
Optimization of interplanetary
trajectories with deep space maneuvers
- Model development and application

to a Uranus orbiter mission
Thesis Report

Sjoerd Molenaar

August 2009





Optimization of interplanetary trajectories with deep
space maneuvers - Model development and application to

a Uranus orbiter mission

Thesis Report

Sjoerd Molenaar

August 2009

Astrodynamics & Satellite Systems
Faculty of Aerospace Engineering
Delft University of Technology
Kluyverweg 1, 2629 HS Delft
The Netherlands





Preface

This report concludes the work that has been performed for my Master of Science
thesis research at the Faculty of Aerospace Engineering of Delft University of
Technology in The Netherlands. During the course of the study my interest in
space engineering, in particular interplanetary trajectories, started to grow. When
I was searching for a thesis subject, I looked at previous interplanetary missions.
I found that Uranus has never been (or will be in the near future) the main
target for a scientific mission. Uranus is considered a boring planet, but I found
out that there are many interesting features at Uranus, its rings and its moons.
Therefore I chose Uranus to be the target planet for this thesis research. At the
end of the literature study I did prior to this thesis research, which was focused
on the Uranus mission, the concept of deep space maneuvers came up. The
addition of these maneuvers that are performed between planetary encounters is
a recent topic in the field of optimizing interplanetary trajectories. I considered it
a challenge to add these maneuvers to already existing software used at the Faculty.

Readers who are primarily interested in the planet Uranus, previously flown
outer planet missions and the layout of the spacecraft are referred to part I of
this report. If the reader is more interested in the orbital mechanics required for
interplanetary trajectories with deep space maneuvers, part II of the report is of
most value. The software package and optimization method used are the subject
of part III of the report. Finally, if the reader would like to view the results
obtained in this thesis, together with the conclusions and recommendations,
please refer to part IV.

I would like to express my gratitude to my thesis supervisor Ron Noomen for his
help during my thesis work. I appreciated the critical questions and suggestions
during the weekly meetings. I would also like to thank all the students on the
ninth floor for the wonderful time I have had doing my literature study and thesis
research there. It was well worth it to travel from Amsterdam to Delft and back
almost every day. Last, but certainly not least, I would like to thank my parents,
my brother, my friends and family for supporting me during this period of hard
work.

Sjoerd Molenaar
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Abstract

Since the dawn of the space age many space missions have been carried out in
order to explore the solar system. Only one spacecraft has ever had the privilege
to travel to the distant planet Uranus, namely Voyager 2. However, Voyager 2
has only been the tip of the iceberg when it comes to uncovering the mysteries
of Uranus, its rings and moons. An orbiter mission to Uranus is a logical step in
the range of planetary explorers, as it could provide insight in for example the
formation process of ice giants and in atmospheric phenomena.

Optimization of the interplanetary trajectory is a major part of the analysis of
a mission to Uranus. Many different techniques can be applied to go from Earth
to another planet. Of course a direct flight is possible, where one engine burn is
applied at a parking orbit around Earth and another burn is performed to get
into orbit around the target planet. It is also possible, however, to use the gravity
of other planets to change the trajectory in such a way that it could save fuel
with respect to the direct interplanetary transfer. It is also possible to perform
an engine burn somewhere along the interplanetary orbit. Such a deep space
maneuver (DSM) may also improve the total fuel consumption for the mission.

The mission to Uranus and the addition of deep space maneuvers to the
trajectory form the backbone of this thesis. Therefore the following thesis
objectives can be formulated:

I Develop a method to optimize interplanetary trajectories with deep space ma-
neuvers and integrate this method in the software package galomusit.

II Apply the developed method to optimize the trajectory for a Uranus orbiter
mission.

Based on the literature study prior to this thesis a number of assumptions are
made regarding the mission to Uranus. First of all, in this thesis only high thrust
trajectories are used. Secondly, planets can be used to perform either a powered
or an unpowered gravity assist, but aerogravity assists are not applied. Finally,
the optimization of the trajectory is done only with respect to the total ∆V , so
single-objective optimization is used.

The spacecraft is assumed to start at a parking orbit around Earth. The
parking orbit that is used is a Geostationary Transfer Orbit (GTO) with a
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pericenter altitude of 185 km. The final science orbit around Uranus is a polar
orbit, with an eccentricity of 0.90 and a pericenter altitude of 2500 km. For the
trajectory towards Uranus, the spacecraft is allowed to perform a maximum of
five swingbys. Mercury and Neptune are not used as a swingby planet. Venus and
Earth can be used multiple times for a swingby, Venus three times and Earth twice.

The trajectory that produces the lowest total ∆V for trajectories without
DSMs is EVVEJU. The total ∆V that is required for this trajectory is 2.892
km/s. The launch date is 12 September 2015 and the arrival date is 16 July 2034,
giving a total time of flight of 6882.2 days.

The VVEJ trajectory was present in a set of 77 swingby sequences used by
Melman [2007] for his thesis research on a mission to Neptune. A number of
assumptions was made to come to this set of sequences, one of which was that
it was not possible to perform a swingby at Venus after a swingby at Earth.
The inner part of the solar system is often used to gain enough velocity to
travel to the outer parts of the solar system. Therefore, a new set of 77 possible
swingby sequences was created by allowing a swingby at Venus after a swingby
at Earth. The best result out of the new sequences is EVVEJ, with a total
∆V of 5.005 km/s. The launch date is 17 January 2017 and the arrival date is
15 November 2034. This results in a total time of flight of 6518.7 days. The
total ∆V in this case is more than 2 km/s higher than the VVEJ trajectory.
It can therefore be concluded that the new swingby sequences do not provide
better results in terms of the total ∆V with respect to the original set of sequences.

The addition of DSMs to the trajectory meant that some changes had to be
made in galomusit. First of all, a method had to be developed to propagate
a spacecraft along a Kepler orbit. An interplanetary leg with a DSM can not
be analyzed using Lambert targeting alone. Lambert targeting is the backbone
of galomusit, ensuring that the spacecraft encounters a target planet at a
specified time instant. The first part of the leg is now based on Kepler’s problem,
where both the initial position and velocity need to be known together with the
time of flight. A universal formulation of Kepler’s problem was implemented in
galomusit that is the same for each type of conic section. The end of the Kepler
arc is the location where the DSM is performed. The output parameters of the
Kepler problem are the position and velocity at the end of the Kepler arc. The
second part of the leg is then analyzed using Lambert targeting, which makes
sure that the spacecraft encounters the next planet. The discontinuity in the
velocity at the end of the Kepler arc and at the start of the Lambert arc is the DSM.

Adding DSMs to the trajectory introduces many additional variables besides
the encounter epochs. If a DSM is added to the first leg of the trajectory,
4 variables are added to the problem. A DSM on a leg after an unpowered
swingby introduces three new variables. All of the DSM related variables are
generated randomly from a user defined search space. Finally, a new subroutine
had to be created in galomusit to analyze unpowered swingbys. The unpow-
ered swingby with subsequent DSM has replaced the powered swingby in this case.



Abstract xxi

The adaptations to galomusit are benchmarked and it is concluded that
the implementation of the method to analyze trajectories with DSMs is applied
correctly. The total ∆V and the orbits corresponding to the best solutions found
in the literature could be reproduced. However, this is not obtained directly,
using the complete search space for all variables, but after successive steps where
the search space is reduced.

For the EdU transfer (where the symbol ’d’ denotes a DSM) the optimization
on the complete search space produces a total ∆V that is slightly higher than the
total ∆V for the Lambert solution (which is 6.673 km/s). After an analysis of the
search space it was found that a large part of the search space could be neglected
and after search space reduction a value for the total ∆V was found that is 10
m/s lower than the best value for the Lambert solution. A grid sampling around
the global optimum showed that the total ∆V behaves in a smooth way.

When a DSM is added to a trajectory with a swingby, the behavior of the
total ∆V changes from being smooth to being quite irregular. After an analysis
of the search space the results can be improved when the search space has been
reduced or certain variables have been given a fixed value.

Adding a DSM may result in trajectories that have more than one revolution
between planetary encounters. When only Lambert targeting was concerned, these
multi-revolution transfers were not allowed. In this thesis only single-revolution
Lambert arcs were allowed as well, but the addition of a Kepler arc prior to a
Lambert arc opens up a new range of trajectories that otherwise would not be
possible. A prime example of this can be seen in section 15.3.2, where the total
∆V for an EdVEU (so a DSM on the leg between Earth and Venus) transfer was
1.6 km/s lower than for the EVEU Lambert solution.

It can finally be concluded that galomusit as it exists now is not powerful and
sophisticated enough to find the optimal solution at once when DSMs are added
to the trajectory. The search space is too large and the objective function behaves
very irregularly. After a first run on the complete search space, the search space
itself has to be analyzed to determine if certain parts can be ignored. Right now,
this still has to be done by hand, which is tedious work. If this process could be
automated it will improve the performance of the program.





Chapter 1

Introduction

Since the dawn of the space age many space missions have been carried out in
order to explore the solar system. Our home planet Earth has been the subject
for most of these missions, but a significant number of missions have gone beyond
Earth for example to the gas giants that lie beyond Mars and the asteroid belt.
Two of the four giant planets, Jupiter and Saturn, have been studied in detail
by planetary orbiters. The next giant planet in terms of distance to the Sun is
Uranus. Only one spacecraft has ever had the privilege to travel to this distant
planet, namely Voyager 2. However, Voyager 2 has only been the tip of the
iceberg when it comes to uncovering the mysteries of Uranus, its rings and moons.
An orbiter mission to Uranus is a logical step in the range of planetary explorers,
as it could provide insight in for example the formation process of ice giants and
in atmospheric phenomena.

Optimization of the interplanetary trajectory is a major part of the analysis of
a mission to Uranus. Many different techniques can be applied to go from Earth
to another planet. Of course a direct flight is possible, where one engine burn is
applied at a parking orbit around Earth and another burn is performed to get
into orbit around the target planet. It is also possible, however, to use the gravity
of other planets to change the trajectory in such a way that it could save fuel
with respect to the direct interplanetary transfer. It is also possible to perform
an engine burn somewhere along the interplanetary orbit. Such a deep space
maneuver (DSM) may also improve the total fuel consumption for the mission.

At the Faculty of Aerospace Engineering of Delft University of Technology in
The Netherlands a software package called galomusit is used for the optimization
of interplanetary trajectories. Prior to this thesis research it was not yet possible
to add these DSMs to the trajectory. The mission to Uranus and the addition of
DSMs to the trajectory form the backbone of this thesis. Therefore the following
thesis objectives can be formulated:

I Develop a method to optimize interplanetary trajectories with deep space ma-
neuvers and integrate this method in the software package galomusit.

II Apply the developed method to optimize the trajectory for a Uranus orbiter
mission.

1



2 Introduction

The purpose of this report is to provide a complete and detailed overview of the
work that has been performed for this MSc thesis research. To that end, the report
is set up in a structured way by discussing some general background information,
the theory of orbital mechanics and the optimization process before presenting the
results and drawing the conclusions and recommendations.

1.1 Document overview

This report is divided into several parts, each of which is dedicated to a specific
part of the thesis research. An overview of each of these parts is given below.

First, in chapter 2, an overview of the Uranus mission will be presented together
with the time scales and reference systems that will be used throughout this thesis.

Part I

Part I, containing chapters 3, 4 and 5, provides some general background
information for the interplanetary mission. Chapter 3 provides details on the
planet Uranus, its moons and rings. Also the scientific objectives for a mission
to Uranus are formulated and the chapter ends with a proposal for a science
orbit that can accomplish these objectives. Chapter 4 gives an overview of four
interplanetary missions to the outer parts of the solar system, namely Voyager,
Galileo, Cassini-Huygens and New Horizons. These missions provide insight
in for example what types of instruments are needed for the Uranus mission.
Chapter 5 is focused on the spacecraft itself. The chapter goes into detail about
the propulsion system and electrical power generation and a selection of payload
instruments will be discussed.

Part II

The second part of this thesis report is focused on orbital mechanics. Chapter
6 introduces the basic principles of orbital mechanics, like the different orbit
types. The focus in chapter 7 is on perturbing accelerations and why all of
them can be neglected for this thesis research. Chapter 8 goes into detail on the
different techniques that are applied with high thrust interplanetary trajectories.
These include Lambert targeting and gravity assists. The theory behind DSMs is
discussed in chapter 9, where the focus is on the introduction of new variables.
The final chapter of part II is chapter 10, in which propagation of an orbit along
a Kepler arc is discussed. A universal variable formulation for Kepler’s equation
will be derived that holds for all types of conic sections.

Part III

Part III of this report is dedicated entirely to Genetic Algorithm (GA) optimiza-
tion. In chapter 11 the general principles of GAs are outlined, as well as some
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more advanced operations within a Genetic Algorithm. Chapter 12 focuses on the
software tool that is used in this thesis, galomusit. The history, development and
structure of the program are discussed, as well as the additions and modifications
that were made for this thesis research. The results for benchmarking galomusit
can be found in chapter 13.

Part IV

In part IV the results of the trajectory optimization for the mission to Uranus will
be presented. First, in chapter 14 the trajectory to Uranus is optimized without
the addition of DSMs on the trajectory. Then, in chapter 15, DSMs will be added
to trajectories with either 0, 1 or 2 gravity assists. Finally, the conclusions that
can be drawn from this research and the recommendations for further research will
be presented in chapters 16 and 17.





Chapter 2

Mission definition

This chapter is intended to present the most important assumptions that are made
for the mission to Uranus and to discuss the time scales and reference systems that
are used throughout this thesis.

2.1 Assumptions for the Uranus orbiter mission

In this section some of the most important assumptions that are made for this
thesis research are outlined. These assumptions are made to set some boundaries
on the trajectory analysis for the Uranus mission.

Mission characteristics

It is assumed that the trajectory analysis starts from a parking orbit around
Earth. The launch trajectory and insertion of the spacecraft into the parking orbit
is not considered. The parking orbit that will be used is a Geostationary Transfer
Orbit (GTO). In the remainder of this thesis, if the launch date is mentioned, it
means the date at which an engine burn will be performed at pericenter in the
GTO.

From the literature study prior to this thesis research it was determined that
the launch should occur between 1 January 2015 and 1 January 2025. The latest
possible date to arrive at Uranus was determined as 1 January 2035 [Molenaar,
2007]. The spacecraft will be put into orbit around Uranus, so observations can
be made of the planet, its rings and moons.

High thrust trajectories

In this thesis only high thrust trajectories will be used. So each engine burn is
considered as an impulsive shot, where the velocity changes instantaneously, but
the position stays the same. The orbits that are flown are pure Kepler orbits.
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6 Mission definition

No aerogravity assists

The planets can be used to change the velocity and direction of the spacecraft.
These gravity assists can be either unpowered or powered, where an engine burn
is performed at the pericenter of the swingby. It is also possible to fly through the
atmosphere of a planet. Although the possibility exists in the software package
galomusit to perform aerogravity assists, they will not be used in this thesis.

Single-objective optimization

With galomusit it is possible to perform either single-objective optimization
or multi-objective optimization. The former optimizes interplanetary trajectories
with respect to the total amount of ∆V , whereas the latter simultaneously opti-
mizes the total ∆V and the time of flight, resulting in a so-called absolute Pareto
front. For this thesis use will be made of single-objective optimization.

2.2 Time and reference systems

This particular section is dedicated to the time scales and reference systems that
are used throughout this thesis research.

2.2.1 Julian epochs

Next to the standard calender dates used in everyday life, Julian epochs are also
used in this thesis. The Julian Date (JD) is defined as the number of days since
noon on 1 January 4713 BC, including the fraction of the day. It provides, for
all practical purposes, a positive and continuous time scale. The counting starts
at noon out of historical perspective. At present, the JD numbers are quite high,
so that is why a Modified Julian Date (MJD) has been introduced [Montenbruck
and Gill, 2005]:

MJD = JD − 2400000.5 (2.1)

In this expression Julian Date 2400000.5 corresponds to midnight on 17
November 1858, which therefore is the zero point for the MJD.

The positions of the planets and other celestial bodies at any instant in time
are provided by NASA’s Jet Propulsion Laboratory (JPL). The JPL provides the
so-called Development Ephemerides (DE) publicly. They are the standard for
high-precision planetary and lunar coordinates. Currently the DE200 and DE405
are most widely adopted and in this thesis the DE200 ephemeris will be used. The
JPL ephemeris covers the period from 1600 to 2170. The DE200 series uses the
dynamical equator and equinox of J2000. The J2000 epoch is precisely Julian Date
2451545.0 (or 1 January 2000 at noon) [Montenbruck and Gill, 2005]. So the days
that have passed since the J2000 epoch are:

MJD2000 = JD − 2451545.0 = MJD − 51544.5 (2.2)
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2.2.2 Heliocentric reference frame

The orbit of the Earth around the Sun defines the so-called ecliptic plane. It is
convenient use this plane as a reference plane, because all planets in the solar
system have relatively small inclinations with respect to the ecliptic. The ecliptic
plane is inclined to Earth’s equatorial plane by an angle of iecl = 23.44◦.

The most commonly used reference frame to describe the motion of the planets
is the inertial, heliocentric, ecliptic reference frame, see also figure 2.1.

XHC

YHCeq

YHCeclSun

iecl

ZHCeq

ZHCecl

Celestial
sphere

First point

of Aries, ¡

ecliptic
plane

equatorial
plane

Celestial
North Pole

Figure 2.1 Inertial, heliocentric, ecliptic and equatorial reference frames. The X-axis is the same for
both reference frames.

The XHCecl-axis points in the direction of the vernal equinox or First Point of
Aries. The ZHCecl-axis points to the Celestial North Pole and the YHCecl completes
the right-handed orthogonal frame. The JPL DE200 planetary ephemeris that is
used in this thesis provides the position and velocity of a celestial body in the
in the inertial, heliocentric, equatorial reference frame. The XHCeq -axis coincides
with the one for the inertial, heliocentric, ecliptic reference frame. The ZHCeq -
axis is along Earth’s rotation axis and the YHCeq -axis completes the right-handed
orthogonal frame. To transform coordinates from the equatorial frame to the
ecliptic frame the following transformation is needed:

r̄HCecl =

1 0 0
0 cos iecl sin iecl
0 − sin iecl cos iecl

 r̄HCeq (2.3)





Part I: General Information
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Chapter 3

Uranus and its surroundings

Uranus is the second most distant planet from the Sun, and up until now only
one spacecraft has ever been there, Voyager 2 (see also section 4.1). During its
encounter with Uranus, Voyager 2 made the photograph shown in figure 3.1.

Figure 3.1 A photograph of Uranus taken by the Voyager 2 spacecraft during its encounter in January
1986 [NASA/Voyager, 2009].

Looking at figure 3.1, it is no surprise that Uranus was considered by many
as a very bland and boring planet. Therefore no other spacecraft has gone to
Uranus since Voyager 2 and so far there are no missions planned in the future
[NASA/JPL, 2009].

This chapter will show what is known up until now about the planetary system
of Uranus, and what questions might be answered when a spacecraft would be sent
there. There is more to Uranus than what meets the eye.

3.1 The planet Uranus

Uranus was discovered in 1781 by William Herschel (1738-1822) [NASA/JPL,
2009]. It was the first planet that was discovered with the use of a telescope.

11



12 Uranus and its surroundings

Uranus had been sighted many times before, but it was not recognized as a planet.
Before Uranus was recognized as a planet only Mercury, Venus, Earth, Mars,
Jupiter an Saturn were known. The discovery of Uranus expanded the boundaries
of the solar system significantly.

3.1.1 The giant planets

The four planets closest to the Sun (Mercury, Venus, Earth and Mars) are called
the terrestrial planets [De Pater and Lissauer, 2007], see also figure 3.2.

Figure 3.2 The solar system, after [Wikipedia, 2009].

In terms of distance to the Sun these planets are followed by the asteroid belt
and the four giant planets. The giant planets are Jupiter, Saturn, Uranus and
Neptune. Jupiter is by far the most massive planet in the solar system, with a
mass that is more than twice that of all other planets combined. Uranus is the
least massive of the giant planets.

Because of notable differences between the four giant planets, they can be fur-
ther subdivided into the gas giants (Jupiter and Saturn) and ice giants (Uranus
and Neptune). The gas giants consist predominantly of hydrogen (H2) and he-
lium (He). Uranus and Neptune, however, have a completely different internal
composition (see also section 3.1.3) [De Pater and Lissauer, 2007].

3.1.2 Planet data

In table 3.1 the most important bulk and orbital parameters of Uranus are pre-
sented.

With its mass of 86.832 · 1024 kg Uranus is more than 14 times as massive
as Earth. There is quite a difference between the equatorial and polar radius,
causing the flattening to be almost 7 times as high as here on Earth. Since Uranus
is an ice giant, its mean density is much lower (4.35 times) than the mean density
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Bulk parameters
Mass (·1024 kg) 86.832
Equatorial radius (1 bar level) (km) 25,559
Polar radius (1 bar level) (km) 24,973
Flattening (-) 0.02293
Mean density (g/cm3) 1.270
Gravitational parameter µ (·106 km3/s2) 5.794
Solar irradiance (W/m2) 3.71

Orbital parameters
Semi-major axis (·109 km) 2.87246
Sidereal orbit period (days/years) 30,685.4 / 84.01
Inclination (◦) 0.772
Eccentricity (-) 0.0457
Obliquity (◦) 97.77
Sidereal rotation period (hrs) 17.24

Table 3.1 Bulk and orbital parameters of Uranus [NASA/GSFC, 2007].

of Earth, a terrestrial planet.

Uranus is located 19.2 times further away from the Sun as Earth. The orbit
of Uranus about the Sun is just out of the ecliptic plane, with an inclination
with respect to the ecliptic of 0.772◦. The orbit is nearly circular, but with an
eccentricity of 0.0457 there is still quite some difference from being a perfect circle.

3.1.3 Planetary interior

The exact composition of ice giants Uranus and Neptune is not precisely known
up to this point. It could consist for the most part of ices, or of a mixture of
rocky materials, hydrogen and helium, or some combination in between. The best
models to date for Uranus indicate a small rocky core, a large, icy, ionic ocean and
a small atmosphere [De Pater and Lissauer, 2007]. In these models the core has
a radius of roughly 4500 km, the thickness of the liquid icy ocean is about 16,000
km and the hydrogen and helium dominated atmosphere is about 5000 km thick
[Faure and Mensing, 2007]. Figure 3.3 shows a schematic of this best known model
of the interior structure of Uranus.

3.1.4 Configuration

The rotation axis of Uranus is nearly aligned with its orbital plane with an obliquity
of 97.77◦ (so this is the angle the equatorial plane makes with respect to the orbital
plane) [NASA/GSFC, 2007]. This is a feature not seen anywhere else in the solar
system. The cause for this extreme axial tilt is probably a collision with an object
of about the size of the Earth while Uranus was still forming. The disk of gas and
dust particles that had orbited Uranus prior to the impact realigned itself with
the equatorial plane after its rotation axis had been tipped over by the impact.
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Figure 3.3 Best model of the interior structure of Uranus [Hamilton, 2001]. Grey represents the core of
the planet, light blue-green represents the icy, ionic ocean and the atmosphere is represented
by dark blue-green.

3.1.5 Atmosphere and meteorology

The interior of Uranus is topped off with an atmosphere dominated by H2

and He. Uranus also contains a somewhat smaller amount of methane (CH4).
The methane in the upper atmosphere absorbs red light, giving Uranus its
characteristic blue-green color. This composition is totally different than for
example the atmosphere of Earth, one of the terrestrial planets much closer to
the Sun. The Earth’s atmosphere consists mostly of nitrogen (N2) and oxygen
(O2). The atmospheres of Mars and Venus consist mainly of carbon dioxide
(CO2), whereas Mercury only has an extremely tenuous atmosphere [Beebe, 2004].

Because of its unusual orientation, the seasons on Uranus are the most extreme
ones in the solar system. During Uranus’ orbit around the Sun, the poles bask in
sunlight or dwell in total darkness for more than 40 years. During the time of the
Voyager 2 flyby in 1986 the north pole of Uranus was pointing in the direction
of the Sun, and the atmosphere showed little sign of activity (see figure 3.1)
[Hammel and Klein, 2003].

During the last few years, however, the atmosphere of Uranus is showing an
increase in activity. A dark spot has been sighted in August 2006 by the Hubble
Space Telescope [Sromovsky et al., 2005], which is very rare on Uranus, but on
Neptune it is common. The dark spot on Uranus was actually a vortex of about
two-thirds the size of the United States. This dark spot may have been be an
indication that the atmosphere of Uranus was changing as it was approaching
equinox in 2007 [Devitt, 2008].

At the Uranus equinox the Sun was shining directly over the planet’s equator.
Figure 3.4 shows images of Uranus before and during the Uranus equinox.

There are other indications that the atmosphere of Uranus has been increasing
in activity. Voyager 2 detected no more than 10 distinct cloud features on Uranus
during its encounter. In 2004 however, over 30 features were visible and could be
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Figure 3.4 Images of Uranus taken at near infra-red wavelengths with the Keck telescope. The left image
was taken before equinox, in 2005. The middle and right image show Uranus during equinox
in 2007 [Devitt, 2008]. The planet’s south pole is to the left in each of the three pictures.

tracked over time. Furthermore, there were many more clouds that appeared and
then later on disappeared again on very short time scales [Lakdawalla, 2004].

One cloud feature on Uranus is of special interest, the so-called ”Great Spot
at 37◦S” (GS-37S in short). This particular cloud appeared to persist from 2000
to 2004, in which period regular observations were made using the Keck telescope.
This cloud also matched in shape and position with a cloud spotted by the Hubble
Space Telescope in 1996 and there is evidence that the cloud was also spotted by
Voyager 2 [Lakdawalla, 2004]. Figure 3.5 shows images of both hemispheres of
Uranus taken with the Keck Telescope on 11 and 12 July 2004.

3.1.6 Magnetic field

Planetary magnetic fields are generated by complex fluid motion in parts of the
planet’s interior that are electronically conductive. Both Uranus and Neptune
have a different type of magnetic field than Earth, Jupiter and Saturn. The last
three planets have axi-symmetric dipole fields, but Uranus and Neptune do not.
Determination of these different types of magnetic fields is important for the
understanding of the planetary interiors [Stanley and Bloxham, 2004].

The magnetic field of Uranus is tilted 58.6◦ with respect to its rotational
axis. Next to that, the magnetic center is also offset from the center of the
planet by about one third of Uranus’ radius [De Pater and Lissauer, 2007]. This
configuration is shown in figure 3.6.
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Figure 3.5 The two hemispheres of Uranus showing a large banded wind structure in the northern
hemisphere [Devitt, 2004]. the GS-37S storm can be seen in the right image in the lower left
corner (it is the faint feature). The images are compositions of pictures taken at different
near-infrared wavelengths. Uranus’s south ole points to the left in both images.

Figure 3.6 The magnetic field configuration of Uranus, adapted from [Wikipedia, 2009].

Uranus has an internal magnetic field, implying that the interior must be elec-
trically conductive and convective. The pressure in the planet’s interior is too
low, however, for metallic hydrogen to form. The conductivity has to come from
somewhere else. On Jupiter this is not the case and the interior pressure allows
for forming metallic hydrogen. Uranus’ icy mantles are probably hot, dense, liquid
ionic ’oceans’ of water with some methane, ammonia, nitrogen and hydrogen sul-
fide, where the conductivity is high enough to set up an electromagnetic current
system that can generate the observed magnetic fields [De Pater and Lissauer,
2007].
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3.2 The ring system of Uranus

Up until now there are 13 known rings around Uranus [NASA/JPL, 2009]. The
first nine rings were discovered in 1977. They are narrow and optically thick, in
the range of 41,000 km - 52,000 km from Uranus’ center. The rings are identified
by numbers and Greek alphabet letters. From the inside out they are called 6, 5,
4, α, β, η, γ, δ, and ε.

Most of the rings are 1 to 10 km wide, nearly circular (eccentricity of the order
10−3) and they lie approximately in the planet’s equatorial plane (inclination of
less than one tenth of a degree). The outermost ring, the ε-ring, is the widest and
most eccentric. Its eccentricity is 8 ·10−3 and it is 20 km wide in its pericenter and
96 km wide in its apocenter. Particles are in the range 1 cm to 10 m or somewhat
larger. They are extremely dark, probably consisting of radiation darkened ice.
This consists of complex hydrocarbons embedded in ice [De Pater and Lissauer,
2007].

Voyager 2 discovered two new rings, 1986 U2R and the λ-ring. The first one
is located about 1500 km below the 6-ring making it the ring closest to Uranus.
The λ-ring is located in between rings δ and ε. These two rings brought the total
number of known rings to 11 [Faure and Mensing, 2007]. In December 2005, the
Hubble Space Telescope photographed two previously unknown rings. Located
about twice as far away from the planet as the other known rings, the new rings
are called the second or outer ring system of Uranus. So until now, 13 rings are
known to exist [HubbleSite, 2005].

3.3 The moons of Uranus

Uranus has 27 known moons, whose names come forward from characters in
plays by William Shakespeare (1564-1616) and poems written by Alexander Pope
(1688-1744) [NOAA, 2007]. Uranus is the only planet where the moons don’t
possess names that come from ancient mythology. Of the 27 moons, there are five
main ones. These were the only ones known before Voyager 2 made its flyby at
Uranus in 1986 [NASA/JPL, 2009]. Table 3.2 indicates the most important bulk
and orbital parameters. The inclination that is shown here is defined with respect
to the equatorial plane of Uranus.

Miranda

One of the most peculiar objects in the solar system is the moon Miranda, see
figure 3.7.

Miranda is the closest to Uranus of the five main moons. It has a part which
is heavily cratered, which would be expected for a small and cold moon. However,
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Bulk parameters
Moon m (1020 kg) R (km) ρ (g/cm3) VGA∗ (-)
Miranda 0.66 240 x 234.2 x 232.9 1.200 0.27
Ariel 13.5 581.1 x 577.9 x 577.7 1.670 0.35
Umbriel 11.7 584.7 1.400 0.19
Titania 35.2 788.9 1.710 0.28
Oberon 30.1 761.4 1.630 0.25

Orbital parameters
Moon a (103 km) T (days) i (◦) e (-)
Miranda 129.39 1.413 4.22 0.0027
Ariel 191.02 2.520 0.31 0.0034
Umbriel 266.30 4.144 0.36 0.0050
Titania 435.91 8.706 0.14 0.0022
Oberon 583.52 13.463 0.10 0.0008

Table 3.2 Bulk and orbital parameters of the five main uranian moons [NASA/GSFC, 2007]. * Visual
Geometric Albedo

Figure 3.7 The odd surface of Miranda [NASA/JPL, 2009].

there are also three parts of its surface that don’t have many craters, but have
numerous bands, ridges and steep cliffs. These parts are called coronas and they
are named after places mentioned in Shakespeare’s plays (Arden, Inverness and
Elsinor) [Faure and Mensing, 2007]. What has caused Miranda to have such a
unique surface is a mystery. There are a number of hypotheses, the first one being
that Miranda has been shattered, perhaps up to five times, during its formation.
Another possible explanation involves the sinking of material in regions where the
heavy core material reaccreted on the outside and subsequently sank to the center.

Ariel

The four other main moons are shown in figures 3.8 and 3.9. The second main
moon in terms of distance from Uranus is its brightest one, Ariel. It has a very
old heavily cratered surface, but on its northern hemisphere there are a number
of indications of resurfacing. It contains intersecting sets of ridges and grooves as
well as several major rift valleys with steep sides and flat floors. So in its youth
Ariel has been tectonically active [NASA/JPL, 2009].
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Umbriel

Umbriel is the darkest of the main moons of Uranus and one of the darkest moons
in the solar system. It is heavily cratered, indicating that the moon is old. There
is little or no evidence that there is tectonic activity on Umbriel. The picture of
Umbriel shows a bright ring at the top, which is probably the bottom of a large
crater [NASA/JPL, 2009].

Titania

Titania is the largest satellite of Uranus. The surface of Titania is heavily cratered.
However, there are some small areas that have smoother surface material implying
local resurfacing. There are several large faults cutting through Titania’s surface,
similar to the ones seen on Ariel [NASA/JPL, 2009].

Oberon

The icy surface of Oberon is characterized by many craters. There is little evidence
for tectonic activity, but there are several high-contrast albedo features and signs
of faulting [NASA/JPL, 2009].

Figure 3.8 Ariel (left) and Umbriel (right) [NASA/JPL, 2009].

Figure 3.9 Titania (left) and Oberon (right) [NASA/JPL, 2009].

Other moons

All other 22 moons are smaller in size than the five main ones. The smallest of
them have radii as small as 6-8 km. They are also very dark, so spotting them
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with remote observations is quite difficult. The moons that were discovered by
Voyager 2 are probably half rocky material and half water ice. The composition of
the other moons remains unknown up to this point, but it is likely that they are
asteroids that were captured in the gravity field of Uranus. For more information
on the other moons, see [NASA/JPL, 2009].

3.4 Possible scientific objectives for a mission to Uranus

It has become clear throughout this chapter that Uranus is more than just a
bland blue-green planet. When a spacecraft would be sent to Uranus’ planetary
system, there are a number of objectives that such a mission could complete.

Study the composition of the atmosphere of Uranus.

Study the dynamics of the atmosphere of Uranus:

– Determine the composition of cloud features present in the atmosphere.
– Study the winds on Uranus. What are the velocities and where are they

located on the planet? How deep within the atmosphere do they occur?
– Determine how heat is redistributed within the atmosphere.
– Study how the atmosphere reacts to changing lighting conditions (day/night

variations).

Measure the magnetosphere of Uranus and determine whether it shows any
dynamical activity.

Determine the magnetic field and help explain why it is so asymmetrical.

Determine the interior structure of Uranus.

Determine whether there are any new moons or rings to be discovered.

Study the main moons. Determine whether any of these moons possesses a
magnetic field. What is the interior structure of these moons? Make detailed
photographs of the surface of these moons.

Study the dynamics and composition of the rings of Uranus.

3.5 Science orbit

The final orbit around Uranus has to be determined in such a way that it can
fulfill the intended scientific objectives. For example, in order to measure a
significant part of the magnetosphere the spacecraft will have to fly close to
and far away from Uranus. Furthermore, flying close to Uranus provides the
possibility of making highly detailed images in different wavelengths of Uranus’
atmosphere. These are just two reasons why the final orbit around Uranus should
be highly elliptic, with a close pericenter radius and a large apocenter radius.

The orbit around Uranus has to be chosen such that global coverage is
achieved, meaning that all longitudes and latitudes of the planet are covered by
the spacecraft. This is vital for studying the dynamics of the atmosphere and for
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determining the interior structure of Uranus. In order to achieve that, the orbit
has to be polar. Uranus itself will rotate around its rotational axis perpendicular
to the spacecraft’s orbit in that case.

One of the most critical conditions for this polar orbit is that it has to avoid
intersecting with one of the many rings that surround Uranus. If particles in these
rings impact with the spacecraft, it is very likely that it will result in a mission
failure. Using this as a guideline, a preliminary value for the pericenter altitude
hp has been set to 2500 km, which is approximately 10% of the planet’s equatorial
radius (which is 25,559 km). Because the orbit needs to be highly elliptical, a
preliminary value for the eccentricity e has been set to 0.90. The apocenter radius
can then be determined as follows (in chapter 6 all upcoming calculations will be
discussed in detail):

ra =
rp(1 + e)
(1− e)

=
(RU + hp)(1 + e)

(1− e)
=

28059(1 + 0.90)
1− 0.90

= 533121 km (3.1)

The semi-major axis a of the orbit then follows from the following equation:

a =
1
2

(rp + ra) =
1
2

(28059 + 533121) = 280590 km (3.2)

Using the semi-major axis, the time needed to complete a full revolution in the
orbit, T , is determined as follows:

T = 2π

√
a3

µU
= 2π

√
(280590)3

5.794 · 106 = 387971 s = 4.49 days (3.3)

This orbital period can be related to the rotational period of Uranus, using
table 3.1:

T

TrotU
=

4.49
17.24

24

= 6.25 (3.4)

So in the time the spacecraft needs to complete one revolution around Uranus,
Uranus itself will have rotated over six times around its rotational axis.

Figure 3.10 shows the example science orbit. The orbit is shown in a Uranus
centered pseudo-inertial reference frame. The ring system of Uranus is indicated
in red [NASA/JPL, 2009]. For the sake of simplicity they are drawn as circles in
the equatorial plane, which is not all that far from reality (see section 3.2).
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Figure 3.10 Example configuration of the highly elliptic polar orbit within a Uranus centered
pseudo-inertial reference frame. The orbit that is shown here lies in the yUCzUC-plane (the
index ’UC’ indicates Uranus centered).

From this figure it can be concluded that for the chosen science orbit with
close pericenter and distant apocenter, the rings should not pose any problems
for the mission.

It should be stressed that the orbit chosen for this mission is only a prelim-
inary one. It was stated in chapter 2 that for this thesis research the subject is
the optimization of the interplanetary trajectory towards Uranus. The motion of
the spacecraft once it is in orbit around Uranus will not be addressed in this re-
port. Therefore subjects like the orientation of the orbit with respect to the Sun,
atmospheric effects on the orbit and the effect that Uranus’ flattening has on the
progression of the orbit will not be covered in this report.



Chapter 4

Previous missions to the outer
planets

Pioneer 10 was the first spacecraft that traveled through the asteroid belt to
reach the outer parts of the solar system. It was also the first spacecraft to use
a planetary gravity assist, at Jupiter on 3 December 1973. Pioneer 11 was the
second spacecraft to reach the giant planets. It made a flyby at Jupiter on 2
December 1974 and then traveled further to become the first spacecraft to reach
Saturn, on 1 September 1979 [NASA/JPL, 2009].

This chapter is intended to give an overview of several interplanetary missions,
so that they can give insight into how a mission to Uranus could be performed.
The only previous visit to Uranus is described in section 4.1. Missions to two
other gas giants, Jupiter and Saturn, will be discussed in sections 4.2 and 4.3. A
mission to Pluto which is currently still on its way there, New Horizons, will be
addressed in section 4.4. The possible implications and use of these missions will
be discussed finally in section 4.5.

4.1 Previous mission to Uranus: Voyager 2

As mentioned in chapter 3, Uranus is located at a very large distance from the Sun
(more than 19 times as far as the Earth) and up to now, only one spacecraft has
ever traveled to this planet. In January 1986 Voyager 2 made a flyby at Uranus
[NASA/JPL, 2009].

4.1.1 Mission overview

Launched in 1977 by Titan 3E-Centaur rockets, Voyager 1 and 2 had as their
primary objectives to explore Jupiter, Saturn and their respective moons and
ring systems. The spacecraft made many important observations and discoveries
there. After completion of the mission objectives (the original duration of both
Voyager missions was five years), the mission was extended. Voyager 1 flew out of
the ecliptic plane and is now leaving the solar system. After its visit to Saturn,
Voyager 2 was first sent to Uranus and later it flew onwards to Neptune. At the
Uranus flyby, Voyager 2 gathered many data on its planetary system and made a
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large amount of pictures. In August 1989 Voyager 2 made a flyby at Neptune and
now it is heading out of the solar system below the ecliptic plane [NASA/Voyager,
2009].

4.1.2 Spacecraft overview

A picture of the Voyager spacecraft is shown in figure 4.1 (Voyager 1 and 2 are
identical).

Figure 4.1 The Voyager spacecraft [NASA/Voyager, 2009].

The main characteristics of the spacecraft itself are given below
[NASA/Voyager, 2009].

Size: 3.7 m high gain antenna, Magnetometers extend to nearly 13 m.

Mass: At launch 2100 kg, during the mission 825 kg, payload mass 105 kg.

Power: Three radioisotope thermoelectric generators with power level of 315
W (2003).

Propulsion: One large solid-propellant motor and 24 small hydrazine
thrusters [Schatz et al., 1979] (there is no information available on thrust
levels and specific impulse).

Science instruments: Dual cameras, infrared spectrometer and radiome-
ter, ultraviolet spectrometer, photopolarimeter, plasma detector, low-energy
charged particle detector, cosmic ray detector, magnetometer, planetary radio
astronomy, plasma wave detector.

Cost: The total cost of the Voyager program from May 1972 through the
Neptune encounter in 1989 (including launch vehicles, nuclear-power-source
RTGs, and DSN tracking support) is $865 million.

Next to the scientific payload both Voyager spacecraft also carried a gold-plated
copper disk with them. These have images and sounds on them to show what our
world looks like, if the spacecraft would ever be found by extraterrestrials.
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4.1.3 Trajectory

The interplanetary journey of both spacecraft is shown in figure 4.2. The figure
shows the dates of the gravity assists and their respective orbits out of the solar
system.

Figure 4.2 The journey of the Voyager spacecraft [NASA/Voyager, 2009].

4.2 Jupiter mission: Galileo

The NASA Galileo spacecraft was launched on 18 October 1989. The primary
focus of this mission was to investigate the Jovian system and send a probe into
the atmosphere of the solar system’s most massive planet [NASA/Galileo, 2007].

4.2.1 Mission overview

After its deployment from the Space Shuttle Atlantis, the Galileo orbiter and
probe traveled together to Jupiter and in July 1995 the probe was detached from
the orbiter. Five months later the probe entered Jupiter’s atmosphere with a
stunning velocity of nearly 48 km/s (over 170,000 km/h). It slowed down, released
its parachute and dropped its heat shield. From that moment on, the probe had
a 58 minute journey through the atmosphere of Jupiter. It collected data and
sent it to the orbiter, eventually melting and vaporizing in the extreme heat of
the Jovian atmosphere [NASA/Galileo, 2007].

Next, the orbiter was inserted into orbit around Jupiter, starting its primary
mission on 7 December 1995. Its objective was to study the Jovian system for
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Figure 4.3 A picture of Jupiter taken in 2000 by the Galileo spacecraft [NASA/JPL, 2009].

two years. After its primary objectives were completed on 7 December 1997,
the mission was extended since Galileo was capable of more. Galileo went on to
make several very close flybys of the moons Europa and Io. The spacecraft was
decommissioned on 21 September 2003, disintegrating in Jupiter’s atmosphere
[NASA/Galileo, 2007].

4.2.2 Spacecraft overview

As mentioned earlier, the Galileo spacecraft consisted of a Jovian orbiter and a
probe that was sent in its atmosphere. The general layout of the spacecraft is
depicted in figure 4.4.

Figure 4.4 Layout of the Galileo spacecraft [NASA/Galileo, 2007].

The most important characteristics of the spacecraft are listed below
[NASA/Galileo, 2007].
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Orbiter:

- Size: 5.3 m high, magnetometer boom extends 11 m to one side.
- Mass: 2,223 kg, including 118 kg of science instruments and 925 kg of

propellant.
- Power: 570 W at launch from radioisotope thermoelectric generators.
- Propulsion: Bipropellant system with a single 400 N bipropellant engine

(Isp = 303 s) and twelve 10 N thrusters (the fuel is MMH and the oxidizer
is N2O4) [EADS, 2009].

- Science instruments: Solid-state imaging camera, near-infrared mapping
spectrometer, ultraviolet spectrometer, photopolarimeter radiometer, mag-
netometer, energetic particles detector, plasma investigation, plasma wave
subsystem, dust detector, heavy ion counter.

Atmospheric probe:

- Size: 127 cm diameter, 91 cm high.
- Mass: 339 kg, of which 33.4 kg science instruments.
- Science instruments: Atmospheric structure instrument, neutral

mass spectrometer, nephelometer, lightning and radio emissions detec-
tor/energetic particles instrument, helium abundance detector, net flux
radiometer.

Program:

- Cost: Total from start of planning through end of mission is $1.39 billion.
International contribution estimated at an additional $110 million.

4.2.3 Trajectory

The booster rocket on board the spacecraft was not powerful enough to send it
directly to Jupiter. In order to get to Jupiter several gravity assists (see section
8.4 for more details) were performed. The route that was taken became known
as the ’Venus Earth Earth Gravity Assist’ or VEEGA. So using the gravitational
attraction of first Venus and then twice of Earth, the spacecraft gained enough
momentum to reach Jupiter. On its way to Jupiter, in 1994, Galileo was in
perfect position to watch the impact of comet Shoemaker-Levy 9 on Jupiter. The
interplanetary trajectory is shown in figure 4.5.

The elliptic orbits it performed around Jupiter allowed for close flybys of several
of its moons and for monitoring different parts of its extensive magnetosphere.
After the mission was extended, the first focus was on Jupiter’s moon Europa.
The additional observations during the Europa flybys supported the idea that an
ocean of water currently exists below its surface. After the Europa flybys, the focus
shifted to Io, the innermost moon of Jupiter. The radiation environment there is
extremely intense and dangerous to spacecraft components, so these orbits were
saved for last.
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Figure 4.5 Galileo’s interplanetary trajectory to Jupiter [NASA/Galileo, 2007].

4.3 Saturn mission: Cassini-Huygens

Cassini-Huygens is the mission to investigate the rings and moons of Saturn and
to send a probe into the atmosphere of Saturn’s moon Titan and land on its
surface. It is a joint three space agency mission, launched on 15 October 1997 by
Titan IV-B/Centaur launcher. The Cassini orbiter was developed by NASA’s Jet
Propulsion Laboratory (JPL), the European Space Agency was responsible for the
Huygens probe and the Italian Space Agency provided the high gain antenna. The
information in this section has been obtained from [NASA/Cassini, 2009].

4.3.1 Mission overview

Saturn was the next obvious target after the success of the Galileo mission to
Jupiter. For many centuries people have been fascinated by this planet with
its distinct ring system (see figure 4.6). The list of scientific objectives for the
Saturnian system was very extensive for the planet itself, its moons (and for this
mission Titan in particular), its rings and its magnetosphere [NASA/Cassini,
2009].

The primary mission of the Cassini orbiter was to make observations of
Saturn’s planetary system for a period of four years. During this period Cassini
made over 70 orbits around Saturn and its moons. The primary mission ended in
June of 2008, but the spacecraft was still capable of continuing the mission. The
Cassini mission was therefore extended and renamed the Cassini Equinox mission
[NASA/Cassini, 2009].
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Figure 4.6 A picture of Saturn taken on 9 February 2004 taken by the Cassini spacecraft [NASA/JPL,
2009].

The Cassini Equinox mission for now is set to end in September 2010. In August
of 2009 the Sun will shine directly over Saturn’s equator, hence the name Equinox.
After the Saturn equinox the Sun will start to shine on the planet’s northern
hemisphere and the north face of its rings. The Cassini orbiter will observe the
seasonal changes on the planet, its rings and moons, which were illuminated from
the south during the primary mission [NASA/Cassini, 2009].

4.3.2 Spacecraft overview

Figure 4.7 shows the general lay-out of the Cassini-Huygens spacecraft.

Figure 4.7 The Cassini-Huygens spacecraft [NASA/Cassini, 2009].

The most important specifications and characteristics of the Cassini orbiter
and the Huygens probe are given below [NASA/Cassini, 2009].
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Orbiter:

- Size: 6.7 m high, 4 m wide.
- Mass: 5,712 kg with fuel, Huygens probe, adapter, etc. 2,125 kg unfueled

orbiter alone, payload mass 279 kg.
- Power: 885 W (633 W at end of mission) from radioisotope thermoelectric

generators.
- Propulsion: Two 445 N bipropellant engines (Isp = 308 s) of which one

is a backup (the fuel is MMH and the oxidizer is N2O4), and sixteen 1 N
monopropellant hydrazine thrusters [MAPSView, 2006].

- Science instruments: Composite infrared spectrometer, imaging system,
ultraviolet imaging spectrograph, visual and infrared mapping spectrome-
ter, imaging radar, radio science, plasma spectrometer, cosmic dust ana-
lyzer, ion and neutral mass spectrometer, magnetometer, magnetospheric
imaging instrument, radio and plasma wave science.

Huygens probe:

- Size: 2.7 m in diameter.
- Mass: 320 kg, of which 49 kg science instruments.
- Science instruments: Aerosol collector pyrolyser, descent imager and

spectral radiometer, Doppler wind experiment, gas chromatograph and
mass spectrometer, atmospheric structure instrument, surface science pack-
age.

Program:

- Cost: $1.422 billion pre-launch development; $710 million mission opera-
tions; $54 million tracking; $422 million launch vehicle; $500 million ESA;
$160 million ASI; total about $3.27 billion, of which U.S. contribution is
$2.6 billion and European partners’ contribution $660 million.

4.3.3 Trajectory

After separation from the launch vehicle, the Cassini orbiter together with the
Huygens probe traveled for seven years before reaching Saturn. On its way it
performed four gravity assist maneuvers. First the spacecraft made two flybys at
Venus, then it had a flyby at Earth and it was sent to Saturn after it had gained
momentum at a Jupiter swingby. The trajectory, known as the Venus Venus
Earth Jupiter Gravity Assist (or VVEJGA) is depicted in figure 4.8.

In July 2004 the spacecraft went into orbit around Saturn. A few months later,
in December of 2004, the Huygens probe was released from Cassini and began its
journey to Titan. It coasted for 20 days, after which the probe descended into
Titan’s thick atmosphere on 14 January 2005. It landed two and a half hours later
on Titan’s surface with the aid of parachutes.
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Figure 4.8 The trajectory or the Cassini-Huygens spacecraft [NASA/Cassini, 2009].

4.4 Pluto Mission: New Horizons

In August of 2006 it was decided by the International Astronomical Union that
Pluto was no longer considered a planet, but instead it was assigned the status of
dwarf planet [ScienceDaily, 2006]. At that time NASA’s New Horizons spacecraft
to Pluto and its moon Charon (and perhaps later on the Kuiper Belt) was already
on its way.

4.4.1 Mission overview

The New Horizons spacecraft was launched on 19 January 2006 by an Atlas
V 551 rocket (Lockheed Martin) which was aided by a Star 48-B third stage
(Boeing) to increase the heliocentric velocity with an additional 4 km/s, sending
the spacecraft into a solar escape trajectory. It was the first ever Atlas V launch
with an external third stage. The New Horizons launch was also the first time
that five solid rocket boosters were added to the main engine, where three was
the previous maximum [NASA/JHU-APL, 2006].

In February 2007 the spacecraft made its only planetary swingby, at Jupiter.
At present, the New Horizons spacecraft is in between the orbits of Saturn and
Uranus and is expected to pass the orbit of the latter in March 2011 (see also
figure 4.10) [NASA/JHU-APL, 2009].

After a period of ’hibernation’ the spacecraft will conduct a study of the Pluto
system for five months. The surface of Pluto and Charon will be studied in terms of
composition, geomorphology and global geology. Pluto’s atmospheric composition
and structure will also be studied carefully. New Horizons will not go into orbit
around Pluto, but it will make a flyby and if the spacecraft is still healthy after
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completing the main mission, it will fly on into the Kuiper Belt [NASA/JHU-APL,
2009].

4.4.2 Spacecraft overview

A picture of the New Horizons spacecraft is shown in figure 4.9.

Figure 4.9 The New Horizons spacecraft [NASA/JPL, 2009].

The most important characteristics of the New Horizons spacecraft are listed
below [NASA/JHU-APL, 2006].

- Size: 0.7 m high, 2.1 m long and 2.7 m wide.

- Mass: The mass of the probe is 478 kg, of which 77 kg propellant and 30 kg
science instruments.

- Power: 240 W at start of mission, provided by a radioisotope thermoelectric
generator. Power decrease is about 3.5 W each year.

- Propulsion: There are four 4.4 N thrusters used for course corrections and
twelve 0.8 N smaller thrusters for attitude control (there is no information
available on the specific impulse of the thrusters).

- Science instruments: Ultraviolet imaging spectrometer, visible and infrared
camera, long-range telescopic camera, particle spectrometers, a detector to
measure masses of space-dust particles, two copies of a radio science experiment
to examine atmospheric structure, surface thermal properties and mass.

- Cost: Approximately $700 million (including spacecraft and instrument de-
velopment, launch vehicle, mission operations, data analysis, and educa-
tion/public outreach) over the period 2001-2016.

4.4.3 Trajectory

The interplanetary trajectory of New Horizons and its position in the solar system
on 20 May 2009 is shown in figure 4.10.
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Figure 4.10 The New Horizons interplanetary trajectory. The green part has been covered already by New
Horizons (as of 20 May 2009) and the red part is the trajectory that has not been covered
yet [NASA/JHU-APL, 2009].

The New Horizons spacecraft approached Jupiter after 13 months (Galileo
and Cassini took 6 and 4 years respectively) with a velocity of 21 km/s relative to
Jupiter. Flying by Jupiter at a distance of 2.27 million kilometers, New Horizons
gained an extra 4 km/s on its way to Pluto [NASA/JHU-APL, 2006].

In order to accomplish the mission’s scientific objectives the spacecraft will
have to fly through a very narrow circle of about 300 km in diameter near Pluto,
so precise orbit determination and control is vital.

4.5 Implications for a mission to Uranus

The missions described in this chapter provide some insight in what a mission
to the planetary system of Uranus may look like. They are high-thrust missions
and use gravity assists to change the velocity vector in terms of magnitude and
direction. These concepts will be outlined further in chapter 8.

What stands out in terms of the gravity assists, is that the spacecraft that go
beyond the asteroid belt don’t use Mercury as a flyby planet and also Mars is not
used. Earth and Venus are the primary gravity assist planets to reach Jupiter in
the terrestrial planet system. All missions considered in this chapter have gone
beyond Jupiter and they all performed a gravity assist there. This is because
Jupiter is an excellent planet for performing gravity assists. Why all of this is the
case will be explained in more detail in section 8.4.2.
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In the thesis work of Ramon Schlijper, a former student at Delft University
of Technology, a comparison has been made of the payload to dry mass ratio for
several interplanetary spacecraft [Schlijper, 2003]. It was found that on average
the payload mass was 11% of the spacecraft dry mass with an error margin of 3%.
The missions described here are in accordance with this number, see table 4.1.
The payload mass fraction of New Horizons is slightly below the lower bound at
7.5%, and for the Galileo probe it is slightly higher, 15.3%.

Mission mpayload
mdry

(%)
Voyager 1/2 12.7
Galileo (orbiter) 9.1
Galileo (probe) 9.9
Cassini (orbiter) 13.1
Huygens probe 15.3
New Horizons 7.5

Table 4.1 Percentage of the payload mass with respect to the dry mass for the interplanetary spacecraft
considered in this chapter.

Several types of instruments are placed on each of the spacecraft that has
been considered in this chapter.

- Spectrometers for different wavelengths (from ultraviolet to the near infrared).
They are used to learn more about the composition of atmospheres, surfaces
and rings.

- Magnetometers are used to measure the strength and the direction of the
planet’s magnetic field.

- Plasma detectors are used to measure the density, composition, distribution,
velocity and temperature of plasmas (low density gases where some of the
particles are ionized) in a magnetosphere.

- Imaging devices for different wavelengths, so that (parts of) the planet, its
rings or moons are photographed.

- Radio science experiments in order to measure atmospheric temperature and
pressure.

In section 5.3 the instruments that will form the baseline for the spacecraft
heading to the planetary system of Uranus are discussed, including a first estimate
of their mass and required power.



Chapter 5

Characteristics of the Uranus
orbiter spacecraft

In the previous chapters the characteristics for a mission to Uranus have been
outlined and previous missions to the outer planets have been discussed. In this
chapter a closer look is taken into the propulsion system that is required for the
high thrust mission to Uranus, the means to generate electrical power on board
the spacecraft as well as a preliminary selection of payload instruments. It has to
be stressed that it is not the intention to make a detailed design of the spacecraft,
but just to characterize the different options.

For this thesis work, the spacecraft is assumed to start from a GTO. Therefore
there will be no discussion on launch vehicles. Details on different launch vehicles,
their performance and costs can be found in the literature study that was
performed prior to this thesis [Molenaar, 2007].

This chapter is structured as follows. Section 5.1 will cover the different types
of propellant needed for high thrust propulsion systems, as well as some engine
characteristics, like the thrust force F and specific impulse Isp. Then, in section
5.2, the focus will be on generating electrical power on board of the spacecraft. In
section 5.3 a preliminary selection of scientific payload instruments will be given.
Finally, the chapter is concluded by a short summary and a preliminary choice for
the propulsion system, power generation and payload instruments.

5.1 Chemical propulsion systems

The most commonly used propulsion method in space applications is chemical
propulsion. The energy that is needed to achieve velocity increments is stored in
the propellant itself. This immediately poses the restriction that no more energy
can be extracted than what is contained within the propellant. In order to reach
the outer planets gravity assists are commonly used to add energy to the spacecraft.
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5.1.1 Propellant types

Three main types of propellants can be distinguished: liquid propellants, solid
propellants and hybrid propellants (as can be expected this is a combination of
the former two) [Larson and Wertz, 1999]. Typically, when solid fuel is ignited, it
will keep on burning until the propellant is all burnt up. Hybrid rockets have some
very attractive features, like throttling capability, but they have not been used
much. Therefore, liquid propellant is the preferred option when using chemical
propulsion.

The exhaust velocities of liquid propellant rocket engines are limited to about
4.5 km/s resulting in specific impulses that do not exceed 450 s [Turner, 2005].
Thrust levels for liquid propellant rocket engines vary from a few N for attitude
control to several MN for launchers.

For liquid propellant rockets there is a distinction between mono-propellant
and bi-propellant rockets. A mono-propellant is a liquid containing both the fuel
and the oxidizing agents (either in one molecule or as a mixture) [Zandbergen,
2004]. The thrust F and specific impulse Isp that liquid mono-propellant systems
can achieve are too low to be of practical use for a mission to Uranus, which
will require significant ∆V maneuvers [Larson and Wertz, 1999]. With a bi-
propellant system the fuel and oxidizer are separate substances stored in separate
tanks [Zandbergen, 2004]. Bi-propellant systems achieve a higher performance,
making them suitable for using in orbit maneuvers requiring a large ∆V .

5.1.2 Characteristics

The change in momentum is equal to the force acting on the body over a certain
time ta:∫ ta

0
F̄ · dt =

∫
d(M · V̄ ) (5.1)

Considering that a rocket does not have a constant mass, after some steps one
arrives at the famous rocket equation derived by Konstantin Tsiolkowski (1857-
1935):

∆V = w ln
m0

mf
(5.2)

It describes the total velocity increment ∆V as a function of the effective
exhaust velocity w, the rocket’s start mass m0 and the empty mass mf . It
was assumed that the burn time of the rocket is short enough to consider it as
an impulsive shot and furthermore there are no external forces acting on the rocket.
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The thrust F and specific impulse Isp in vacuum, two key parameters of a
rocket engine, are defined as follows [Zandbergen, 2004]:

F = ṁw (5.3)

Isp =
w

g0
(5.4)

In the thrust equation the mass flow is denoted by ṁ and the gravitational
acceleration at sea level is denoted by g0. It can be seen from the expressions for
F , Isp that a high exhaust velocity leads to a high thrust force and a high specific
impulse. Also, when considering equation 5.2, it can be deduced that the higher
exhaust velocity, the higher the ∆V that can be achieved for the same ratio m0

mf
.

5.2 Generating electrical power

The payload instruments and the bus systems on board the spacecraft have to
be supplied with electrical power for them to work. There are a number of ways
through which electrical power can be generated on board of a spacecraft. Three
possibilities are discussed here:

- Solar electric power by using solar cells.

- Radioisotope thermoelectric power by using radioisotope thermoelectric gen-
erators (RTGs).

- Nuclear electric power by using a nuclear fission reactor.

Solar electric power

The main advantages of using solar cells is that solar energy is readily available in
space and the technology has been proven on many missions in the past. However,
there are quite some drawbacks when using solar cells [Turner, 2005]. First of
all, there is a maximum efficiency of about 26% that can be obtained with current
solar cell technology [Larson and Wertz, 1999].

Secondly, as the spacecraft moves away from the Sun, the solar irradiance
decreases by the square of the distance (see also section 7.4). So the amount of
power that can be extracted from solar energy decreases as well. The decrease
is not by the square of the distance but slightly less (to the power 1.5), because
the efficiency of the solar cells increases with decreasing temperature [Fortescue
and Stark, 1995]. Therefore it seems unrealistic for outer planet spacecraft to
use this type of power generation, keeping in mind the power demands of the
payload and support systems. Solar cells are also sensitive to radiation damage,
so there is always some degree of degradation. Solar arrays therefore have to be
overdimensioned, adding to the mass of the spacecraft [Turner, 2005].
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It can be concluded that using solar cells to generate electrical power is not a
feasible option for a mission to Uranus.

Radioisotope thermoelectric power

RTGs have been used on all outer planet missions so far. The lack of solar energy
induced the need for other means of generating electrical power. An RTG uses
the heat that is produced in the radioactive decay of a particular element. The
most widely adopted isotope for this is Plutonium-238, which has a half-life of 80
years [Turner, 2005].

The thermoelectric generators convert the heat into electrical energy, but
the efficiency of this process is no more than 6%. The mass-to-power ratio is
very high for current RTGs, but they currently are the only means to generate
electrical power in the outer solar system [Turner, 2005]. This is also confirmed
by observing that all outer planet missions discussed in chapter 4 had one or more
RTGs on board.

Current developments in RTGs have led to the use of mechanical generators to
convert the heat of the radioactive decay into electrical power (Stirling Radioiso-
tope Generators). The increase in efficiency that can be obtained is significant
(fivefold to sevenfold). This technology is not yet ready to be implemented in
space missions, but it is predicted that it will become the standard for RTG use
in space [NASA/GRC, 2005].

Figure 5.1 Stirling Radioisotope Generator [NASA/GRC, 2005].

Nuclear electric power

The energy that is released with nuclear fission of for example uranium is about
70 times as high as the energy released with the radioactive decay of plutonium.
The power output for uranium fission is controllable, whereas for radioactive
plutonium decay it is not. Furthermore uranium is very cheap compared to
plutonium. So these are all things that work in favor of uranium fission. There
are, however, major drawbacks to the use of nuclear fission reactors. The major
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drawback is safety related. It is important to make sure that there are no human
and environmental risks involved, and even then public opinion might be strongly
against it. It should be noted, however, that the reactor core can be launched in
an inert state and be turned on when it is in orbit. So the material would not
be radioactive until the reactor has been operated [Turner, 2005]. The second
drawback of using nuclear fission reactors is their large mass (radiative shielding
and thermal control are the major contributors) [Kemble, 2006].

5.3 Payload science instruments

It is not the intention to make a complete spacecraft design, since the focus is on
the spacecraft trajectory. Only the scientific instruments, that most likely will be
present on the spacecraft, will be discussed.

In section 4.5 a number of types of instruments were listed that were present on
other missions to the outer planets. The focus in this section will be on instruments
that can be applied for a mission to the planetary system of Uranus, such that the
scientific objectives discussed in section 3.4 can be fulfilled. Recently developed
and (perhaps in the near future) deployed instruments will serve as a baseline.

Plasma detector

Messenger, NASA’s mission to Mercury (launched on 3 August 2004), has an in-
strument on board that consists of an energetic particle spectrometer and a fast
imaging plasma spectrometer. This instrument called EPPS (Energetic Particle
and Plasma Spectrometer) will measure energetic ions, electrons and thermal plas-
mas. The data that are collected will provide insight into the structure and the
dynamics of the magnetosphere [Gold, 2001]. Since this is also one of the scien-
tific objectives for a mission to Uranus, it makes sense to use this instrument as a
baseline. It has a mass of 2.25 kg and an input power of 2.0 W.

Spectrometer and solar occultation instrument

On 9 November 2005 the Venus Express satellite was launched, ESA’s first
satellite to Venus. One of the instruments on board is the SPICAV (SPectroscopy
for Investigation of Characteristics of the Atmosphere of Venus). This instrument
has different channels for observing UV wavelengths, IR wavelengths and a
channel to observe the Sun at longer IR wavelengths (SOIR, or Solar Occultation
at InfraRed). The mass of this instrument is 13.9 kg and it has a maximum input
power of 51.4 W [Bertaux, 2007].

The principle behind solar occultation is that the Sun is viewed through the
atmosphere, so the sunlight travels through a large atmospheric path when com-
pared to other means of remote atmospheric sensing. The measured spectra can
indicate what isotopes and other minor species at different altitudes [Bertaux,
2007].
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Imaging device

On board Venus Express the Venus Monitoring Camera (VMC) is mounted. One
of the scientific objectives of Venus Express, as well as for this mission to Uranus,
is to study the dynamics of the Venus atmosphere. Therefore it makes sense to
use this instrument as a baseline. It has an input power of about 4 W and a mass
of 1.1 kg.

Gravimeter

At the end of 2011 the second NASA New Frontiers mission (New Horizons was
the first) will commence with the launch of the Juno spacecraft. It will use solar
electric propulsion to go into a polar orbit around Jupiter with a close perijove.
One of the payload instruments that will be used is the Gravity Science Experi-
ment (GSE). This instrument will make detailed measurements of the complete
gravity field of Jupiter so that its interior structure can be determined. Its mass
is incorporated with the telecommunications subsystem and therefore it will not
contribute as such to the payload mass and input power [Dodge and Boyles, 2007].

This instrument is particularly attractive because a polar orbit around Uranus
is a desired science orbit. Next to this, the interior structure of Uranus is unknown
up to this point, so it makes sense to use it. Furthermore, the instrument might be
used to make measurements of the interior structure of the planet’s main moons.

Radiometer

In order to probe the deep atmosphere of Uranus an instrument is required that
measures the planet’s thermal emissions at different wavelengths. This can be
done by incorporating multiple radiometers, each one measuring at a different
wavelength, typically in the order of 1 to 50 cm. The MicroWave Radiometer
that will be used in the earlier mentioned Juno mission will serve as a baseline,
measuring at six different wavelengths. It has a mass of 42.13 kg and an input
power of 32.6 W [Dodge and Boyles, 2007].

Magnetometer

The magnetometer that will be used as a baseline for the Uranus polar orbiter mis-
sion is the Flux Gate Magnetometer that will be used in the Juno mission. It has a
mass of 15.25 kg and a maximum power input of 12.5 W [Dodge and Boyles, 2007].

5.4 Preliminary layout of the spacecraft

A number of options have been considered and discussed for the spacecraft propul-
sion system, power generation and the payload instruments. This section will
present an overview of the feasible options for the Uranus mission.
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Chemical propulsion

Solid and hybrid propellant rocket engines have been excluded from the propulsion
system trade-off, as discussed earlier in section 5.1.1. Only liquid rocket engines
are considered. Mono-propellant liquid rocket engines are simple, reliable and
cheap, but have low performance. Bi-propellant liquid rocket engines have high
performance, but the system is more complicated. Both Galileo and Cassini used
a bi-propellant propulsion system for their main engines. The fuel used was MMH
and the oxidizer was N2O4. Because of its better performance and because it has
been used in missions to Jupiter and Saturn, a bi-propellant propulsion system is
preferred over a mono-propellant system.

Electrical power generation

In terms of power supply systems, solar cells are not feasible in the outer planet
regions, but perhaps a hybrid solution can be obtained. First, in the inner
part of the solar system, solar panels are used for electric power generation.
Then the solar panels are jettisoned somewhere along the trajectory. Another
power source, for example one or more SRGs (Stirling Radioisotope Generators)
can then be used. Such a hybrid system will add complexity to the propulsion
system though, which is undesirable and will therefore not be used for this mission.

Nuclear fission reactors have many benefits for long duration, high power mis-
sions. It is questionable, however, whether nuclear fission reactors will become
operational for space missions in the near future. Next to this, the public opinion
towards nuclear fission reactors might enforce the use of other power generators
because of safety and environmental issues. Therefore, it will not be considered as
a power generation option for this mission to Uranus.

Radioisotope thermoelectric generators are the only current means of power
generation in the outer parts of the solar system. The new SRGs will provide
significant mass and performance benefits over conventional RTGs [NASA/GRC,
2005]. The power levels generated are in the range 100-200 W.

Payload instruments

Table 5.1 gives an overview of all payload instruments in terms of their mass and
input power.

Instrument Mass (kg) Input power (W)
Plasma detector 2.25 2.0
Spectrometer/S.O.I.* 13.90 51.4
Imaging device 1.10 4.0
Radiometer 42.13 32.6
Magnetometer 15.25 12.5
Total 74.63 102.5

Table 5.1 Preliminary selection of payload instruments that can be used for a Uranus orbiter mission (*
Solar Occultation Instrument)
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In section 4.5 it was mentioned that the payload mass is approximately 11%
of the spacecraft’s dry mass. Based on the total payload mass in table 5.1, the
spacecraft’s dry mass will be 678.45 kg. It should be noted that in the remainder
of this thesis research no further attention will be paid to the spacecraft itself. The
focus will be entirely on the trajectory that will be flown. Since the analysis of the
trajectory will only involve analytical techniques, as will become clear throughout
part II, the spacecraft mass will not be an issue.
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Chapter 6

Principles of orbital mechanics

In order to determine the trajectory to Uranus, the underlying principles of orbital
mechanics have to be fully understood. This chapter gives an overview of these
principles, starting from the general case of the many-body problem in section 6.1.
The two-body problem is derived from the many-body problem and it is discussed
in section 6.2.

6.1 The many-body problem

All objects exert forces on each other. Isaac Newton (1643-1727) was the first to
make formulation of the resulting system of equations of motion [Wakker, 2002].

6.1.1 Newton’s laws of motion and gravitational law

In his world famous work Philosophiae Naturalis Principia Mathematica (pub-
lished in 1687) Newton formulated three laws of motion and a gravitational law
[Wakker, 2002]:

Newton’s first law states that every point mass continues in its state of uniform
motion in a straight line or remains at rest with respect to an inertial reference
frame, unless it is compelled to change that state by forces acting upon it.

Newton’s second law states that for a point mass, the time derivative of linear
momentum with respect to an inertial reference frame is equal to the resulting
force of all forces that act on that body. When put into an equation, this yields
(for a body with constant mass):

F̄ = m
dV̄

dt
= m

d2r̄

dt2
(6.1)

Newton’s third law states that if two point masses exert forces on each other,
these forces are equal in magnitude and opposite in direction (action = reac-
tion).

Newton’s graviational law states that two particles attract each other with a
force, acting along the line joining them, proportional to their masses, mass m1
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and m2 respectively, and inversely proportional to the square of the distance r
between them.

F̄ = G
m1m2

r2

r̄

r
(6.2)

In this equation G is the universal gravitational constant (G = 6.668 · 10−11

Nm2/kg2), and r̄ is the vector pointing from body 1 to body 2 (see also figure
6.1).

An inertial reference frame is a frame with respect to which a point mass is
in rectilinear motion, or is in rest when no force is exerted on it. The many-body
problem is formulated when Newton’s second law and his gravitational law are
equated [Wakker, 2002].

6.1.2 A system of n bodies

In a system of n bodies, body i has mass mi and coordinates xi, yi and zi with
respect to an inertial reference frame. The other bodies in the system are denoted
with mass mj , and coordinates xj , yj and zj . This is shown in figure 6.1.

z

y

x

i
j

ri

rj

rij

Figure 6.1 A system of n bodies, after [Wakker, 2002].

In this figure:

r̄ij = r̄j − r̄i (6.3)

rij = |r̄ij | =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 (6.4)
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When Newton’s second law and Newton’s gravity law are combined, then it
holds for body i:

mi
d2r̄i
dt2

=
∗∑
j=1

G
mimj

r3
ij

r̄ij (6.5)

The summation goes from j = 1 to j = n, but excluding j = i (this is indicated
by the ∗). There are n bodies, but 3n equations of motion, a system that can
not be solved analytically in general. For this equation it is assumed that there
are no other bodies outside the n-body system and that there are only mutual
attraction forces between the bodies. The motion of body i is described with
respect to an inertial reference frame. In reality one can not take all universal
matter into account, so that is why the concept of a pseudo-inertial reference
frame is introduced, in which the accelerations and rotations of this frame are
neglected intentionally.

6.1.3 Motion of a body with respect to another body

For most practical purposes the motion of a body with respect to other bodies
is of prime interest. For a body i that moves about a body k the following
expression for the acceleration of body i can be derived [Wakker, 2002]:

¨̄ri = −Gmi +mk

r3
i

r̄i +G
∗∑
j=1

mj

( r̄j − r̄i
r3
ij

− r̄j
r3
j

)
(6.6)

This equation describes the motion of body i with respect to a non-rotating
reference frame with body k as its origin, under the influence of all attracting
forces between i, j and k. The second term on the right hand side of equa-
tion 6.6 describes the disturbing acceleration. It can be derived that there
exists a maximum for the ratio between the acceleration caused by a disturbing
body (index ’d’) and the acceleration of the main body (index ’m’) [Wakker, 2002]:( ad

am

)
max

= 2
md

mm

(rs
rd

)3
(6.7)

In this equation md is the mass of the disturbing body, mm is the mass of the
central body, rs is the distance of the spacecraft to the center of the central body
and rd is the distance from the central body to the disturbing body. In chapter
7 this ratio will be calculated for two cases, namely a 185 km altitude circular
parking orbit around Earth and an orbit around Uranus at 1.1 times its planetary
radius.
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6.2 The two-body problem

When the disturbing bodies j are neglected, only the motion of body i about
body k remains. Equation 6.6 then reduces to:

¨̄ri = −Gmi +mk

r3
i

r̄i (6.8)

The gravitational parameter µ = G(mi + mk) can now be introduced. Since
mi � mk in most practical cases, µ becomes a function of the mass of the central
body only (µ = Gmk). Removing the index i then yields:

¨̄r = − µ
r3
r̄ (6.9)

Several operations can be used on the above equation, yielding expressions for
the conservation of total energy E per unit mass of mi, conservation of angular
momentum and the radial distance r [Wakker, 2002]:

1
2
V 2 − µ

r
= − µ

2a
= constant = E (6.10)

H̄ = r̄ × V̄ = constant (6.11)

r =
H2/µ

1 + c3cos(ϕ− ω)
(6.12)

Equation 6.10 shows that there is conservation of total energy per unit mass
of body i and equation 6.11 shows conservation of angular momentum. Close
inspection of equation 6.12 reveals that this expression is similar to that of a conic
section in polar coordinates. H is the magnitude of the angular momentum, ϕ
is the angle measured from some reference direction and c3 and ω are integration
constants.

6.2.1 Conic sections

The equation for a conic section in polar coordinates is [Wakker, 2002]:

r =
p

1 + e cos θ
(6.13)

Indeed this expression is similar to equation 6.12, and so the following
expressions may be derived from a comparison between the two:

H2

µ
= p (6.14)
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c3 = e (6.15)

ϕ− ω = θ (6.16)

The parameter p determines the size of conic section and ω determines the
orientation. The value of the eccentricity e determines the shape of the orbit:

- e = 0: the orbit is circular. In practice, there are many nearly circular orbits,
but perfectly circular is not possible.

- 0 < e < 1: the orbit is an ellipse. This type of orbit will be further outlined in
section 6.2.2.

- e = 1: the orbit is a parabola. As with the circle, the parabola does not occur
in reality.

- e > 1: the orbit is a hyperbola. The hyperbolic orbit will be outlined in section
6.2.3.

The parameter θ is the angle in the orbital plane, measured from the point
where r is minimal, also called the pericenter (see also figures 6.2 and 6.3).

6.2.2 Elliptical orbits

The basic configuration of an elliptical orbit is depicted in figure 6.2.

E

r

Primary focusSecondary focus

b

ae

a
PericenterApocenter

Figure 6.2 Configuration of an elliptical orbit, after [Wakker, 2002]. The central body is located in the
primary focus of the ellipse. The dashed circle is an auxiliary circle with radius a, used for
determining the eccentric anomaly E.
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The distance r between the body of interest and the central body was
given by equation 6.13. For an elliptical orbit it holds for the semi-latus
rectum p that p = a(1 − e2), where a is the semi-major axis. The semi-major
axis of the ellipse and the eccentricity of the ellipse are completely defined if
the pericenter distance rp and apocenter distance ra are known. These are the
minimum and maximum distance with respect to the central body [Wakker, 2002].

a =
1
2

(ra + rp) (6.17)

e =
ra − rp
ra + rp

(6.18)

For the pericenter distance it holds that the true anomaly θ is equal to zero.
Substitution into equation 6.13, together with the expression for p yields:

rp =
a(1− e2)

1 + e
= a(1− e) (6.19)

The same principle holds for the apocenter distance, where the true anomaly
is 180◦.

ra =
a(1− e2)

1− e
= a(1 + e) (6.20)

For the velocity in the orbit the vis-viva equation can be applied:

V =

√
µ
(2
r
− 1
a

)
(6.21)

The velocity in the pericenter and in the apocenter can be determined now by
substituting the expressions for rp and ra into equation 6.21. After some steps
this yields:

Vp = Vcp
√

1 + e (6.22)

Va = Vca
√

1− e (6.23)

In these last two equations a new quantity has been introduced, the lo-
cal circular velocity. It is the velocity that the body of interest would have in
a circular orbit at the same distance from the central body. It is defined as follows:

Vc =
√
µ

r
(6.24)
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The orbital period in an elliptical orbit is described in Kepler’s third law,
which states that the ratio between the third power of the semi-major axis and
the square of the orbital period is constant.

a3

T 2
=

µ

4π2
= constant (6.25)

Rewriting Kepler’s third law for the orbital period yields:

T = 2π

√
a3

µ
(6.26)

In order to escape from the gravity field of the attracting body, the so-called
escape velocity must be reached. After some steps it can be derived that one can
write for the escape velocity Vesc [Wakker, 2002]:

Vesc =

√
2µ
r

=
√

2Vc (6.27)

Figure 6.2 shows two angles, namely the true anomaly θ and the eccentric
anomaly E. The eccentric anomaly is a parameter that is needed in chapter 10
when Kepler’s equation will be discussed. The distance r can be related to the
eccentric anomaly E as follows:

r = a (1− e cosE) (6.28)

This relationship will be needed in chapter 10, as well as the following
relationship which relates θ to E [Wakker, 2002]:

tan
θ

2
=

√
1 + e

1− e
tan

E

2
(6.29)

6.2.3 Hyperbolic orbits

The basic configuration of a hyperbolic orbit is depicted in figure 6.3.

For a hyperbolic orbit e > 1, so then 1 − e2 < 0. In order for r in equation
6.13 to be positive, the semi-latus rectum p = a(1 − e2) has to be positive. This
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Figure 6.3 Configuration of a hyperbolic orbit, after [Wakker, 2002].

means that the semi-major axis in a hyperbolic orbit has a negative value.

A general hyperbola has two different branches, whose asymptotes go through
a central point along the horizontal. The two branches of the hyperbola are
mirror images of each other with respect to a line perpendicular to the horizontal
going through the central point. Only one of the two branches is of physical
interest, since one branch represents a repulsive central force, but this is of
course not the case in celestial mechanics. In figure 6.3 the physically interesting
branch is indicated by the solid line. The other branch is indicated by a dotted line.

The maximum velocity in the hyperbolic orbit is reached in the pericenter, for
which the following relationship can be derived [Wakker, 2002]:

Vp =

√
µ

−a

(e+ 1
e− 1

)
= Vcp

√
e+ 1 (6.30)

From equation 6.21, it can be seen that the minimum velocity is reached at
r =∞:

V 2
∞ = −µ

a
(6.31)

Substitution of equations 6.31 and 6.27 into equation 6.21 gives the following
relationship:

V 2 = V 2
esc + V 2

∞ (6.32)
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So on every point in the hyperbolic orbit, the instantaneous velocity is
determined by the local escape velocity and the velocity at infinity, the hyperbolic
excess velocity.

In section 6.2.2 the concept of eccentric anomaly was introduced. For
hyperbolic orbits a similar parameter called the hyperbolic anomaly (indicated by
F ) can be defined [Wakker, 2002]:

r = a (1− e coshF ) (6.33)

For an elliptical orbit the eccentric anomaly E could be interpreted directly
as an angle indicating the position of a body in an elliptical orbit around a
central body. For the hyperbolic anomaly F this can not be done. F is not an
actual angle, which can be deduced from the fact that, since 1 ≤ coshF < ∞,
F varies from −∞ to +∞. It can be interpreted as a ratio of areas [Wakker, 2002].

As was the case for elliptical orbits, a relationship can be derived between
the true anomaly θ and in this case the hyperbolic anomaly F (see [Wakker, 2002]):

tan
θ

2
=

√
e+ 1
e− 1

tanh
F

2
(6.34)

Equations 6.33 and 6.34 are needed later on in chapter 10.

6.2.4 Sphere of influence

The sphere of influence is a concept that is used to determine which is the central
body during the different stages of an interplanetary trajectory. In order to
understand the concept of the sphere of influence, figure 6.4 can be used.

The motion of body P2 is described with respect to bodies P1, where body
P3 is a disturbing body. The masses of these bodies are denoted by m1, m2 and
m3 respectively. An expression for the radius of the sphere of influence has been
derived in [Battin, 1999], using the assumption that m2 � m1,m3 and that
r12 � r13.

RSoI = r13

(
m1

m3

)2/5

(6.35)
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P3

r13

r12 r32

Figure 6.4 Positions of bodies P1, P2 and P3 relative to each other, after [Battin, 1999].

In this expression RSoI is the radius of the sphere of influence. On the
boundary of this sphere the ratio of disturbance accelerations of P3 with respect
to the accelerations of the primary body P1 are the same. The sphere of influence
then describes a sphere about body P1 with respect to body P3. Inside this
sphere the gravitational acceleration of P1 is dominant over the acceleration of
P3. Therefore the motion of P2 is determined relative to P1 inside the sphere of
influence, and the motion is described with respect to P3 when P2 is outside the
sphere of influence.

Table 6.1 shows the radius of the sphere of influence for each planet in the solar
system. The planets are P1 in the earlier notation and the Sun is body P3.

Planet RSoI (km) % of rpl
Mercury 112,630 0.19
Venus 616,247 0.57
Earth 923,566 0.62
Mars 574,413 0.25
Jupiter 48,168,633 6.19
Saturn 54,495,221 3.82
Uranus 51,732,568 1.80
Neptune 86,731,536 1.93

Table 6.1 Radii of the spheres of influence of all planets in the solar system, after [Battin, 1999]. The
last column indicates the percentage that RSoI constitutes of each planet’s mean distance to
the Sun rpl.

On an interplanetary scale the radii of the spheres of influence are very
small, as can be seen in table 6.1. When it comes to interplanetary motion
(for details see chapter 8), the trajectory of the spacecraft can be approximated
by a sequence of two-body problems [Battin, 1999]. For example, a spacecraft
starting from a parking orbit around Earth and going directly to a parking
orbit around another body (like Uranus), will move along three distinct conic
sections. The first part of the trajectory, escaping into a heliocentric orbit, is
described by a hyperbola centered at Earth. The second part of the trajectory is
described by a conic section with the Sun acting as the attracting body. Finally,
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the third part of the trajectory is described by a Uranus centered hyperbola,
after which the spacecraft is put into orbit around Uranus. For each part of
the trajectory, it is assumed that only one center of attraction is active at the time.

During a gravity assist (see section 8.4) or approach to a target planet, the
period of time in which the gravity of the planet is the dominant force is very
small compared to the total mission time. Therefore, during the encounter with
the planet, the solar gravity can be ignored to first approximation. It can then be
assumed that the state of the spacecraft changes instantaneously [Battin, 1999].





Chapter 7

Orbit perturbations

To derive the equations for pure Kepler orbits it was assumed that the mass
distribution of the planets was radially symmetric and that no disturbing forces
were acting on the body [Wakker, 2002]. In reality, however, there are numerous
forces acting on the body, deviating it from the pure Kepler orbit. This chapter
will address the most important disturbing forces and give an indication of their
magnitudes:

- Radially non-symmetric mass distribution

- Aerodynamic forces

- Attraction forces from other bodies

- Solar radiation pressure

- Electromagnetic forces

7.1 Radially non-symmetric mass distribution

The gravitational potential of a body with an arbitrary mass distribution (point
outside the body) is [Wakker, 2002]:

U = −µ
r

[
1 −

∞∑
n=2

Jn
(R
r

)n
Pn(sin δ)

−
∞∑
n=2

∞∑
m=1

Jmn (
R

r

)n
Pmn (sin δ)

{
cosm(λ− λn,m)

}]
(7.1)

This equation is based on spherical coordinates (with respect to a geocentric
rotating reference frame), where r is the distance to the planet’s center, δ is
the geocentric latitude (positive from the equator going North) and λ is the
geographic longitude (measured positive to the East from a reference meridian).
The central body’s average equatorial radius is denoted by R. The body’s gravity
field has several constants, given by Jn, Jmn and λn,m. The last unknown terms in
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this elaborate expression are Pn(sin δ) and Pmn (sin δ). the first one is a Legendre
polynomial and the second one is an added first order Legendre function. For the
Legendre polynomial one can write [Wakker, 2002]:

Pn(x) =
1

(−2)nn!
dn

dxn
(1− x2)n (7.2)

The argument x of the Legendre polynomial is equal to sin δ in equation 7.1.
The added first order Legendre function is given by [Wakker, 2002]:

Pmn (x) = (1− x2)m/2
dmPn(x)
dxn

(7.3)

The first term of equation 7.1 is the potential for a body that has a radially
symmetric mass distribution. The second term expresses the influence of a
deviating mass distribution in the North-South direction, also called zonal
harmonics. The third term, finally, gives the influence of a deviating mass
distribution in both North-South and East-West direction (tesseral and sectoral
harmonics respectively).

For the Earth, the J-coefficient with the largest value is J2 (J2 = 1.083 · 10−3).
The other J-coefficients are all of the order 10−6 or less, a factor of at least
103 smaller. As a first order approximation of the perturbing acceleration due
to the fact that the Earth’s mass distribution is not radially symmetric, only
the J2 term is taken into account. It can then be derived that for the maxi-
mum acceleration in radial and latitudinal direction one can write [Wakker, 2002]:

|ar|max = 3µJ2
R2

r4
(7.4)

|aδ|max =
3
2
µJ2

R2

r4
(7.5)

This implies, for a parking orbit around the Earth at an altitude of 185 km,
that the maximum perturbing accelerations are |ar|max = 2.63 · 10−2 m/s2. The
maximum acceleration in latitudinal direction is two times smaller. The magnitude
acceleration due to the main term of Earth’s gravitational potential amainE at an
altitude of 185 km is given as follows [Wakker, 2002]:

|amainE | =
µE
r2

= 9.25 m/s2 (7.6)

So the maximum radial perturbing acceleration for a spacecraft at 185 km
altitude around Earth due to the J2 term is 0.28 % of the main acceleration.
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The J2-term of the gravity field of Uranus is 3.34343 · 10−3, so more than
three times larger than the one of Earth [NASA/GSFC, 2007]. The next largest
term in the list of J-coefficients in the Uranian gravity field model is the J4-term,
whose absolute value is more than 100 times smaller than J2. At a distance of
1.1 times the planetary radius of Uranus the maximum perturbing acceleration in
radial direction due to J2 is 1.82 · 10−2 m/s2. In a similar way as for Earth, the
acceleration due to the main term for Uranus can be calculated. This comes down
to 7.33 m/s2 at 1.1 times the radius of Uranus, which means that the maximum
radial acceleration due to J2 is 0.25 % of the local main gravitational acceleration.

7.2 Aerodynamic forces

The acceleration due to aerodynamic forces acting on a spacecraft is given by
[Wakker, 2002]:

ādaero = −CD
1
2
ρ
S

m
|V̄ |V̄ (7.7)

In this expression ρ is the local atmospheric density (in kg/m3), S is a
reference surface area of the spacecraft (in m2), m is the mass of the spacecraft
(in kg), CD is the drag coefficient related to the surface area and V̄ is the velocity
vector with respect to the (rotating) atmosphere in m/s.

As a calculation example, the satellite for the current Uranus orbiter mission
is taken at an orbital altitude of 185 km. The maximum atmospheric density at
that altitude is 7.201 · 10−10 kg/m3 [Larson and Wertz, 1999]. A drag coefficient
of 2.2 is assumed, which is a typical number for spacecraft [Wakker, 2002]. The
spacecraft’s dry mass will be used, which is 678.45 kg. As a reference surface
area, the area of the Voyager high gain antenna is taken. This because the mass
of the spacecraft is lower than the mass of the Voyager spacecraft and therefore
the spacecraft is assumed to be smaller than Voyager. The high gain antenna can
then serve as a reference surface area of 10.75 m2 and the orbital velocity at 185
km is 7.79 km/s. The disturbance acceleration then becomes:

|adaero | =
1
2
CDS

m
ρV 2 = 7.62 · 10−4 m/s2 (7.8)

This disturbance has a magnitude that is 8.17 · 10−5 times the local main
gravitational acceleration.

7.3 Attraction forces from other bodies

In section 6.1.3 the maximum acceleration caused by the attraction of a disturbing
body was given by:
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( ad
am

)
max

= 2
md

mm

(rs
rd

)3
(7.9)

To examine the order of magnitude of this ratio, a spacecraft is considered in
a 185 km circular parking orbit around Earth and a spacecraft in circular orbit
around Uranus at 1.1 times its radius. Table 7.1 shows the maximum relative
disturbing acceleration for both orbits.

Disturbing
(
ad
am

) (
ad
am

)
body at Earth at Uranus
Sun 5.63 · 10−8 4.30 · 10−11

Mercury 4.06 · 10−14 7.58 · 10−18

Venus 6.55 · 10−12 1.19 · 10−16

Earth - 1.50 · 10−16

Mars 1.26 · 10−13 1.76 · 10−17

Jupiter 7.15 · 10−13 1.05 · 10−13

Saturn 2.62 · 10−14 1.00 · 10−13

Uranus 4.07 · 10−16 -
Neptune 1.18 · 10−16 1.22 · 10−14

Table 7.1 Maximum acceleration caused by a disturbing body with respect to the acceleration of the
main body for the Earth and Uranus reference orbits.

It can be seen from this table that the Sun has the largest relative disturbance
acceleration for both a spacecraft in orbit around Earth and around Uranus.
However, the magnitude of this disturbance acceleration compared to the acceler-
ation of the central body (either Earth or Uranus) is very small. This means that
for a spacecraft in a low orbit around a central body, the disturbance acceleration
caused by the other planets can be neglected. The question that now arises is
whether this holds for moons orbiting that same planet, and for a heliocentric
interplanetary trajectory with gravity assists.

The assumption that was made to arrive at the maximum relative disturbance
acceleration was that rs � rd. For moons orbiting the same planet as the
spacecraft, this assumption is not true. Then the following equation has to be
used for calculating the disturbance acceleration [Wakker, 2002]:

ad = Gmd

(
r̄sd
r3
sd

− r̄d
r3
d

)
(7.10)

In this equation, rsd is the distance from the spacecraft to the disturbing body.
Table 7.2 shows the perturbing acceleration caused by the Moon for a satellite in
the circular orbit used earlier, as well as the perturbing acceleration caused by
Uranus’ main moons on a satellite in the reference orbit around Uranus.
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Disturbing moon ad (m/s2) ad
am

Moon (E) 1.16 · 10−6 1.25 · 10−7

Miranda (U) 1.14 · 10−10 1.56 · 10−11

Ariel (U) 7.26 · 10−10 9.90 · 10−11

Umbriel (U) 2.32 · 10−10 3.17 · 10−11

Titania (U) 1.59 · 10−10 2.17 · 10−11

Oberon (U) 5.68 · 10−11 7.75 · 10−12

Table 7.2 Disturbing accelerations caused by the Moon on a satellite orbiting the Earth (E) and of the
five main moons of Uranus (U) on a satellite orbiting this planet.

From this table it can be seen that the five main Uranian moons disturb the
satellite’s orbit around Uranus several orders of magnitude less than the Moon
does for a spacecraft in orbit around Earth. The main acceleration of the Earth
as a central body for a spacecraft in a 185 km circular orbit is 9.25 m/s2 and for
the reference Uranus orbit the main acceleration is 7.33 m/s2.

On the heliocentric part of the interplanetary journey, the Sun is the central
body. It is very likely that a spacecraft on its way to Uranus will make a gravity
assist at a certain planet. When the spacecraft gets closer to a planet, the disturb-
ing acceleration of that planet increases, until the moment (at the radius of the
sphere of influence) where the gravity of the planet prevails and it becomes the
central body. The attraction force of other bodies (also moons) is therefore very
important and has to be taken into account with gravity assists.

7.4 Solar radiation pressure

Photons coming from the Sun can hit the spacecraft, causing a perturbation from
a pure Kepler orbit. This is called solar radiation pressure and for the acceleration
that it causes one can write [Wakker, 2002]:

adsolar =
Q

mc
S(1 +RC) cos2 η (7.11)

In this expression Q is the power density of the incoming solar radiation in
W/m2, m is the mass of the satellite in kg, c is the speed of light (c = 2.9979 · 108

m/s), S is again the reference surface area of the satellite in m2, RC is the
reflection coefficient (0 < RC < 1), and η is the angle of incidence of the incoming
sunlight.

The intensity of the incoming sunlight (also called solar irradiance Qir) at
the orbit or Uranus is 3.71 W/m2. On Earth the solar irradiance is 1367.6
W/m2. At a distance r from the Sun, the irradiance is proportional to 1/r2,
which explains the large difference between Earth and Uranus (Uranus being
located much farther away from the Sun). Next to the solar irradiance the planets
themselves also reflect and emit radiation (albedo radiation Qal and thermal
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radiation Qth respectively). The amount of albedo radiation is determined by the
planet’s reflection coefficient and the thermal radiation is based on the effective
temperature Teff of the planet. This is the temperature that a black body would
have that emits the same amount of energy as the body does when it does not
behave like a perfect black body [De Pater and Lissauer, 2007].

Qal = (RC)pl(Qir)pl (7.12)

Qth = σT 4
eff (7.13)

The reflection coefficient of the planet is also referred to as the planet’s Bond
albedo. The parameter σ is the constant of Stefan-Boltzmann (σ = 5.67 · 10−8

W/(m2K4)). For all planets in the solar system the irradiance, the albedo radiation
and the thermal radiation are shown in table 7.3.

Planet BA* Teff (K) Qir (W/m2) Qal (W/m2) Qth (W/m2)
Mercury 0.119 442.5 9126.6 1086.1 2173.9
Venus 0.750 231.7 2613.9 1960.4 163.4
Earth 0.306 254.3 1367.6 418.5 237.1
Mars 0.250 210.1 589.2 147.3 110.5
Jupiter 0.343 110.0 50.5 17.32 8.30
Saturn 0.342 81.1 14.9 5.10 2.45
Uranus 0.300 58.2 3.71 1.11 0.65
Neptune 0.290 46.6 1.51 0.44 0.27

Table 7.3 Irradiation, albedo radiation and thermal radiation for all planets [NASA/GSFC, 2007].
*Bond Albedo

The highest disturbance acceleration is attained at Mercury, since it is located
closest to the Sun. As a worst case scenario for a spacecraft like Voyager the
disturbance acceleration due to solar radiation pressure is 1.13 · 10−6 m/s2. This
is 0.28% of the local acceleration due to the Sun’s gravity. This value has been
obtained by assuming the power density Q as the sum of the three tabulated values,
a maximum mass of 2100 kg, the surface area S = 3.7 ·13 = 48.1 m2, the reflection
coefficient equal to 0.119 and normal incidence on the spacecraft, so η = 0.

7.5 Electromagnetic forces

Not all planets in the solar system have magnetic fields. Venus and Mars have
no magnetic field at all and the magnetic field strength of Mercury is about 167
times weaker than the one of Earth [NASA/GSFC, 2007]. The giant planets
all have magnetic fields that are much stronger than Earth’s magnetic field. For
example, the magnetic field strength (the dipole moment) of Uranus is 47.9 times
as large [Faure and Mensing, 2007].

A spacecraft can be considered as a charged particle when moving through
a magnetic field. It will then experience a force called the Lorentz force. The
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magnitude of the Lorentz force depends on the electric charge q, the velocity V
with which the spacecraft moves through the magnetic field, and on the strength
of the magnetic field [Noomen, 2003].

F̄L = qV̄ × B̄ (7.14)

The electric charge is calculated when the voltage U is multiplied with the
capacitance C:

q = UC (7.15)

When a spherical satellite is assumed, the capacitance can be written as a
function of the spacecraft radius Rs only [Wakker, 2002]:

C = 1.1 · 10−10Rs (7.16)

When the magnetic field of a planet is modeled by a dipole (two ’poles’ that
may be considered as a source and a sink of magnetic energy), the strength of the
magnetic field may be written as [Noomen, 2003]:

B = H0

(
R

r

)3√
1 + 3 sin2 Φ (7.17)

In this equation H0 is the magnetic field strength at the magnetic equator of
the planet, and Φ is the latitude measured from the magnetic axis. The above
equation implies that the magnetic field strength is twice as large at the magnetic
poles (Φ = ±90◦) than at the magnetic equator (Φ = 0◦).

In order to find out the magnitude of the disturbance caused by the magnetic
field, again the two earlier used reference orbits around Earth and Uranus are
considered. Now the orbit planes are assumed to be aligned with the magnetic
poles, yielding a worst case scenario for that particular orbit. The disturbance
acceleration is then calculated as follows:

adel =
FL
ms

(7.18)

As a reference satellite, the Voyager spacecraft is taken (it will be assumed
spherical), with a mass ms of 825 kg and a radius Rs of 3.7 m. The voltage is
taken as -50 V [Wakker, 2002]. Table 7.4 shows the values of the disturbance
acceleration for the two previously considered reference orbits.
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Planet ad (m/s2) ad
am

Earth 1.09 · 10−11 1.18 · 10−12

Uranus 1.23 · 10−14 1.68 · 10−15

Table 7.4 Magnetic field disturbing acceleration for reference orbits around Earth (at 185 km altitude)
and Uranus (at a 1.1 RU orbit) assuming a dipole field. The reference orbits are aligned with
a magnetic latitude of 90◦.

7.6 Implications

From the discussion in section 6.2.4 on the sphere of influence it was deduced that
the encounter times at the planets are very small compared to the total mission
time and that the radius of the sphere of influence was small on an interplanetary
scale. The disturbing accelerations that have been calculated throughout this
chapter are all small compared to the main gravitational acceleration of the central
body (not even 1% of the magnitude). Therefore, to a first-order approximation
of interplanetary trajectories all disturbing forces can be neglected. Analyzing
interplanetary trajectories can then be done using analytical methods. This is
very useful since there is no need for numerical integration of the equations of
motion, saving computation time. It should be stressed that for precision orbital
analysis numerical integration is required. In this thesis, however, this will not be
the case and only analytical methods will be used.



Chapter 8

High thrust interplanetary
trajectories

In chapter 6 the basic principles of orbital mechanics have been discussed. In this
chapter these principles will be applied to high thrust interplanetary missions
using chemical propulsion. With these high thrust missions it is assumed that
the impulsive maneuver (engine burn) is applied in such a short amount of time
that the velocity of the spacecraft changes instantaneously, while the spacecraft’s
position remains the same as before the maneuver.

In section 8.1 the basic two-dimensional interplanetary transfer is discussed.
However, interplanetary trajectories are three-dimensional in reality, so the impli-
cations of that are discussed as well. In section 8.2 the technique to determine
the spacecraft orbit based on planetary positions and flight time is presented. The
calculations needed to obtain the required impulsive maneuvers at launch and cap-
ture are discussed in section 8.3. Patching subsequent interplanetary legs together
can be done using gravity assists, the details of which are treated in sections 8.4
and 8.5.

8.1 Two-dimensional interplanetary trajectories

An interplanetary trajectory from planet P1 to planet P2 can be subdivided
into three main parts, as already mentioned in section 6.2.4. First of all the
spacecraft trajectory within the sphere of influence of Earth has to be assessed.
The trajectory is considered as a geocentric hyperbola. After leaving Earth’s
sphere of influence the trajectory is a heliocentric conic section, since the motion
is now described with respect to the Sun. Upon arrival in the target planet’s
sphere of influence, the motion will be described as a hyperbola centered at the
target planet. This method is known as patched conics.

To start the interplanetary trajectory analysis, the motion is assumed to be
two-dimensional. A number of assumptions is made. The first one is that the
planets all orbit the Sun in circular orbits. In reality, the orbits of the planets
have small eccentricities, making them nearly circular. The second assumption is
that all the planets move in the ecliptic plane, so the inclinations are assumed to
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be zero. These assumptions will of course induce errors. Some remarks about the
differences between two-dimensional motion and the reality of three-dimensional
motion can be found in section 8.1.2. The geometry of a two-dimensional inter-
planetary trajectory is shown in figure 8.1.

V¥,E

V¥,t

V1

V2

g1

g2

VE

Vt

Sun

Target planet
(at Earth departure)

Earth (on 
arrival at target)

Earth
(at launch)

Target planet
(on arrival)

Figure 8.1 Geometry of a two-dimensional interplanetary trajectory from Earth to another target planet,
after [Cornelisse et al., 1979].

For the current analysis it is assumed that the journey starts from a circular
parking orbit around Earth. As already mentioned, the burning time for high
thrust propulsion systems is short, so the impulsive shot concept may be used.
After an impulsive shot the velocity changes instantly, but the position remains
unaltered. Each maneuver will be performed with only one firing of the engine.

It can be shown that it is most advantageous to apply the impulsive shot
tangentially to the parking orbit, at a location where the orbital velocity is at
a maximum [Cornelisse et al., 1979]. For a circular parking orbit around the
Earth, the velocity right after the impulsive shot V0 is:

V0 = Vc0 + ∆V0 (8.1)

The velocity in the parking orbit is given by Vc0 and the impulsive shot is
denoted by ∆V0. The velocity in a hyperbolic trajectory can be obtained with
equation 6.32. Then the required impulsive shot is:
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∆V0 = V0 − Vc0 =
√

2µE
r0

+ V 2
∞E
−
√
µE
r0

(8.2)

Here r0 is the radius of the circular parking orbit (and the perigee distance of
the escape trajectory), µE the gravitational parameter of Earth. The magnitude
of the impulsive shot needed to decelerate the spacecraft so that it can go into
orbit around the target planet is obtained analogously:

∆V3 =
√

2µt
r3

+ V 2
∞t
−
√
µt
r3

(8.3)

The target planet’s gravitational parameter is given by µt, r3 is the pericenter
distance of the hyperbolic trajectory about the planet and Vpar3 is the velocity of
the spacecraft in orbit about the planet.

8.1.1 Example: Hohmann transfer to Uranus

It can be shown that the interplanetary trajectory that requires the least amount
of propellant is the so-called Hohmann transfer orbit. This is a heliocentric ellipse
that is tangential to both Earth’s orbit and Uranus’ orbit, so then it holds that
γ1 = γ2 = 0. The assumptions made are that both Earth and Uranus move in
circular co-planar orbits around the Sun. The altitude of the parking orbit is
taken as 185 km and the radius of the orbit around Uranus is taken as 1.1 RU .
The complete derivation of the results is shown in appendix A.

The magnitude of the impulsive shot in the parking orbit around the Earth is:

∆V0 = 7.98 km/s (8.4)

The next impulsive shot is needed to decelerate the spacecraft and go into
orbit around Uranus. Its magnitude is:

∆V3 = 6.49 km/s (8.5)

The transfer time for the Hohmann transfer orbit is half the orbital period of
an ellipse with semi-major axis aH . This comes down to:

TH =
1
2
· 2π

√
a3
H

µS
= 5.04 · 108 s = 15.97 yr (8.6)



68 High thrust interplanetary trajectories

The planets all move in orbits with different angular velocities, so the
configuration of the planets in the solar system changes constantly. After a
certain amount of time, the so-called synodic period, the relative positions
of the Sun, Earth and another planet are the same again. So a certain tra-
jectory would have the same geometry after this specific amount of time. An
expression for the synodic period Tsyn has been derived in [Cornelisse et al., 1979]:

1
Tsyn

=
∣∣∣ 1
TE
− 1
Tt

∣∣∣ (8.7)

Here, TE is the orbital period of Earth and Tt is the orbital period of the target
planet. For the planets beyond Jupiter TE � Tt, so then Tsyn ≈ 1 yr.

8.1.2 Three-dimensional interplanetary trajectories

The assumptions made for the interplanetary trajectory were that the planetary
orbits were circular and they were all coplanar in the ecliptic plane. In reality,
this is not the case and the planets orbit the Sun in slightly elliptic and inclined
orbits. This will have important consequences on the energy requirements and
transfer time.

As an example a minimum ∆V transfer from Earth to Uranus is analyzed
using the software package galomusit. The parking orbit around Earth was
chosen circular with an altitude of 185 km and the final orbit around Uranus
was chosen circular with an altitude of 2555.9 km (which is 1.1 RU ). The launch
window in which the optimizer in galomusit was searching spanned from 1
January 2015 up to and including 1 January 2025. The spacecraft had to arrive
before 1 January 2035. The resulting orbit is shown in figure 8.2.

For this best orbit the launch date is 15 June 2015 and the arrival date is 13
November 2030. The total ∆V that is required for this trajectory is 14.566 km/s
(8.094 km/s for launch and 6.472 km/s for capture). This total ∆V is 10 m/s
higher than for the two-dimensional Hohmann transfer. The transfer time for the
three-dimensional minimum ∆V transfer is 7 months shorter than the transfer
time for the two-dimensional Hohmann transfer.

This example illustrates that there can be significant differences between two-
dimensional and three-dimensional orbits. Therefore the analysis of interplanetary
trajectories will from now on be solely focused on three-dimensional trajectories.

8.2 Lambert’s problem

The analysis up to this point has not taken into account yet whether the target
planet will actually be there when the spacecraft arrives at the planet’s orbit.
This problem is known as Lambert’s problem, where given an initial and final
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Figure 8.2 Orbit corresponding to the minimum ∆V transfer between a circular orbit around Earth
(h = 185 km) and a circular orbit around Uranus (h = 2555.9 km). This result was obtained
using galomusit.

position, together with the flight time, the connecting orbit is determined.

The general configuration of Lambert’s problem is shown in figure 8.3. The
central body for the orbit connecting bodies P1 and P2 is C. The positions of P1

and P2 are indicated by the magnitudes of the position vectors r̄1 and r̄2. The
time needed to travel along the orbit from P1 to P2 is given by ∆t.

C

P1

P2

r2

r1

q

Dt

Figure 8.3 Configuration of Lambert’s problem, adapted from [Gooding, 1990].
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Taking a closer look at figure 8.3, two solutions for the Lambert problem exist.
The first one, also indicated in figure 8.3, subtends an angle θ, whereas the second
solution subtends an angle of 2π − θ. Using the fact that the common direc-
tion of motion in the solar system is counterclockwise, only θ is left as the solution.

The fact that θ is the solution for the transversed angle along the Lambert
arc does not mean that θ has to be within 0 and 2π. Multi-revolution Lambert
arcs are also possible solutions to the problem. However, as mentioned in chapter
2, multi-revolution Lambert arcs are not considered in this thesis.

The analysis of Lambert’s problem starts with Kepler’s equation for a transfer
from P1 to P2 (see chapter 10 for details regarding Kepler’s equation) [Wakker,
2002]:

t2 − t1 = ∆t =

√
a3

µ
(E2 − E1 − e(sinE2 − sinE1)) (8.8)

For Lambert’s problem, there is no direct solution, so an iteration procedure
should be applied. Furthermore, the equation for ∆t has to be rewritten in terms
of the known parameters r1, r2 and θ. The only unknown in the problem should
then be the iteration parameter. Gooding [1990] uses the semi-major axis a of the
transfer orbit as the iteration parameter. Instead of using a directly, it is first
made non-dimensional by means of the following transformation [Gooding, 1990]:

x2 = 1− s

2a
(8.9)

In this equation s is the semi-parameter of the triangle CP1P2. It is defined
in the following way [Gooding, 1990]:

s =
r1 + r2 + c

2
(8.10)

The chord c is the length of side P1P2 in the triangle. Different values for
x correspond to different types of orbits. If |x| < 1, then the orbit is elliptical,
whereas x = 1 corresponds to a parabolic orbit and x > 1 to a hyperbolic orbit.
Values of x ≤ −1 are assumed not to arise, since they indicate a negative value
for the time of flight ∆t [Gooding, 1990].

Next to the semi-major axis a, also ∆t is made non-dimensional. This is done
as follows [Gooding, 1990]:

T =

√
8µ
s3

∆t (8.11)



8.2 Lambert’s problem 71

After an extensive derivation, which will not be repeated here, equations 8.8,
8.9 and 8.11 can be combined into the following expression for T :

T =
2
(
x− qz − d

y

)
ELam

(8.12)

Equation 8.12 introduces several new parameters. The parameters q, ELam,
y, z and d are defined as follows:

q =
√
r1r2

s
cos

θ

2
(8.13)

ELam = x2 − 1 (8.14)

y =
√
|ELam| (8.15)

z =
√

1− q2 + q2x2 (8.16)

d =

{
arctan

(
f
g

)
, if ELam < 0

ln (f + g), if ELam > 0
(8.17)

In the expression for d two new variables are introduced, f and g. They are
given by the following expressions:

f = y(z − q) (8.18)

g = xz − qELam (8.19)

In order to see which kinds of solutions can be found, figure 8.4 can be used
[Gooding, 1990]. It shows the T plotted against x for certain values of the pa-
rameter q, as well as for the number of full revolutions m. In this thesis work
multi-revolution Lambert solutions are not considered. Possible solutions are in-
dicated by the white area, whereas solutions that are not feasible are indicated by
the gray area.

In order to come up with a solution to Lambert’s problem, an iteration process
is needed. Gooding [1990] uses a Halley iteration procedure. This is essentially a
basic Newton-Raphson procedure, extended to give third-order convergence. The
Halley iteration process can be stated as follows [MathWorld, 2009a]:

xn+1 = xn −
f(xn)f ′(xn)

2 (f ′(xn))2 − f(xn)f ′′(xn)
(8.20)



72 High thrust interplanetary trajectories

Figure 8.4 Plot of T vs. x for certain values of q and m [Gooding, 1990]. The number of full
revolutions is indicated by m (in this thesis, only single-revolution Lambert arcs are
considered, so m = 0).

In this procedure f(xn) is given by:

f(xn) = T −
2
(
xn − qnzn − dn

yn

)
ELamn

(8.21)

The first and second derivative of f with respect to x are represented by f ′

and f ′′ in equation 8.20. For the iteration process to function well, an appropriate
starting value x0 is required. Gooding [1990] uses the following starting values,
which depend on the sign of x:

x0 =


Tx=0(Tx=0−T )

4T , if x > 0

− T−Tx=0
T−Tx=0+4 , if x < 0

(8.22)

The value for T when x is equal to zero is indicated by Tx=0. Whether
x is positive or negative depends on Tx=0. If Tx=0 − T is negative, then x
is negative and if Tx=0 − T is positive then x is also positive. It was found
by Gooding [1990] that, for single-revolution Lambert arcs, the Halley itera-
tion method with the above starting values always converges to within 13 digits
in three iteration steps. The number of iterations has therefore been fixed at three.

After the Halley procedure has converged, a value for x, and thus for the semi-
major axis a of the transfer arc, has been obtained. The next step is to compute
the velocity components in radial and transverse direction at P1 and P2. For these
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components at the start and end of the Lambert arc, the following expressions
hold [Gooding, 1990]:

VR1 = γ
(qz − x)− ρ(qz + x)

r1
(8.23)

VT1 = γ
σ(z + qx)

r1
(8.24)

VR2 = −γ (qz − x)− ρ(qz + x)
r2

(8.25)

VT2 = γ
σ(z + qx)

r2
(8.26)

In these equations some auxiliary variables have been used:

γ =
√
µs

2
(8.27)

ρ =
r1 − r2

c
(8.28)

σ = 2
√
r1r2

c2
sin

θ

2
(8.29)

The velocity components VR1 , VT1 , VR2 and VT2 are defined in the plane
spanned by the triangle CP1P2. The state of the spacecraft, and its trajectory
is determined in an inertial, heliocentric reference frame (either ecliptic or
equatorial). Therefore, the tangential and radial components in the plane spanned
by CP1P2 have to be converted into this inertial, heliocentric reference frame.

The conversion is done as follows, starting with the position vectors of P1 and
P2:

r̄1 =

x1

y1

z1

 r̄2 =

x2

y2

z2



The longitude of P1 and P2 (λ1 and λ2 respectively) can be found using the
following expressions:

λ1 = arctan 2(y1, x1) (8.30)

λ2 = arctan 2(y2, x2) (8.31)
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The latitude of P1 and P2 (δ1 and δ2 respectively) can be found as follows:

δ1 = arctan 2
(
z1,
√
x2

1 + y2
1

)
(8.32)

δ2 = arctan 2
(
z2,
√
x2

2 + y2
2

)
(8.33)

The radial velocity components VR1 and VR2 can now be converted to the
inertial, heliocentric reference frame as follows:

V̄RIn,HC1
= VR1

 cos δ1 cosλ1

cos δ1 sinλ1

sin δ1

 (8.34)

V̄RIn,HC2
= VR2

 cos δ2 cosλ2

cos δ2 sinλ2

sin δ2

 (8.35)

The tangential velocity components VT1 and VT2 can be converted to the iner-
tial, heliocentric reference frame in the following way:

V̄TIn,HC1
= VT1

(
r̄1 × r̄2

|r̄1 × r̄2|
× r̄1

|r̄1|

)
(8.36)

V̄TIn,HC2
= VT2

(
r̄1 × r̄2

|r̄1 × r̄2|
× r̄2

|r̄2|

)
(8.37)

Then finally the velocity vectors of P1 and P2 in the inertial, heliocentric refer-
ence frame can be calculated simply by adding the converted radial and tangential
velocity components:

V1In,HC = V̄RIn,HC1
+ V̄TIn,HC1

(8.38)

V2In,HC = V̄RIn,HC2
+ V̄TIn,HC2

(8.39)

8.3 Calculating the ∆V needed for launch and capture

From the solution of Lambert’s problem, as described in section 8.2, the re-
quired heliocentric velocity vectors at the start and at the end of a Lambert
arc are determined. The required heliocentric velocity at the start of the first
interplanetary leg is used to determine the ∆V needed to inject a spacecraft
from a parking orbit around the initial body into the interplanetary leg. In
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the same way, the heliocentric velocity at the end of the final leg is used to de-
termine the ∆V needed to inject the spacecraft into orbit around the target planet.

It is assumed that the engine burn is performed at the pericenter of the
parking orbit. This is done to take advantage of the fact that the velocity in
pericenter is already at its highest value within the orbit. In order to calculate
the ∆V needed at launch or at capture, the characteristics of the parking orbits
need to be known. The parking orbit is defined when the pericenter radius rp and
the eccentricity e are known.

When the spacecraft is in a parking orbit around the launch body, its velocity
in pericenter VpL is given by equation 6.22, which is repeated here for convenience:

VpL = VcpL
√

1 + eL =
√
µL
rpL

√
1 + eL (8.40)

The subscript ’L’ indicates that it concerns the launch body. The local circular
velocity at pericenter is given by VcpL .

Now that the initial velocity is known, the required velocity at the start of the
hyperbolic escape trajectory has to be determined. The velocity in a hyperbolic
orbit can be determined using equation 6.32. When the equation is applied to the
pericenter of the parking orbit around the launch body, this leads to:

V 2
pLhyp

= V 2
esc + V 2

∞ (8.41)

The local escape velocity Vesc at the pericenter of the parking orbit around the
launch body is calculated using equation 6.27:

Vesc =

√
2µL
rpL

=
√

2Vc (8.42)

The hyperbolic excess velocity V∞ of the hyperbolic escape orbit can be deter-
mined using the required heliocentric velocity at the start of the interplanetary leg,
V̄HCL . This velocity is determined by Lambert’s problem, as outlined in section
8.2. The launch body’s heliocentric velocity V̄plL has to be known as well. Then
one can write for V∞:

V∞ =
∣∣V̄HCL − V̄plL∣∣ (8.43)
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Now the required ∆V needed at pericenter of the parking orbit around the
launch body can be determined:

∆VL = VpLhyp − VpL =

√
2µL
rpL

+ V 2
∞L
−
√
µL
rpL

√
1 + eL (8.44)

For the ∆V capture maneuver needed to insert the spacecraft into a parking
orbit around the target planet the same procedure can be applied as was done
for ∆VL. The pericenter radius and eccentricity for the capture orbit, rpC and eC
respectively, need to be known. The same holds for the target planet’s heliocentric
velocity VplC and the required heliocentric velocity at the end of the interplanetary
leg towards the target planet, V̄HCC . The capture ∆V can then be written as:

∆VC = VpChyp − VpC =

√
2µC
rpC

+ V 2
∞C
−
√
µC
rpC

√
1 + eC (8.45)

8.4 Unpowered gravity assists

In order to keep the spacecraft mass low and to keep the flight time in the inter-
planetary trajectory low, the concept of the planetary gravity assist can be used.
The magnitude and direction of the spacecraft’s velocity can be changed by flying
through the gravitational field of a planet or a planetary moon.

8.4.1 Principle of gravity assists

During a gravity assist momentum is exchanged between the spacecraft and the
target planet. Using conservation of linear momentum one can write [Allen, 2003]:

ms(V̄in − V̄out) = −mpl(V̄plin − V̄plout) (8.46)

The mass of the satellite is denoted by ms, the satellite’s velocity is given by
V̄ , the target planet’s mass is mpl and its velocity is V̄pl. The subscripts ’in’ and
’out’ indicate the initial and final or outgoing velocity respectively. The mass of
the spacecraft is much smaller than the mass of the target planet (order 1000 kg
versus order 1025 kg). For spacecraft velocities in the range of several km/s the
planet’s velocity remains effectively unchanged. A schematic of an unpowered
gravity assist is shown in figure 8.5.

Within the planet’s sphere of influence, the gravity assist trajectory is a
hyperbola, with the target planet in its pericenter. The projection of the planet’s
heliocentric velocity vector into the plane of the planetocentric hyperbola is
V̄planet. The hyperbolic excess velocity of the spacecraft with respect to the target
planet is V̄∞in . Its magnitude does not change during the gravity assist, but its
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RSoI

V¥,in

V¥,out
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rp
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Figure 8.5 Geometry of a planetocentric hyperbola, after [Cornelisse et al., 1979].

orientation will be changed. All the velocity vectors can be put into a vector
diagram, as shown in figure 8.6.

V¥,in

V¥,out Vplanet

VinVout
d

Figure 8.6 Gravity assist vector diagram, after [Strange and Longuski, 2002].

The final heliocentric velocity of the spacecraft is determined by vectorially
adding the hyperbolic excess velocity vector and the target planet’s velocity vector:

V̄out = V̄∞out + V̄planet (8.47)

8.4.2 Heliocentric energy increase

From the conservation of angular momentum one can write (the parameters are
from figure 8.5):

BV∞in = rpVp (8.48)
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The impact parameter B is defined as the perpendicular distance from the
pericenter to the incoming asymptote of the hyperbola. For rp the following
equation can be derived [Cornelisse et al., 1979]:

rp = −
µpl
V 2
∞in

+

√
µ2
pl

V 4
∞in

+B2 (8.49)

The eccentricity of the hyperbolic trajectory is related to half of the deflection
angle δ as follows:

cos
(
π

2
+
δ

2

)
= −1

e
(8.50)

The asymptotic deflection angle δ can be calculated as follows:

sin
δ

2
=

1

1 +
rpV 2
∞in
µpl

=
1√

1 +
B2V 4

∞in
µ2
pl

(8.51)

The angle β (see figure 8.5) is obtained with the following relationship:

β = ϕ+
δ

2
− π

2
(8.52)

When rp is smaller than the radius of the target planet Rpl, the spacecraft will
impact on the planet’s surface. The condition for impact is given by (see equation
8.49):√

1 +
B2V 4

∞in

µ2
pl

≤
V 2
∞in

Rpl

µpl
+ 1 (8.53)

Using the expression for the local escape velocity at the surface of the target
planet, this expression can be rewritten for B:

B ≤ R

√
1 +

V 2
escsurface

V 2
∞in

(8.54)

The right-hand side of the above equation determines the so-called capture
radius rcap for each value of V∞in . When the incoming asymptote of the hyperbola
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crosses a sphere with radius rcap around the planet, the spacecraft will impact on
the planet’s surface.

The dimensions of the planet’s sphere of influence can be neglected on
interplanetary scale. Then the change of heliocentric energy per unit mass can be
written as follows:

∆E =
1
2
(
V 2
out − V 2

in

)
=

1
2
(
V̄out + V̄in

)
·
(
V̄out − V̄in

)
(8.55)

In this equation V̄in is the heliocentric velocity of the spacecraft as it enters
the sphere of influence and V̄out is the spacecraft’s heliocentric velocity when
it leaves the planet’s sphere of influence. Using V̄in = V̄planet + V̄∞in and
V̄out = V̄planet + V̄∞out , the above equation can be rewritten:

∆E = V̄planet ·
(
V̄∞out − V̄∞in

)
(8.56)

With the vector diagram of figure 8.6 this comes down to:

∆E = 2VplanetV∞in sin
δ

2
cosβ (8.57)

When equations 8.51 and 8.57 are combined, it yields an expression for the
total increase in heliocentric energy per unit mass that is dependent on V∞in , B
and β:

∆E =
2VplanetV∞in cosβ√

1 +
B2V 4

∞in
µ2
pl

(8.58)

This equation will attain a maximum if β = 0 and when B takes on its
minimum value. This maximum is given by:

∆Emax =
2VplanetV∞in

1 +
RplV 2

∞in
µpl

(8.59)

From this expression it can be seen that the maximum change in energy is
large for massive planets (so a large gravitational parameter µpl), planets with
high orbital velocity and small radius. From chapter 4 it was concluded that for
trajectories to the giant planets, gravity assists at Venus and Earth are common
and going beyond Jupiter commonly requires a gravity assist at Jupiter. Figure
8.7 shows a plot of the maximum energy increase as a function of the hyperbolic



80 High thrust interplanetary trajectories

excess velocity for all planets.

Figure 8.7 Maximum energy increase ∆Emax during a gravity assist as a function of the incoming
hyperbolic excess velocity V∞in

.

This figure confirms the earlier made observation. A gravity assist at Jupiter
increases the total heliocentric energy of the spacecraft significantly for large values
of V∞in . High values of V∞in could be obtained when performing a gravity assist
at Venus or Earth. Both are very well capable of increasing the total heliocentric
energy for lower values of V∞in .

8.5 Powered gravity assists

When Lambert targeting is used in designing interplanetary trajectories, the
heliocentric velocities at the start and end of each leg are known. It is, however,
not necessarily the case that the legs can be joined together with only an
unpowered swingby. The required incoming and outgoing hyperbolic excess
velocity at the swingby planet can be different or the required swingby angle at
the planet is larger than the maximum attainable swingby angle. Therefore some
patch is needed to join the two legs of the interplanetary trajectory.

Figure 8.8 shows the geometry of a swingby where the incoming and outgoing
hyperbolic velocities are different.
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Swingby planet

V¥,out

V¥,in

d/2in

d/2out

Figure 8.8 Configuration of a powered gravity assist. The ∆V maneuver is performed at the pericenter
of the hyperbolic trajectory.

The required bending angle associated with these two hyperbolic excess veloci-
ties is composed of two components, one for V∞in and one for V∞out . This required
bending angle δreq is calculated as follows:

δreq = arccos

(
V̄∞in · V̄∞out∣∣V̄∞in

∣∣ ∣∣V̄∞out

∣∣
)

(8.60)

In order to achieve δreq, the pericenter radius has to be determined accordingly.
Using equation 8.51 and the swingby geometry as shown in figure 8.8, δreq can be
written as a function of the pericenter radius as follows:

δreq =
δin
2

+
δout
2

= arcsin

 1

1 +
rpV 2
∞in
µpl

+ arcsin

 1

1 +
rpV 2
∞out
µpl

 (8.61)

To solve for the pericenter radius rp is not straightforward and an iteration
procedure is required. Instead of using rp directly, the eccentricity e is used as
an iteration parameter. The pericenter radius has to be the same for both the
incoming and outgoing part of the swingby.

rp = ain(1− ein) = aout(1− eout) (8.62)

The semi-major axes of the incoming and outgoing leg are given by ain and
aout respectively. Using equations 6.21 and 6.31, equation 8.61 can be rewritten
in terms of the eccentricities ein and eout:

δreq = arcsin
(

1
ein

)
+ arcsin

(
1
eout

)
(8.63)
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In order to leave only one unknown parameter in this expression, the eccen-
tricity of the outgoing leg eout is written in terms of ein, yielding the following
expression:

δreq = arcsin
(

1
ein

)
+ arcsin

(
1

1− ain
aout

(1− ein)

)
(8.64)

Since ain and aout are determined from equation 6.31, ein is the only unknown
parameter. It can be solved through an iterative procedure like Newton-Raphson
[MathWorld, 2009b]:

einj+1 = einj −
f(einj )
f ′(einj )

(8.65)

In this iterative procedure the function f(einj ) is given by:

f(einj ) = arcsin
(

1
einj

)
+ arcsin

(
1

eoutj

)
− δreq (8.66)

The derivative of f(einj ) with respect to einj is denoted by f ′(einj ). In order
for the iteration procedure to work well, a suitable initial value ein0 has to be
used. Since swingbys involve hyperbolic orbits only, ein0 should be larger than 1.
There is no real other restriction on the choice for ein0 , so a bit of an arbitrary
value of 1.01 is used.

When a converged value for ein has been found, eout is easily determined.
The velocity in the pericenter for the incoming and outgoing hyperbola are then
determined using the following equations:

Vpin = V∞in

√
ein + 1
ein − 1

(8.67)

Vpout = V∞out

√
eout + 1
eout − 1

(8.68)

The ∆V needed at the pericenter of the swingby to patch the incoming and
outgoing hyperbolic leg together can be calculated as follows:

∆VSB∞ = |Vpout − Vpin | (8.69)

If the required bending angle δreq is smaller than the maximum attainable
bending angle, the pericenter engine burn to patch the incoming and outgoing
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hyperbolic legs is sufficient. If the required bending angle is still larger than the
maximum attainable bending angle another engine burn maneuver is needed. The
hyperbolic excess velocity vector needs to be rotated over an angle ∆δ = δreq −
δmax. The corresponding ∆V that is needed is given by the following expression
[Wertz, 2001]:

∆VSBδ = 2V∞ sin
(

∆δ
2

)
(8.70)

This maneuver can be applied anywhere on the hyperbolic trajectory. It is,
however, advantageous to apply ∆VSBδ when V∞ is minimal. This can be either
somewhere on the incoming leg or somewhere on the outgoing leg, depending
whether or not V∞in < V∞in or not.





Chapter 9

Deep Space Maneuvers

One of the main objectives of this thesis is to develop a method to optimize
interplanetary trajectories with DSMs, as mentioned in chapter 2. The previous
chapters have introduced all necessary background information on orbital me-
chanics. In this chapter the focus will be on characterizing trajectories with DSMs.

The basic principles of DSMs are discussed in section 9.1. The way in which
these trajectories with DSMs can be modeled is covered in section 9.2.

9.1 Basic principles of deep space maneuvers

The importance of DSMs becomes clear when considering a transfer from planet
P1 to planet P2 [Vasile and De Pascale, 2006]. First the two-impulse transfer is
considered. This transfer can be modeled as a function of the departure epoch t0
and the transfer time T . The arrival epoch t1 is given by:

t1 = t0 + T (9.1)

The two required heliocentric velocities at the start and at the end of the leg are
calculated using Lambert’s problem from body P1 to body P2 for a time of flight
T (see section 8.2). The ∆V impulsive maneuvers needed at launch and capture
are then calculated using the procedure of section 8.3. So the two-impulse transfer
problem is completely defined when t0 and t1 are known, since the positions and
the time of flight are known. In terms of minimizing the required total ∆V for
such a trajectory, the objective function f2−Imp that has to be minimized is:

f2−Imp = ∆V1 + ∆V2 (9.2)

The two-impulse transfer problem can be extended to a three-impulse transfer
by adding a DSM somewhere between P1 and P2, at a point M , see figure 9.1.

85
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Sun

P1

P2

M

M

M

Figure 9.1 Possible layouts of a 3-impulse trajectory, after [Vasile and De Pascale, 2006]. One impulse
is needed at launch, a second impulse, the DSM, is required somewhere along the trajectory
at point M and a third impulse is needed at arrival.

The DSM is considered an impulsive shot, like the impulsive maneuvers at
launch and capture. The epoch of the application of the DSM is the launch epoch
t0 added by a fraction of the total time of flight in between P1 and P2. This is
denoted by [Vasile and De Pascale, 2006]:

tDSM = t0 + TDSM = t0 + ηT (9.3)

In this equation 0 < η < 1 and the total time of flight T is a known parameter.
The magnitude of the DSM is denoted by ∆VDSM . As can be seen in figure 9.1,
the addition of a DSM between P1 and P2 opens up a range of possible trajectories
that can’t be flown using a direct transfer. The objective function f3−Imp for the
three-impulse transfer becomes [Vasile and De Pascale, 2006]:

f3−Imp = ∆V1 + ∆VDSM + ∆V2 (9.4)

The three-impulse transfer has more variables than the two-impulse transfer.
Next to the launch and arrival epochs, also the fraction of the time of flight at which
the DSM is applied is a variable. Furthermore, the arc after Earth departure up
until the moment of application of the DSM can be a variable (see the dashed arcs
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in figure 9.1). The variable arc after Earth departure will introduce 3 additional
variables, which will be shown in section 9.2. Solving a Lambert problem from the
DSM to the target planet then ensures that the target planet will be reached.

9.2 Trajectory model

In order to outline the trajectory model when DSMs are considered, an example
interplanetary trajectory is used. In this example the launch planet is Earth, the
target planet is Jupiter and there is an unpowered swingby at Mars. On each
leg of the trajectory a DSM is present. A DSM is denoted by ’d’ in a planetary
swingby sequence, therefore the trajectory is also described as EdMdJ. This
configuration is shown in figure 9.2.

E

M

J

DSMEM

DSMMJ

hTEMEM

(1-h)TEMEM

hTMJ MJ

(1-h)TMJ MJ

t1

t0

t2

Orbit of Jupiter

Orbit of Mars

Orbit of Earth

Sun

Figure 9.2 Geometry of an interplanetary trajectory from Earth to Jupiter with an unpowered gravity
assist at Mars. A DSM is present on each leg of the trajectory.

If this sequence of planets would be analyzed using only Lambert targeting, the
problem would be completely defined by the encounter epochs t0, t1 and t2 and it
would be denoted by EMJ. If the total ∆V for such a mission would be minimized,
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the decision vector (a vector containing all variables to the optimization problem)
would then look as follows:

x̄Lam = [t0, t1, t2] (9.5)

It can be seen in figure 9.2 that introducing two deep space maneuvers,
DSMEM and DSMMJ , already adds two additional variables to the problem.
Both DSMs can be applied on any point along along the respective interplanetary
legs.

The DSMs are applied at the end of the green arcs in figure 9.2. These par-
ticular arcs are analyzed using Kepler propagation and not Lambert targeting. A
thorough analysis of propagating a spacecraft trajectory along a Kepler arc can
be found in chapter 10. Two things are important at this stage of the analysis:

The initial position r̄0 and initial velocity V̄0 need to be known as well as the
time of flight that will be flown along the Kepler arc.

The position r̄ and velocity V̄ at the end of the Kepler arc are determined
using Kepler propagation.

This problem is different from Lambert targeting, where the initial and final
positions are all known, as well as the time of flight. The corresponding orbit is
then determined by patching the legs together at the planetary encounters. In
this case, however, there is an intermediate maneuver, but it is not clear what the
velocity at the start of a leg actually is.

In the current EdMdJ example, if the arc after Earth departure is considered,
the heliocentric velocity V̄L at the start of the leg is given by:

V̄L = V̄plL + V̄∞L (9.6)

The planet’s heliocentric velocity V̄plL is known at each instant in time through
planetary ephemeris. The hyperbolic excess velocity vector is an unknown pa-
rameter at this point and thus needs to be generated randomly. This is described
in detail in section 9.2.1.

The same problem holds at a planetary swingby. The heliocentric velocity at
the end of the Lambert arc going from the DSM to the swingby planet is known.
Therefore the incoming hyperbolic excess velocity at the swingby is also known
using equation 8.43. The required heliocentric velocity at the end of the swingby
in this case is not known, because the direction of the outgoing hyperbolic excess
velocity is not specified. After the swingby a Kepler arc will follow, because a DSM
is present on the leg between Mars and Jupiter. The outgoing hyperbolic excess
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velocity has to be determined somehow. If the swingby is forced to be unpowered,
then V̄∞in can be given a random rotation. After that rotation, V̄∞out is known
and therefore also the heliocentric velocity right after the swingby. The details
about this vector rotation are found in section 9.2.2.

9.2.1 Randomly generating V̄∞L

When a DSM is present on the leg after Earth departure, V̄∞L has to be generated
randomly as mentioned earlier. The magnitude of the outgoing hyperbolic excess
velocity, |V∞L |, and its direction are needed to determine V̄∞L . Two variables are
needed to determine the direction of V̄∞, namely θ and ϕ. They are defined as
follows (see also figure 9.3) [Vinko et al., 2007]:

θ = θmin + u(θmax − θmin)

ϕ = ϕmin + v(ϕmax − ϕmin) (9.7)

V̄∞L =
∣∣V̄∞L

∣∣ [cosϕ cos θī+ cosϕ sin θj̄ + sinϕk̄
]

In the above expressions u, v ∈ [0, 1]. If the search space for θ and ϕ is used,
then θ ∈ [0, 2π] and ϕ ∈

[
−π

2 ,+
π
2

]
.

V¥L

i

j

k

j

q

Figure 9.3 Frame īj̄k̄ used for defining V̄∞L
, as defined in [Vinko et al., 2007].

The magnitude of the hyperbolic excess velocity vector is chosen randomly
as well from a predefined search domain, so

∣∣V̄∞L

∣∣ ∈ [∣∣∣V̄∞Lmin

∣∣∣ , ∣∣V̄∞Lmax

∣∣]. The

coordinate frame īj̄k̄ is defined as follows [Vinko et al., 2007]:

ī =
V̄plL(t0)∣∣V̄plL(t0)

∣∣
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k̄ =
r̄plL(t0)× V̄plL(t0)∣∣r̄plL(t0)× V̄plL(t0)

∣∣
j̄ = k̄ × ī

The heliocentric velocity and position vector of the departure planet are given
by V̄plL(t0) and r̄plL(t0).

After the first four parameters are known (t0,
∣∣V̄∞L

∣∣, θ and ϕ), the trajectory
after Earth departure can be propagated along a Kepler orbit (see chapter
10) [Vinko et al., 2007]. The trajectory is propagated for a time ηEMTEM ,
where TEM is the total time of flight between Earth and the gravity assist at
Mars, and ηEM is the fraction of that total flight time that has passed until
performing the DSM [Vinko et al., 2007]. Since the position of the DSM
is known, a Lambert problem can be solved to ensure that the spacecraft po-
sition matches the position of the next planet in the remaining time (1−ηEM )TEM .

With respect to the complete Lambert trajectory EMJ, the number of variables
has increased. The decision vector, if there were no DSM in the leg between Mars
and Jupiter, would now look as follows:

x̄EdMJ =
[
t0, t1, t2,

∣∣V̄∞L

∣∣ , θ, ϕ, ηEM] (9.8)

The index ’EdMJ’ is added to clarify that this would be the decision vector if
there were a DSM in between Earth and Mars only. The swingby at Mars could
possibly be powered, since two Lambert arcs are patched together in that case.
However, there actually is a DSM in between Mars and Jupiter, which will add new
variables to the problem. The swingby at Mars is therefore forced to be unpowered.

9.2.2 Random rotation of V̄∞in
at an unpowered swingby

The geometry of the unpowered gravity assist has to be taken into account now.
In essence, the powered swingby that was used when patching two Lambert arcs
together has been replaced by an unpowered swingby followed by a DSM. The
swingby geometry is defined by the pericenter radius rp and the plane change
angle ζ [Vinko et al., 2007]. The pericenter radius is needed to determine the
swingby angle δ.

With a gravity assist, the incoming hyperbolic excess velocity vector V̄∞in is
rotated over an angle δ, while its magnitude remains constant. V̄∞in is obtained
by vectorially subtracting the planet’s heliocentric velocity vector from the space-
craft’s heliocentric velocity vector at the end of the incoming Lambert arc V̄HCSBin :

V̄∞in = V̄HCSBin − V̄plSB (9.9)
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Figure 9.4 shows the configuration of V̄∞out , the outgoing hyperbolic velocity
vector. The components along the axes b̄1, b̄2 and b̄3 are shown in red. The angles
δ and ζ are indicated as well.

V¥outb1

b2

b3

d

z

Figure 9.4 Frame b̄1b̄2b̄3 used for defining δ and ζ for an unpowered swingby, adapted from [Vinko
et al., 2007].

The coordinate frame b̄1b̄2b̄3 is defined in the following way [Vinko et al., 2007]:

b̄1 =
V̄∞in∣∣V̄∞in

∣∣
b̄2 =

b̄1 × r̄pl∣∣b̄1 × r̄pl∣∣
b̄3 = b̄1 × b̄2

So b̄1 is aligned with the incoming hyperbolic excess velocity vector. The
deflection angle δ is a function of the eccentricity of the planetocentric hyperbola,
which itself is a function of the pericenter radius rp [Vinko et al., 2007]:

δ = 2 arcsin
(

1
e

)
(9.10)

e = 1 +
rpV

2
∞in

µpl
(9.11)
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The pericenter radius is determined by the planet’s radius and the pericenter al-
titude hp. The unknown parameter in this case is hp, which therefore has to be gen-
erated randomly within a predefined range of possible values (hp ∈ [hpmin , hpmax ]).
Once hp has been generated, the outgoing hyperbolic excess velocity vector is now
defined using the plane change angle ζ (see also figure 9.4):

V̄∞out =
∣∣V̄∞in

∣∣ [cos δb̄1 + sin δ sin ζb̄2 + sin δ cos ζb̄3
]

(9.12)

In this vector rotation
∣∣V̄∞in

∣∣ is used, because its value is known and it is
equal to

∣∣V̄∞out

∣∣ during the unpowered swingby. The plane change angle ζ is an
unknown parameter and therefore has to be generated randomly. From figure 9.4
it can be concluded that ζ ∈ [0, 2π].

With hp (and thus δ) and ζ known, V̄∞out is now known. Therefore the he-
liocentric velocity vector V̄HCSBout can now be obtained by adding the planet’s
heliocentric velocity vector V̄plSB to V̄∞out :

V̄HCSBout = V̄∞out + V̄plSB (9.13)

Now that the initial velocity of the leg between Mars and Jupiter is known,
the trajectory can be propagated along a Kepler arc for a time ηMJTMJ , at
which time a DSM is performed. After the DSM the final part of the trajectory
is obtained by analyzing a Lambert problem from the DSM to Jupiter.

The decision vector for the complete EdMdJ trajectory can now be written as
follows:

x̄EdMdJ =
[
t0, t1, t2,

∣∣V̄∞L

∣∣ , θ, ϕ, ηEM , rp, ζ, ηMJ

]
(9.14)

9.2.3 Consequences on the size of the search space

The addition of DSMs in both legs of the EMJ trajectory has increased the
number of variables from 3 (using Lambert arcs only) to 10. The addition of these
extra variables increases the size of the search space in the optimization process
drastically. For each of the variables a range of values is possible and finding
the optimum solution (the minimum total ∆V ) becomes more difficult with the
addition of each variable.

In general it can be stated that if a DSM is present on the leg after launch
at Earth, the number of variables increases by 4. If a DSM is present on any
of the subsequent legs in the interplanetary trajectory, the number of variables
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increases by 3 for each DSM. As an example, consider a trajectory from Earth
to Uranus with five swingbys. If a DSM would then be present in each leg of
the trajectory, the number of variables would be 26. The first 7 variables are
the encounter epochs at each planet, the next 4 are due to the DSM on the first
leg of the trajectory and the final 15 are due to 5 swingbys, each followed by a DSM.





Chapter 10

Propagation along a Kepler orbit

It was mentioned in section 9.2 that when a DSM is applied between two planetary
encounters on an interplanetary trajectory, the leg will be split up into two distinct
parts. The first part, which is analyzed by means of a Kepler problem, starts at
the initial planet and ends at the time when the DSM is applied. The second part
of the leg, which is analyzed as a Lambert problem (see section 8.2), starts at the
time of applying the DSM and ends at the next planetary encounter.

The focus in this chapter is on the propagation of an orbit along a Kepler arc.
The chapter is structured in the following way. Kepler’s problem for the different
types of conic sections is discussed in section 10.1. The solution to Kepler’s problem
for the different types of conic sections is outlined in section 10.2. Kepler’s problem
can be written in such a way that its formulation is the same for all conic sections.
The derivation, as well as the solution process can be found in section 10.3.

10.1 Introducing the Kepler problem

In chapter 6 the different types of conic sections have been introduced. The focus
has been on the characteristics of position and velocity within the particular
orbit. It is also possible to derive expressions for the relation between the time of
flight and the position within the orbit.

10.1.1 Kepler’s equation for elliptical orbits

To start the discussion on Kepler’s equation for elliptical orbits, equation 6.28 is
repeated here for clarity.

r = a (1− e cosE) (10.1)

When this equation is differentiated with respect to time, this yields:

ṙ = aeĖ sinE (10.2)

95
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The dot indicates a time derivative. When combining equations 6.13 and 6.14
the following expression for r is obtained:

r =
H2/µ

1 + e cos θ
(10.3)

If this expression is differentiated with respect to time, Wakker [2002] shows
that this gives:

ṙ =
µ

H
e sin θ (10.4)

One of the properties of an elliptical orbit (see figure 6.2) is that b
a =
√

1− e2.
It is then shown in [Wakker, 2002] that the following relationship holds:

r sin θ = a
√

1− e2 sinE (10.5)

It is shown by Wakker [2002] that the following differential equation in E can
now be obtained:

Ė(1− e cosE) =
√
µ

a3
(10.6)

When this expression is integrated an expression is obtained relating the
eccentric anomaly and time:

E − e sinE =
√
µ

a3
(t− τ) (10.7)

In this expression τ is an integration constant, indicating the time of the last
pericenter passage. The expression

√
µ
a3 is called the mean angular velocity n of

the body and the complete right-hand side of this equation is called the mean
anomaly M . So equation 10.7 may also be written as [Wakker, 2002]:

E − e sinE = n(t− τ) = M (10.8)

This expression is also known as Kepler’s equation. This equation holds for
elliptical orbits, but similar time of flight equations can be derived for hyperbolic
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and parabolic orbits, as will be derived in sections 10.1.2 and 10.1.3.

If the time of flight needs to be calculated between a point defined by its
true anomaly θ0 (not necessarily at the time of last pericenter passage) and
some other point along the orbit defined by θ, then the following expression
for the time of flight can be derived, based on Kepler’s equation [Bate et al., 1971]:

t− t0 =

√
a3

µ
[2kπ + (E − e sinE)− (E0 − e sinE0)] (10.9)

This expression is very general, since also multiple pericenter passages in be-
tween θ0 and θ are considered by it, which is indicated by k, the number of peri-
center passages.

10.1.2 Kepler’s equation for hyperbolic orbits

Just like for elliptical orbits, an expression can be derived for hyperbolic orbits
that relates the time of flight to, in this case, the hyperbolic anomaly F . Starting
from the vis-viva equation (equation 6.21), and using the radial and tangential
components of the velocity (r̄ and rθ̇ respectively), the following expression can
be derived [Wakker, 2002]:

V 2 = ṙ2 + (rθ̇)2 = µ

(
2
r
− 1
a

)
(10.10)

By substituting the equation for the angular momentum, H = r2θ̇ =√
µa(1− e2), this equation can be rewritten into the following form [Wakker,

2002]:

ṙ2 =
(
µ

−a

)[
a2(1− e2)

r2
− 2a

r
+ 1
]

(10.11)

Differentiating equation 6.33 with respect to time gives an expression relating
ṙ to F and Ḟ [Wakker, 2002]:

ṙ = −aeḞ sinhF (10.12)

Substitution of equations 6.33 and 10.12 into equation 10.11 leads to the fol-
lowing differential equation in F after some steps:

Ḟ (1− e coshF ) = ±
√

µ

−a3
(10.13)
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Wakker [2002] argues that Ḟ is always positive and furthermore, that
e coshF > 1, which means that only the plus-sign in equation 10.13 should be
used. Integration of this equation gives:

e sinhF − F =
√

µ

−a3
(t− τ) (10.14)

Like for the elliptical case, τ is an integration constant indicating the time of
pericenter passage. For the hyperbolic orbit, a mean angular velocity is defined
as follows [Wakker, 2002]:

n̄ =
√

µ

−a3
(10.15)

Also a type of mean anomaly for hyperbolic orbits is defined as [Wakker, 2002]:

M̄ = n̄(t− τ) (10.16)

Equation 10.14 can now be written as [Wakker, 2002]:

e sinhF − F = n̄(t− τ) = M̄ (10.17)

When comparing this equation with equation 10.8 it shows a clear resemblance
with Kepler’s equation for elliptical orbits. Therefore from this point on, equation
10.17 will be referred to as Kepler’s equation for hyperbolic orbits.

As was the case for elliptical orbits, an expression can be derived from Kepler’s
equation for hyperbolic orbits that calculates the time of flight based on a, e, θ0

and θ (or equivalently F0 and F ) [Bate et al., 1971]:

t− t0 =
√

µ

(−a)3
[(e sinhF − F )− (e sinhF0 − F0)] (10.18)

10.1.3 Kepler’s equation for parabolic orbits

For parabolic orbits the analysis starts with the equation for the angular momen-
tum:

H = r2θ̇ =
√
µp (10.19)
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Because the semi-major axis of a parabolic orbit is ∞, an alternative formula-
tion has to be found. For a parabolic orbit it holds that e = 1, so then equation
6.13 can be rewritten as follows [Vallado and McClain, 2007]:

r =
p

1 + e cos θ
=

p

1 + cos θ
=

p

2 cos2
(
θ
2

) (10.20)

This expression can be simplified in such a way that a compact expression for
r in a parabolic orbit is obtained [Vallado and McClain, 2007]:

r =
p

2

(
cos2

(
θ
2

)
+ sin2

(
θ
2

)
cos2

(
θ
2

) )
=
p

2

(
1 + tan2

(
θ

2

))
(10.21)

The resulting equation for r can now be substituted into equation 10.19. After
some rewriting the following equation is obtained [Bate et al., 1971]:

√
µpdt = r2dθ =

p2

4

(
1 + tan2

(
θ

2

))2

dθ (10.22)

Equation 10.22 has to be integrated to obtain the time of flight equation for
parabolic orbits [Vallado and McClain, 2007]:∫ t

t0

4
√
µ

p3
dt =

∫ θ

0

(
1 + 2 tan2

(
θ

2

)
+ tan4

(
θ

2

))
dθ (10.23)

The solutions to these integrations can be found in standard integral tables, so
only the result of the integration (after rearranging) is shown:

2
√
µ

p3
(t− t0) = tan

(
θ

2

)
+

tan3
(
θ
2

)
3

(10.24)

Like for elliptical and the hyperbolic orbits, a mean motion np can be defined
as well as a parabolic anomaly D [Vallado and McClain, 2007].

np ≡ 2
√
µ

p3
(10.25)

D ≡ tan
(
θ

2

)
(10.26)
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Substituting np and D into equation 10.24 leads to a time of flight equation
that is a third order polynomial in D [Vallado and McClain, 2007]:

np(t− t0) = D +
D3

3
(10.27)

The time of flight equation for parabolic orbits can be written in a general
way so it includes the initial and final locations of the spacecraft [Vallado and
McClain, 2007]:

t− t0 =
1
2

√
p3

µ

[
D +

D3

3
−
(
D0 +

D3
0

3

)]
(10.28)

10.2 Position and velocity at a certain point in time

Using the Kepler time of flight equation, it is straightforward to determine the
time of flight if a, e, θ and θ0 are known. Using equation 6.28 the eccentric
anomaly at the start and end point can then be computed and all parameters can
be put into equation 10.9, yielding the time of flight. It is, however, not all that
straightforward to determine where a body is at a certain moment in time. This
prediction problem is also referred to as Kepler’s problem and can be stated as
follows [Bate et al., 1971]:

Given: r̄0, V̄0 and t0
Find: r̄, V̄ at time t

This problem states exactly what is needed when modeling Kepler arcs for
trajectories with DSMs. For example, when Earth is the initial launch body, its
position and velocity (in the heliocentric inertial equatorial reference frame) are
obtained from the JPL DE200 planetary ephemeris for the specific launch date.
JPL DE200 is applied in the software package galomusit, which will be used for
the optimization of the interplanetary trajectories (see chapter 12). As mentioned
in section 9.2.1, a hyperbolic excess velocity vector V̄∞ with random magnitude
and direction is generated. This vector is then added to the planet’s velocity
vector. This gives the initial heliocentric velocity vector, which is needed as an
input for the Kepler problem.

The total time of flight that the spacecraft moves along the Kepler orbit is
obtained from taking a fraction of the total time the spacecraft needs to go from
Earth to the subsequent planet. By solving the Kepler problem the position and
velocity vector at the end of the Kepler orbit are obtained. Since at this point



10.2 Position and velocity at a certain point in time 101

in time (when the DSM will be performed) the position is known, as well as the
position and time of the next planetary encounter, a Lambert problem can be
solved. This will give the necessary velocity at the start and end points of the
Lambert arc. The discontinuity in the velocity vectors prior to and right after the
DSM represents the magnitude and direction of the DSM.

In the following sections procedures are discussed for the solution of Kepler’s
problem for all types of conic sections.

10.2.1 Solution of Kepler’s problem for elliptical orbits

In order to start solving Kepler’s problem, Kepler’s equation is rewritten slightly
[Wakker, 2002]:

f(E,M) = E − e sinE −M (10.29)

For a certain value of M , the following holds:

f(−∞,M) = −∞

f(+∞,M) = +∞ (10.30)

df

dE
= 1− e cosE > 0

This implies that for every value of M , there is always one single value for E
for which it holds that f(E,M) = 0, which is the solution of Kepler’s problem.

In order to solve for E an iterative approach is required, like the Newton-
Raphson procedure as proposed in [Wakker, 2002]. This procedure looks as
follows:

Ek+1 = Ek −
f(Ek,M)

d
dE (f(Ek,M))E=Ek

= Ek −
Ek − e sinEk −M

1− e cosEk
(10.31)

As an initial guess for this iteration procedure E0 = M can be used [Wakker,
2002].

10.2.2 Solution of Kepler’s problem for hyperbolic orbits

Kepler’s problem for hyperbolic orbits can be solved using a procedure analogous
to the one for elliptical orbits. As a starting point Kepler’s equation is rewritten
[Wakker, 2002]:

f(F, M̄) = e sinhF − F − M̄ (10.32)
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In order to examine whether f(F,M) has one unique solution for an arbitrary
value of M̄ , sinhF is written as a series expansion:

sinhF = F +
F 3

3!
+
F 5

5!
+
F 7

7!
+ . . . (10.33)

For a certain value of M̄ , the following holds:

f(−∞, M̄) = −∞

f(+∞, M̄) = +∞ (10.34)

df

dF
= e coshF − 1 > 0

This implies that there is one single value for F for which it holds that
f(F, M̄) = 0, which is the solution of Kepler’s problem for hyperbolic orbits
[Wakker, 2002].

To solve Kepler’s problem for a hyperbolic orbit, a Newton-Raphson iteration
procedure can be applied, as was the case for elliptical orbits. In the hyperbolic
case, the procedure looks as follows [Wakker, 2002]:

Fk+1 = Fk −
f(Fk, M̄)

d
dF

(
f(Fk, M̄)

)
F=Fk

= Fk −
e sinhFk − Fk − M̄

e coshFk − 1
(10.35)

For the initial guess F0, the situation is a bit more complicated than for ellip-
tical orbits. Wakker [2002] shows that the initial guess for the solution of Kepler’s
problem in a hyperbolic orbit depends on the value of M̄ :∣∣M̄ ∣∣ < 6e: F0 = x sinh y

x =

√
8(e− 1)

e

y =
1
3

arcsinh
(

3M̄
x(e− 1)

)
M̄ > 6e : F0 = ln

(
2M̄
e

)
M̄ < −6e: F0 = ln

(
−2M̄
e

)
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10.2.3 Solution of Kepler’s problem for parabolic orbits

With respect to the elliptical and hyperbolic case, the solution of Kepler’s equa-
tion for parabolic orbits is more straightforward. Equation 10.27 is a third order
polynomial in D. Since the time instances t and t0 are known, the polynomial
expression can be solved:

f(D,Mpar) =
1
3
D3 +D −Mpar = 0 (10.36)

In the polynomial expression Mpar is introduced, which is equal to np(t− t0).
For every Mpar, there is one single solution for D [Wakker, 2002]. This is because:

f(−∞,Mpar) = −∞

f(+∞,Mpar) = +∞ (10.37)

df

dD
= D2 + 1 > 0

As was the case for elliptical and hyperbolic orbits, the value for D can be
obtained using a Newton-Raphson iteration procedure. As an initial guess D0 =
Mpar can be used.

10.3 Universal variable formulation

The classical formulations for the time of flight involving either the eccentric or
hyperbolic anomaly do not work well for near-parabolic orbits [Bate et al., 1971].
Iteration procedures like Newton-Raphson converge very slowly or do not converge
at all. Therefore a new formulation for the time of flight equations will be derived
in this section that uses a new auxiliary variable that is different from either the
eccentric or hyperbolic anomaly [Bate et al., 1971]. The use of this variable will
allow for formulation of the time of flight equation that is valid for all types of
orbits.

10.3.1 The Sundman transformation

The change in variable is known as the so-called Sundman transformation, after
Karl F. Sundman (1873-1949) [Bate et al., 1971]. The derivation of this vari-
able starts with the equations for the total energy and angular momentum of the
satellite in the orbit:

H = r2θ̇ =
√
µp (10.38)

E =
1
2
V 2 − µ

r
=

1
2

(
ṙ2 + (rθ̇)2

)
− µ

r
= − µ

2a
(10.39)
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When solving for ṙ2 in equation 10.39 and using (rθ̇)2 = µp
r2

from equation
10.38, the following expression is obtained [Bate et al., 1971]:

ṙ2 = −µp
r2

+
2µ
r
− µ

a
(10.40)

The solution of this differential equation is not straightforward, so therefore a
new independent universal variable x is introduced through the Sundman trans-
formation [Bate et al., 1971]:

ẋ =
dx

dt
=
√
µ

r
(10.41)

When equation 10.40 is divided by the square of equation 10.41 the following
relationship is obtained, which has no explicit time derivatives anymore [Bate
et al., 1971]:(

dr

dx

)2

= −p+ 2r − r2

a
(10.42)

Rewriting this expression and separating the variables yields [Bate et al., 1971]:

dx =
dr√

−p+ 2r − r2

a

(10.43)

Bate et al. [1971] shows that the integration of this expression results in the
following equation for x:

x+ C =
√
a arcsin

 r
a − 1√
1− p

a

 (10.44)

In this equation C is a constant of integration. Using p = a(1 − e2), so e =√
1− p

a , the equation for x can be written as [Bate et al., 1971]:

x+ C =
√
a arcsin

( r
a − 1
e

)
(10.45)

Solving this equation for r in terms of x yields:

r = a

(
1 + e sin

(
x+ C√

a

))
(10.46)
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Substitution of equation 10.46 into equation 10.41 results in [Bate et al., 1971]:

√
µdt = a

(
1 + e sin

(
x+ C√

a

))
dx (10.47)

Integration of equation 10.47, assuming that x = 0 at t = t0, then finally
results into an expression for the time of flight [Bate et al., 1971]:

√
µ(t− t0) = ax− ae

√
a

(
cos
(
x+ C√

a

)
− cos

(
C√
a

))
(10.48)

Now expressions have been derived for r and the time of flight that are a
function of the universal variable x. In the following section these expressions will
be discussed in more detail and an extension will be made to the Kepler problem
using the universal variable formulation.

10.3.2 Kepler’s equation using the universal variable formulation

Starting from equation 10.46 and assuming that x = 0 at t = t0, the following
holds [Bate et al., 1971]:

e sin
C√
a

=
r0

a
− 1 (10.49)

In this equation r0 is the distance to the center of attraction at time t0. If equa-
tion 10.46 is now differentiated with respect to time, this results in the following
expression [Bate et al., 1971]:

ṙ =
ae√
a

cos
(
x+ C√

a

)√
µ

r
(10.50)

Equation 10.50 can be rewritten as follows [Bate et al., 1971]:

rṙ
√
µa

= e cos
(
x+ C√

a

)
(10.51)

Using the identity rṙ = r̄ · ˙̄r = r̄ · V̄ and the assumption that x = 0 at t = t0,
equation 10.51 can be reduced to:

e cos
C√
a

=
r̄0 · V̄0√
µa

(10.52)
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Now equation 10.48 can be rewritten in the following way (using the trigono-
metric identity for the cosine of a sum1) [Bate et al., 1971]:

µ(t− t0) = ax− ae
√
a

(
cos

x√
a

cos
C√
a
− sin

x√
a

sin
C√
a
− cos

C√
a

)
(10.53)

Now equations 10.49 and 10.52 can be substituted into equation 10.53, which
leads to the following expression for the time of flight [Bate et al., 1971]:

√
µ(t−t0) = a

(
x−
√
a sin

x√
a

)
+
r̄0 · V̄0√

µ
a

(
1− cos

x√
a

)
+r0

√
a sin

x√
a

(10.54)

Similar to the time of flight equation, the equation for r (equation 10.46) can
be rewritten to [Bate et al., 1971]:

r = a+ ae

(
sin

x√
a

cos
C√
a

+ cos
x√
a

sin
C√
a

)
(10.55)

If then equations 10.49 and 10.52 are substituted into equation 10.55, the
following expression for r is obtained [Bate et al., 1971]:

r = a+ a

(
r̄0 · V̄0√
µa

sin
x√
a

+
(r0

a
− 1
)

cos
x√
a

)
(10.56)

If a new variable z is introduced (z = x2

a ) and substituted into equation 10.54,
this yields [Bate et al., 1971]:

√
µ(t−t0) =

x2

z

(
x− x√

z
sin
√
z

)
+
r̄0 · V̄0√

µ

x2

z

(
1− cos

√
z
)
+r0

x√
z

sin
√
z (10.57)

If z is introduced into equation 10.56, it results in the following expression
[Bate et al., 1971]:

r =
x2

z
+
x2

z

(
r̄0 · V̄0√

µ

√
z

x
sin
√
z + cos

√
z
(r0z

x2
− 1
))

(10.58)

1cos (a + b) = cos a cos b− sin a sin b
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It should be noted that if z = 0, the orbit is a parabola, if z > 0 then the orbit
must be an ellipse and if z < 0, the orbit must be hyperbolic.

Equations 10.57 and 10.58 share a number of common terms, which becomes
clear after some rearranging [Bate et al., 1971]:

√
µ(t− t0) = x3

(√
z − sin

√
z√

z3

)
+x2 r̄0 · V̄0√

µ

(
1− cos

√
z

z

)
+x

r0 sin
√
z√

z
(10.59)

r = x2

(
1− cos

√
z

z

)
+ x

r̄0 · V̄0√
µ

(
1− z

√
z − sin

√
z√

z3

)
+ r0

(
1− z 1− cos

√
z

z

)
(10.60)

Some auxiliary variables can be defined that are a function of z [Bate et al.,
1971]:

C =



1−cos
√
z

z

1−cosh
√
−z

z

1
2

(10.61)

S =



√
z−sin

√
z√

z3

sinh
√
−z−

√
−z√

−z3

1
6

(10.62)

For both equation 10.61 and 10.62 the top expression holds for z > 0, the
middle expression holds for z < 0 and the final expression holds for z = 0.

After substitution of C and S into equation 10.59 and after some rewriting a
relatively compact expression for the time of flight is obtained [Bate et al., 1971]:

√
µ(t− t0) = x3S +

r̄0 · V̄0√
µ

x2C + r0x(1− zS) (10.63)

This equation is the Kepler equation in universal variable formulation. This
expression is the same for all types of conic sections. The same holds for the
following expression for r, which is obtained by introducing equations 10.61 and
10.62 into equation 10.60 [Bate et al., 1971]:

r = x2C + x
r̄0 · V̄0√

µ
(1− zS) + r0(1− zC) (10.64)
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10.3.3 Solving the universal variable form of Kepler’s problem

In order to solve Kepler’s equation in universal variable formulation for x when t0
and t are known is done using an iterative procedure. Der [1996] uses a so-called
Laguerre iteration procedure, which can be described as follows:

xn+1 = xn −
5f(xn)

f ′(xn) + f ′(xn)
|f ′(xn)|

√
16f ′(xn)2 − 20f(xn)f ′′(xn)

(10.65)

In the above iteration procedure the functions f(x), f ′(x) and f ′′(x) are defined
as follows [Der, 1996], [Bate et al., 1971]:

f(x) = (1− αr0)x3S +
r̄0 · V̄0√

µ
x2C + r0x−

√
µ(t− t0) (10.66)

f ′(x) = x2C (1− αr0) +
r̄0 · V̄0√

µ
x
(
1− αx2S

)
+ r0 (10.67)

f ′′(x) =
r̄0 · V̄0√

µ

(
1− αx2C

)
+ (1− αr0)

(
1− αx2

)
x (10.68)

In the above equations α = 1
a has been used. This is because in the calculation

of the semi-major axis a using the vis-viva equation (equation 6.21), if the orbit is
parabolic, the denominator of this expression would be equal to zero [Bate et al.,
1971].

Now that the functions of x needed for the iteration process are known, only
the initial value for x has to be set. The initial value for x depends on the type
of orbit that is under consideration. Bate et al. [1971] and Der [1996] suggest the
following initial guess for elliptical orbits:

x0ell =
√
µ(t− t0)
a

= α
√
µ(t− t0) (10.69)

When the orbit is a hyperbola, the initial guess proposed by Bate et al. [1971]
is:

x0hyp = ±
√
−a ln

[
−2µ(t− t0)

a
[
r̄0 · V̄0 ±

√
−µa

(
1− r0

a

)]] (10.70)

In this equation ’±’ means that if t > t0, it will be a plus-sign, whereas if
t < t0, then it will be a minus-sign [Bate et al., 1971].
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Finally, if the orbit is parabolic, the following initial value x0par can be used
[Vallado and McClain, 2007]:

x0par =
√
p tan

(
θ0

2

)
(10.71)

Now that the functions and the initial guess are known, the iteration procedure
can be performed, yielding a converged value for x in at most five iterations [Der,
1996]. This parameter x has a physical significance, since it can be related to the
difference in either the eccentric, parabolic or hyperbolic anomaly at time instances
t0 and t. Bate et al. [1971] shows that for elliptical orbits the x can be expressed
as:

x =
√
a(E − E0) =

√
a∆E (10.72)

For hyperbolic orbits a similar expression can be derived [Bate et al., 1971]:

x =
√
−a(F − F0) =

√
−a∆F (10.73)

Finally, Vallado and McClain [2007] shows that for parabolic orbits the follow-
ing expression holds for x:

x =
√
p(D −D0) =

√
p∆D (10.74)

Now that the anomaly difference is known the position and velocity at time t
(r̄ and V̄ ) can be obtained as a function of r̄0 and V̄0 in the following way [Bate
et al., 1971]:

r̄ = f r̄0 + gV̄0 (10.75)

V̄ = ḟ r̄0 + ġV̄0 (10.76)

The coefficients f , g, ḟ and ġ are called the f and g expressions. These expres-
sions are given by the following equations (the complete derivations can be found
in [Bate et al., 1971]):

f = 1− x2

r0
C (10.77)

g = (t− t0)− x3

√
µ
S (10.78)
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ḟ = 1− x2

r
S (10.79)

ġ =
√
µ

r0r
x(αS − 1) (10.80)

The procedure described in this section can be summarized as follows:

Given r̄0, V̄0 at t0, determine r0 and a.

Given t− t0, solve the Laguerre iteration procedure of equation 10.65 using the
appropriate starting value for x (which depends on the type of orbit).

When a converged value of x has been reached, the f and g expressions can be
calculated.

The position r̄ at time t can be calculated using equation 10.75, after which
its magnitude r can be calculated easily.

The velocity V̄ at time t can then be calculated using equation 10.76.
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Chapter 11

Optimization

This thesis research is focused on optimizing the trajectory for a Uranus orbiter
mission. This chapter will focus on the characteristics of the optimization process.
First an overview of different classes of optimization methods is given in section
11.1. The simple Genetic Algorithm (GA) is discussed in section 11.2, after which
some more advanced genetic operators can be found in section 11.3. The chapter
is concluded with a section on random number generators.

11.1 Overview of optimization methods

This section will focus on the main classes of optimization techniques, each of
which will be briefly discussed [Goldberg, 1989]:

- Calculus-based methods.

- Enumerative methods.

- Random methods.

Calculus-based

Calculus-based methods can be subdivided into two main classes: direct and
indirect methods. Direct methods search for a local optimum by moving along the
function and following the gradient. Indirect methods search for a local optimum
by setting the gradient of the objective function equal to zero.

Both direct and indirect methods have a local scope. The optimum that is
found is not guaranteed to be the global optimum. Next to that, if a local optimum
has been found, further improvement can only be found through some restarting
function. Furthermore, calculus-based methods require the existence of derivatives,
substantially reducing the amount of problems that can be tackled [Goldberg,
1989]. Because of the clear shortcomings, calculus-based methods will not be used
for the trajectory optimization process.
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Enumerative

Enumerative methods look at the objective function values for each point within
a finite search space. The principle behind this method is very simple, but there
is a major drawback. Many problems have too large search spaces, making
enumerative methods very inefficient.

An advanced enumerative technique is dynamic programming. A complex
problem is broken down into a set of problems that are more likely to be solved.
Solutions of these intermediate problems form the solution of the original prob-
lem. For large problems (such as interplanetary trajectory optimization), dynamic
programming is very slow, making them unsuitable for the current analysis.

Random

Random optimization techniques have become increasingly popular over the years,
because of the earlier mentioned shortcomings of calculus-based and enumerative
methods. Random methods like the Monte Carlo method randomly go through
the search space in order to find the optimal solution. For large search spaces this
is not efficient, because an enormous amount of samples has to be taken to find
the optimal solution, increasing the computation time.

Random searches are different from randomized search techniques, such as
simulated annealing and GAs. Here random choice is used as a tool to guide
the search to regions of the search space where improvement is likely. Simulated
annealing performs with a higher efficiency than Monte Carlo methods, but for
large problems it requires long computing times. GAs are based on evolutionary
principles applied to a population of solutions, where the principle of ’survival
of the fittest’ plays a major role. The software package galomusit is used at
the Faculty of Aerospace Engineering of Delft University of Technology in The
Netherlands to optimize interplanetary trajectories. This program uses a GA for
the optimization process, and therefore GAs will also be used in this thesis research.
The way in which GAs work is described in the next sections.

11.2 The simple GA

GAs are based on genetic inheritance and Charles Darwin’s (1809-1882) principle
of survival of the fittest. A population of potential solutions to the problem will
evolve so that a more optimal solution can be found. Analogous processes are
encountered in nature many times.

11.2.1 The working principle of a simple GA

Figure 11.1 shows a flowchart that indicates the general structure of a GA.
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Figure 11.1 Flowchart of a simple GA, after [Noomen, 2006].

The simple GA starts by randomly generating potential solutions to the prob-
lem. This process continues until enough potential solutions have been found to
fill an entire population of predefined size. For each of these population members
it has to be assessed how good it actually is. In other words, for each population
member the fitness with respect to a fitness or objective function is evaluated.
The population members are also referred to as individuals or decision vectors
throughout this thesis. If no global optimal solution to the problem is found,
genetic operations are performed on the initial population. This will result in a
new population and it is said that a generation has passed (so the GA maintains
a population of potential solutions). The new population will be evaluated again
with respect to the fitness function. This process will continue until convergence is
reached or until some stopping criterion is met. It should be noted that checking
for convergence is usually done after a number of generations has already passed,
so that the population has already had time to evolve.

11.2.2 Structure of the simple GA

A GA applied to a certain problem should have the following components
[Michalewicz, 1996]:

- A genetic representation for potential solutions to the problem at hand.

- A means to create a starting or initial population of potential solutions.

- Some sort of function that evaluates the potential solutions and rates them in
terms of ’fitness’ to the function.

- Genetic operators that change the composition of children or offspring.

- Generate a new population from the newly created offspring and other genetic
operators.

Genetic representation

The simple GA could use binary strings to represent potential solutions to the
problem. For example, the decimal number 47 is represented by binary string
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101111:

101111 = 1·25+0·24+1·23+1·22+1·21+1·20 = 32+0+8+4+2+1 = 47 (11.1)

If, for example, the problem at hand has two variables, x1 and x2, an
individual or string in the population should be composed of two variables. If a
binary representation for the string is used, string i in the population could look
like this:

x̄i = [01100|11010] (11.2)

A series of 10 randomly generated 0’s and 1’s fills the string. Since the string
represents two variables, the value of xi1 is then represented by the first 5 numbers
in the string. The last 5 numbers in the string then represent xi2. The numbers
can of course represent their decimal value, giving the following values for x1 and
x2:

x̄i =
[
xi1 xi2

]
= [12 26] (11.3)

Another possibility is that the binary strings are used for scaling the value of a
variable within its allowable search space. The value of a variable x1 represented
by a binary string of length q has values in the range 0 < x1 < 2q. The search
space for x1 in general is defined by a lower bound LB and an upper bound UB.
The binary string can then be scaled to be in the [LB,UB] domain in the following
way [Noomen, 2006]:

x1 = LB +
UB − LB

2q
x1bin (11.4)

In this expression x1bin is the decimal value of the binary string.

Instead of representing the variables of the optimization problem by means of a
binary string, floating point representation can also be used. If a complex problem
with many variables has to be tackled requiring high accuracy using a binary
representation for the strings, the strings would become extremely large. The
GA will then perform poorly [Goldberg, 1989]. This problem can be overcome by
representing each variable by a floating point number. Each individual can then be
considered a vector of floating point numbers, each of which represents a variable.
Each variable has a specific range of possible values and the floating point values
should be within the allowable search space.
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Initialization of the population

It could already be seen in figure 11.1 that the GA optimization process starts
by initializing a population of individuals that are all possible solutions to the
problem. In case of binary representation a random sequence of 0’s and 1’s is
generated. The length of the string depends on the number of variables and the
number of bits per variable that is used. In the case of floating point representa-
tion, random values of each variable within its allowable search space are generated.

An important parameter is the population size Npop, so the number of individ-
uals that are present in the population. The size of the population is of importance
because it relates to computation time and being able to find the global optimum.
A large population size increases the probability of finding good solutions, but
at the cost of the time it needs to complete the optimization. On the other
hand, performing the optimization for a small population may be very efficient in
terms of computation time, but the probability of finding good solutions decreases.

The complexity of the problem, thus the number of variables and the accuracy
required for the solution, is of major influence on the choice of the population
size. It is difficult to find potential solutions to complex problems and therefore a
larger population is generally more required than for a simple problem. This is at
the cost of computation time, but since the probability of finding good individuals
increases a larger population size makes sense.

Objective function evaluation

Each individual that is generated is evaluated with respect to an objective func-
tion. The objective function depends on the type of optimization problem. For
example, in this thesis research the objective is to find the minimum total ∆V for
an interplanetary transfer. Therefore, an individual is called ’good’ if the total
∆V for the transfer trajectory is small.

Genetic operations

A simple GA has the following genetic operators [Goldberg, 1989]:

- Selection

- Crossover

- Mutation

Selection
During the selection process, individuals from the current population are chosen
to generate the next generation of individuals. Basically, selection can be done in
a completely random way, where each individual in the current population has
the same probability for being selected. Selection can also be based on the fitness
of each individual in the current population. The better the fitness of a certain
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individual, the higher the probability of it being selected.

This selection process based on fitness can be represented by a so-called roulette
wheel, where each slot represents the probability of selection of each individual i
(the slot size is proportional to the fitness) [Michalewicz, 1996]. If the sum of
the fitness for all individuals in the population of size N is given by F , then the
probability of each string to be selected psi is given by:

psi =
fi∑N
i=1 fi

=
fi
F

(11.5)

The cumulative probabilities pcum are generated by summing the probabilities
of all previous individuals:

pcum1 = ps1

pcum2 = ps2 + pcum1

. . .

pcumN = psN + pcumN−1

So the cumulative probability of the final string in the population is 1.0. Now
a roulette wheel is spun N times generating random numbers in the interval [0,1].
If the random number is between the cumulative probability of strings i and i+ 1,
then string i+ 1 is selected for the new population. The new population will then
again be of size N [Michalewicz, 1996].

Crossover
During crossover individuals are paired randomly from the selected individuals.
These pairs are often referred to as parents. From the parents two offspring are
created in the following way in the case of a binary representation. Suppose that
the length of the string is L. Then first a random number k is generated in the
range [1,L-1], which will indicate behind which bit position the string is split up.
The split up parts behind position k are then interchanged between the parents.
In the following example the string length L is 10 and k is chosen randomly as 6.

P1 = 010011|1001

P2 = 111001|0110

The offspring of these two parent strings will look as follows:

O1 = 010011|0110

O2 = 111001|1001
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This crossover operator could be performed with a probability pc. So each
selected string then has this probability to be a parent string and produce
offspring [Goldberg, 1989].

In the case of floating point representation, crossover is done slightly differently.
There are still two parents that have to be selected. After selecting the parent one
of the positions in the individual is chosen at random, which will be variable where
the crossover will take place. Instead of exchanging the values of this variable
between the two parents, an average is taken. Consider the following two parent
individuals:

P1 = [20.8 55.9 2.4]

P1 = [11.2 8.4 40.7]

If the second variable would be selected for the crossover, the single offspring
for these two parents would be:

O1 = [20.8 rc · 55.9 + (1− rc) · 8.4 40.7]

The parameter rc is a random number between 0 and 1 used for averaging the
parent values at the crossover variable.

Mutation
The new population created with crossover could face another genetic operator,
mutation. Every so often the value of one of the variables within an individual
changes. The mutation of the value of the variable occurs with a probability pm.
The value of pm is usually in the order of magnitude 0.001 [Goldberg, 1989].
Mutation plays a secondary role within the GA. Mutation makes sure that extra
variability is added to the population. As an example of mutation, consider the
following binary string (the bit that will be mutated is in boldface):

0100111001

After mutation the string will look like this:

0101111001
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Generating a new population

In the case of the simple GA the newly created individuals completely replace
the old population [Goldberg, 1989]. However, there are a number of ways in
which this process can be improved. For example, the best individuals in the old
population are not preserved, causing the loss of valuable genetic information. In
the next section some more advanced genetic operators will be discussed.

11.3 Some advanced genetic operators

In the literature study prior to this thesis research a number of advanced genetic
operators were researched. In this thesis, however, not all of them will be used and
therefore will not be discussed in this section. For example, a variable population
size will not be used. For more information, refer to [Molenaar, 2007].

11.3.1 Elitism

When elitism is applied in a GA, the best individuals in terms of fitness in the
old generation are preserved and copied into the new generation. This prevents
valuable genetic information from being lost. However, if the fraction of the pop-
ulation that is copied into the new generation is too large, it may cause premature
convergence.

11.3.2 Immigration

Immigration is intended to maintain diversity in a population and prevent
premature convergence. As is the case in nature, it might be that an individual
from outside the initial population comes in and replaces an individual. However,
a large population diversity implies extending the computation time.

At random, one or more individuals are generated to replace a part of the
existing population of strings. This is done after crossover and mutation, so just
prior to going to the next generation. It makes sense to apply this operator to the
worst individuals in the population, in order to prevent important genetic material
to be lost.

11.3.3 Constraint handling

Optimization problems can be subject to constraints. For an interplanetary trans-
fer, a constraint can be a maximum allowable total ∆V for each individual. Also a
maximum time of flight is a commonly used constraint for interplanetary transfers.
There are many fancy ways to handle constraints in global optimization problems.
In the remainder of this thesis research, if an individual is created that violates the
constraints, it will simply ’die’ and will not be put into the population. Instead, a
new individual will be generated, which will then be tested against the constraints.
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11.4 Random number generator

Throughout this chapter it has become clear that GAs depend greatly on drawing
random numbers. Random number generators are used to this end. Random
number generators use complex algorithms to produce long sequences of numbers
that appear to be random. However, these random number generators depend on
an initial value, called the seed number. If the same seed number is used in the
random generator, the sequence of numbers that it produces will be exactly the
same every time.

In the remainder of this thesis research, optimization runs are performed mul-
tiple times for the same settings, but each time with a different seed number for
the random generator. This is done in order to diminish the influence of random-
ness, since a certain seed number might produce bad results. If runs are executed
multiple times, this effect can be overcome. The seed number will also be indicated
throughout this thesis. This is done so that, if necessary, results of a certain run
can be recreated exactly.





Chapter 12

GALOMUSIT

The software tool that is used for this thesis research is called galomusit (Genetic
Algorithm Optimization of a MUltiple Swingby Interplanetary Trajectory). This
tool, which is written in the fortran 77 programming language, has been
developed in recent years by a number of students at the Faculty of Aerospace
Engineering at Delft University of Technology.

This chapter is structured in the following way. First of all a historic overview
of the program is discussed in section 12.1, after which the general structure is
assessed in section 12.2. The capabilities of the original version of galomusit are
discussed, followed by the changes that have been made during this thesis research.

12.1 History and development of GALOMUSIT

The original version of galomusit has been created by Schlijper [2003] for his
thesis research on a gravity assist mission to Pluto. De Jong [2004] was the next
user of galomusit. He added the possibility of performing aerogravity assists
for a mission to Pluto. Later on Erdogan [2005] used galomusit to search for
manned Mars mission opportunities. Melman [2007] then applied and modified
the program for a mission to Neptune. The program was made much more generic
and consistent, since at that time only the missions to Pluto and Mars could be
used. Many comments were added to the code as well, improving the readability
of the program. Heiligers [2008] has extended galomusit to incorporate missions
to asteroids and return missions. Furthermore, multi-objective optimization
was added, in which the optimization is done with respect to the total ∆V and
the time of flight. Heiligers [2008], together with Evertsz [2008], then included
the possibility of performing multiple asteroid rendezvous missions. Finally,
Corradini [2008] added low-thrust missions, in which the trajectory is modeled by
exponential sinusoids.

The result of all these past users is that now a program exists that is capable
of optimizing many different interplanetary missions using GAs. Next to the eight
planets and the dwarf planet Pluto, also 35 different asteroids and 2 comets can
be a potential target in galomusit. Furthermore, next to high thrust trajectories
along Kepler orbits, also low-thrust missions along an exponential sinusoid can be
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optimized.

The user of galomusit is able to define and quantify many variables in the
input part of the program, customizing it to the user’s specific needs. Choices can
vary from the type of parking orbits used to the swingby planets and from the GA
settings to the maximum allowable total ∆V that is allowed for each generated
individual.

12.2 Original version of GALOMUSIT

galomusit is built up of several subroutines, each of which has its own specific
purpose. It goes into too much detail and it is beyond the scope of this thesis to
discuss each subroutine. For that purpose a manual has been created that covers
all details of the program [Heiligers et al., 2009]. This manual has been updated
to include exponential sinusoidal trajectories and also the additions made for this
thesis research have been added to the manual. In this section the main structure
of galomusit will be assessed together with the most important parts or the
program.

12.2.1 Program structure

As mentioned earlier, galomusit can be used to optimize high thrust and low
thrust trajectories. With high thrust trajectories (powered) gravity assists or
aerogravity assists may be used on the interplanetary trajectory. Low thrust
missions and aerogravity assists will not be considered in this thesis. More
information on the implementation of these subjects in galomusit can be found
in Heiligers et al. [2009].

The main structure of galomusit for high thrust trajectories prior to this
thesis can be represented by the flow diagram in figure 12.1. It can be seen in
figure 12.1 that the structure of galomusit is quite simple. After the user has
defined the program settings, an initial population is created. Each generated
individual will pass through the problem model, where the total ∆V and time
of flight are calculated. The calculations that are performed in the problem
model have been extensively discussed in chapter 8. If the individual does not
violate any constraints it is allowed in the population, otherwise it dies and a new
individual is created. This process continues until the entire initial population is
filled with viable individuals.

When the initial population is full, the next step is to assign lifetimes to the
individuals if multi-objective optimization is applied. In this thesis research, multi-
objective optimization is not used, but in section 12.2.4 the implementation in
galomusit will be addressed briefly. After the assigning of lifetimes (or not,
in the case of single-objective optimization), the program checks whether or not
convergence has been reached. The user can specify after which generation these
checks will be performed, so the population can first have some time to evolve.
If convergence has not been reached, a new population is created using genetic
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Figure 12.1 Flow diagram for galomusit, after [Heiligers, 2008].

operations. If convergence has been reached, the output is generated in the case of
single-objective optimization. In the case of multi-objective optimization a local
Monte Carlo search around the found minimum is applied.

12.2.2 Generation of individuals

In subroutine initpop individuals consisting of the launch date, the encounter
dates with the swingby planets and the arrival date are created. For each individual
the time of flight and the total ∆V are evaluated. If both these quantities are
within the constraints, then the individual is allowed in the population. The
population size is a very important parameter in the optimization process. In the
galomusit manual a relationship is given between the number of (aero)gravity
assists and the population size [Heiligers et al., 2009].

The process of creating individuals is done until the population for the first
generation is filled. In this generation no genetic operations are executed on
the individuals. For single-objective optimization the population size is constant
throughout the optimization process.
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Number of Population
gravity assists size

0 500
1 500
2 1000
3 1000
4 2000
5 4000

Table 12.1 Relation between the number of gravity assists and the population size in galomusit
[Heiligers et al., 2009].

12.2.3 Creating new generations

For single-objective optimization, which is used in this thesis research, subroutine
newpopsingle is used to create a new population. The following genetic
operations are performed in this subroutine: elitism, crossover, immigration and
possibly mutation. The process can be summarized as follows:

The individuals of the previous generation (a total number of npop individuals)
are sorted according to their fitness value, the total ∆V .

The best fraction of the previous generation (the nbest individuals) are copied
into the population of the new generation: elitism.

Then new individuals are created through crossover. This is a total number of
nbest+1 up to npop-nrandom individuals, in which nrandom is the number
of immigrants into the population of the new generation. Individuals of the
previous generation are selected randomly for recombination.

Completely newly generated individuals enter the population of the new gen-
eration (nrandom immigrants) to fill it up.

Finally mutation could be added, but this is only applied to the newly generated
immigrants.

After these steps, the process repeats itself again for the next generations until
either convergence or the maximum amount of generations has been reached.

For crossover, two individuals of the entire previous generation are selected
randomly. They are not just chosen based on their fitness, an option that was
mentioned in section 11.2. Good individuals (the ones with a low total ∆V )
do not have a higher probability to be selected for crossover. A future user of
galomusit might want to improve this.

Mutations are possible only for the immigrants. This does not make any sense,
since a random change is performed on a randomly created individual. This
option should be improved by a future user.
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12.2.4 Multi-objective optimization

The most significant addition to galomusit by Heiligers [2008] has been
implementing multi-objective optimization. GA optimization with a variable pop-
ulation size is used when applying multi-objective optimization. Two subroutines
are used to create new populations and subsequently determine the quality of
each generated individual, newpopmulti and pareto respectively. This quality
of an individual is not just measured by the total ∆V , but instead the concept
of Pareto optimality and Pareto ranking is used. Detailed information on Pareto
optimality and ranking can be found in [Heiligers, 2008].

At the end of the first generation lifetimes are assigned to each individual in the
population. The population is then transferred into the next generation, where the
lifetime for each individual is decreased by one. New individuals are then created
through immigration and mutation. When the population has been filled again,
the Pareto fronts for the new population are determined. From these Pareto fronts,
the lifetimes for the newly generated individuals are allocated. After this step the
population is checked for convergence, see also section 12.2.5. If convergence is not
reached, a new generation has to be created. However, before that can be done,
the dead individuals (the ones with a lifetime of zero) have to be removed from
the population. If a dead individual were to belong to the absolute Pareto front,
it will not die but be preserved until it no longer belongs to the absolute Pareto
front.

12.2.5 Convergence

For single-objective optimization, a run ends when either convergence has been
reached or the maximum amount of generations has passed. Convergence is
reached if the best and average total ∆V have not changed by more than a user
defined value over a predefined number of generations.

In the case of multi-objective optimization convergence is reached if the abso-
lute Pareto front does not change over a user-defined number of generations. This
method of convergence implies a large computation time, because adding even one
single individual to the absolute Pareto front means that the run will continue. An-
other option is that the area under the absolute Pareto front stays approximately
the same. It was shown by Heiligers [2008] that this decreases the computational
effort considerably without the loss of quality for the results. After reaching con-
vergence, the user can choose to perform a local Monte Carlo optimization around
the absolute Pareto front found by the GA.

12.3 Adaptations made to GALOMUSIT for this thesis

The objectives of this thesis were to develop a method with which interplanetary
trajectories with DSMs can be analyzed and optimized using galomusit and to
apply this method to a Uranus orbiter mission. It should therefore be stressed
again that no modifications have been made to the already existing GA process
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within galomusit.

In the following sections the adaptations that have been made to galomusit
for this thesis research will be discussed. It is important to note that the structure
of the program has remained the same as it was before this thesis started. Only the
problem model for trajectories with DSMs is somewhat different from trajectories
without DSMs, see figure 12.2.

Lambert 
Targeting

Gravity 
Assist(s)

Launch Capture

Single-
objective

Multi-
objective

Total ΔV
Total ΔV & Time 

of Flight

Planetary 
Ephemeris

No DSM allowed
Kepler 

Propagation

DSM allowed

DSM

Problem Model

Figure 12.2 New problem model for galomusit, after the addition of DSMs.

If a DSM is allowed somewhere along the trajectory, Kepler propagation has
to be applied. The end of the Kepler arc is also the starting point of the Lambert
arc that connects the DSM position with the target planet. After the trajectory
has been defined, the required ∆V components are calculated.

12.3.1 Adaptations prior to the thesis research

Before this thesis research was started, two changes to galomusit have been
made in cooperation with Corradini [2008]. These were necessary changes and
it provided the opportunity to get some experience with the program. The first
change that was made had to do with the way in which a run in galomusit is
started. Originally, the seed number for the random generator was a function of
the internal clock time of the computer. Different runs with identical settings
would produce different results. This has been adapted in such a way that the user
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has to specify this seed number. This is advantageous because runs performed
with identical settings and an identical seed number produce exactly the same
results.

The second thing that has been changed before the thesis research was
started was the addition of two new subroutines, namely timeofflight and
constraints. In subroutine timeofflight, the time of flight is calculated for
each individual. This is done for all available mission types. This is done so that
no calculations are performed inside the optimization subroutines. The other
subroutine, constraints, has been added to check whether or not the time of
flight and the total ∆V violate the constraints. This is done at each part in
the optimization process where new individuals are created. The output of this
subroutine comes down to a boolean operator. If the constraints are violated,
then a new individual must be created and the constraints have to be checked
again. This subroutine has been created in such a way that new users can easily
add new types of constraints, but with the same type of output.

12.3.2 Setting up the program

The next change that has been made to galomusit is that the user can now
specify whether or not DSMs will be added to the trajectory and if so, on which
legs they will be applied. This gives the user the flexibility of analyzing on which
part of the trajectory the spacecraft can benefit from the DSM.

With the addition of this extra impulsive maneuver to the trajectory, a new
constraint has been added to galomusit. The user can specify what the maximum
allowable ∆V for a DSM is. If an individual is created that violates this constraint,
it will not be allowed in the population and it will die.

12.3.3 Generating individuals for DSM trajectories

When the interplanetary trajectories using only Lambert targeting are optimized,
an individual consists only of the launch epoch, the swingby epochs and the arrival
epoch. The number of encounter epochs is defined as nparm. Adding DSMs to
the trajectory increases the number of variables in the individual. The number of
extra variables due to the addition of DSMs is nparmdsm. The new individual
is then simply determined by adding the vector of DSM related variables to the
vector containing the encounter epochs.

The new DSM related variables are generated by randomly selecting a value
in the allowable search space for each of those variables. The user can specify
the lower and upper bounds for each variable in the input part of the program
(subroutine init). For example, for

∣∣V̄∞L

∣∣, the lower and upper bounds are defined
as vinflimlow and vinflimupp respectively. The same principle holds for θ, ϕ,
η, hp and ζ.
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12.3.4 New subroutines added to GALOMUSIT

In order to incorporate DSMs on interplanetary trajectories three new subroutines
have been added to galomusit, next to the addition of the DSM variables to the
individuals. The new subroutines have to do with the following subjects:

Calculating the ∆V that is needed at launch when a DSM is present on the
first interplanetary leg

Determining the position and velocity of the spacecraft at the end of a Kepler
arc

Determining the heliocentric velocity vector at the end of an unpowered
swingby

∆V at launch when a DSM is present on the first leg

Figure 12.3 shows the input that is needed for the new subroutine dsmlaunch
and the output that it generates.

DSMLAUNCHIN OUT

rpl

Vpl

|V |¥L

q
j

VHC

DVL

Figure 12.3 Input and output parameters for the newly created subroutine dsmlaunch.

If a DSM is present on the leg right after launch, the hyperbolic excess
velocity vector has to be generated randomly. In dsmlaunch the random
values for

∣∣V̄∞L

∣∣, θ and ϕ are used to generate the hyperbolic excess velocity
vector V̄∞L . For the definition of the coordinate frame in which V̄∞L is de-
fined, r̄pl and V̄pl are required (see also section 9.2.1). The required heliocentric
velocity at the start of the interplanetary leg is then obtained by adding V̄∞L to V̄pl.

The impulsive maneuver ∆VL is calculated in the same way as it is done as
when the first leg were a Lambert arc. Equation 8.44 is applied using the parking
orbit data and

∣∣V̄∞L

∣∣.
Position and velocity at the end of a Kepler arc

An overview of the input and output of the new subroutine propagatekepler is
shown in figure 12.4.

It was already outlined in chapter 10 that in order to propagate the orbit along
a Kepler arc, the initial state (so r̄0 and V̄0) and the time of flight T is needed.
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PROPAGATEKEPLER
IN OUT

r0
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t0
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V

(1-h)T

Figure 12.4 Input and output parameters for the newly created subroutine propagatekepler.

They are therefore also inputs for propagatekepler. The epoch at which the
DSM is performed is t0 + ηT , so t0 and η have to be put into the subroutine.

First of all the type of Kepler orbit is determined from the input position
and velocity. Depending on the type of orbit the initial guess for the universal
variable x is determined. The Laguerre iteration process (see equation 10.65) is
then performed with the parameters tuned to the specific type of orbit. Once
a converged value for x has been established, propagatekepler provides the
position vector r̄ and velocity vector V̄ as output of the subroutine. Also the time
of flight that remains for the subsequent Lambert arc is given as an output by the
subroutine.

Heliocentric velocity vector at the end of an unpowered swingby

For the new subroutine unpoweredsb the input and output variables are shown
in figure 12.5.

UNPOWEREDSB
IN OUT

VHCin

Vpl

rpl

rp

z

VHCout

Figure 12.5 Input and output parameters for the newly created subroutine unpoweredsb.

In order to determine the incoming hyperbolic excess velocity at the unpow-
ered swingby, the planet’s velocity and the velocity at the end of the incoming
Lambert arc are needed. The randomly selected pericenter altitude hp is added
to the planet’s radius to get rp. To calculate the swingby angle δ,

∣∣ ¯V∞in

∣∣ and
rpare needed in unpoweredsb. Together with the randomly generated value for
ζ the new orientation of the hyperbolic velocity can be calculated. The frame
with respect to which this is calculated needs r̄pl.

The output that is provided by unpoweredsb is the heliocentric velocity vec-
tor right after the swingby. This velocity is needed for the subsequent propagation
along the Kepler orbit until the application point of the DSM.



132 GALOMUSIT

12.3.5 New output files

The previous version of galomusit provided output files in which the encounter
epochs were shown, together with the required ∆V maneuvers and the GA
settings. It was difficult to deduce the orbital elements of the trajectory or
the relevant positions and velocities. Information on the distribution of feasible
individuals within the search space was not available at all. Two new output files
are therefore created.

The first new output file shows the values of all variables for each individual
within the population. This is done for every generation, so the user can check the
evolution of all variables during the optimization process. For example, the user
can easily use this file to plot the distribution of the individuals in the population
in a graph where the x- and y-axes represent the launch and arrival epoch. This
can provide insight in locating a favorable launch window.

The second output file is for the best individual of the optimization run only. It
shows the positions of the planetary encounters and, where relevant, the position
of a DSM. The velocity at the start of each leg and right after performing a DSM
is displayed as well. These positions and velocities are given in the inertial, helio-
centric, equatorial reference frame. The file further contains the GA settings, the
breakdown of the total ∆V and the values of the variables for the best individual.



Chapter 13

Benchmark runs for GALOMUSIT

In order to test whether the changes to galomusit have been implemented
correctly, a number of tests is performed for verification purposes. This is a
crucial step when developing software, or in this case making additions to an
existing piece of software. The optimization of the mission to Uranus can not
start before it is certain that galomusit works correctly.

In section 13.1 some runs performed by previous users of galomusit will be
reproduced in order to verify that the program still produces correct results after
the modifications that have been outlined in chapter 12. Next, in section 13.2,
an Earth-Mars transfer with a DSM somewhere along the trajectory is analyzed.
Finally, a transfer from Earth to Mars with an unpowered swingby at Venus is
discussed in section 13.3. In this test case a DSM is present on the leg between
Venus and Mars.

13.1 Verification of results produced by previous users of
GALOMUSIT

galomusit has been used by a number of students in the past. After the mod-
ifications to galomusit that were needed for this thesis research, the results of
the previous users have to be verified. This has to be done in order to check that
these parts of the program still work correctly. First, a Pluto flyby mission with
a gravity assist at Jupiter is assessed, as done by Schlijper [2003] for his thesis
research. Secondly, a trajectory to Neptune using multiple gravity assists, after
the thesis work of Melman [2007], is discussed.

13.1.1 Pluto flyby with gravity assist at Jupiter

The best run, as found by Schlijper [2003] for his Pluto flyby mission, starts with
a launch from a GTO on 1 January 2005. The maximum arrival date is set at 1
January 2020. The total ∆V for his best run was 5.644 km/s, associated with a
time of flight of 14.7 years. For the current version of galomusit, when launching
on the same date, the best total ∆V is 5.651 km/s with a time of flight of 14.4 years.
The optimization was done five times, each time with a different seed number for

133
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the random generator. The seed number producing the best result for the Pluto
flyby mission was 250. A comparison between the original run and the best run
with the current version of galumusit is given in table 13.1.

Results from Current version of
[Schlijper, 2003] galomusit

Launch date 01/01/2005 01/01/2005
Swingby date 21/06/2006 19/06/2006
Flyby date 11/09/2019 07/06/2019
∆VL (km/s) 5.644 5.6475
∆VSB (km/s) 0.0003 0.0025
Time of flight (yr) 14.7 14.4

Table 13.1 Pluto flyby with a gravity assist at Jupiter. Results are given for the original run by Schlijper
[2003] and for the current version of galomusit.

From this table it can be concluded that the launch date is the same for both
runs. For the current version of galomusit, the value of the total ∆V is 7 m/s
higher than for the best result from [Schlijper, 2003]. Because the seed number
for the random generator was not known for the runs done by Schlijper [2003] the
results can not be reproduced exactly. The gravity assist at Jupiter is practically
unpowered for both cases and the swingby dates are similar. The second part of
the journey, from Jupiter to Pluto, produces different flyby dates. This difference
of about three months comes from the fact that the trajectory is optimized for the
total ∆V , which is all used in the first leg of the mission. Therefore the arrival
conditions are less stringent, as long as the flyby occurs before 1 January 2020. It
can be concluded that galomusit is verified for this particular trajectory.

13.1.2 Trajectory to Neptune with multiple swingbys

The swingby sequence giving the lowest total ∆V for a trajectory to and capture
around Neptune as found by Melman [2007] is VVEJS. The total ∆V corresponding
to this best run was 5.819 km/s, with a total flight time of 17.6 years. For this run,
the spacecraft was assumed to start from a GTO and the capture orbit was elliptic
with a pericenter altitude of 4000 km and an apocenter altitude of 488,000 km.
The launch date corresponding to the best VVEJS run was 12 May 2012. The
spacecraft had to arrive before 1 January 2030. In terms of Genetic Algorithm
settings Melman [2007] used 10% elitism, 10% immigration and no mutation. The
population size used was 4000 individuals. Table 13.2 shows the results of the old
version of galomusit and the results for the new version.

During the thesis work of Melman [2007] it was not possible yet to specify the
seed number for the random generator in galomusit. Therefore the results can
not be reproduced exactly. For the current version, the runs were executed 10
times, each time with a different seed number for the random generator (5, 10, 75,
250, 1000, 1050, 1100, 1150, 1200 and 1250). With table 13.2 it can be confirmed
that galomusit is verified for this mission.
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Results from Current version of
[Melman, 2007] galomusit

Launch date 12/05/2012 16/05/2012
Swingby date 1 V: 08/11/2012 V: 08/11/2012
Swingby date 2 V: 16/12/2013 V: 15/12/2013
Swingby date 3 E: 25/09/2015 E: 24/09/2015
Swingby date 4 J: 28/12/2017 J: 07/02/2018
Swingby date 5 S: 14/06/2021 S: 28/06/2021
Arrival date 18/12/2029 23/12/2029
∆VL (km/s) 1.597 1.616
∆VSB (km/s) 0.632 0.449
∆VC 3.783 3.789
∆Vtot 5.819 5.858
Time of flight (yr) 17.6 17.6

Table 13.2 Mission to Neptune with swingbys at Venus, Venus, Earth, Jupiter and Saturn. Results are
given for the original run by Melman [2007] and for the current version of galomusit. The
seed number producing the best result for the current version was 1100.

13.2 Verification of GAMOLUSIT for an Earth-DSM-Mars
transfer

The following test case involves a transfer from Earth to Mars with a DSM some-
where along the trajectory [Bernelli-Zazzera et al., 2007]. The objective function
f that has to be minimized for this test case, which can be denoted by EdM, is as
follows:

f =
∣∣V̄∞L

∣∣+ ∆VDSM +
∣∣V̄∞C

∣∣ (13.1)

It should be stressed that Bernelli-Zazzera et al. [2007] used the hyperbolic
excess velocity at launch and capture instead of the ∆V needed to get into a
parking orbit. This is different from what has been used so far in this thesis
research. However, this can implemented easily in galomusit by specifically
declaring that the ∆V at launch and capture are equal to the hyperbolic excess
velocities. It poses no further problems for the optimization process.

13.2.1 Problem description and results from literature

The launch window and the bounds on the time of flight that are used by Bernelli-
Zazzera et al. [2007] are given in table 13.3. The launch epoch and time of flight
that correspond to the solution with the minimum value for f are shown as well.

The minimum launch epoch 1000 MJD2000 corresponds to the calender date
27 September 2002 and the maximum launch epoch 2000 MJD2000 is equivalent
to calender date 23 June 2005. The maximum time of flight is 650 days, giving a
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t0 (MJD2000) TEM (days)
Lower bound 1000 200
Upper bound 2000 650

For fbest 1243.2 606.2

Table 13.3 Lower and upper bounds for the launch epoch and the time of flight for the EdM test case of
[Bernelli-Zazzera et al., 2007].

maximum arrival epoch of 2650 MJD2000, or calender date 4 April 2007.

Aside from the launch and arrival epoch, Bernelli-Zazzera et al. [2007]
have modeled the interplanetary trajectory with different parameters than the
ones used in this thesis research. Therefore the remaining parameters of the
solution found by Bernelli-Zazzera et al. [2007] can not be compared with the
results found using galomusit. Comparisons have to be made through the objec-
tive function value corresponding to the best solution and the corresponding orbit.

The search space for the remaining decision variables is kept free by Bernelli-
Zazzera et al. [2007], so it will also be done for the optimization using galomusit.
It should be noted that the maximum bound of the search space for

∣∣V̄∞L

∣∣ has been
restricted to a constraint that has been set to the problem by Bernelli-Zazzera
et al. [2007].

∣∣V̄∞L

∣∣ ∈ [0, 3] km/s

θ ∈ [0, 2π] rad

φ ∈ [−π
2 ,+

π
2 ] rad

η ∈ [0.10, 0.90]

In the problem description constraints on the components of the objective
function have been set, so also for

∣∣V̄∞L

∣∣ as mentioned earlier [Bernelli-Zazzera
et al., 2007].

∣∣V̄∞L

∣∣ ≤ 3.0 km/s

∆VDSM ≤ 3.0 km/s∣∣V̄∞C

∣∣ ≤ 3.0 km/s

∆Vtot or f ≤ 7.0 km/s

Using the given launch window, bounds on the time of flight and the search
space for the other variables, the best solution found by Bernelli-Zazzera et al.
[2007] gives an objective function value fbest = 5.632 km/s. The components of
the objective function for this best solution are listed below:

∣∣V̄∞L

∣∣ = 2.77 km/s
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∆VDSM = 2.77 km/s∣∣V̄∞C

∣∣ = 0.07 km/s

Obviously some typing error has been made by Bernelli-Zazzera et al. [2007],
because the velocity components do not add up to 5.632 km/s. If the velocity
components are correct, the objective function value should be 5.61 km/s.
Depending on rounding errors this value can be slightly higher or lower. The error
could also have been made in one of the velocity components. For the analysis in
this section, the value of 5.632 km/s is assumed to be correct and results obtained
with galomusit will be compared with this value. The orbit corresponding to
this best solution found by Bernelli-Zazzera et al. [2007] is shown in figure 13.1.

Figure 13.1 Orbit of the best solution for the EdM test case defined in [Bernelli-Zazzera et al., 2007].
Earth at launch and Mars at arrival are indicated by circles (Earth is the inner planet and
Mars is the outer planet). The symbol ’*’ indicates the location of the DSM.

13.2.2 Results for the EdM test case using GALOMUSIT

The runs that were performed using galomusit with respect to this EdM test
case used the complete search space for all decision variables.

t0 ∈ [1000, 2000] MJD2000

TEM ∈ [200, 650] days, so t1 ∈ [1200, 2650] MJD2000∣∣V̄∞L

∣∣ ∈ [0, 3] km/s

θ ∈ [0, 2π] rad

φ ∈ [−π
2 ,+

π
2 ] rad

η ∈ [0.10, 0.90]
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The same constraints as in section 13.2.1 will be used. The optimization
process has been performed 10 times, each time with a different seed number S
for the random generator. The settings of the GA for this test case are:

The best 15% of the individuals are copied into the next generation (elitism).

15% of the new population will consist of new randomly generated individuals
(immigration).

This means that the other 70% of the population will be created through
crossover.

Mutation is not used, since in galomusit it is only applied on immigrants.

The (constant) population size Npop is 500 individuals.

Table 13.4 shows the decision vectors for the best solutions for each run and
the corresponding ∆Vtot.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad - km/s

5 1216.7 1462.2 0.530 0.063 -0.257 0.193 5.654
10 1242.4 1470.4 2.198 6.270 -0.177 0.288 5.652
75 1243.1 1466.3 2.089 6.278 -0.122 0.229 5.651
250 1217.1 1463.3 0.614 0.082 -0.265 0.198 5.654
1000 1244.9 1462.5 2.228 0.012 -0.104 0.211 5.649
1050 1244.5 1510.5 2.671 0.038 -0.199 0.578 5.646
1100 1216.8 1461.7 0.488 0.061 -0.282 0.188 5.654
1150 1249.7 1467.1 2.601 6.243 -0.097 0.342 5.654
1200 1216.5 1458.1 0.126 0.103 -0.237 0.162 5.656
1250 1217.3 1462.7 0.625 0.083 -0.250 0.198 5.654

Table 13.4 Decision vectors and total ∆V the best individuals of 10 runs for the EdM test case
[Bernelli-Zazzera et al., 2007]. The time needed to complete these runs on the
dutlruw.lr.tudelft.nl-server was 1409 s.

The best solution found by galomusit after the ten different runs is 5.646
km/s for seed number 1050, which is 14 m/s higher than the best solution found
by Bernelli-Zazzera et al. [2007] (as mentioned earlier, the value found by Bernelli-
Zazzera et al. [2007] is not certain). The launch epoch t0 of the best individual in
table 13.4 is 1244.5 MJD2000. This corresponds very well with the best solution
found by Bernelli-Zazzera et al. [2007], which is 1243.2 MJD2000. The total time
of flight for the best individual in table 13.4, however, is very different. galomusit
finds a time of flight of 266 days, whereas Bernelli-Zazzera et al. [2007] find a time
of flight of 606.2 days. The orbit corresponding to the best individual of table 13.4
is shown in figure 13.2.

It can be seen from table 13.4 that in terms of total ∆V the results for
all runs are very similar. The same holds for the launch epoch t0 and arrival
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Figure 13.2 Orbit corresponding to the best solution obtained with galomusit for the EdM test case of
[Bernelli-Zazzera et al., 2007]. The seed number for the run was 1050. For each variable, the
complete search space has been used. •: Earth at launch, �: DSM, •: Mars at arrival.

epoch t1, where only the best solution shows a distinctly higher value. There
are significant differences, however, for

∣∣V̄∞L

∣∣. For half of the individuals in
table 13.4

∣∣V̄∞L

∣∣ is below 1 km/s, whereas the other half of the solutions has
a
∣∣V̄∞L

∣∣ that is over 2 km/s. The angles θ and ϕ on the other end are similar
for all individuals, implying that regardless of the magnitude of the hyperbolic
excess velocity at launch, the direction is practically the same for the launch
epochs shown in table 13.4. Another feature that stands out from table 13.4 is
that the value for η of the best individual differs significantly from the other values.

Because the spread of the total ∆V is very small, but
∣∣V̄∞L

∣∣ is very different, it
means that the components of the objective function are different for the different
individuals. The objective function components are shown in table 13.5.

Table 13.5 shows that
∣∣V̄∞C

∣∣ for all runs is similar, except for the best
individual. Together with the observations that the time of flight and the value
for η for the best individual are larger than for the individuals of the other runs
leads to the hypothesis that the best solution might be improved by applying the
global optimization method on a reduced search space.

The idea of search space reduction is reinforced when considering that the
method used by Bernelli-Zazzera et al. [2007] includes search space pruning. This
means that certain parts of the search space are removed that turned out to be
not useful for the optimization process. For the best individual in table 13.4 the
launch and arrival window is taken as an example. A distribution of the feasible



140 Benchmark runs for GALOMUSIT

S ∆Vtot (km/s)
∣∣V̄∞L

∣∣ (km/s) ∆VDSM (km/s)
∣∣V̄∞C

∣∣ (km/s)
5 5.654 0.530 2.533 2.592
10 5.652 2.198 1.065 2.389
75 5.651 2.089 1.054 2.508
250 5.654 0.614 2.466 2.574
1000 5.649 2.228 0.862 2.559
1050 5.646 2.671 1.697 1.278
1100 5.654 0.488 2.566 2.600
1150 5.654 2.601 0.590 2.462
1200 5.656 0.126 2.852 2.678
1250 5.654 0.625 2.454 2.576

Table 13.5 Breakdown of the objective function value for the best individuals out of the 10 runs for the
EdM test case.

individuals in the initial population for the run with seed 1050 within the t0 − t1
search space is shown in figure 13.3. The initial population is taken, since this is the
result of a purely randomly generated population and can therefore be considered
a simple Monte Carlo search.

Figure 13.3 Distribution of the feasible individuals in the initial population for seed number 1050. For
each variable, the complete search space has been used. The t0 − t1 search space is indicated
by the solid line. +: ∆Vtot > 6.5 km/s. +: 6.0 < ∆Vtot ≤ 6.5 km/s. +: ∆Vtot ≤ 6.0
km/s.

Figure 13.3 shows several distinct features. The most obvious feature is the
limited part of the search space where feasible individuals occur. One possible
launch window is centered around t0 ≈ 1250 MJD2000. The next possible
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launch window is located near the boundary of the t0 search space, at t0 ≈ 2000
MJD2000. Since this launch window is cut off by the boundary of the t0 search
space it is highly likely that more possible solutions exist beyond this boundary,
but they are not under consideration in this test case. This feature of subsequent
launch windows can be related to the synodic period for the EdM transfer.
In section 8.1.1 the synodic period for the Hohmann transfer was discussed
briefly. For an Earth-Mars Hohmann transfer the synodic period is 2.135
years or 780 days [Cornelisse et al., 1979]. The difference between the centers
of the launch windows in this test three-dimensional case corresponds to that value.

Another feature of figure 13.3 is that at both launch windows a range of flight
times is possible. However, individuals with a flight time of 400 days or more are
very hard to generate, especially for the launch window centered at 1250 MJD2000.

The individuals in the t0−t1 search space are clustered close together. In order
to assess whether or not this is also the case for the DSM related variables, some
additional figures are required. Figure 13.4 shows the distribution of individuals
in the t0 −

∣∣V̄∞L

∣∣ search space.

Figure 13.4 Distribution of the feasible individuals in the initial population for seed number 1050 in the
t0 −

∣∣V̄∞L

∣∣ search space. For each variable, the complete search space has been used. +:

∆Vtot > 6.5 km/s. +: 6.0 < ∆Vtot ≤ 6.5 km/s. +: ∆Vtot ≤ 6.0 km/s.

Figure 13.4 shows that the distribution of
∣∣V̄∞L

∣∣ is quite uniform in the initial
population. The final values in table 13.4 show that the best individuals either
have a value for

∣∣V̄∞L

∣∣ below 1 km/s or above 2 km/s. In figure 13.4 it can be
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seen that in the part of the search space between 1 km/s and 2 km/s that the
worst individuals in the population dominate.

In figure 13.5 the distribution of individuals in the initial population is shown
in the θ − ϕ search space.

Figure 13.5 Distribution of the feasible individuals in the initial population for seed number 1050 in the
θ − ϕ search space. For each variable, the complete search space has been used. +:
∆Vtot > 6.5 km/s. +: 6.0 < ∆Vtot ≤ 6.5 km/s. +: ∆Vtot ≤ 6.0 km/s.

From figure 13.5 it can be seen that the individuals in the initial population
are not as clustered in the θ−ϕ search space as was the case in the t0 − t1 search
space. however, it can be seen that a large part of the individuals are situated
near θ = 0 or θ = 2π. For ϕ the individuals are spread out more across the search
space, but it can be seen that at there are bulges around ϕ = 0 at both ends of
the search space for θ. All individuals in table 13.2 have values for θ and ϕ that
correspond to this observation.

The final DSM related variable for this EdM test case is η. A distribution of
the individuals in the initial population is shown in figure 13.6.

From figure 13.6 it can be concluded that the search space for η can be
reduced. The maximum bound for η can be set to 0.65, since only 1 individual in
the initial population has a value for η that is larger than that. This is also in
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Figure 13.6 Distribution of the feasible individuals in the initial population for seed number 1050 in the
η − TEM search space. For each variable, the complete search space has been used. +:
∆Vtot > 6.5 km/s. +: 6.0 < ∆Vtot ≤ 6.5 km/s. +: ∆Vtot ≤ 6.0 km/s.

accordance with the values of η for the individuals in table 13.4, where the largest
value is 0.578.

From the discussion in this section it has become clear that applying the Ge-
netic Algorithm optimization in galomusit on the complete search space results
in a total ∆V that is close to the global optimum, but it has not reached it. As
mentioned earlier, reducing the search space could improve the results. Therefore,
in section 13.2.3 some additional tests are performed with reduced search spaces
for all variables of this optimization problem.

13.2.3 Additional tests for the Earth-DSM-Mars test case

The test as it has been discussed in section 13.2 has been performed using the
complete search space for all decision variables. A number of additional tests have
been performed on this test case with constrained search spaces for the decision
variables. Except for test VII, the launch window has been reduced to cover only
the cluster around 1250 MJD2000. The additional tests that have been performed
are given below:

I t0 ∈ [1100, 1300] MJD2000
For the other variables the complete search space is used

II t0 ∈ [1100, 1300] MJD2000
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∣∣V̄∞L

∣∣ ∈ [2.50, 2.90] km/s
For the other variables the complete search space is used

III t0 ∈ [1100, 1300] MJD2000
θ ∈ [0, 0.10] rad
ϕ ∈ [−0.30, 0] rad
For the other variables the complete search space is used

IV t0 ∈ [1100, 1300] MJD2000
η ∈ [0.40, 0.60]
For the other variables the complete search space is used

V t0 ∈ [1100, 1300] MJD2000∣∣V̄∞L

∣∣ ∈ [2.75, 2.90] km/s
θ ∈ [0, 0.10] rad
ϕ ∈ [−0.30, 0] rad
η ∈ [0.40, 0.60]
For the time of flight between Earth and Mars the complete search space
is used.

VI t0 ∈ [1100, 1300] MJD2000
TEM ∈ [600, 650] days
For the other variables the complete search space is used

VII The complete search space for all variables is used
The population size Npop is increased from 500 to 2000 individuals

The decision vectors of the best individuals for all runs, as well as the orbits of
the best individuals and distributions of the individuals in the initial population
for the best runs are given in appendix B.

Results for the additional simulations of the EdM test case

Table 13.6 shows the best and worst total ∆V within the runs for each additional
test case. The original test is also included.

Test Min. ∆V (km/s) Max. ∆V (km/s) Run time (s)
Original 5.646 5.656 1409
Test I 5.645 5.657 277
Test II 5.634 5.641 357
Test III 5.626 5.650 56
Test IV 5.638 5.652 539
Test V 5.622 5.626 29
Test VI 5.621 5.624 7541
Test VII 5.646 5.654 5277

Table 13.6 Comparison of the best and worst total ∆V for the 10 runs that were performed in each
extra test for the EdM test case. The total computation time that was needed
dutlruw.lr.tudelft.nl-server to complete the 10 runs is also shown.
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From table 13.6 some important conclusions can be drawn:

Constraining the launch window reduces the computation time significantly,
but the best total ∆V only improves very slightly.

Reducing the search space for
∣∣V̄∞L

∣∣ around the best known solution in the con-
strained launch window increases the computation time, but it also improves
the best total ∆V .

Constraining the direction of the hyperbolic excess velocity vector at launch
provides a drastic reduction in computation time. Furthermore, the total ∆V
is also reduced significantly to a value that is lower than the best value found
by Bernelli-Zazzera et al. [2007].

Reducing the search space for η in the constrained launch window improves
the results at the cost of an increase in computation time.

Reduction of the search space for all DSM related variables in the constrained
launch window gives a total ∆V that is 10 m/s lower than the best solution
found by Bernelli-Zazzera et al. [2007]. The time to perform the 10 optimiza-
tion runs in this case is about half of the time needed when only constraining
the launch direction.

The best solution found by Bernelli-Zazzera et al. [2007] has a time of flight
of 606.2 days. Constraining the time of flight between 600 and 650 days (case
VI) in galomusit does provide the overall best solution with 5.621 km/s.
However, it takes more than 260 times as long to complete the 10 optimization
runs with respect to the best result of test V. The gain in total ∆V is only 1
m/s.

An increase of the population size with all variables in their complete search
space only increases the computation time proportional to the population size.
The best total ∆V does not improve for this EdM test case.

When the orbits corresponding to the best individuals of the extra tests in
appendix B are examined, it can be seen that the initial part of the orbit and
the location of the DSM are similar for all tests. The Lambert arc after the
DSM can be quite different, however. The time of flight along the Lambert can
vary significantly. For total flight times shorter than 300 days (tests II, IV and
VII) the magnitude of the DSM is approximately 1.7 km/s and the subsequent∣∣V̄∞C

∣∣ is approximately 1.2 km/s. For flight times larger than 300 days the
magnitude of the DSM is approximately 2.7 km/s and the subsequent

∣∣V̄∞C

∣∣
is then approximately 0.2 km/s. In this case the DSM practically aligns the
Lambert arc with the orbit of Mars. This feature is also visible in figure 13.1.

Concluding, the new version of galomusit can be verified for this EdM test
case. It should be noted that after the initial optimization, the search space has
to be reduced. When this is done, however, a lower total ∆V can be found than
the best solution found by Bernelli-Zazzera et al. [2007].
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13.3 Verification of GALOMUSIT for an
Earth-Venus-DSM-Mars transfer

The following test case involves a transfer from Earth to Mars using a swingby at
Venus. The swingby at Venus is unpowered and will be followed by a DSM on the
leg towards Mars [Vasile et al., 2008].

13.3.1 Search space and results from literature

The first phase of the trajectory is a Lambert arc from Earth to Venus and is
completely described by the respective encounter epochs t0 and t1. The second
part of the trajectory is described by four additional decision variables, namely
t2, rpV , ζV and ηVM . The search space for each of these decision variables is given
below (the encounter epochs at Venus and Mars are derived implicitly from the
flight times TEV and TVM ) [Vasile et al., 2008]:

t0 ∈ [3650, 9128.75] MJD2000

TEV ∈ [50, 400] days

TVM ∈ [50, 700] days

hpV ∈ [0, 4] RV , so rpV ∈ [1, 5] RV

ζV ∈ [0, 2π] rad

ηVM ∈ [0.10, 0.90]

The objective function that is minimized in this EVdM test case is defined as
follows [Vasile et al., 2008]:

f =
∣∣V̄∞L

∣∣+ ∆VDSM (13.2)

This means that the ∆V or
∣∣V̄∞∣∣ needed for capture is not taken into account

in this objective function. This choice of objective function is rather unusual.
The total ∆V that is required to complete this mission should involve three
different ∆V contributions. The first corresponds to overcoming the heliocentric
velocity difference between Earth’s orbit around the Sun and the required initial
heliocentric velocity of the Lambert arc between Earth and Venus. The second
contribution is the magnitude of the DSM, or ∆VDSM . These two contributions
are both present in the objective function of equation 13.2. However, the
spacecraft also has to enter a parking orbit around Mars, which would result in
an impulsive capture maneuver for.

The function value corresponding to the best result found by Vasile et al.
[2008] is fbest = 2.982 km/s. The decision variables corresponding to this best
solution are as follows:
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t0best = 4472.0 MJD2000

T1best = 172.9 days

T2best = 697.6 days

rpVbest = 1 RV

ηVMbest
= 0.5094

The values for the time of flight between Venus and Mars and the pericenter
radius at Venus are close to and on the boundaries of the search space. The plane
change angle at the Venus swingby as defined by Vasile et al. [2008] is different
from the plane change angle that is used in this thesis. Therefore these angles can
not be compared, but the other variables and corresponding orbits provide plenty
of comparison possibilities. The orbit corresponding to the best result found by
Vasile et al. [2008] is shown in figure 13.7.

Figure 13.7 The orbit corresponding to the best result found by Vasile et al. [2008]. The orbit is shown in
a top view of the inertial, heliocentric, ecliptic reference frame.

13.3.2 Results for the EVdM test case using GALOMUSIT

The following constraints in terms of ∆V are used in the optimization process in
galomusit. These were not given by Vasile et al. [2008], but assigning values to
these parameters ensures that galomusit will only take realistic solutions into
account. In the same time, the constraints are not too tight with respect to the
best solution found in [Vasile et al., 2008]. Feasible individuals are more easily
generated and the optimization process will run much faster than when extremely
tight constraints are set.

∆VDSM ≤ 3.0 km/s

∆Vtot ≤ 10.0 km/s
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All decision variables are left free in their complete search space (see section
13.3.1). The optimization of this sequence is done for five different seed numbers
for the random generator. The decision variables for the best solution in each
run are shown in table 13.7, together with the objective function value, which is
denoted as ∆Vtot (so the ∆V needed for capture is not included here).

S t0 t1 t2 hpV ζV ηVM ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 6814.4 6983.2 7536.5 10099.2 0.970 0.508 3.381
10 6813.4 6981.6 7535.6 10284.0 0.951 0.518 3.387
75 6818.6 6986.6 7539.3 9642.5 1.021 0.493 3.383
250 6813.3 6981.0 7535.2 10386.4 0.951 0.551 3.396
1000 6812.3 6983.4 7536.7 10028.8 0.941 0.521 3.387
1050 6812.9 6981.6 7535.5 10299.8 0.947 0.497 3.391
1100 6815.1 6983.8 7537.1 10016.6 0.974 0.515 3.383
1150 6816.8 6986.8 7539.5 9559.2 0.996 0.498 3.385
1200 6813.4 6981.4 7535.3 10364.1 0.958 0.508 3.395
1250 6812.5 6980.7 7535.1 10363.7 0.936 0.492 3.395

Table 13.7 EVdM with the search space completely free. The population size was 500 individuals. The
total time needed for these ten runs was 3850 sec on the dutlruw.lr.tudelft.nl-server.

The best total ∆V when the complete search space is used for a population
size of 500 individuals is 3.381 km/s, which is 400 m/s higher than the best result
found by Vasile et al. [2008]. For all runs, the best solution is found near t0 ≈ 6810
MJD2000, whereas the best solution given by Vasile et al. [2008] is at t0 = 4472
MJD2000. Figure 13.8 shows the distribution of individuals in the t0 − t2 search
space of the initial population for the run with seed 5.

From this figure it can be clearly seen that there are a number of favorable
launch windows within the complete search space for t0. This phenomenon was
also found in section 13.2.2 with the EdM test case. The individuals in the initial
population are spread out over the search space, forming several clusters. Two
clusters stand out, namely at t0 ≈ 4400 MJD2000 and at t0 ≈ 6800 MJD2000.
The best solution found by Vasile et al. [2008] is located in this first cluster. All
solutions in table 13.7 are located in this second cluster. The best orbit found by
galomusit when using the complete search space is shown in figure 13.9.

The orbit in figure 13.9 has a different orientation from the orbit corresponding
to the best result found by Vasile et al. [2008]. This is no surprise since the launch
windows are completely different.

The individuals in the initial population are clustered in a very compact manner
when shown in the t0 − t2 space. To check the distribution of the DSM related
variables some additional figures are required. Figure 13.10 shows the distribution
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Figure 13.8 Distribution of the feasible individuals in the initial population for seed number 5. The
t0 − t2 search space is indicated by the solid line. +: ∆Vtot > 8.0 km/s. +:
6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.

Figure 13.9 Orbit corresponding to the best individual of the run with seed number 5 for the EVdM test
case. The complete search space was used for all variables. •: Earth at launch, •: Venus
swingby, �: DSM, •: Arrival at Mars.
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of individuals in the t0 − hp space.

Figure 13.10 Distribution of individuals in the initial population in the t0 − hp search space for the run
with seed number 5 in the EVdM test case. The complete search space for all variables was
used. +: ∆Vtot > 8.0 km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.

Figure 13.10 clearly shows a banded structure at the values for t0 where cluster
occur. It can be seen that the cluster around 6800 MJD2000 is the strongest one,
since it holds the most individuals. The cluster around 4400 MJD2000 does not
have that many individuals. Most of the ones that are present, however, have a
low total ∆V (this can be seen from the relative abundance of red crosses).

The distribution of the individuals in the initial population in the t0− ζ space
is shown in figure 13.11.

Depending on t0, the swingby geometry is different. This is clearly visible in
figure 13.11, where for the cluster at 4400 MJD2000 the values for ζ are above
4 radians. For the cluster around 6800 MJD2000 ζ is approximately in opposite
direction, with values between 0 and 2 radians.

The final DSM related variable for the EVdM test case is η. The distribution
of individuals in the initial population in the t0− η space is shown in figure 13.12.

Figure 13.12 shows that depending on the launch epoch, certain values for η
can be disregarded. For the cluster centered at 4400 MJD2000 the values for η
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Figure 13.11 Distribution of individuals in the initial population in the t0 − ζ search space for the run with
seed number 5 in the EVdM test case. The complete search space for all variables was used.
+: ∆Vtot > 8.0 km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.

Figure 13.12 Distribution of individuals in the initial population in the t0 − η search space for the run with
seed number 5 in the EVdM test case. The complete search space for all variables was used.
+: ∆Vtot > 8.0 km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.
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vary from 0.40 to 0.80. For the cluster centered at 6800 MJD200 the range of
values for η is a bit wider, from 0.30 to 0.80.

The above discussion has made one thing perfectly clear. The search space for
the different variables has to be reduced if better solutions are to be found.

13.3.3 Additional tests for the EVdM test case

For the EVdM test case a number of additional optimization runs were performed
with constrained search spaces for the decision variables. Also a test was
performed with an increased population size for the same search space as was
used in section 13.3.1. A description of the extra tests is provided below:

I t0 ∈ [4200, 4600] MJD2000
Complete search space for the other variables

II t0 ∈ [6600, 7000] MJD2000
Complete search space for the other variables

III Npop = 2000
The complete search space for all variables is used

IV t0 ∈ [4200, 4600] MJD2000
hp ∈ [0, 0.75] RV
For all other variables the complete search space is used

V t0 ∈ [4200, 4600] MJD2000
ζ ∈ [4.75, 6.00] rad
For all other variables the complete search space is used

VI t0 ∈ [4200, 4600] MJD2000
η ∈ [0.45, 0.65]
For all other variables the complete search space is used

VII t0 ∈ [4200, 4600] MJD2000
hp ∈ [0, 0.75] RV
ζ ∈ [4.75, 6.00] rad
η ∈ [0.45, 0.65]
For the time of flight the complete search space is used

The results in terms of decision vectors, distribution of the initial population
and orbits can be found in appendix C.

Results for the additional tests for the EVdM test case

Table 13.8 shows the best and worst total ∆V within the runs for each additional
test case. The original test is also included.
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Test Min. ∆V (km/s) Max. ∆V (km/s) Run time (s)
Original 3.381 3.396 3850
Test I 2.994 3.226 3799
Test II 3.376 3.426 1405
Test III 3.231 3.391 16550
Test IV 2.987 3.185 2744
Test V 2.986 3.286 1324
Test VI 2.988 3.275 1792
Test VII 2.989 3.194 412

Table 13.8 Comparison of the best and worst total ∆V for the 10 runs that were performed in each
extra test for the EVdM test case. The total computation time that was needed
dutlruw.lr.tudelft.nl-server to complete the 10 runs is also shown.

Using table 13.8 and appendix C some important conclusions can be drawn
about this test case:

Constraining the launch window to fit the cluster of individuals centered around
4400 MJD2000 significantly improves the results. The total ∆V is now only
12 m/s higher than it is for the best solution found by Vasile et al. [2008].
The corresponding orbit, which is shown in figure C.2, resembles figure 13.7
very well. From these observations it can be concluded that indeed the global
optimum is located in this launch window.

When the launch window is constrained around the cluster at 6800 MJD2000
the results in total ∆V do not improve much with respect to the original
runs. From the run time it can be concluded that this indeed is a strong local
optimum with respect to the minimum near 4400 MJD2000. The run time for
this minimum is less than half of the run time for the other constrained launch
window.

Increasing the population size and applying it to the complete search space
improves the result. The best solution is located in the cluster where the
global optimum is located, but still the value for the total ∆V is far from the
vest known value.

When the DSM related variables hp, ζ and η are constrained separately within
the launch window around 4400 MJD2000, the best total ∆V decreases. The
solutions are all very close to the best known solution and also the decision vec-
tors (and thus the orbits) correspond very well. These runs can be considered
as a local optimizations around the best solution.

For clarity, the decision vector and the orbit for the best found solution with
galomusit are given. The decision vector belonging to the best solution is:

x̄EV dMbest
= [t0, t1, t2, hpV , ζV , ηV ]

x̄EV dMbest
=



4475.2
4646.6
5339.7
415.0
5.029
0.542
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Figure 13.13 Orbit corresponding to the best individual for the EVdM test case found with galomusit.
•: Earth at launch, •: Venus swingby, �: DSM, •: Arrival at Mars.

Overall it can be concluded that galomusit is verified for this EVdM test
case. The best solution that was found corresponds to the best solution found
by Vasile et al. [2008]. One important note should be made here. When using
large search spaces the program is sensitive to the strength of local minima. This
could be clearly seen in the original test, where the optimization was executed
10 times, but each time the best solution that was found was located at a strong
local minimum centered at 6800 MJD2000. After an increase in the population
size (extra test III), galomusit was able to find that the best solution was in
the cluster centered near 4400 MJD2000. This came at the price of a run time of
more than 4.5 hours and even then it did not come close to the best value for the
total ∆V . For the future runs that are done with galomusit, the complete search
space will be examined first, but after that always some search space reduction
will be done.
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Chapter 14

Results for the Uranus orbiter
mission without DSMs

Before the results of the trajectories with DSMs are generated and discussed, first
the results without DSMs are presented in this chapter. The method that is used
is the same as used by Melman [2007] since the Uranus mission without DSMs
shows striking similarities with the mission to Neptune studied in that thesis.

First the mission to Uranus will be analyzed in section 14.2, with the same
possible swingby trajectories as used by Melman [2007]. Then, in section 14.3, a
new range of possible trajectories is analyzed when a swingby at Venus is allowed
after an Earth swingby.

14.1 Direct transfer from Earth to Uranus

The optimization of a direct transfer from Earth to Uranus without a DSM has
two variables, t0 and t1. Two impulsive maneuvers, one at launch and one at
capture, make up the total ∆V for this mission. The optimization for the direct
transfer was done 10 times using the settings in galomusit that are given in
section 14.2.

The breakdown of the total ∆V for the best direct trajectory from Earth to
Uranus is given in table 14.1.

∆VL 5.620 km/s
∆VC 1.053 km/s
∆Vtot 6.673 km/s

Table 14.1 Breakdown of the total ∆V for the trajectory with the lowest total ∆V for a direct
Earth-Uranus transfer without DSM. The seed number for this run was 1250.

The major contributor is ∆VL, because the spacecraft has to gain such
an amount of velocity at launch that the spacecraft is inserted into a highly
elliptic orbit (e = 0.90) with a large semi-major axis (a = 1.52 · 109 km which is
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approximately 10 AU). For this best individual the launch date is 13 June 2015
(5641.5 MJD2000) and the arrival date is 30 May 2030 (11106.5 MJD2000), which
gives a time of flight of 14.96 years.

Figure 14.1 shows the distribution of the individuals in the initial population.

Figure 14.1 Distribution of the individuals in the initial population for the EU direct trajectory. The seed
number for the run producing these individuals is 5. +: ∆Vtot ≥ 20 km/s, +:
12 ≤ ∆Vtot < 20 km/s, +: ∆Vtot ≤ 12 km/s.

Because the constraint on the maximum allowable total ∆V is set to a very high
value (75 km/s), almost the entire t0− t1 search space contains possible solutions.
If the constraint would have been set to 10 km/s, the distribution of individuals
would look like figure 14.2.

In this figure the repetitive pattern of launch windows for a direct transfer
from Earth to Uranus is clearly visible. Each possible launch opportunity is ap-
proximately a year after the previous one, which corresponds to the synodic period
for an Earth-Uranus transfer. Tightening the constraint on the total ∆V has not
improved the result, but it only confirmed it. The minimum total ∆V for a direct
transfer from Earth to Uranus for this mission is 6.673 km/s.
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Figure 14.2 Distribution of the individuals in the initial population for the EU direct transfer trajectory is
a constraint of ∆Vtot ≤ 10 km/s would be set. The seed number for the run producing these
individuals is 5. +: ∆Vtot ≥ 9 km/s, +: 8 ≤ ∆Vtot < 9 km/s, +: 7 ≤ ∆Vtot < 8 km/s,
+: ∆Vtot < 7 km/s.

14.2 Results for trajectories from Earth to Uranus with
swingbys

There are many possible planetary swingby sequences that the spacecraft can
follow on its way to Uranus. In this section the same swingby sequences that were
used by Melman [2007] will also be used for a mission to Neptune. There are 77
of them and they are shown in table 14.2.

V E M J S VV VE
VM VJ VS EE EM EJ ES
MJ MS JS VVV VVE VVM VVJ

VVS VEE VEM VEJ VES VMJ VMS
VJS EEM EEJ EES EMJ EMS EJS
MJS VVVE VVVM VVVJ VVVS VVEE VVEM

VVEJ VVES VVMJ VVMS VVJS VEEM VEEJ
VEES VEMJ VEMS VEJS VMJS EEMJ EEMS
EEJS EMJS VVVEE VVVEM VVVEJ VVVES VVVMJ

VVVMS VVVJS VVEEM VVEEJ VVEES VVEMJ VVEMS
VVEJS VVMJS VEEMJ VEEMS VEEJS VEMJS EEMJS

Table 14.2 Overview of the 77 different gravity assist sequences as defined in [Melman, 2007]. The
initial planet is Earth and the final planet is Uranus for all sequences, so they are not shown
in this table.
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The following guidelines were used in order to come to this particular list of
77 sequences:

A maximum of 5 swingbys is used per sequence. When looking at other missions
to the outer planets in the solar system (see chapter 4), this upper limit of 5
swingbys is a practical one, since no missions have more than 5 swingbys.

Mercury, the innermost planet in the solar system will not be used as a swingby
planet. There are a number of reasons for this. The fact that Mercury is
situated close to the Sun means that the satellite will have to cope with high
heat loads. Furthermore, because of its proximity to the Sun, Mercury is too
far in the wrong direction for a mission from Earth to Uranus.

Two other planets in the solar system, Neptune and Pluto, are not used as a
swingby planet either. They are located far beyond Uranus and are not of any
use in this mission.

Venus and Earth are planets that can be used for consecutive swingbys. Venus
can be used three times for consecutive swingbys and Earth twice. The orbital
periods of both planets are relatively short compared to the other planets that
can be used for a gravity assist and the orbital period of Venus is about 0.62
times Earth’s orbital period. So the revolutions of Venus about the Sun take
almost the same amount of time as two revolutions for Earth.

Mars, Jupiter and Saturn are used only once per sequence. Because of their long
orbital periods compared to Venus and Earth, the time needed for consecutive
flybys of these planets is large and not advantageous for the mission.

Venus is used as final planet in a swingby sequence when it comprises swingbys
at Venus only. After a swingby of Earth or any planet that is further away
from the Sun, Venus will not be used.

14.2.1 Mission specific settings in GALOMUSIT

In the subsequent sections a number of optimization runs in galomusit have
been executed for the mission to Uranus. The following mission specific settings
are applied, which were derived from chapter 2:

The starting point for the mission is Earth.

The target planet of the mission is Uranus.

It is a one-way orbiter mission.

The spacecraft will either perform 1, 2, 3, 4 or 5 swingbys on its way to Uranus.

No use is made of aerogravity assists.

The launch window starts at 1 January 2015 and ends on 1 January 2025
[Molenaar, 2007].

The maximum arrival date at Uranus is 1 January 2035, such that the total
flight time is at most 20 years from the start of the launch window [Molenaar,
2007].

The spacecraft will start its journey from a geostationary transfer orbit (GTO)
with a perigee altitude of 185 km.
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The final parking orbit around Uranus is a highly elliptical orbit with a peri-
center altitude of 2500 km and an eccentricity of 0.90.

The positions and velocities of the planets at a particular epoch are derived
from the JPL DE200 planetary ephemeris.

14.2.2 Initial GA settings in GALOMUSIT

Next to the mission specific parameters that need to be set in galomusit, also
the settings for the GA (GA) optimization need to be set before any optimization
run can be done. The first set of runs will optimize the 77 sequences as mentioned
in table 14.2. The following GA settings will be used for this first set of runs:

Each run will be done for five different seed numbers for the random generator:
5, 10, 75, 250 and 1000.

The optimization will be single-objective, where the optimization parameter is
the total ∆V . In his thesis work Melman [2007] assessed the population size
for the different number of swingbys. Table 14.3 shows the population sizes for
the trajectory optimization for a mission to Neptune:

Number of Population
swingby bodies size

1 500
2 1000
3 1000
4 2000
5 4000

Table 14.3 Population size for the different amount of swingby bodies in the single-objective GA
optimization with constant population size [Melman, 2007].

Since the same swingby sequences are considered for the mission to Uranus,
it is assumed that these values for the population size are sufficient for the
current study.

The maximum number of generations that can be reached during the GA op-
timization is 500.

The number of generations that has to be reached before checks for convergence
are performed is set to 10. This also means that convergence will be checked
over 10 generations.

The definition for convergence in this single-objective optimization process is
that the maximum fitness value should be within 0.001 km/s over 10 gener-
ations and the average fitness value should be within 0.005 km/s [Melman,
2007].

The amount of the best individuals (with respect to the optimization param-
eter, the total ∆V ) that is copied into the next generation, expressed as a
fraction of the total population has to be set. Elitism is set to 0.10 in the first
set of runs.
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The amount of randomly generated new individuals that immigrate to the
new generation, expressed as a fraction of the total population has to be set.
Immigration is set to 0.05 in the first set of runs.

The probability that one of the newly immigrated individuals is mutated. It
should be stressed again that this is not the ideal implementation of muta-
tion, since it does not makes much sense to mutate newly created random
individuals. Later in this section mutation will be turned off.

The lower limit on the time of flight in between consecutive planetary encoun-
ters is set to 30 days.

The upper limit on the total ∆V for each created individual is set to 75 km/s.

14.2.3 Results for 10% elitism, 5% immigration and 0.1% mutation

As mentioned earlier, the optimization process was done for the 77 different
swingby sequences that connect Earth and Uranus (see also table 14.2). Each
run that was performed analyzed these sequences for one particular seed number
for the random generator. Figure 14.3 shows a bar plot of the 20 sequences out of
the 77, that produced the lowest total ∆V.

Figure 14.3 Schematic of the 20 best sequences for the first set of runs. Elitism: 10%, Immigration: 5%
and Mutation: 0.1% for the configuration described in section 14.2. Only the best result out
of the five different seed numbers for each sequence has been placed in this figure.

In this figure a clear distinction has been made between the ∆V needed for
either launch, swingbys or capture in such a sequence. For each sequence only the
best result (the lowest total ∆V ) out of the five different seed numbers is shown.
From figure 14.3 several observations can be made:

It is advantageous to perform multiple swingbys on the trajectory from Earth
to Uranus. Only one out of the best 20 sequences has a single swingby. It is
no surprise that this trajectory involves a swingby at Jupiter, since this is the
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largest and most powerful swingby planet in the solar system (see also figure
8.7).

Many of the best 20 sequences have multiple swingbys in the inner solar system
(so at Venus and Earth) to increase the velocity before traveling to the outer
part of the solar system.

Mars is hardly present as a swingby planet among the best 20 sequences. This
can be explained using the rationale of section 8.4. Mars is not a massive planet
and does not have a large capability to increase the total energy of a spacecraft
during a swingby. It should be noted, however, that one of the best sequences,
MJ, performs very well. This is most likely because the planets (Earth and
Uranus included) are oriented in such a way that the total ∆V is quite low.

Swingbys at Saturn cause the satellite to gain such an amount of velocity that
the ∆V needed for capture around Uranus becomes quite high. This is the most
important reason that Saturn can not be found among the best 6 sequences
and is only represented in 5 of the best 20 sequences.

The best sequence for these GA settings is VVEEJ. This means that after
launch from the GTO the satellite performs two swingbys at Venus, before per-
forming consecutive swingbys at Earth and swinging by Jupiter in order to arrive
at Uranus. The characteristics of this sequence are shown in table 14.4. The seed
number that produced this best result was 250 and the total ∆V is 3.771 km/s.

Date ∆V (km/s) C3 (km2/s2)
Launch 14/06/2015 1.3171 12.380

Date ∆Vreq (km/s) ∆Vgained (km/s) h (km)
Swingbys V: 05/12/2015 0.0005 3.578 2562.6

V: 20/02/2017 0.0002 -2.029 2292.0
E: 27/04/2017 0.0019 5.856 2886.8
E: 15/02/2019 1.4570 3.674 6066.0
J: 31/01/2022 0.0899 9.137 300209.2

Date ∆V (km/s) C3 (km2/s2) Ventry (km/s)
Capture 30/12/2034 0.9043 16.001 20.688

Table 14.4 The best sequence, VVEEJ, for elitism: 10%, immigration: 5% and mutation: 0.1%. The
seed number for this run was 250.

Table 14.5 shows the total time it took for each run of 77 sequences to be
completed.

From this table it can be concluded that for these initial settings of the GA it
took more than 50 minutes to analyze all 77 sequences. In the subsequent sections
a number of different GA settings is used to examine if the results improve. Only
the best 20 sequences that have been shown in this section will be taken into
account from now on.
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Seed Run time (s)
5 3069
10 3127
75 3033
250 3337
1000 3072

Table 14.5 Run time for the five different seed numbers of each of the 77 possible swingby sequences.
Elitism: 10%, Immigrants: 5% and Mutation: 0.1%. The runs were executed on the
dutlruw.lr.tudelft.nl-server.

14.2.4 Additional tests

For the next tests, mutation has been turned off since it is a random change of a
variable in a randomly created new individual. The GA settings used in the next
tests are:

10% elitism, 5% immigration

10% elitism, 20% immigration

15% elitism, 15% immigration

20% elitism, 5% immigration

For each of these four GA settings, the 20 best sequences of section 14.2.3
were optimized with galomusit. Each run was repeated 5 times, each time with
a different seed number (the same seeds as used before). The bar charts and
characteristics of the best individual for each swingby sequence can be found in
appendix D. Table 14.6 shows the best total ∆V that was found for each sequence,
together with the corresponding GA settings and seed number.

From table 14.6 it can be seen that the best individual that has been found has
VVEJ as a swingby sequence. The total ∆V for this sequence is 2.892 km/s, with
a total time of flight of 18.8 years. This is 3.781 km/s lower (56.7% improvement)
than the result for the direct Earth-Uranus transfer. The characteristics of the
best individual can be found in appendix D.3. The orbit for this VVEJ swingby
sequence is shown in figures 14.4 and 14.5. These figures show the journey of the
spacecraft in the inner part and outer part of the solar system separateley. For
the trajectory in the outer part of the solar system, only the part from the Earth
swingby onwards is shown.

All swingby sequences in table 14.6 show improvements in the total ∆V
with respect to the direct transfer. As already mentioned, VVEJ was the best
sequence by far. The second best sequence, VVEEJ, is also far better than all
other sequences (aside VVEJ of course). The total ∆V decreases with 2.907
km/s, which is an improvement of 43.6%.
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Sequence GA settings Total ∆V (km/s) Seed
E (%) I (%) M (%)

VVEJ 15 15 0 2.892 75
VVEEJ 15 15 0 3.766 250
MJ 20 5 0 4.348 1000
VVVEJ 15 15 0 4.453 1000
VVEJS 15 15 0 4.626 10
VEJ 20 5 0 4.640 1000
J 10 5 0 4.727 5
EJ 20 5 0 4.789 250
VEJS 20 5 0 4.914 250
VVES 15 15 0 5.011 250
EEJ 20 5 0 5.059 1000
VEEMJ 15 15 0 5.122 250
VVEE 15 15 0 5.368 250
VVE 20 5 0 5.399 1000
VVEES 10 20 0 5.502 1000
JS 10 5 0 5.514 250
VVVE 20 5 0 5.546 1000
EJS 10 5 0 5.581 250
VEEJ 15 15 0 5.678 75
VVEEM 20 5 0 5.753 250

Table 14.6 Best total ∆V and the corresponding GA settings for each of the 20 best sequences in
section 14.2.3.

Figure 14.4 Trajectory of the spacecraft in the inner part of the solar system for the best swingby
sequence: VVEJ.
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Figure 14.5 Trajectory of the spacecraft in the outer part of the solar system for the best swingby
sequence: VVEJ.

From table 14.6 it can also be seen that two settings for the GA provide the ma-
jority of the best solutions. 15% Elitism with 15% immigration and 20% elitism
with 5% immigration each produce the best result for 8 of the 20 swingby se-
quences. The best overall result total ∆V is produced with 15% elitism and 15%
immigration, so therefore these GA settings are considered to be the best and will
be used for the remainder of this thesis research.

14.3 Sequences when a Venus swingby is allowed after an
Earth swingby

In the set of possible swingby sequences used in section 14.2, it was not allowed
to perform a swingby at Venus after a swingby at Earth was performed. However,
since the inner part of the solar system is used to gain velocity for the journey
to the outer parts of the solar system, it might be that new swingby possibilities
also provide trajectories with a low required total ∆V .

When generating these new sequences, the same rationale of section 14.2 is
used. A maximum of 5 swinbys is still allowed. Venus can be used no more than
three times within a swingby sequence. Earth can not be used more than twice
and the other planets can be used only once. Using these guidelines the set of new
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swingby sequences in table 14.7 was generated.

EV VEV EVV EVE EVM EVJ EVS
EEV VVEV VEVV VEVE VEVM VEVJ VEVS

VEEV EVVV EVVE EVVM EVVJ EVVS EVEV
EVEM EVEJ EVES EVMJ EVMS EVJS EEVV
EEVM EEVJ EEVS VVEVE VVEVM VVEVJ VVEVS

VVEEV VEVVE VEVVM VEVVJ VEVVS VEVEV VEVEM
VEVEJ VEVES VEVMJ VEVMS VEVJS VEEVV VEEVM
VEEVJ VEEVS EVVVE EVVVM EVVVJ EVVVS EVVEV
EVVEM EVVEJ EVVES EVVMJ EVVMS EVVJS EVEVV
EVEVM EVEVJ EVEVS EVEMJ EVEMS EVEJS EVMJS
EEVVV EEVVM EEVVJ EEVVS EEVMJ EEVMS EEVJS

Table 14.7 Overview of the 77 new gravity assist sequences that are obtained when a Venus swingby is
allowed after an Earth swingby. The initial planet is Earth and the final planet is Uranus for
all sequences, so they are not shown in this table.

14.3.1 Results for 15% elitism, 15% immigration

The idea behind the new set of possible swingby trajectories was that new ways
were created to gain velocity in the inner part of the solar system. Figure 14.6
shows the breakdown of the total ∆V of the 10 best sequences of table 14.7.

Figure 14.6 Schematic of the 10 best sequences out of the set of 77 new swingby possibilities when a
swingby at Venus is allowed after an Earth swingby. Elitism was set to 15%, immigration to
15% as well and no mutation was used. Only the best result out of the five different seed
numbers for each sequence has been placed in this figure.

The best result with the new set of swingby possibilities was obtained with
EVVEJ as the swingby sequence. The total ∆V needed for this trajectory is 5.005
km/s. The seed number producing this result was 250. The characteristics of the
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best result are shown in table 14.8.

Date ∆V (km/s) C3 (km2/s2)
Launch 09/01/2017 2.9298 52.299

Date ∆Vreq (km/s) ∆Vgained (km/s) h (km)
Swingbys E: 02/11/2018 0.0065 -7.155 306.2

V: 02/03/2019 0.0050 2.929 3065.7
V: 05/04/2020 0.0236 2.915 3157.4
E: 01/06/2020 0.0262 3.234 4163.7
J: 24/04/2023 1.0163 9.242 322585.1

Date ∆V (km/s) C3 (km2/s2) Ventry (km/s)
Capture 15/11/2034 0.9971 19.849 20.781

Table 14.8 The best sequence, EVVEJ, when a swingby at Venus is allowed after an Earth swingby. The
seed number for this run was 250.

From figure 14.6 it can be concluded that allowing a swingby at Venus after
an Earth swingby does not improve the results for the mission to Uranus. In fact,
the EVVEJ trajectory would not be in the best 5 results for the original set of
possible swingby sequences.



Chapter 15

Results for trajectories with DSMs

In this chapter the introduction of deep space maneuvers to trajectories for the
Uranus mission is assessed. The minimum launch date of 1 January 2015 is
equivalent to 5478.5 MJD2000, the maximum launch date of 1 January 2025 is
equivalent to 9131.5 MJD2000 and the maximum arrival date of 1 January 2035
is equivalent to 12783.5 MJD2000. The parking orbits around Earth and Uranus
are defined in chapter 2. For the Genetic Algorithm, the best settings found in
chapter 14 will be used again for optimizing trajectories with DSMs. Elitism is
set to 15%, immigration is set to 15% as well and mutation is turned off.

First of all, the trajectory from Earth to Uranus without swingbys is analyzed
in section 15.1. In section 15.2 trajectories to Uranus with a single swingby will be
assessed. Finally, section 15.3 will cover trajectories with two swingbys between
Earth and Uranus.

15.1 Earth-Uranus transfer without swingbys

The first simulations that are done for the Uranus mission cover the direct transfer
from Earth to Uranus. The results for the Lambert solution (so without the
addition of a DSM) have already been presented in chapter 14.

15.1.1 Results of an EdU transfer with a complete search space

A DSM will now be added to the trajectory to examine whether or not a lower
value for the total ∆V can be found than for the direct Earth-Uranus transfer.
Since a DSM is added to the leg right after Earth launch,

∣∣V̄∞L

∣∣, θ, ϕ and η need
to be generated randomly from a given search space. For each of these variables
the complete search space that is used is:

∣∣V̄∞L

∣∣ ∈ [0, 12] km/s

θ ∈ [0, 2π] rad

ϕ ∈
[
−π

2 ,+
π
2

]
rad

η ∈ [0.01, 0.90]
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The launch window and maximum arrival date are the same as before. Next
to the constraint on the maximum allowable total ∆V (75 km/s), a constraint
is set on the maximum allowable ∆VDSM . If an individual would be generated
with a DSM higher than 5.0 km/s, it will not be put into the population. The
minimum time of flight for each generated individual is 30 days.

The optimization is repeated 10 times, each time with a different seed number
for the random generator. Table 15.1 shows the decision vectors corresponding to
the best individual for each run, as well as the seed number for each run and the
total ∆V .

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad km/s

5 5641.3 11585.8 11.421 0.081 -0.022 0.184 6.682
10 5645.3 11931.1 11.428 0.053 0.057 0.103 6.718
75 5642.4 11664.2 11.420 0.066 0.047 0.134 6.690
250 6377.6 11945.8 11.464 0.083 0.087 0.160 6.744
1000 5646.6 11493.4 11.463 6.188 0.084 0.055 6.698
1050 6383.4 12193.4 11.405 6.260 -0.040 0.139 6.722
1100 6382.5 11986.2 11.408 6.226 0.015 0.132 6.696
1150 6005.5 11171.9 11.429 0.055 -0.031 0.066 6.722
1200 5643.8 11959.0 11.423 0.091 -0.028 0.172 6.711
1250 6011.4 11760.6 11.404 0.012 0.002 0.074 6.700

Table 15.1 Decision vectors and total ∆V for the best individuals of each run. The complete search
space for all variables is used. Elitism was set to 15%, immigration was set to 15% and the
population size was 500. The time needed on the dutlruw.lr.tudelft.nl-server was 2538
s.

The best individual found by galomusit using the complete search space for
all decision variables has a total ∆V of 6.682 km/s, which is 9 m/s higher than the
best solution found when no DSM was applied. Table 15.2 shows the breakdown
of the total ∆V for the best individual.

∆VL 5.620 km/s
∆VDSM 0.023 km/s
∆VC 1.040 km/s
∆Vtot 6.682 km/s

Table 15.2 Breakdown of the total ∆V for the trajectory with the lowest total ∆V for the EdU transfer.
The complete search space for all variables was used. The seed number for this run was 1250.

Table 15.1 shows that for all the best solutions, the values for the DSM related
variables are all close to each other. This means that the search space for these
variables can be constrained, hopefully improving the results. In section 15.1.2
some extra optimization runs will be discussed where the search space for the
decision variables has been reduced.
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Figure 15.1 shows the initial population in the t0− t1 space when the complete
search space for all variables is used.

Figure 15.1 Distribution of the individuals in the initial population for the EdU trajectory using the
complete search space for all variables. The seed number for the run producing these
individuals is 5. +: ∆Vtot ≥ 15 km/s, +: 12 ≤ ∆Vtot < 15 km/s, +: 10 ≤ ∆Vtot < 12
km/s, +: ∆Vtot ≤ 10 km/s.

The structure corresponding to the synodic period for an Earth-Uranus
transfer is visible in figure 15.1. The launch epochs for the individuals in table
15.1 are located in one of the first three launch windows. The best individual is
located in the first one.

The distribution of the DSM related variables in the initial population can be
shown as well. The direction angles of the hyperbolic excess velocity, θ and ϕ, are
plotted in figure 15.2.

From figure 15.2 it can clearly be seen that for this trajectory only a very
small portion of the search space is interesting. The values for θ are either near 0
or 2π and for ϕ the values are all near 0. This means that it is most advantageous
to have V̄∞L point in the same direction as V̄pl. This makes sense because when
these two velocity vectors point in the same direction, it results in the maximum
increase in heliocentric velocity. A high velocity is required after the engine burn
at Earth (see section 14.1), so only a small part of the search space for θ and ϕ
can be used.
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Figure 15.2 Distribution of the individuals in the initial population for the EdU trajectory in the θ − ϕ
space. The complete search space for all variables was used. The seed number for the run
producing these individuals is 5. +: ∆Vtot ≥ 15 km/s, +: 12 ≤ ∆Vtot < 15 km/s, +:
10 ≤ ∆Vtot < 12 km/s, +: ∆Vtot ≤ 10 km/s.

One of the other DSM related variables is
∣∣V̄∞L

∣∣. The values of
∣∣V̄∞L

∣∣ are
plotted are plotted against the launch epoch t0 in figure 15.3.

From figure 15.3 it can be deduced that a large part of the search space for∣∣V̄∞L

∣∣ can be neglected. The majority of values is between 10 and 12 km/s.
It is logical, based on the discussion on θ and ϕ, that the values for

∣∣V̄∞L

∣∣ are
high. The required velocity at the start of the heliocentric leg between Earth and
Uranus should be very high in order to reach the outskirts of the solar system
without swingbys.

The distribution of the final DSM related variable, η, is plotted against t0 in
figure 15.4. It is clear from figure 15.4 that values for η above 0.50 rarely occur
for the EdU trajectory.

15.1.2 Results of an EdU transfer with a constrained search space

The previous optimization runs on the EdU trajectory were performed using the
complete search space for all variables. In this section the search space for these
variables will be reduced to examine what the influence is on the results. Before the
search space for the different variables is reduced, the constraint on the maximum
allowable total ∆V for each generated individual is tightened



15.1 Earth-Uranus transfer without swingbys 173

Figure 15.3 Distribution of the individuals in the initial population for the EdU trajectory in the
t0 −

∣∣V̄∞L

∣∣ space. The complete search space for all variables was used. The seed number

for the run producing these individuals is 5. +: ∆Vtot ≥ 15 km/s, +: 12 ≤ ∆Vtot < 15
km/s, +: 10 ≤ ∆Vtot < 12 km/s, +: ∆Vtot ≤ 10 km/s.

Figure 15.4 Distribution of the individuals in the initial population for the EdU trajectory in the t0 − η
space. The complete search space for all variables was used. The seed number for the run
producing these individuals is 5. +: ∆Vtot ≥ 15 km/s, +: 12 ≤ ∆Vtot < 15 km/s, +:
10 ≤ ∆Vtot < 12 km/s, +: ∆Vtot ≤ 10 km/s.
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Tightened constraint for the total ∆V

Using ∆Vtot ≤ 10 km/s, the results of 10 optimization runs are shown in table
15.3.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad km/s

5 6381.6 12038.3 11.395 6.264 0.014 0.168 6.685
10 5643.1 11552.6 11.392 0.021 -0.002 0.114 6.664
75 5642.1 11470.9 11.399 0.032 -0.008 0.169 6.664
250 6014.1 11909.6 11.422 6.261 0.022 0.163 6.694
1000 5645.3 11646.1 11.395 6.262 0.005 0.200 6.664
1050 6384.6 12242.0 11.404 6.222 0.004 0.154 6.696
1100 6379.8 12241.8 11.430 0.083 -0.045 0.172 6.708
1150 5638.6 11376.4 11.455 0.112 -0.021 0.166 6.702
1200 6379.8 11878.7 11.399 6.281 0.014 0.207 6.689
1250 6380.3 12072.4 11.398 0.029 -0.004 0.215 6.688

Table 15.3 Decision vectors and total ∆V for the best individuals of each run, with ∆Vtot ≤ 10 km/s
used as a new constraint. The complete search space for all variables is used. Elitism was set
to 15%, immigration was set to 15% and the population size was 500. The time needed on
the dutlruw.lr.tudelft.nl-server was 14890 s.

The best total ∆V that is found by galomusit using the tight constraint of 10
km/s is lower than the best total ∆V as it was found using the original constraint
of 75 km/s. The value of 6.664 km/s is even 9 m/s lower than the best ∆V for
the direct Earth-Uranus trajectory without DSM. The time needed for optimizing
these 10 runs is more than 4 hours. The time that was needed to optimize the 10
runs using the original constraint was just over 40 minutes. Obtaining better re-
sults in this case comes at the price of a significant increase in computational time.

Figure 15.5 shows the initial population in the t0− t1 space when the complete
search space for all variables is used with ∆Vtot ≤ 10 km/s.

From figure 15.5 it can be seen that the same banded structure is present as
in figure 15.1. So when the constraint for the maximum allowable total ∆V is
tightened, no new information on the launch window is obtained, while the com-
putation time has increased drastically. Without showing the plots, the same holds
for search space of the DSM related variables. No new information is obtained on
which parts of the search space can be neglected. Therefore it seems that tightly
constraining the total ∆V is not the most efficient way to obtain information on
possibilities for reducing the search space.

Constrained launch window

In figures 15.1 and 15.5 it could be seen that within the complete search space
for t0 there are is a limited number of launch opportunities. The best solution
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Figure 15.5 Distribution of the individuals in the initial population for the EdU trajectory, with
∆Vtot ≤ 10 km/s used as a new constraint. The seed number for the run producing these
individuals is 10. +: 9 < ∆Vtot ≤ 10 km/s, +: 8 < ∆Vtot ≤ 9 km/s, +: ∆Vtot ≤ 8 km/s.

that was obtained in using the complete search space (see table 15.1) is located at
the first launch possibility. It makes sense to constrain the search space for t0 to
only enclose this first launch opportunity. The results of 10 optimization runs are
shown in table 15.4. For all variables except t0 the complete search space is used.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad km/s

5 5642.3 11134.9 11.414 6.226 -0.010 0.180 6.714
10 5643.1 11539.9 11.397 0.019 -0.021 0.145 6.664
75 5641.8 11282.8 11.408 0.001 0.037 0.148 6.676
250 5639.5 11259.1 11.407 0.057 0.003 0.073 6.683
1000 5641.2 11533.6 11.442 0.077 -0.066 0.407 6.715
1050 5641.2 11354.0 11.402 0.034 -0.007 0.162 6.667
1100 5643.3 11263.6 11.411 6.231 0.028 0.193 6.671
1150 5640.8 11457.2 11.425 0.073 0.032 0.104 6.693
1200 5644.3 11523.7 11.436 6.264 0.101 0.069 6.691
1250 5649.3 11819.2 11.452 6.186 0.044 0.111 6.720

Table 15.4 Decision vectors and total ∆V for the best individuals of each run, with t0 ∈ [5600, 5700]
MJD2000. The complete search space for all other variables is used. The original constraint
for the total ∆V is used. The time needed on the dutlruw.lr.tudelft.nl-server was 526
s.

The best result is 6.664 km/s, which is the same as the value obtained with
a tight constraint on the maximum allowable total ∆V . The difference, however,
is in the computation time. Using only a constrained launch window decreases
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the computation time to just 526 seconds. It is therefore more efficient in terms
of computation time to do a Monte Carlo search on the complete search space
first and subsequently apply the global optimization on a more constrained search
space, than to only allow very good individuals to enter the population.

Table 15.5 shows the breakdown of the total ∆V for the best individual for the
constrained launch window.

∆VL 5.602 km/s
∆VDSM 0.021 km/s
∆VC 1.040 km/s
∆Vtot 6.664 km/s

Table 15.5 Breakdown of the total ∆V for the trajectory with the lowest total ∆V for the EdU transfer.
t0 ∈ [5600, 5700] MJD2000, the complete search space for all other variables is used. The
seed number for this run was 10.

Constrained DSM related variables

It could be seen from figure 15.2 that all solutions are close to 0 and 2π for θ
and close to 0 for ϕ. This is confirmed when looking at table 15.1 for example.
Therefore it makes sense to put both θ and ϕ equal to 0 as a means of search space
reduction. Furthermore,

∣∣V̄∞L

∣∣ and η can also be constrained. In the following
optimization runs the following reduced search space for

∣∣V̄∞L

∣∣ and η are used:

∣∣V̄∞L

∣∣ ∈ [11, 12] km/s

η ∈ [0.001, 0.20]

The complete launch window will be used in the next optimization runs. The
minimum time of flight for each generated individual is set to 1 day and the
maximum ∆VDSM is set to 0.5 km/s. The resulting decision vectors and total ∆V
after 10 optimization runs are shown in table 15.6.

Constraining the search space for the DSM related variables improves the best
result that was obtained up to this point. The value of 6.663 km/s is 10 m/s lower
than the lowest total ∆V needed for the direct Earth-Uranus transfer without DSM
and 1 m/s lower than the total ∆V when tightening the constraints or constraining
the launch window. Table 15.7 shows the breakdown of the total ∆V for the best
individual for the constrained launch window.

In table 15.6 it can be seen that there is still quite some difference between
the values of η of the best individuals in each run. For

∣∣V̄∞L

∣∣ the values are
consistent. To examine what the behavior of the objective function is around the
global minimum,

∣∣V̄∞L

∣∣ and η are grid sampled. This grid sampling is done by
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S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad km/s

5 5644.0 11592.6 11.390 0 0 0.141 6.671
10 5642.6 11404.5 11.378 0 0 0.038 6.676
75 5643.1 11478.5 11.379 0 0 0.051 6.672
250 5641.5 11235.0 11.398 0 0 0.076 6.669
1000 5642.6 11382.6 11.399 0 0 0.084 6.669
1050 5644.4 11610.0 11.391 0 0 0.099 6.672
1100 5645.7 11797.2 11.391 0 0 0.136 6.669
1150 5640.3 11075.9 11.409 0 0 0.102 6.679
1200 5644.4 11640.2 11.390 0 0 0.199 6.666
1250 5643.5 11508.7 11.391 0 0 0.131 6.663

Table 15.6 Decision vectors and total ∆V for the best individuals of each run, with θ = ϕ = 0,∣∣V̄∞L

∣∣ ∈ [11, 12] km/s and η ∈ [0.001, 0.20]. The complete launch window is used.

∆VL 5.598 km/s
∆VDSM 0.023 km/s
∆VC 1.041 km/s
∆Vtot 6.663 km/s

Table 15.7 Breakdown of the total ∆V for the trajectory with the lowest total ∆V for the EdU transfer.
θ = ϕ = 0,

∣∣V̄∞L

∣∣ ∈ [11, 12] km/s and η ∈ [0.001, 0.20]. The complete launch window is
used. The seed number for this run was 1250.

choosing a domain for both variables as well as a step size. Based on table 15.6
the following grid is defined:

∣∣V̄∞L

∣∣ ∈ [11.30, 11.43] km/s, with a step size of 0.01 km/s

η ∈ [0.01, 0.28] with a step size of 0.01

This grid is then 14 × 28, resulting in 392 sample points. The optimization
is done three time for each sample point, with seed numbers 5, 10 and 75. The
maximum allowable ∆VDSM is set to 0.75 km/s. It should be noted that θ and ϕ
are still equal to zero and that t0 and t1 are free variables (so the complete t0− t1
search space is used). Figure 15.6 shows the value of the total ∆V over the grid
sampled search space for

∣∣V̄∞L

∣∣ and η.

The plot was obtained by taking the best value for the total ∆V in each grid
point out of the three optimization runs. By applying interpolation between the
grid points a contour plot could be drawn. A two-dimensional view of the contour
plot, including a color bar is shown in figure 15.7.

Figures 15.6 and 15.7 show that at
∣∣V̄∞L

∣∣ = 11.393 km/s, the global optimum
is represented by quite a large valley structure. A wide range of values for η is
contained by this valley. In order to see what the minimum total ∆V is for each
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Figure 15.6 Contour plot of ∆Vtot, based on a grid sampled search space for
∣∣V̄∞L

∣∣ and η.∣∣V̄∞L

∣∣ ∈ [11.30, 11.43] km/s, with a step size of 0.01 km/s and η ∈ [0.01, 0.28] with a step
size of 0.01. The complete t0 − t1 search space is used, while θ = ϕ = 0.

Figure 15.7 Two-dimensional view figure 15.6. The values of the total ∆V in km/s are indicated by the
color bar.
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value of η, figure 15.8 has been created.

Figure 15.8 The lowest total ∆V for each value of η in the sampled grid for the Earth-Uranus transfer
with DSM.

Figure 15.8 can be considered as a cross-section of the three-dimensional
contour plot at

∣∣V̄∞L

∣∣ = 11.393 km/s. It shows that at η ≈ 0.13 the minimum
value for the total ∆V is obtained, which is 6.662 km/s. It should be noted that
the line may have been a bit smoother, if more optimization runs were performed
for each grid point. However, three runs were considered sufficient. For many
values of η, the total ∆V is below the value obtained for the Earth-Uranus
transfer without DSM. For how many values of η this holds it not known, since η
was only sampled up to 0.28. The trend in figure 15.8 is that the ∆V increases as
the value for η becomes larger.

It can be concluded that the results for the global optimization on the reduced
search space (see table 15.6) are actually extremely close to the optimum value
found by grid sampling around the global optimum (see figures 15.6, 15.7 and
15.8). The global optimization in this case performs well.

15.2 Trajectories to Uranus with one swingby

The direct transfer to Uranus, both with and without DSM, has been thoroughly
discussed in section 15.1. The nest step is to extend the analysis to trajectories
with one swingby. The swingby planets that are considered are the same as used
in the discussion on trajectories without DSMs.

Venus

Earth

Mars
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Jupiter

Saturn

In section 15.2.1 the single swingby trajectories will be analyzed without the
addition of DSMs. After that, in section 15.2.2, a DSM will be added on the first
leg of the trajectory. The next step is to only apply a DSM on the second leg of
the trajectory. This situation will be discussed in section 15.2.3.

15.2.1 No DSM on trajectories to Uranus with one swingby

Trajectories to Uranus with a single swingby and without DSMs have been ana-
lyzed already in section 14.2.3, but then for different Genetic Algorithm settings.
The best results out of 10 optimization runs for the five single swingby trajectories
using 15% elitism and 15% immigration are shown in table 15.8.

t0 t1 t2 ∆Vtot S
MJD2000 MJD2000 MJD2000 km/s

V 6197.0 6340.7 10967.3 8.251 75
E 5712.6 6379.6 11591.9 6.734 10
M 5679.5 8688.2 12664.7 7.447 1000
J 6201.4 7332.7 12679.4 4.745 1150
S 5501.1 7428.5 12636.6 6.280 1200

Table 15.8 Decision vectors and total ∆V for all trajectories without DSM to Uranus with a single
swingby. The seed number producing the best result for each trajectory is also shown. 15%
elitism and 15% immigration was used.

It should be noted that for the Jupiter swingby sequence already better results
have been found in chapter 14 using different GA settings. A value of 4.727 was
found for 10% elitism, 5% immigration and 0.1% mutation. The breakdown of the
total ∆V for each of the individuals in table 15.8 is given in table 15.9.

∆VL ∆VSB ∆VC ∆Vtot
km/s km/s km/s km/s

V 1.158 5.881 1.212 8.251
E 2.794 2.866 1.074 6.734
M 4.520 1.560 1.366 7.447
J 3.796 0.001 0.948 4.745
S 4.846 0.221 1.214 6.280

Table 15.9 Breakdown of the total ∆V for all trajectories without DSM to Uranus with a single swingby.
15% elitism and 15% immigration was used.

The breakdown of the total ∆V can also be shown by means of the bar chart
that is shown in figure 15.9.
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Figure 15.9 Bar chart indicating the breakdown of the total ∆V for all trajectories without DSM to
Uranus with a single swingby. 15% elitism and 15% immigration was used.

15.2.2 DSM on the first leg of trajectories to Uranus with one swingby

A DSM on the first leg of the trajectory adds 4 variables to the decision vec-
tor. The search space that is used for the DSM related variables is given as follows.

∣∣V̄∞L

∣∣ ∈ [0, 5] km/s, for the trajectories with a swingby at either Venus, Earth
or Mars∣∣V̄∞L

∣∣ ∈ [0, 10] km/s, for the trajectory with a swingby at Jupiter∣∣V̄∞L

∣∣ ∈ [0, 12] km/s, for the trajectory with a swingby at Saturn

θ ∈ [0, 2π] rad

ϕ ∈
[
−π

2 ,+
π
2

]
rad

η ∈ [0.01, 0.90]

Performing the optimization for each trajectory 10 times, each time with a
different number for the random generator, gives the following decision vectors
and values for the total ∆V .

All values in table 15.10 are higher than the total ∆V for the Lambert solution
(see table 15.8). The total ∆V for each of the best solutions in table 15.10 can
be broken down into components for launch, DSM, swingby and capture. The
different components, together with the seed number producing the best result,
are shown in table 15.11.

The breakdown of the total ∆V can also be done graphically by means of a
bar chart. This is shown in figure 15.9.
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t0 t1 t2
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 MJD2000 km/s rad rad km/s

dV 6203.2 6344.9 12318.5 3.188 3.171 -0.623 0.346 8.425
dE 6021.1 6740.0 12114.3 0.049 4.836 -0.195 0.546 6.743
dM 7474.7 8219.8 11718.5 3.748 0.569 0.200 0.325 8.722
dJ 6590.7 7437.9 12563.0 8.681 6.212 -0.002 0.187 4.798
dS 5499.0 7743.2 12779.2 10.336 0.167 0.139 0.128 6.318

Table 15.10 Decision vectors and total ∆V for trajectories to Uranus with a DSM on the first leg and a
single swingby. The best result out of 10 optimization runs is shown for each swingby planet.
The complete search space was used for all variables. The total ∆V is indicated in red,
meaning that the results do not improve with respect to the Lambert solution.

∆VL ∆VDSM ∆VSB ∆VC ∆Vtot S
km/s km/s km/s km/s km/s

dV 1.221 0.258 5.818 1.128 8.425 5
dE 0.769 0.023 4.885 1.066 6.743 1150
dM 1.389 2.617 3.127 1.589 8.722 75
dJ 3.778 0.089 0.002 0.930 4.798 75
dS 4.858 0.219 0.009 1.232 6.318 1000

Table 15.11 Breakdown of the total ∆V for all trajectories with a single swingby and a DSM on the first
leg. The complete search space for all variables is used.

Figure 15.10 Bar chart indicating the breakdown of the total ∆V for all all trajectories with a single
swingby and a DSM on the first leg. The complete search space for all variables is used.
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For all sequences, performing the optimization with a complete search space
for all variables leads to values for the total ∆V that are all higher than the values
found for the trajectories without DSMs. Therefore the search space needs to be
reduced. This will be done for two of the five possible trajectories, namely Venus
and Saturn (arbitrarily chosen).

For both the Venus and Saturn trajectories, appendix E shows the decision
vectors and total ∆V for each optimization run that was performed with the
complete search space for all variables. The distribution of initial population
individuals in the t0 − t2, θ − ϕ and η −

∣∣V̄∞L

∣∣ space is also shown for both
trajectories. For the EdVU transfer trajectory the distribution in the t0 − t1 and
t1 − t2 space is shown too.

What immediately stands out is that for the trajectory with a swingby at
Venus the complete search space is used for all DSM variables. This indicates
that it is not possible to immediately neglect certain parts of the search space,
based on the random generation of individuals for the initial population. For
launch windows and arrival dates each leg should be considered separately, since
the t0− t2 space provides no information on possible launch window constraining.

The distribution of individuals for the trajectory with a swingby at Saturn
shows a completely different behavior. In the t0 − t2 space the same banded
structure can be seen that was present in the population distribution for the
direct Earth-Uranus transfer. For a transfer from Earth to Saturn the synodic
period is approximately a year. Figure E.6 confirms this value. When using
Saturn as a swingby planet to go to the outer parts of the solar system, the
configuration of the planets has to be just right. It is therefore logical that the
synodic period comes back in the population distribution. The bands are wider
than for the direct transfer because of the DSM and swingby that are performed.
For θ, ϕ and

∣∣V̄∞L

∣∣ only a small portion of the total search space is used. This
can be clarified using the same rationale as for the direct Earth-Uranus transfer.
To go to the outer parts of the solar system a large value for

∣∣V̄∞L

∣∣ is required
and the hyperbolic excess velocity vector should be approximately aligned with
the planet’s heliocentric velocity vector. For η, no values can be neglected based
on the individuals in the initial population.

Search space reduction for the EdVU trajectory

The best EdVU trajectory in table 15.10 shows a value for θ that is almost equal
to π, indicating a braking maneuver. The spacecraft will move inwards from Earth
to Venus. In the next optimization runs the angle θ is constrained to π. Table
15.12 shows the decision vectors and total ∆V of the best individuals for each of
the 10 optimization runs that were performed when θ = π.

It can be seen in table 15.12 that two runs provide a lower total ∆V than the
8.425 km/s that was obtained using the complete search space for all variables.
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S t0 t1 t2
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 MJD2000 km/s rad rad km/s

5 6204.9 6341.7 12224.0 2.826 π -0.443 0.386 8.385
10 6204.5 6341.5 12292.5 2.676 π -0.316 0.438 8.413
75 6199.5 6337.9 11549.7 2.442 π -0.422 0.419 8.740
250 6194.5 6354.0 11880.4 2.032 π -0.254 0.478 9.850
1000 7244.0 7687.7 12131.6 2.883 π 0.075 0.513 8.428
1050 5487.9 5888.2 10999.0 3.229 π -0.013 0.523 8.835
1100 6201.8 6342.1 11381.2 2.684 π -0.476 0.452 8.667
1150 6198.8 6342.7 12054.9 2.372 π -0.368 0.442 8.845
1200 6203.2 6341.3 12211.2 2.646 π -0.404 0.397 8.481
1250 6583.8 7017.4 12329.4 2.761 π -0.137 0.363 8.679

Table 15.12 Decision vectors and total ∆V for the 10 optimization runs done for EdVU with∣∣V̄∞L

∣∣ ∈ [0, 5] km/s, θ = π, ϕ ∈
[
−π2 ,+

π
2

]
and η ∈ [0.01, 0.90]. The complete search space

was used for time related variables.

The improvement, however is only marginal. It was noted earlier, that in the initial
population, the complete θ − ϕ search space is used. Therefore, in the following
optimization runs θ and ϕ are set equal to 0. This implies that the spacecraft will
first travel outward (so farther away from the Sun than the orbit of Earth). Using
the DSM the spacecraft will travel back to Venus to perform the swingby. Table
15.13 shows the decision vectors and total ∆V for the EdVU trajectory in this
case.

S t0 t1 t2
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 MJD2000 km/s rad rad km/s

5 6733.9 7251.1 12430.3 3.666 0 0 0.476 8.982
10 5621.9 6123.6 11939.2 3.312 0 0 0.511 8.936
75 6704.0 7237.0 12071.4 3.649 0 0 0.507 8.761
250 6001.1 6573.8 11823.2 4.412 0 0 0.406 8.621
1000 5990.6 6569.1 12532.9 4.593 0 0 0.381 8.890
1050 7884.1 8364.3 12433.9 3.796 0 0 0.480 9.093
1100 5988.5 6566.8 11346.9 4.398 0 0 0.424 8.852
1150 6358.3 7026.0 11518.6 4.869 0 0 0.482 8.490
1200 5999.5 6578.7 11719.1 4.289 0 0 0.470 8.546
1250 7817.5 8373.8 12719.3 4.106 0 0 0.458 9.040

Table 15.13 Decision vectors and total ∆V for the 10 optimization runs done for EdVU with∣∣V̄∞L

∣∣ ∈ [0, 5] km/s, θ = ϕ = 0 and η ∈ [0.01, 0.90]. The complete search space was used
for time related variables.

The best result from table 15.13, 8.490 km/s, is worse than the solution
found when using the complete search space for all variables (see table 15.10).
Nevertheless, in order to examine the behavior of the total ∆V for this case,∣∣V̄∞L

∣∣ and η were grid sampled around the values for the best individual in table
15.13.

∣∣V̄∞L

∣∣ ∈ [4.500, 5.000] km/s, with a step size of 0.025 km/s
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η ∈ [0.42, 0.58] with a step size of 0.01

This results in a grid that is 21 × 17, yielding 357 grid points. At each grid
point, the optimization was performed 5 times with seed numbers 5, 10, 75, 250
and 1000. So for each optimization, there were three variables, namely t0, t1 and
t2. The resulting contour plot is shown in figure 15.11.

Figure 15.11 Contour plot for the EdVU trajectory. The total ∆V is plotted, based on a grid sampled
search space for

∣∣V̄∞L

∣∣ and η.
∣∣V̄∞L

∣∣ ∈ [4.5000, 5.000] km/s, with a step size of 0.025 km/s
and η ∈ [0.42, 0.58] with a step size of 0.01. t0, t1 and t2 are free variables, while θ = ϕ = 0.

Figure 15.11 shows a highly irregular behavior for the total ∆V . There is a
large part of the grid above which the values of the total ∆V remain high, until
suddenly a ’canyon’ emerges in which the best solutions can be found. Figure
15.12 shows a two-dimensional view of the contour plot, where the values of the
total ∆V are indicated by the color bar.

It can be seen that the best individual in table 15.13 has values for
∣∣V̄∞L

∣∣ and
η that are within the canyon feature. However, the value for the total ∆V is off
by about 300 m/s from the value that it could have reached for those particular
values of

∣∣V̄∞L

∣∣ and η. So the global optimization does not find the values for
the total ∆V that are found with the grid sampled search space. This is most
likely because of differences in the planetary encounter epochs. This hypothesis is
reinforced when performing the optimization process on the grid sampled search
space only. The best solution after 10 optimizations (using the same seed numbers
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Figure 15.12 Two-dimensional view of the contour plot of figure 15.11. t0, t1 and t2 are free variables,
while θ = ϕ = 0. The values for the total ∆V are indicated by the color bar.

as before) gives a total ∆V of 8.057 km/s. For this individual
∣∣V̄∞L

∣∣ = 4.793
km/s and η = 0.527. This corresponds to the minimum value that can be seen in
figure 15.12. The encounter epochs for this individual are t0 = 6358.3 MJD2000,
t1 = 7026.0 MJD2000 and t2 = 11518.6 MJD2000.

Search space reduction for the EdSU trajectory

It could be seen in figure E.7 that for the EdSU trajectory only very limited
values for θ and ϕ are possible. Therefore both θ and ϕ will be put equal to zero.
Also, based on figure E.8, the search space for

∣∣V̄∞L

∣∣ can be constrained.

∣∣V̄∞L

∣∣ ∈ [7, 13] km/s

θ = ϕ = 0 rad

η ∈ [0.01, 0.90]

Table 15.14 shows the resulting decision vectors and total ∆V after 10 opti-
mization runs using the aforementioned search space for the DSM related variables.
For the planetary encounter epochs the complete search space was used.

The best value for the total ∆V found after the reduction of the search space is
6.246 km/s. This is better than the best solution found for the trajectory without
the addition of a DSM. It is also better than the result that was found using the
complete search space for all variables (see table 15.10). There is, however, still
quite a spread in the total ∆V for the individuals in table 15.14. The values for∣∣V̄∞L

∣∣ and η are all close to each other. Therefore these parameters have been
grid sampled around the values for the best individual in table 15.14 in order to
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S t0 t1 t2
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 MJD2000 km/s rad rad km/s

5 5885.7 8316.2 12551.7 10.225 0 0 0.183 6.607
10 5506.6 7788.0 12679.2 10.244 0 0 0.228 6.246
75 5884.8 8224.3 12720.0 10.259 0 0 0.209 6.755
250 5520.9 8524.5 12762.0 10.312 0 0 0.171 6.607
1000 5887.0 8345.2 12758.3 10.239 0 0 0.205 6.512
1050 5514.5 8188.2 12619.0 10.284 0 0 0.177 6.541
1100 5878.1 7771.0 12414.0 10.306 0 0 0.154 6.467
1150 6259.3 8524.2 12690.4 10.217 0 0 0.186 6.649
1200 5880.4 7970.5 12716.6 10.256 0 0 0.142 6.342
1250 6260.7 8680.5 12594.8 10.137 0 0 0.143 6.887

Table 15.14 Decision vectors and total ∆V for the 10 optimization runs done for EdSU with∣∣V̄∞L

∣∣ ∈ [7, 13] km/s, θ = ϕ = 0 and η ∈ [0.01, 0.90]. The complete search space was used
for time related variables.

examine the behavior of the total ∆V . The following grid was used.

∣∣V̄∞L

∣∣ ∈ [10.000, 10.500] km/s, with a step size of 0.025 km/s

η ∈ [0.16, 0.28] with a step size of 0.01

This gives a grid of 21× 13, yielding 273 grid points. The optimization in each
grid point has been performed 5 times, each time with a different seed number.
The seed numbers that were used are 5, 10, 75, 250 and 1000. It should be stressed
that at each grid point there are still three variables in the optimization process,
namely t0, t1 and t2. Figure 15.13 shows the resulting contour plot, indicating the
total ∆V above the sampled grid.

The total ∆V above the sampled grid is very irregular. It can be seen that
there are a number of local minima and it is not clear from the three-dimensional
contour plot where the global minimum can be found. For that reason a two-
dimensional view is shown in figure 15.14, where the values of the total ∆V are
indicated by the color bar.

From the two-dimensional representation of the total ∆V for the sampled grid
it can be seen that the global minimum can be found at

∣∣V̄∞L

∣∣ ≈ 10.24 km/s and
η ≈ 0.23. The best individual that was found with the global optimization on
the reduced search space (see table 15.14) is located at this global optimum. This
was, however, the only run out of the 10 optimization runs that found the global
minimum. The other runs got stuck in a local minimum. In figures 15.13 and
15.14 it can be seen that the values of the total ∆V in the local minima for the
sampled grid can be off from the global minimum by a margin as large as 400 m/s.
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Figure 15.13 Contour plot for the EdSU trajectory. The total ∆V is plotted, based on a grid sampled
search space for

∣∣V̄∞L

∣∣ and η.
∣∣V̄∞L

∣∣ ∈ [10.000, 10.500] km/s, with a step size of 0.025 km/s
and η ∈ [0.16, 0.28] with a step size of 0.01. t0, t1 and t2 are free variables, while θ = ϕ = 0.

Figure 15.14 Two-dimensional view of the contour plot of figure 15.13. t0, t1 and t2 are free variables,
while θ = ϕ = 0. The values for the total ∆V are indicated by the color bar.
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15.2.3 DSM on the second leg of trajectories to Uranus with one swingby

After the discussion on the addition of a DSM on the first leg of the trajectory,
a DSM will now be added on the second leg of the trajectory. So the planetary
swingbys are unpowered. For the DSM related variables the following search
spaces are used.

(hp)V ∈ [0.047, 5] RV
(hp)E ∈ [0.048, 5] RE
(hp)M ∈ [0.076, 4] RM
(hp)J ∈ [0.600, 25] RJ
(hp)S ∈ [0.342, 10] RS
ζ ∈ [0, 2π] rad

η ∈ [0.01, 0.90]

The minimum pericenter altitudes that are used in defining the search space are
the same ones as used in galomusit based on mission heritage. The constraint
that is set on the maximum allowable ∆VDSM is 10 km/s for the next set of
optimization runs. Table 15.15 shows the decision vectors and total ∆V of the
best individuals for all five sequences. Each optimization run was done 10 times,
with the seed numbers the same as before.

t0 t1 t2 hp ζ η ∆Vtot S
MJD2000 MJD2000 MJD2000 km rad km/s

Vd 7363.2 7465.4 12711.8 1996.6 1.574 0.272 10.889 1150
Ed 6082.2 7843.7 12477.1 598.6 3.149 0.020 7.048 10
Md 5666.0 7962.1 12675.8 1062.3 2.739 0.031 7.040 1100
Jd 6202.1 7347.3 12778.3 745598.2 1.134 0.106 4.742 1000
Sd 5506.8 7586.8 11992.4 42660.2 0.177 0.078 6.597 1000

Table 15.15 Decision vectors and total ∆V for trajectories to Uranus with a DSM on the second leg and
a single swingby. The best result out of 10 optimization runs is shown for each swingby
planet. The complete search space was used for all variables. Indicated in green are the
results that are better than the Lambert solution and indicated in red are the solutions that
do not improve.

Two of the five trajectories, the ones with swingbys at Mars and Jupiter,
provide a total ∆V that is better than the best solution that was found with
Lambert targeting only (indicated with green in table 15.15). For the trajectory
with the Jupiter swingby the improvement is 3 m/s, where it should be noted that
using some different Genetic Algorithm settings a value of 4.727 km/s was found
in chapter 14. For the trajectory with the swingby at Mars the improvement is
407 m/s. With respect to the results of the trajectories with a DSM prior to
the swingby, the Mars and Jupiter sequences are the only ones that improve as well.
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The breakdown of the total ∆V for each sequence in table 15.15 is shown in
table 15.16.

∆VL ∆VDSM ∆VC ∆Vtot
km/s km/s km/s km/s

Vd 1.802 7.625 1.462 10.889
Ed 5.602 0.293 1.153 7.048
Md 4.202 1.700 1.138 7.040
Jd 3.794 0.017 0.930 4.742
Sd 4.910 0.035 1.653 6.597

Table 15.16 Breakdown of the total ∆V for all trajectories with a DSM after the unpowered swingby.
The complete search space for all variables was used.

Like before, the breakdown of the total ∆V can also be shown by means of a
bar chart. This is shown in figure 15.15.

Figure 15.15 Breakdown of the total ∆V for all trajectories with a DSM after the unpowered swingby.
The complete search space for all variables was used.

The trajectory with the Mars swingby will now be used for an analysis of the
search space, since the total ∆V improves so significantly.

Constrained search space for the EMdU trajectory

Table 15.17 shows the decision vectors and total ∆V for the EMdU trajectory
after 10 optimization runs using the complete search space for all variables. The
best individual was already shown in table 15.15.
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S t0 t1 t2 hp ζ η ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 6011.8 7223.7 11972.4 2413.7 2.472 0.033 7.970
10 5656.1 7949.6 12405.1 3604.9 2.682 0.032 7.408
75 5660.3 7954.0 12558.8 6020.5 2.592 0.029 7.364
250 5651.2 7236.9 12321.3 5831.6 2.683 0.028 7.628
1000 5652.9 7238.2 12197.3 5057.4 2.536 0.028 7.586
1050 6015.9 7929.0 12341.2 10170.3 2.542 0.036 7.933
1100 5666.0 7962.1 12675.8 1062.3 2.739 0.031 7.040
1150 6386.8 7932.0 12580.8 3282.7 2.527 0.035 7.827
1200 5663.6 6550.9 11649.1 479.7 1.490 0.024 7.732
1250 5645.9 7237.4 12073.3 1739.6 2.675 0.032 7.635

Table 15.17 Decision vectors and total ∆V for the EMdU trajectory after 10 optimization runs using the
complete search space for all variables. The best individual is indicated in red.

From table 15.17 it can be seen that 3 out of the 10 runs produce values for the
total ∆V that are lower than the best solution obtained without DSMs. These are
the runs with seed numbers 10, 75 and 1100. The values of the total ∆V for these
runs are 39 m/s, 83 m/s and 407 m/s lower than the Lambert solution, respectively.

The distribution of the individuals in the initial population in the t0− t1 space
for the best individual is shown in figure 15.16. So the axes of this figure represent
the launch date and the swingby date. The maximum time of flight between the
two planetary encounters is 4 times the Hohmann transfer time between the two,
which amounts to 258.6 days.

There are five distinct clusters that can be found in the complete launch window
for the first leg of the trajectory. They are all spaced with intervals of 760 days,
which corresponds to the synodic period for an earth-Mars transfer. When the
distribution of individuals is shown in the search space for the second leg, the
result is figure 15.17.

From figures 15.16 and 15.17 it can be deduced that some parts of the search
space relating the encounter dates to each other can be ignored. The distribution
of the initial population individuals in the ζ − hp space and in the η − hp space
are shown in appendix E.3.

The values for η in table 15.17 are all very close to 0.030. Therefore a grid
sampling has been done for this value of η to examine the behavior of the ∆V
for a selected set of values for hp and ζ. The choice was made to create the grid
around the best solution that was found in table 15.17.

hp ∈ [900, 1200] km, with a step size of 25 km

ζ ∈ [2.450, 2.950] rad, with a step size of 0.025 rad
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Figure 15.16 Distribution in the t0 − t1 space of the individuals in the initial population for the EMdU
trajectory. The complete search space for all variables was used. The seed number for this
run was 1100. +: ∆Vtot > 25 km/s, +: 15 < ∆Vtot ≤ 25 km/s, +: ∆Vtot ≤ 15 km/s,
+: ∆Vtot < 10 km/s.

Figure 15.17 Distribution in the t1 − t2 space of the individuals in the initial population for the EMdU
trajectory. The complete search space for all variables was used. The seed number for this
run was 1100. +: ∆Vtot > 25 km/s, +: 15 < ∆Vtot ≤ 25 km/s, +: ∆Vtot ≤ 15 km/s,
+: ∆Vtot < 10 km/s.
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The resulting grid is 13 × 21, yielding 273 grid points. The optimization was
done 5 times at each grid point, with seed numbers 5, 10, 75, 250 and 1000. For
the optimization at each grid point, there were three variables in the optimization
process, namely t0, t1 and t2. The resulting contour plot is shown in figure 15.18.

Figure 15.18 Contour plot for the EMdU trajectory. The total ∆V is plotted, based on a grid sampled
search space for hp and ζ. hp ∈ [900, 1200] km, with a step size of 25 km and
ζ ∈ [2.450, 2.950] rad, with a step size of 0.025 rad. t0, t1 and t2 are free variables, while
η = 0.030.

The value for the total ∆V above the grid shows a highly irregular pattern
with many local minima. In order to see where exacly these local minima occur, a
two-dimensional view of the contour plot is shown in figure 15.19, where the total
∆V is indicated by the color bar.

The best individual in table 15.17, on which the grid sampling was based, is
not located in one of the local minima in figure 15.19. This may be because of the
different value for η (0.030 for the grid sampled space and 0.031 for the complete
search space). It is more likely, however, that galomusit is not able to find the
best solutions.

A big portion of the grid sampled search space results in values for the total
∆V that are near 7.0 km/s, but based on the figure it can not be stated that
the global minimum can be found within the grid sampled search space. The
pericenter altitude is very different for each individual in table 15.17 for example,
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Figure 15.19 Two-dimensional view of the contour plot of figure 15.18. the values for the total ∆V are
indicated by the color bar.

and most values there fall outside of the boundaries of the grid sampled space. For
the angle ζ, however, the range of values is rather limited. Together with the fact
that there also is a very limited range of values for η another set of optimization
runs is performed with a constrained search space for all DSM related variables.

hp ∈ [0.076, 2] RM
ζ ∈ [2, 3] rad

η ∈ [0.001, 0.10]

The results of 10 optimization runs for these search spaces are given in table
15.18.

S t0 t1 t2 hp ζ η ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 6026.1 7941.0 12468.2 3491.6 2.678 0.034 7.616
10 5669.2 7971.4 12588.6 807.6 2.570 0.023 6.840
75 5673.8 7976.4 12626.3 962.2 2.609 0.020 6.803
250 6392.8 8645.1 12427.5 4042.2 2.742 0.040 7.922
1000 5678.7 8686.4 12752.6 399.5 2.652 0.014 6.780
1050 5673.5 8662.6 12262.8 1547.3 2.504 0.036 7.584
1100 5671.9 7281.5 12492.1 735.2 2.472 0.016 6.916
1150 5669.5 7972.1 12626.7 529.7 2.659 0.025 6.777
1200 6031.6 7960.5 12397.5 456.0 2.480 0.033 7.149
1250 5668.7 7966.3 12648.4 1138.6 2.608 0.026 6.934

Table 15.18 Decision vectors and total ∆V for the EMdU trajectory with constrained search spaces for all
DSM related variables. hp ∈ [0.076, 2] RM , ζ ∈ [2, 3] rad and η ∈ [0.001, 0.10] For the time
related variables the complete search space is used.
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From table 15.18 it can be concluded that indeed the best solution could not
be found in the grid sampled search space used for figures 15.18 and 15.19.

15.3 Trajectories to Uranus with two swingbys

The final part of this chapter concerns trajectories to Uranus with two swingbys.
Disregarding a swingby at Venus after an Earth swingby, there are 12 different
sequences possible with two swingbys.

15.3.1 No DSMs on trajectories to Uranus with two swingbys

In the same way as it was done in the previous sections, first the swingby tra-
jectories are optimized without the addition of DSMs. Table 15.19 shows the
breakdown of the total ∆V for the best individual out of 10 optimization runs,
that were performed with the same seed numbers as usual.

∆VL ∆VSB ∆VC ∆Vtot S
km/s km/s km/s km/s

VV 2.070 4.226 1.198 7.495 75
VE 1.276 3.518 1.534 6.328 1250
VM 1.731 7.316 1.470 10.517 1250
VJ 1.333 3.969 0.903 6.205 1100
VS 1.368 6.087 1.360 8.815 1000
EE 2.161 3.540 1.104 6.806 250
EM 3.185 3.318 1.328 7.832 250
EJ 3.216 0.607 0.982 4.806 1100
ES 2.262 3.535 1.480 7.276 10
MJ 3.435 0.000 0.925 4.360 5
MS 4.610 0.100 2.345 7.054 75
JS 3.922 0.053 1.541 5.517 1150

Table 15.19 Breakdown of the total ∆V for all trajectories with two swingbys. The best result out of 10
optimization runs is displayed, together with the seed number producing that result. No
DSMs were allowed. Indicated in red is the sequence giving the lowest total ∆V .

The total ∆V for a direct Earth-Uranus transfer is 6.673 km/s (see chapter
14). The sequences VE, VJ, EJ, MJ and JS all have values for the total ∆V that
are lower than 6.673 km/s. In the subsequent sections only one DSM will added
a particular leg of the trajectory. The analysis will start with the addition of a
DSM on the first leg of the interplanetary trajectory.

15.3.2 DSM on the first leg of trajectories with two swingbys

As a first step a DSM is added to the first leg of the interplanetary trajectory
from Earth to Uranus with two swingbys. The following search spaces are used
for all variables:
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For all sequences, except for dJS,
∣∣V̄∞L

∣∣ ∈ [0, 5] km/s

For dJS,
∣∣V̄∞L

∣∣ ∈ [0, 10] km/s

θ ∈ [0, 2π] rad

ϕ ∈
[
−π

2 ,+
π
2

]
rad

η ∈ [0.01, 0.90]

The best results after 10 optimizations for each sequence are shown in table
15.20. The same seed numbers as before are used. The sequences that improve
the total ∆V with respect to the sequence without DSM are indicated in green.
The ones that do not improve are indicated in red.

t0 t1 t2 t3
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
dVV 5589.6 5723.6 6972.3 11501.6 2.887 3.797 -0.410 0.384 5.305
dVE 5949.5 6410.2 8535.5 12329.3 3.314 3.787 -0.447 0.434 4.773
dVM 5594.5 5748.3 7846.3 11465.2 3.006 3.743 0.247 0.476 9.933
dVJ 6749.6 6961.0 8047.9 12566.0 2.072 3.996 -0.797 0.289 7.809
dVS 6172.4 6321.3 9412.7 12562.2 3.402 3.882 0.151 0.404 9.440
dEE 5930.7 6460.0 8197.9 12281.5 0.057 2.970 -1.258 0.715 4.107
dEM 5543.9 6043.3 8663.0 11897.4 0.677 4.498 -0.408 0.721 6.676
dEJ 6031.1 6587.7 7815.8 12611.6 0.000 4.634 0.598 0.558 4.498
dES 5906.1 6287.0 8498.4 12618.0 0.139 4.620 0.335 0.708 6.563
dMJ 6684.9 6889.0 7760.2 12367.9 2.874 0.170 -0.573 0.461 8.349
dMS 5841.0 6554.8 8928.1 12771.0 2.547 0.244 0.204 0.396 10.917
dJS 5811.8 7143.2 9129.8 12735.7 8.931 0.086 -0.106 0.237 5.788

Table 15.20 Decision vectors and total ∆V for the trajectories with two swingbys and a DSM on the first
interplanetary leg. The complete search space for each variable is used. The sequences that
improve the total ∆V with respect to the sequence without DSM are indicated in green. The
ones that do not improve are indicated in red.

The breakdown of the total ∆V is shown in table 15.21 together with the seed
number that produced the best result.

It can be seen that 7 out of the 12 sequences provide better results than for
the case when no DSM was applied to the trajectory. The improvements can
be significant, even as large as 2.7 km/s (sequence dEE). One of the trajectories
showing an immense improvement in terms of total ∆V is the one with a swingby
at Venus and then at Earth. The trajectory in the inner part of the solar system
of the EVEU sequence without DSMs is shown in figure 15.20.

The spacecraft moves inwards from launch at Earth towards Venus, where due
to a large ∆V a transfer orbit between Earth and Venus is generated with a large
semi-major axis. After the next encounter with Earth the spacecraft is injected
into an orbit that will encounter Uranus.
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∆Vtot ∆VL ∆VDSM ∆VSB ∆VSB S
dVV 5.305 1.141 1.597 1.263 1.304 1000
dVE 4.773 1.256 1.943 0.107 1.468 75
dVM 9.933 1.172 1.857 5.212 1.691 1200
dVJ 7.809 0.962 1.831 4.053 0.963 1100
dVS 9.440 1.282 0.824 5.345 1.990 1000
dEE 4.107 0.769 0.167 1.858 1.312 1200
dEM 6.676 0.790 0.480 3.462 1.944 1150
dEJ 4.498 0.769 0.021 2.769 0.938 1200
dES 6.563 0.770 0.082 4.154 1.557 1150
dMJ 8.349 1.138 0.636 5.561 1.015 1050
dMS 10.917 1.060 2.955 5.315 1.587 75
dJS 5.788 3.934 0.032 0.135 1.688 5

Table 15.21 Breakdown of the total ∆V for the trajectories with two swingbys and a DSM on the first
interplanetary leg.

Figure 15.20 The EVEU trajectory in the inner part of the solar system.
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When a DSM is added in the first leg of the interplanetary trajectory, the
spacecraft’s journey in the inner part of the solar system is very different. This is
shown in figure 15.21.

Figure 15.21 The EdVEU trajectory in the inner part of the solar system.

Because of the introduction of a DSM between Earth and Venus an extra
revolution about the Sun can be done before the Venus swingby. This is due to
the fact that only single-revolution Lambert arcs are allowed (see section 8.2).
When the DSM is introduced, ∆VSB is almost decreased to zero for the entire
trajectory, which can be seen in table 15.21. The leg between the Venus and
Earth swingby is more or less similar for both figure 15.20 and 15.21. Without the
DSM between Earth and Venus, the part between the two swingbys is generated
because of a large engine burn at the pericenter of the Venus swingby. Because of
the DSM, the incoming heliocentric velocity at the swingby is more favorable than
for the trajectory without the DSM in terms of a required pericenter burn. This is
an important conclusion, because it shows the limitations of the single-revolution
assumption.

In the following set of optimization runs, the angles θ and ϕ are assumed to
be 0. This reduces the number of variables of the optimization problem from 8
to 6. For some sequences this could mean that the results do not improve due to
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the fact that a braking maneuver at Earth would be better, but the purpose is to
show what happens when constraining the direction.

Setting θ = ϕ = 0 for all swingby sequences

The optimizations will be done for all swingby sequences. The search spaces for
the variables in the optimization process are given as follows.

For all sequences, except for dJS,
∣∣V̄∞L

∣∣ ∈ [0, 5] km/s

For dJS,
∣∣V̄∞L

∣∣ ∈ [0, 10] km/s

θ = ϕ = 0

η ∈ [0.01, 0.90]

Table 15.22 shows the decision vectors and total ∆V of the best individuals
after the optimization when θ = ϕ = 0. The sequences that improve the total ∆V
with respect to the sequence without DSM are indicated in green. The ones that
do not improve are indicated in red.

t0 t1 t2 t3
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
dVV 6085.7 6618.1 7896.0 11813.3 3.985 0 0 0.358 6.176
dVE 5807.2 6226.7 8142.2 12443.3 1.859 0 0 0.370 6.142
dVM 5672.1 6068.7 6157.1 11347.3 3.622 0 0 0.410 9.858
dVJ 6618.9 7185.9 8059.0 12478.5 4.122 0 0 0.462 6.504
dVS 5528.9 6062.0 8289.7 12516.0 3.904 0 0 0.397 8.599
dEE 6247.9 6827.2 8178.0 12516.4 0.450 0 0 0.591 4.130
dEM 5778.6 6451.1 8711.5 12504.7 0.110 0 0 0.482 6.729
dEJ 6015.0 6626.6 7831.6 12328.1 0.030 0 0 0.560 4.718
dES 5926.9 6681.9 8597.6 12636.0 0.089 0 0 0.598 6.658
dMJ 6005.2 6818.9 7425.5 12445.9 4.539 0 0 0.381 5.985
dMS 7509.4 7943.4 10028.8 12779.0 3.477 0 0 0.505 10.150
dJS 5823.5 7308.3 9334.4 12773.1 8.927 0 0 0.215 5.816

Table 15.22 Decision vectors and total ∆V for trajectories to Uranus with two swingbys and a DSM on
the first leg. θ = ϕ = 0 and for the other variables the complete search space is used. The
sequences that improve the total ∆V with respect to the sequence without DSM are
indicated in green. The ones that do not improve are indicated in red.

The total ∆V that is obtained when using the complete search space for θ and
ϕ can be compared with the total ∆V when both these angles are equal to 0. This
is done in figure 15.22.

From figure 15.22 it can be deduced that it depends on the swingby sequence
whether or not adding a DSM on the first leg reduces the total ∆V . It can also
be seen that constraining θ and ϕ to 0 does not necessarily improve results with
respect to the best result obtained with a complete search space. On the one hand
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Figure 15.22 Comparison of the total ∆V for trajectories to Uranus with two swingbys. The blue bar
indicates that no DSMs were allowed, the green bar indicates that the complete search space
for θ and ϕ was used when a DSM is applied on the first leg and the red bar indicates that θ
and ϕ are equal to 0.

this has to do with an unfavorable launch direction, as mentioned earlier. On
the other hand it shows the inconsistency of the optimizations and the problems
galomusit has tackling these problems. The EdMJU trajectory, for example does
not benefit from adding a DSM on the first leg. This particular sequence will be
analyzed in more detail in the next section.

Details for the EdMJU transfer

The best solution for the EdMJU trajectory using a full search space for the
angles θ and ϕ is 8.349 km/s. When θ and ϕ are set to 0, the total ∆V decreases
drastically to 5.985 km/s. This result was obtained after 10 optimization runs, the
results of which are shown in table 15.23.

t0 t1 t2 t3
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
5 5973.2 6416.4 7784.8 12562.2 3.440 0 0 0.530 8.105
10 6003.8 6498.7 7602.3 12114.6 3.881 0 0 0.497 7.953
75 6005.2 6818.9 7425.5 12445.9 4.539 0 0 0.381 5.985
250 6007.9 6479.6 7978.8 12088.5 4.042 0 0 0.563 8.138
1000 6787.9 7406.0 7678.9 12002.3 3.177 0 0 0.197 7.388
1050 6714.7 7487.8 8260.4 12100.2 4.362 0 0 0.381 7.415
1100 5892.4 6138.2 7291.8 12253.5 2.265 0 0 0.306 7.896
1150 6016.1 6543.5 7693.0 11907.3 4.070 0 0 0.472 8.356
1200 5910.4 6710.7 7893.3 12255.8 4.409 0 0 0.484 8.138
1250 6002.2 6538.0 7741.4 12318.6 3.731 0 0 0.413 8.052

Table 15.23 Decision vectors and total ∆V of best solutions of the 10 optimization runs for the EdMJU
trajectory. θ = ϕ = 0 and for the other variables the complete search space is used.

The values for the total ∆V show a large spread. The values for
∣∣V̄∞L

∣∣ and η,
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on the other hand, do not show that much spread. Therefore the search space for∣∣V̄∞L

∣∣ and η is grid sampled.

∣∣V̄∞L

∣∣ ∈ [2.50, 5.00] km/s, with a step size of 0.10 km/s

η ∈ [0.10, 0.56] with a step size of 0.02

The resulting grid is 26× 24, yielding 624 grid points. For each grid point the
optimization was performed for five seed numbers (5, 10, 75, 250 and 1000). Each
run had four time related variables in the optimization problem. The resulting
contour plot above the sampled grid is shown in figure 15.23.

Figure 15.23 Contour plot for the EdSU trajectory. The total ∆V is plotted, based on a grid sampled
search space for

∣∣V̄∞L

∣∣ and η.
∣∣V̄∞L

∣∣ ∈ [2.50, 5.00 km/s, with a step size of 0.10 km/s and
η ∈ [0.10, 0.56] with a step size of 0.02.

This plot shows very spectacular and extremely complex behavior of the total
∆V . There are countless peaks and valleys and the slopes are very steep. So,
starting from a certain point on the contour, if the value for

∣∣V̄∞L

∣∣ or η changes
even slightly, the total ∆V can change with a few km/s. To examine the structure
of the values of the total ∆V , a two-dimensional view of the contour plot has been
created and it is shown in figure 15.24.

Figure 15.24 shows that the best value that was found, using the complete
search space for

∣∣V̄∞L

∣∣ and η and setting θ and ϕ equal to 0, is nowhere near
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Figure 15.24 Two-dimensional view of the contour plot in figure 15.23. The values of the total ∆V are
indicated by the color bar.

the lowest value of the contour plot above the grid sampled search space. It is
located on a ridge, but there is a local minimum in the vicinity (at η = 0.40 and∣∣V̄∞L

∣∣ = 4.85). The fact that galomusit can not find this local minimum indicates
that it is not powerful enough to optimize such a relatively complex problem. The
10 optimization runs that have been done are not enough. Better results could be
obtained if the optimization would be repeated 50 or maybe even 100 times. This,
however, leads to large computation times, while the performance of galomusit
is still very poor.

15.3.3 DSM on the second leg of trajectories with two swingbys

In the final part of this chapter a DSM on the second leg only and on the third
leg only will be discussed briefly. First, the addition of a DSM to the second leg
of the trajectory is analyzed. The search spaces for the different variables that
are used in the optimization process are as follows:

(hp)V ∈ [0.047, 4] RV
(hp)E ∈ [0.048, 4] RE
(hp)M ∈ [0.076, 4] RM
(hp)J ∈ [0.600, 20] RJ
(hp)S ∈ [0.342, 10] RS
ζ ∈ [0, 2π]

η ∈ [0.01, 0.90]

Table 15.24 shows the best result out of 10 optimization runs for each sequence.
Indicated in green are the sequences that provide better results than the case
without DSMs and indicated in red are the results that are worse.
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t0 t1 t2 t3 hp ζ η ∆Vtot S
VdV 6207.5 6303.6 6797.1 11135.0 3488.2 1.960 0.285 7.211 250
VdE 6841.4 7004.7 7499.1 12226.5 7620.7 1.114 0.378 7.580 1200
VdM 5945.0 6214.1 6816.0 12434.4 15229.6 4.327 0.011 12.688 1000
VdJ 6685.1 6936.5 7785.3 12418.9 2932.7 5.675 0.034 9.201 75
VdS 5675.2 5862.9 9423.1 12520.9 3953.5 1.439 0.241 10.765 250
EdE 5657.3 6732.9 7870.2 12347.5 21501.1 3.424 0.296 5.353 5
EdM 6055.6 7148.3 8242.8 12423.7 20760.8 2.985 0.334 8.862 250
EdJ 5548.9 6589.4 7644.1 12527.2 6116.2 3.326 0.144 4.909 1200
EdS 5612.3 6629.0 9160.9 12716.5 1043.9 3.283 0.071 7.333 1100
MdJ 5540.0 7000.3 8048.8 12595.3 5898.3 4.807 0.150 4.828 250
MdS 5894.1 5981.6 9306.3 12637.6 671.9 1.252 0.084 6.997 5
JdS 5824.0 7326.6 9394.1 12765.1 364324.6 3.186 0.161 5.946 10

Table 15.24 Decision vectors and total ∆V for the trajectories to Uranus with two swingbys and a DSM
on the second leg. The best result out of 10 optimization runs is shown for each sequence.

Comparing table 15.20 with table 15.24 it can be deduced that the sequences
that improve the total ∆V are not always the same. For example, the EdVEU
trajectory benefited significantly from the addition of the DSM, with a decrease
in the total ∆V of 1.6 km/s. The EVdEU trajectory, on the other hand, shows an
increase in the total ∆V of 1.2 km/s.

15.3.4 DSM on the third leg of trajectories with two swingbys

The final set of optimization runs have a DSM after the second planetary swingby.
The search spaces that were used for all variables are the same as the ones used in
section 15.3.3. Table 15.25 shows the decision vectors and total ∆V for the nest
result out of 10 optimization runs for each sequence. The values that are indicated
in green have improved the total ∆V with respect to the trajectory without DSMs,
whereas the values that are indicated in red have not.

t0 t1 t2 t3 hp ζ η ∆Vtot S
VVd 6172.4 6384.5 8565.5 11823.6 9543.0 3.026 0.019 5.815 1050
VEd 6130.5 6331.9 6729.3 11019.9 24517.4 1.041 0.240 5.233 1000
VMd 6720.1 6921.5 6993.6 11779.4 2866.6 1.463 0.386 5.279 1100
VJd 5650.7 5782.0 7331.3 12696.5 804809.1 1.310 0.171 6.564 1050
VSd 5660.2 5830.8 8125.3 11900.8 54900.0 0.071 0.098 9.238 1200
EEd 5712.6 6433.5 7822.7 11911.2 2678.4 2.868 0.088 5.630 1700*
EMd 6741.5 7443.3 7529.1 11540.7 7119.1 0.777 0.046 3.834 1950*
EJd 5937.8 6987.2 8127.6 12395.8 227215.5 3.102 0.156 4.820 2550*
ESd 7801.6 8471.1 10448.9 12717.0 54967.0 3.115 0.040 7.511 3050*
MJd 5901.8 6993.4 8028.2 12010.7 485529.8 3.322 0.212 6.178 3600*
MSd 5976.1 8521.0 10430.5 12767.6 130657.3 3.081 0.107 7.134 4100*
JSd 5814.2 7166.5 8847.5 12739.6 29411.3 2.922 0.067 5.533 4550*

Table 15.25 Decision vectors and total ∆V for the trajectories to Uranus with two swingbys and a DSM
on the third leg. The best result out of 10 optimization runs is shown for each sequence. *
For the last 7 sequences, different seed numbers were used than ones ones used throughout
the rest of this chapter.
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Comparing tables 15.20, 15.24 and 15.25, it can be seen that three sequences
improve the total ∆V for every case. These sequences are VV, EE and EJ. There
are others, however, that never benefit from the addition of a DSM. There are
four of these sequences, namely VJ, VS, MJ and JS. It appears that the Lambert
solution is optimal for these particular sequences. An important note should be
made here, however, because it turned out from the analysis of DSMs on trajecto-
ries with swingbys that galomusit has problems of finding the optimal solution.
Therefore, it could very well be that better solutions exist, but galomusit can
not find them.



Chapter 16

Conclusions

After the discussions in the preceding chapters it is time to reflect on the thesis
objectives that were stated in chapter 1:

I Develop a method to optimize interplanetary trajectories with deep space ma-
neuvers and integrate this method in the software package galomusit.

II Apply the developed method to optimize the trajectory for a Uranus orbiter
mission.

In terms of developing the method to apply DSMs to galomusit, it meant
that some changes had to be made to the program. First of all, a method had to
be developed to propagate a spacecraft along a Kepler orbit. An interplanetary
leg with a DSM can not be analyzed using Lambert targeting alone. The first
part of the leg is now based on Kepler’s problem, where both the initial position
and velocity need to be known together with the time of flight. A universal
formulation of Kepler’s problem was implemented in galomusit that is the same
for each type of conic section. The end of the Kepler arc is the location where
the DSM is performed. The output parameters of the Kepler problem are the
position and velocity at the end of the Kepler arc. The second part of the leg
is then analyzed using Lambert targeting, which makes sure that the spacecraft
encounters the next planet. The discontinuity in the velocity at the end of the
Kepler arc and at the start of the Lambert arc is the DSM.

Adding DSMs to the trajectory introduces many additional variables besides
the encounter epochs. If a DSM is added to the first leg of the trajectory, 4
variables are added to the problem. A DSM on a leg after an unpowered swingby
introduces three new variables. All of the DSM related variables are generated
randomly from a user defined search space. Finally, a new subroutine had to be
created in galomusit to force the swingby to be unpowered. No engine burn is
allowed at the pericenter of the planetocentric hyperbola.

In terms of optimizing the Uranus orbiter mission, first the trajectory was
optimized without DSMs. The trajectory that produces the lowest total ∆V for
trajectories in that case performs two swingbys at Venus, one swingby at Earth

205



206 Conclusions

and a final swingby at Jupiter before traveling onwards to Jupiter. The total ∆V
that is required for this trajectory is 2.892 km/s. The launch date is 12 September
2015 and the arrival date is 16 July 2034, giving a total time of flight of 6882.2 days.

The VVEJ trajectory was present in a set of swingby sequences used by
Melman [2007] for his thesis research. A new set of possible swingby sequences was
created by allowing a swingby at Venus after a swingby at Earth. The best result
out of the 77 new sequences is EVVEJ, with a total ∆V of 5.005 km/s. The launch
date is 17 January 2017 and the arrival date is 15 November 2034. This results in
a total time of flight of 6518.7 days. The new swingby sequences do not provide
better results in terms of the total ∆V with respect to the original set of sequences.

For the optimization of the Uranus mission with DSMs the following conclu-
sions can be drawn.

From the benchmark runs in chapter 13 it could be concluded that the imple-
mentation of the method to analyze trajectories with DSMs was done correctly.
The total ∆V and the orbits corresponding to the best solutions found in the
literature could be reproduced. This was not directly, using the complete search
space for all variables, but after one step where the search space was reduced.

For the direct Earth-Uranus transfer the optimization on the complete search
space produces a total ∆V that is slightly higher than the total ∆V for the
Lambert solution. After an analysis of the search space it was found that a large
part of the search space could be neglected and after search space reduction
a value for the total ∆V was found that is 10 m/s lower than the best value
for the Lambert solution. A grid sampling around the global optimum showed
that the total ∆V behaves in a smooth way.

When a DSM is added to a trajectory with a swingby, the behavior of the total
∆V changes from being smooth to being quite irregular. After an analysis of
the search space the results can be improved when the search space has been
reduced or certain variables have been given a fixed value.

Adding a DSM may result in trajectories that have more than one revolution
between planetary encounters. When only Lambert targeting was concerned,
these multi-revolution transfers were not allowed. In this thesis only single-
revolution Lambert arcs were allowed as well, but the addition of a Kepler arc
in front of a Lambert arc opens up a new range of trajectories that otherwise
would not be possible. A prime example of this could be seen in section 15.3.2,
where the total ∆V for an EdVEU transfer was 1.6 km/s lower than for the
Lambert solution.

The examples with grid sampled search spaces have shown the need for a local
optimization around the best known solution from the global optimization. At
the moment no such method exists for single-objective optimization in galo-
musit.

From the discussion above it can finally be concluded that galomusit as it
exists now is not powerful and sophisticated enough to find the optimal solution
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at once when DSMs are added to the trajectory. The search space is too large and
the objective function behaves very irregularly. After a first run on the complete
search space, the search space itself has to be analyzed to determine if certain parts
can be ignored. Right now, this still has to be done by hand, which is tedious work.
If this process could be automated it will improve the performance of the program.





Chapter 17

Recommendations

Although much work has been done for this thesis research, there is only a limited
amount of time available. Therefore there are still several recommendations
for future work that can be done on the subject of DSMs and on the program
galomusit itself.

Regarding the analysis of DSMs the following recommendations can be made:

From chapters 13 and 15 it has become clear that the way in which DSMs are
applied in galomusit has its shortcomings. In most of the cases that were
considered the global optimum was found after reduction of the search space.
This had to be done manually each time, however, after the results of the
optimization using the complete search space was done. Because this is very
time consuming it might prove useful to develop some sort of clustering algo-
rithm. After a Monte Carlo search on the complete search space the clustering
algorithm analyzes results of the Monte Carlo search and prunes the parts of
the search space that do not provide solutions to the optimization problem. A
good example of clustering of individuals could be seen in chapter 13, where
two test cases with DSMs were benchmarked. After the random initialization
of a population of possible solutions to the optimization problem, the clustering
algorithm will search for commonalities for the different variables. The parts
of the search space that can then be neglected are not considered anymore
and the global optimization will be performed only on the constrained parts
of the search space. It could be that the clustering takes a large amount of
computation time, but the reduction in search space increases the probability
of finding the global minimum.

After the global optimization, a local optimization can also be applied to im-
prove the results. In this thesis a number of examples with grid sampling
around the best known solution were performed, which showed the irregular
behavior of the total ∆V . Application of a local optimization could improve
the ∆V significantly. For multi-objective optimization in galomusit such a
local optimization is already present (a Monte Carlo search around the abso-
lute Pareto front) and it is recommended to add a local optimization method
to single-objective optimization as well.
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It became clear in chapter 15 that the addition of a DSM to an interplanetary
leg allows more than one revolution around the Sun between two planetary
encounters. It proved that a large gain in total ∆V could be obtained in this
way. Throughout this thesis it was assumed that only single-revolution transfers
were possible for a Lambert problem. A future user may want to analyze
multi-revolution Lambert arcs and examine whether or not large improvements
can be made with respect to results obtained with single-revolution Lambert arcs.

With respect to the optimization in galomusit and the program itself the
following recommendations are made:

For single-objective optimization, the mutation option that exists now should
be changed. Mutation is a random operation that can now only be applied to
immigrants, which are randomly created themselves. This makes no sense and
therefore mutation should be applied in another way. This could be done for
example by applying mutation only on the individuals in the population that
are not immigrants. The best individual may be immune to mutation in order
to prevent the best individual from dying.

The Genetic Algorithm process in galomusit could be improved by adding
more sophisticated genetic operations. The process in galomusit in essence is
quite simple. Selecting individuals for crossover, for example, is done randomly,
instead of roulette wheel selection, where the individual’s fitness is a measure
of its probability for selection.

It should be investigated whether or not other global optimization methods
provide better results than Genetic Algorithm optimization. Other techniques,
like Differential Evolution and Particle Swarm optimization have proven to be
good methods for optimizing interplanetary trajectories.

The program galomusit as it exists now is the result of the work of several
students at the Faculty of Aerospace Engineering of Delft University of Tech-
nology in The Netherlands. galomusit as it exists now is made up of one
single file only, in which several subroutines are present to keep the program
structured. However, because the program has become so large (approximately
18000 lines of code and comments), it takes a long time for someone get fa-
miliar with it. A better overview of the program could be kept, if galomusit
were to be built up in a modular fashion. Different files could then represent
the different subroutines, making the endless scrolling in galomusit a thing
of the past. The user would still have to familiarize him- or herself with the
code.



Bibliography

Allen, J.A. van (2003), Gravitational assist in celestial mechanics - a tutorial, Am.
J. Phys., 71 (5), 448–451, May 2003.

Bate, R.R., D. Mueller, and J.E. White (1971), Fundamentals of Astrodynamics,
Dover Publications Inc.

Battin, R.H. (1999), An Introduction to the Mathematics and Methods of Astro-
dynamics, AIAA Education Series.

Beebe, R.F. (2004), Comparative study of the dynamics of the outer planets, Space
Science Reviews, 116, 137–154.

Bernelli-Zazzera, F., M. Lavagna, R. Armellin, P. Di Lizia, F. Topputo, M. Berz,
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Appendix A

The Hohmann transfer to Uranus

The orbital velocity of the Earth around the Sun is given by:

VE =
√
µS
rE

= 29.78 km/s (A.1)

In this equation µS is the gravitational parameter of the Sun (1.3271 · 1011

km3/s2) and rE is the distance from the center of the Earth to the center of the
Sun (which is 1 AU or 149.598 · 106 km). The escape velocity at the parking orbit
around the Earth can be calculated using equation 6.27:

Vesc =
√

2Vc =
√

2µE
r0

=
√

2µE
RE + h

= 11.02 km/s (A.2)

Here µE = 3.986004 · 105 km3/s2, RE = 6378.137 km and h = 185 km. The
heliocentric velocity at leaving the Earth’s orbit is calculated using the vis-viva
equation:

V1 =
√
µS

( 2
rE
− 1
aH

)
= 41.06 km/s (A.3)

The semi-major axis of the Hohmann orbit is aH = 1
2(rE + rU ), where the

orbital radius of Uranus rU is 19.191 AU. The hyperbolic excess velocity is then
calculated as follows:

V∞E = V1 − VE = 41.06− 29.78 = 11.28 km/s (A.4)

The velocity after the impulsive shot is give in the parking orbit around Earth
can then be calculated as follows:

V0 =
√
V 2
esc0 + V 2

∞E
= 15.77 km/s (A.5)
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II The Hohmann transfer to Uranus

The only thing to determine now to calculate ∆V0 is the velocity the spacecraft
has in its parking orbit, Vc0.

Vc0 =
√
µE
r0

= 7.79 km/s (A.6)

The magnitude of the impulsive shot in the parking orbit around the Earth
becomes:

∆V0 = V0 − Vc0 = 7.98 km/s (A.7)

The next impulsive shot is needed to decelerate the spacecraft and go into orbit
around Uranus. The velocity that Uranus has around the Sun is:

VU =
√
µS
rU

= 6.81 km/s (A.8)

The heliocentric velocity at Uranus is calculated with the vis-viva equation:

V2 =
√
µS

( 2
rU
− 1
aH

)
= 2.15 km/s (A.9)

The hyperbolic excess velocity at Uranus can then be obtained:

V∞U = V2 − VU = −4.66 km/s (A.10)

It is assumed that the parking orbit around Uranus is at 1.1 times the radius of
Uranus (RU = 25, 559 km). The mass of Uranus is 14.6 times the mass of Earth,
so its gravitational parameter is 14.6 times larger than Earth’s. Now the velocity
after the impulsive shot is calculated as follows:

V3 =
√
V 2
esc3 + V 2

∞U
=
√

2µU
r3

+ V 2
∞U

= 20.87 km/s

The velocity in the circular parking orbit around Uranus is:

Vpar3 =
√
µU
r3

= 14.38 km/s (A.11)



A The Hohmann transfer to Uranus III

Then finally, the magnitude of the impulsive shot at Uranus can be calculated:

∆V3 = V3 − Vpar3 = 6.49 km/s (A.12)

So in order to perform a Hohmann transfer from a circular Low Earth Orbit
(LEO) at 185 km altitude to a circular parking orbit around Uranus radius with
radius 1.1RU requires two large ∆V ’s. The first one is 7.98 km/s and the second
one is 6.49 km/s. The transfer time for such an orbit is half the orbital period of
an ellipse with semi-major axis aH . This comes down to:

TH =
1
2
· 2π

√
a3
H

µS
= 5.04 · 108 s = 15.97 yr (A.13)





Appendix B

Benchmark tests for the EdM test
case

This appendix contains the results of the additional tests for EdM test case in
section 13.2. For each extra test the following results will be given:

The decision vectors for the best individual in each run.

The orbit corresponding to the best individual.

The distribution of the individuals in the initial population.

All optimization runs are performed 10 times, each time with a different seed
number for the random generator. The Genetic Algorithm settings are the same
as used in section 13.2.2.
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VI Benchmark tests for the EdM test case

B.1 EdM test case, extra test I

Table B.1 shows the decision vectors for the best solutions for each run and the
corresponding ∆Vtot.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad - km/s

5 1217.0 1463.1 0.643 0.071 -0.259 0.202 5.654
10 1216.6 1463.8 0.642 0.078 -0.259 0.204 5.654
75 1216.5 1457.2 0.011 6.283 -0.288 0.155 5.657
250 1215.8 1460.4 0.328 0.082 -0.285 0.181 5.655
1000 1245.7 1684.5 2.789 0.066 -0.073 0.467 5.645
1050 1247.5 1839.9 2.769 6.169 -0.093 0.341 5.649
1100 1216.7 1461.4 0.457 0.065 -0.270 0.186 5.654
1150 1216.2 1460.7 0.409 0.060 -0.252 0.184 5.655
1200 1241.9 1466.3 1.960 6.278 -0.139 -0.139 5.653
1250 1216.4 1464.7 0.693 0.070 -0.265 0.211 5.655

Table B.1 Decision vectors and total ∆V the best individuals of 10 runs for extra test I of the EdM test
case [Bernelli-Zazzera et al., 2007]. The launch window is constrained to t0 ∈ [1100, 1300]
MJD2000. The time needed to complete these runs on the dutlruw.lr.tudelft.nl-server
was 277 s.

The best solution found by galomusit after the ten different runs is 5.645
km/s for seed number 1000, which is 13 m/s higher than the best solution found
by Bernelli-Zazzera et al. [2007]. The orbit corresponding to this best individual
is shown in figure B.1.

The distribution of feasible individuals in the initial population within the
t0 − t1 search space is shown in figure B.2.
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Figure B.1 Orbit corresponding to the best solution obtained with galomusit for extra test I of the
EdM test case of [Bernelli-Zazzera et al., 2007]. The seed number for the run was 1000.
The launch window was constrained to t0 ∈ [1100, 1300] MJD2000. For the other variables,
the complete search space has been used. •: Earth at launch, �: DSM, •: Mars at arrival.

Figure B.2 Distribution of the feasible individuals in the initial population for seed number 1000 for extra
test I of the EdM test case. The launch window was constrained to t0 ∈ [1100, 1300]
MJD2000. For the other variables, the complete search space has been used. The t0 − t1
search space is indicated by the solid line. ”+”: ∆Vtot > 6.5 km/s. ”+”: 6.0 < ∆Vtot ≤ 6.5
km/s. ”+”: ∆Vtot ≤ 6.0 km/s.
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B.2 EdM test case, extra test II

Table B.2 shows the decision vectors for the best solutions for each run and the
corresponding ∆Vtot.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad - km/s

5 1246.7 1539.5 2.684 6.244 -0.145 0.586 5.635
10 1245.8 1476.5 2.608 0.026 -0.031 0.474 5.640
75 1244.2 1479.8 2.577 0.040 -0.144 0.492 5.641
250 1244.0 1492.1 2.612 0.040 -0.141 0.556 5.639
1000 1245.1 1485.7 2.640 0.038 -0.137 0.550 5.638
1050 1247.9 1506.3 2.731 6.281 -0.130 0.629 5.634
1100 1246.2 1475.1 2.611 0.016 -0.131 0.471 5.640
1150 1245.9 1477.2 2.633 0.038 -0.126 0.494 5.640
1200 1246.2 1486.0 2.646 0.006 -0.138 0.557 5.637
1250 1245.7 1487.3 2.716 0.068 -0.124 0.603 5.639

Table B.2 Decision vectors and total ∆V the best individuals of 10 runs for extra test II of the EdM
test case [Bernelli-Zazzera et al., 2007]. The launch window is constrained to
t0 ∈ [1100, 1300] MJD2000 and

∣∣V̄∞L

∣∣ ∈ [2.50, 2.90] km/s. The time needed to complete
these runs on the dutlruw.lr.tudelft.nl-server was 357 s.

The best solution found by galomusit after the ten different runs is 5.634
km/s for seed number 1050, which is 2 m/s higher than the best solution found
by Bernelli-Zazzera et al. [2007]. The orbit corresponding to this best individual
is shown in figure B.3.

The distribution of feasible individuals in the initial population within the
t0 − t1 search space is shown in figure B.4.
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Figure B.3 Orbit corresponding to the best solution obtained with galomusit for extra test II of the
EdM test case of [Bernelli-Zazzera et al., 2007]. The seed number for the run was 1000.
The launch window was constrained to t0 ∈ [1100, 1300] MJD2000 and

∣∣V̄∞L

∣∣ ∈ [2.50, 2.90]
km/s. For the other variables, the complete search space has been used. •: Earth at launch,
�: DSM, •: Mars at arrival.

Figure B.4 Distribution of the feasible individuals in the initial population for seed number 1000 for extra
test II of the EdM test case. The launch window was constrained to t0 ∈ [1100, 1300]
MJD2000 and

∣∣V̄∞L

∣∣ ∈ [2.50, 2.90] km/s. For the other variables, the complete search space
has been used. The t0 − t1 search space is indicated by the solid line. ”+”: ∆Vtot > 6.5
km/s. ”+”: 6.0 < ∆Vtot ≤ 6.5 km/s. ”+”: ∆Vtot ≤ 6.0 km/s.
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B.3 EdM test case, extra test III

Table B.3 shows the decision vectors for the best solutions for each run and the
corresponding ∆Vtot.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad - km/s

5 1245.6 1467.4 2.471 0.009 -0.126 0.339 5.645
10 1245.0 1465.2 2.415 0.034 -0.108 0.275 5.647
75 1216.5 1458.4 0.121 0.069 -0.277 0.162 5.656
250 1244.0 1465.9 2.365 0.041 -0.127 0.283 5.647
1000 1245.2 1468.8 2.441 0.011 -0.124 0.325 5.645
1050 1242.4 1464.8 2.094 0.028 -0.130 0.221 5.650
1100 1248.4 1497.3 2.775 0.003 -0.152 0.634 5.642
1150 1245.7 1464.1 2.399 0.025 -0.108 0.254 5.647
1200 1244.3 1467.9 2.407 0.031 -0.122 0.314 5.645
1250 1247.7 1625.6 2.823 0.037 -0.115 0.523 5.626

Table B.3 Decision vectors and total ∆V the best individuals of 10 runs for extra test III of the EdM
test case [Bernelli-Zazzera et al., 2007]. The launch window is constrained to
t0 ∈ [1100, 1300] MJD2000, θ ∈ [0, 0.10] rad and ϕ ∈ [−0.30, 0]. The time needed to
complete these runs on the dutlruw.lr.tudelft.nl-server was 56 s.

The best solution found by galomusit after the ten different runs is 5.626
km/s for seed number 1250, which is 6 m/s lower than the best solution found by
Bernelli-Zazzera et al. [2007]. The orbit corresponding to this best individual is
shown in figure B.5.

The distribution of feasible individuals in the initial population within the
t0 − t1 search space is shown in figure B.6.
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Figure B.5 Orbit corresponding to the best solution obtained with galomusit for extra test III of the
EdM test case of [Bernelli-Zazzera et al., 2007]. The seed number for the run was 1250.
The launch window was constrained to t0 ∈ [1100, 1300] MJD2000, θ ∈ [0, 0.10] rad and
ϕ ∈ [−0.30, 0] rad. For the other variables, the complete search space has been used. •:
Earth at launch, �: DSM, •: Mars at arrival.

Figure B.6 Distribution of the feasible individuals in the initial population for seed number 1250 for extra
test III of the EdM test case. The launch window was constrained to t0 ∈ [1100, 1300]
MJD2000, θ ∈ [0, 0.10] rad and ϕ ∈ [−0.30, 0] rad. For the other variables, the complete
search space has been used. The t0 − t1 search space is indicated by the solid line. ”+”:
∆Vtot > 6.5 km/s. ”+”: 6.0 < ∆Vtot ≤ 6.5 km/s. ”+”: ∆Vtot ≤ 6.0 km/s.
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B.4 EdM test case, extra test IV

Table B.4 shows the decision vectors for the best solutions for each run and the
corresponding ∆Vtot.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad - km/s

5 1244.1 1481.0 2.567 0.037 -0.135 0.490 5.641
10 1244.5 1485.3 2.561 0.010 -0.146 0.506 5.640
75 1241.9 1478.6 2.449 0.047 -0.150 0.425 5.647
250 1241.6 1487.3 2.371 6.247 -0.166 0.443 5.652
1000 1243.6 1483.2 2.526 0.022 -0.149 0.480 5.642
1050 1242.4 1477.9 2.480 0.042 -0.159 0.438 5.645
1100 1244.3 1499.4 2.609 0.015 -0.152 0.566 5.638
1150 1242.1 1479.9 2.493 0.053 -0.149 0.455 5.646
1200 1245.6 1476.7 2.618 0.034 -0.129 0.484 5.640
1250 1242.3 1479.6 2.513 0.068 -0.142 0.456 5.647

Table B.4 Decision vectors and total ∆V the best individuals of 10 runs for extra test IV of the EdM
test case [Bernelli-Zazzera et al., 2007]. The launch window is constrained to
t0 ∈ [1100, 1300] MJD2000 and η ∈ [0.40, 0.60]. The time needed to complete these runs on
the dutlruw.lr.tudelft.nl-server was 539 s.

The best solution found by galomusit after the ten different runs is 5.640
km/s for seed number 1100, which is 8 m/s higher than the best solution found
by Bernelli-Zazzera et al. [2007]. The orbit corresponding to this best individual
is shown in figure B.7.

The distribution of feasible individuals in the initial population within the
t0 − t1 search space is shown in figure B.8.
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Figure B.7 Orbit corresponding to the best solution obtained with galomusit for extra test IV of the
EdM test case of [Bernelli-Zazzera et al., 2007]. The seed number for the run was 1100.
The launch window was constrained to t0 ∈ [1100, 1300] MJD2000 and η ∈ [0.40, 0.60]. For
the other variables, the complete search space has been used. •: Earth at launch, �: DSM,
•: Mars at arrival.

Figure B.8 Distribution of the feasible individuals in the initial population for seed number 1100 for extra
test IV of the EdM test case. The launch window was constrained to t0 ∈ [1100, 1300]
MJD2000 and η ∈ [0.40, 0.60]. For the other variables, the complete search space has been
used. The t0 − t1 search space is indicated by the solid line. ”+”: ∆Vtot > 6.5 km/s. ”+”:
6.0 < ∆Vtot ≤ 6.5 km/s. ”+”: ∆Vtot ≤ 6.0 km/s.
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B.5 EdM test case, extra test V

Table B.5 shows the decision vectors for the best solutions for each run and the
corresponding ∆Vtot.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad - km/s

5 1247.2 1706.3 2.813 0.024 -0.107 0.435 5.623
10 1247.3 1678.7 2.833 0.047 -0.113 0.465 5.626
75 1245.2 1716.9 2.768 0.018 -0.136 0.422 5.622
250 1247.2 1647.6 2.793 0.013 -0.124 0.491 5.623
1000 1247.2 1616.6 2.795 0.024 -0.124 0.526 5.625
1050 1245.9 1618.7 2.764 0.027 -0.136 0.518 5.625
1100 1245.3 1634.7 2.771 0.045 -0.142 0.504 5.626
1150 1246.2 1603.4 2.775 0.036 -0.134 0.539 5.625
1200 1246.6 1618.3 2.777 0.020 -0.132 0.521 5.624
1250 1247.3 1621.9 2.787 0.014 -0.124 0.520 5.624

Table B.5 Decision vectors and total ∆V the best individuals of 10 runs for extra test V of the EdM test
case [Bernelli-Zazzera et al., 2007]. All variables are constrained, except the time of flight.
The time needed to complete these runs on the dutlruw.lr.tudelft.nl-server was 29 s.

The best solution found by galomusit after the ten different runs is 5.622
km/s for seed number 75, which is 10 m/s lower than the best solution found by
Bernelli-Zazzera et al. [2007]. The orbit corresponding to this best individual is
shown in figure B.9.

The distribution of feasible individuals in the initial population within the
t0 − t1 search space is shown in figure B.10.
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Figure B.9 Orbit corresponding to the best solution obtained with galomusit for extra test V of the
EdM test case of [Bernelli-Zazzera et al., 2007]. The seed number for the run was 75. All
variables are constrained, except the time of flight. •: Earth at launch, �: DSM, •: Mars
at arrival.

Figure B.10 Distribution of the feasible individuals in the initial population for seed number 75 for extra
test V of the EdM test case. All variables are constrained, except the time of flight. The
t0 − t1 search space is indicated by the solid line. ”+”: ∆Vtot > 6.5 km/s. ”+”:
6.0 < ∆Vtot ≤ 6.5 km/s. ”+”: ∆Vtot ≤ 6.0 km/s.
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B.6 EdM test case, extra test VI

Table B.6 shows the decision vectors for the best solutions for each run and the
corresponding ∆Vtot.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad - km/s

5 1243.1 1878.2 2.782 0.024 -0.119 0.322 5.621
10 1243.1 1873.9 2.786 0.036 -0.118 0.325 5.622
75 1245.1 1892.3 2.795 6.272 -0.103 0.315 5.621
250 1243.8 1879.2 2.769 6.265 -0.119 0.321 5.621
1000 1244.3 1871.4 2.773 6.251 -0.127 0.322 5.623
1050 1245.0 1860.7 2.785 6.270 -0.107 0.330 5.621
1100 1243.1 1890.4 2.774 0.006 -0.117 0.316 5.621
1150 1242.5 1883.3 2.776 0.017 -0.133 0.319 5.621
1200 1241.6 1875.1 2.763 0.024 -0.142 0.322 5.624
1250 1244.6 1877.3 2.792 0.007 -0.102 0.324 5.621

Table B.6 Decision vectors and total ∆V the best individuals of 10 runs for extra test VI of the EdM
test case [Bernelli-Zazzera et al., 2007]. The launch window is constrained to
t0 ∈ [1100, 1300] MJD2000 and TEM ∈ [600, 650] days. For the other variables, the
complete search space has been used. The time needed to complete these runs on the
dutlruw.lr.tudelft.nl-server was 7541 s.

The best solution found by galomusit after the ten different runs is 5.621 km/s
for seed number 1050. The best total ∆V is the same for 6 of the 10 individuals,
but the individual for seed number 1050 has the lowest time of flight. The total
∆V is 11 m/s lower than the best solution found by Bernelli-Zazzera et al. [2007].
The orbit corresponding to this best individual is shown in figure B.9.

The distribution of feasible individuals in the initial population within the
t0 − t1 search space is shown in figure B.12.
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Figure B.11 Orbit corresponding to the best solution obtained with galomusit for extra test VI of the
EdM test case of [Bernelli-Zazzera et al., 2007]. The seed number for the run was 1050.
The launch window was constrained to t0 ∈ [1100, 1300] MJD2000, and TEM ∈ [600, 650]
days. For the other variables, the complete search space has been used. •: Earth at launch,
�: DSM, •: Mars at arrival.

Figure B.12 Distribution of the feasible individuals in the initial population for seed number 1050 for extra
test VI of the EdM test case. The launch window was constrained to t0 ∈ [1100, 1300]
MJD2000and TEM ∈ [600, 650] days. For the other variables, the complete search space has
been used. The t0 − t1 search space is indicated by the solid black line. The red line
indicates the boundary of the complete search space for TEM . ”+”: ∆Vtot > 6.5 km/s.
”+”: 6.0 < ∆Vtot ≤ 6.5 km/s. ”+”: ∆Vtot ≤ 6.0 km/s.
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B.7 EdM test case, extra test VII

Table B.7 shows the decision vectors for the best solutions for each run and the
corresponding ∆Vtot.

S t0 t1
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 km/s rad rad - km/s

5 1216.723 1464.367 0.679 0.056 -0.260 0.207 5.654
10 1216.821 1463.797 0.651 0.059 -0.261 0.205 5.654
75 1216.536 1461.848 0.487 0.059 -0.266 0.190 5.654
250 1245.135 1532.427 2.674 6.266 -0.139 0.590 5.646
1000 1243.418 1463.497 2.158 0.026 -0.125 0.217 5.649
1050 1244.525 1510.517 2.671 0.038 -0.199 0.578 5.646
1100 1216.924 1461.774 0.502 0.062 -0.266 0.189 5.654
1150 1241.473 1727.879 2.721 0.034 -0.187 0.416 5.649
1200 1216.648 1462.278 0.509 0.078 -0.270 0.190 5.654
1250 1216.658 1463.630 0.646 0.066 -0.258 0.205 5.654

Table B.7 Decision vectors and total ∆V the best individuals of 10 runs for extra test VII of the EdM
test case [Bernelli-Zazzera et al., 2007]. For the decision variables, the complete search
space has been used. The population size was 2000. The time needed to complete these runs
on the dutlruw.lr.tudelft.nl-server was 5277 s.

The best solution found by galomusit after the ten different runs is 5.646
km/s for seed number 1050. The best total ∆V is the same for 2 of the 10
individuals, but the individual for seed number 1050 has the lowest time of flight.
The total ∆V is 14 m/s higher than the best solution found by Bernelli-Zazzera
et al. [2007]. It actually had the same decision vector as the best solution found
in section 13.2.2.

The distribution of feasible individuals in the initial population within the
t0 − t1 search space is shown in figure B.13.
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Figure B.13 Distribution of the feasible individuals in the initial population for seed number 1050 for extra
test VII of the EdM test case. For all variables, the complete search space has been used.
The population size Npop was 2000. The t0 − t1 search space is indicated by the solid line.
”+”: ∆Vtot > 6.5 km/s. ”+”: 6.0 < ∆Vtot ≤ 6.5 km/s. ”+”: ∆Vtot ≤ 6.0 km/s.





Appendix C

Benchmark tests for the EVdM
test case

This appendix contains the results for the additional tests for EVdM test case in
section 13.3. For each extra test the following results will be given:

The decision vectors for the best individual in each run.

The distribution of the individuals in the initial population.

The orbit corresponding to the best individual. It should be noted that for
extra tests II, V, VI and VII the orbits are not shown since they are all similar
to the orbit obtained in extra test I.

All optimization runs are performed 10 times, each time with a different seed
number for the random generator. The Genetic Algorithm settings are the same
as used in section 13.2.2.

C.1 Extra test I: t0 ∈ [4200, 4600] MJD2000

S t0 t1 t2 hpV ζV ηVM ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 4481.5 4657.4 5284.3 3181.1 5.602 0.554 3.226
10 4476.0 4647.7 5340.1 643.05 4.990 0.537 2.994
75 4475.9 4648.0 5339.6 769.1 4.980 0.542 3.016
250 4474.5 4644.8 5343.1 52.6 5.134 0.544 2.996
1000 4480.4 4657.3 5284.2 3128.9 5.610 0.539 3.220
1050 4480.6 4656.7 5285.8 1628.8 5.674 0.518 3.179
1100 4481.1 4658.1 5284.4 3235.6 5.610 0.546 3.215
1150 4481.1 4657.6 5285.0 2694.9 5.637 0.554 3.188
1200 4481.8 4657.6 5284.8 2917.6 5.617 0.516 3.209
1250 4477.4 4647.5 5339.0 999.4 5.010 0.516 3.084

Table C.1 EVdM with t0 ∈ [4200, 4600] MJD2000. For the other variables the complete search space
was used. The total time needed for these ten runs was 3799 sec on the
dutlruw.lr.tudelft.nl-server.
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Figure C.1 Distribution of the feasible individuals in the initial population for seed number 10 when
t0 ∈ [4200, 4600] MJD2000. The t0 − t2 search space is indicated by the solid line. +:
∆Vtot > 8.0 km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.

Figure C.2 Orbit corresponding to the best individual of extra test I for the EVdM test case. The seed
number for this run was 10. •: Earth at launch, •: Venus swingby, �: DSM, •: Arrival at
Mars.
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C.2 Extra test II: t0 ∈ [6600, 7000] MJD2000

S t0 t1 t2 hpV ζV ηVM ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 6807.513 6977.450 7534.837 9723.0 0.809 0.498 3.426
10 6814.840 6983.919 7537.000 10044.9 0.978 0.507 3.383
75 6812.620 6982.787 7536.410 10046.9 0.939 0.542 3.389
250 6818.135 6987.479 7540.010 9398.4 1.011 0.533 3.383
1000 6815.467 6983.499 7536.780 10076.2 0.983 0.556 3.379
1050 6817.258 6985.891 7538.747 9695.6 1.000 0.555 3.378
1100 6812.333 6982.431 7536.342 10077.0 0.930 0.496 3.391
1150 6819.450 6987.617 7540.136 9423.0 1.026 0.538 3.376
1200 6812.562 6982.640 7536.209 10121.4 0.942 0.516 3.384
1250 6811.994 6980.436 7535.100 10313.9 0.924 0.517 3.397

Table C.2 EVdM with t0 ∈ [6600, 7000] MJD2000. For the other variables the complete search space
was used. The total time needed for these ten runs was 1405 sec on the
dutlruw.lr.tudelft.nl-server.

Figure C.3 Distribution of the feasible individuals in the initial population for seed number 1150 when
t0 ∈ [6600, 7000] MJD2000. The t0 − t2 search space is indicated by the solid line. +:
∆Vtot > 8.0 km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.
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Figure C.4 Orbit corresponding to the best individual of extra test II for the EVdM test case. The seed
number for this run was 1150. •: Earth at launch, •: Venus swingby, �: DSM, •: Arrival
at Mars.

C.3 Extra test III: Complete search space, Npop = 2000

S t0 t1 t2 hpV ζV ηVM ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 6811.5 6981.3 7535.5 10230.9 0.920 0.528 3.391
10 6812.6 6982.7 7536.3 10103.9 0.941 0.470 3.384
75 6815.5 6984.4 7537.4 9930.0 0.982 0.548 3.375
250 6817.5 6986.1 7538.7 9686.2 1.007 0.477 3.374
1000 6814.7 6984.0 7537.2 9964.0 0.972 0.519 3.375
1050 6816.9 6985.9 7538.7 9687.2 0.998 0.495 3.373
1100 6818.8 6986.5 7539.0 9630.3 1.024 0.557 3.380
1150 4483.0 4658.6 5355.2 3553.5 4.928 0.546 3.341
1200 6814.7 6984.6 7537.6 9872.3 0.971 0.509 3.377
1250 4471.6 4648.8 5342.0 1059.6 4.955 0.501 3.231

Table C.3 EVdM with the complete search space used for all variables. The population size is 2000
individuals. The total time needed for these ten runs was 16550 sec on the
dutlruw.lr.tudelft.nl-server.



C.4 Extra test IV: hp ∈ [0, 0.75] RV , t0 ∈ [4200, 4600] MJD2000 XXV

Figure C.5 Distribution of the feasible individuals in the initial population for seed number 1250. The
complete search space was used for all variables and the population size was 2000. The
t0 − t2 search space is indicated by the solid line. +: ∆Vtot > 8.0 km/s. +: ∆Vtot > 8.0
km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.

Figure C.6 Orbit corresponding to the best individual of extra test III for the EVdM test case. The seed
number for this run was 1250. •: Earth at launch, •: Venus swingby, �: DSM, •: Arrival
at Mars.
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C.4 Extra test IV: hp ∈ [0, 0.75] RV , t0 ∈ [4200, 4600] MJD2000

S t0 t1 t2 hpV ζV ηVM ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 4481.2 4657.3 5285.2 8519.7 5.643 0.566 3.185
10 4482.2 4657.3 5285.5 8236.8 5.654 0.558 3.179
75 4481.1 4657.0 5286.5 7512.0 5.681 0.565 3.164
250 4475.7 4646.8 5338.5 6636.9 5.018 0.544 3.020
1000 4477.3 4646.1 5334.7 7017.9 5.060 0.514 3.172
1050 4476.4 4647.0 5337.8 6755.4 5.009 0.547 3.040
1100 4480.3 4654.7 5351.9 7918.8 4.890 0.568 3.177
1150 4477.3 4648.1 5338.8 7012.2 4.978 0.533 3.050
1200 4478.1 4648.9 5341.2 7094.0 4.960 0.697 3.023
1250 4476.0 4646.2 5340.0 6407.6 5.045 0.532 2.987

Table C.4 EVdM with hp ∈ [0, 0.75] RV in the launch window centered at 4400 MJD2000. The
complete search space is used for the other variables. The population size is 500 individuals.
The total time needed for these ten runs was 2744 sec on the
dutlruw.lr.tudelft.nl-server.

Figure C.7 Distribution of the feasible individuals in the initial population for seed number 1250.
hp ∈ [0, 0.75] RV in the launch window centered at 4400 MJD2000. The complete search
space is used for the other variables. The t0 − t2 search space is indicated by the solid line.
+: ∆Vtot > 8.0 km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.
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C.5 Extra test V: ζ ∈ [4.75, 6.00] rad, t0 ∈ [4200, 4600]
MJD2000

S t0 t1 t2 hpV ζV ηVM ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 4480.4 4650.9 5344.1 1395.6 4.934 0.575 3.037
10 4476.3 4647.2 5333.5 1134.5 4.993 0.537 3.144
75 4479.9 4656.0 5285.2 1938.4 5.652 0.510 3.201
250 4482.0 4657.7 5285.1 2697.8 5.634 0.563 3.189
1000 4475.6 4646.6 5337.5 592.4 5.019 0.549 3.035
1050 4481.4 4657.9 5284.7 3026.7 5.620 0.539 3.202
1100 4481.6 4657.3 5283.2 3850.6 5.550 0.531 3.286
1150 4475.2 4646.6 5339.7 415.0 5.029 0.542 2.986
1200 4473.1 4645.0 5332.5 499.3 5.056 0.538 3.124
1250 4475.9 4646.3 5341.1 706.0 5.096 0.541 3.147

Table C.5 EVdM with ζ ∈ [4.75, 6.00] rad in the launch window centered at 4400 MJD2000. The
complete search space is used for the other variables. The population size is 500 individuals.
The total time needed for these ten runs was 1324 sec on the
dutlruw.lr.tudelft.nl-server.

Figure C.8 Distribution of the feasible individuals in the initial population for seed number 1150.
ζ ∈ [4.75, 6.00] in the launch window centered at 4400 MJD2000. The complete search
space is used for the other variables. The t0 − t2 search space is indicated by the solid line.
+: ∆Vtot > 8.0 km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.



XXVIII Benchmark tests for the EVdM test case

C.6 Extra test VI: η ∈ [0.45, 0.65], t0 ∈ [4200, 4600] MJD2000

S t0 t1 t2 hpV ζV ηVM ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 4477.2 4648.2 5333.7 1688.7 4.983 0.535 3.198
10 4475.6 4646.8 5339.8 467.6 5.018 0.529 2.988
75 4476.9 4648.7 5339.5 970.4 4.964 0.540 3.039
250 4476.4 4647.5 5340.1 611.1 4.996 0.540 2.994
1000 4480.6 4655.6 5284.0 2891.3 5.597 0.532 3.249
1050 4480.9 4657.5 5284.2 3202.0 5.604 0.546 3.223
1100 4477.9 4648.8 5334.9 1682.4 4.962 0.541 3.182
1150 4480.4 4656.1 5282.9 3488.8 5.570 0.548 3.275
1200 4481.9 4658.3 5284.7 3154.2 5.614 0.553 3.207
1250 4476.3 4646.8 5337.9 682.3 5.020 0.534 3.042

Table C.6 EVdM with η ∈ [0.45, 0.65] in the launch window centered at 4400 MJD2000. The complete
search space is used for the other variables. The population size is 500 individuals. The total
time needed for these ten runs was 1324 sec on the dutlruw.lr.tudelft.nl-server.

Figure C.9 Distribution of the feasible individuals in the initial population for seed number 10.
η ∈ [0.45, 0.65] in the launch window centered at 4400 MJD2000. The complete search
space is used for the other variables. The t0 − t2 search space is indicated by the solid line.
+: ∆Vtot > 8.0 km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.
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C.7 Extra test VII Combination of extra tests IV, V and
VI

S t0 t1 t2 hpV ζV ηVM ∆Vtot
MJD2000 MJD2000 MJD2000 km rad km/s

5 4478.2 4650.2 5343.0 1170.7 4.938 0.537 3.026
10 4476.7 4647.1 5337.4 752.2 5.004 0.550 3.052
75 4475.7 4647.1 5339.9 503.2 5.011 0.549 2.991
250 4476.0 4646.4 5340.0 376.6 5.038 0.568 2.989
1000 4477.6 4649.2 5341.9 958.8 4.955 0.547 3.015
1050 4481.8 4658.0 5284.9 2897.5 5.626 0.525 3.194
1100 4475.3 4645.9 5335.1 771.2 5.053 0.530 3.108
1150 4477.6 4648.4 5340.8 796.2 4.975 0.518 3.003
1200 4474.8 4645.6 5337.6 419.3 5.054 0.551 3.034
1250 4479.4 4651.2 5344.5 1437.6 4.927 0.541 3.038

Table C.7 EVdM with hp ∈ [0, 0.75] RV , ζ ∈ [4.75, 6.00] and η ∈ [0.45, 0.65] in the launch window
centered at 4400 MJD2000. The population size is 500 individuals. The total time needed
for these ten runs was 412 sec on the dutlruw.lr.tudelft.nl-server.

Figure C.10 Distribution of the feasible individuals in the initial population for seed number 250.
hp ∈ [0, 0.75] RV , ζ ∈ [4.75, 6.00] and η ∈ [0.45, 0.65] in the launch window centered at
4400 MJD2000. The t0 − t2 search space is indicated by the solid line. +: ∆Vtot > 8.0
km/s. +: 6.0 < ∆Vtot ≤ 8.0 km/s. +: ∆Vtot ≤ 6.0 km/s.
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XXXII Results for trajectories to Uranus without DSMs

D.1 Elitism: 0.10, Immigration: 0.05, No Mutation

Figure D.1 Schematic of the 20 best sequences for the first set of runs. Elitism: 10%, Immigration: 5%
and no Mutation for the configuration described in section 14.2.3. Only the best result out of
the five different seed numbers for each sequence has been placed in this figure.

Date ∆V (km/s) C3 (km2/s2)
Launch 14/06/2015 1.3171 12.380

Date ∆Vreq (km/s) ∆Vgained (km/s) h (km)
Swingbys V: 05/12/2015 0.0005 3.578 2562.6

V: 20/02/2017 0.0005 -2.029 2292.0
E: 27/04/2017 0.0002 5.856 2886.8
E: 15/02/2019 1.4570 3.674 6066.0
J: 31/01/2022 0.0899 9.137 300209.2

Date ∆V (km/s) C3 (km2/s2) Ventry (km/s)
Capture 14/03/2034 1.0091 20.347 20.793

Table D.1 The best sequence, VVEEJ, for elitism: 10%, immigration: 5% and no mutation. The seed
number for this run was 250.
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D.2 Elitism: 0.10, Immigration: 0.20, No Mutation

Figure D.2 Schematic of the 20 best sequences for the first set of runs. Elitism: 10%, Immigration: 20%
and no Mutation for the configuration described in section 14.2.3. Only the best result out of
the five different seed numbers for each sequence has been placed in this figure.

Date ∆V (km/s) C3 (km2/s2)
Launch 13/06/2015 1.3154 12.341

Date ∆Vreq (km/s) ∆Vgained (km/s) h (km)
Swingbys V: 05/12/2015 0.0008 3.576 2567.1

V: 20/02/2017 0.0019 -1.972 2513.9
E: 26/04/2017 0.0064 5.775 3079.9
E: 13/02/2019 1.4026 3.665 5714.1
J: 23/12/2021 0.1377 9.256 336268.5

Date ∆V (km/s) C3 (km2/s2) Ventry (km/s)
Capture 17/10/2034 0.9209 16.687 20.705

Table D.2 The best sequence, VVEEJ, for elitism: 10%, immigration: 20% and no mutation. The seed
number for this run was 75.



XXXIV Results for trajectories to Uranus without DSMs

D.3 Elitism: 0.15, Immigration: 0.15, No Mutation

Figure D.3 Schematic of the 20 best sequences for the first set of runs. Elitism: 15%, Immigration: 15%
and no Mutation for the configuration described in section 14.2.3. Only the best result out of
the five different seed numbers for each sequence has been placed in this figure.

Date ∆V (km/s) C3 (km2/s2)
Launch 12/09/2015 1.8680 25.431

Date ∆Vreq (km/s) ∆Vgained (km/s) h (km)
Swingbys V: 20/02/2016 0.0088 4.814 1537.3

V: 11/03/2017 0.0080 2.590 5085.2
E: 12/01/2019 0.0030 3.802 22066.8
J: 10/08/2022 0.0348 8.789 115123.3

Date ∆V (km/s) C3 (km2/s2) Ventry (km/s)
Capture 16/07/2034 0.9692 18.690 20.753

Table D.3 The best sequence, VVEJ, for elitism: 15%, immigration: 15% and no mutation. The seed
number for this run was 75.
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D.4 Elitism: 0.20, Immigration: 0.05, No Mutation

Figure D.4 Schematic of the 20 best sequences for the first set of runs. Elitism: 20%, Immigration: 5%
and no Mutation for the configuration described in section 14.2.3. Only the best result out of
the five different seed numbers for each sequence has been placed in this figure.

Date ∆V (km/s) C3 (km2/s2)
Launch 24/08/2015 1.6615 20.468

Date ∆Vreq (km/s) ∆Vgained (km/s) h (km)
Swingbys V: 02/02/2016 0.6445 4.484 1833.1

V: 09/03/2017 0.0008 2.471 5656.4
E: 28/12/2018 0.0015 3.688 2844.7
J: 16/10/2021 0.3052 9.885 249024.2

Date ∆V (km/s) C3 (km2/s2) Ventry (km/s)
Capture 14/04/2034 0.9719 18.802 20.756

Table D.4 The best sequence, VVEJ, for elitism: 20%, immigration: 5% and no mutation. The seed
number for this run was 75.





Appendix E

Trajectories with DSMs and one
swingby

E.1 EdVU, complete search space for all variables

S t0 t1 t2
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 MJD2000 km/s rad rad km/s

5 6203.2 6344.9 12318.5 3.188 3.171 -0.623 0.346 8.425
10 6573.8 7014.0 12154.3 2.977 3.444 -0.012 0.397 8.696
75 6566.0 7014.5 11985.4 2.630 3.741 -0.330 0.594 9.176
250 6188.5 6338.7 11722.1 2.929 3.606 -0.311 0.373 8.706
1000 6165.5 6340.8 11682.3 2.082 3.790 -0.325 0.425 9.445
1050 6577.8 7016.0 12215.2 3.792 3.810 -0.195 0.433 8.676
1100 6140.3 6349.8 10312.2 4.589 4.186 0.096 0.467 9.893
1150 6189.5 6333.5 10709.8 2.890 3.562 -0.211 0.434 8.885
1200 6179.1 6338.9 11964.1 2.945 3.679 -0.473 0.412 8.715
1250 6190.3 6340.7 10885.6 2.570 3.485 -0.346 0.362 8.672

Table E.1 Decision vectors and total ∆V for the 10 optimization runs done for EdVU. The complete
search space was used for all variables.
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XXXVIII Trajectories with DSMs and one swingby

Figure E.1 Distribution of the individuals in the initial population for the EdVU trajectory. The seed
number for the run producing these individuals is 5. +: ∆Vtot > 30 km/s, +:
15 < ∆Vtot ≤ 30 km/s, +: ∆Vtot ≤ 15 km/s.

Figure E.2 Distribution in the t0 − t1 space of the individuals in the initial population for the EdVU
trajectory. The seed number for the run producing these individuals is 5. +: ∆Vtot > 30
km/s, +: 15 < ∆Vtot ≤ 30 km/s, +: ∆Vtot ≤ 15 km/s.



E.1 EdVU, complete search space for all variables XXXIX

Figure E.3 Distribution in the t1 − t2 space of the individuals in the initial population for the EdVU
trajectory. The seed number for the run producing these individuals is 5. +: ∆Vtot > 30
km/s, +: 15 < ∆Vtot ≤ 30 km/s, +: ∆Vtot ≤ 15 km/s.

Figure E.4 Distribution of the individuals in the initial population for the EdVU trajectory in the θ − ϕ
space. The complete search space for all variables was used. The seed number for the run
producing these individuals is 5. +: ∆Vtot > 30 km/s, +: 15 < ∆Vtot ≤ 30 km/s, +:
∆Vtot ≤ 15 km/s.



XL Trajectories with DSMs and one swingby

Figure E.5 Distribution of the individuals in the initial population for the EdVU trajectory in the
η −

∣∣V̄∞L

∣∣ space. The complete search space for all variables was used. The seed number for

the run producing these individuals is 5. +: ∆Vtot > 30 km/s, +: 15 < ∆Vtot ≤ 30 km/s,
+: ∆Vtot ≤ 15 km/s.

E.2 EdSU, complete search space for all variables

S t0 t1 t2
∣∣V̄∞L

∣∣ θ ϕ η ∆Vtot
MJD2000 MJD2000 MJD2000 km/s rad rad km/s

5 5524.9 8833.2 12619.8 10.481 0.078 0.158 0.199 7.277
10 5887.9 8647.3 12662.3 10.464 0.160 0.171 0.178 6.830
75 5888.8 8375.0 12702.7 10.386 6.243 -0.140 0.165 6.694
250 6255.8 8546.1 12707.0 10.307 0.131 0.044 0.180 6.689
1000 5499.0 7743.2 12779.2 10.336 0.167 0.139 0.128 6.318
1050 5869.6 7904.0 12712.3 10.631 0.296 0.018 0.155 6.576
1100 5870.4 7828.1 12656.7 10.432 0.219 -0.001 0.136 6.471
1150 5893.9 8563.3 12618.6 10.319 6.137 0.105 0.131 6.844
1200 5890.0 8487.2 12588.7 10.246 6.241 0.040 0.192 6.705
1250 5879.1 8400.7 12708.6 10.489 0.252 0.048 0.171 6.690

Table E.2 Decision vectors and total ∆V for the 10 optimization runs done for EdSU. The complete
search space was used for all variables.
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Figure E.6 Distribution of the individuals in the initial population for the EdSU trajectory. The seed
number for the run producing these individuals is 1000. +: ∆Vtot ≥ 20 km/s, +:
12 ≤ ∆Vtot < 20 km/s, +: ∆Vtot ≤ 12 km/s.

Figure E.7 Distribution of the individuals in the initial population for the EdSU trajectory in the θ − ϕ
space. The complete search space for all variables was used. The seed number for the run
producing these individuals is 1000. +: ∆Vtot ≥ 20 km/s, +: 12 ≤ ∆Vtot < 20 km/s, +:
∆Vtot ≤ 12 km/s.



XLII Trajectories with DSMs and one swingby

Figure E.8 Distribution of the individuals in the initial population for the EdSU trajectory in the
η −

∣∣V̄∞L

∣∣ space. The complete search space for all variables was used. The seed number for

the run producing these individuals is 1000. +: ∆Vtot ≥ 20 km/s, +: 12 ≤ ∆Vtot < 20
km/s, +: ∆Vtot ≤ 12 km/s.
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E.3 EMdU, complete search space for all variables

Figure E.9 Distribution of the individuals in the initial population for the EMdU trajectory in the ζ − hp
space. The complete search space for all variables was used. The seed number for the run
producing these individuals is 1100. +: ∆Vtot > 25 km/s, +: 15 < ∆Vtot ≤ 25 km/s, +:
∆Vtot ≤ 15 km/s, +: ∆Vtot < 10 km/s.

Figure E.10 Distribution of the individuals in the initial population for the EMdU trajectory in the η − hp
space. The complete search space for all variables was used. The seed number for the run
producing these individuals is 1100. +: ∆Vtot > 25 km/s, +: 15 < ∆Vtot ≤ 25 km/s, +:
∆Vtot ≤ 15 km/s, +: ∆Vtot < 10 km/s.


