.e., merged) to the position of the closest integration
point on the PSL causing its classification. This creates an ”empty” band
around the PSLs where no candidate seed point exists. The merging
operation enforces that newly selected seed points lie on an existing PSL,
so that the final PSL structure appears more regular and less cluttered
(see Fig. 3 for a comparison to the seeding approach by Jobard and
Lefer). By placing the initial seed point in a region deemed important,

the user can specifically enforce regularity in this region.
If the last computed PSL was a major or a minor PSL, then the next

seed point is selected from the set of candidates with ϑ = [1 0] or [0 1],
respectively. Thus, we alternate the order of major and minor PSL
extraction to obtain a uniform distribution of both types. Of all these, the
one closest to the initial seed point is selected as the new seed point, and
the respectively transverse PSL is computed. The entire procedure is
then restarted until no more candidate is available (see steps 2–5 in
Fig. 2).

We further consider the situation where some empty seed points may
get too close (measured by ε) to the other type of existing PSLs after they
are merged to the current PSL, e.g., the seed valence ϑ of some empty
seed points become [1 0] after merging them to the newly traced major
PSL. However, it can also happen that some of these merged seed points
might be close to some of the existing minor PSLs, which would
unavoidably cause inappropriate placement of minor PSLs in the final
visualization. Given this, we identify those semi-empty seed points after
merging, and compute the distances of them to the corresponding type
of PSLs. If there are distances less than ε, the valences of these seed
points are set to [1 1]. By simply making ϑ a binary array with three
elements referring to the major, medium and minor PSL, the proposed
seeding strategy can be lifted to 3D.

5.2. PSL LoD Structure

To change the density of the generated PSLs, the seeding process can
simply be re-run with an appropriately set distance threshold ε. The
larger this threshold is, the less PSLs are extracted. However, the
different sets of PSLs that are generated for different thresholds are not
nested, i.e., the PSLs at a coarser representation with lower PSL density
are not a subset of the PSLs at a representation with higher density.
Therefore, in an exploration session where the user interactively selects

Fig. 3. PSLs in a bridge under load (see Figure 9 for the simulated load conditions). Major (ocher), medium (green) and minor (blue) PSLs generated by (left)
separate seeding as proposed by [16] in each principal stress direction field, and (right) by our method. Note that since the stress field is not strictly symmetric, the
PSL set shows some asymmetry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. PSL LoD hierarchy. Top: The major and minor PSLs at different LoDs, computed separately for each level. Bottom: Simultaneous extraction of the PSL
structure using level L2 (context) for the major and L3 (focus) for the minor PSLs.

J. Wang et al.

Advances in Engineering Software 170 (2022) 103144

6

different PSL LoDs, there are abrupt changes when transitioning from
one level to another. To avoid this, we propose to generate a nested PSL
hierarchy.

The basic idea underlying the construction of a nested hierarchy is to
let the PSLs at a level with higher PSL density ’grow out’ sequentially
from the PSLs at a lower density level. As a side effect, this enables
saving computations by progressively computing a new level from the
previous coarser level. For a given set of PSLs that have been generated
with distance threshold ε0, the refined set of PSLs according to a distance
threshold ε1 < ε0 is computed as follows: Firstly, the candidate seed
points are reset to their initial positions. Secondly, the candidate seed
points are merged to the existing PSLs according to ε1, to create “empty”
bands around the existing PSLs. The valences are updated accordingly to
[1 0], [0 1] or [1 1] depending on the types of PSL they are merged to.
After this, some non-solid seeds are left, because ε0 is larger than ε1.
With these seeds the seeding is subsequently performed, including the
iteration of seed point selection, PSL computation, and re-classification
as described in subsection 4.1.

To generate a full LoD PSL hierarchy, the user defines the minimum
distance threshold ε and the number M of levels to construct. Then, the
distance thresholds of each level are computed as 2(M− k)ε, k = 1 : M
from coarse to fine, and the hierarchy is constructed progressively from
the coarsest resolution level (see 1st and 2nd rows in Fig. 4). To compute
a PSL structure with different types of PSLs at different LoDs, the dis-
tance thresholds for each PSL type are first selected by the user, and then
the multi-type LoD is computed by alternatively considering the
different PSL types with their respective distances.

5.3. Ribbon-based stress visualization

Instead of rendering lines, the user can select a PSL type (i.e., major,
medium, minor) and visualize ribbon-shaped geometry [40] that is
centered at the PSLs of the selected type and twists according to the
direction of another stress type (see Fig. 5 a,b). At each integration point
along a PSL of the selected type, two lines with adjustable length are
traced forward and backward along the other direction. The lines’
endpoints at subsequent integration points are connected to form a

ribbon. It is worth noting that the constructed ribbons don’t coincide
with streamsurfaces that are integrated from a PSL along one other stress
direction. As shown by Raith et al. [32], such surface might not even
exist, i.e., when integrating from two points on the same PSL over a
certain length along another stress direction, the two endpoints are not
lying on a PSL in general. The mapping of two principal stress directions
to a ribbon geometry is conceptually similar to the well-known hyper-
streamlines [6], i.e., a mapping of two principal stress directions to a
tube centered at the PSL along the third direction.

We let the user select a visualization using ribbons to convey changes
in the assignment of the eigenvector directions to the type of PSL in the
vicinity of degenerate points. When a ribbon is formed as described, flips
often occur in the vicinity of a degenerate point (see Fig. 5 (c)). This is
because the two directions can exchange their classification as major,
medium, and minor, since this depends only on their position in the
sorted sequence of eigenvalues. Thus, ribbons provide an additional
visual cue to indicate topological changes of the PSLs in the vicinity of
degenerate points.

Fig. 6 compares the options to visualize principal stress directions via
ribbons and lines, and combine them into a single visualization. As can
be seen, twists in the ribbon geometry effectively hint to regions where
degenerate points might exist. For lines, 3D-TSV can map the de-
generacy measure introduced in Section 3 to color. An interesting
observation is that high degeneracy and flips thereof frequently occur
close to the object boundaries when Cartesian simulation meshes are
used. These flips occur due to the well-known inaccuracies at curved
boundaries that are represented by hexahedral simulation elements in a
Cartesian grid.

6. System implementation

To implement the communication between the C++ visualization
frontend and the MatLab extraction backend, the messaging library
ZeroMQ is utilized, which can be used for communication over a wide
variety of protocols, like TCP/IP. 3D-TSV relies on the request-reply
pattern implemented in ZeroMQ, where the frontend issues a new
request to the backend when the user changes simulation settings in the

Fig. 5. When a PSL goes through a degenerate point (a), the ribbon-shaped geometry shows a sudden twist (b). (c) Behaviour of the eigenvalues along the ribbon’s
center PSL, from which the ribbon’s direction and orientation is determined.

Fig. 6. Left: Ribbons are aligned along the minor PSLs and twist according to the medium principal stress direction. Middle: Minor PSLs with degeneracy measure
mapped from blue (low) to red (high). Right: A visualization using lines for minor PSLs and ribbons for major PSLs. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

J. Wang et al.

Advances in Engineering Software 170 (2022) 103144

7

graphical user interface, and the backend sends back a reply as soon as
the simulation is finished in order to notify the frontend of the avail-
ability of new data.

The reason why we turned to MatLab instead of C++ for the
implementation of the backend is, on the one hand, that the sampling
method is an inherently sequential algorithm. Thus, it cannot benefit
significantly from multi-threaded PSL tracing or GPU parallelization. On
the other hand, MatLab is widely spread in engineering, where most of
our collaborators regarding stress visualization come from, and the en-
gineers tend to use mainstream commercial software they are already
familiar with to finish the design iteration quickly. In this case, they can
run the MatLab backend independently without any complicated
compilation and setup process. To this end, we also provide a slim
MatLab visualization implementation, which can provide users a fast
and easy way to explore the stress field, while discarding some more
complex hardware-accelerated features from the C++ frontend, like
depth cues or ambient occlusion effects. It is worth noting that also the
rendering frontend can be used standalone, by reading trajectories from
a file specifying the exchange format regarding PSL type and LoD
representation.

6.1. Numerical PSL integration

3D-TSV is designed to support the visualization of PSLs in solids
discretized by hexahedral grids, where the stress tensors are given at the
grid vertices. When computing PSLs in Cartesian grids, component-wise
trilinear interpolation of the tensors is used during numerical line
integration. In deformed hexahedral cells, tensor interpolation is per-
formed via inverse distance weighting [36].

To integrate PSLs in Cartesian grids, the system provides fixed-step
integration schemes with user adjustable stepsize of at least half the
cell diameter. In deformed hexahedral grids, a different approach is
taken since the size of the simulation elements can vary, and with a
constant stepsize the risk increases that multiple cells smaller than this
size are missed in one single integration step. To reduce this risk, the
integration stepsize is automatically adapted to the size (i.e., the length
of the shortest edge) of the cell at the current integration point Pi. These
values are pre-computed and stored per cell. In each integration step, the
size s of the current cell is read and multiplied by a user selected scaling
factor δs. δs can be made smaller than 1 to obtain more accurate PSLs.
With the stepsize s⋅δs, the PSL is integrated from the current point Pi in
cell ei to the new point Pi+1. Then, the integration process is restarted
with Pi+1 and the cell ei+1 containing Pi+1.

To find ei+1, it is first tested whether Pi+1 is still contained in ei. The
following in-out criterion is used to test whether a point is located in a
hexahedral cell: Given a hexahedral element with the centers and out-
facing normal of its 6 faces Ci and n→i, i ∈ {1, ⋯, 6}. Any point P0 in
the interior or on the boundary of the element satisfies max(arccos(P0Ci

̅̅ →
,

n→i)) ≤
π
2, i ∈ {1,⋯,6}, see Fig. 7 a. In practice, the criterion is slightly

relaxed to max(arccos(P0Ci
̅̅ →

,Vi)) ≤
91π
180, i ∈ {1,⋯,6}, to account for non-

planar cell faces, i.e., a slight variation of the normal vectors across the
faces.

If ei does not contain Pi+1, the cell ei+1 needs to be determined. To
this end, we further test whether Pi+1 lies in any of the adjacent cells eadj

of ei. For each cell, the set of adjacent cells as well as the adjacency type,
i.e., face-, edge-, and vertex-adjacency, is pre-computed and stored. In
case Pi+1 is not within ei or eadj, we scale down the stepsize via a di-
chotomy strategy, i.e., Pi+1 = (Pi+1 + Pi)/2, until Pi+1 is located in ei or
it’s adjacent cells eadj.

In the case where ei and ei+1 are connected by a single edge or vertex,
it may still happen that cells are skipped when going from Pi to Pi+1. In
this situation, stepsize refinement is performed multiple times until the
cell ei+1 shares a face with ei or is below a user-selected threshold. The
latter situation is encountered when the PSL goes through a cell vertex or
edge, so that face-adjacency cannot be determined. In Fig. 8, for the
given mesh two PSLs that have been extracted without and with addi-
tional stepsize refinement are compared. As can be seen, cells that would
be skipped when using only face-to-face adjacency are now determined
and considered in the integration.

6.2. Rendering

The line and ribbon primitives are rendered in a stylized fashion
similar to the techniques by Zöckler et al. [51], Stoll et al. [37] and
Mattausch et al. [27], using default colors, halos and depth cues as
shown in the first three images in Fig. 1. Focus PSLs and contextual

Fig. 7. (a) Quantities required to test whether a
point P0 (red ∗) is located in a hexahedral cell.
Black ” + ” and orange arrows indicate centers
Ci and out-facing normals n→i, i ∈ {1,⋯,6} of
the six cell faces. Green arrows indicate the
directional vectors P0Ci

̅̅ →
, i ∈ {1,⋯, 6} that are

used. (b) Point re-location is subsequently per-
formed until the next integration point Pi+1 is
within the same cell ei (grey cube) as the cur-
rent point Pi, or is within one of the cells eadj

(cyan cubes) adjacent to ei. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)

Fig. 8. (a) The deformed hexahedral simulation mesh. (b) A PSL (blue trajec-
tory) in the simulated stress field. It is ensured that every next integration point
is in the previous cell or in a cell adjacent to the previous cell. (c) Same as (b),
but now every next integration point is in a face-adjacent cell. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

J. Wang et al.

Advances in Engineering Software 170 (2022) 103144

8

ribbons are rendered in ocher and blue, respectively. The base color is
modulated using Blinn-Phong shading [2,51], which assumes a point
light source at the world space position of the viewer (i.e., a head light).

The user can interactively change the color mapping—also sepa-
rately for each PSL type—and can in particular switch to a mapping of
some scalar quantity to color, as indicated in the last image in Fig. 1
using the scalar von Mises stress measure. The scalar values are issued
via the backend as per-vertex attributes. The standard color scheme we
use for the different principal stress directions (blue, green, ocher) is the

‘3-class Set2’ transfer function from ColorBrewer7. It is colorblind safe
and print friendly.

For enhanced depth perception, depth cues are added, i.e., with
increasing distance to the camera, fragments are increasingly desatu-
rated. A translucent simulation mesh outline hull can be rendered
together with the stress field data in order to hint at the extents of the
simulation domain.

6.3. 3D-TSV settings

3D-TSV provides a number of parameters that can be changed by the
user to control the generation of PSLs. These parameters include the
merging threshold ε and the number of levels M introduced in subsec-
tion 4.1 and subsection 4.2, respectively. Another set of parameters
enables a user-guided interaction with the PSL distribution, including
sliders for controlling the LoD resolution of major, medium and minor
PSLs. In addition, the user can select the two PSL types that are used to
generate ribbons. Via a drop-down menu, the user can select a scalar
stress measures that are mapped to PSL color using a transfer function.
The backend provides different stress components, such as the principal
stress amplitudes, von Mises stress, and the six Cartesian stress
components.

7. Results

In all of our experiments, PSL generation is performed on the CPU, i.
e., a workstation running Ubuntu 20.04 with an AMD Ryzen 9 3900X
@3.80GHz CPU and 32GB RAM. Rendering is done on an NVIDIA RTX
2070 SUPER GPU with 8GB of on-chip memory. The rendering times are
always below 10 milliseconds. The data sets we use in our experiments
are shown in Fig. 9. The stress fields are simulated by a finite element
method (FEM), using the solid objects under the shown load conditions.
Table 1 lists the numbers of simulation elements of each of the data sets,
the seed points that are used to generate the PSLs, the number of
generated PSLs, and the time required for PSL generation.

For the three models ’Bridge’, ’Cantilever’ and ’Rod’, we demon-
strate the improvements of the proposed seeding strategy over evenly
spaced streamline seeding. 3D-TSV is used to visually analyze the stress
fields in ’Femur’ and ’Bracket’. These two data sets that are frequently
seen in structural design and optimization [45]. Finally, we consider the
two mechanical parts ’Bearing’ and ’Parts1’ to demonstrate the appli-
cation of 3D-TSV to unstructured hexahedral simulation meshes.

Figs. 10 and 11 emphasize the improvements by the proposed
seeding strategy regarding the regularity of the extracted set of PSLs. 3D-
TSV generates a fairly uniform space-filling PSL structure, which, in
particular, maintains the symmetry of the stress field in ’Cantilever’.
Evenly spaced streamline seeding, on the other hand, generates a far less

Fig. 9. The solid objects used in this work and the applied external loads. Red and blue arrows indicate the loading positions and directions, black regions indicate
fixed boundaries. A finite-element-based elasticity analysis has been used to compute the stress field for each model under the predicted loads. The unstructured
hexahedral meshes ‘Parts’ and ’Bearing’ are courtesy of [25] and [10], respectively. All other meshes are Cartesian meshes. ‘Arched Bridge’ and ’Rod’ are courtesy of
[1] and [10], respectively. All simulated stress fields are made publicly available. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. PSLs in the ‘Cantilever’ stress field. PSLs by the proposed seeding
strategy (left) and evenly spaced streamline seeding (right).

Fig. 11. Top: PSLs showing the principal stress directions in ‘Rod’. Bottom:
PSLs in ‘Rod’ from a different view. Left: PSLs computed by 3D-TSV. Right: PSLs
computed via evenly spaced seeding as proposed by [16].

7 https://colorbrewer2.org/#type=qualitative&scheme=Set2&n=3

J. Wang et al.

https://colorbrewer2.org/#type=qualitative&tnqh_x0026;scheme=Set2&tnqh_x0026;n=3

Advances in Engineering Software 170 (2022) 103144

9

regular design which introduces severe visual clutter.
The visualization also highlights the importance of showing different

PSL types simultaneously. In the analyzed tensor field, the signs of the
eigenvalues along the major and minor PSLs are mostly positive and
negative, respectively. This means that the major PSLs are mainly under
tension and the minor PSLs mainly under compression. Thus, either of
both effects could be shown by visualizing one PSL type, but not both.

Fig. 12 (left) shows the space-filling PSLs in the stress field in the
interior of ’Bracket’. From the boundary condition in Fig. 9, we see that
the structure is mainly under tension. Thus, we choose to show the major
PSLs at the higher level of detail (L2) and the minor PSLs at lower level
L1 (see Fig. 12 (right)). The minor PSLs are shown via ribbons, with the
medium principal stress direction indicating the twist. This enables a
fine granular analysis of the major principal stress directions, and
simultaneously provide a coarse representation of the other principal
directions. A similar setting has been selected to visualize the stress
directions in ’Femur’ (see Fig. 1).

3D-TSV works with Cartesian meshes and deformed hexahedral
meshes, which are both frequently used in mechanical engineering ap-
plications. Here we use the stress fields due to external loads in the
interior of ‘Bearing’ and ‘Parts1’, to demonstrate the capability of 3D-
TSV. As shown in Fig. 9, especially in ‘Bearing’ the element sizes
change considerably over the 3D domain. The distribution of PSLs of
‘Bearing’ is shown in Fig. 13 (left), and the right image shows the
combination of major at the third level of detail (L3) and minor at L1,
where the minor PSLs are shown via ribbons. The full distribution of
PSLs of ‘Parts1’ can be seen in the Fig. 14 (left), on the right the minor
PSLs at L3 and major PSLs at L2 are shown simultaneously, where the
major PSLs are rendered via ribbons.

8. Conclusion and future work

In this paper, we have introduced 3D-TSV, a tool for visualizing the
principal stress directions in 3D solids under load. 3D-TSV makes use of
a novel seeding strategy, to generate a space-filling and evenly spaced
set of PSLs. By considering all three types of PSLs simultaneously in the
construction process, the regularity of the resulting PSL structure is
improved. By incorporating different merging thresholds for each PSL
type into the construction process, a consistent multi-resolution hier-
archy is formed, which can be utilized to show different PSL types with
different resolutions simultaneously. Efficient rendering options for
lines and ribbons on the GPU enable interactive analysis of large sets of
PSLs.

In the future, we intend to couple 3D-TSV with load simulation
processes, so that dynamic changes of the stress field can be instantly
monitored. Therefore, we will analyze whether the intrinsically iterative
parts of the algorithm can be parallelized on modern multi-threading
architectures. Furthermore, we are interested in using space-filling
evenly spaced seeding to guide the material growth in topology opti-
mization. Topology optimization seeks to distribute material in a way
that makes the object resistant to external loads. To automatically
generate support structures that follow the major stress directions and

Fig. 12. Stress field in ‘Bracket’. Left: PSLs at the finest level (according to Table 1). Right: major / minor PSLs at the third (L3) / first (L1) level of detail.

Table 1
Model and performance statistics. D0 is the length of the shortest dimension of
the bounding box of the stress field.

Data Set #Cells #Seeds ε/D0 M #PSLs Time (s)

Cantilever 250K 2K 1/5 1 85 0.4
Rod 536K 18K 1/5 1 174 2.1
Femur 696K 10K 1/18 3 823 9.0
Bracket 650K 9K 1/12 3 293 5.4
Bearing 189K 55K 1/18 3 1364 33.4
Parts1 253K 46K 1/20 3 1557 27.9

Fig. 13. Stress field in ‘Bearing’. Left: PSLs at the finest level (according to Table 1). Right: major / minor PSLs at the third (L3) / first (L1) level of detail. Ribbons are
along the minor PSLs and twist according to medium principal stress direction.

Fig. 14. Stress fields in ‘Parts1’. Left: PSLs at the finest level. Right: major /
minor PSLs at L2 / L3. Ribbons are along the major PSLs and twist according to
medium principal stress direction.

J. Wang et al.

Advances in Engineering Software 170 (2022) 103144

10

eventually can form a 3D grid-like structure, we aim at combining our
seeding strategy with the automatic growth process underlying topology
optimization.

CRediT authorship contribution statement

Junpeng Wang: Conceptualization, Methodology, Writing – review
& editing, Software. Christoph Neuhauser: Methodology, Writing –
review & editing, Software. Jun Wu: Conceptualization, Methodology.
Xifeng Gao: Conceptualization, Methodology. Rüdiger Westermann:
Conceptualization, Methodology, Writing – review & editing, Supervi-
sion, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work was supported in part by a grant from German Research
Foundation (DFG) under grant number WE 2754/10-1. We acknowledge
the help of Chunxiao Meng at Northwestern Polytechnical University
and Yingjian Liu at The University of Texas at Dallas in adapting 3D-TSV
to ANSYS and ABAQUS, respectively.

References

[1] Arora R, Jacobson A, Langlois TR, Huang Y, Mueller C, Matusik W, Shamir A,
Singh K, Levin DIW. Volumetric michell trusses for parametric design &
fabrication. Proceedings of the ACM symposium on computational fabrication.
2019. p. 1–13. https://doi.org/10.1145/3328939.3328999.

[2] Blinn JF. Models of light reflection for computer synthesized pictures. Proceedings
of the 4th annual conference on computer graphics and interactive Techniques.
New York, NY, USA: Association for Computing Machinery; 1977, ISBN
9781450373555. p. 192198. https://doi.org/10.1145/563858.563893.

[3] Bui HP, Tomar S, Courtecuisse H, Audette M, Cotin S, Bordas SPA. Controlling the
error on target motion through real-time mesh adaptation: applications to deep
brain stimulation. Int J Numer Method Biomed Eng 2018;34(5):e2958.

[4] Chen Y, Cohen J, Krolik J. Similarity-guided streamline placement with error
evaluation. IEEE Trans Vis Comput Graph 2007;13(6):1448–55. https://doi.org/
10.1109/TVCG.2007.70595.

[5] Daynes S, Feih S, Lu WF, Wei J. Optimisation of functionally graded lattice
structures using isostatic lines. Materials & Design 2017;127:215–23. https://doi.
org/10.1016/j.matdes.2017.04.082.

[6] Delmarcelle T, Hesselink L. Visualizing second-order tensor fields with
hyperstreamlines. IEEE Comput Graph Appl 1993;13(4):25–33. https://doi.org/
10.1109/38.219447.

[7] Delmarcelle T, Hesselink L. The topology of symmetric, second-order tensor fields.
Proceedings visualization’94. IEEE; 1994. p. 140–7. https://doi.org/10.1109/
VISUAL.1994.346326.

[8] Dick C, Georgii J, Burgkart R, Westermann R. Stress tensor field visualization for
implant planning in orthopedics. IEEE Trans Vis Comput Graph 2009;15(6):
1399–406. https://doi.org/10.1109/TVCG.2009.184.

[9] Gao X, Jakob W, Tarini M, Panozzo D. Robust hex-dominant mesh generation using
field-guided polyhedral agglomeration. ACM Transactions on Graphics (TOG)
2017;36(4):1–13. https://doi.org/10.1145/3072959.3073676.

[10] Gao X, Shen H, Panozzo D. Feature preserving octree-based hexahedral meshing.
Comput Graph Forum 2019;38(5):135–49. https://doi.org/10.1111/cgf.13795.

[11] Gerrits T, Rössl C, Theisel H. Glyphs for space-time jacobians of time-dependent
vector fields. Journal of WSCG 2017.

[12] Hergl C, Blecha C, Kretzschmar V, Raith F, Günther F, Stommel M, Jankowai J,
Hotz I, Nagel T, Scheuermann G. Visualization of tensor fields in mechanics.
Computer Graphics Forum. Wiley Online Library; 2021. https://doi.org/10.1111/
cgf.14209.

[13] Hesselink L, Levy Y, Lavin Y. The topology of symmetric, second-order 3d tensor
fields. IEEE Trans Vis Comput Graph 1997;3(1):1–11. https://doi.org/10.1109/
2945.582332.

[14] Hlawitschka M, Scheuermann G, Hamann B. Interactive glyph placement for tensor
fields. International symposium on visual computing. Springer; 2007. p. 331–40.
https://doi.org/10.1007/978-3-540-76858-6_33.

[15] Hotz I, Feng L, Hagen H, Hamann B, Joy K. Tensor field visualization using a metric
interpretation. Visualization and processing of tensor fields. Springer; 2006.
p. 269–81. https://doi.org/10.1007/3-540-31272-2_16.

[16] Jobard B, Lefer W. Creating evenly-spaced streamlines of arbitrary density.
Visualization in scientific computing 1997. Springer; 1997. p. 43–55. https://doi.
org/10.1007/978-3-7091-6876-9_5.

[17] Kanzler M, Ferstl F, Westermann R. Line density control in screen-space via
balanced line hierarchies. Computers & Graphics 2016;61:29–39. https://doi.org/
10.1016/j.cag.2016.08.001.

[18] Kindlmann G, Whalen S, Suarez RO, Golby AJ, Westin CF. Quantification of white
matter fiber orientation at tumor margins with diffusion tensor invariant gradients.
Proc. Intl. Soc. Mag. Reson. Med. vol. 16; 2008. p. 429.

[19] Kindlmann G. Superquadric tensor glyphs. Proceedings of the sixth joint
Eurographics-IEEE TCVG conference on visualization. 2004. p. 147–54. https://
doi.org/10.5555/2384225.2384248.

[20] Kindlmann G, Westin C-F. Diffusion tensor visualization with glyph packing. IEEE
Trans Vis Comput Graph 2006;12(5):1329–36. https://doi.org/10.1109/
TVCG.2006.134.

[21] Kratz A, Auer C, Stommel M, Hotz I. Visualization and analysis of second-order
tensors: Moving beyond the symmetric positive-definite case. Computer Graphics
Forum. vol. 32. Wiley Online Library; 2013. p. 49–74. https://doi.org/10.1111/
j.1467-8659.2012.03231.x.

[22] Kratz A, Schoeneich M, Zobel V, Burgeth B, Scheuermann G, Hotz I, et al. Tensor
visualization driven mechanical component design. 2014 IEEE Pacific
Visualization Symposium. IEEE; 2014. p. 145–52. https://doi.org/10.1109/
PacificVis.2014.51.

[23] Kwok T-H, Li Y, Chen Y. A structural topology design method based on principal
stress line. Comput-Aided Des 2016;80:19–31. https://doi.org/10.1016/j.
cad.2016.07.005.

[24] Lee E-J, El-Tawil S. FEMvrml: an interactive virtual environment for visualization
of finite element simulation results. Adv Eng Software 2008;39(9):737–42. https://
doi.org/10.1016/j.advengsoft.2007.10.006.

[25] Li Y, Liu Y, Xu W, Wang W, Guo B. All-hex meshing using singularity-restricted
field. ACM Transactions on Graphics (TOG) 2012;31(6):1–11. https://doi.org/
10.1145/2366145.2366196.

[26] Liu Z. A prototype framework for parallel visualization of large flow data. Adv Eng
Software 2019;130:14–23. https://doi.org/10.1016/j.advengsoft.2019.02.004.

[27] Mattausch O, Theußl T, Hauser H, Gröller E. Strategies for interactive exploration
of 3d flow using evenly-spaced illuminated streamlines. Proceedings of the 19th
spring conference on computer graphics. 2003. p. 213–22. https://doi.org/
10.1145/984952.984987.

[28] Oster T, Rössl C, Theisel H. Core lines in 3d second-order tensor fields. Comput
Graphics Forum 2018;37(3):327–37. https://doi.org/10.1111/cgf.13423.

[29] Palacios J, Yeh H, Wang W, Zhang Y, Laramee RS, Sharma R, et al. Feature surfaces
in symmetric tensor fields based on eigenvalue manifold. IEEE Trans Vis Comput
Graph 2015;22(3):1248–60. https://doi.org/10.1109/TVCG.2015.2484343.

[30] Patel M, Laidlaw DH. Visualization of 3d stress tensor fields using superquadric
glyphs on displacement streamlines. IEEE Trans Vis Comput Graph 2020. https://
doi.org/10.1109/TVCG.2020.2968911.

[31] Qu B, Roy L, Zhang Y, Zhang E. Mode surfaces of symmetric tensor fields:
topological analysis and seamless extraction. IEEE Trans Vis Comput Graph 2020;
27(2):583–92. https://doi.org/10.1109/TVCG.2020.3030431.

[32] Raith F, Blecha C, Nagel T, Parisio F, Kolditz O, Günther F, et al. Tensor field
visualization using fiber surfaces of invariant space. IEEE Trans Vis Comput Graph
2018;25(1):1122–31. https://doi.org/10.1109/TVCG.2018.2864846.

[33] Roy L, Kumar P, Zhang Y, Zhang E. Robust and fast extraction of 3d symmetric
tensor field topology. IEEE Trans Vis Comput Graph 2018;25(1):1102–11. https://
doi.org/10.1109/TVCG.2018.2864768.

[34] Schultz T, Kindlmann GL. Superquadric glyphs for symmetric second-order tensors.
IEEE Trans Vis Comput Graph 2010;16(6):1595–604. https://doi.org/10.1109/
TVCG.2010.199.

[35] Seltzer N, Kindlmann G. Glyphs for asymmetric second-order 2d tensors. Computer
Graphics Forum. vol. 35. Wiley Online Library; 2016. p. 141–50. https://doi.org/
10.1111/cgf.12890.

[36] Shepard D. A two-dimensional interpolation function for irregularly-spaced data.
Proceedings of the 1968 23rd ACM national conference. 1968. p. 517–24. https://
doi.org/10.1145/800186.810616.

[37] Stoll C, Gumhold S, Seidel H. Visualization with stylized line primitives. VIS 05.
IEEE visualization, 2005.. 2005. p. 695–702. https://doi.org/10.1109/
VISUAL.2005.1532859.

[38] Tam K-MM, Mueller CT. Stress line generation for structurally performative
architectural design. 35th annual conference of the association for computer aided
design in architecture. Cincinnati, Ohio, USA: ACADIA; 2015. doi:1721.1/125063.

[39] Turk G, Banks D. Image-guided streamline placement. Proceedings of the 23rd
annual conference on computer graphics and interactive techniques. New York,
NY, USA: Association for Computing Machinery; 1996, ISBN 0897917464.
p. 453460. https://doi.org/10.1145/237170.237285.

[40] Ueng S-K, Sikorski C, Ma K-L. Efficient streamline, streamribbon, and streamtube
constructions on unstructured grids. IEEE Trans Vis Comput Graph 1996;2(2):
100110. https://doi.org/10.1109/2945.506222.

[41] Vilanova Bartroli A, Berenschot G, Van Pul C. DTI visualization with
streamsurfaces and evenly-spaced volume seeding. Proceedings of the Joint
Eurographics-IEEE TCVG symposium on visualization (VisSym04). vol. 19; 2004.
p. 21.

[42] VOLPE G.. Streamlines and streamribbons in aerodynamics. 10.2514/6.1989-140.
[43] Wang J, Wu J, Westermann R. A globally conforming lattice structure for 2d stress

tensor visualization. Computer graphics forum. vol. 39. Wiley Online Library;
2020. p. 417–27. https://doi.org/10.1111/cgf.13991.

J. Wang et al.

https://doi.org/10.1145/3328939.3328999
https://doi.org/10.1145/563858.563893
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0003
https://doi.org/10.1109/TVCG.2007.70595
https://doi.org/10.1109/TVCG.2007.70595
https://doi.org/10.1016/j.matdes.2017.04.082
https://doi.org/10.1016/j.matdes.2017.04.082
https://doi.org/10.1109/38.219447
https://doi.org/10.1109/38.219447
https://doi.org/10.1109/VISUAL.1994.346326
https://doi.org/10.1109/VISUAL.1994.346326
https://doi.org/10.1109/TVCG.2009.184
https://doi.org/10.1145/3072959.3073676
https://doi.org/10.1111/cgf.13795
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0011
https://doi.org/10.1111/cgf.14209
https://doi.org/10.1111/cgf.14209
https://doi.org/10.1109/2945.582332
https://doi.org/10.1109/2945.582332
https://doi.org/10.1007/978-3-540-76858-6_33
https://doi.org/10.1007/3-540-31272-2_16
https://doi.org/10.1007/978-3-7091-6876-9_5
https://doi.org/10.1007/978-3-7091-6876-9_5
https://doi.org/10.1016/j.cag.2016.08.001
https://doi.org/10.1016/j.cag.2016.08.001
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0018
https://doi.org/10.5555/2384225.2384248
https://doi.org/10.5555/2384225.2384248
https://doi.org/10.1109/TVCG.2006.134
https://doi.org/10.1109/TVCG.2006.134
https://doi.org/10.1111/j.1467-8659.2012.03231.x
https://doi.org/10.1111/j.1467-8659.2012.03231.x
https://doi.org/10.1109/PacificVis.2014.51
https://doi.org/10.1109/PacificVis.2014.51
https://doi.org/10.1016/j.cad.2016.07.005
https://doi.org/10.1016/j.cad.2016.07.005
https://doi.org/10.1016/j.advengsoft.2007.10.006
https://doi.org/10.1016/j.advengsoft.2007.10.006
https://doi.org/10.1145/2366145.2366196
https://doi.org/10.1145/2366145.2366196
https://doi.org/10.1016/j.advengsoft.2019.02.004
https://doi.org/10.1145/984952.984987
https://doi.org/10.1145/984952.984987
https://doi.org/10.1111/cgf.13423
https://doi.org/10.1109/TVCG.2015.2484343
https://doi.org/10.1109/TVCG.2020.2968911
https://doi.org/10.1109/TVCG.2020.2968911
https://doi.org/10.1109/TVCG.2020.3030431
https://doi.org/10.1109/TVCG.2018.2864846
https://doi.org/10.1109/TVCG.2018.2864768
https://doi.org/10.1109/TVCG.2018.2864768
https://doi.org/10.1109/TVCG.2010.199
https://doi.org/10.1109/TVCG.2010.199
https://doi.org/10.1111/cgf.12890
https://doi.org/10.1111/cgf.12890
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/800186.810616
https://doi.org/10.1109/VISUAL.2005.1532859
https://doi.org/10.1109/VISUAL.2005.1532859
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0038
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0038
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0038
https://doi.org/10.1145/237170.237285
https://doi.org/10.1109/2945.506222
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00055-2/sbref0041
https://doi.org/10.1111/cgf.13991

Advances in Engineering Software 170 (2022) 103144

11

[44] Weng W-C. Web-based post-processing visualization system for finite element
analysis. Adv Eng Software 2011;42(6):398–407. https://doi.org/10.1016/j.
advengsoft.2011.03.003.

[45] Wu J, Aage N, Westermann R, Sigmund O. Infill optimization for additive
manufacturing – approaching bone-like porous structures. IEEE Trans Vis Comput
Graph 2018;24(2):1127–40. https://doi.org/10.1109/TVCG.2017.2655523.

[46] Wu J, Wang W, Gao X. Design and optimization of conforming lattice structures.
IEEE Trans Vis Comput Graph 2021;27(1):43–56. https://doi.org/10.1109/
TVCG.2019.2938946.

[47] Ye X, Kao D, Pang A. Strategy for seeding 3d streamlines. VIS 05. IEEE
visualization, 2005. IEEE; 2005. p. 471–8. https://doi.org/10.1109/
VISUAL.2005.1532831.

[48] Yu H, Wang C, Shene C-K, Chen JH. Hierarchical streamline bundles. IEEE Trans
Vis Comput Graph 2011;18(8):1353–67. https://doi.org/10.1109/
TVCG.2011.155.

[49] Zheng X, Pang A. Topological lines in 3d tensor fields. IEEE visualization 2004.
IEEE; 2004. p. 313–20. https://doi.org/10.1109/VISUAL.2004.105.

[50] Zobel V, Scheuermann G. Extremal curves and surfaces in symmetric tensor fields.
Vis Comput 2018;34(10):1427–42. https://doi.org/10.1007/s00371-017-1450-1.

[51] Zöckler M, Stalling D, Hege H-C. Interactive visualization of 3d-vector fields using
illuminated stream lines. Proceedings of the 7th conference on visualization ’96.
Washington, DC, USA: IEEE Computer Society Press; 1996, ISBN
0897918649107ff.. https://doi.org/10.1109/VISUAL.1996.567777.

J. Wang et al.

https://doi.org/10.1016/j.advengsoft.2011.03.003
https://doi.org/10.1016/j.advengsoft.2011.03.003
https://doi.org/10.1109/TVCG.2017.2655523
https://doi.org/10.1109/TVCG.2019.2938946
https://doi.org/10.1109/TVCG.2019.2938946
https://doi.org/10.1109/VISUAL.2005.1532831
https://doi.org/10.1109/VISUAL.2005.1532831
https://doi.org/10.1109/TVCG.2011.155
https://doi.org/10.1109/TVCG.2011.155
https://doi.org/10.1109/VISUAL.2004.105
https://doi.org/10.1007/s00371-017-1450-1
https://doi.org/10.1109/VISUAL.1996.567777

	3D-TSV: The 3D trajectory-based stress visualizer
	1 Introduction
	2 Contribution
	3 Related work
	3.1 Stress Tensor Field Visualization
	3.2 Streamline Seeding
	3.3 Streamline Visualization
	3.4 Hexahedral Meshing

	4 Stress tensor directions
	5 PSL Seeding and level of detail
	5.1 Evenly spaced PSL seeding
	5.2 PSL LoD Structure
	5.3 Ribbon-based stress visualization

	6 System implementation
	6.1 Numerical PSL integration
	6.2 Rendering
	6.3 3D-TSV settings

	7 Results
	8 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References

