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In large scale fermentors the cultivated cells are exposed to dynamic changes in the nutrient concentrations due
to imperfect mixing. Based on the characterization of these nutrient gradients in space and time, a rational scale
down design can be obtained. This study focuses on the combined gradients of dissolved sugar and oxygen
concentrations. Based on a recent computational fluid dynamics (CFD) study, firstly a scale-down design was
developed. From intracellular metabolite measurements during these scale-down experiments, the metabolic
behavior of the cells under highly dynamic conditions was revealed. Under the combined influence of oscillating
glucose and oxygen concentrations, the penicillin production declined to 50 % of the value under steady state
conditions. This decline was similar as observed during glucose oscillations alone. The influence of oxygen os-
cillations on the levels of the majority of the intracellular metabolites analyzed was negligible, although these
metabolites were strongly affected by the varying oxygen levels under solely oxygen oscillations. Additionally, a
metabolic structured kinetic model was developed and validated with data from glucose and oxygen oscillation
experiments. This model can be coupled to CFD simulations to obtain an accurate prediction of the performance
of industrial strains in space and time in large industrial scale bioreactors.

example, according to a recent computational fluid dynamics (CFD)
study of a 300 L multi impeller stirred bioreactor applied for Coryne-

1. Introduction

To predict scale up effects on the behavior of industrial strains and
further improve large scale fermentations, the complexity of heteroge-
neous concentration profiles in large scale tanks has to be considered.
Large scale tanks impose substrate, pH, shear and dissolved oxygen
gradients on the microorganisms cultivated due to imperfect mixing. For

bacterium, significant substrate limitation took place in approximately
3/4 of the reactor volume, at locations further from the feeding port,
which was located at the top of the reactor, while oxygen limitation took
place in ~1/4 of the reactor volume, in zones further away from the
sparger, which was located at the bottom of the tank [1]. The cells

Abbreviations: DO, Dissolved oxygen (concentration); CFD, Computational fluid dynamics; MFC, Mass flow controller; qi, biomass specific production/con-
sumption rates of compound i (e.g. Oxygen ‘Oy’; Carbon Dioxide ‘CO,’, Sugar ‘s’, Penicillin ‘p’, Biomass ‘x’); Ci, concentration of compound i; Xi, intracellular
metabolite pool sizegrowth rate; AA, Amino acid; Gly, glycolysis intermediates; Sto, storage compounds; EC, energy charge; TCA, tricarboxylic acid cycle; PPP,
Pentose phosphate pathway; PenG, Penicillin-G; ACVS, &-(L-a-aminoadipoyl)-L-cysteinyl-D-valine syntetase; IPNS, isopenicillin-N synthetase; ACV, §-(L-a-amino-
adipoyl)-L-cysteinyl-D-valine; IPN, isopenicillin N; PAA, Phenylacetic Acid; Ala, Alanine; Gly, Glycine; Val, Valine; Leu, Leucine; Ile, Isoleucine; Pro, Proline; Ser,
Serine; Thr, Threonine; Meth, Methionine; Asp, Aspartic acid; Phe, Phenylalanine; Glu., Glutamine.; Lys, Lysine; Asn, Asparagine; Gln, Glutamine; Tyr, Tyrosine; His,
Histidine; Cys, Cysteine; Trp, Triptophan; AAA, L- a -amino adipate; Tre, Trehalose; Aratl, Arabitol; Ertl, Erythritol; Mtl, Mannitol; Glc, glucose, G6P, Glucose-6-
phosphate; F6P, Fructose-6-phosphate; M6P, Mannose-6-phosphate; FBP, Fructose-1,6-bisphosphate; T6P, Trehalose-6-phosphate; 2PG, 2-phosphoglycerate; 3PG, 3-
phosphoglycerate; 6PG, 6-Phosphogluconate; PEP, phosphoenolpyruvate; G3P or GAP, Glyceraldehyde 3-phosphate; DHAP, Dihydroxyacetone phosphate; Pyr,
pyruvate, Ac-CoA, acetyl coenzyme A; aKG, a-Ketoglutarate; Succ, succinate; Fum, fumarate; Mal, malate; Cit, citrate; iCit, isocitrate; Rib5P, Ribose-5-phosphate;
Ribu5P, ribulose 5-phosphate; E4P, Erythrose 4-phosphate; Xyl5P, xylose 5-phosphate; S7P, Sedoheptulose-7-phosphate; G1P, Glucose-1-phosphate; M1P, Mannitol-
1-phosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate; NAD™, NADH nicotinamide adenine dinucleotide,
NADP*, NADPH Nicotinamide adenine dinucleotide phosphate.
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circulating in the reactor thus experienced these environmental varia-
tions as fluctuations in the levels of substrate and oxygen. Such fluctu-
ations influence the behavior and metabolic responses of the cells [2-5]
and therefore the productivity of the fermentation.

The heterogeneities in large scale fermentors can be described via an
Euler-Lagrange computational fluid dynamics (CFD) approach, resulting
in cellular lifelines, which describe the experience of the individual cells
regarding nutrient concentration fluctuations in time [6]. Cellular life-
lines can be translated to a representative scale-down design, aiming to
mimic the gradients taking place in large-scale tanks in lab-scale fer-
mentors, to enable precise monitoring of the metabolic state of the cells
under these conditions on a seconds scale. When translating lifelines to a
scale down design, metabolic regimes have to be defined first, which are
then used to obtain the per-regime residence time distributions and the
regime transition patterns, representing the sequence of the regime
transitions and their frequencies [6],[1].

To accurately predict the cellular behavior in industrial scale fer-
mentors, both the hydrodynamic conditions in the tank as well as the
biological responses to the resulting local concentration changes have to
be taken into account [7]. Modelling approaches are thus relying on
coupling CFD and biological reaction kinetic models. Lapin et al. have,
for the first time, reported modelling approaches where a structured
kinetic model was linked to CFD predictions of the dynamically
changing extracellular nutrient concentrations. This was achieved by
the Euler-Lagrange modelling approach, where the extracellular envi-
ronment is described as a continuous phase and the cells are regarded as
discrete entities [8]. While the hydrodynamics and mixing obtained by
CFD models rely on the tank structure, its geometry and the operating
conditions, biological reaction kinetic models are based on the cellular
behavior, as quantified in scale-down studies using precise omics mea-
surements [9]. Although the most important changes during dynamic
conditions rely on metabolite quantifications [9], because those almost
immediately reflect the seconds-scale changes in the environment,
monitoring the transcriptome or proteome will lead to understanding
the biological responses on longer time scales as well. Based on the
understanding of biological mechanisms from the scale-down studies,
the model structure can be established.

For the construction of biological reaction-kinetic models, several
requirements have to be met: these models have to be relatively simple
to limit the computational costs, nevertheless, they need to represent the
relevant cellular kinetic responses to changes in environmental condi-
tions on a seconds to days scale [10]. A modelling approach in between
small black box and large genome-scale models are structured metabolic
models [11]. In such models the cellular makeup and some basic control
mechanisms are considered. To reduce the complexity of these models
[12], the metabolic network is simplified and essential metabolites are
lumped into pools. Therefore, several parameters of such models might
not have a direct biological meaning, and their values are determined
via computational tools such as parameter estimation instead of in vivo
or in vitro experiments.

Although in large scale fermentors, fluctuations in the environmental
conditions, regarding nutrients, dissolved oxygen, pH, temperature or
shear stress might occur simultaneously [13], most scale-down studies
have focused on the separate effects of individual nutrient gradients on
different microorganisms. The majority of the computational studies
related to the hydrodynamic characterization of large scale reactors
focus on the influence of sugar gradients [6,14,15], and a minority on
oxygen gradients [16-18]. Regarding scale down experiments, also in-
dividual glucose [3,19,20], or oxygen fluctuations [5,21,22] have been
considered most commonly. Only a few hydrodynamic studies [1,23]
and a few recent experimental works [24,25] considered multiple gra-
dients. Combining multiple gradients in scale down studies can bring a
closer insight into the actual conditions in industrial fermentors.

In a previous Euler-Lagrange CFD study of Penicillium chrysogenum
fermentations in a 54 m® bioreactor only glucose gradients were taken
into account [6]. Experimental scale-down studies on the effects of
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glucose gradients in P. chrysogenum have shown that the penicillin
production declines severely during fluctuating glucose concentrations
[19]. It was investigated whether decreased levels of enzymes of the
penicillin biosynthetic pathway were responsible for the decline in
production, because it is well known that too high levels of glucose
repress expression of the penicillin gene cluster [26]. Although the
concentration of one of the main enzymes involved in the pathway,
isopenicillin-N synthetase (IPNS) declined, the substrate for this
enzyme, §-(L-a-aminoadipoyl)-L-cysteinyl-D-valine ACV) did not accu-
mulate, which would indicate that the capacity of IPNS was not limiting.
Next, also the concentrations of the precursors for ACV synthesis were
measured. However, finally it was hypothesized that neither the
decrease of the IPNS level nor the supply of precursors but rather the
fluctuations in the ATP availability for the synthesis of ACV was the most
plausible cause for the reduced penicillin production [27]. Next to
proteome and metabolome measurements, also the transcriptome of the
cells was monitored during oscillating glucose levels on different time
scales and in two different scale-down systems [28]. This study revealed
that the transcript levels of the pathway enzymes changed due to the
fluctuations, however, a uniform trend could not be observed in the time
frame of a fermentation, neither as a general effect of the fluctuations at
different time-scales [28].

The influence of oscillating dissolved oxygen levels was investigated
previously as well [5,21]. These studies showed that during oscillating
oxygen concentrations, the penicillin production declines to values
lower than observed at a dissolved oxygen concentration (DO) repre-
senting the average of the cycle. While during a steady low DO, a decline
in IPNS activity was observed based on metabolite measurements
involved in the penicillin pathway, this observation could not be
confirmed during oscillating oxygen conditions. Similarly, the precursor
amino acid concentrations did not reason the decline in the production.
Therefore, the severe decline in the penicillin production under fluctu-
ating DO levels might be due to fluctuations in ATP levels [5].

In this study we focus on a scale down design to capture the com-
bined effects of glucose and oxygen gradients in Penicillium chrysogenum
fermentations. As a baseline for the scale down, lifelines in terms of
glucose and dissolved oxygen concentrations were used, which were
obtained via Euler-Lagrange CFD simulations of an industrial stirred
bioreactor of 54 m® [Peng Wei, manuscript under preparation].

Within our scale down experiments, for the first time we quantified
metabolites of the central metabolism, next to nucleotide levels and the
intracellular redox state, during fluctuating DO conditions. Similarly, we
evaluated the changes in the levels of these metabolites during the
combined glucose and oxygen oscillation experiments, carried out in
continuously operated bioreactors, in order to understand the metabolic
responses.

Next to the experimental scale down studies related to glucose and
oxygen gradients, a mathematical model was developed describing the
metabolic responses of the cells to these dynamic conditions in terms of
combined glucose and oxygen fluctuations. This biological kinetic
model could lead to improved predictions of growth and penicillin
production in large scale systems under dynamic conditions and when
coupled to CFD modelling approaches, will provide leads for further
improvements of large-scale penicillin production.

2. Materials and methods
2.1. Strain, culture media, and fermentor setup

A high-yielding penicillin producing strain (DS17690) was used,
kindly donated by Centrient Pharmaceuticals (Delft, The Netherlands)
as spores grown on rice grains. Inoculation was carried out as described
previously, using spores grown on 10.0 g of rice grains. The media
compositions for the different cultivations have been described previ-
ously [5].

The combined glucose and oxygen oscillation experiments were
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carried out in a 7 L stirred tank fermentor with 4 L working volume
(Applikon, Delft, The Netherlands). The reactors were stirred at 365 rpm
with a magnetically driven 6-bladed Rushton impeller with a diameter
of 85 mm. In the experiments, 0.3 bar overpressure was applied and a
gas flow rate of 2 L min™ was used. The inlet gas flow was controlled by
mass flow controllers (Brooks instrument B.V., The Netherlands) and
before entering the reactor it was passed through a sterile membrane
filter (Millipore 0.2 pm). The pH, T and DO were continuously measured
(pH sensor Mettler Toledo 405-DPAS-SC-K8S) and controlled similarly
as described in [5]. The pH was measured with a Mettler Toledo
405-DPAS-SC-K8S sensor and controlled at 6.50 + 0.05. For the DO
measurements two conventional Clark electrodes (AppliSens, Applikon
Biotechnology) were used. The reactor setup, antifoam addition (Basil-
don Chemical Co. Ltd, UK, Foam-clear EscaFerm S), and data logging
(DCU3, Sartorius, Germany) resembled previously reported methods
[5].

2.2. Bioreactor cultivations

Each chemostat cultivation was preceded by a batch phase. After
inoculation of the reactor with spores, the batch phase lasted approxi-
mately 60 h. During the batch phase, when the DO dropped close to
0.082 mM, the agitation and airflow (pressured air) were increased
gradually, until a final stirrer speed of 365 rpm and gas flow of 2 L min™!
were reached. Antifoam addition and pH control were started only when
the spores had germinated, at approximately 24 h.

The chemostat phase was started when the DO increased, the pH
increased and the carbon dioxide molar fraction in the off-gas decreased
indicating that the glucose was depleted. A continuous medium inflow
rate of 0.2 L h™* was used and the weight of the fermentor was controlled
at 4000 + 10 g through an automated, discontinuously operated effluent
removal valve at the bottom of the reactor, resulting in a dilution rate of
0.050 h'l. The same gas flow rate and stirrer speed were used as during
the last phase of the batch cultivation, 365 rpm and 2 L minl. Addi-
tionally, the overpressure in the reactor was increased to 0.3 bar. The DO
in the fermentor was always above 0.163 mM by supplying air, and the
DO was not controlled.

The oscillation phase was started after approximately 100 h of che-
mostat operation. Oscillation cycles of 360 s were repetitively applied
for a total duration of approximately 100 h, where both the DO in the
fermentor and the glucose supply were varied. The glucose and oxygen
supply applied was determined such that the obtained regime residence
time fractions in the lab scale reactor matched those of the large scale
reactor, predicted by CFD simulations (Supplementary material B:
experimental design). An MFCS script was used to control the feed and
the gas composition in a cyclic manner. Thereby the medium feed was
turned on for 36 s at a rate of 2 L h™! and subsequently turned off for 324
s. The DO control was based on changes within the aeration gas
composition, which was a mixture of air and Nj. The first mass flow
controller supplied air, and the supplied air flow rate was controlled
based on the measured DO in the reactor. This gas flow was mixed with a
steady Ny flow at lower pressures before entering to the second mass
flow controller, which provided the desired, constant total flow of the
air-N; gas mixture. At the time the feed was turned on, the setpoint for
the DO control was changed to 0.03 mM to initiate a quick decline of the
DO. When the DO became below a threshold value of 0.046 mM, the
setpoint was changed to 0.272 mM to achieve a quick increase. Finally,
the setpoint was changed another time to 0.109 mM after a DO of 0.068
mM was exceeded. Thereby, DO oscillations were achieved between
0 and 0.21 mmol L, whereby the DO dropped below 0.03 mM for a
period of 16 s in each cycle. After 100 h of oscillations the final oscil-
lation cycles were sampled in ~40 s time intervals for intracellular
metabolite analysis. Finally, after the oscillation phase, the reactor was
switched back to chemostat mode, while the DO was restored to the
original, steady non-limiting values, for a period of another 50 h. The
combined oscillation experiments were performed in duplicate, using
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identical set-ups and operating conditions.

The DO step and oscillation experiments were performed as
described previously [5]. Briefly, in the 0.013 mM or 0.009 mM DO step
experiments, firstly a steady state was reached at non- limiting DO levels
in ~100 h, after which the DO was reduced to 0.013 mM or 0.009 mM
for ~100 h in the two different step experiments.During the DO oscil-
lation experiments, after an initial steady state of ~100 h at non-limiting
DO levels in oscillation experiment I, a DO oscillation phase was initi-
ated: the DO was fluctuating between limiting and non-limiting values
in cycles of 112 and 120 s duration for the oscillation experiments I and
II, respectively. In oscillation experiment II, the cells were exposed to
higher DO variations and to longer periods of near-zero DO levels. The
DO fluctuated between 0 and 0.127 mmol L in oscillation I and be-
tween 0 and 0.178 mmol L in oscillation II, and the DO fell below
0.003 mmol L during 11 s in oscillation I, while in oscillation II, during
23 s [5]. The average DO in a cycle and the cycle time were similar for
the oscillation experiments A and B, with an average DO of 0.06 mmol
L'! after correction with the probe delay.

2.3. Sampling and analytical procedures

Sampling and analysis for biomass dry weight, total organic carbon,
penicillin G and phenylacetic acid quantification by HPLC analysis was
carried out as described elsewhere [5]. Similarly, the procedure of rapid
sampling for intra and extracellular metabolite quantification and the
analytical procedures for HPLC, TOC and microscopy has been described
previously [5].

The amino acids were analysed by GCMS, as described by de Jonge
et al. [19]. During most experiments, the glycolysis, PPP and TCA cycle
intermediates glucose, G6P, F6P, M6P, FBP, T6P, 2PG, 3PG, 6PG, PEP,
G3P, DHAP, aKG, Succ, Fum, Mal, Cit, iCit, and and Rib5P, Ribu5P, E4P,
Xyl5P and S7P were determined using GCMS [29]. The intracellular
storage compounds (Tre, Mtl, Ertl) and the extracellular glucose and
trehalose were analysed similarly [29]. During the DO step down
experiment to 0.013 mmol L and the oscillation experiment II, FBP,
PEP, Succ, Pyr, G1P, 6PG, M6P, T6P, G3P, M1P were determined by
LCMS according to van Dam et al. [30]. In the DO step 0.009 mmol L1
and the oscillation experiment I, the metabolites FBP, M1P, PEP were
analysed with the same LCMS methodology as the nucleotides (see
below).

Identification and quantification of nucleotides was performed by
LCMS, using an ACQUITY UPLC chromatography system (Waters, UK)
coupled to a high-resolution Orbitrap mass spectrometer (Q-Exactive
Focus, Thermo Fisher Scientific, Germany). For chromatographic sepa-
ration, a reverse phase (Kinetex C18 column 2.1 x 150 mm, 1.7 pm;
Phenomenex, Torrance, CA, USA) [31] was used at room temperature
using 50 mM ammonium acetate pH 5.0 as mobile phase A, and 90 %
acetonitrile plus 10 % 50 mM ammonium acetate pH 5.0 acid as mobile
phase B (v/v). A flow of 250 pL/min was maintained over a solvent
composition from 50 % to 75 % B over 4 min, before equilibrating back
to the starting conditions [32]. The mass spectrometer was operated in
negative ionisation mode (—2.8 kV), where a full scan from 250 to 1000
m/z at a resolution of 70 K, an AGC target of 10° and by setting the max
injection time to auto. The 13 C metabolite extract, and synthetic
standards from each metabolite were used to confirm identify of the
compounds. Raw mass spectrometric data were processed by using
XCalibur 4.1 (Thermo) and by Matlab 2020b, where the summed peak
intensities of the individual metabolite compounds were expressed as
intensity ratios to the corresponding internal standard peaks. Quantifi-
cation was based on an external calibration using synthetic standards
[32,33]. During the 0.013 mM DO step and oscillation experiment II, the
nucleotides were determined according to Seifar et al. [32].

2.4. Calculations

The reversible reaction catalysed by the enzyme mannitol-1-
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phosphate-5- dehydrogenase reaction was used to obtain the cytosolic
NADH/NAD™ ratio, as presented in Eq. (1) [34]. This reaction and the
involved metabolites were assumed to be in equilibrium, as the enzyme
catalysing this reaction is highly reversible.

NADH K., eMIP
NAD"  H* e F6P

(€8]

The energy charge (EC) of the cells was also assessed during the
fermentations, and was calculated by the following equation

ATP + 0.5ADP

EC=—mmMmMMm————
ATP + ADP + AMP

(2)

2.5. Pool model development

To characterize large scale fermentors where both glucose and oxy-
gen gradients take place, a metabolic model was built which reflects the
cellular responses to the fluctuating oxygen and sugar concentrations.
This model is aimed to be linked with a CFD model predicting the hy-
drodynamic behavior of the fermentors. These combined models could
result in a detailed prediction of the performance of large scale fer-
mentors, where the inhomogeneities resulting from the imperfect mix-
ing are taken into account.

The model was based on a metabolic structured model of Tang et al.
[11], with major modification of the structure, stoichiometry and ki-
netics taking place. These modifications were necessary in order to
incorporate the influence of O next to the changes in the feed rate and
thereby the dilution rate. Most importantly, the NAD" and IPN pool was
incorporated in the model, while the PAA and AA pools were eliminated.
Five main intracellular metabolite pools were defined, such as the
glycolytic intermediates pool, storage pool, IPN, ATP, NAD+ pools. In
addition to intracellular pools, extracellular pools, such as residual
glucose, penicillin, biomass concentrations were considered. Next to
this, variation in the enzyme levels were also taken into account for the
enzymes responsible for storage release and penicillin production. The
model captures sugar uptake and phosphorylation, which phosphory-
lated sugar might partition towards biomass growth, penicillin forma-
tion or storage compound synthesis, or are burned to CO5 to form energy
(ATP). The glycolysis and TCA cycle reaction was taken into account
forming NADH and ATP. Next to glucose, O, is taken up by the cells and
via the oxydative phosporylation, and NAD™" is formed from the NADH
cofactors. Most reactions in the model require the NAD" and/or ATP
cofactor.

The detailed structure of this model, including intracellular metab-
olite pools, extracellular concentrations, variable enzyme levels, and the
reactions, stoichiometry, kinetics and the estimated parameters is pre-
sented in the Appendix. The model was fitted to the experimental
datasets of both intercellular and extracellular pools of the previously
published ramp and steady state experiments, in which the dilution rate
was varied [11,35], a sugar oscillation experiment [19] and the oxygen
step experiments to 0.013 DO and 0.009 mmol L! DO [5]. In the ramp
experiment, the dilution rate of a glucose limited chemostat was grad-
ually decreased from 0.5 to 0.05 h'!, while in the steady state experi-
ments, the dilution rate was ranging between 0.015 and 0.12 h™! [11,
35].

2.6. Model solvers, simulations and parameter estimation

The reaction rates involving kinetic terms and mass balances in the
form of a system of differential equations describing the changes in
extra- and intracellular metabolite concentrations in time was set up and
solved in Matlab 2018b. The parameter estimation and simulations were
carried out by the AMIGO2 toolbox with Matlab [36]. The system of
differential equations was used with ‘cvodes’ solver. For the parameter
fitting, the enhanced scatter search (eSS) algorithm was used [37,38].
The cost function to be minimized for parameter fitting was defined by a

103

Process Biochemistry 124 (2023) 100-112

log-likelihood function [39,40], which results in parameter values that
give the highest probability to the measured data [41]. The details of the
solver, experimental data processing, model equations and estimated
values of the parameters are presented in the Appendix.

2.7. Statistical analysis of the fermentation dataset

All fermentation conditions were performed in two independent
reactor runs (with the only exception of the 0.025 mmol L' DO step
experiment). The standard deviations of the measurements were calcu-
lated (as presented in Figs. 1 and 2). In Figs. 3-5, the average values and
standard deviations of the measurements of the duplicate reactor runs
are calculated. For the modelling work, averages were created of the
duplicate reactor runs and duplicate (or triplicate) measurements of the
variables, allowing for better comparison between the different experi-
mental conditions (Figs. 6-12). The significance levels within the
metabolite group changes were calculated with a two-tailed paired T-
test between the average measurements of the two fermentations at
different sampling points, with p = 0.05. For the model evaluation, we
have calculated the relative deviation of the model prediction value
from the measurement points in each experiment at each time point. In
order to characterize the average deviations between metabolite groups
or experiments, the average of the relative deviations were taken.

3. Results and discussion

3.1. Dissolved oxygen and extracellular glucose concentrations- combined
sugar and oxygen oscillations

During the experiments, a glucose limited chemostat phase was
maintained for approximately 100 h, whereby a steady state was ach-
ieved at non-limiting values (>0.16 mmol LY. After the chemostat
phase, the oscillation phase was initiated and the fluctuations were
maintained for approximately 120 h. Afterwards, the DO was increased
back to non-limiting values for approximately 50 h, where again a
steady state was achieved in terms of oxygen uptake and carbon dioxide
production rates.

Fig. 1a shows the DO profile, measured by duplicate sensors in
duplicate fermentors on a seconds scale, after correction for the probe
delay (calculations shown in [5]). The total time the cells experienced
complete oxygen starvation (DO level below to 0.003 mM), was 16 s. In
the rest of the cycle, non-limiting DO values (~0.1 mM) were aimed for.
At 0.1 mM, no oxygen limitation is expected [5,42]. The overshoot in
oxygen concentration to 0.2 mM, at 120 s in the cycle is due to the
delayed response of the DO controller. This is not expected to influence
the process, because no metabolic differences are expected between a
DO of 0.1 and 0.21 mM [5].

Fig. 1b shows the glucose profile during the initial steady states (at
94 h and 105 h in the duplicate experiments) and during the cycle at the
end of the fluctuation phase (at 212 and 232 h in the fermentation in the
duplicate experiments). During the initial steady state phase, an extra-
cellular glucose concentration of approximately 30-50 pM was
observed. In a cycle, the glucose concentration increased to maximum of
around 0.25 mM in 36 s, and subsequently, it gradually decreased to the
levels observed during the initial steady states between 36 and
220 — 260 s after the start of the cycle. Between 260 and 360 s, the
glucose concentration remained stable at values between 0.03 and
0.05 mM.

The maximum glucose concentration reached in our combined sugar
and oxygen oscillation experiments was around 0.25 mM, observed after
36s, at the moment when the feed period was terminated. This
maximum concentration was slightly lower than the concentration of
0.35 mM reported in the study of de Jonge et al., who applied an
identical glucose oscillation regime [19]. This might have been caused
by the longer mixing time in the reactor during our experiments, due to
the slower mixing at a stirrer speed of 365 rpm compared to the study of
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Jonge et al., where 500 rpm was used [19], in a for the rest identical
bioreactor. Consequently, a homogenous concentration profile might
only take place in the reactor a few seconds after the glucose addition
was terminated at 36 s in the cycle. Since the samples were taken less
frequently compared to the study of de Jonge, the maximum glucose
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concentration might not have been identified. The maximum concen-
tration measured at the sampling port at 36 s might therefore not have
been a precise representative of the maximum glucose concentration in
the reactor in our experiments.

During the initial steady state conditions, the residual glucose
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concentration was slightly higher than in the study of Jonge et al. [19],
and Wang et al. [28]. Similarly, the glucose concentration did not fall
back to zero at the end of the cycle, but remained stable around
0.05 mM,, in contrast to previous studies [19,28]. This could indicate
that conversion of extracellular trehalose to glucose during the sampling
procedure was not completely avoided [19]. Since under similar oper-
ational conditions the glucose levels are expected to match, the mea-
surements are expected to be approximately 0.05mM lower than
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detected in both experiments. The DO and glucose regimes residence
time fractions obtained in the experiments resemble the ones of the large
scale reactors, as discussed in the Supplementary material B: experi-
mental design.

3.2. Biomass and penicillin concentrations

The biomass concentration remained stable around 6 + 0.29 g L'
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throughout the experiment. This concentration is slightly higher
compared to values reported previously for the same dilution rate and
medium composition (5.2 + 0.05 g LH[19]. The oscillation phase did
not significantly affect the biomass concentration in the reactor
(Fig. 2a), similarly to previous experiments of separate glucose and
oxygen oscillation experiments [5,19]. In contrast to these observations,
a slight but significant decline in Cx was observed by Wang et al., under
different sugar oscillation regimes [28]. Microscopic analysis did not
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show any changes in the cellular morphology as a result of the oscil-
lating conditions.

The penicillin concentrations showed a clear increase during the
initial chemostat phase, whereby after 100 h both fermentors reached
similar concentrations of almost 2 mM, corresponding with a specific
penicillin production rate of around 0.0016 mmol g h! (Fig. 2b).
These results are matching previous observations [5,19]. During the
oscillation phase, the penicillin concentrations of both fermentations
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declined to 1 mM, corresponding to a specific production rate of
approximately 0.007 mmol g h'l. The decline in penicillin production
rate to approximately 50 % of its original value is similar to that during
solely sugar oscillations under otherwise similar conditions. Oscillating
oxygen concentrations at constant sugar levels, as introduced in oscil-
lation experiments I and II [5], also resulted in a clear decrease of the
specific penicillin production rate, which was approximately 80 % and
50 % in oscillation experiments I and II, respectively. In oscillation
experiment I, milder conditions were applied and complete oxygen
starvation was maintained for approximately half of the duration of
oscillation experiment II (11 s and 23 s below 0.003 mM, respectively).
However, in these oxygen oscillation experiments, shorter cycles of
approximately 2 min were used, therefore the penicillin production
decline was expected to be more intense than in the combined glucose
and oxygen oscillation experiments. This is because more frequent
limitations were introduced in shorter cycles, because a similar duration
of DO starvation was repeated once in 120 s while in the combined
experiment this occurred once per 360 s. When comparing the penicillin
production rate during the combined oxygen and sugar oscillation
experiment to previous experiments of individual glucose or oxygen
oscillations, the minor experimental differences such as different stirrer
speed and lack of an initial steady-state phase prior to the glucose
oscillation experiment, have to be kept in mind. After the initial steady
conditions were restored at the end of the experiment, the penicillin
production rate partially recovered, similarly to the observations during
the separate oxygen oscillation experiments, indicating that the decline
of the penicillin production was reversible.

The magnitude of the decline of the penicillin production during the
combined scale-down experiment indicates that the combination of the
effects of glucose and oxygen fluctuations are not adding up. This might
be explained by the fact that the elevated sugar concentrations, which
repress expression of the penicillin gene cluster and the low oxygen
concentrations, which limit the conversion rate of IPNS, are overlapping
and the penicillin production rates therefore do not drop further
compared to the individual effects. In case the penicillin gene cluster is
repressed, the overall pathway flux might fall below the flux that the
IPNS enzyme allows and therefore the total flux won’t be influenced by
the additional effect of oxygen.

3.3. Comparison of metabolite pools, energy charge and redox state
during glucose, oxygen and combined glucose and oxygen scale down
experiments

To evaluate the influence of the combined glucose and oxygen gra-
dients on the cellular metabolism, these experiments are compared to
separate sugar and oxygen fluctuations or step experiments. In this
section, we consider different experiments, such as oxygen step
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experiments to two different DO values: 0.013 and 0.009 mM, which are
discussed in the Supplementary material A: pools and metabolites, ox-
ygen oscillation I and II experiments with differing extent of oxygen
starvation within an approximately 2 min cycle [5] and glucose oscil-
lations within 360 s cycles, carried out by de Jonge et al. [19]. The
metabolite patterns of certain metabolic pathways, such as the upper
and lower glycolysis (Gly), TCA cycle (TCA), pentose phosphate
pathway (PPP), amino acids (AA) and storage compounds (Sto) during
the single glucose, single oxygen and combined glucose and oxygen
oscillation experiments are shown in Figs. 3-5. Additionally, the
changes in energy charge (EC) and the redox state (NADH/NAD™) are
also plotted.

3.3.1. Oxygen oscillation experiments

On a long term, in the time frame of the fermentation, oscillation
experiment I showed a similar response as the step experiments in terms
of EC, TCA and PPP intermediates (Supplementary material A: pools and
metabolites). On a short term, within the time frame of an oscillation
cycle, the redox state and energy charge and consequently also the sizes
of the upper and lower glycolytic pools fluctuated, because ATP is
required for the phosphorylation steps. Therefore, in the absence of
oxygen, the glucose uptake rate had slowed down, affecting the other
metabolite groups. Similarly to the step experiments, during oscillation
experiment II the upper and lower glycolytic intermediates showed
opposite trends. This can be explained by the regulatory mechanism of
FBP on the enzyme pyruvate kinase [43]. Therefore, FBP is responsible
for the regulation of the transition between the lower glycolysis and the
TCA cycle, where a reduced FBP concentration results in lower enzyme
rates and therefore might result in accumulation of the lower glycolytic
intermediates (See Supplementary material A). The fluctuations in the
TCA intermediates are attributed to the fluctuating availability of the
NAD™ cofactor, and the inhibitory effect of NADH on the TCA cycle [44].
Since the upper glycolytic pool is linked to the TCA pool, a delayed
response to those can also explain our results.

The pentose phosphate intermediates followed a similar pattern as
the upper glycolysis, but with a time delay, possibly due to the con-
version from F6P and G6P to PPP intermediates. In oscillation experi-
ment I, where a shorter oxygen starvation period was applied compared
to oscillation experiment II, the responses were lacking or were less
pronounced and the changes in the lower glycolytic intermediates, EC
and NADH/NAD™ could not be observed. The amino acid and storage
pools were not influenced within a DO cycle, as the turnover time of
these pools are large, and therefore no short term changes could be
observed [11].

3.3.2. Sugar oscillation experiments
During the sugar oscillation experiment [19], as a result of feed
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supply for 36 s in the 360 s cycle, the extracellular sugar concentration
peaked at 36 s and dropped to almost zero around 200 s [19]. The en-
ergy charge showed a clear variation, which increased at the beginning
of the cycle and stayed at a higher value. The redox state showed similar
behaviour as the energy charge, and thereby the NADH/NAD™ ratio
dropped to values approaching 0 between 36 and 200 s in the cycle.
However, at high glucose concentrations, the NADH/NAD™" ratio is ex-
pected to increase as a result of an increased rate of glucose dehydro-
genation in the glycolysis and TCA cycle and a resulting increased NADH
formation [3]. It is therefore possible that the mannitol-1-phosphate
dehydrogenase reaction is not quick enough and a fast equilibrium
cannot be reached due to a too low activity of this enzyme [2].

The upper glycolytic, TCA and PPP intermediates showed a similar
trend as of the extracellular sugar concentration, but with a slight delay,
while the lower glycolytic intermediates moved in the opposite direc-
tion. In case of a high glycolytic flux the FBP pool increases and pyuvate
kinase is activated. Consequently, PEP declines and more PYR is formed
and therefore the TCA levels will increase. This explains the correlation
between the upper glycolytic intermediates and the TCA cycle in-
termediates, and the opposing trends between the upper and lower
glycolytic intermediates. The declining PEP levels are enhancing this
cycle, while further enhancing the phosphofructokinase activity,
because phosphofructokinase is inhibited by PEP [45]. The pyruvate
concentrations are therefore expected to deviate from the lower glyco-
lytic intermediates, which can be observed from our metabolite mea-
surements (Supplementary Material A and for the glucose oscillation
experiments, see [2]). The amino acids and storage compounds were
relatively stable, with a slight increase in the middle of the cycle.

3.3.3. Combined oxygen sugar and oxygen oscillations

During the combined oscillation experiment, the energy charge
remained stable at a value of 0.8. Since during the individual sugar or
oxygen oscillations, the energy charge showed fluctuations, it is possible
therefore that the effect of declining oxygen and the increasing glucose
concentration have balanced each other. The upper glycolytic in-
termediates showed an increase at the beginning of the cycle, while the
lower glycolytic intermediates decreased. This is similar as observed in
the oscillating sugar experiments [19], and it might be explained by the
activation of pyruvate kinase by FBP at high glucose levels. The upper
glycolytic intermediates followed the observed trend in the extracellular
glucose concentration, but a delayed response was observed. According
to the oxygen oscillation experiment, at low oxygen levels in a cycle, the
upper glycolytic pool is expected to drop but this pattern was not
observed in the measurements. The range of the glycolytic intermediate
variations were identical in the oxygen and glucose oscillations and in
the glucose oscillations alone, however, the upper glycolytic in-
termediates did not decline as quick as in the case of only sugar oscil-
lations. This is possibly due to their slower conversion to other
metabolites in the absence of oxygen, and thus in a slower depletion rate
of this pool.

The TCA cycle intermediates accumulated in the first part of the
cycle and reached their maximum at 90 s, which was followed by a
temporary drop at 145s and increased again until 220 s before the
concentration declined until the end of the cycle. This dip in the con-
centration profile was not observed in previous sugar oscillation ex-
periments [19,28,46], and can be attributed to the influence of oxygen.
In the absence of oxygen, the decline in NAD" concentration might
result in a decrease of the TCA cycle flux and the depletion of TCA in-
termediates. However, the errors related to this single measurement
point might question the significance of this dip. The average pool size of
the TCA intermediates was lower compared to the steady state values,
which was observed previously in feast famine cycles and was attributed
to adaptation of the cells to the quickly changing conditions and facili-
tating to cope with the rapidly changing substrate availability by
maintaining pools with faster turnover [47].

The pentose phosphate intermediates showed accumulation between
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0 and 90 s in the cycle, similarly to solely glucose oscillation experi-
ments [19]. This is possibly due the direct linkage of the PPP pool to the
upper glycolytic pool. However, a dip in the concentration of the PPP
intermediates at 90 s might be related to a reduced oxygen availability,
and a temporary drop in the ATP pool, re-arranging the carbon flux
towards the PPP. However, this dip is not statistically significant. To-
wards the end of the cycle, the PPP intermediates have declined.Simi-
larly to the individual oxygen or glucose oscillation experiments, the
amino acid and storage pools did not show dynamics in a cycle, which is
related to their long turnover times.

Generally, the additional effect of oxygen oscillation next to the
glucose oscillation cycles was not observable in most metabolite pools.
During the reduced oxygen availability, reduced ATP and NAD™ co-
factors are available, influencing the rate of many metabolic processes as
shown in the oxygen oscillation experiments. However, due to the
alternating oxygen availability in the combined oscillation experiments,
the influence of fluctuations of these molecules might be hidden behind
the influence of the glucose pulses on the central metabolism, redox
state and ATP availability. The lack of influence of the fluctuating ox-
ygen concentrations next to the fluctuating sugar concentrations is also
reflected in the extracellular penicillin and glucose concentration
measurements.

3.4. Model simulations

Regarding glucose limited chemostat experiments at different dilu-
tion rates, the model gave good predictions of the trends of the experi-
mentally observed qo2, qco2, qs and gp during steady state, and also of
the C,, Cx and Cs in the ramp experiment (Figs. 6 and 7). The model
predicted the trends of increasing O uptake, CO2 production and sugar
uptake with increased dilution rate. The penicillin production rate and
the penicillin concentrations showed a maximum at a dilution of 0.03 h”
1, in good correlation with experimental data [35]. This is possibly
reasoned by the repression of the gene cluster by extracellular glucose,
taking place at dilution rates exceeding 0.03 h' [26]. Additionally,
during the ramp experiment, the trends of the intracellular metabolite
pools were well captured in the model, although the Xgy pool size was
under predicted (Appendix, Figure A2).

Regarding the DO step experiments, the model predicted the Cy, Cg
and C,, profiles in the experiments well (Figs. 8 and 9). The declining
trend in the penicillin concentration at low DO was also well predicted.
This was due to the low oxygen levels influencing the IPN synthesis rate,
resulting in a declining IPN pool size which negatively influenced the
penicillin synthesis rate. Additionally, in the 0.009 mM step experiment,
the increasing extracellular glucose concentration might have repressed
the penicillin gene cluster, further contributing to the reduced penicillin
synthesis rate. The intracellular pools related to these experiments
(XagLy, Xsto and Xatp, Appendix, Figure A3 and A4) did not show changes
according to the predictions, similarly to the experimental data which
also didn’t show clear changes. The decline in the biomass growth rate
was attributed to the decline in the NAD™ concentration in the model.

The oxygen oscillation experiments and the combined oxygen and
glucose scale-down experiments were only used for model validation. In
the oxygen oscillation experiment I, the experimentally observed slight
increase in biomass concentration and the decline in penicillin concen-
tration was captured well (Fig. 10). The penicillin production rate did
not show large fluctuations, because the oxygen level affected the IPN
pool directly and the penicillin production rate therefore decreased to a
steady reduced level. The levels of the glycolytic intermediates in this
experiment followed the same trend as the measurements, while the ATP
concentration showed a larger drop in the simulations than in our
measurements and decreased to zero in the absence of oxygen (Fig. A5,
Appendix). This is most probably caused by cellular regulation, whereby
the ATP level is tightly controlled to achieve ATP homoeostasis [48,49],
which was not included in the model. Due to the periodical small
extracellular glucose increase, the predicted concentration of the
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enzyme pool related to the penicillin synthesis dropped slightly.

During the sugar oscillation experiment the predictions were good in
terms of predicting the dynamic changes within a cycle regarding Cg
(Fig. 11), and Xatp, Xst0, and XLy, however, the XgLy pool size was
under predicted (Figure A6, Appendix). On a long term during the sugar
oscillations, the declining trend in penicillin concentration was repre-
sented by the model, however, the extent of the penicillin concentration
decline was overestimated. The penicillin concentration declined to 20
% of its value after 100 h of sugar oscillations according to the predic-
tion, while in the measurements of Jonge et al., it was only approxi-
mately 50 % [19]. The penicillin concentration decline is reasoned in the
model by the periodic glucose starvation, limiting the penicillin syn-
thesis and glucose excess conditions which represses the gene cluster.
Because the penicillin concentration in this experiment was not used in
the parameter estimation procedure, and its solely based on predictions
from parameters fitted using data from other experiments, it’s possible
that predictions at such extreme glucose concentrations are not captured
well in the model. The exaggerated penicillin production decline could
be further improved by applying the measured penicillin concentrations
for the parameter fitting. The biomass concentration showed a slight
elevation in the predictions during the fermentation (7 %), which might
not be easily observable in the experimental measurements.

In the combined glucose and oxygen oscillation experiment, the
penicillin concentration drop was overestimated, similarly as for the
glucose oscillation experiments. The extent of the drop was the same as
during the individual feast famine cycles, indicating that no additional
effect of oxygen oscillations takes place, resembling the experimental
observations. During the cycle, the expected Cs was well approximated
and the XLy was under predicted (Figure A7, Appendix). Similarly to
the oxygen oscillation experiments, the drop in the ATP concentration at
the time moments when the DO dropped to zero were overestimated,
and ATP levels of zero were noted. Generally, the trends of all the
measured intracellular pools were captured well in the model, but the
exact values showed slight alternation. Evaluating the relative errors
between the predictions and the measurements shows that when aver-
aging the errors of the pools and time points, the metabolite trends of
each experiment are predicted with a 31 % error. There was no differ-
ence between the errors in the experiments which were used for the
model parameter fitting and those which were predicted, showing the
reliability of the model. Amongst the pools, the glycolytic pool and the
extracellular glucose pool showed the largest deviations from the mea-
surements, while the biomass concentration, the storage compounds and
the ATP pool are predicted relatively well with an average relative error
<11 %.

The model simulations predicted the trends in biomass growth and
penicillin production by considering the influence of the relevant
intracellular pools and metabolic processes, however, the model has
several limitations and can be further improved. The largest challenge of
the pooled modelling approach is the large number of unknown pa-
rameters which are making the parameter estimation challenging. In the
presented model, not all model parameters could be well defined,
because the measured pool sizes in this study are not sufficient to clearly
define all the model parameters. Non-identifiably is a common problem
with metabolic models [9], although predictions with non-identifiable
parameter values still can lead to useful models with good predictions
[50]. Well-designed experiments and targeted omics measurements
could bring further understanding of the pathway regulations, resulting
in an improved model structure. As obtaining more detailed experi-
mental data is laborious, the model could be further simplified to reduce
the number of unknown parameters. Kinetic terms which do not show
strong involvement could therefore be eliminated or variables could be
pooled further to reduce the model [12]. Although we have applied
metabolite lumping and eliminated several pools from a previous model
[11], the model network and structure could be further simplified.
Drawing biological conclusions about control mechanisms from the
model is not straightforward, as parameter sensitivities are difficult to
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obtain [51], which makes it difficult to predict from which biological
modification the penicillin production could benefit the most. For future
work, model improvements are recommended based on network struc-
tures, model reduction, more accurate kinetic terms and parameter
values [9,51].

On the other hand, the model presents good predictions of the
observed trends of Cp, Cx and Cs under dynamic conditions on time scales
of seconds to minutes and fluctuations in both glucose and oxygen
levels, as validated by 2 experiments. Compared to the black box model,
good predictions for the trends of the penicillin concentrations are
available. According to simulations with the black box model under
feast famine conditions, no penicillin production takes place as pre-
sented in the study of Tang et al.[11]. The black box model lacks dy-
namics and intermediate metabolite pools (such as storage or IPN pool)
and therefore negative growth and penicillin production rates are ach-
ieved under glucose starvation. Therefore, the presented dynamic
modelling approach is advantageous and is strongly recommended for
application in coupled CFD models to describe productivity under het-
erogeneous substrate and DO availability. With the help of the coupled
CFD-kinetic model predictions, further improvements on the process can
be achieved, such as sparger design or feeding port locations [7].

4. Conclusions

To obtain accurate predictions of large scale penicillin fermenta-
tions, heterogeneities in terms of oxygen and glucose in industrial scale
fermentors have to be considered. This study aimed to design scale down
experiments based on lifeline data obtained from CFD simulations of
large scale fermentors. Additionally, we developed a metabolic struc-
tured kinetic model describing the cellular responses to a dynamically
changing environment. Metabolite pools obtained from chemostat ex-
periments at varying dilution rates and oxygen levels, next to cycling
feast famine experiments, were used for parameter estimation of the
model. The obtained metabolite pools of the scale-down experiment of
solely oxygen and combined glucose and oxygen oscillation experiments
were used for model validation.

The scale down experiments designed in this study represented the
total residence time fractions obtained from the CFD simulations of the
large scale tanks well, while compromising on the time periods the cells
reside in a certain regime. Metabolite analysis of the scale-down ex-
periments wherein combined oxygen and glucose oscillations were
achieved, showed that measured metabolite pools, i.e. amino acids,
upper and lower glycolytic intermediates, TCA cycle intermediates and
pentose phosphate cycle intermediates, closely resembled what was
observed in the glucose oscillation experiments, showing little influence
of the additional oxygen oscillations. Similarly, the decline of penicillin
production also resembled the glucose oscillations only without an
additional effect of the oxygen.

The developed metabolic structured kinetic model was able to
adequately predict extracellular concentrations of glucose, biomass and
penicillin, next to intracellular metabolite pool concentrations. Simu-
lations under dynamic conditions resulted in predictions of the metab-
olite pools on a seconds scale and predicted changes in the penicillin and
biomass concentration on the time scale of a fermentation. Despite some
discrepancies between model predictions and simulations, the trends of
both extra and intracellular metabolite pools were well predicted under
both glucose, oxygen and combined glucose and oxygen gradients,
where the latter two served for model validation. Coupling the devel-
oped kinetic model to CFD simulations should provide improved lifeline
data to guide further scale down experiments aimed at improving the
performance of large scale fermentations through improvement of the
producing strain and/or the operating conditions of the bioreactor.
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