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A B S T R A C T   

In large scale fermentors the cultivated cells are exposed to dynamic changes in the nutrient concentrations due 
to imperfect mixing. Based on the characterization of these nutrient gradients in space and time, a rational scale 
down design can be obtained. This study focuses on the combined gradients of dissolved sugar and oxygen 
concentrations. Based on a recent computational fluid dynamics (CFD) study, firstly a scale-down design was 
developed. From intracellular metabolite measurements during these scale-down experiments, the metabolic 
behavior of the cells under highly dynamic conditions was revealed. Under the combined influence of oscillating 
glucose and oxygen concentrations, the penicillin production declined to 50 % of the value under steady state 
conditions. This decline was similar as observed during glucose oscillations alone. The influence of oxygen os
cillations on the levels of the majority of the intracellular metabolites analyzed was negligible, although these 
metabolites were strongly affected by the varying oxygen levels under solely oxygen oscillations. Additionally, a 
metabolic structured kinetic model was developed and validated with data from glucose and oxygen oscillation 
experiments. This model can be coupled to CFD simulations to obtain an accurate prediction of the performance 
of industrial strains in space and time in large industrial scale bioreactors.   

1. Introduction 

To predict scale up effects on the behavior of industrial strains and 
further improve large scale fermentations, the complexity of heteroge
neous concentration profiles in large scale tanks has to be considered. 
Large scale tanks impose substrate, pH, shear and dissolved oxygen 
gradients on the microorganisms cultivated due to imperfect mixing. For 

example, according to a recent computational fluid dynamics (CFD) 
study of a 300 L multi impeller stirred bioreactor applied for Coryne
bacterium, significant substrate limitation took place in approximately 
3/4 of the reactor volume, at locations further from the feeding port, 
which was located at the top of the reactor, while oxygen limitation took 
place in ~1/4 of the reactor volume, in zones further away from the 
sparger, which was located at the bottom of the tank [1]. The cells 

Abbreviations: DO, Dissolved oxygen (concentration); CFD, Computational fluid dynamics; MFC, Mass flow controller; qi, biomass specific production/con
sumption rates of compound i (e.g. Oxygen ‘O2’; Carbon Dioxide ‘CO2’, Sugar ‘s’, Penicillin ‘p’, Biomass ‘x’); Ci, concentration of compound i; Xi, intracellular 
metabolite pool sizegrowth rate; AA, Amino acid; Gly, glycolysis intermediates; Sto, storage compounds; EC, energy charge; TCA, tricarboxylic acid cycle; PPP, 
Pentose phosphate pathway; PenG, Penicillin-G; ACVS, δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine syntetase; IPNS, isopenicillin-N synthetase; ACV, δ-(L-α-amino
adipoyl)-L-cysteinyl-D-valine; IPN, isopenicillin N; PAA, Phenylacetic Acid; Ala, Alanine; Gly, Glycine; Val, Valine; Leu, Leucine; Ile, Isoleucine; Pro, Proline; Ser, 
Serine; Thr, Threonine; Meth, Methionine; Asp, Aspartic acid; Phe, Phenylalanine; Glu., Glutamine.; Lys, Lysine; Asn, Asparagine; Gln, Glutamine; Tyr, Tyrosine; His, 
Histidine; Cys, Cysteine; Trp, Triptophan; AAA, L- α -amino adipate; Tre, Trehalose; Aratl, Arabitol; Ertl, Erythritol; Mtl, Mannitol; Glc, glucose, G6P, Glucose-6- 
phosphate; F6P, Fructose-6-phosphate; M6P, Mannose-6-phosphate; FBP, Fructose-1,6-bisphosphate; T6P, Trehalose-6-phosphate; 2PG, 2-phosphoglycerate; 3PG, 3- 
phosphoglycerate; 6PG, 6-Phosphogluconate; PEP, phosphoenolpyruvate; G3P or GAP, Glyceraldehyde 3-phosphate; DHAP, Dihydroxyacetone phosphate; Pyr, 
pyruvate, Ac-CoA, acetyl coenzyme A; αKG, α-Ketoglutarate; Succ, succinate; Fum, fumarate; Mal, malate; Cit, citrate; iCit, isocitrate; Rib5P, Ribose-5-phosphate; 
Ribu5P, ribulose 5-phosphate; E4P, Erythrose 4-phosphate; Xyl5P, xylose 5-phosphate; S7P, Sedoheptulose-7-phosphate; G1P, Glucose-1-phosphate; M1P, Mannitol- 
1-phosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate; NAD+, NADH nicotinamide adenine dinucleotide, 
NADP+, NADPH Nicotinamide adenine dinucleotide phosphate. 
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circulating in the reactor thus experienced these environmental varia
tions as fluctuations in the levels of substrate and oxygen. Such fluctu
ations influence the behavior and metabolic responses of the cells [2–5] 
and therefore the productivity of the fermentation. 

The heterogeneities in large scale fermentors can be described via an 
Euler-Lagrange computational fluid dynamics (CFD) approach, resulting 
in cellular lifelines, which describe the experience of the individual cells 
regarding nutrient concentration fluctuations in time [6]. Cellular life
lines can be translated to a representative scale-down design, aiming to 
mimic the gradients taking place in large-scale tanks in lab-scale fer
mentors, to enable precise monitoring of the metabolic state of the cells 
under these conditions on a seconds scale. When translating lifelines to a 
scale down design, metabolic regimes have to be defined first, which are 
then used to obtain the per-regime residence time distributions and the 
regime transition patterns, representing the sequence of the regime 
transitions and their frequencies [6],[1]. 

To accurately predict the cellular behavior in industrial scale fer
mentors, both the hydrodynamic conditions in the tank as well as the 
biological responses to the resulting local concentration changes have to 
be taken into account [7]. Modelling approaches are thus relying on 
coupling CFD and biological reaction kinetic models. Lapin et al. have, 
for the first time, reported modelling approaches where a structured 
kinetic model was linked to CFD predictions of the dynamically 
changing extracellular nutrient concentrations. This was achieved by 
the Euler-Lagrange modelling approach, where the extracellular envi
ronment is described as a continuous phase and the cells are regarded as 
discrete entities [8]. While the hydrodynamics and mixing obtained by 
CFD models rely on the tank structure, its geometry and the operating 
conditions, biological reaction kinetic models are based on the cellular 
behavior, as quantified in scale-down studies using precise omics mea
surements [9]. Although the most important changes during dynamic 
conditions rely on metabolite quantifications [9], because those almost 
immediately reflect the seconds-scale changes in the environment, 
monitoring the transcriptome or proteome will lead to understanding 
the biological responses on longer time scales as well. Based on the 
understanding of biological mechanisms from the scale-down studies, 
the model structure can be established. 

For the construction of biological reaction-kinetic models, several 
requirements have to be met: these models have to be relatively simple 
to limit the computational costs, nevertheless, they need to represent the 
relevant cellular kinetic responses to changes in environmental condi
tions on a seconds to days scale [10]. A modelling approach in between 
small black box and large genome-scale models are structured metabolic 
models [11]. In such models the cellular makeup and some basic control 
mechanisms are considered. To reduce the complexity of these models 
[12], the metabolic network is simplified and essential metabolites are 
lumped into pools. Therefore, several parameters of such models might 
not have a direct biological meaning, and their values are determined 
via computational tools such as parameter estimation instead of in vivo 
or in vitro experiments. 

Although in large scale fermentors, fluctuations in the environmental 
conditions, regarding nutrients, dissolved oxygen, pH, temperature or 
shear stress might occur simultaneously [13], most scale-down studies 
have focused on the separate effects of individual nutrient gradients on 
different microorganisms. The majority of the computational studies 
related to the hydrodynamic characterization of large scale reactors 
focus on the influence of sugar gradients [6,14,15], and a minority on 
oxygen gradients [16–18]. Regarding scale down experiments, also in
dividual glucose [3,19,20], or oxygen fluctuations [5,21,22] have been 
considered most commonly. Only a few hydrodynamic studies [1,23] 
and a few recent experimental works [24,25] considered multiple gra
dients. Combining multiple gradients in scale down studies can bring a 
closer insight into the actual conditions in industrial fermentors. 

In a previous Euler-Lagrange CFD study of Penicillium chrysogenum 
fermentations in a 54 m3 bioreactor only glucose gradients were taken 
into account [6]. Experimental scale–down studies on the effects of 

glucose gradients in P. chrysogenum have shown that the penicillin 
production declines severely during fluctuating glucose concentrations 
[19]. It was investigated whether decreased levels of enzymes of the 
penicillin biosynthetic pathway were responsible for the decline in 
production, because it is well known that too high levels of glucose 
repress expression of the penicillin gene cluster [26]. Although the 
concentration of one of the main enzymes involved in the pathway, 
isopenicillin-N synthetase (IPNS) declined, the substrate for this 
enzyme, δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine ACV) did not accu
mulate, which would indicate that the capacity of IPNS was not limiting. 
Next, also the concentrations of the precursors for ACV synthesis were 
measured. However, finally it was hypothesized that neither the 
decrease of the IPNS level nor the supply of precursors but rather the 
fluctuations in the ATP availability for the synthesis of ACV was the most 
plausible cause for the reduced penicillin production [27]. Next to 
proteome and metabolome measurements, also the transcriptome of the 
cells was monitored during oscillating glucose levels on different time 
scales and in two different scale-down systems [28]. This study revealed 
that the transcript levels of the pathway enzymes changed due to the 
fluctuations, however, a uniform trend could not be observed in the time 
frame of a fermentation, neither as a general effect of the fluctuations at 
different time-scales [28]. 

The influence of oscillating dissolved oxygen levels was investigated 
previously as well [5,21]. These studies showed that during oscillating 
oxygen concentrations, the penicillin production declines to values 
lower than observed at a dissolved oxygen concentration (DO) repre
senting the average of the cycle. While during a steady low DO, a decline 
in IPNS activity was observed based on metabolite measurements 
involved in the penicillin pathway, this observation could not be 
confirmed during oscillating oxygen conditions. Similarly, the precursor 
amino acid concentrations did not reason the decline in the production. 
Therefore, the severe decline in the penicillin production under fluctu
ating DO levels might be due to fluctuations in ATP levels [5]. 

In this study we focus on a scale down design to capture the com
bined effects of glucose and oxygen gradients in Penicillium chrysogenum 
fermentations. As a baseline for the scale down, lifelines in terms of 
glucose and dissolved oxygen concentrations were used, which were 
obtained via Euler-Lagrange CFD simulations of an industrial stirred 
bioreactor of 54 m3 [Peng Wei, manuscript under preparation]. 

Within our scale down experiments, for the first time we quantified 
metabolites of the central metabolism, next to nucleotide levels and the 
intracellular redox state, during fluctuating DO conditions. Similarly, we 
evaluated the changes in the levels of these metabolites during the 
combined glucose and oxygen oscillation experiments, carried out in 
continuously operated bioreactors, in order to understand the metabolic 
responses. 

Next to the experimental scale down studies related to glucose and 
oxygen gradients, a mathematical model was developed describing the 
metabolic responses of the cells to these dynamic conditions in terms of 
combined glucose and oxygen fluctuations. This biological kinetic 
model could lead to improved predictions of growth and penicillin 
production in large scale systems under dynamic conditions and when 
coupled to CFD modelling approaches, will provide leads for further 
improvements of large-scale penicillin production. 

2. Materials and methods 

2.1. Strain, culture media, and fermentor setup 

A high-yielding penicillin producing strain (DS17690) was used, 
kindly donated by Centrient Pharmaceuticals (Delft, The Netherlands) 
as spores grown on rice grains. Inoculation was carried out as described 
previously, using spores grown on 10.0 g of rice grains. The media 
compositions for the different cultivations have been described previ
ously [5]. 

The combined glucose and oxygen oscillation experiments were 
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carried out in a 7 L stirred tank fermentor with 4 L working volume 
(Applikon, Delft, The Netherlands). The reactors were stirred at 365 rpm 
with a magnetically driven 6-bladed Rushton impeller with a diameter 
of 85 mm. In the experiments, 0.3 bar overpressure was applied and a 
gas flow rate of 2 L min-1 was used. The inlet gas flow was controlled by 
mass flow controllers (Brooks instrument B.V., The Netherlands) and 
before entering the reactor it was passed through a sterile membrane 
filter (Millipore 0.2 µm). The pH, T and DO were continuously measured 
(pH sensor Mettler Toledo 405-DPAS-SC-K8S) and controlled similarly 
as described in [5]. The pH was measured with a Mettler Toledo 
405-DPAS-SC-K8S sensor and controlled at 6.50 ± 0.05. For the DO 
measurements two conventional Clark electrodes (AppliSens, Applikon 
Biotechnology) were used. The reactor setup, antifoam addition (Basil
don Chemical Co. Ltd, UK, Foam-clear EscaFerm S), and data logging 
(DCU3, Sartorius, Germany) resembled previously reported methods 
[5]. 

2.2. Bioreactor cultivations 

Each chemostat cultivation was preceded by a batch phase. After 
inoculation of the reactor with spores, the batch phase lasted approxi
mately 60 h. During the batch phase, when the DO dropped close to 
0.082 mM, the agitation and airflow (pressured air) were increased 
gradually, until a final stirrer speed of 365 rpm and gas flow of 2 L min-1 

were reached. Antifoam addition and pH control were started only when 
the spores had germinated, at approximately 24 h. 

The chemostat phase was started when the DO increased, the pH 
increased and the carbon dioxide molar fraction in the off-gas decreased 
indicating that the glucose was depleted. A continuous medium inflow 
rate of 0.2 L h-1 was used and the weight of the fermentor was controlled 
at 4000 ± 10 g through an automated, discontinuously operated effluent 
removal valve at the bottom of the reactor, resulting in a dilution rate of 
0.050 h-1. The same gas flow rate and stirrer speed were used as during 
the last phase of the batch cultivation, 365 rpm and 2 L min-1. Addi
tionally, the overpressure in the reactor was increased to 0.3 bar. The DO 
in the fermentor was always above 0.163 mM by supplying air, and the 
DO was not controlled. 

The oscillation phase was started after approximately 100 h of che
mostat operation. Oscillation cycles of 360 s were repetitively applied 
for a total duration of approximately 100 h, where both the DO in the 
fermentor and the glucose supply were varied. The glucose and oxygen 
supply applied was determined such that the obtained regime residence 
time fractions in the lab scale reactor matched those of the large scale 
reactor, predicted by CFD simulations (Supplementary material B: 
experimental design). An MFCS script was used to control the feed and 
the gas composition in a cyclic manner. Thereby the medium feed was 
turned on for 36 s at a rate of 2 L h-1 and subsequently turned off for 324 
s. The DO control was based on changes within the aeration gas 
composition, which was a mixture of air and N2. The first mass flow 
controller supplied air, and the supplied air flow rate was controlled 
based on the measured DO in the reactor. This gas flow was mixed with a 
steady N2 flow at lower pressures before entering to the second mass 
flow controller, which provided the desired, constant total flow of the 
air-N2 gas mixture. At the time the feed was turned on, the setpoint for 
the DO control was changed to 0.03 mM to initiate a quick decline of the 
DO. When the DO became below a threshold value of 0.046 mM, the 
setpoint was changed to 0.272 mM to achieve a quick increase. Finally, 
the setpoint was changed another time to 0.109 mM after a DO of 0.068 
mM was exceeded. Thereby, DO oscillations were achieved between 
0 and 0.21 mmol L-1, whereby the DO dropped below 0.03 mM for a 
period of 16 s in each cycle. After 100 h of oscillations the final oscil
lation cycles were sampled in ~40 s time intervals for intracellular 
metabolite analysis. Finally, after the oscillation phase, the reactor was 
switched back to chemostat mode, while the DO was restored to the 
original, steady non-limiting values, for a period of another 50 h. The 
combined oscillation experiments were performed in duplicate, using 

identical set-ups and operating conditions. 
The DO step and oscillation experiments were performed as 

described previously [5]. Briefly, in the 0.013 mM or 0.009 mM DO step 
experiments, firstly a steady state was reached at non- limiting DO levels 
in ~100 h, after which the DO was reduced to 0.013 mM or 0.009 mM 
for ~100 h in the two different step experiments.During the DO oscil
lation experiments, after an initial steady state of ~100 h at non-limiting 
DO levels in oscillation experiment I, a DO oscillation phase was initi
ated: the DO was fluctuating between limiting and non-limiting values 
in cycles of 112 and 120 s duration for the oscillation experiments I and 
II, respectively. In oscillation experiment II, the cells were exposed to 
higher DO variations and to longer periods of near-zero DO levels. The 
DO fluctuated between 0 and 0.127 mmol L-1 in oscillation I and be
tween 0 and 0.178 mmol L-1 in oscillation II, and the DO fell below 
0.003 mmol L-1 during 11 s in oscillation I, while in oscillation II, during 
23 s [5]. The average DO in a cycle and the cycle time were similar for 
the oscillation experiments A and B, with an average DO of 0.06 mmol 
L-1 after correction with the probe delay. 

2.3. Sampling and analytical procedures 

Sampling and analysis for biomass dry weight, total organic carbon, 
penicillin G and phenylacetic acid quantification by HPLC analysis was 
carried out as described elsewhere [5]. Similarly, the procedure of rapid 
sampling for intra and extracellular metabolite quantification and the 
analytical procedures for HPLC, TOC and microscopy has been described 
previously [5]. 

The amino acids were analysed by GCMS, as described by de Jonge 
et al. [19]. During most experiments, the glycolysis, PPP and TCA cycle 
intermediates glucose, G6P, F6P, M6P, FBP, T6P, 2PG, 3PG, 6PG, PEP, 
G3P, DHAP, αKG, Succ, Fum, Mal, Cit, iCit, and and Rib5P, Ribu5P, E4P, 
Xyl5P and S7P were determined using GCMS [29]. The intracellular 
storage compounds (Tre, Mtl, Ertl) and the extracellular glucose and 
trehalose were analysed similarly [29]. During the DO step down 
experiment to 0.013 mmol L-1 and the oscillation experiment II, FBP, 
PEP, Succ, Pyr, G1P, 6PG, M6P, T6P, G3P, M1P were determined by 
LCMS according to van Dam et al. [30]. In the DO step 0.009 mmol L-1 

and the oscillation experiment I, the metabolites FBP, M1P, PEP were 
analysed with the same LCMS methodology as the nucleotides (see 
below). 

Identification and quantification of nucleotides was performed by 
LCMS, using an ACQUITY UPLC chromatography system (Waters, UK) 
coupled to a high-resolution Orbitrap mass spectrometer (Q-Exactive 
Focus, Thermo Fisher Scientific, Germany). For chromatographic sepa
ration, a reverse phase (Kinetex C18 column 2.1 × 150 mm, 1.7 µm; 
Phenomenex, Torrance, CA, USA) [31] was used at room temperature 
using 50 mM ammonium acetate pH 5.0 as mobile phase A, and 90 % 
acetonitrile plus 10 % 50 mM ammonium acetate pH 5.0 acid as mobile 
phase B (v/v). A flow of 250 μL/min was maintained over a solvent 
composition from 50 % to 75 % B over 4 min, before equilibrating back 
to the starting conditions [32]. The mass spectrometer was operated in 
negative ionisation mode (− 2.8 kV), where a full scan from 250 to 1000 
m/z at a resolution of 70 K, an AGC target of 106 and by setting the max 
injection time to auto. The 13 C metabolite extract, and synthetic 
standards from each metabolite were used to confirm identify of the 
compounds. Raw mass spectrometric data were processed by using 
XCalibur 4.1 (Thermo) and by Matlab 2020b, where the summed peak 
intensities of the individual metabolite compounds were expressed as 
intensity ratios to the corresponding internal standard peaks. Quantifi
cation was based on an external calibration using synthetic standards 
[32,33]. During the 0.013 mM DO step and oscillation experiment II, the 
nucleotides were determined according to Seifar et al. [32]. 

2.4. Calculations 

The reversible reaction catalysed by the enzyme mannitol-1- 
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phosphate-5- dehydrogenase reaction was used to obtain the cytosolic 
NADH/NAD+ ratio, as presented in Eq. (1) [34]. This reaction and the 
involved metabolites were assumed to be in equilibrium, as the enzyme 
catalysing this reaction is highly reversible. 

NADH
NAD+ =

Keq • M1P
H+ • F6P

(1) 

The energy charge (EC) of the cells was also assessed during the 
fermentations, and was calculated by the following equation 

EC =
ATP + 0.5ADP

ATP + ADP + AMP
(2)  

2.5. Pool model development 

To characterize large scale fermentors where both glucose and oxy
gen gradients take place, a metabolic model was built which reflects the 
cellular responses to the fluctuating oxygen and sugar concentrations. 
This model is aimed to be linked with a CFD model predicting the hy
drodynamic behavior of the fermentors. These combined models could 
result in a detailed prediction of the performance of large scale fer
mentors, where the inhomogeneities resulting from the imperfect mix
ing are taken into account. 

The model was based on a metabolic structured model of Tang et al. 
[11], with major modification of the structure, stoichiometry and ki
netics taking place. These modifications were necessary in order to 
incorporate the influence of O2 next to the changes in the feed rate and 
thereby the dilution rate. Most importantly, the NAD+ and IPN pool was 
incorporated in the model, while the PAA and AA pools were eliminated. 
Five main intracellular metabolite pools were defined, such as the 
glycolytic intermediates pool, storage pool, IPN, ATP, NAD+ pools. In 
addition to intracellular pools, extracellular pools, such as residual 
glucose, penicillin, biomass concentrations were considered. Next to 
this, variation in the enzyme levels were also taken into account for the 
enzymes responsible for storage release and penicillin production. The 
model captures sugar uptake and phosphorylation, which phosphory
lated sugar might partition towards biomass growth, penicillin forma
tion or storage compound synthesis, or are burned to CO2 to form energy 
(ATP). The glycolysis and TCA cycle reaction was taken into account 
forming NADH and ATP. Next to glucose, O2 is taken up by the cells and 
via the oxydative phosporylation, and NAD+ is formed from the NADH 
cofactors. Most reactions in the model require the NAD+ and/or ATP 
cofactor. 

The detailed structure of this model, including intracellular metab
olite pools, extracellular concentrations, variable enzyme levels, and the 
reactions, stoichiometry, kinetics and the estimated parameters is pre
sented in the Appendix. The model was fitted to the experimental 
datasets of both intercellular and extracellular pools of the previously 
published ramp and steady state experiments, in which the dilution rate 
was varied [11,35], a sugar oscillation experiment [19] and the oxygen 
step experiments to 0.013 DO and 0.009 mmol L-1 DO [5]. In the ramp 
experiment, the dilution rate of a glucose limited chemostat was grad
ually decreased from 0.5 to 0.05 h-1, while in the steady state experi
ments, the dilution rate was ranging between 0.015 and 0.12 h-1 [11, 
35]. 

2.6. Model solvers, simulations and parameter estimation 

The reaction rates involving kinetic terms and mass balances in the 
form of a system of differential equations describing the changes in 
extra- and intracellular metabolite concentrations in time was set up and 
solved in Matlab 2018b. The parameter estimation and simulations were 
carried out by the AMIGO2 toolbox with Matlab [36]. The system of 
differential equations was used with ‘cvodes’ solver. For the parameter 
fitting, the enhanced scatter search (eSS) algorithm was used [37,38]. 
The cost function to be minimized for parameter fitting was defined by a 

log-likelihood function [39,40], which results in parameter values that 
give the highest probability to the measured data [41]. The details of the 
solver, experimental data processing, model equations and estimated 
values of the parameters are presented in the Appendix. 

2.7. Statistical analysis of the fermentation dataset 

All fermentation conditions were performed in two independent 
reactor runs (with the only exception of the 0.025 mmol L-1 DO step 
experiment). The standard deviations of the measurements were calcu
lated (as presented in Figs. 1 and 2). In Figs. 3–5, the average values and 
standard deviations of the measurements of the duplicate reactor runs 
are calculated. For the modelling work, averages were created of the 
duplicate reactor runs and duplicate (or triplicate) measurements of the 
variables, allowing for better comparison between the different experi
mental conditions (Figs. 6–12). The significance levels within the 
metabolite group changes were calculated with a two-tailed paired T- 
test between the average measurements of the two fermentations at 
different sampling points, with p = 0.05. For the model evaluation, we 
have calculated the relative deviation of the model prediction value 
from the measurement points in each experiment at each time point. In 
order to characterize the average deviations between metabolite groups 
or experiments, the average of the relative deviations were taken. 

3. Results and discussion 

3.1. Dissolved oxygen and extracellular glucose concentrations- combined 
sugar and oxygen oscillations 

During the experiments, a glucose limited chemostat phase was 
maintained for approximately 100 h, whereby a steady state was ach
ieved at non-limiting values (>0.16 mmol L-1). After the chemostat 
phase, the oscillation phase was initiated and the fluctuations were 
maintained for approximately 120 h. Afterwards, the DO was increased 
back to non-limiting values for approximately 50 h, where again a 
steady state was achieved in terms of oxygen uptake and carbon dioxide 
production rates. 

Fig. 1a shows the DO profile, measured by duplicate sensors in 
duplicate fermentors on a seconds scale, after correction for the probe 
delay (calculations shown in [5]). The total time the cells experienced 
complete oxygen starvation (DO level below to 0.003 mM), was 16 s. In 
the rest of the cycle, non-limiting DO values (~0.1 mM) were aimed for. 
At 0.1 mM, no oxygen limitation is expected [5,42]. The overshoot in 
oxygen concentration to 0.2 mM, at 120 s in the cycle is due to the 
delayed response of the DO controller. This is not expected to influence 
the process, because no metabolic differences are expected between a 
DO of 0.1 and 0.21 mM [5]. 

Fig. 1b shows the glucose profile during the initial steady states (at 
94 h and 105 h in the duplicate experiments) and during the cycle at the 
end of the fluctuation phase (at 212 and 232 h in the fermentation in the 
duplicate experiments). During the initial steady state phase, an extra
cellular glucose concentration of approximately 30–50 μM was 
observed. In a cycle, the glucose concentration increased to maximum of 
around 0.25 mM in 36 s, and subsequently, it gradually decreased to the 
levels observed during the initial steady states between 36 and 
220 − 260 s after the start of the cycle. Between 260 and 360 s, the 
glucose concentration remained stable at values between 0.03 and 
0.05 mM. 

The maximum glucose concentration reached in our combined sugar 
and oxygen oscillation experiments was around 0.25 mM, observed after 
36 s, at the moment when the feed period was terminated. This 
maximum concentration was slightly lower than the concentration of 
0.35 mM reported in the study of de Jonge et al., who applied an 
identical glucose oscillation regime [19]. This might have been caused 
by the longer mixing time in the reactor during our experiments, due to 
the slower mixing at a stirrer speed of 365 rpm compared to the study of 
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Fig. 1. a) Dissolved oxygen concentration and 
b) residual glucose concentration during the 
combined scale down experiment. While 
experiment A and B are duplicates, in experi
ment A, the glucose was measured in single 
samples, while in experiment B duplicates were 
analyzed. The horizontal lines indicate the 
concentrations during the steady state phase 
prior to the oscillation phase. The DO profile 
presented is corrected for the probe delay. The 
error bars represent the standard deviation of 
the measurements.   

Fig. 2. a) Biomass concentrations, b) penicillin concentrations during the fermentations A and B. The fermentation time of experiment B was shifted 18 h to match 
the start of the oscillations in the duplicate experiments indicated as A and B. 

Fig. 3. Metabolite pools in the oxygen oscillation experiment II. For the AA pool, in one of the fermentation αKG was not measured, while in the lower glycolysis pool 
PEP was not measured. The storage pool is based on the measurements of one fermentation run only as measurements could not be performed on the repli
cate fermentor. 
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Jonge et al., where 500 rpm was used [19], in a for the rest identical 
bioreactor. Consequently, a homogenous concentration profile might 
only take place in the reactor a few seconds after the glucose addition 
was terminated at 36 s in the cycle. Since the samples were taken less 
frequently compared to the study of de Jonge, the maximum glucose 

concentration might not have been identified. The maximum concen
tration measured at the sampling port at 36 s might therefore not have 
been a precise representative of the maximum glucose concentration in 
the reactor in our experiments. 

During the initial steady state conditions, the residual glucose 

Fig. 4. Glucose oscillation experiments from de Jonge et al. [19]. In TCA intermediates pool, iCit was not measured; in the lower glycolytic intermediates pool DHAP 
was not measured; in the PPP pool E4P, Ribu5P, Xyl5P was not measured and in the AA pool, Trp was not measured. The PPP and STO intermediates were measured 
in one of the reactor runs only. 

Fig. 5. Metabolite pools in the combined sugar and oxygen oscillation experiment. In the Storage pool only Tre was measured. In the AA pool, Cys could not be 
detected. The metabolites to calculate the NADH/NAD+ ratio also could not be measured. 
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concentration was slightly higher than in the study of Jonge et al. [19], 
and Wang et al. [28]. Similarly, the glucose concentration did not fall 
back to zero at the end of the cycle, but remained stable around 
0.05 mM, in contrast to previous studies [19,28]. This could indicate 
that conversion of extracellular trehalose to glucose during the sampling 
procedure was not completely avoided [19]. Since under similar oper
ational conditions the glucose levels are expected to match, the mea
surements are expected to be approximately 0.05 mM lower than 

detected in both experiments. The DO and glucose regimes residence 
time fractions obtained in the experiments resemble the ones of the large 
scale reactors, as discussed in the Supplementary material B: experi
mental design. 

3.2. Biomass and penicillin concentrations 

The biomass concentration remained stable around 6 ± 0.29 g L-1 

Fig. 6. Steady state experiments at varying dilution rates (7 different experiments with a dilution rate ranging from 0.015 to 0.12 h-1). Red crosses represent the 
measurements, while the blue circles show the simulations of a) oxygen uptake rate, b) glucose uptake rates and c) penicillin production rates. The qCO2 showed 
similar trends as the qO2, and therefore not presented. 

Fig. 7. Ramp experiment (with the dilution rate ranging between 0.5 h-1 − 0.05 h-1 between 150 h and 240 h). Red crosses represent the measurements, while the 
blue line show the simulations of a) penicillin, b) biomass and c) extracellular glucose concentrations. 

Fig. 8. 0.009 mM DO step experiment. Red crosses represent the measurements, while the blue line show the simulations of a) penicillin, b) biomass and c) 
extracellular glucose concentrations. 
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throughout the experiment. This concentration is slightly higher 
compared to values reported previously for the same dilution rate and 
medium composition (5.2 ± 0.05 g L-1)[19]. The oscillation phase did 
not significantly affect the biomass concentration in the reactor 
(Fig. 2a), similarly to previous experiments of separate glucose and 
oxygen oscillation experiments [5,19]. In contrast to these observations, 
a slight but significant decline in Cx was observed by Wang et al., under 
different sugar oscillation regimes [28]. Microscopic analysis did not 

show any changes in the cellular morphology as a result of the oscil
lating conditions. 

The penicillin concentrations showed a clear increase during the 
initial chemostat phase, whereby after 100 h both fermentors reached 
similar concentrations of almost 2 mM, corresponding with a specific 
penicillin production rate of around 0.0016 mmol g-1 h-1 (Fig. 2b). 
These results are matching previous observations [5,19]. During the 
oscillation phase, the penicillin concentrations of both fermentations 

Fig. 9. 0.013 mM DO step experiment. Red crosses represent the measurements, while the blue line show the simulations of a) penicillin, b) biomass and c) 
extracellular glucose concentrations. 

Fig. 10. Oxygen oscillation experiment I. Red crosses represent the measurements, while the blue line show the simulations of a) penicillin, b) biomass and c) 
extracellular glucose concentrations. 

Fig. 11. Glucose oscillation experiment. Red crosses represent the measurements, while the blue line show the simulations of a) penicillin, b) biomass and c) 
extracellular glucose concentrations. The exact data points of the measurements from this experiments were not available, but presented in the publication of de 
Jonge et al. [19]. 
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declined to 1 mM, corresponding to a specific production rate of 
approximately 0.007 mmol g-1 h-1. The decline in penicillin production 
rate to approximately 50 % of its original value is similar to that during 
solely sugar oscillations under otherwise similar conditions. Oscillating 
oxygen concentrations at constant sugar levels, as introduced in oscil
lation experiments I and II [5], also resulted in a clear decrease of the 
specific penicillin production rate, which was approximately 80 % and 
50 % in oscillation experiments I and II, respectively. In oscillation 
experiment I, milder conditions were applied and complete oxygen 
starvation was maintained for approximately half of the duration of 
oscillation experiment II (11 s and 23 s below 0.003 mM, respectively). 
However, in these oxygen oscillation experiments, shorter cycles of 
approximately 2 min were used, therefore the penicillin production 
decline was expected to be more intense than in the combined glucose 
and oxygen oscillation experiments. This is because more frequent 
limitations were introduced in shorter cycles, because a similar duration 
of DO starvation was repeated once in 120 s while in the combined 
experiment this occurred once per 360 s. When comparing the penicillin 
production rate during the combined oxygen and sugar oscillation 
experiment to previous experiments of individual glucose or oxygen 
oscillations, the minor experimental differences such as different stirrer 
speed and lack of an initial steady-state phase prior to the glucose 
oscillation experiment, have to be kept in mind. After the initial steady 
conditions were restored at the end of the experiment, the penicillin 
production rate partially recovered, similarly to the observations during 
the separate oxygen oscillation experiments, indicating that the decline 
of the penicillin production was reversible. 

The magnitude of the decline of the penicillin production during the 
combined scale-down experiment indicates that the combination of the 
effects of glucose and oxygen fluctuations are not adding up. This might 
be explained by the fact that the elevated sugar concentrations, which 
repress expression of the penicillin gene cluster and the low oxygen 
concentrations, which limit the conversion rate of IPNS, are overlapping 
and the penicillin production rates therefore do not drop further 
compared to the individual effects. In case the penicillin gene cluster is 
repressed, the overall pathway flux might fall below the flux that the 
IPNS enzyme allows and therefore the total flux won’t be influenced by 
the additional effect of oxygen. 

3.3. Comparison of metabolite pools, energy charge and redox state 
during glucose, oxygen and combined glucose and oxygen scale down 
experiments 

To evaluate the influence of the combined glucose and oxygen gra
dients on the cellular metabolism, these experiments are compared to 
separate sugar and oxygen fluctuations or step experiments. In this 
section, we consider different experiments, such as oxygen step 

experiments to two different DO values: 0.013 and 0.009 mM, which are 
discussed in the Supplementary material A: pools and metabolites, ox
ygen oscillation I and II experiments with differing extent of oxygen 
starvation within an approximately 2 min cycle [5] and glucose oscil
lations within 360 s cycles, carried out by de Jonge et al. [19]. The 
metabolite patterns of certain metabolic pathways, such as the upper 
and lower glycolysis (Gly), TCA cycle (TCA), pentose phosphate 
pathway (PPP), amino acids (AA) and storage compounds (Sto) during 
the single glucose, single oxygen and combined glucose and oxygen 
oscillation experiments are shown in Figs. 3–5. Additionally, the 
changes in energy charge (EC) and the redox state (NADH/NAD+) are 
also plotted. 

3.3.1. Oxygen oscillation experiments 
On a long term, in the time frame of the fermentation, oscillation 

experiment I showed a similar response as the step experiments in terms 
of EC, TCA and PPP intermediates (Supplementary material A: pools and 
metabolites). On a short term, within the time frame of an oscillation 
cycle, the redox state and energy charge and consequently also the sizes 
of the upper and lower glycolytic pools fluctuated, because ATP is 
required for the phosphorylation steps. Therefore, in the absence of 
oxygen, the glucose uptake rate had slowed down, affecting the other 
metabolite groups. Similarly to the step experiments, during oscillation 
experiment II the upper and lower glycolytic intermediates showed 
opposite trends. This can be explained by the regulatory mechanism of 
FBP on the enzyme pyruvate kinase [43]. Therefore, FBP is responsible 
for the regulation of the transition between the lower glycolysis and the 
TCA cycle, where a reduced FBP concentration results in lower enzyme 
rates and therefore might result in accumulation of the lower glycolytic 
intermediates (See Supplementary material A). The fluctuations in the 
TCA intermediates are attributed to the fluctuating availability of the 
NAD+ cofactor, and the inhibitory effect of NADH on the TCA cycle [44]. 
Since the upper glycolytic pool is linked to the TCA pool, a delayed 
response to those can also explain our results. 

The pentose phosphate intermediates followed a similar pattern as 
the upper glycolysis, but with a time delay, possibly due to the con
version from F6P and G6P to PPP intermediates. In oscillation experi
ment I, where a shorter oxygen starvation period was applied compared 
to oscillation experiment II, the responses were lacking or were less 
pronounced and the changes in the lower glycolytic intermediates, EC 
and NADH/NAD+ could not be observed. The amino acid and storage 
pools were not influenced within a DO cycle, as the turnover time of 
these pools are large, and therefore no short term changes could be 
observed [11]. 

3.3.2. Sugar oscillation experiments 
During the sugar oscillation experiment [19], as a result of feed 

Fig. 12. Combined glucose and oxygen oscillation experiment. Red crosses represent the measurements, while the blue line show the simulations of a) penicillin, b) 
biomass and c) extracellular glucose concentrations. 
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supply for 36 s in the 360 s cycle, the extracellular sugar concentration 
peaked at 36 s and dropped to almost zero around 200 s [19]. The en
ergy charge showed a clear variation, which increased at the beginning 
of the cycle and stayed at a higher value. The redox state showed similar 
behaviour as the energy charge, and thereby the NADH/NAD+ ratio 
dropped to values approaching 0 between 36 and 200 s in the cycle. 
However, at high glucose concentrations, the NADH/NAD+ ratio is ex
pected to increase as a result of an increased rate of glucose dehydro
genation in the glycolysis and TCA cycle and a resulting increased NADH 
formation [3]. It is therefore possible that the mannitol-1-phosphate 
dehydrogenase reaction is not quick enough and a fast equilibrium 
cannot be reached due to a too low activity of this enzyme [2]. 

The upper glycolytic, TCA and PPP intermediates showed a similar 
trend as of the extracellular sugar concentration, but with a slight delay, 
while the lower glycolytic intermediates moved in the opposite direc
tion. In case of a high glycolytic flux the FBP pool increases and pyuvate 
kinase is activated. Consequently, PEP declines and more PYR is formed 
and therefore the TCA levels will increase. This explains the correlation 
between the upper glycolytic intermediates and the TCA cycle in
termediates, and the opposing trends between the upper and lower 
glycolytic intermediates. The declining PEP levels are enhancing this 
cycle, while further enhancing the phosphofructokinase activity, 
because phosphofructokinase is inhibited by PEP [45]. The pyruvate 
concentrations are therefore expected to deviate from the lower glyco
lytic intermediates, which can be observed from our metabolite mea
surements (Supplementary Material A and for the glucose oscillation 
experiments, see [2]). The amino acids and storage compounds were 
relatively stable, with a slight increase in the middle of the cycle. 

3.3.3. Combined oxygen sugar and oxygen oscillations 
During the combined oscillation experiment, the energy charge 

remained stable at a value of 0.8. Since during the individual sugar or 
oxygen oscillations, the energy charge showed fluctuations, it is possible 
therefore that the effect of declining oxygen and the increasing glucose 
concentration have balanced each other. The upper glycolytic in
termediates showed an increase at the beginning of the cycle, while the 
lower glycolytic intermediates decreased. This is similar as observed in 
the oscillating sugar experiments [19], and it might be explained by the 
activation of pyruvate kinase by FBP at high glucose levels. The upper 
glycolytic intermediates followed the observed trend in the extracellular 
glucose concentration, but a delayed response was observed. According 
to the oxygen oscillation experiment, at low oxygen levels in a cycle, the 
upper glycolytic pool is expected to drop but this pattern was not 
observed in the measurements. The range of the glycolytic intermediate 
variations were identical in the oxygen and glucose oscillations and in 
the glucose oscillations alone, however, the upper glycolytic in
termediates did not decline as quick as in the case of only sugar oscil
lations. This is possibly due to their slower conversion to other 
metabolites in the absence of oxygen, and thus in a slower depletion rate 
of this pool. 

The TCA cycle intermediates accumulated in the first part of the 
cycle and reached their maximum at 90 s, which was followed by a 
temporary drop at 145 s and increased again until 220 s before the 
concentration declined until the end of the cycle. This dip in the con
centration profile was not observed in previous sugar oscillation ex
periments [19,28,46], and can be attributed to the influence of oxygen. 
In the absence of oxygen, the decline in NAD+ concentration might 
result in a decrease of the TCA cycle flux and the depletion of TCA in
termediates. However, the errors related to this single measurement 
point might question the significance of this dip. The average pool size of 
the TCA intermediates was lower compared to the steady state values, 
which was observed previously in feast famine cycles and was attributed 
to adaptation of the cells to the quickly changing conditions and facili
tating to cope with the rapidly changing substrate availability by 
maintaining pools with faster turnover [47]. 

The pentose phosphate intermediates showed accumulation between 

0 and 90 s in the cycle, similarly to solely glucose oscillation experi
ments [19]. This is possibly due the direct linkage of the PPP pool to the 
upper glycolytic pool. However, a dip in the concentration of the PPP 
intermediates at 90 s might be related to a reduced oxygen availability, 
and a temporary drop in the ATP pool, re-arranging the carbon flux 
towards the PPP. However, this dip is not statistically significant. To
wards the end of the cycle, the PPP intermediates have declined.Simi
larly to the individual oxygen or glucose oscillation experiments, the 
amino acid and storage pools did not show dynamics in a cycle, which is 
related to their long turnover times. 

Generally, the additional effect of oxygen oscillation next to the 
glucose oscillation cycles was not observable in most metabolite pools. 
During the reduced oxygen availability, reduced ATP and NAD+ co
factors are available, influencing the rate of many metabolic processes as 
shown in the oxygen oscillation experiments. However, due to the 
alternating oxygen availability in the combined oscillation experiments, 
the influence of fluctuations of these molecules might be hidden behind 
the influence of the glucose pulses on the central metabolism, redox 
state and ATP availability. The lack of influence of the fluctuating ox
ygen concentrations next to the fluctuating sugar concentrations is also 
reflected in the extracellular penicillin and glucose concentration 
measurements. 

3.4. Model simulations 

Regarding glucose limited chemostat experiments at different dilu
tion rates, the model gave good predictions of the trends of the experi
mentally observed qO2, qCO2, qS and qP during steady state, and also of 
the Cp, Cx and Cs in the ramp experiment (Figs. 6 and 7). The model 
predicted the trends of increasing O2 uptake, CO2 production and sugar 
uptake with increased dilution rate. The penicillin production rate and 
the penicillin concentrations showed a maximum at a dilution of 0.03 h- 

1, in good correlation with experimental data [35]. This is possibly 
reasoned by the repression of the gene cluster by extracellular glucose, 
taking place at dilution rates exceeding 0.03 h-1 [26]. Additionally, 
during the ramp experiment, the trends of the intracellular metabolite 
pools were well captured in the model, although the XGLY pool size was 
under predicted (Appendix, Figure A2). 

Regarding the DO step experiments, the model predicted the Cx, Cs 
and Cp profiles in the experiments well (Figs. 8 and 9). The declining 
trend in the penicillin concentration at low DO was also well predicted. 
This was due to the low oxygen levels influencing the IPN synthesis rate, 
resulting in a declining IPN pool size which negatively influenced the 
penicillin synthesis rate. Additionally, in the 0.009 mM step experiment, 
the increasing extracellular glucose concentration might have repressed 
the penicillin gene cluster, further contributing to the reduced penicillin 
synthesis rate. The intracellular pools related to these experiments 
(XGLY, XSTO and XATP, Appendix, Figure A3 and A4) did not show changes 
according to the predictions, similarly to the experimental data which 
also didn’t show clear changes. The decline in the biomass growth rate 
was attributed to the decline in the NAD+ concentration in the model. 

The oxygen oscillation experiments and the combined oxygen and 
glucose scale-down experiments were only used for model validation. In 
the oxygen oscillation experiment I, the experimentally observed slight 
increase in biomass concentration and the decline in penicillin concen
tration was captured well (Fig. 10). The penicillin production rate did 
not show large fluctuations, because the oxygen level affected the IPN 
pool directly and the penicillin production rate therefore decreased to a 
steady reduced level. The levels of the glycolytic intermediates in this 
experiment followed the same trend as the measurements, while the ATP 
concentration showed a larger drop in the simulations than in our 
measurements and decreased to zero in the absence of oxygen (Fig. A5, 
Appendix). This is most probably caused by cellular regulation, whereby 
the ATP level is tightly controlled to achieve ATP homoeostasis [48,49], 
which was not included in the model. Due to the periodical small 
extracellular glucose increase, the predicted concentration of the 
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enzyme pool related to the penicillin synthesis dropped slightly. 
During the sugar oscillation experiment the predictions were good in 

terms of predicting the dynamic changes within a cycle regarding Cs 
(Fig. 11), and XATP, XSTO, and XGLY, however, the XGLY pool size was 
under predicted (Figure A6, Appendix). On a long term during the sugar 
oscillations, the declining trend in penicillin concentration was repre
sented by the model, however, the extent of the penicillin concentration 
decline was overestimated. The penicillin concentration declined to 20 
% of its value after 100 h of sugar oscillations according to the predic
tion, while in the measurements of Jonge et al., it was only approxi
mately 50 % [19]. The penicillin concentration decline is reasoned in the 
model by the periodic glucose starvation, limiting the penicillin syn
thesis and glucose excess conditions which represses the gene cluster. 
Because the penicillin concentration in this experiment was not used in 
the parameter estimation procedure, and its solely based on predictions 
from parameters fitted using data from other experiments, it’s possible 
that predictions at such extreme glucose concentrations are not captured 
well in the model. The exaggerated penicillin production decline could 
be further improved by applying the measured penicillin concentrations 
for the parameter fitting. The biomass concentration showed a slight 
elevation in the predictions during the fermentation (7 %), which might 
not be easily observable in the experimental measurements. 

In the combined glucose and oxygen oscillation experiment, the 
penicillin concentration drop was overestimated, similarly as for the 
glucose oscillation experiments. The extent of the drop was the same as 
during the individual feast famine cycles, indicating that no additional 
effect of oxygen oscillations takes place, resembling the experimental 
observations. During the cycle, the expected Cs was well approximated 
and the XGLY was under predicted (Figure A7, Appendix). Similarly to 
the oxygen oscillation experiments, the drop in the ATP concentration at 
the time moments when the DO dropped to zero were overestimated, 
and ATP levels of zero were noted. Generally, the trends of all the 
measured intracellular pools were captured well in the model, but the 
exact values showed slight alternation. Evaluating the relative errors 
between the predictions and the measurements shows that when aver
aging the errors of the pools and time points, the metabolite trends of 
each experiment are predicted with a 31 % error. There was no differ
ence between the errors in the experiments which were used for the 
model parameter fitting and those which were predicted, showing the 
reliability of the model. Amongst the pools, the glycolytic pool and the 
extracellular glucose pool showed the largest deviations from the mea
surements, while the biomass concentration, the storage compounds and 
the ATP pool are predicted relatively well with an average relative error 
<11 %. 

The model simulations predicted the trends in biomass growth and 
penicillin production by considering the influence of the relevant 
intracellular pools and metabolic processes, however, the model has 
several limitations and can be further improved. The largest challenge of 
the pooled modelling approach is the large number of unknown pa
rameters which are making the parameter estimation challenging. In the 
presented model, not all model parameters could be well defined, 
because the measured pool sizes in this study are not sufficient to clearly 
define all the model parameters. Non-identifiably is a common problem 
with metabolic models [9], although predictions with non-identifiable 
parameter values still can lead to useful models with good predictions 
[50]. Well-designed experiments and targeted omics measurements 
could bring further understanding of the pathway regulations, resulting 
in an improved model structure. As obtaining more detailed experi
mental data is laborious, the model could be further simplified to reduce 
the number of unknown parameters. Kinetic terms which do not show 
strong involvement could therefore be eliminated or variables could be 
pooled further to reduce the model [12]. Although we have applied 
metabolite lumping and eliminated several pools from a previous model 
[11], the model network and structure could be further simplified. 
Drawing biological conclusions about control mechanisms from the 
model is not straightforward, as parameter sensitivities are difficult to 

obtain [51], which makes it difficult to predict from which biological 
modification the penicillin production could benefit the most. For future 
work, model improvements are recommended based on network struc
tures, model reduction, more accurate kinetic terms and parameter 
values [9,51]. 

On the other hand, the model presents good predictions of the 
observed trends of Cp, Cx and Cs under dynamic conditions on time scales 
of seconds to minutes and fluctuations in both glucose and oxygen 
levels, as validated by 2 experiments. Compared to the black box model, 
good predictions for the trends of the penicillin concentrations are 
available. According to simulations with the black box model under 
feast famine conditions, no penicillin production takes place as pre
sented in the study of Tang et al.[11]. The black box model lacks dy
namics and intermediate metabolite pools (such as storage or IPN pool) 
and therefore negative growth and penicillin production rates are ach
ieved under glucose starvation. Therefore, the presented dynamic 
modelling approach is advantageous and is strongly recommended for 
application in coupled CFD models to describe productivity under het
erogeneous substrate and DO availability. With the help of the coupled 
CFD-kinetic model predictions, further improvements on the process can 
be achieved, such as sparger design or feeding port locations [7]. 

4. Conclusions 

To obtain accurate predictions of large scale penicillin fermenta
tions, heterogeneities in terms of oxygen and glucose in industrial scale 
fermentors have to be considered. This study aimed to design scale down 
experiments based on lifeline data obtained from CFD simulations of 
large scale fermentors. Additionally, we developed a metabolic struc
tured kinetic model describing the cellular responses to a dynamically 
changing environment. Metabolite pools obtained from chemostat ex
periments at varying dilution rates and oxygen levels, next to cycling 
feast famine experiments, were used for parameter estimation of the 
model. The obtained metabolite pools of the scale-down experiment of 
solely oxygen and combined glucose and oxygen oscillation experiments 
were used for model validation. 

The scale down experiments designed in this study represented the 
total residence time fractions obtained from the CFD simulations of the 
large scale tanks well, while compromising on the time periods the cells 
reside in a certain regime. Metabolite analysis of the scale-down ex
periments wherein combined oxygen and glucose oscillations were 
achieved, showed that measured metabolite pools, i.e. amino acids, 
upper and lower glycolytic intermediates, TCA cycle intermediates and 
pentose phosphate cycle intermediates, closely resembled what was 
observed in the glucose oscillation experiments, showing little influence 
of the additional oxygen oscillations. Similarly, the decline of penicillin 
production also resembled the glucose oscillations only without an 
additional effect of the oxygen. 

The developed metabolic structured kinetic model was able to 
adequately predict extracellular concentrations of glucose, biomass and 
penicillin, next to intracellular metabolite pool concentrations. Simu
lations under dynamic conditions resulted in predictions of the metab
olite pools on a seconds scale and predicted changes in the penicillin and 
biomass concentration on the time scale of a fermentation. Despite some 
discrepancies between model predictions and simulations, the trends of 
both extra and intracellular metabolite pools were well predicted under 
both glucose, oxygen and combined glucose and oxygen gradients, 
where the latter two served for model validation. Coupling the devel
oped kinetic model to CFD simulations should provide improved lifeline 
data to guide further scale down experiments aimed at improving the 
performance of large scale fermentations through improvement of the 
producing strain and/or the operating conditions of the bioreactor. 
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