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Research Summary - TU Delft

As traffic demands are ever increasing and building new infrastructure poses challenges in densely
populated areas, it is important to optimally utilise existing infrastructure. Short-term traffic fore-
casting can help with this task, as its predictions can help to prevent congestion by rerouting ve-
hicles. Recently, neural networks developed for traffic forecasting have lead to an unprecedented
accuracy, but deploying these on large scale can be difficult as the resulting models likely overfit to
the highway they were trained on. This thesis therefore performs an in-depth assessment of the ac-
curacy of neural networks traffic speed predictions on highway stretches containing different types
of congestion patterns. By relating the results back to traffic flow theory, these results can be put
into perspective.

Based on traffic flow theory, it was concluded that predicting traffic speed is more relevant than
flow for the detection of congestion. However, both flow and speed are needed as input data, since
both contain important information for traffic predictions. In general, the traffic prediction process
could be split up in correctly predicting the (i) emergence of congestion due to traffic breakdown and
(ii) the propagation of the upstream and downstream congestion head. Although the propagation
can be predicted, the stochastic nature of traffic breakdown makes it difficult to predict emergence.

A large variety of design choices where identified when designing a neural network architecture. For
a a gated recurrent unit (GRU) recurrent neural network (RNN), these can be categorised in (a) the
temporal structure, (b) spatiotemporal data, (c) model architecture, (d) input/output variables and
(e) data source. Promising design choices were presented and gaps regarding (a), (c) and (d) were
identified. For the temporal structure, a good substantiation of the prediction horizon and input
sequence length was missing. Little substantiation is given on the model architecture, making it
unclear what the benefits of this new architecture are besides having a higher accuracy. No direct
comparison was made on the effect of including extra traffic-related data, especially in case many
variables were used.

Different neural network architectures were formulated and trained on predicting traffic speed 20
minutes in the future. Both a one-shot and a sequence-to-sequence GRU RNN model architecture
were evaluated, while changing the number of hidden layers, units per layer and loss function. The
effect of adding flow data to the inputs has been assessed as well as the sensitivity of the predictions
to the input sequence length and prediction horizon. Moreover, new spatiotemporal error metrics
were proposed resulting predictions were assessed on different spatiotemporal levels. To retrieve
data, several roads were simulated in AIMSUN using different demand patterns, leading to a mix of
different congestion patterns mostly consisting of moving synchronised patterns and general pat-
terns.

When comparing the results from different congestion patterns, large differences in error could be
observed. In general, it was found that a moving synchronised pattern (MSP) can be predicted with
a reasonable accuracy and multiple shockwave speeds could be predicted correctly. This especially
is the case if congestion propagates over a period of time longer than the prediction horizon, due to
mispredictions during emergence. Predicting a general pattern (GP) containing stop-and-go waves
is much more difficult, therefore, predicting the emergence and propagation of stop-and-go waves
was only possible at much shorter prediction horizons of 4 to 10 minutes.

Assessing the resulting errors spatially and temporally using custom error metrics, theoretical
assumptions could be confirmed. Over time, errors were higher during periods where conges-
tion occurs and spiked during emergence and times where changes in traffic demand resulted in
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changes in shockwave speed. Over space, errors were higher at bottleneck locations and the up-
stream jam head locations, since traffic conditions can quickly change at these locations.

Based on the highest accuracy neural network structures, the following conclusions could be drawn.
Sequence-to-sequence models are more suitable compared to one-shot models, as the errors were
lower and the resulting congestion patterns better. A mean absolute error (MAE) loss function lead
to a higher accuracy and more stable results compared to a mean squared error (MSE) loss function.
As traffic speeds can fluctuate quite quickly and strongly, the relatively high errors caused by a MSE
loss function can result in unstable training. The optimal hyperparameter configuration fluctuated
per dataset, although mostly architectures of moderate depth performed best.

Using both flow and speed data as input lead to mixed results regarding the accuracy. On less
complex MSPs, adding flow data resulted in an increase in prediction accuracy, which is in line with
traffic flow theory. However, adding flow data lead to a accuracy decrease for more complex GPs
when using a sequence-to-sequence architecture. As the input and output parameters have to be
equal in an autoregressive sequence-to-sequence model, this is likely caused by the complex traffic
flow pattern which has to be predicted as well.

To conclude, it was proven that relating the results of a traffic forecasting neural network to traf-
fic flow theory can provide valuable insights in the strengths and limitations of its application. By
assessing the individual prediction results of several congestion patterns, it was found the accuracy
can differ greatly per congestion pattern. Reflecting these results back to traffic flow theory provides
insight in the general limitations of traffic forecasting using neural networks, namely the prediction
of the emergence of congestion. The proposed custom error metrics were proven to be a good tool
to assess the accuracy of newly proposed neural networks.



Management Summary - CGI Nederland

In the Netherlands, congestion is prevalent om many roads, especially in built-up areas. However,
expanding the current road infrastructure often is not possible, due to high costs and limited space
available. Short-term traffic forecasting can be a helpful tool to increase capacity by optimally using
existing infrastructure. Many efforts have been done in order to successfully forecast traffic, such
as the Velsertunnel project, in which CGI and TU Delft participated, and Praktijkproef Amsterdam,
which had mixed results. Within academia, neural networks developed for traffic forecasting have
lead to an unprecedented accuracy, however, there are questions on the practical use of these mod-
els.

In this thesis, the accuracy of neural networks for short-term traffic forecasting is evaluated for
different congestion patterns, i.e. types of traffic, in order to get a in-depth view of the strengths
and weaknesses of neural networks. Short-term in this context means a prediction horizon of up
to 30 minutes. By assessing the model error over both space and time, more insight is retrieved on
the locations and times where accuracy might decrease. Doing so for different congestion patterns
provides more insight on its ability to predict traffic.

To structure this management summary, important conclusions and recommendations regard-
ing three different topics. First, general conclusions will be presented regarding the use of a recur-
rent neural network (RNN) for spatiotemporal forecasting. Secondly, conclusions and recommen-
dations regarding traffic forecasting will be given. Lastly, it will focus on recommendations on the
practical implementation of traffic forecasting neural networks.

RNNs for Spatiotemporal Forecasting
As the methodology presented in this master thesis is applicable to to many different spatiotempo-
ral prediction problems, some general comments on using neural networks will be given first. An
important factor determining the success of using a neural network in general was found to be the
input and output data used. A neural network simply is a function approximator which learns a very
complex nonlinear function between input and output data. However, if there is no correlation or
causation present between the input and output data, even the most complex neural network is not
able to capture this non-existent function. Even if a model in this case can reach a high accuracy,
it is likely to suffer from overfitting. Overfitting means that the model achieved high accuracy on
the training and test data, but the learnt input-output relations are not present in unseen data. This
makes the model not generalisable and not useful in practice. Therefore, a first good step is to con-
sult with experts or dive into the theory of a certain problem. First, one has to establish whether an
input-output relation is likely to be present. Secondly, one has to pick the input features carefully
and in accordance with theory. By doing many design iterations, starting off with simple neural net-
works of which the complexity increases per cycle, and comparing the models to a solid baseline,
one can quickly get an idea on whether the problem can be solved using neural networks.

Secondly, it was found that the gated recurrent unit (GRU) recurrent neural network (RNN) was
very suitable for spatiotemporal prediction problems. Especially a sequence-to-sequence architec-
ture was found to result in a higher accuracy. Depending on the specifics of the prediction problem,
it is important to correctly choose the loss function, as this can have implications on both the results
and the stability of the training process.

Conclusions Regarding Traffic Forecasting
When assessing literature on neural network architectures for traffic forecasting, very complex ar-
chitectures are sometimes proposed. However, when looking at traffic flow theory, these complex
neural network architectures cannot always be justified. Based on assessing both traffic flow the-
ory as previously created traffic forecasting neural networks, four data requirements were identified
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which will likely increase prediction accuracy and the usefulness of the predictions. First of all, it
is more useful to predict traffic speed compared to traffic flow, as the former is a better predictor
for congestion compared to the latter. Travel time, which is a very relevant metric for taking traffic
measures, can also be easier expressed when traffic speed is predicted. Using both flow and speed
as input data is likely to increase model accuracy, although this depends on the congestion pat-
terns in the data and the neural network architecture chosen. Secondly, using short-term traffic
flow and speed data as input is recommended over historical traffic data. Short-term traffic data
contains more information from a traffic flow theory point of view, which describes that previously
observed flow and speed data can be used to correctly predict congestion patterns. Thirdly, using
spatiotemporal input data, i.e. data from different adjacent highway segments over time, leads to
better results compared to data only over space or time. However, it is important that the assessed
highway segment has sufficient length, so enough information is present so enough information
is present to forecast traffic given the set prediction horizon. Lastly, he sensitivity analysis which
has been done showed that it is important to choose the prediction horizon in accorance with the
congestion patterns present in the dataset. Predicting highly unstable traffic conditions might only
be possible in case a lower prediction horizon is given. For the input horizon, it is important this is
chosen so that causality can be expected between the input horizon and the prediction results.

Based on the results of the experiments done, a gated recurrent unit (GRU) recurrent neural network
(RNN) seems to be a good benchmark for traffic speed prediction, as most congestion patterns are
accurately reproduced. Some recommendations can also be done on correctly implementing this
neural network structure. Overall, using a sequence-to-sequence model leads to better results com-
pared to a one-shot model, as error metrics were lower and the congestion patterns were more
accurately reproduced. Using a mean absolute error (MAE) loss function also lead to better results
and more stable training compared to a mean squared error (MSE) loss function.

The model accuracy was found to strongly fluctuate with the type of congestion patterns present in
the dataset. On a moving synchronised pattern (MSP), accuracy was high and the predictions could
correctly replicate the congestion patterns. However, when a general pattern (GP) with stop-and-
go waves occurred, traffic breakdown, i.e. the moment at which congestion occurs, could not be
predicted for a prediction horizon of 20 minutes. In general, the neural network could accurately
predict the propagation of congestion when it had occurred, but had trouble predicting congestion
emergence, i.e. the moment of traffic breakdown. Prediction accuracy is therefore likely to drop
on roads where congestion is caused by accidents or traffic conditions are highly unstable, causing
stop-and-go waves to occur.

Recommendations for Practical Implementation
From this thesis can be concluded that neural networks have the potential to ’learn’ traffic, as con-
gestion patterns can be correctly replicated in numerous scenarios. Compared to the baseline of
not predicting traffic patterns, the models proved to have added value for short-term traffic fore-
casting on highway segments. Besides, the newly proposed spatiotemporal error metrics can help
potential clients to get more insights in the model accuracy. This can both guide the interpretation
of the results as well as increase the confidence in the model, as users get more insight in what the
model can and cannot predict.

To be able to fully assess the model accuracy, it is important to research the following elements.
First, it would be important to analyse a model which was trained and tested on empirical loop
detector data. Using this, the results retrieved using simulation data can be validated. Secondly,
a thorough assessment is needed of the road stretch on which the neural network will be trained.
If a large part of congestion is caused by stop-and-go waves or accidents, a neural network might
not be suitable for predicting traffic flows. Lastly, it is important to check whether traffic supply
and demand conditions remain stable over time. If changes in travel behaviour or the road network
result in changes to traffic conditions on a road, retraining might be required.
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1
Introduction

Traffic demand is ever growing, putting pressure on the accessibility of many cities all around the
world. However, in many built-up areas, increasing supply by building or upgrading roads or other
transportation networks is becoming more difficult due to space limitations and environmental
concerns. As a result, the resulting traffic congestion can harm the economy - due to lost hours
and extra fuel consumption - and cause extra pollution. Therefore, it is important to develop meth-
ods which help to optimally use the existing infrastructure, which can then be integrated into an
intelligent transportation system (ITS) to enforce measures reducing the amount of disruptions on
roads. A key feature of an ITS is short-term traffic forecasting, as high-quality predictions of flow
and/or speed can aid taking real-time control measures in a timely way to reduce the impact of a
traffic disruption [11].

1.1. Problem Analysis
Many different prediction methods have been proposed or developed with the aim of trying to pre-
dict traffic on road networks or road stretches. The methods and models used are categorised in
Figure 1.1, based on a categorisation developed by Van Lint and Van Hinsbergen [12]. Naive meth-
ods, such as historical averages or instantaneous travel times, make no assumptions and deduce
no model structure and parameters from data. They have low computational effort and are easy
to use and implement, but also have low accuracy. Secondly, traffic model-based methods rely on
theoretical or physical assumptions regarding traffic propagation over time. They can be subdi-
vided in traffic simulation models, which explicitly model traffic conditions over a road network,
or analytical methods, which only make use of the underlying functions. Their parameters, such
as link capacities or fundamental diagrams, and inputs, e.g. origin-desination matrices, have to
be calibrated within a feasibility region for the model to be in accordance with the data. They are
very useful for understanding traffic flow and can be used to assess hypothetical scenarios [13], but
calibration is time consuming. The third category consists of generic (mathematical) prediction
methods, with flexible structures and adjustable parameters instead of traffic-based assumptions.
Within this category, a large amount of methods are possible, which can be subdivided into para-
metric and non-parametric methods [13]. Parametric methods consist of time series analysis ap-
proaches, mostly statistical models such as Auto Regressive Integrated Moving Average (ARIMA),
which have fixed, a-priori determined model structures for which only parameter values have to
be determined. Non-parametric models mostly consist of artificial intelligence-based approaches,
such as support vector regression, clustering and (deep) neural networks, which both ‘learn’ their
model structure as well as parameter values.

There is quite a big difference between the parametric and non-parametric modelling culture, as
discussed by Breiman [14]. For the development of parametric statistical models, the goal is to cre-
ate well-interpretable, explanatory models which comply to statistical tests and have statistically
significant parameters. This makes it easier to implement them and analyse their outcomes. A
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Figure 1.1: Classification of prediction techniques

Table 1.1: Summary of differences between parametric and non-parametric models. Based on [10].

Function Statistical models Neural networks

Philosophy Inference and estimation (data gen-
erated by stochastic model)

Implementation (data from ‘black
box’)

Goal Offer (self-explanatory) models pro-
viding insights in data

Provide efficient representation of
data properties with good prediction

Learning process Model assumed a-priori, including
restrictions and hypotheses

Model generated through learning
process, ‘data will learn the model’.

downside is that the model accuracy is often neglected since the a-priori assumed model structure
often oversimplifies reality. Within the non-parametric modelling culture, the goal is to have the
lowest prediction error ‘at all costs’. Due to their complex model structure, they are capable of cap-
turing the complex nonlinear nature of traffic, making their accuracy higher compared to paramet-
ric methods. However, non-parametric models are ’black boxes’ which often provide little insight
into processes, leaving their low error to be unexplained, which might be due to biased estimation
and overly complex models. Their differences are summarised in Table 1.1.

1.2. Research Gap
This research focuses on traffic flow prediction on freeway stretches through generic prediction
methods, specifically through non-parametric artificial neural networks. In the last years, quite
some research has been conducted in improving these neural networks proposing a large variety of
neural network architectures. These highly complex newly-developed models show unprecedented
prediction accuracy compared to other (non)parametric statistical methods. However, Karlaftis and
Vlahogianni [10] state that over the years, the tendency to develop complex nonlinear and high di-
mensional models is made possible due to an increase in computing power but not necessarily
justified by logic or fundamental research needs. As the main focus has been put on prediction
accuracy, little questions are raised on topics which can form a broader-view ‘model performance’
such as simplicity and suitability.
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Three different problems can be identified regarding the application of prediction methods
within a traffic forecasting context, namely the interpretability of these models, the generalisability
of these models over roads and whether the resulting predictions are in line with current knowledge
on traffic flow theory.

It was found that all neural networks architectures developed for traffic forecasting are optimised
and tested on only one specific road network. Some researchers have acknowledged that most neu-
ral networks used for traffic prediction are site-specific, since most model structures are optimised
for and trained on data from one specific location to increase accuracy further [15]. The focus of
creating more complex neural networks can result in a complex, overestimated structure leading
to an over-specified model with limited to no generalisation power [10]. Researchers tend to focus
on developing deeper and more complex models, which are also easier to overfit [16] and therefore
hard to generalise. Overly complex models only applicable to specific road stretches would not be
appropriate in enhancing an ITS [17] as, in combination with low computational efficiency, it might
require too much skill and manpower to roll out these models in practice. These complex models
have many tunable hyperparameters and require a lot of data and computational power in order to
be trained and validated. The increase in accuracy complex models could possibly bring might be
of limited added value when deployed in practice.

Therefore, it would be interesting to create neural networks which could be applied on multiple
roads. This would significantly decrease the amount of time and effort needed to develop a neural
network for traffic forecasting on a specific road. This would be similar to the field of transfer learn-
ing, where a neural network trained to perform a task in a certain domain, such as natural language
processing, can be reused to perform a different task within that domain, increasing the generalis-
ability of this neural network. In this case, the model should ’learn’ the general concept of traffic
forecasting, and should be able to apply this on several different roads. However, there are some
ifs and buts which make it difficult to accomplish using a similar neural network architecture on
different roads. Three of them will be explained below.

First of all, since differences in traffic demand, driver behaviour and road layout can lead to big
differences in congestion [18], the neural network should either be able to make distinctions here
or the different roads should be sufficiently similar with respect to these topics. Secondly, as neural
network architectures are not only optimised on but also built for a specific road or network segment
[10], one should research how input data from different roads or road networks, having a different
dimensionality. can be captured by a similar neural network structure. Lastly, the input-output rela-
tions the neural network is fitted on should be generalisable, as the network should ’learn’ general
relations between traffic variables instead of correlations specific to one road location only.

However, assessing whether a a neural network has ’learnt traffic’ is difficult as they are black
boxes [14]. Although most researchers put a lot of effort in comparing the accuracy of their neural
network to others, they do so by comparing general error metrics instead of analysing the resulting
predictions based on a practical point of view, i.e. through the eyes of the traffic engineers which
might use these models. Therefore, it is unknown which congestion patterns the model can predict,
what its predictions look like and what the practical implications of this higher accuracy is. Ideally,
a neural network should extract correlations and learn ’patterns’ which are in line with traffic flow
theory, as this would mean these relations will also be valid on other roads. However, due to the
black-box nature of these neural networks and the lack of a qualitative assessment of the resulting
predictions, it remains unclear whether it does so.

1.3. Research Objective and Research Question
We could conclude that little is known on the actual predictions a neural network outputs, as the
main focus of researchers is increasing accuracy by decreasing the value of general aggregated error
metrics. However, this gives a quite one-dimensional view of the quality, as no insight is given on



1. Introduction 4

the practical implications of this accuracy on the resulting predictions. Therefore, little is known on
what the model actually learns and to which extent models are generalisable. Besides focusing on
accuracy only, it would also be valuable to research what congestion patterns are possible to pre-
dict and which boundary conditions arise from traffic flow theory in order to have a well prediction.
Therefore, it would be important to connect traffic flow theory with theory regarding the function-
ing of neural networks to get more insight in whether it is possible to bring the two closer together.
A first step in more deeply assessing the accuracy of traffic predicting neural networks would be to
look at their errors over space and time. By doing this for different traffic situations, more insight
can be retrieved on how predictable traffic situations are. Hence, the objective of this research is to
assess the predictive accuracy on different spatiotemporal levels. As road type, a highway section
is chosen as most prediction papers focus on highways (due to its relative simplicity compared to
urban road networks) and the absence of a complex network structure does not introduce the need
for incorporating graph structures in the neural network.

Based on this research objective, the following research question could be formulated:

What is the accuracy, assessed on different spatiotemporal levels, of neural network-based
short-term traffic speed forecasting models on highways for different congestion patterns?

This research question can be divided in the following subquestions.

1. What different congestion patterns can be formed on highways and to what extent can these
be predicted correctly using macroscopic traffic variables?

2. Which design choices can be made when applying neural networks for short-term traffic fore-
casting regarding the input and output data as well as the neural network architecture?

3. What is the effect of using both traffic flow and speed as input data on the accuracy of the
predictions?

4. In which way can metrics assessing the prediction error over space and/or time provide more
insights in the model accuracy for the different congestion patterns present on a road?

5. What is the effect of different neural network hyperparameters, neural network architectures,
input sequence lengths and prediction horizons on the resulting model accuracy?

1.4. Thesis Structure
In order to answer the aforementioned research questions, the thesis is structured as follows, which
is also schematically depicted in Figure 1.2. In chapter 2, an overview is given on macroscopic traffic
flow theory on highways, assessing congestion patterns by analysing both traffic flow theory as well
as theory on empirically observed congestion patterns. chapter 3 focuses on neural network theory
by giving a brief overview of the theoretical foundations, elaborating on time series prediction and
giving a literature analysis on the design choices one faces when designing a traffic forecasting neu-
ral network. A data analysis is given in chapter 4, analysing flow and speed patterns as well as spatial
and temporal correlations using empirical loop detector data. In chapter 5, the research methodol-
ogy is elaborated and the used neural network architectures will be presented. chapter 6 considers
the experimental setup of the several datasets which have been created using the microscopic traf-
fic simulation software AIMSUN. The results can be found in chapter 7, which will be discussed in
chapter 8. Since the research objective and research question ultimately can be used to create neu-
ral networks which are applicable to multiple roads, thoughts and challenges on this topic will be
presented separately in chapter 9, before the final conclusion, as several ideas and insights regard-
ing this concept were developed during research. To conclude, conclusions and recommendations
will be presented in chapter 10.
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Figure 1.2: Structure of the report.





2
Macroscopic Traffic Flow Theory on

Highways

Since the introduction of the fundamental diagram by Greenshields et al. [19], many research has
been done on traffic flow theory, ranging from urban traffic flow to traffic flow with highways. Over
time, complex theories have been created, borrowing concepts from thermodynamics and fluid
mechanics, which can be used to classify and explain the traffic patterns forming due to traffic sup-
ply and demand. However, in most papers and researches regarding traffic prediction, the authors
mainly focus on explaining the model structure they used, the data types they selected and which
data preparation techniques were used. Often, an exploratory data analysis is used to find corre-
lations between variables and the results are analysed using statistical methods. However, one can
imagine that traffic flow theory can be used to assess which congestion patterns can be captured
and which not and what the limits of a prediction method can be from a traffic point of view. Or
when from traffic flow theory, one can assume there is a clear (spatiotemporal) relation between
traffic variables, it might be valuable to use these for the traffic prediction model. Since a part of this
research is on connecting traffic flow theory with neural networks, it is important to analyze liter-
ature on traffic flow theory to get an idea of what the model should be able to base its predictions
on.

Since traffic flow theory is a very broad field with many different levels and focus points, let us first
start with demarcating the topic. First, only traffic flow theory on highways is assessed, as traffic
conditions on highways are less complex compared to urban conditions since there are limited ac-
cess and egress points, no at-grade intersections and relative homogeneity of speeds and vehicle
types. Secondly, there are two different levels at which one can describe traffic, namely the micro-
scopic and the macroscopic level [1]. Within a microscopic level, all vehicles are described indi-
vidually: by modelling each vehicle and its interactions with other vehicles separately, traffic on a
road (network) can be modelled. Therefore, the model can include vehicle dynamics, car following
models, driver characteristics, traffic signal plans, etcetera. On a macroscopic level, one does not
describe the movements of individual vehicles on a road but rather focus on aggregated variables
which describe traffic per point in space and time.

Both approaches have different strengths and weaknesses, making them suitable for different
applications. The microscopic level is very good for detailed traffic flow modelling on a local level
and gives much information on driving behaviour. However, the large amount of data needed for
analyses on this level makes it unsuitable to analyse actual road traffic on this level. For traffic
forecasting, we are not interested in detailed traffic flow characteristics, but in how average speeds
and flows develop over time. Therefore, in this chapter, we will focus on traffic flow theory related
to this macroscopic level.

This chapter mainly focuses on the theory of highway bottlenecks, traffic breakdown and congestion
patterns. Let us first focus on defining these three terms, as they will be used quite a lot. A highway

7



2. Macroscopic Traffic Flow Theory on Highways 8

bottleneck is a location at which traffic demand exceeds supply, therefore inducing congestion.
Most of the time, a bottleneck is situated at a location where road capacity is lower. This can be of
temporary nature, such as bad weather conditions, accidents or road works, due to its road design,
as a lane merge, sharp curves or road gradients decrease capacity, or because of unstable traffic
due to lane changing [4]. Traffic breakdown is the transition of traffic from a free-flow phase to a
congested phase. There are many different opinions on the exact nature of this congested phase,
but in general, it is characterised by traffic having a lower speed and (often) higher flow compared
to free-flow conditions. Congestion patterns are the speed and flow conditions over space and
time during congestion which provide information on how the congestion propagates over a road
over time and what the traffic conditions are within this congestion. There are large differences in
congestion patterns, due to differences in supply, determined by combinations of traffic in- and
outflows at a road, and demand, governed mainly by road design.

Correctly predicting a congestion pattern can roughly be split into two different parts, both hav-
ing their difficulties, namely:

1. emergence, which is predicting the point in time when traffic breaks down, causing conges-
tion, and

2. propagation, which is a correct prediction of the development and propagation of the con-
gestion pattern over space and time resulting from this breakdown.

Therefore, this chapter is structured as follows. First, important macroscopic traffic variables
and relationships between them and some basic traffic flow theory them will be discussed, intro-
ducing the fundamental diagram. Secondly, we will focus on the propagation aspect, diving in
both the theory of congestion patterns as well as the empirical patterns found. Thirdly, the emer-
gence part will be discussed, discussing some of the theory behind and factors influencing the traffic
breakdown process. To conclude, the results of the propagation and emergence parts will be used to
comment on the predictability of congestion.

2.1. Macroscopic Traffic Variables and Their Relationships
The three defining variables that describe traffic phases on a macroscopic level are flow, average
speed and density. Traffic flow

(
q
)
, usually expressed in the unit vehicles per hour (veh/h), defines

the number of vehicles that traverse a road section within a certain time window. Average speed (u),
expressed in the unit km/h, is the average speed of vehicles on a road section within a certain time
window. Density (k), expressed in the unit veh/km, is the number of vehicles on a road (section) at
a certain point of time. Where flow aggregates vehicles over time, density does so over space.

These three variables together shape the fundamental relationship within traffic, which is:

q = ku (2.1)

Knowing two of the three variables makes it possible to estimate the third one, although this esti-
mation is only accurate during stationary and homogeneous traffic conditions. Traffic stationarity
means that these traffic variables are constant over time, which means they can only change at
points in space. Traffic homogeneity means that the traffic variables are constant over space, but
changes over time are possible. Stationary traffic conditions are quite common as most changes in
traffic phases are due to changes on a spatial level, for example at on- or off-ramp locations where
traffic flow changes or at locations with different speed limits. Homogeneous traffic conditions are
much rarer, as they require traffic conditions over a whole road section to change instantaneously
at a certain point in time, such as dynamically changing speed limits.

Within traffic flow theory, it is assumed that there is a clear relationship between the three macro-
scopic traffic variables mentioned before, which can be drawn as a single line. Greenshields et al.
[19] was the first to capture the relationship between speed and flow in a fundamental diagram,
although any two of the three variables will do. Theoretically, under stationary and homogeneous
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traffic conditions, observed combinations of flow, speed and density follow a value on the funda-
mental diagram. Besides, one can also use it to derive other properties of the traffic phases on a
road, such as the road capacity, the free-flow speed, the density during a jam, the propagation of so-
called stop-and-go waves and the capacity drop after congestion [20]. Since it contains this much
information and it makes it possible to derive many traffic flow phenomena from it, it is widely
used when modelling and controlling traffic flow. A (triangular) fundamental diagram with its most
imporant parameters can be seen in Figure 2.1

Figure 2.1: Triangular Fundamental Diagram with important traffic parameters (adapted from [1])

Most experts agree that traffic conditions can be subdivided into two phases, free-flow or con-
gestion, both having different properties and combinations of flow, speed and density. In the funda-
mental diagram, both phases are represented by two branches: depending on its phase, the traffic
variables change according to either the free-flow or the congested branch. The ranges of both
branches are color coded in Figure 2.1. In theory, if one knows the phase and one of the traffic vari-
ables, it is possible to derive the other two using the fundamental diagram. Loosely, the phases can
be described as follows. In free-flow, the average speed is equal to the free-flow speed and no con-
gestion is experienced as an increase in flow only results in an increase in density and to no (or a
limited) decrease in speed. However, once traffic flow exceeds capacity, a traffic breakdown occurs
and traffic gets stuck in the congestion, characterised by a low speed, a low flow and a high density
[21].

Although in theory, the fundamental relationship and fundamental diagram describe traffic quite
well, there are some phenomena which cannot be described by it. Let us recall that the funda-
mental relation only holds when traffic is stationary and homogeneous. In practice, traffic condi-
tions are never fully stationary, as traffic inflow and outflow of a highway can fluctuate greatly over
time. Besides, local and temporal disturbances in traffic can often temporarily lead to a violation of
constraints. Although on average, traffic conditions might look homogeneous, large differences in
speed and vehicle dynamics can cause perturbations on a microscopic scale which eventually can
become visible on a larger, macroscopic scale. This means that when calculating vehicle density
from flow and speed data, it is important to carefully interpret these values and assess whether it is
possible stationarity and/or homogeneity conditions are violated.

Besides, although the fundamental diagram is a good approximation of reality and gives good
results in traffic models, observed values can be significantly scattered around the fundamental
diagram. In free-flow, the errors are relatively small but when in congestion, actual measurements
can deviate greatly from the congested branch line [4]. According to Treiber et al. [21], this can be
due to measurement errors, traffic flow not being at equilibrium or violation of stationarity and the
presence of multiple vehicle types (as motorcycles, cars and trucks each have different dynamics).
However, Kerner [22] argues the ’empirical fundamental diagram’ is different from the fundamental
diagram and the large scatter can be explained by a different phase, which will be elaborated in
subsection 2.2.2.

2.2. Theory on Highway Bottleneck Congestion Patterns
After introducing these traffic variables, their meaning and interactions, let us use this to assess
traffic conditions for highway bottlenecks. There are many different bottlenecks possible. On the
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one hand, there are many types of location at which traffic can break down, such as on-ramps, lane
merges or even off-ramps, on the other hand, traffic can break down due to critical traffic flow and
distracted drivers. A lot of research has been done on finding theories which describe the underly-
ing processes resulting in the emergence and development of a traffic breakdown at highway bottle-
necks, and translating them into models which accurately model traffic flow and speed. Although
neural networks only detect relations within the input-output data and do not, having insight in
these processes can help selecting the right parameters and network structure which helps captur-
ing these processes. Besides looking at theories used for traffic modelling, explaining congestion
patterns present in empirical data is also relevant, since a neural network is trained in a data-driven
way.

This section is therefore structured as follows. First, a theoretical overview of different kinds of
congestion patterns for fixed bottlenecks will be presented, focusing on how they would emerge in a
traffic model. Secondly, empirical congestion patterns will be assessed and discrepancies between
theory and practice will be discussed, as most neural networks are trained on empirical data.

2.2.1. Theoretical Congestion Patterns
Most traffic models used to model flow and speed conditions near highway bottlenecks in a macro-
scopic way are based on the fundamental diagram. A basic theory that explains how most models
use the fundamental diagram to model traffic flows and speeds is shock wave theory. Shock waves
are the spatiotemporal boundaries between two different traffic phases and therefore indicate how
congestion heads propagate. Within shock wave theory, an assumption is that these speed changes
happen instantaneously, so the shock wave itself has not physical length. The number of vehicles
’entering’ the wave must be equal to the number of vehicles exiting the wave. When calculating the
entry and exit rate in the frame of a moving observer moving with the speed of the shockwave, the
exit rate is

qexi t = kdown(udown −w) (2.2)

where kdown and udown are the density and speed downstream of the shock wave and w is the
shockwave speed. ’Upstream’ of the shockwave, the entry rate is calculated in a similar way

qentr y = kup (uup −w) (2.3)

where kup and uup are the density and speed downstream of the shock wave. Since the conser-
vation of vehicles holds, qentr y = qexi t , as no vehicles can enter or leave the road at this (spatially)
infinitely small shockwave, the equations can be rewritten as follows:

kup (uup −w) = kdown(udown −w) (2.4)

qup −kup w = qdown −kdown w (2.5)

w = qup −qdown

kup −kdown
= ∆q

∆k
(2.6)

Substituting in q = ku (assuming that the traffic situation is stationary and homogeneous), one
could rewrite this to:

w = qup −qdown
qup

uup
− qdown

udown

(2.7)

Based on this, we can conclude that, according to the shockwave theory, the propagation of shock-
waves between two traffic phases is equal to differences in flow, speed and density upstream and
downstream from the bottleneck. Based on this, we can calculate these shockwave speeds based
on the demand pattern of a road and the capacity characteristics of a road, governed by the funda-
mental diagram. Let us now apply shockwave theory to explain the propagation of two basic types
of congestion often experienced at highway bottleneck.
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Fixed bottleneck
A fixed bottleneck is a bottleneck that occurs due to traffic flow exceeding road capacity. The sim-
plest bottleneck one can think of is a lane merge, as road capacity is reduced significantly at that
point. An example of a lane merge is given in Figure 2.2. In the demand pattern and fundamental
diagram, we can see that traffic demand rises from 2500 veh/h (phase A in the fundamental dia-
gram) to 5000 veh/h (phase B in the fundamental diagram), leading to flow exceeding the capacity
at the two-lane section (4000 veh/h) for one hour. Since the inflow of traffic downstream of the lane
merge is restricted to the bottleneck capacity, traffic flow at the two-lane section will be restricted
to its capacity 4000 veh/h, equal to phase D in the fundamental diagram, and congestion will occur
upstream of the lane merge. Since at the shockwave located at the lane merge the conservation of
vehicles holds

(
qup = qdown

)
, the flow within this congested road section is equal to the bottleneck

capacity but its speed and density are situated at the congested branch of the fundamental diagram,
depicted by phase C. This leads to a shockwave between phases B and C with a shockwave speed
of wBC = −7.3 km/h, propagating upstream. When traffic demand decreases again, the inflow in
the congested area will be equal to 2500 veh/h, represented by phase A, resulting in a shock wave
between phase A and C having a speed of w AC = 8.9 km/h. Since this shockwave is propagating
upstream, congestion will solve and traffic will go back to free-flow.

Figure 2.2: Shockwave theory at lane merge bottleneck. Adapted from [1].

Stop-and-go waves
Another traffic phenomenon that can cause congestion are stop-and-go waves. They arise during
’critical’ traffic conditions, which means that traffic flow is near capacity and having a relatively
high density. Within these conditions, local instabilities in traffic can result in a traffic breakdown,
locally reducing the average speed to almost stand-still. This can be elaborated with an example.
Since flow and density are both high, the headways between cars are small too. Sudden maneuvers
of other drivers together with distraction of others can introduce situations where sudden braking
is required. During non-critical free-flow conditions, traffic flow is low and as traffic flows out of
the downstream jam head at the road capacity. Since road capacity is much higher than the traffic
inflow, the downstream head will move upstream faster than the upstream head of the stop-and-go
wave, leading to the dissolution of the wave. However, when traffic is critical and traffic flows are
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(almost) equal to the road capacity, the upstream and downstream head will move at (almost) the
same speed. This leads to a stop-and-go wave which will propagate through the network until traffic
flow decreases (or it reaches a road segment with a higher capacity). Depending on the road charac-
teristics and the resulting fundamental diagram, the shockwave speed of stop-and-go waves ranges
from 15 to 20 km/h [23] and is equal to the slope of the congested branch in the

(
k, q

)
fundamental

diagram. An example of a speed heatmap showing stop-and-go waves are present Figure 2.3, where
speeds within the wave are close to standstill and traffic speeds around the stop-and-go waves are
relatively low (synchronised flow), meaning that traffic conditions are critical.

Figure 2.3: Stop-and-go waves from the German A5. Adapted from [2].

In practice, the queue discharge rate of the traffic jam is lower than the road capacity. This phe-
nomenon is called ’capacity drop’ and is captured by several fundamental diagram shapes. Due to
this effect, stop-and-go waves can even propagate if traffic flow is lower than road capacity and can
also trigger ’fixed bottleneck’ congestion at the location where the stop-and-go waves are formed.
By temporarily reducing road capacity of a segment, this segment is effectively transformed into a
bottleneck. Off-ramp bottlenecks are a good example for this: a large amount of vehicles exiting a
highway can cause turbulence due to lane changing. In combination with high through-going traffic
flows, this can lead to stop-and-go waves which eventually can lead to fixed-head congestion.

2.2.2. Empirical Highway Congestion Patterns
Although traffic congestion patterns can be described quite accurately using shockwave theory and
the fundamental diagram, some congestion patterns which can be observed empirically are hard
to explain using these theories. Besides, it was explained that the fundamental diagram and funda-
mental relationships have some flaws. Contrary to using a classical model, neural networks learn
based on input data only, making it important to look at discrepancies between theory and prac-
tice. Since many research also focuses on analysing empirical congestion patterns and explaining
these, a brief summary on their view of congestion pattern classification is also given. This is done
according to the three-phase theory of Boris Kerner: although some experts have disproven his the-
ory, his idea of synchronised flow and his classification are still relevant when discussing empirical
congestion patterns.

According to Kerner [24], traffic flow does not consist of two but rather three phases: free flow
(F ), synchronised flow (S) and congestion (J ), as he proposes a new empirical fundamental diagram
including this synchronised flow phase, as can be seen in Figure 2.4. This fundamental diagram also

shows the queue discharge rate qout besides the capacity q f r ee
max . The phase is characterized by rel-

atively high speeds (40-70 km/h), whereas traffic flow ranges from low to near-capacity. According
to his theory, it is not directly possible to have a phase transition from a free flow to a congested
phase, but only via the synchronized flow phase. Traffic phases always move from free-flow to syn-
chronized flow and then (possibly) to congestion, so an F → J transition is not possible, but an
F → S → J is. Rather than having a congested branch in the fundamental diagram, the synchro-



2. Macroscopic Traffic Flow Theory on Highways 13

Figure 2.4: Empirical Fundamental Diagram. Adapted from [3].

nized flow phase is situated on a plane around the congested branch, and traffic in this phase can
freely move to any point within this plane [3]. This also explains why congestion does not always
lead to significantly lower traffic flows compared to free-flow, contrary to the theoretical fundamen-
tal diagram. There are a large amount of locations at which traffic breakdowns are possible, such as
on-ramps, off-ramps, lane merges or even spontaneous, due to several causes, such as an upstream-
moving jam wave, spillback of a synchronized flow section or a sudden reduction in capacity. These
can all lead to different speed patterns as they result in different flow rates and (temporary) capac-
ities [24]. Therefore, a short overview of possible patterns is given in this chapter, including the
characteristics leading to these patterns.

Although some researchers have found this can also be described with two-phase traffic flow
theory, it still is relevant to present this as it explicitly treats some interesting characteristics of em-
pirical traffic patterns. Therefore, a few concepts regarding empirical congestion patterns according
to this synchronised flow theory will be elaborated.

Synchronized Flow Patterns
An F → S traffic breakdown at an isolated bottleneck can cause various synchronized flow patterns
(SPs), each having differences in the spatiotemporal propagation of the upstream and downstream
jam heads, namely

1. Localized SP (LSP)

2. Widening SP (WSP)

3. Moving SP (MSP)

Figure 2.5: Speed data from LSP (left), WSP (center) and MSP (right) patterns. Adapted from [4].

Depending on the flow rates at a road, both the inflow of an on-ramp as well as the throughgoing
flow on a road, a different SP can occur, as can be seen in Figure 2.6. An LSP can occur at relatively
low flow rates, both from the highway as well as on the on-ramp. A figure containing traffic speeds
over space and time for this pattern is the left figure of Figure 2.5. Its downstream front is fixed at
the bottleneck and the upstream front has a stabilized location upstream of the bottleneck. Since
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flow rates are just higher than capacity, the location of the upstream front is fixed. When (in)flow
rates increase, the probability of a WSP increases, which speed patterns can be seen in the center
figure of Figure 2.5. Its downstream front is also fixed at the bottleneck but the upstream front con-
tinuously propagates upstream over time. At higher (in)flows, MSPs can occur, which can be seen
in Figure 2.5 on the right. Both its downstream and the upstream front propagate, and it can re-
sult in a stop-and-go waves. MSPs show two different interesting congestion effects, leading to its
complex shape. The first effect is called the pinch effect, which means that from the synchronised
flow section located stream downward near the bottleneck location, stop-and-go waves can occur.
Due to the self-compression of this synchronised flow, densities increase and speeds decrease lead-
ing to a spontaneous S → J breakdown necessary for these stop-and-go waves. This can be seen in
Figure 2.5 by the narrow jam waves propagating upstream having small traffic speeds. The second
effect is called the catch effect, meaning that if the MSP reaches a bottleneck location, it can cause a
continuous traffic breakdown. This can cause a (second) SP to emerge with its upstream front fixed
at the bottleneck location. This can also be seen in Figure 2.5.

Figure 2.6: relative inflow
(
qi n

)
and flow

(
qon

)
values at which different patterns occur. Adapted from [4].

General Congested Patterns
After traffic breaks down and an S → J phase change occurs, general congested patterns (GPs) can
emerge at heavy bottlenecks. General patterns are characterised by a large synchronised flow area in
which many stop-and-go waves occur, leading to lower speeds and flows compared to synchronized
flow. A GP can be seen as a WSP which has higher traffic flows so more stop-and-go waves occur.
In Figure 2.7, two empirical examples from GPs are given, one resulting from a WSP at an off-ramp
transforming into a GP and one of an on-ramp bottleneck where a GP occurs due to higher flow
rates. If traffic inflow rates increase more, so-called mega-jams can occur, which are wide stop-and-
go waves which can be seen as one large stop-and-go wave which is not interrupted by sequences
of synchronised flow patterns [25]. Therefore, traffic speeds are lower compared to GPs. Since they
reduce the bottleneck capacity even stronger, almost zero, they can evolve into large sections of
motionless vehicles.
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Figure 2.7: Speed data from GPs resulting from WSP (left) and near an on-ramp bottleneck (right). Adapted from [4].

2.3. Traffic Breakdown Processes
Besides predicting the propagation of congestion, which leads to predicting right congestion pat-
tern type, it is also important to assess whether we can predict the emergence of a congestion pat-
tern which is defined by the traffic breakdown process. In general, traffic breakdown and therefore
congestion occurs when traffic demand exceeds supply. Within macroscopic traffic flow modelling,
one generally assumes that when traffic flow exceeds a static capacity value, congestion will occur.
However, this approach is rather simplistic compared to reality and is not suitable for short-term
traffic forecasting. Therefore, this chapter will further zoom in on these traffic breakdown processes
in a macroscopic context.

This chapter is structured as follows. First, traffic supply will be presented, including the vari-
ables influencing supply. Secondly, traffic demand will be analysed in a similar way. To conclude,
several researches which try to capture elements of the traffic breakdown process will be presented.

Traffic supply, determined by the road capacity depends on a number of factors. It is mostly deter-
mined by the road layout, such as the (a) geometry, (b) number of lanes, (c) turbulence (by checking
spacing between on- and off-ramps) and (d) other disturbances such as tight curve radii, high slopes
or tunnels [20]. However, other parameters which can fluctuate over time can also influence road
capacity. Vehicle composition can also influence road capacity, as a high number of trucks can de-
crease road capacity [20]. Brilon et al. [26] suggests that the road capacity depends on expect them
to depend on control conditions, driver/vehicle populations and even travel purposes. van Lint [27]
also suggests factors as ambient conditions (weather, road visibility), road works and traffic colli-
sions.

Capacity should therefore not be seen as a fixed value, but an infinite number of free-flow ca-
pacities for the same road exists [3]. Several attempts have been made to define or model this prob-
ability, roughly using two approaches: either by analysing empirical data or by modeling traffic
flow in new ways to better capture existing phenomena. Brilon et al. [26] attempted to capture
an empirically observed probability distribution constructed of traffic breakdown observations on
several roads on which clearly distinguishable bottlenecks were present. They fitted a Weibull dis-
tribution through this empirical probability function and analysed the parameters resulting from
this fit. They concluded that the parameters describing this distribution vary widely between high-
ways. However, the derived parameters had no physical meaning. Hoogendoorn et al. [28] created a
mathematical model which tries to more accurately model the traffic breakdown phenomenon for
macroscopic traffic flow models by including breakdown probabilities. They state that the break-
down probability changes based on traffic density (over space and time) and the characteristic
curves of the kinematic wave model, which can be derived from the fundamental diagram. Their
approach seemed to be successfully incorporate breakdown probabilities and showed it can be used
to model several breakdown phenomena, as well as use it to create a stochastic first-order macro-
scopic model. This proves that seeing traffic breakdown as a probabilistic event better captures
traffic breakdowns.

As capacity is not constant and most factors it depends on cannot be observed directly, predict-
ing capacity can be difficult. Although road capacity can be observed during traffic breakdown and
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can be fitted to a probability distribution, there still is a lot of uncertainty on when traffic will exactly
break down.

Traffic demand is the sum of the traffic demand between certain origins and destinations and the
mode and route choice of these groups. It is also influenced by traffic information and network ef-
fects, which can depend the traffic state of potentially unobserved roads [27]. Traffic demand cannot
be observed directly as one can only observe the product of supply and demand by looking at the
traffic flows on roads. This can specifically pose problems when predicting traffic on a highway that
has many on- and off-ramps. Due to model size constraints, only traffic data from the highway is
used as input data, meaning that surges in traffic flow caused by on-ramps and off-ramps caused
by the the road network to which these on- and off-ramps are connected cannot be predicted. To
be more concrete, if traffic demand changes causing more people to enter or exit the highway at
certain points, this cannot be observed from the data of this highway alone.

To summarise, it can be concluded that both traffic supply and traffic demand are difficult to pre-
dict. Although approaches to model a probabilistic capacity and traffic breakdown in a macroscopic
way have been successful Brilon et al. [26], Hoogendoorn et al. [28], many challenges can be formu-
lated with respect to correctly predicting traffic breakdown. Therefore, predicting the emergence of
congestion is likely to be difficult.

2.4. Predictability of Congestion Patterns using Macroscopic Variables
To conclude this chapter, a short overview will be given on the predictability of congestion patterns
using macroscopic variables. In this context, predictability is defined as whether it is possible to
predict the traffic state, consisting of the macroscopic traffic variables, with a sufficient accuracy
given the proposed prediction horizon. With sufficient is meant that the emergence or propagation
of a traffic phase is captured correctly although the exact nature of it might deviate.

Based on this chapter, it can be concluded that there is plenty of theory to correctly predict the
propagation of congestion patterns based on shockwave theory. However, an important shortcom-
ing can be formulated which are not covered by this theory. As fluctuations in traffic demand are
hard to predict, changes on in- and outflows from on- and off-ramps can disrupt the predictions
quite severely. In case a longer road without discontinuities (i.e. on- and off-ramps) is considered,
upstream and downstream traffic conditions can be used to predict traffic conditions. However,
in case a shorter road is considered or there are many discontinuities or interchanges with a lot of
merging and diverging traffic, this might not be the case.

However, the emergence of congestion patterns is hard to predict. As research shows that it is
possible to capture road capacity in a probability distribution and that certain traffic breakdown
processes can be modelled in a macroscopic, it is difficult to correctly predict traffic breakdown as
supply and demand cannot be observed directly. Contrary to the propagation of congestion pat-
terns, there is no clear theoretical framework which can be used to predict the emergence of conges-
tion patterns. This can have serious consequences on the quality of the resulting traffic predictions.
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Neural Network Theory

As explained before, there are several methods possible for traffic forecasting, which can roughly
be divided in parametric and non-parametric approaches. Recently, the application of machine
and deep learning within different domains has been booming and is standard for applications like
image recognition, natural language processing, classification and prediction. For a quick overview
of the position of neural networks and deep learning within the field of AI, which is an umbrella
term to which machine learning belongs, the reader is referred to Figure 3.1. Specifically for time
series forecasting, the application of a recurrent neural network (RNN), a specific variant on neural
networks, is researched extensively, also within the context of traffic forecasting [29]. These methods
often lead to much better performance compared to other traffic forecasting methods. This chapter
will introduce the concept of neural networks and specifically their use within the traffic forecasting
domain.

Figure 3.1: An overview neural networks and deep learning within the AI landscape.

This chapter is structured as follows. First, the concept and workings of a simple feed-forward neu-
ral network is explained, zooming in on model training and testing. Secondly, a RNN is presented
and its differences from a regular neural network are explained. Thirdly, we zoom in on the differ-
ent RNN architectures and implementations when used for (multivariate) time series prediction.
Lastly, a quick overview is given of the recent advantages of research on predicting traffic variables
on highways using RNNs.

3.1. Feed Forward Neural Network
A standard feed-forward neural network can be seen as universal function approximator. Its goal is
to approximate some function f ∗, such as a regression function y = f (x;θ), which maps an input x

17
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to an output y by learning the parameters θ which together lead to the best fit of x to y [8]. They are
called feed-forward since the values of the input x are passed forward through a series of functions
which together form the complex function f ∗ and which in the end result in the output y. It is called
a network since it links several functions f (1), f (2), ..., f (n) together to form the function f ∗. Each
individual function is also called a hidden layer, which is called ’hidden’ since its direct outcome is
not read and interpreted but used as input for another function. It is known that for some activation
functions, even nonlinear functions can be approximated.

Figure 3.2: Graph representation of a neural network. Adapted from [5].

Although this sounds quite abstract, a neural network can be more intuitively represented by its
computational graph, which is a directed acyclic graph as shown in Figure 3.2. In this graph, each
node represents a function depending on its internal parameters and the resulted values of con-
nected nodes. This computational graph consists of several horizontal layers, namely an input layer,
which holds all the input parameters, an output layer, holding the (desired) output parameters and
one or more hidden layers connecting the two. Together with the output layer, each hidden layer
corresponds a function f n , where n is the hidden layer index, which together form the function f ∗
the model should approximate. Each node is (usually) connected with all the nodes of the previous
layer, making its function depend on all resulting parameters of the previous function. Goal of this
neural network is that each unit of each layer sets its parameter values in such a way that ultimately,
the right relation between the input nodes and an output node value can be found. The amount
of hidden layers or chained functions is called the depth of a model, whereas the dimensionality of
each layer is called its width. Both the width of each layer and the total depth of a neural network
can be changed in order to optimise the model.

Let us now zoom in on the operations of only one node. As mentioned before, each node repre-
sents a function which can be formulated as as follows:

y =φ(
wT x+b

)
(3.1)

whereφ is the activation function, w are the weights, x are the values of all connected nodes and b is
the bias term. You can see that each node outputs a value using a linear function of its input values,
including a bias term, after which on the resulting value a certain activation function is applied.
When a linear activation function is used, which is the same as using no activation function, the
relation between each input and output pair in the neural network will be linear too. However,
when a nonlinear activation function is chosen in at least one of the layers, such as the rectified
linear unit (ReLU), tanh and sigmoid function in Figure 3.3, a nonlinear function between the inputs
and outputs can be formed. This essentially makes a feed-forward neural network a combination of
chained linear regressions which by applying nonlinear activation functions can be made nonlinear.
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Figure 3.3: Examples of a ReLU (left), sigmoid (center) and tanh (right) activation function. Adapted from Zhang et al.
[6].

3.1.1. Neural Network Training
When initialising a neural network, all weights and biases are chosen randomly according to a cer-
tain distribution or chosen as zero. Therefore, the neural network needs to be trained so it fits the
right weights and biases to the data such that the correct relation between input and output values
is found. This is done by using a labelled’ training set which, besides the input values x, also con-
tains the true output values y. The idea with training is that the model estimated output values ŷ,
retrieved from the output layer of the neural network, are compared with the true output value y
and the model weights are changed so the difference between y and ŷ is minimised. This is done
using three steps, which will be explained in this paragraph. First, the input parameters are prop-
agated through the neural network to retrieve ŷ. Secondly, the loss function is calculated, which
quantifies the difference between y and ŷ. Thirdly, the model parameters are updated, for example
using backpropagation, to decrease the loss function value.

First, the input values x are propagated through the network to calculate the estimated output ŷ
resulting from the activation functions and model parameters of each hidden layer (as in Equa-
tion 3.1). Secondly, the difference between the observed values (y) and predicted values (ŷ) has to
be determined to assess the accuracy of the model. This can be done using a loss function, which
formalises the differences between all values of (y) and predicted values (ŷ) into one single value
[30]. One can imagine this loss function can be formulated in many different ways, depending on
the goal of the model. When the goal of the model is to make a correct classification between groups,
a loss function is required which focuses on increasing the probability of a right classification. When
solving a regression problem, estimating the correct value, the difference between the ground truth
and prediction should be minimised. As in this thesis a regression problem is solved, a few regres-
sion loss functions will be presented.

• mean squared error (MSE), which emphasises large (absolute) differences between prediction
and ground truth values compared to small differences:

MSE = 1

n

n∑
i=1

(
yi − ŷi

)2 (3.2)

• mean absolute error (MAE), which does not differentiate between magnitudes of differences

M AE = 1

n

n∑
i=1

∣∣yi − ŷi
∣∣ (3.3)

Thirdly, the value of this loss function should be minimised by changing the model weights, since a
lower loss will result in a higher model accuracy. As the values of ŷ depend on all model parameters,
one could see the loss function as a function with a single output value (the loss) which depends on
all model weights. By finding the model weights corresponding to the (global) minimum of this loss
function, a set of weights which lead to the highest model accuracy can be found. Using gradient
descent, a minimum of this function can be found. A minimum of a function f (x), where x = the set
of weights and biases of a neural network, is situated at a location where the derivative of this func-
tion is zero

(
f ′(x) = 0

)
. In the case of multiple inputs, one can calculate the partial derivative ∂

∂xi
f (x)
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which separately calculates the derivative with respect to all inputs. All partial derivatives with re-
spect to all input variables can then be combined into the gradient, as defined in Equation 3.4.

∇ f (x) =
[
∂ f (x)

∂x1
,
∂ f (x)

∂x2
, . . . ,

∂ f (x)

∂xd

]>
(3.4)

Due to this definition, the gradient is equal to the direction in which the function f (x) increases the
most. Therefore, by calculating the gradient and moving x in the opposite direction of this gradient,
the value of f (x), or the loss function, will decrease. This method is called gradient descent [8], and
is formalised in the following equation:

x′ = x−ε∇x f (x) (3.5)

where ε is the learning rate, which is equal to the step size with which x is moved towards the gradi-
ent. For a two-dimensional function, this might look like Figure 3.4. The higher situated, red areas
have a high loss function value whereas the lower, blue areas have a low loss function value. The red
circle shows the initial value and the black path the way a minimum is found, by finding the inter-
mediate values denoted by stars and the spacing between those is equal to the learning rate. This
figure also shows two different challenges using gradient descent. The first is that the resulting func-
tion is highly complex with different minima, making it hard to find the global minimum. However,
often, a local minimum suffices too. The second problem is that it is very sensitive to the learning
rate. If a learning rate is too small, it might not converge, but when it is too big, the algorithm might
’hop over’ a minimum or not converge at all.

Figure 3.4: Representation of gradient descent using a two-dimensional example. Adapted from [7].

Deriving an analytical expression for the gradient is straightforward, but calculating this expres-
sion can be computationally expensive. Using the backpropagation algorithm [31], this calculation
method can be simplified and made less computationally expensive, especially for multi-layered
neural networks. By recursively applying the chain rule from the output layer to the (last) hidden
layer up to the input layer, the gradient can be calculated. Since calculations start at the ’back’ of
the neural network and are propagated to the front, until all layers have passed, this step is called
backpropagation.

Although gradient descent works really well, it is also computationally expensive, especially when
using additive loss functions (such as MSE and MAE) which requires to calculate a gradient for each
training step, making the computational cost O (m) where m is the number of training steps. How-
ever, stochastic gradient descent sees the gradient as an expectation, which might be estimated
using a smaller set of samples. This minibatch containing (m′) samples, drawn uniformly from
the dataset, can then be used to estimate the gradient, reducing the computational cost to O

(
m′).

Therefore, stochastic gradient will decrease the computational cost of training a neural network.
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3.1.2. Model Testing

After designing the neural network and training it on a dataset, assessing the training error, it is also
important to test the model performance using another dataset with unseen input data. After all,
we want our model not to just work using the data it was trained on, but also to be generalisable,
meaning it also perform well on new, unseen inputs. In order to do this, we create a (smaller) test
set and also look at the performance for this dataset. In the end, we want a model which both has a
small training error as well as a small gap between the training and test error. Both terms depend on
the capacity of the model, which is the extent to which a model can approximate a wide variety of
functions. In order for the model to also perform on unseen data, we want the model complexity to
match the underlying problem, i.e. the ’real’ input-output relationships. This can be explained best
using two terms, namely overfitting and underfitting, which are depicted in Figure 3.5 showing
the error rates for a problem with respect to the model capacity. In case the model is overfitting,
the training error is small but the gap between the training and test error is high. This happens
when the model capacity is too high, either with respect to the chosen problem or the size or data
in the training dataset. Since the model fits to present in the particular (limited) dataset and its
capacity is high enough it can have a good fit on this dataset, its training error will be exceptionally
low. The consequence is that some of these patterns might not be present in other datasets it will
be used on, making it less generalisable and not useful in practice [32]. However, when the model
is underfitting, its capacity is not high to capture the complex input-output relation present in the
training data. Therefore, both the training and generalisation error will be relatively high. One could
say that the neural network should be large enough to adjust its weights to the largest regularities
but ignore the smaller ones, which might be due to noisy data.

Figure 3.5: Overfitting and underfitting with respect to the model capacity. Adapted from [8].

3.2. Recurrent Neural Network

A recurrent neural network (RNN) is a type of neural networks specifically designed to process se-
quence data instead of one-dimensional inputs. Each input node can handle a sequence of arbi-
trary length instead of a single number, due to the introduction of recurrence. This recurrence is
introduced by making the state (or value) of each unit in a recurrent layer not only dependent on
its current input, but also on the state resulting from the input at the previous time step of the se-
quence. This results in two advantages when using a RNN over a FFNN with sequence data as input,
(i) the number of parameters used for a RNN will be far less than a FFNN, and (ii) a RNN can (in the-
ory) handle sequences of arbitrary length. This section is structured as follows. First, the concept
of recurrence will be further explained and related to the standard (’vanilla’) structure of an RNN,
analysing why this leads to the aforementioned advantages when using sequence data. Secondly,
the vanishing gradient problem will be explained, resulting in weaknesses of the ’vanilla’ RNN struc-
ture. Thirdly, the gated recurrent unit (GRU) will be introduced to see how implementing GRU cells
in an RNN structure can greatly improve accuracy.
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3.2.1. Vanilla RNNs
Let us further explore the concept of recurrence by introducing the computational graph of a single
RNN unit. By replacing each unit of a FFNN with a single RNN unit, one can create a RNN. This
recurrence is depicted by a cyclic connection of the node (unit) with itself, making its updated hid-
den state (or value) not only dependent on its input, but also its previous hidden state. This can be
captured by the following formula,

ht = f
(
ht−1,xt ;θ

)
(3.6)

showing the dependence of the hidden state ht at time step t depending on input xt , the previous
value of the hidden state ht−1 and unit parameters θ. The computational graph of one RNN unit
is shown in Figure 3.6, where the recurrence is captured by a cyclic connection of the hidden state
h, meaning that there is a connection between the hidden state of the previous and current time
step. By unfolding this computational graph, this becomes more clear, as this means that the hid-
den state contains information of all previous inputs, which is used for calculating the next hidden
state. This unfolded representation of Equation 3.6 of hidden state ht can be represented by Equa-
tion 3.7, where function g t is introduced, which is an arbitrary function specific to hidden state
ht to define its value based on the previous input values. Instead of applying function f multiple
times, passing historical input values through the previous hidden state, function g directly uses the
inputs until time step t to calculate the output. Since they are a different representation of the same
computational graph, both equations should hold the same. This is true since with this unfolding
step, function g t can be represented by chaining the function f repeatedly as shown in Equation 3.8,
which is equal to the previously known Equation 3.9.

ht = g t (
xt ,xt−1,xt−2, ...,x2,x1) (3.7)

= f
(

f
(
ht−2,xt−1;θ

)
,xt ;θ

)
(3.8)

= f
(
ht−1,xt ;θ

)
(3.9)

Figure 3.6: Graph representation of a regular (left) and unfolded (right) RNN unit. Adapted from [8].

So why is this recurrence introduced, and what are the advantages of having a recurrent neural
network over a regular feed-forward neural network? Let us come back on the two advantages pre-
sented in the introduction. The alternative of having a RNN with a sequence per input unit is having
a regular FFNN with a separate input node for each value of a sequence of each input parameters.
Therefore, each hidden node consists of a function with as input all sequence values over time, simi-
lar to Equation 3.7, although all values of all t time steps would be present in one big vector. First, the
input layer of the FFNN becomes very large, resulting in a high number of parameters that have to
be learnt and possibly it would be very inefficient to learn it. Since a RNN applies the same function
f over all values of a certain sequence time step, it essentially applies a parameter sharing technique
where the same parameters are used within the sequence values belonging to a parameter. This is
very valuable for time series analysis where the parameters do not change over time. Sometimes it
can even be beneficial to not have separate parameters for each value of the time index, for example
at natural language processing, where a desired piece of information can be at different locations
in a sentence (which is the sequence). By encoding this information in the hidden state of a unit,
it is assigned to an input sequence instead of an input belonging to a certain time step and input.
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Secondly, for a FFNN, if the sequence length changes, a new function g has to be learnt since the
old function can not handle the changing number of input parameters. Since a RNN uses the same
parameters on each sequence time step, it has not trouble handling sequences of arbitrary length,
which especially is the case with sentences at for example natural language processing.

Although this parameter sharing technique and handling of sequence data in RNNs is convenient,
it does come with a price. First, as mentioned before, the parameter sharing technique assumes
that the same parameters are applicable to different time steps. This also means that it requires the
dataset to be stationary, meaning that the conditional probability distribution of the variables at
time step t +1 does only depend on the variables at time step t and not explicitly on the value of t
itself. Although the value of t could be explicitly present in the input data, mitigating this problem,
it is important to keep this design choice in mind.

Secondly, the sequential processing of data makes it harder to optimise the parameters of the
network [33], due to the recurrence introduced which can result in a deep and complex computa-
tional graph, which can lead to a vanishing gradient problem [34–36]. As mentioned before, when
calculating the gradient using backpropagation, the chain rule is recursively applied by multiply-
ing local gradients between layers with each other from the output layer back to the input layer.
The length of the multiplication depends on the depth of the model. However, when training a
RNN, this backpropagation step becomes more complex, due to several problems. First, the loss
function is not only formulated per output unit but also per sequence element in this output unit,
making the evaluation of the loss function more complex. Secondly, when using backpropagation
on a RNN to adjust the model weights, gradients are not only propagated back between layers, but
also through time due to the connections of the hidden states (backpropagation through time). As
this extra unfolding step makes the computational graph more complex, this also has influence on
the backpropagation algorithm. When more hidden states from time steps far ago influence the
outcome of a sequence, this results in a deeper backpropagation step, making the amount of ele-
ments multiplied by the chain rule larger than with a FFNN. If there are many values in this chain
rule product near-zero, the gradient term will go to zero quite quickly, making it hard to change the
model weights. Although in theory, this hidden state can capture long-range temporal dependen-
cies and contextual information, this vanishing gradient problem makes this harder for standard
RNNs in practice.

3.2.2. Gated RNNs

In order to solve the problem of vanishing gradients, gated RNNs such as the long short-term mem-
ory (LSTM) and the gated recurrent unit (GRU) were introduced. By introducing gates in RNN units,
mechanisms are inserted for when a hidden state should be updated or be reset. Since the model
can learn at which points these gates should be enabled, it can better regulate the flow of informa-
tion over a sequence. Essentially, by learning which data is most relevant, these gates can reduce
the actual model depth making the probability a vanishing gradient occurs smaller [37]. The LSTM,
introduced by Hochreiter and Schmidthuber, is the oldest gated RNN and contains three different
gates. The GRU, first used by Cho et al. [38], has a simpler design compared to the LSTM as it has
only two gates, resulting in less parameters which have to be fit. Since it is suggested its performance
is similar to LSTM [38], the GRU is used for this thesis and will be explained in this section.

As explained before, a GRU has two different gates. The reset gate (Rt ) will reset (parts of) the
hidden state, which can be relevant if there is a break between values of a sequence where values
are not related to each other. The update gate (Zt ) will determine which (parts of the) hidden state
will be updated by the new input data, which can prevent irrelevant input data from affecting the
hidden state, or makes it possible to keep relevant sequence data which was given in an early stage.
The equations determining the weights of both gates are given in Equation 3.10 and Equation 3.11,
showing that both weights depend on the input data xt and the hidden state value ht−1, having a
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sigmoid activation function.

Rt =σ (Xt Wxr +Ht−1Whr +br ) (3.10)

Zt =σ (Xt Wxz +Ht−1Whz +bz ) (3.11)

In Figure 3.7, a GRU cell is depicted, which would replace one RNN unit in the unfolded compu-

Figure 3.7: Internal representation of GRU cell. Adapted from [6].

tational graph of Figure 3.6, showing all computational elements present in the cell. Calculating a
new value of the hidden state for a GRU consists of the following consecutive steps, namely:

1. a new candidate hidden state h̃t is calculated, where the reset gate determines whether the
previous hidden state ht−1 should be kept or ’reset’ using the new input xt;

2. the new hidden state ht is calculated, where the update state determines whether it consists
of the candidate hidden state h̃t or the previous hidden state ht−1.

First, we will explain the function of the reset gate, which generates a candidate hidden state h̃t by
point-wise multiplication (¯) of the previous hidden state weights of with the reset gate weights.
When the reset gate weights are close to 1, the hidden state is updated as in a regular RNN, when
they are close to 0, the hidden state only depends on the input xt, ’resetting’ the hidden state. To im-
plement this, the previous hidden state weights of the candidate hidden state in a GRU cell (Equa-
tion 3.13) depend on the reset gate weights, compared to updating the hidden state of a regular RNN
(Equation 3.12),

Ht = tanh(Xt Wxh +Ht−1Whh +bh) (3.12)

H̃t = tanh(xt Wxh + (Rt ¯Ht−1)Whh +bh) (3.13)

Secondly, the update gate is explained, which determines in which way the new hidden state ht is
combined from the previous hidden state ht−1 and the candidate hidden state h̃t , using the update
gate weights zt . If an update gate weight is close to 1, the new hidden state will be equal to the pre-
vious hidden state and input xt will essentially ignored. If an update gate weight is close to 0, the
new hidden state will be equal to the candidate hidden state. This will also influence the backprop-
agation process, since the model weights will not be updated when a time step has no influence on
the cell outputs. In short, the reset gates help to capture short-term dependencies by wiping the
internal state, whereas the update gates help to retain longer-term dependencies in the data [6, 39].
This results in Equation 3.14 for calculating the new hidden state values.

Ht = Zt ¯Ht−1 + (1−Zt )¯ H̃t (3.14)



3. Neural Network Theory 25

3.3. RNN Architecture for Time Series Prediction
Although in the previous chapters, the workings of one unit or layer have been explained, the gen-
eral architecture of the neural network is important too, consisting of the number of layers, the layer
dimensionality (i.e. units per layer) and the way several layers are connected. Since in this thesis
RNNs will be used for time series prediction, their architecture should be fit to process these tem-
poral sequences. One can think of several questions when designing an architecture. Although the
input is a sequence, should the output also consist of a sequence or rather give only one value?
And how should the results of one or multiple GRU layers be combined into an output? How many
hidden layers should be used and of how many units should each hidden layer consist?

In this chapter, neural network architecture design choices will be elaborated with respect to
time series analysis, since predicting traffic essentially is a time series problem. First, general design
problems are addressed such as the dimensionality and number of layers. Secondly, two RNN-
specific design choices regarding the output dimension are elaborated, namely having a one-shot
or a sequence-to-sequence model.

3.3.1. Layers and Layer Dimensionality
Both the amount of layers and the dimensionality of each layer are the main parameters when de-
signing a neural network. The dimensionality of the input and output layer are prescribed by the
input features and output labels of the input and output dataset. However, the number of hidden
layers and units per layer are often chosen using preliminary data assumptions and tuned using
trial and error. This hidden layer choice represents the model complexity: the higher the model
complexity, the more complex the input-output patterns the model can capture. The universal ap-
proximation theorem [40] prescribes that a neural network with at least one layer (having a non-
linear activation function) can approximate any continuous function where the inputs are within a
certain range. The number of hidden units in this layer should be large enough so the function can
be approximated. Although this is the case in theory, in practice the learning algorithm may fail to
fit the correct model weights, or the absence of enough data may result in overfitting of the model.
In practice, using deeper models (having more hidden layers) with fewer units can result in a better
approximation of complex functions and reduce the generalisation error of the model [8].

Although deeper models in general can fit more complex functions, they are also more complex
to fit. Often, complex model structures are required and hyperparameter tuning can become more
complex. There is no clear rule of thumb on the model complexity required for a certain problem,
as this is strongly problem dependent. In practice, model structures are chosen based on trial-and-
error, by selecting a variety of different layer combinations and assessing which one performs best.

3.3.2. Model Output Dimensionality
In general, two different output dimensionalities can be considered for a RNN. The simplest output
is a single-step prediction, in which all outputs are generated at once from the input sequence.
Secondly, a sequence-to-sequence architecture is possible, which outputs a sequence per output
unit instead of a node. Since both have their advantages and disadvantages, both possibilities will
be explained and assessed.

Single-Step Prediction
In its simplest form, a RNN layer will take a sequence as input and will generate an output se-
quence of the same length. When predicting one step ahead with a sequence length of s, the
input will consist of a sequence [xt−s ,xt−s+1, ...,xt−1,xt ], and the output consists of a sequence
[yt−s+1,yt−s+2, ...,yt , yt+1]. However, in time series analysis, we are in general not interested in esti-
mating known values (between time steps t − s +1 and t ), but only in the unknown time step t +1.
This is graphically shown in Figure 3.8, where in this case, s = 10. Therefore in practice, only the last
output sequence value is used. In practice, it was noticed that a dense layer is used as an output
layer, which connected to the last RNN layer.

In theory, it is also possible to output a ’sequence’ of values using the single-step prediction
method, simply by increasing the amount of units in the output layer. However, if the model out-
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put should hold n variables over t time steps, the number of units in the output layer is equal to
nt , meaning that when the amount of output variables is high, the output dimension can increase
greatly with an increase in prediction horizon. Besides, since the correlations between the variables
often are stationary over time, it might be smart to share parameters belonging to an output variable
over time. This leads us to the introduction of a sequence-to-sequence architecture.

Figure 3.8: Representation of input-output connections for a one-shot model.

Sequence-to-Sequence Architecture
A sequence-to-sequence RNN model architecture was introduced independently by Sutskever et al.
[41] and Cho et al. [38] to overcome the problem that for classic RNN model architectures, the out-
put either consisted of a single timepoint or had the same sequence length as the input. Originating
in natural language processing, a sequence-to-sequence architecture enables to output sequences
with different lengths than the input sequence. This can be useful in for example machine trans-
lation, as a sentence in English might have a different amount of words compared to Dutch. This
is done by splitting the model into an encoder and a decoder part, which both are separate RNN
structures. The encoder RNN processes the input data, which results in a final hidden state. This
hidden state is then fed into the decoder, together with the last prediction value, to generate the pre-
dicted sequence. The encoder and decoder can be designed separately to allow both the encoder
and decoder sequence length to be chosen independently. By this hidden state sharing between
the encoder and the decoder, the decoder can generate its predictions according to the information
held in this hidden state. This can be captured by the following equations for the encoder calculat-
ing the hidden state at the last encoder time step t (Equation 3.15) and the decoder predicting the
output at the the first (Equation 3.16) and second (Equation 3.17) decoder time step:

ht = f
(
ht−1,xt ;θ

)
(3.15)

ỹt+1 = f
(
ht ,xt ;θ

)
(3.16)

ỹt+2 = f
(
ht+1, ỹt+1;θ

)
(3.17)

Figure 3.9 also shows this graphically, where both the input sequence length are 10 and the
model predictions are fed back as input for the next value of the sequence. An important advantage
of this specific sequence-to-sequence architecture, is that it can be used as an autoregressive time
series model. As can be seen in Equation 3.17, the decoder uses the prediction of the previous
time step as input to predict the next time step. A big advantage from setting up models in an
autoregressive way is that it breaks down the prediction process in several steps. When using
single-step prediction, the model instantly predicts all parameter values specified in the prediction
horizon, not using parameters predicted from previous time steps to predict next time steps. When
using an autoregressive model, this model is trained to predict just one step ahead but by looping
this one step ahead prediction several times, using previously predicted values as input, it can
generate a prediction of arbitrary length. It both uses information from the input sequence, using
the hidden state of the trained encoder, and a trained decoder to estimate the right sequence from
this.
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Figure 3.9: Representation of input-output connections for a sequence-to-sequence model.

However, this sequence-to-sequence approach also has two downsides. First of all, since the de-
coder uses previous outputs as an input for the next prediction, both the input and output have to
consist of the same parameters, although shifted in time. For example: let’s assume one wants to
only predict traffic speed from a large variety of data (such as historical traffic flow, traffic speed,
traffic density, weather predictions, public transport ridership, AEX-index, etc.) the output of an au-
toregressive model should also consist of this complete dataset, therefore also predicting all other
values besides flows. This can lead to a larger model structure, since both the output dimension
grows and the model complexity increases as these other values also have to be captured. Since
the number of model parameters to be fit grows too, the model might be hard to train. As a sec-
ond downside, there might be problems of error propagation when values are predicted based on
previous predictions. If in an early prediction step an error occurs, the values predicted in the next
steps will be based on this erroneous prediction. Therefore, a small prediction error in the begin of
a sequence can grow to a larger prediction error in the end.

3.4. RNNs in Traffic Forecasting
Short-term traffic forecasting models concern making predictions ranging from seconds to hours
in the future based on current and past information [42]. These models are concerned with
forecasting either traffic variables, such as traffic flow and speed, or travel time [42]. Recently,
short-term traffic forecasting using neural networks has sparked interest, leading to a spike in
papers published on this topic from 2016 Ermagun and Levinson [29], Lana et al. [43], Do et al.
[44]. This is likely the result of an overall increase of interest in artificial intelligence and machine
learning, which also lead to the creation of packages like PyTorch, Keras and Tensorflow, making
it relatively easy to build these complex neural network structures. Together with the increase in
computational power and the possibility to train complex neural networks on consumer-grade
GPUs, it became much easier to create and train neural networks. This ’democratisation’ of AI
lead to the application of neural networks on domains outside the traditional AI-based fields
such as object recognition and natural language processing. In case of short term traffic fore-
casting, this also lead to a large variety of papers all having different approaches to use neural
networks for traffic forecasting. Therefore, an exploratory literature study has been executed.
All papers were retrieved in in Scopus on January 13th, 2021, using the following search term:
("LSTM" OR "GRU" OR "RNN" OR "recurrent neural network" OR "gated recurrent
unit" OR "long short-term memory") AND (“traffic flow prediction” or “traffic
speed prediction”) in TITLE-ABS-KEY. An overview of all assessed literature, based on the
criteria which will be mentioned below, can be found in

Based on this literature survey, several factors could be formulated on which the modelling struc-
tures differed. In this section, they are presented from coarse to fine, starting with more high-level
design choices and working towards more low-level, specific design choices. Keeping this order in
mind, the most important factors identified were:

1. temporal structure of input data, as there are two options concerning the selection of times at



3. Neural Network Theory 28

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3.10: Taxonomy of the relevant factors found during the literature analysis.

which spatiotemporal traffic variable data should be included and since the prediction hori-
zon heavily influences the model accuracy;

2. spatiotemporal data handling, as, depending on the feature engineering approach, the spa-
tiotemporal dataset can be aggregated over space and time in various different ways;

3. model architecture, as some approaches combined other neural network structures with a
RNN;

4. the model input and output variables, since different traffic variables can be included, each
having their advantages and disadvantages;

5. the data source of the model, as the data type influences the accuracy of the model

An overview of the most important choices made for each different factor can be found in Fig-
ure 3.10. In this section, the components in this figure will be elaborated further.

Since in this master thesis only loop detector data retrieved from a simulation is used, the last
factor, ’Data Source’ will not be assessed in depth. Therefore, this chapter is structured as follows.
First, the temporal structure will be elaborated, explaining both the differences between both ap-
proaches as well as the specific choices made on the temporal horizon. Secondly, the difference
between temporal and spatiotemporal RNNs will be elaborated. Thirdly, different RNN model archi-
tectures will be explained. Fourthly, differences in input and output parameters used in spatiotem-
poral traffic forecasting neural networks will be explained, as well as the possibility to include other
data of road networks in the model inputs. Finally, a summary will be given of the main findings
and research gaps found upon analysing the literature.

3.4.1. Temporal Structure
Within the literature analysed, two different approaches could be identified for the selection of the
times at which data, namely a more statistical time series approach and a more traffic data oriented
approach.

The statistical time series approach relies on inputting historical values, which are then used to
extract periodicities in the data and use these for the prediction task. This is similar to how (statis-
tical) time series analysis models like ARIMA work, which have also been used on traffic forecasting
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tasks and are often used as benchmark models for AI-based approaches. Methods using this ap-
proach (i.e. [16, 45–47]) used historical data belonging to the same time as the prediction, often a
combination of data from previous days or from the same weekday but different weeks. For exam-
ple, if traffic was predicted for a Monday on 09:00, they used traffic data on 09:00 from both the last
7 days as well as all Mondays of last month. Some authors only included historical data from the
same weekday, to compensate for daily differences in traffic flow. Besides inputting historical data,
some approaches also included time series decomposition or detrending. Zhao and Zhang [48] first
detrended flow data (using PCA) and trained an LSTM model on the resulting residuals. Combining
the residual data with the trends then resulted in the flow prediction. Asadi and Regan [49] used
time series decomposition to split the data in residuals, long term patterns and periodic patterns
and trained a different model structure on each of the data types, after combining the results to get
the final prediction.

For the traffic data oriented approach, only short-term traffic data is used as input and the
goal of the model is to extrapolate this data by fitting functions similar to traffic flow theory. The
input of the data consists of a spatiotemporal dataset of one or more traffic variables over a shorter
time period, often between 30 minutes and a couple of hours, and will predict traffic from 5 to 60
minutes in the future. The idea is that shorter-term flow and speed changes are a better predictor
for future traffic than historic traffic variables. For a RNN, the idea is that by training the model,
it will implicitly learn the relation between input data and the correct prediction. One could
almost draw parallels with a traffic model approach, where you explicitly feed traffic data and
road characteristics in the model which are used in combination with a traffic flow theory based
modelling approach to model what the traffic will be in the network. The big difference is that in a
RNN, both are not explicitly formulated.

Polson and Sokolov [50] data analysis to assess correlations of both historical data as well as more
recent observations. They concluded that recent observations, obtained within 40 minutes, are
stronger predictors than historical values in the range of one day, stating that a more powerful
model can be obtained when using recent observations. Therefore, this traffic data oriented
approach will be used within this thesis instead of a time series approach and the next sections will
therefore elaborate more on the choices which can be made using this approach.

After discussing the two main general temporal approaches, let us focus on the temporal horizon,
which mainly depends how far in the future one wants to predict traffic variables. Although one
wants to make predictions over very long time interval, there are some theoretical limitations which
prevent doing so. First, there are theoretical limitations on the predictability of traffic as missing
(input) information and uncertainties in the traffic process prevents the creation of accurate predic-
tions over long temporal horizons. Therefore, one needs to assess what data is available for making
a prediction and which prediction horizon will guarantee a reasonably accurate prediction given
this dataset. Secondly, some limitations are governed by the neural network structure, as model
limitations might prevent the model to fit the correct function which might be theoretically possible.

On a more practical note, there are three different parameters which define the temporal dimen-
sions of the model input and output, namely the temporal interval of the dataset, the input se-
quence length and the output sequence length. The temporal interval of the dataset is the differ-
ence of time between two consecutive measurements. The interval ranges from 30 seconds to 1
hour, although interval sizes of 2 or 5 minutes are most common [29, 43, 44]. Most of the time, this
is governed by the source of the data. In many researches a PeMS dataset is used, which consists of
highway loop detector data aggregated over 5 minutes from highways in California. Studies which
rely on GPS data of probe vehicles (such as taxis) tend to have higher temporal intervals, mostly in
the range between 15 to 60 minutes, as aggregating data on a smaller interval can result in very noisy
input data. The input and output sequence length depend on the chosen prediction horizon and
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the interval of the data, as

lseq = hor i zon

∆t
(3.18)

In general, one only wants to use the most relevant data as input data, as more recent data is far
more relevant for making a prediction compared to older data. Having more data than necessary
can create an unreasonably large sequence length in which it is hard to capture temporal depen-
dencies, making it hard to train the model. Another disadvantage is that larger sequence lengths
lead to fewer data samples when using the same dataset, which can reduce the dataset available to
train and evaluate the model. Therefore, the input sequence length has to be chosen carefully.

The first RNN models trained for traffic forecasting (for example [51–55]) used one step ahead
prediction, resulting in an output sequence length of 1. Many other RNN models make use of a
fixed input and output sequence length. However, not many papers explicitly assess their choice
in input and output sequence length. However from a traffic management point of view, Oh et al.
[15] suggest that a prediction horizon of 15-30 minutes is needed in order to anticipate on the
results of the forecast. Xue and Xue [56] used an LSTM RNN and data with a temporal interval of
5 minutes, input sequence lengths ranging from 2 (10 minutes) to 12 (60 minutes) and a one-shot
output with a shift ranging from 1 (5 minutes) and 4 (20 minutes). For the input sequence length,
longer input sequences generally resulted in better predictions, although results between lengths
were fluctuating. For the output shift, a 15-minute ahead prediction proved to be a clear optimum
and surprisingly, the 5-minute ahead prediction performed worse compared to the 10-minute
ahead prediction. On these aspects, no clear trends could be observed. Li et al. [57] used input
sequence lengths of 20, 30, 40 and 50 entries, having a dataset with a 5 minute interval. They stated
that a sequence length of 40 entries lead to the best results. Mackenzie et al. [46] predicted traffic
conditions 1, 3, 6, 9 and 12 steps ahead, using a data interval of 5 minutes. However, no clear
trend could be found assessing the results with a varying prediction horizon for the two analysed
detector locations and the errors varied greatly between the two locations. Zhang et al. [58] also
used data with an interval of 5 minutes, used a 12-step input sequence (1 hour) and a 3, 6 and
9 step ahead prediction. In this case, one could clearly see predictive performance deteriorating
with a higher prediction horizon as the 3-step prediction performed much better than the 6 and 9
step prediction. This has also been confirmed by Cao et al. [45], which also showed that increasing
output sequence lengths resulted in a decrease in prediction performance.

3.4.2. Spatiotemporal Data Handling
As has been mentioned before, predicting traffic flow or speed can be seen as a spatiotemporal pre-
diction task, since traffic flows and speeds propagate over a road network with certain speeds over
both space and time. Since the future traffic flow or speed on a road segment therefore depends
on the previously observed traffic flow or speed on adjacent links, it is important that a model can
consider both spatial as well as temporal correlations in the data for its prediction task. Many traffic
forecasting papers using RNNs only focus on temporal correlations (i.e. [51, 52, 59–63]) and there-
fore have as input flow and/or speed data of one road segment as input data.

However, others also focus on incorporating spatial correlations [64] by including data from
related road segments, and do so in several ways. Kang et al. [65] predicted traffic flows at a
single detector location using several traffic variable combinations from several detector location
combinations as input, ranging from zero to three upstream and downstream road segments.
They found the highest prediction accuracy was achieved using data from all three upstream and
downstream road segments. [45] used both speed data from one upstream and downstream road
segment, as well as speed data from alternative routes to predict traffic speeds on one road segment.
Others use input data from several road sections and also predict traffic on all the input sections.
Zhang et al. [58] and Mihaita et al. [66] both used a Speed-to-Vector (Speed2Vec) data embedding
mechanism, in which temporal sequences of several spatially related nodes can be encoded. By
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building a two-dimensional matrix, where each matrix entry consists of a speed sequence of one
segment at one time step, the spatiotemporal data is coded in an efficient way. Among others, Wu
et al. [16], Polson and Sokolov [50], Cui et al. [67], Yu et al. [68], also use a similar data encoding
mechanism to predict traffic flow/speeds on several sections using spatiotemporal input data and
a RNN. Since their neural network configurations outperformed other neural networks, one can
conclude that RNNs can benefit from using spatiotemporal input data.

Besides only using spatiotemporal data, there are also modelling approaches which try to incorpo-
rate the road network graph structure into their neural network and therefore explicitly encode the
spatial relationship between the spatiotemporal inputs. By encoding the graph structure in the net-
work, the neural network does not have to derive the spatial structure of the nodes implicitly based
on the input-output pairs. This would also make it possible to more accurately predict traffic on
road networks with a more complex network topology instead of one single road. This can be done
using a combination of an adjacency matrix, which depicts all adjacent road sections of a certain
road section, and convolutional operations. Specific methods will be considered in the next section.

3.4.3. Model Architecture
Based on choices made regarding the data in the previous sections, several choices can be made
regarding the specific model architecture. Firstly, the output dimensionality type, as discussed
in section 3.3, was found to be important. For the output dimensionality type, one can choose
between the one-shot and sequence-to-sequence model. Most models analysed had a one-shot
model structure, although sequence-to-sequence models have also been used. Lu et al. [69] com-
pared many different neural network forms for predicting traffic speeds, such as a regular LSTM, a
sequence-2-sequence model and a graph LSTM, in which they found that the sequence-2-sequence
model and graph LSTM both performed much better. However, no clear assessment has been made
on what the causes are of some methods outperforming the others.

Secondly, the RNN cell type used also varies significantly. Most frequently, a LSTM cell is used,
sometimes even the bi-directional variant which can use information from both the past and the
future. However, since traffic prediction is a linear process, contrary to NLP, it is not expected to
benefit from this bi-directional LSTM. A GRU cell is also often used and is expected to perform
similar to LSTM [38]. Thirdly, one could also use the ’vanilla’ RNN cells, which are expected to suffer
from the vanishing gradient problem.

Although in general, the GRU is expected to perform better than LSTM and RNN, this was also
confirmed for traffic forecasting. Chattha et al. [70] concluded that the errors are lowest for a GRU
compared to the other two methods, making it the state-of-the-art RNN cell for traffic prediction.

Thirdly, exotic model combinations can be created when different data have to be merged. This
needs to be done when spatiotemporal data from different (fundamental) traffic variables have
to be combined, but also when other variables such as historical data or non-traffic variables (i.e.
weather, holiday, ...) are added.

When multivariate spatiotemporal data, from both traffic flow and speed, need to be combined,
it is important to assess how to correctly integrate these into the model structure. There are little
RNN traffic prediction models which combine both datatypes, but one can distinguish two different
methods to do this. The first method, shown in Figure 3.11a is to combine both flow and speed data
into one input layer which are then processed by the same RNN layers, as has been done by Ma
et al. [71] and Han et al. [72]. Although Li et al. [9] does not include flow and speed data, he also
proposes that his network structure can handle two or more spatiotemporal data types by including
them into the same RNN structure. A big advantage of this method is that it can also make use
of correlations between flow and speed data over space and time. The other method, depicted in
Figure 3.11b is by processing both data types using separate RNN layers, catenating both results
and using a dense layer to combine both results for the prediction, as has been done by [16] an
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[73]. Using this method, spatiotemporal correlations can only be detected by the dense layer used
on the catenated RNN outputs, possibly reducing the ability of the model to detect more complex
spatiotemporal patterns.

A method which is also often used when multivariate data is included is an attention mecha-
nism. This attention mechanism increases the importance of relevant variables whereas it decreases
the importance of non-relevant variables. This can especially be relevant if many different parame-
ters have to be incorporated, as it helps prioritising or selecting features in case the feature space is
particularly large.

(a) Neural network design with one RNN in total.

(b) Neural network design with one RNN per parameter type.

Figure 3.11: Variants of neural network design for multivariate input.

When other variables have to be combined into a neural network, different options also exist. Lv
et al. [47] used holiday and weather data as inputs, and simply catenated its results with the output
of the RNN analysing the spatiotemporal traffic data, using a fully-connected layer to generate
the final prediction based on the two data sources. However, Wu et al. [16] used an attention
mechanism for this purpose, which weighs parameters differently comparing to the values of these
parameters.

Lastly, the model structure also changes if the spatial road network structure is encoded explicitly
in the neural network, as mentioned in the previous section. There are two methods in order to
do this. Wu et al. [16], Ma et al. [71], Han et al. [72] used the convolution operations in a CNN to
’mine’ spatial features from the dataset, while using an RNN to extract temporal relations in the
data. They either combined both networks serially, feeding the CNN output into the RNN network,
or parallelly, where the RNN and CNN results were combined afterwards and processed (by a dense
layer) to retrieve the final results. However, since road networks are sparse, using a CNN might
be suboptimal as this results in a lot of unused matrix entries. Zhang et al. [58] proposes adding
an adjacency matrix and using a graph attention network on the input data before passing it to
the LSTM layer, in order to encode this spatial data. Li et al. [74] proposed a Diffusion Convolution
Recurrent Neural Network which uses graph convolution in combination with this adjacency matrix
to extract spatial dependencies to predict traffic. As road network graphs are often extremely sparse
directed graphs, this network structure can better capture spatial dependencies in traffic than a
regular CNN can. Variants of these techniques are also used by Cui et al. [75] and Bogaerts et al. [76].

A promising other method of implementing this graph data in traffic forecasting is Dynamic
Graph Convolution Recurrent Neural Network (DGCRNN), as proposed by Li et al. [9]. The model
makes use of Dynamic Graph Convolution (DGC) to embed the highway graph structure in the neu-
ral network so the spatial propagation of traffic-related information can be captured. Introducing
a ‘receptive field’ by embedding a k-walk aggregator within the convolution, information of neigh-
bouring nodes is used when predicting traffic variables on the current node. The steps involved in
a DGC module, as depicted in Figure 3.12, are (I) computing the convolutional kernels from several
inputs, (II) applying these kernels in a graph convolution and (III) adjusting the output dimension.
Smart parameter sharing within the DGC module makes sure traffic properties are captured while
simultaneously minimizing the number of trainable parameters. Using this parameter sharing tech-
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Figure 3.12: Steps in Dynamic Graph Convolution module. Adapted from [9].

nique, the model was able to correctly predict the propagation of shockwaves through a ring road
network and can potentially also be used on more complex road networks.

3.4.4. Input and Output Variables to Include
Based on the literature researched, three different categories of input and output variables were
identified, which will be treated in this section. First, the traffic related input- and output variables
will be elaborated. Afterwards, other (non-traffic) related inputs will be mentioned.

It is important to select the right traffic variables to include in the model inputs and outputs, as
these are the main data on which the model is being trained. In chapter 2, both traffic flow and
speed were identified as important variables, although it was found easier to detect and classify
congestion based on speed data. Since traffic flows could remain quite constant during congestion,
traffic speeds are a better indicator for congestion. Besides speeds being more relevant for the clas-
sification and analysis of congestion patterns, it can also be used for calculating travel times and
delays. Therefore, one could say that predicting speeds is more relevant compared to predicting
flows. However, most models developed for short-term traffic prediction were used to predict traffic
flow [29, 43, 44] and within this literature study, only 11 of the papers analysed were predicting traffic
speeds. Traffic speed prediction might also be harder than traffic flow prediction, as from chapter 2
follows that traffic speeds can increase and decrease rather quickly compared to traffic flows due
to these abrupt traffic phase changes. This has also been noted by Polson and Sokolov [50], as they
resort to using tanh-layers and l1-regularisation to account for these abrupt changes. Although pre-
dicting speeds might result in a lower accuracy compared to flow, the added value of having speed
data greatly outweighs the greater complexity of this problem. Travel time would also be a good
model output, as proposed by van Lint [27], especially when used in an ITS. However, compared to
flow or speed predictions, it would be much harder to prove the validity of the predictions.

Based on the model outputs, model inputs have to be chosen which would be good predictors
for these output variables. In most of the proposed neural networks, the input variables are equal to
the output variables. However, Kang et al. [65] found that when predicting traffic flows, using flow,
speed and occupancy data as inputs resulted in a higher model accuracy. However, it is unlikely
that adding occupancy data could result in a higher accuracy, as this raw data is used to derive flow
and speed data. Other researchers also incorporated flow and speed as input data (i.e. [16, 27, 73])
but did not comment on whether this resulted in an increased accuracy compared to using only
one of them.

Besides only using traffic related variables such as flow and speed as input features, some models
also use other data sources as input which are believed to affect traffic supply and demand. Zheng
et al. [77] also used weather data and route structure data, by combining them into an embedding
layer. Lv et al. [47] also encoded weather data and whether the data were retrieved from a peak
hour or holiday. As rainy weather can result in more car traffic demand or a lower road capacity,
the availability of alternative routes can prevent congestion from getting worse and traffic during
peak hours and holidays differs from regular traffic conditions, the idea is that the neural network
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can use these correlations between the input and output data to have a better prediction. Although
adding this data explicitly has not been researched in this thesis, this might help creating models
with a higher generalisability and even are transferable to other roads, as this enables the model to
explicitly make a distinction between different roads based on the input variables.

3.4.5. Main Findings and Research Gaps
As within this literature analysis many different smaller conclusions were drawn and research gaps
were found, let us conclude with a quick recap containing the main findings and research gaps
identified.

As for the temporal structure, it was found that the traffic data oriented approach leads to better
results compared to the (statistical) time series approach: short-term traffic predictions should
only be based on more recent flow and speed data. both the input horizon and prediction horizon
were found to be important properties, although little attention is given to its choice. In general,
the predictive accuracy decreases with a higher prediction horizon and output sequence length,
which is as expected. However, for the input sequence length, no clear trend could be observed.
Traffic flow theory might be helpful for determining the right input horizon, as this can lead to
recommendations on the temporal horizons which might be relevant from a traffic point of view.
A research gap found was a good substantiation on which temporal horizon parameters should be
chosen when preparing the dataset.

When assessing the spatiotemporal data properties, using a spatiotemporal dataset and model
structure greatly improved the accuracy. Adding spatial information in terms of an adjacency matrix
or by using convolution operations can be very helpful in case the network structure is complex,
such as a dense urban network. This can provide additional information on the way traffic flow and
speed information of individual road segments are correlated to each other. However, for simple
networks such as single highways, this information has little added value as it can be learnt easily
by the neural network.

Assessing the model architecture gave more insight into the design choices which can be made
when designing these neural networks. GRUs were found to result in the highest accuracy, as
well as the autoregressive output type. Several methods were used to combine data from different
sources. Overall, it was found that many different model architectures are proposed, but the choice
for a particular model architecture often is not substantiated. When many different model types
are combined and an attention mechanism is used, it is unclear what the purpose is of these often
complex model structures. When CNNs are used to mine spatial features, no substantiation is given
on how it will actually do this on extremely sparse network data. Therefore, it would be helpful to
break-down a model architecture and test the influence of different design choices on the model
accuracy. This incremental improvement of a neural network architecture would lead to a better
substantiation of design choices instead of only proposing a new and complex model structure.

When looking at the input and output variables, it was found that predicting speeds is more
valuable than predicting flows. In order to do so, flow and speed data would be valuable. However,
a research gap found was that no research has been done on whether adding flows would result
in a better speed prediction compared to only using speed as input data. Mostly, a choice is made
regarding the input data, but no assessment on the validity of this choice is given. This is also
the case when adding other inputs, such as weather and holiday data. Although the models are
compared with benchmark model, no explicit assessment on the added value of including this
extra data is given.

Another major research gap that could be identified was that a very limited assessment of the
model error was done. Some authors used a boxplot to assess the variation of errors for different hy-



3. Neural Network Theory 35

perparameter combinations (e.g. [67, 72, 78]) or line plots or heatmaps containing predicted flows
or speeds (e.g. [58, 75, 79, 80]). However, limited attention is given to interpreting the errors over
space and/or time, or to assess the variability of the error over the different days on which traffic is
predicted.



3.N
eu

ralN
etw

o
rk

T
h

eo
ry

36

Table 3.1: Literature table containing an overview of all assessed literature based on the criteria defined in the literature analysis (part 1).

Temporal Structure Spatiotemporal Data Model Architecture Input/Output Variables Data Source

Time
Series

Step Size
(min)

Input Horizon
(min)

Output Horizon
(min)

ST
Data

Graph
Data

RNN/other
Type

RNN
Struct.

Attention
Mechanism

Model
Struct.

Traffic
Input

Exogen.
Input

Model
Output

Data
Type

Simulation
Data

van Lint [27] 7 1 1 1 X 7 RNN 1s 7 Serial q, u 7 tt Loop X
Ma et al. [81] 7 2 1 1 X 7 LSTM 1s 7 Serial q, u 7 u Loop 7

Tian and Pan [51] 7 5 5,10,. . . ,60 15,30,45,60 7 7 LSTM 1s 7 Serial q 7 q Loop 7

Fu et al. [52] 7 5 30 5 7 7 LSTM/GRU 1s 7 Serial q 7 q Loop 7

Guo et al. [59] 7 5 30 30 7 7 GRU AR 7 Serial q 7 q Loop 7

Kang et al. [65] 7 5 1 1 X 7 LSTM 1s 7 Serial q, occ, u 7 q Loop 7

Li et al. [74] 7 5 5 15,30,60 X GCN RNN 1s 7 Serial q 7 q Loop 7

Liu et al. [53] Xa 0.5 0.5 1 7 ConvLSTM
Conv+
BI-LSTM

1s 7 Serial q 7 q Loop 7

Shao and Soong [54] 7 5 5 5 7 7 LSTM 1s 7 Serial q 7 q Loop 7

Wang et al. [82] 7 5 5 15,20,25,30 7 7 Bi-LSTM 1s 7 Serial q 7 q Loop 7

Yu et al. [83] 7 2 30
2,4,6,
20,40,60

X CNN CNN+LSTM AR 7 Serial u 7 u Loop 7

Zhao et al. [78] 7 5 1 15,30,45,60 7 7 LSTM 1s 7 Serial q 7 q Loop 7

Yu et al. [68] 7 5 60 15,30,45 X GCN STGCN 1s 7 7 u 7 u Loop 7

Chen et al. [60] 7 5
30,60,120,
180,240,300

30,60,120,
180,240,300

7 7 LSTM 1s Serial q 7 q Loop 7

Cui et al. [67] 7 5 5 X 7 LSTM 1s 7 Serial u 7 u Loop 7

Lv et al. [47] Xb 10,15,
. . . ,30

100,150,
. . . ,300

100,150,
. . . ,300

X LC LSTM 1s 7 Parallel u X1 u FCD 7

Qu et al. [73] 7 15 90 15 X 7 LSTM 1s 7 Parallel q, u 7 q Loop 7

Tian et al. [84] 7 15, 60 15, 60 15,60 7 7 LSTM 1s 7 Serial q 7 q Loop 7

Wu et al. [16] Xc 5 105 5,10,. . . ,45 X CNN GRU+CNN 1s X Parallel q, u 7 q Loop 7

Xue and Xue [56] 7 5 10,15,. . . , 60 5,10,15,20 7 7 LSTM 1s 7 Paralel q 7 q Loop 7

Zhao and Zhang [48] Xd 3 2880 1440 7 7 LSTM 1s 7 Serial q 7 q Loop 7

Dai et al. [85] 7 5 (corr.) 5,10,15,20 X 7 GRU 1s+AR 7 Serial q X2 q Loop 7

Du et al. [86] 7 15 45,90 45,90 7 7 LSTM s2s X Serial q, u, tt 7 q Loop 7

Essien et al. [87] 7 5 60 120 7 7
Conv-
LSTM

1s 7 Serial q 7 q Loop 7

Guo et al. [88] 7 5 5-100 5 7 CNN CNN+GRU 1s Serial q 7 q Loop 7

Han et al. [72] 7 5 1440 5 X CNN CNN+LSTM 1s 7 Parallel q 7 q Loop 7

Variables: occ = detector occupancy, q = flow, tt = travel time, u = speed.
RNN Structure: 1s = one-shot, AR = autoregressive, s2s = sequence-to-sequence.
Time Series: a only periodicity (day/week); b last week, last day; c statistical processing; d residuals, long-term patterns, periodic patterns
Exogenous Input: 1 periodicity (day/week), weather, holiday; 2 correlation analysis
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Table 3.2: Literature table containing an overview of all assessed literature based on the criteria defined in the literature analysis (part 2).

Temporal Structure Spatiotemporal Data Model Architecture Input/Output Variables Data Source

Time
Series

Step Size
(min)

Input Horizon
(min)

Output Horizon
(min)

ST
Data

Graph
Data

RNN/other
Type

RNN
Struct.

Attention
Mechanism

Model
Struct.

Traffic
Input

Exogen.
Input

Model
Output

Data
Type

Simulation
Data

Kim et al. [89] 7 15 150, 225 15 X GCN LSTM 1s 7 Parallel u 7 u Loop 7

Li et al. [62] 7 5 5-45 5 7 7 LSTM 1s 7 Serial q 7 q ANPR 7

Li and Wu [90] 7 5 5 5 7 7 LSTM 1s 7 Serial q, occ, u 7 q, occ, u Loop 7

Li et al. [57] 7 5
100,150,
..., 300

5 X GCN GCN+LSTM 1s X Serial q 7 q Loop 7

Lu et al. [69] 7 5 24 12 X GCN GNN+LSTM s2s 7 Serial u 7 u Loop 7

Luo et al. [91] 7 5 30 5 X KNN KNN+LSTM 1s X(KNN) Serial q 7 q Loop 7

Mihaita et al. [66] 7 3 3-90 3, 6, . . . , 30 X 7 LSTM 1s 7 Serial q 7 q Loop 7

Mou et al. [92] 7 2
20, 40,
. . . , 160

2 7 7 LSTM 1s 7 Serial q 7 q Loop 7

Peng et al. [93] 7 2 2 2 7 7 LSTM 1s X Serial q 7 q Loop 7

Wang et al. [94] 7 5 5 5 7 7 LSTM 1s 7 Serial q 7 q Loop 7

Wei et al. [95] 7 5 5 5 X 7 LSTM 1s X(AE) Serial q 7 q Loop 7

Xiangxue et al. [96] Xe 5 5 5 X 7 LSTM 1s 7 Serial u 7 u FCD 7

Yang et al. [97] 7 15 480 15,30,45,60 7 7 LSTM s2s X Serial q 7 q Loop 7

Zhang et al. [58] 7 5 60 15,30,45 X 7 LSTM 1s X(GAT) Serial u 7 u Loop 7

Zheng et al. [98] 7 5,15 15,45 5,15 X CNN
LSTM+
DAE+CNN

1s 7 Serial q, u 7 q Loop 7

Zheng et al. [77] 7 20 120 20 X CNN
Embed+
CNN+LSTM

1s Serial tt X3 tt Loop 7

Asadi and Regan [49] 7 5 30 15,30,45,60 X CNN
LSTM+
CNN+AE

s2s 7 Serial q, u, occ 7 q Loop 7

Bogaerts et al. [76] 7 5 20
25,50, . . . ,
225,240

X CNN CNN-LSTM AR 7 Serial u 7 u FCD 7

Chen et al. [99] 7 15 15
150,300,
450,600

7 7 AE GRU 1s X(AE) Serial q 7 q Loop 7

Chen et al. [100] 7 5 50 15 7 7 LSTM 1s X Serial q 7 q Loop 7

Chen et al. [101] 7 5 5,10,. . . ,25 5 X CNN CNN+LSTM 1s 7 Serial q, occ 7 q Loop 7

Lee and Lin [102] 7 1 1 1 X 7 LSTM 1s 7 Serial u X4 u Loop 7

Li et al. [9] 7 2,5 30,60 20,30 X DGC GRU AR 7 Serial u 7 u Loop 7

Lu et al. [103] 7 5 120 60 X GCN GRU AR 7 Serial u 7 u Loop 7

Ma et al. [71] 7 5 10,15,. . . ,55 10,15,. . . ,55 X CNN CNN+LSTM 1s 7 Serial q, u 7 q, u Loop 7

Zhou et al. [104] 7 15 300 15 X 7 LSTM+SVR 1s 7 Serial q 7 q Loop 7

Zhu et al. [105] 7 15 15 15 X GCN RNN 1s 7 Serial q, u 7 q FCD 7

Variables: occ = detector occupancy, q = flow, tt = travel time, u = speed.
RNN Structure: 1s = one-shot, AR = autoregressive, s2s = sequence-to-sequence.
Time Series: e residuals, long-term patterns, periodic patterns
Exogenous Input: 3 precipitation, temperature, route structure (embedding); 4 temperature, precipitation, holiday, day, reachability





4
Preliminary Data Analysis

The goal of this preliminary data analysis is to gain more insight on traffic characteristics by only
looking at the data of a road. Since this is the only information a neural network can base its pre-
dictions on, including maybe a graph structure, it is important to have an idea what data contains
relevant information for traffic prediction. Besides, this is an important step to formulate design
requirements and choices for the neural network. By doing a correlation analysis and determining
data aggregation levels, design choices regarding input data and node specification can be made.
If two roads with similar layouts have big differences in traffic-related parameters (such as the fun-
damental diagram) which influence predictions, it might be relevant to feed these into the neural
network directly. Since the model should be able to estimate traffic on various similar roads, the
input data should also contain information distinguishing location specific properties. Roughly, the
following requirements can be formulated:

• the data should contain information which can predict at least traffic speeds correctly

• the data provided should capture location specificities in traffic so it can correctly estimate
traffic on a wider variety of roads

For the first requirement, it is important to look at the relation between flow and speed over space
and time and see if there are patterns and relations which can help predicting traffic. For the second
question it is important to research which data can be used to accurately predict traffic on a range
of roads.

In order to meet both requirements, the goal is to find meaningful information and correlations
over space and time for flow and speed data. When looking over space, spatial regions with sim-
ilar traffic conditions might also have a a similar spatial correlation and may be a relevant spatial
aggregation level for the neural network. It would be likely that these coincide with the location of
discontinuities, as these discontinuities are likely to change traffic conditions and the prediction re-
sults. When looking over time, it might be useful to aggregate temporal information to both reduce
the amount of data needed for depicting the underlying pattern as well as preprocessing the data
so the predictions are more reliable. Another important goal of this data analysis is to assess the
accuracy of the data and the viability of a data-based approach, by checking if the data quality is
high enough.

For this preliminary data analysis, data was retrieved using the Mirrors-NDW tool from DiTTlab
which provides traffic data from loop detectors on Dutch highways maintained by Rijkswaterstaat.
This tool filters the raw data using the adaptive smoothing method (ASM) and provides flow per
lane (in veh/h) and speed (in km/h) averages (in integers) over an arbitrary space and time with a
resolution of ∆x = 100 m and ∆t = 0.5 min. With the elementary traffic relation q = k ∗u, density
can be calculated. For this data analysis, two roads have been analyzed using data from Monday
18th of November to Friday 22th of November between 14:00 and 19:00, to capture both congested
and uncongested situations. Thursday 21th of November has been excluded for both roads, due

39
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to ’99999’-values probably resulting from a system-wide malfunction. Two highway sections have
been reviewed, namely A20 and A4. Firstly, the results of the A20 will be thoroughly assessed. Sec-
ondly, the A4 analysis will be used to validate the previously acquired results. Lastly, conclusions
will be drawn from the data analysis.

Pleas note that in the heatmaps, the driving direction if from bottom to top. In general, 0 km
corresponds with the most upstream segment of the road.

4.1. A20 (knp. Terbregseplein to knp. Gouwe)
This stretch of the A20 highway is 12.3 km long and runs from Terbregseplein interchange in Rotter-
dam, connecting the A20 with the A16, to Gouwe interchange in Gouda. It consists of four exits, of
which one leads to a service station, and a lane merge where the number of lanes changes from three
to two lanes. A schematic view of the road layout and discontinuities (such as on-ramps, off-ramps
and lane merges) can be seen in Figure 4.1 and a satellite image with its surroundings in Figure 4.2.
It starts off as a three-lane road, but continues as a two-lane road after a lane merge in the middle
of the section. The speed limit is 100 km/h for the first 1300 m, after which it increases to 120 km/h.
Congestion occurs frequently at the lane merge point, which is situated 100 m away from the off-
ramp of exit 17. Another known bottleneck is exit 18 (Moordrecht) and the A12 itself, which cause
congestion on one and two days respectively of the four analyzed days. Since Gouwe interchange
is a partial interchange, traffic entering from A20 can only go east on A12 (or has to use exit 18), so
no turbulence due to lane sorting can be expected on the last kilometers. However, between exit 18
and knooppunt Gouwe, the road an S-curve with decreasing radii, which could create a change in
driving behaviour.

Figure 4.1: Schematic overview of A20 (with distances in m)

Figure 4.2: Aerial view of A20 (driving direction: left to right)

This data analysis is structured as follows. First, traffic variables were aggregated and analysed
over space and time as well as heatmaps of the variables. Secondly, these variables were used in
standard deviation and difference plots, as well as to showcase the empirical fundamental diagrams
of the road. Lastly, the results of a correlation analysis will be discussed.

4.1.1. Traffic variables over space and time
First, to get an indication of the road characteristics, plots were made which showed the mean
flow, speed and density per spatial road segment, both for congested and free-flow traffic condi-
tions. Density has been calculated with the equation q = k ∗u. As this equation only holds for
homogeneous and stationary traffic conditions and should be interpreted with caution when many
accelerations and decelerations happen.
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Figure 4.3: Average traffic flow (top), speed (middle) and density (bottom) over space for A20 during free-flow (left) and
congested (right) conditions

When looking at the mean values during free-flow situation, which consists of all pictures on the left
of Figure 4.3, one can see that each day approximately follows the same trends albeit the magnitude
of the values differs. In general, off-ramps cause dips in flow and density whereas on-ramps causes
traffic flow to increase. The peak in flow and density after the lane merge is approximately 1.5 times
higher than before the lane merge, as expected, and results in a slightly lower speed. However,
there are two phenomena which cannot be understood when comparing the patterns with the road
layout. Firstly, at 4 km, there is a sudden drop in flow and density which cannot be explained since
(a) the on-ramp at this location should cause an increase in traffic, (b) the magnitude of this dip
is higher than expected at a rest area and (c) since it is not caused by a drop in speed, as density
decreases too. Secondly, one can see that lane density is the highest at 7.5 km, which is well after
the lane merge (6.2 km) and even the on-ramp (6.7 km), which would be the two main contributors
to a flow increase.

When looking at the mean values during congestion, one can see that, compared to free-flow
conditions, the flow values remain similar, but speeds decrease and densities increase. The lowest
speed and highest density is measured between the lane merge and on-ramp (approx. 6.4 km).
Looking upstream of this point, speeds are slowly decreasing, as further upstream congestion is
observed over a smaller period of time, causing a higher mean speed there. After inspection of the
heat maps, it was concluded the jam waves resulting from the lane merge spread not further than
the off-ramp of exit 16 (at 2.2 km), so the temporary decrease in speed here can also be caused by
the queue tail signalisation. Looking downstream of this point, one can see speeds increase and
densities decrease as traffic is slowly driving out of the jam wave due to the high density. After the
on-ramp of exit 18, at 9.8 km, flow, density and speed start to stabilise again. Meanwhile, in the
density plots, at 4 km, the same drop in density as in the uncongested situation can be seen.

After analysing the aggregated graphs, a heatmap provides a good way to research flow or speed
data for a whole day in more detail. Since comparing heatmaps of four days would make this chap-
ter quite lengthy without adding much information, we zoom in on the third day of the dataset, the
20th of November 2019. This day shows a simple and typical congestion pattern for the road with
jam waves originating from the lane merge bottleneck, although congestion is quite high compared
to the previous days. When looking at the traffic flows in Figure 4.4, one can observe the general



4. Preliminary Data Analysis 42

patterns captured before, such as the higher flow between the lane merge and the next off-ramp
(6,600-9,200 m) and the lower flow between 3,700m and 4,700m. However, flows are strongly fluc-
tuating over time, creating a fine wave pattern which is propagating with free-flow speed (when
uncongested) or a shockwave speed of approximately -20 km/h (when congested). Looking at the
speed heatmap in Figure 4.5, the congestion patterns become even more clear. One can also see that
both after 1,000 m (when the maximum speed increases) and after the on-ramp at 10,000 m, traf-
fic speeds increase. Indeed, traffic drives slowly out of the congestion after passing the lane merge
bottleneck and the jam waves spill back approximately until the most upstream off-ramp at 700 m.

Figure 4.4: Heatmap showing flow over space and time for A20 on 20th of November.

Figure 4.5: Heatmap showing speed over space and time for A20 on 20th of November.

4.1.2. Fundamental Diagram
The relationship between flow, speed and density, also called a fundamental diagram, contains a
lot of information on traffic. Since the fundamental diagram shape can only be reproduced using
stationary and homogeneous traffic conditions, the graphs here contain a lot of ’noisy’ data due to
accelerations and decelerations. In an attempt to give cleaner relations, both the three-lane road
section and the two-lane road section have been plotted separately. In this paragraph, the scatter
plots of flow and density, as shown in Figure 4.6, will be analyzed. Density is calculated using k =
q/u. When looking at the three diagrams, one can see the points are ordered on straight lines, which
is because speeds are stored at integers. The maximum flow (approx. 2300 veh/h), between the free-
flow and congested branch, and jam density (approx. 140 veh/km) fall within expectations, as well
as the general shape of the fundamental diagram and the resulting shockwave speed (-16 km/h
(3-lane section) and -19 km/h (2-lane section)). However, the maximum flow per lane on the three-
lane is significantly lower (1791 veh/hr), presumably due to the lane merge bottleneck just before
the two-lane section which causes traffic to break down earlier. One can also see that on the three-
lane section, much lower flows and densities are measured compared to the two-lane section and
the flows and densities on the ’congested’ branch are much more spread out. This means there is far
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Figure 4.6: Fundamental diagram (u,q) for A20 plus two sections

more congestion on the three-lane section, which makes sense as most congestion occurs upstream
of the bottleneck. When analyzing speeds, which equal to slopes in the fundamental diagram, the
two-lane section has a lower top speed than the three-lane section, which probably is caused by a
higher traffic flow in combination with the lane merge and curves at the end of the section. Within
the combined fundamental diagram of the whole road, the shapes of both the two-lane and the
three-lane section are visible. One can see a higher point density near the road capacity, from the
on-capacity nearly-congested flow after the bottleneck on the two-lane road, but also a higher point
density on the congested branch around 1000-1500 veh/h flow.

4.1.3. Correlation analysis
As explained in the introduction, a neural network essentially ’learns’ (non-linear) correlations be-
tween its inputs, which it then uses to predict future values. Therefore, a preliminary correlation
analysis can give an idea of the correlations are relevant as parameters for the fundamental diagram.
Furthermore, it also gives an idea of the aggregation level of the input data: when correlations are
stable over a period in space and time, this period will be a good aggregation level for the neural
network.

For the correlation analysis the Pearson correlation coefficient (r ) has been calculated, see
Equation 4.1, which is widely used and simple to calculate and interpret.

r =
∑

(x − x̄)(y − ȳ)√∑
(x − x̄)2 ∑

(y − ȳ)2
(4.1)

Although this correlation coefficient can only test linear relations between two variables, it is a good
first measure for correlations. A correlation of +1 indicates a perfectly positive linear correlation, a
correlation of -1 a perfectly negative one. For easy analysis, correlation coefficients have been calcu-
lated for the whole dataset at once and plotted on a heatmap. Correlations over space or time were
found by rolling over the respective variable using various window sizes, to detect finer correlations
as well as filter out effects due to noise. Window size 5 (500 m/2.5 min) was found to give the best
interpretable results, depending on the purpose. When interpreting the heat maps, the correlation
coefficient over the space/time interval [x, x +a] (with a = window size) is shown at point x +a, as
this coincides how neural networks use input of previous points to calculate the next one. In this
paragraph, first the correlations over space for both flow and speed will be discussed, followed by
the correlations over time. The data used was from the A20 at the 20th of September 2019.

Correlation over space
The correlation coefficients over space in general have a higher percentage of significant values
(p < 0.1, two-sided) than over time, with 69% (speed) and 74% (flow) significant values using a win-
dow size of 5 measurements. This indicates useful and strong correlations exist of which a neural
network can make use of.
Flow
In general, the flow patterns seem to be quite persistent, with boundaries in space where flow in-
creases or decreases being consistent over time. The window size was kept at 5 steps, as this resulted
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in noise-free observations, which can be seen in Figure 4.7 During free-flow conditions, which can
be noticed on the edges of the heatmap (15:00-15:20 and 18:40-19:00), many fine patterns emerge
which often cannot be explained well. However, in general, several ’zones’ can be found which are
separated by changing correlations at the following points:

1. 800 m: represents a flow increase at approx. 600 m, although it coincides with the off-ramp of
exit 16, a flow increase would not be expected.

2. 3,000 m: represents a flow decrease at approx. 2,800 m, which is shortly before the off-ramp
of the rest area.

3. 4,300 m: represents to a flow increase at approx. 4,100 m, this coincides with the on-ramp of
the rest area.

4. 6,000 m: this border is less clear, but the flow decrease at approx. 5,800 m coincides with the
off-ramp of exit 17; turbulence from the lane merge downstream could make this border less
clear

5. 6,500 m: represents flow increase at approx. 6,300 m is probably caused by the lane merge,
although it is located slightly more upstream

6. 7,500-8,400 m: border of decreasing flow of which the location fluctuates strongly and is situ-
ated between the off-ramp of exit 17 and the on-ramp of exit 18.

7. 9,700 m: represents a flow increase at approx. 6,500 m, which is a bit upstream of the on-ramp
of exit 18.

Figure 4.7: Heatmap showing Pearson correlation coefficients of flow over space (window size = 5) for A20 on 20th of
November

One can conclude that in general, flows decrease after off-ramps and diverging points and increase
after on-ramps and merging points. However, there are a few peculiarities in the data. Firstly, at
the off-ramp at 800 m, flow is increasing instead of decreasing. Since the merging section of Ter-
bregseplein interchange also leads to this off-ramp, the increase in flow might be due to a decrease
in turbulence after this point. Secondly, there is a very clear change in flow caused by the rest area,
which is quite peculiar; as mentioned earlier, there is a very sharp decrease and increase in flow
around this point, although it is uncommon for a rest area to attract this much traffic. Thirdly, there
is a very irregular flow pattern after 10,000 m, which is probably explained by the sharp S-curve
which causes people to decelerate. Lastly, some borders between opposing correlations are highly
irregular, for example at 6,000 m and especially between 7,500-8,400 m, from which the last one
cannot be explained correctly by a discontinuity on the road.
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During congestion, a pattern which looks like congestion waves emerges, although the general
flow pattern during uncongested situations still is present. Although congestion clearly influences
the spatial correlations, the pattern remains more stable than could be expected as it is only
incidentally interrupted by these stop-and-go waves. This could mean that flow increases and
decreases remain stable but only their absolute values are influenced by congestion.

Figure 4.8: Heatmap showing Pearson correlation coefficients of speed over space (window size = 5) for A20 on 20th of
November

Speed
In general, the correlations found in the speed data are less stable over time as the patterns drasti-
cally changes when congestion occurs. Maybe this is since speed is more strongly related to con-
gestion. During congestion, speed upstream of the bottleneck will initially drop and then fluctuate
due to the fluctuating speed in the to stop-and-go waves. Downstream of the bottleneck, speed will
increase slowly as traffic drives out of the bottleneck with a critical flow. This completely overrides
the structure during free-flow compared to flow. The few white (NaN) values might have something
to do with the fact that speeds are measured on integer levels. Under stable traffic situations, having
five consecutive equal measurements gives a division by 0 error when calculating the correlation
coefficient.

During uncongested situations, several borders emerge at the following locations:

1. 800 m, 6,600 m, 10,000 m: have similar situations explained in the ’flow’ part

2. 2,200 m: which represents a speed decrease at 2000 m, which is the location of the on-ramp
of exit 16

3. Between 2,200 and 4,200 m: a highly irregular pattern occurs, which is just as hard to explain
as the traffic situation in this section

4. 4,200 m: traffic speeds increase from approx. 4000 m, which coincides with the on-ramp of
the rest area although a speed reduction due to extra flow would be expected,

5. 4,900 m: speeds start to decrease from approx. 4700 m, which does not represent any discon-
tinuity on the road

6. 7,500-9,000 m: irregular pattern, just downstream of the lane merge.

Several situations, namely situation 4 to 6, can be explained by looking at flow and speed data,
as situation 4 and 5 coincide with a decrease and increase in flow respectively and in situation 6,
there is a sharp increase in flow. However, as mentioned before, they occur at places where there are
no discontinuities on the road although they occur constantly during free-flow.

Correlation over time
As mentioned before, the number of significant correlations is over time less compared to over
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space. With the same conditions (p < 0.1, two-sided, window = 5), only 52% (flow) and 54% (speed)
of the observations are significant. This is probably since over time, there are much more ’borders’
between positively and negatively correlated zones which show no significant correlation. However,
since the correlations found within each wave are significant, this may still contain useful informa-
tion. When looking at correlation over space and time, one can see that this correlation does not

Figure 4.9: Heatmap showing Pearson correlation coefficients of flow over time (window size = 5) for A20 on 20th of
November

Figure 4.10: Heatmap showing Pearson correlation coefficients of speed over time (window size = 5) for A20 on 20th of
November

follow patterns which are related to traffic conditions. Instead, flows and speeds seem to be fluc-
tuating regularly, where values within the waves propagate through space and time with free-flow
speed (in uncongested conditions) or shockwave speed (in congested conditions). The fluctuating
patterns over space and time look quite similar and seem to be oscillating at the same frequency.
This frequency might tell something about the minimum timestep size necessary to correctly cap-
ture the fluctuations present in flow and speed. One can detect the minimum sampling frequency
for detecting the fluctuations by doing a Fourier transform on the data, from which the results can
be seen in Figure 4.11, and finding the peak which has the highest frequency. This has been done
on flow data (due to the absence of NaN values) for uncongested situations, as the smallest fre-
quency has been detected here. The periodicities of the found frequencies were 2.8 min (using 5
consecutive points for the correlation calculation) and 3.9 min (using 10 consecutive points for the
correlation calculation). Rounding down, one can conclude that the lowest timestep size which still
captures these fluctuations is 2.5 min.

4.1.4. Data Quality Assessment
When looking at the flow and speed data, a mismatch was observed between the data itself and what
could be expected from the road geometry. There are several reasons that could cause these two
phenomena, which mainly are a mix of erroneous data and shortcomings of the implementation
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Figure 4.11: Results of Fourier transform of correlation over time on flow data during uncongested conditions (20th
September, 14:00-15:15)

of the ASM. The dip in flow data around the service station could be due to two malfunctioning
detectors as there are detectors situated at 3800 and 4200 m, both positions within the dip. Since
flow drops with 2/3, it could be that traffic on one of the three lanes was not captured correctly. As
downstream of this dip, there is a higher detector density than upstream of this dip, the upstream
decrease has a much higher slope compared to the downstream increase in flow.

However, the shift in data at the lane merge is a much stranger phenomenon. The previously
mentioned dip was exactly at the position of two (faulty) detectors, so it is unclear where this shift
came from. When analyzing images at the detection loop positions, one can see that for some de-
tectors around the lane merge only one detector is present for 2 or 3 lanes only which may cause
erroneous data. Besides, there is a higher detector density before the lane merge compared to af-
terwards, which might cause a delay in the increase in flow data after the ASM has been applied.
Therefore, several effects might result in the spatial mismatch in this data.

4.2. Validation of Results (A4 Zweth to exit 12 Den Haag Zuid)
The section of A4 will be quickly assessed to see if the results found on A20 can be validated using
a different dataset. The A4 between Rotterdam and The Hague is quite similar to A20, as it also
lies between to cities (Rotterdam and Delft), crosses a rural area with no on- and off-ramps and
also has a lane merge. However, the whole section is a bit shorter with less on- and off-ramps. The
schematic representation can be seen in Figure 4.12 and an aerial view in Figure 4.13.

Figure 4.12: Schematic overview of A4 (with distances in m)

Figure 4.13: Aerial view of A4 (driving direction: right to left)

When looking at the mean data from the A4, as can be seen in Figure 4.14, the flow data shows
even more inconsistencies compared to A20. There is a high peak in flow at 2500 m, although there
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are no discontinuities at this point. Besides, flows seem to decrease after on-ramps and increase
after off-ramps, which is not in-line with expectations. However, the increase in flow around the
lane merge is as expected, as the flow after the lane merge is 1.5 times the flow before and the peak
in flow happens shortly after the lane merge. However, the steady decrease in flow after the lane
merge and on-ramp cannot be explained by looking at the road. During congested conditions,
two bottlenecks (one at the lane merge and one further downstream of the road section) can be
identified. The same can be see in the heatmaps of flow (Figure 4.15) and speed (Figure 4.16) on

Figure 4.14: Flow, speed and density means over space for A4 in congested and uncongested conditions

the 20th of November. The flow patterns also show the two peaks identified in Figure 4.14. Three
bottlenecks can be detected: one at the lane merge (3400 m), one at an off-ramp (which could be
due to spillback) and one bottleneck downstream from the analyzed section.

Figure 4.15: Heatmap showing flow over space and time for A4 on 20th of November

When looking in the fundamental diagrams in Figure 4.17, one can see that the fundamental
diagram has a strange, square-like shape with both high flows and densities, which especially shows
in the three-lane section. It is quite strange that the highest flows are registered both no the three-
lane and two-lane section, as the two-lane section would likely reduce the capacity on the three-lane
section. This is most likely caused by the two peaks in flow around the lane merge, which are hard
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Figure 4.16: Heatmap showing speed over space and time for A4 on 20th of November

to explain. When looking at the correlations, the correlations of flow over space and flow over time

Figure 4.17: Fundamental diagram (u,q) for A4 plus two sections

seem to be the most promising which was also the case at A20. When analyzing correlations of flow
over space, as can be seen in Figure 4.18 the following areas can be detected:

• 2900 m: a flow decrease at approx. 2700 m, approximately coincides with the off-ramp at exit
14.

• 3300 m: a flow increase at approx. 3100 m, approximately coincides with the lane merge.

• 3800 m: a flow decrease at approx. 3500 m, is 300 m in front of the on-ramp of exit 14 (although
this would lead to a flow decrease)

• 4900 m: a flow increase at approx. 4700 m, which is near the off-ramp of exit 13 (although this
should lead to a flow decrease)

• 5500 m: a flow decrease at approx. 5300 m, which is shortly before the on-ramp of exit 13,
could be explained by the turbulence of the weaving section of the off- and on-ramp.

• 6400 m: a flow increase at approx. 6200 m, which is shortly after the off-ramp of exit 12, which
could be due to a decrease in turbulence since this is the end of a weaving section.

When analyzing the correlation of flow over time, as depicted in Figure 4.19, one can see a similar
wave pattern compared to A20. The Fourier analysis, from which the results are given in Figure 4.20,
results in a period of 2.25 min, which would result in a period of 2 min, which is slightly lower than
A20.
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Figure 4.18: Heatmap showing Pearson correlation coefficients of flow over space (window size = 5) for A4 on 20th of
November

Figure 4.19: Heatmap showing Pearson correlation coefficients of flow over time (window size = 10) for A4 on 20th of
November

Figure 4.20: Results of Fourier transform of correlation over time on flow data during uncongested conditions (20th
September, 14:00-15:50)
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4.3. Conclusions
After reporting all the findings, it is important to relate those to the goal of this data analysis and
extract conclusions which can help to formulate requirements regarding the neural network. First,
one can see that the average values, differences in flow and standard deviations of speed give a
good idea of the location of discontinuities, bottleneck locations and congestion spillback. When
looking at the heatmaps, one can see clear regions of (approximately) equal flow on the flow
heatmap, whereas speed is a good indicator of the extent of congestion. This might hint that flow
data provides good information to subdivide the highway spatially, as the borders of these zones of
(approximately) equal flow often coincide with discontinuities. When looking at the fundamental
diagram, it becomes clear that the capacity of the three-lane road section is limited by the lane
merge at the two-lane section. The breakdown in traffic on this three-lane section could not be
expected by looking at this section alone. These spatial relationships are therefore important to
correctly predict traffic. Since both sections have such different characteristics (maximum capacity,
shockwave speed), these might be important input data for the neural network to correctly make
distinctions between several types of roads.

After analyzing the data, some interesting correlations were shown in the data. When analyzing
data over space, the zones which were seen in the heatmaps could be detected. The borders in the
flow data were found to be quite stable and the correlation coefficients within the zones remained
relatively similar. Since it is likely that the nodes within the neural network have some spatial
meaning, it would be good to divide the nodes according to the results of this correlation analysis. It
would be interesting to spatially divide the road according to the results of this correlation analysis.
This and other results proves flow is a relevant input variable to make distinction between possible
traffic situations. When looking at the change in correlations over time, a minimum timestep of
2.0 min was determined if all information should be saved. Since traffic demand can be quite
fluctuating in reality due to a non-uniform inflow of cars, this fluctuating flow pattern over time
can be expected. However, if the depth and complexity of the neural network is limited, it would
be good to filter out some noise in the data, which can be done by using a moving average or
resampling the data over a certain window in time to filter out fluctuations.

However, the data analysis also shows that it is quite cumbersome to extract conclusions on data
alone. Data quality can be quite fluctuating, as both the A20 but especially the A4 dataset had some
flow data which are hard to explain based on traffic flow theory, most likely caused by erroneous
detectors. Besides, the used ASM can also result in unexpected results and artefacts in the data, as
it introduces a bias in the data due to its smoothing based on the expected data propagation (with
free-flow or shockwave speed). Besides, as the flow data needs a quite large moving average period
to smooth fluctuations, one can conclude that data over time is quite noisy when compared to data
over space although smoothing has been performed using ASM. As flow data is based on 30-second
detector loop countings, only one car count difference in this half a minute can lead to a difference
in flow of 120 veh/h. Although much of this noise has been filtered out by the ASM filter, or can be
explained by random car arrivals, even the best filter cannot fix bad data quality. It is questionable
whether the neural network should be able to capture this wave pattern or this might result in bad
prediction quality.





5
Methodology

In the previous chapters, both theoretical and the practical sides of short term traffic flow speeds
were discussed. In chapter 2, background information is given on microscopic traffic flow theory
on highways whereas in chapter 3, neural networks were introduced as well as their application for
traffic forecasting. In chapter 4, actual flow and speed data were analysed to get insight into actual
congestion patterns. Based on the findings of these chapters, a research methodology was created.
Besides the methodology itself, this chapter also contains hypotheses which were used to assess
the accuracy of traffic forecasting neural networks.

This chapter is structured as follows, which is also depicted in Figure 5.1. First, the model design
choices and hypotheses on the model workings are discussed, giving some insight in what the model
should predict and how it ought to function. Secondly, the data preparation of the datasets obtained
by the experimental setup (chapter 6) will be discussed, to make them suitable as neural network
inputs. Thirdly, the neural network designs will be introduced, including the methods used to in-
corporate flow and speed data, the model structure and hyperparameters used. Afterwards, both
the model training procedure will be introduced, as well as the sensitivity analysis performed on
the best performing model structures. Lastly, the metrics used for the model assessment will be
discussed briefly, also introducing the baseline model.

Figure 5.1: Structure of the methodology chapter.

5.1. Design Choices and Hypotheses
In the previous chapters, an overview was given on both traffic flow theory as well as how a neural
network functions. To translate these into a neural network design, both design choices regarding
the neural network and hypotheses are formulated. The design choices mostly reflect choices made
during the design process, whereas the model hypotheses focus on what the model is expected to
be able to do. Therefore, both will be treated separately.
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5.1.1. Design Choices
Before comparing model structures, it is important to formulate some general model design
choices, which will be used as a starting point for the neural network design. Although the hy-
potheses will be used to assess how the neural network performs in different scenarios, the design
choices prescribe on a more fundamental level what the model should do and focuses on the input
and output data, as well as the model type used.

Design choice 1: the neural network should be able to handle multivariate spatiotemporal data.

Based on chapter 2 and chapter 4, we can conclude both flow and speed are useful in traffic
forecasting. Since speed was found to be most relevant when assessing congestion patterns, the
output should consist of at least the speeds. For the input variables, both speed and flow can
be relevant, therefore, either only speed or flow and speed were used. Besides, in chapter 3, the
most advanced traffic prediction models used spatiotemporal data within the prediction process,
meaning that they use data both over space and over time as input. Therefore, all models should be
able to handle multivariate (flow and speed) spatiotemporal data..

Design choice 2: the neural network should consist of GRU units within an RNN structure.

From chapter 3 could be concluded that RNNs are very suitable for time series analysis and that
the GRU unit lead to an even higher model accuracy, while having less parameters compared to
an LSTM. Therefore, the GRU cell will be the main building block of the model. A sequence-to-
sequence a one-shot model have been introduced in section 3.3, which both have advantages and
disadvantages. Therefore, both variants have been implemented. The optimal hyperparameter
combination will be determined during training.

Design choice 3: the neural network should be able to predict at least traffic speeds over the same
spatial dimension as present in the input data.

With respect to the spatial dimensions, we could conclude from section 3.4 that a common
approach is that the spatial dimensions of the input and output are equal, which means that
predictions are made for all road segments of which input is retrieved. Therefore, this will also be
the case for this neural network.

Design choice 4: the temporal dimensions will be as follows: time interval = 2 min, input sequence
length = 15, prediction horizon = 10.

Although the spatial output dimension will be equal to the input, the temporal output dimension
should be considered carefully. The temporal dimension depends on both the input sequence
length, the prediction horizon and the time interval, as determined in section 3.4. For this research,
the time interval was chosen at 2 minutes, the input sequence length at 15 steps (30 minutes) and
the prediction horizon at 10 steps (20 minutes). These values were also used by Li et al. [9] and fit the
requirements for traffic predictions to be useful (e.g. [15, 42]). Since both the input sequence length
and prediction horizon are important factors for the model performance, they will be evaluated
using a sensitivity analysis.

5.1.2. Hypotheses
Since the model design choices are set, hypotheses can be formulated concerning what is expected
from the neural network. Accepting or rejecting these hypotheses results in more insight in the
functioning and limitations of the model. The hypotheses aim at providing insights into three
categories. The first category of hypotheses, regarding traffic flow theory, are concerned with what
traffic patterns the model can actually learn. By reflecting the resulting predictions on what traffic
patterns can theoretically be predicted, insights regarding the expected model accuracy can be
tested. The second category of hypotheses, concerning the neural network architecture, are used to
test some assumptions on how the neural network architecture influences the resulting predictions
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and prediction accuracy. Lastly, the third category focuses on the input and output data, since cor-
rectly choosing these might be the most important element for the model to correctly predict traffic.

Hypotheses Regarding Traffic Flow Theory
Hypothesis 1: the model should be able to make traffic predictions while implicitly using input-
output relations based on the shockwave theory which can be used to calculate the shockwave speed
between different traffic phases, as explained in chapter 2.

Based on traffic flow theory, it was concluded that predicting the point in time at which traffic
breaks down is difficult. However, using shock wave theory, it is possible to predict how both the
upstream and downstream congestion head will propagate over the road, given traffic flow does
not change abruptly. Therefore, the model should at least be able to correctly predict how the
congestion will propagate over the network once the input data contains observations where traffic
broke down near the bottleneck. However, predicting this breakdown itself will be challenging.

Hypothesis 2: it is expected that the model will have a higher accuracy when the congestion patterns
consist of synchronised patterns with a single jam head, as for example the moving synchronised
pattern, compared to general patterns containing many stop-and-go waves.

As has been explained in chapter 2, predicting traffic congestion consists of two components,
namely predicting congestion emergence and propagation, and there is far more theory on predict-
ing the latter compared to the former. Although bottlenecks are relatively easy to locate, the time at
which traffic breaks down depends on many (unobservable) variables. As stop-and-go waves are
very narrow space-wise, often occur due to local instabilities and propagate relatively fast (-16 to
-20 km/h), it is expected that it is relatively hard to predict their occurrence. However, synchronised
patterns, as the LSP, take place over a longer period over time and have a lower shockwave speed,
making it easier to correctly predict the congestion propagation. Therefore, datasets containing
these synchronised patterns will likely lead to better prediction results.

Hypothesis 3: it is assumed that there will be large differences in accuracy over space, depending both
on the congestion patterns as well as the spatial road characteristics.

When predicting congestion patterns, one can make two assumptions about the error rate over
space. As in the second hypothesis was stated that it is hard to predict the time at which traffic
breaks down, the error is likely to be higher near the bottleneck locations compared to locations
further away. Furthermore, the prediction is likely to be worse on the edges of the considered
highway, since there is less spatial information available on the upstream or downstream traffic
conditions to base its prediction on.

Hypotheses Regarding the Neural Network Architecture
Hypothesis 4: the sequence-to-sequence GRU RNN is expected to perform better than the one-shot
model for traffic speed prediction.

In section 3.3, the sequence-to-sequence model was introduced, which has autoregressive proper-
ties. It is expected that this autoregressive prediction performs better than a one-shot prediction,
since it only has to predict one timestep ahead and by unrollling this multiple times, can predict an
arbitrary number of steps ahead. It is assumed that the neural network has to implicitly estimate a
shockwave speed between the free-flow and congestion phase as it has to predict how the upstream
and downstream congestion heads propagate through the network. If the neural network has
to do this in one shot, the model has to instantaneously predict this shockwave speed 10 steps
ahead although the input data were aggregated much more finely, which would lead to a more
complex function which would be fitted to correctly fit this input-output relation. However when a
sequence-to-sequence model is used, the model is trained to correctly predict only one step ahead
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and can unroll this function numerous times, using previous predictions as new input. By breaking
down the prediction process in smaller steps, each step using the same function, it is likely the
accuracy of the predictions will increase.

Hypothesis 5: the loss function will influence the prediction accuracy, as sharp fluctuations in speed
between the traffic phases differ from a regular regression problem.

As could be seen in chapter 2 speeds on highways can fluctuate quite promptly when a traffic phase
change happens. Polson and Sokolov [50] already noticed this and mentioned that this has to be
considered when designing a neural network structure predicting traffic speeds. Incorrectly pre-
dicting a different traffic phase can quickly lead to high errors, as the difference between free-flow
and congestion speed is high. On the other hand, traffic flow theory suggests some traffic break-
downs can be difficult to predict as the causes of this breakdown are unobservable. One can think
here of sudden fluctuations in traffic demand or an accident caused by a driver. As no correct input
information is present, it can be almost impossible to reduce these errors.

On the other hand, different loss functions lead to different strategies in reducing the error:
whereas the MSE focuses on decreasing errors with a high magnitude, the MAE focuses on decreas-
ing the overall error. As the loss function is the sole metric one minimises when fitting a neural net-
work, experts think it has a large impact on the model accuracy. Therefore, it is important to assess
how different loss functions cope with these specific challenges when training a neural network.

Hypotheses Regarding Input & Output Data
Hypothesis 6: having both flow and speed data as model input will improve the accuracy of the speed
predictions compared to only using speed.

Based on the results of chapter 4, it was concluded that both flow and speed hold correlations and
information on the traffic state. Besides, in chapter 2, flow was found to be an important parameter
both for calculating the shockwave speed as well as for determining and classifying the emerging
congestion pattern. Since it would theoretically make sense to include both flow and speed data as
model inputs, it will be likely that the model accuracy will increase too.

Besides making sense theoretically, including both flow and speed data could lead to models
which are potentially more robust and generalisable. Since both flow and speed are included, the
model will be able to distinct a wider variety of traffic situations compared to using only a single
one. This will lead to a higher accuracy more robustness since the model can distinct different
input-output combinations better while doing so by including parameters supported by traffic flow
theory.

Hypothesis 7: by combining the flow and speed data per road segment and per time interval, the
model accuracy will increase.

Including both flow and speed data, as proposed in hypothesis 6, results in a multivariate GRU RNN
structure. From section 3.4, it became clear that designing a multivariate RNN structure requires
design choices to be made on two levels: on the one hand, the high-level neural network design
containing the general structure of the RNN layers, on the other hand the input and output layer
design with respect to both flow and speed parameters. By processing flow and speed data inputs
in a smart way, using traffic flow theory, it will be easier for the model to train on the input data and
accuracy will therefore increase.

5.2. Data Preparation
In order to train the neural network, flow and speed data was used from several roads simulated with
the microscopic traffic model AIMSUN, which is elaborated in chapter 6. However, this general
dataset must be converted to tensors of both input data and the corresponding output labels, in
order to train the model.

Generating the dataset from this table can be divided in a couple of consecutive steps which will
be discussed in this chapter, namely:



5. Methodology 57

1. transposing the data to a table per day

2. converting these tables to tensors which meet the model design choices to be used as input
data

First, the data had to be transposed into a tabular format which would make it easy to both
generate the tensors for model training as well as to assess the data for an analysis of the model out-
puts. In order to do this, a four-dimensional table structure was used, with as dimensions [d , x, t , p]
where d = the simulation replication (or day), x = the detector location, t = the time point and p =
the detector traffic variables considered (being either speed or flow/speed). Saving the data in this
structure has several advantages. By aggregating the data per simulation replication, it is easier to
visualise the data of one day and to prevent an input data sequence accidentally containing data
belonging to two different days. Secondly, by storing the detector parameters in a separate dimen-
sion, this would allow for more flexibility when assessing different input layer structures used for
including multivariate data.

Secondly, the data should be converted to tensors which can be used as input for the TensorFlow
model. The first step that has to be done is data scaling as unscaled data can lead to bad model
results due to two reasons. First, if values can have a very large range, such as speed data (ranging
from 0 to up to 2800 veh/h/lane), this can lead to exploding gradients or a failing learning process.
Secondly, if there is a large imbalance in the values of input variables, the parameters with larger
values can be over represented in the model training process, making parameters with low values
less significant. This can be a problem since traffic flows can have much higher values than traffic
speeds.

The data was scaled using data normalisation, which rescales the data to a range between [0,1]
without changing the distribution of the data. This has been done using the following equation:

y = x −xmi n

xmax −xmi n
(5.1)

To make the data normalisation independent of the specific road characteristics, xmi n = 0 and
xmax = 2800 veh/h/lane or xmax = 120 km/h, as this is equal to the maximum speed limit (and
we are not interested in predicting higher speeds) and the maximum flows generally observed on
highways.

After scaling, the data should be converted to a datatype which can be used by TensorFlow.
There are two datatypes which can be used as input, namely a NumPy array or a (TensorFlow)
Dataset. Using a Dataset has some advantages over a NumPy array, as one can use a generator
to generate sliding window datasets of arbitrary length from the original dataset, which is easy if
many prediction horizons are assessed and it reduces memory usage as it does not have to store all
input sequences in memory. However, this increases the computational time of the model due to
the computations necessary to continuously generate a new data entry. Therefore, it was chosen to
generate each dataset individually and store them as NumPy arrays, since this decreases the com-
putational time while keeping memory load manageable. The input and output sequences were
generated from the dataset using a sliding window approach, generating overlapping sequences for
each point in time, according to the design choices of the model structure. As mentioned before,
each input-output data combination only contained data belonging to one simulation replication.

The data was split according to a training, test and validation split of 70%, 20% and 10%. The valida-
tion dataset was used for the early stopping mechanism and hyperparameter optimisation, whereas
the test results were used to assess the performance of the different model structures. Since each
dataset consists of a fixed number of traffic demand scenarios which were each simulated for sev-
eral iterations, the dataset was balanced to make sure that the scenarios were distributed equally
over the split. Besides, the dataset was also shuffled to make sure that the scenarios were mixed
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within each split in a random order. However, no shuffling took place within each day, to retain the
temporal sequence structure of each day.

Finally, this resulted in the creation of six datasets: three input datasets with dimension n, x, si n

and three output label datasets with dimension n, y, sout with n = the number of data points, x =
the input layer dimensionality, y = the output dimensionality and s = the sequence length of the
input si n and output sout data. Within the remaining of this chapter

5.3. Neural Network Design
Within the neural network design, there were two different axes along which the model structures
could be changed. Firstly, there were two different GRU model structures introduced in section 3.3,
namely the one-shot and the sequence-to-sequence model. Secondly, there are several ways in
which the two different input data types (only speed or both flow and speed) can be incorporated
into a model structure. Therefore, both choices will be elaborated. First, the implementation details
of both GRU model structures will be elaborated. Secondly, a framework for including both flow and
speed data is given, based on the literature study done in section 3.4. Lastly, the combinations and
datasets which were analysed will be discussed.

5.3.1. GRU Model Structure Implementation

For the output data structure, two different model structures were discussed in section 3.3, namely
a one-shot model and a sequence-to-sequence model. Whereas a one-shot model has only one
value as output, a sequence-to-sequence model generates an output of arbitrary length, repurpos-
ing predictions in an autoregressive way. Both models have been implemented using TensorFlow
and Keras, this section explains some of the implementation choices made.

The one-shot model structure was implemented in a quite straight-forward way. An input layer,
containing the sequences having the predefined input sequence length of all traffic variables, was
directly connected to a GRU layer. Depending on the hyperparameters, this GRU layer was con-
nected to other GRU layers where the last GRU layer returned only the latest sequence. Finally, the
last GRU layer output was returned to a dense layer, which then returned the final prediction 10-
steps ahead. The output consisted of a tensor containing the speed values of each road segment 10
steps ahead. The layer structure can be seen in Figure 5.2a.

The sequence-to-sequence model structure, already elaborated in section 3.3 consists of an en-
coder and a decoder. The input data is transferred to the encoder GRU layer, which then shares its
hidden state with the decoder, which then generates an output sequence using this hidden state
and previously predicted values. This is depicted in Figure 5.2b with a horizontal connection be-
tween the encoder and decoder. A dense layer is then used to interpret each sequence value of the
decoder and returns the prediction. Since the predictions of the decoder GRU layer are used for
the prediction of the next timestep, the dimensionality of the model input and output has to be the
same, as well as ideally the parameters that have to be predicted.

(a) One-shot model structure (b) Sequence-to-sequence model structure

Figure 5.2: GRU RNN model structures
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5.3.2. Multivariate Neural Network Structures
In hypothesis 6 was mentioned that when using multivariate spatiotemporal data, there are several
possibilities in which the different traffic variables can be used within the model structure. In this
chapter, alternatives for both will be introduced and assessed. First, the general structure of the
RNN layers will be discussed, after which the input and output layer structure will be elaborated.

General NN Structure
As mentioned in subsection 3.4.4, two general neural network designs can be thought out, namely
(variant (a)) one with only one RNN (Figure 3.11a) or (variant (b)) one with one RNN per parameter
(Figure 3.11b). For the latter, it is important that the results of both RNNs are catenated, so that
correlations between the flow and speed sequence can be found. Although both models are feasible,
a disadvantage of variant (b) is that correlations between the variables can only be found after the
RNN, which means that the correlations found between variables will be merely spatial instead of
temporal. Since traffic is a spatiotemporal process, the expectation is that this model will fail to
detect some of the spatiotemporal correlations between flow and speed within the input sequences.
Therefore, only variant (a) has been implemented.

NN Processing Structure
As there will be only one RNN structure which will use both flow and speed parameters as input, it
is important how both parameter types can be combined. For the processing layers of the NN struc-
ture, it is important that the RNN can capture correlations (i) between the variables, (ii) over space
and (iii) over time. Since having temporal sequences as input for the RNN helps to find temporal
correlations, (iii) is covered by the RNN structure and (i) and (ii) should be focused on. The idea of
this section is to find a way to smartly combine parameters of two dimensions in the input layer,
so the following GRU RNN layers can capture correlations between variables over both the spatial
and the parameter dimension efficiently. One can roughly think of two ways to combine both
dimensions. Either the dataset is ’flattened’, leading to an RNN GRU input consisting of ns units,
where n = the number of input parameters (n = 2 in case of flow and speed) and s = the number of
sections, which covers the spatial dimension. A different option is to combine the flow and speed
data per road segment into one value, reducing the RNN GRU input size to s units. This has also
been done in the state-space neural network used by Van Lint et al. [106] for travel time prediction.
Besides, from a traffic theory point of view, one could argue that a flow-speed combination can be
reduced to a unique traffic phase, which could contain all necessary information to predict traffic
speed patterns.

As can be seen in Figure 5.3, showing an example with flow
(
q
)

and speed (v) data for m segments,
three of these input parameter bundling techniques have been proposed, where variant (a) and (b)
combine flow and speed data into one dimension and variant (c) flattens the input data. Variant
(a) (Figure 5.3a) is combining the flow and speed using a perceptron, which is by far the simplest
method, which can be done with a linear activation function. Although low model complexity is a
plus, it is not possible to model nonlinear relationships between variables. Since the relationship
between flow and speed is nonlinear, this can pose a problem.

Variant (b) (Figure 5.3b) combines the data using a feed-forward neural network (FFNN), which
can be made nonlinear by selecting an appropriate activation function such as ReLU, which is quite
popular for nonlinear FFNN [8]. Both the amount of layers and the amount of hidden neurons can
be adapted based on the complexity needed. Although this has not been researched, a parameter
sharing strategy might reduce model complexity.

Variant (c) (Figure 5.3c) is rather naive, as it fully connects all the input variable to the (first)
GRU layer. An advantage of this approach is that the neural network itself can optimize the weights
according to the prediction accuracy. However, the accuracy of variant 1 and 2 might be higher
based on the a-priori knowledge with which the model structure was made.

A smartly chosen and more complex modelling structure can improve the model accuracy in
several ways. First, the number of trainable parameters can be reduced by approximately 23% in
the example given in Table 5.1, and this example will only grow larger if there will be more road
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Table 5.1: Trainable weights per input layer type having flow and speed data as inputs

Model type Road segments Hidden layers Units/layer Weights Reduction

a (perceptron) 100 2 200 261,200 23.3%
b (non-linear) 100 2 200 262,600 23.0%
c (fully connected) 100 2 200 340,900 0%

(a) State per segment (perceptron) (b) State per segment (nonlinear FFNN) (c) Fully connected

Figure 5.3: NN processing structure variants. Each node represents an input variable of the dataset. For (a) and (b), the
rightmost node will be connected with the first GRU RNN layer.

segments or traffic variables per road segment. Secondly, by introducing a-priori knowledge in the
model neural network structure in the right way, it is likely the model accuracy will either benefit
from this or it will not lead to a decrease in accuracy, while still having less parameters to be trained.

However, a custom input layer design can also have several disadvantages over a fully connected
structure. First, creating a smaller amount of input neurons for the GRU cell can be especially ad-
vantageous if there is only little training data, since the model does not have to learn these model
weights. By connecting individual nodes in a smart way, therefore introducing preliminary ’knowl-
edge’ in a model, not all possible model weights have to be fit since some will be set at zero. How-
ever, if there is abundant training data available, it is possible to use a fully connected layer as there
is enough data to fit the larger amount of model weights. This will lead to a more flexible model
structure. Secondly, it is debatable whether flow and speed can be combined into one state. One
can imagine that the resulting function will be complex and non-linear, as can be deduced from the
shape of a (simple) triangular flow-speed fundamental diagram (see Figure 2.1).

5.4. Model Training
After formulating the model design choices and hypotheses, preparing the data and designing the
neural network structures, this section will elaborate on the way each model has been trained on the
datasets. First, the training procedure will be explained, including the optimisation algorithm used
during the learning process. Then, the hyperparameter tuning process will be assessed, including
the parameters to be tuned.

5.4.1. Training Procedure
In this chapter, the most important parameter choices for the training procedure will be presented,
which are summarised in First, the optimisation algorithm has to be chosen. In subsection 3.1.1, the
concept of training has been explained as well as the gradient descent (GD) and stochastic gradient
descent (SGD) methods. Despite stochastic gradient descent performing quite well, a few better
performing optimisation algorithms have been developed, which are based on these methods but
often perform better than these. One of them is Adam [107], which is seen as the standard optimi-
sation algorithm for Deep Learning, which has been proven to work well on various deep learning
problems and is also the default choice in TensorFlow. It combines the advantages of two other
developed algorithms (AdaGrad and RMSProp) over a classic SGD optimisation, namely

• having a per-parameter learning rate, which improves performance on sparse learning prob-
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Table 5.2: Parameter values chosen for model training procedure

Parameter Value

Optimisation algorithm Adam
Learning rate 1e-4
Batch size 32
Number of epochs 250
Early stopping
Patience 6
Min_delta 1e-9

Table 5.3: Hyperparameters used while training model variants

Hyperparameter One-shot Sequence-to-sequence
Layers [1,2,4] 1
Units/layer [1,2,4]*segments [1,2,4]*segments
Output activation [linear] [sigmoid]
Loss [MSE, MAE] [MSE, MAE]

lems and

• adapting this learning rate based on the average of the previous gradient values, making its
performance good on noisy training data.

Besides these two advantages, it is also computationally efficient and requires little hyperparame-
ter tuning to get good results. Within Adam, several hyperparameters can be tuned, but since the
standard hyperparameter settings also proposed by Kingma and Ba [107], which was proven to give
good results on a wide set of learning problems. The learning rate has been changed to 1e −4 (from
1e −3, which has proven to converge within the number of epochs. The batch size was set to 32, as
suggested by Masters and Luschi [108], Bengio [109].

For other learning related parameters, the following values were chosen. The maximum num-
ber of epochs was chosen at 250. Furthermore, an early stopping mechanism was implemented, to
avoid overfitting (explained in subsection 3.1.2) as it stops training the model when the generalisa-
tion error increases. Therefore, the early stopping mechanism would work based on validation loss,
as this represents the generalisation error better. The following other parameters were chosen:

• patience = 6, needing at least 6 iterations with a higher validation loss than the minimum
value for the training to stop to ensure training to continue when a temporary increase in loss
is observed,

• min_delta = 1e−9, meaning that Lcur r
val −Lmi n

val < 1e−9 for the early stopping mechanism to be
activated

Together with the early stopping mechanism, this enabled good training of the model within the
maximum of 250 epochs.

5.4.2. Hyperparameter Tuning
In order to find the best performing neural network combination, several hyperparameters can be
combined. After defining the different hyperparameters, one can train the model with all the differ-
ent combinations using grid search. All hyperparameters can be found in Table 5.3

Two different loss functions were used, namely both an MSE and MAE loss, which both have
been explained generally in subsection 3.1.1. For the number of layers, using 1, 2 and 4 layers have
been tested, whereas the number of nodes per layer depends on the number of segments (and there-
fore the input dimensionality). In subsection 3.3.1, different combinations of layers and units per
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layer were explained, stating it mostly trial and error based. Deeper models are able to capture more
complex, nonlinear relations between input and output variables [6]. Therefore, it is expected that
in more complex traffic situations or longer roads with more complex spatiotemporal correlations,
models with a higher number of layers or more units per layer are expected to lead to lower errors.
However, deeper and more complex models are also more difficult to train, which potentially leads
to a higher error [30]. Therefore, it is likely that per situation an optimum in model depth can be
found. To prevent overfitting, the maximum number of model parameters was chosen to be lower
than the number of entries in the dataset.

For the output activation function of the dense layer, two activation functions were tested,
namely a linear activation function (which is equal to having no activation function) and a sigmoid
activation function, as presented in section 3.1. For regression problems, most of the time a lin-
ear output activation function is chosen, whereas for a classification problem, sigmoidal activation
functions are preferred (such as a sigmoid or tanh function). However, sigmoidal activation func-
tions are suggested to lead to more stable learning, as the derivative of these functions decreases
for extreme values. For both the one-shot and the sequence-to-sequence model, originally, both
output activations were tested. As was concluded that the output activation functions mentioned
in Table 5.3 lead to the best results, which can be seen in Appendix A, only these were used in order
to decrease the number of simulations necessary.

For each GRU cell, the standard Tensorflow/Keras hyperparameters were selected, having a
tanh activation function and a sigmoid recurrent activation function, since this enabled using the
CuDNN kernel and faster training via a GPU.

5.5. Sensitivity Analysis Temporal Horizon
After finding the best model configuration using grid search, a sensitivity analysis was used to test
the effect of changing parameters on the best performing models. Specifically, this was done to
assess the effect of the input parameter length and the prediction horizon on the accuracy of the
model. Since these were chosen based on the model configuration of Li et al. [9] and were excluded
from the grid search, in an effort to limit the number of model runs, the effect of these parameters
on the accuracy was not taken into account.

It is expected that the input sequence length has limited effect on the accuracy. It is not expected
that inputting values observed longer than 30 minutes ago will contain relevant information for
the prediction task. Besides, as GRUs are optimised on longer sequences which are often present
when doing natural language processing, it will be able to extract the most relevant sequence values
even from longer sequences. Therefore, it is likely that the accuracy will gradually increase with
a higher input sequence length, but eventually will stabilise. Therefore, it is expected that higher
input sequence lengths will have limited effect on the model accuracy.

All chosen parameters can be found in Table 5.4, on which a grid search has been performed.
For both datasets, a smaller and larger input sequence value has been chosen. The largest value
was chosen relatively high to see whether the GRU RNN could extract the most relevant informa-
tion from longer sequences. For the second dataset, only smaller prediction horizon values were
tested against the current value of 10 steps, since the model accuracy was relatively poor and it was
expected this was due to the combination of a large prediction horizon and complex congestion pat-
terns. Since prediction accuracy was high for the third dataset, both a smaller and larger prediction
horizon has been tested.

It is expected that the prediction horizon will impact the prediction accuracy far more, as in

Table 5.4: Input sequence and prediction horizon values chosen for the sensitivity analysis.

Dataset Input sequence Prediction horizon

Dataset 2 [10, 15, 25] [2, 5, 10]
Dataset 3 [10, 15, 25] [5, 10, 15]
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general, higher prediction horizons will lead to more uncertainty in the predictions and therefore a
higher error. However, it is expected that this accuracy will also depend on the congestion patterns
present in the data. The more complex these patterns will be, the faster model accuracy will de-
crease when prediction horizons get higher. Therefore, it is important to assess the sensitivity of the
prediction horizon on the model accuracy per simulation dataset, since this provides more insight
in this sensitivity per traffic pattern type.

5.6. Model Assessment
To assess the results of each model, several methods have been used to assess the results on several
levels of detail. Most of the time, the accuracy of neural networks is assessed based on general error
metrics which aggregates over all outputs generated by the model. Although this can give a general
overview of the accuracy of the model, it is also helpful to look more into detail and aggregate on
different levels. In case of a spatiotemporal prediction problem, it would be natural to also assess
errors over space and time. Therefore, several methods that have been used will be presented.

First, the baseline model will be introduced, which was used to compare the model results. Sec-
ondly, some generic error metrics used to analyse neural networks are presented, as well as an in-
terpretation of them in a traffic context. Thirdly, a method is given which qualitatively assesses the
results of a single speed prediction for one simulation iteration. Lastly, new error metrics are pro-
posed which calculate errors over space and/or time aggregated over all simulation iterations of a
dataset.

5.6.1. Baseline Model
In order to evaluate the results of the prediction not only with each other, but with respect to not
having a prediction model, a ’baseline model’ was introduced. For the model to have any relevant
predictive power, it should be more accurate than the baseline model. For a baseline model, two
model types are popular. A historical average (HA) is used often (e.g. [58, 84, 110]), which simply
models the prediction to be the average of all values of all days at that timepoint. Secondly, the
random walk (RW) is popular [51, 54], where one assumes flow or speed values increase or decrease
randomly over time, which can lead to quite poor estimations. A third option would be to predict
no change, so the predicted value would be equal to the last known value, or xt+m = xt with t = the
last timestep and m = the shift in time of the prediction. Although the author has not found any
papers using this method as a baseline model, it is used by Google Maps in its routing algorithm
and is used by Rijkswaterstaat to give drivers insights in the travel times on routes between the
same origin-destination pair. When choosing a short prediction horizon or when traffic conditions
are quite stable, one can imagine this method works quite well. Therefore, ’no change’ is chosen as
baseline model it is expected to perform better than HA, considering the relatively short prediction
horizon taken, and will most definitely perform better than RW.

5.6.2. General Error Metrics
First, we will look at the general error metrics used to assess the model and give their interpreta-
tion in a traffic-oriented setting. These general error metrics are most common when assessing the
accuracy of neural networks, and result in one single number which aggregates the error of all out-
putted values. The following index notation is being used: yk

s,t where y = the ground truth value, s =
the spatial segment index (with S being all segment values), t = the temporal index (with T being
all time steps) and k = the simulation replication index, or ’day’ (with K being all replications). For
predicted values, ŷ is used.

As the sequence-to-sequence model outputs all input data and returns the whole predicted
sequence, the error metrics are also calculated differently between the two model types. To
accurately compare the model results with the one-shot model, all errors are only calculated on the
last speed values of each sequence.

The mean absolute error (MAE), which has been introduced in subsection 3.1.1, simply calculates
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the absolute difference between prediction and ground truth, and averages this over all predictions
made. Using the index notation mentioned before, it is calculated using the following equation,
where n = the total amount of values:

M AE = 1

n

∑
s∈S,t∈T,k∈K

∣∣∣yk
s,t − ŷk

s,t

∣∣∣ (5.2)

When interpreting the MAE, the magnitude of the error does not affect the weighting of it. There-
fore, a small error occurring in a large amount of predictions can have the same effect on the error
term as a large error for a small amount of predictions. This can make this error less relevant, as one
is more interested in minimising the (larger) errors occurring at the borders between traffic phases
and less in small speed fluctuations within a traffic phase.

The root mean squared error (RMSE) is similar to the MSE loss function introduced in subsec-
tion 3.1.1, but the square root is taken, resulting in the following equation:

RMSE =
√

1

n

∑
s∈S,t∈T,k∈K

(
yk

s,t − ŷk
s,t

)2
(5.3)

By squaring the result, the unit of of the RMSE is the same as the output, making its value easier
to interpret compared to the MSE. As large differences are penalised higher compared to small
differences, it is especially suitable if one is more interested in larger prediction errors over smaller
errors. Within traffic speed prediction, the RMSE can be interpreted as follows, when compared
to the MAE. When two models have comparable MAE values but a high RMSE value, the error
is focused on a small amount of large mispredictions, for example when the traffic phase is
mispredicted. The model with a low RMSE will have a relatively large amount of smaller errors, for
example by incorrectly predicting the speeds within a phase.

The mean absolute percentage error (MAPE) calculates the difference between prediction and
ground truth as a ratio of the ground truth, resulting in the following equation:

M APE = 1

n

∑
s∈S,t∈T,k∈K

∣∣∣∣∣ yk
s,t − ŷk

s,t

yk
s,t

∣∣∣∣∣ (5.4)

By dividing the error by the ground truth value, the MAPE will especially penalise errors when the
congested state is not detected, as ground truth speed values during congestion are lower than
when in free-flow. Let’s assume v f r ee = 120 km/h and vcong = 30 km/h. Mispredicting a state
will lead to an absolute difference of

∣∣v f r ee − vcong
∣∣ = 90 km/h. However, when the ground truth

value is vcong , M APE = 300% whereas when the ground truth is v f r ee , M APE = 33%. There-
fore, the MAPE is only useful for detecting mispredictions of the congested phase. This makes it
far less relevant than the MAE and RMSE and its resulting values should be interpreted with caution.

5.6.3. Qualitative Heatmap Assessment
As a first step, the predictions were analysed by showing the prediction errors for a specific sim-
ulation iteration by creating a speed heatmap of the predicted and ground truth speeds and the
residuals of the two. An exemplary heatmap including these residuals can be seen in Figure 5.4. The
residuals, defined as ŷ − y , give a clear overview on which spatiotemporal locations are systemati-
cally overestimated

(
ŷ > y

)
or underestimated

(
ŷ < y

)
.

By assessing the complete heatmap of the results over space and time, one can see both spatial
as well as temporal mismatches with the ground truth. This can give more qualitative insights in
the prediction accuracy. As most congestion patterns in chapter 2 are also analysed using speed
heatmaps, analysing the prediction results in the same format will definitely help to draw parallels
with traffic flow theory as well. Besides qualitatively comparing the prediction heatmaps with the



5. Methodology 65

ground truth heatmaps, the residuals are also plotted. As 0 km corresponds to the most downstream
segment, the trajectory of a vehicle on this road would move from the lower left (starting at 1600 m)
to the upper right (at 0 m).

Figure 5.4: Exemplary speed heatmaps and residuals for a simulation iteration of the third dataset.

5.6.4. Spatiotemporal Error Metrics
Although these general error metrics can be useful to generalise and compare the performance of
several traffic predicting neural networks, they provide little insight in the causes of the error. When
assessing the error of traffic forecasts, one is especially interested in the accuracy when traffic has
a higher uncertainty. This can happen at specific locations in time where traffic demand fluctu-
ates(i.e. during peak hours) and/or space where road capacity is lower(i.e. at bottleneck locations).
After all, if the higher model accuracy is the result of a better free-flow speed estimation, but predic-
tion accuracy near bottlenecks decreases, the added value of this increase in accuracy is debatable.
Therefore, it would be interesting to calculate these errors over space and time.

In this section, several error metrics are proposed which can aid the interpretation of the error.
First, the error over space is assessed. Secondly, the error over time will be interpreted. Thirdly,
methods are proposed to assess the error over both space and time.

Spatial Errors
By calculating each error metric for each individual detector location separately, one can assess the
performance of the neural network on a spatial level. In this way, hypothesis 3 can be answered in
a better way and one can assess which road stretches have congestion patterns which have higher
predictability (as the errors will be lower) compared to other road stretches. This makes it possible
to relate the error to the road layout and potential bottleneck locations. Calculating the error per
spatial segment results in the following equations:

RMSEs =
√

1

n

∑
t∈T,k∈K

(
yk

s,t − ŷk
s,t

)2
(5.5)

M AEs = 1

n

∑
t∈T,k∈K

∣∣∣yk
s,t − ŷk

s,t

∣∣∣ (5.6)

Only the MAE and RMSE have been included, which both have a different scale to compensate for
the difference in magnitude. The MAPE was discarded as it contained the least relevant information
of all error metrics and resulted in a decrease of readability of the graph.

To visualise this error metric, a 2D line plot was chosen, as the line plot emphasises the continuity
of the spatial data and enables the visualisation of large detector sets in an intuitive way. The final
result can be found in Figure 5.5. The x-axis, containing the segment location, was defined so road
traffic drives from the left to the right as it does in the road layout in Figure 5.5b. As this is equal to
the reading direction, it could result in a more intuitive interpretation. The most important aspect
in the choice of the x-axis is that when interpreting the graph, the results are easy to relate to the
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road layout. The horizontal dotted lines indicating the exact locations of on- and off-ramps further
help relating the results of the plot to the road layout.

For the MAE, a confidence band is included depicting the interquartile range (IQR), showing
the range of results between the 25th and 75th percentile, of the MAE which was calculated over
different simulation iterations. The IQR provides information on the variability of the prediction
errors for different simulation scenarios. As the line corresponds to the overall MAE, this shows the
mean MAE value over all simulation iterations (instead of the median). This confidence interval has
only been calculated for the MAE as only for this error metric, the mean of all MAEs calculated per
simulation iteration would be equal to the general spatial MAE. This is not the case for the RMSE
due to the square root in its equation.

Although both the MAE and RMSE results look quite similar, in Figure 5.5a, some differences
can still be observed. Main differences can be observed in the order of magnitude, although the
RMSE values deviate from the MAE values (for example at 8 km). In chapter 7 and chapter 8, this
difference will be elaborated further.
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(a) Error over space.

(b) Road layout.

Figure 5.5: Exemplary plot of MAE/MAPE error metrics assessed over space. The coloured band over the MAE
represents the IQR of the MAE values per replication.

Temporal Errors
An error over time can also be depicted in a similar way as has been done for the spatial errors. This
enables fluctuating errors to be related to changes in traffic demand and resulting changes in traffic
inflow. Calculating the resulting errors per time results in the following equations to be used:

RMSEt =
√

1

n

∑
s∈S,k∈K

(
yk

s,t − ŷk
s,t

)2
(5.7)

M AEt = 1

n

∑
s∈S,k∈K

∣∣∣yk
s,t − ŷk

s,t

∣∣∣ (5.8)

An exemplary plot can be found in Figure 5.6, which is quite similar to interpret compared to the
spatial error in Figure 5.5. The main difference is that on the x-axis, time is depicted.

Spatiotemporal Errors
The last metric proposed is similar to the qualitative speed heatmap assessment, but then calculates
these errors over all simulation iterations. This also results in a heatmap, but the value of each cell
corresponds to the error of a segment at a time which is calculated over all simulation iterations.
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Figure 5.6: Exemplary plot of MAE/MAPE error metrics assessed over time. The coloured band over the MAE represents
the IQR of the MAE values per replication.

This is done using the following equations:

RMSEs,t =
√

1
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(5.9)
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An example of the resulting heatmaps can be found in Figure 5.7. Calculating the errors for all iter-
ations also results in a quite noisy heatmap, as can be seen in Figure 5.7a. However, when assessing
the errors for only one scenario, where traffic demand is approximately equal, one can see clear
similarities when the figure is compared to the residuals in Figure 5.4. However, since the resulting
errors are based on multiple iterations, conclusions drawn from this proposed spatiotemporal error
metric are better generalisable as they are applicable to multiple simulation iterations.

(a) Spatiotemporal error for all iterations of dataset 3.

(b) Spatiotemporal error for all iterations belonging to the first scenario of dataset 3.

Figure 5.7: Exemplary heatmap of the spatiotemporal error metrics for dataset 2.





6
Experimental Setup

In order to train and evaluate each neural network, traffic data has to be retrieved which in this case
has been done using a microscopic traffic flow model. By creating different scenarios and simulating
different roads, a wide variety of congestion patterns can be generated. This allows for the model
accuracy to be evaluated on a wide variety of traffic situations. The following chapter will elaborate
on how this traffic flow and speed data was created, assessing the different conditions under which
traffic has been simulated.

This chapter is structured as follows. First, the microscopic simulation software will be intro-
duced, as well as the configuration and parameters which have been used. Secondly, the different
datasets, each consisting of several scenarios, will be elaborated. Lastly, the steps used to prepare
the simulation data to use them as neural network inputs will be explained.

It should be noted that for the heatmaps in this chapter, the distance of 0 km represents the most
downstream segment of the road and distances are ascending in the upstream direction.

6.1. Microscopic Traffic Model Parameters
As has been mentioned in the methodology, a microscopic simulation model was used to generate
datasets for training the neural network. Compared to using actual data, this enables for more con-
trol over the traffic patterns on which the neural network is trained, since the traffic scenarios can be
adapted easily to meet the research requirements. In the context of this thesis, this has two advan-
tages. First, since the model accuracy can be assessed on scenarios having specific traffic patterns,
it is easier to relate the prediction accuracy to the type of congestion patterns modelled. Besides,
when designing a location transferable neural network, one can exactly design the traffic congestion
patterns present in the data. As one can isolate different properties and has better knowledge on the
different characteristics of the dataset, it will in the end be easier to trace differences in results back
to different properties.

All datasets were generated in AIMSUN NEXT 20, which is a popular microscopic traffic model
software. For all datasets, only the evening peak hour and some adjacent hours have been simu-
lated, which would correspond to times between 14:00 and 20:00, instead of simulating full days.
Since no regular congestion occurs during off-peak periods and speeds are likely to be equal to free-
flow speeds, speed predictions during off-peak hours are not of much added value. Including them
would result in a much higher overall accuracy, although it is unlikely a neural network will be used
to predict traffic during off-peak hours. Besides, congestion during off-peak hours mostly occurs
due to incidents instead of high traffic flow, making it very hard to predict their occurrence and the
implications of a certain accident. Besides, it will result in less simulation data needed since large
periods with free flow, containing little relevant ’information’ for the model, are avoided. Although
the time which was assigned to the simulation data is arbitrary, evening peak hour has been cho-
sen, as this was also present in the preliminary data analysis. To reduce the complexity of the dataset
generation, each dataset consists of only a couple of scenarios. For each scenario a different traffic

69



6. Experimental Setup 70

Table 6.1: Important microscopic traffic model parameter values.

Parameter Value

Warm-up period 15 min
Detector spacing 100 m
Time interval data 2 min
Road type ’Motorway’
Lane width 3.5 m
Aggressiveness 30%
Cooperation 60%

demand was determined, resulting in other congestion patterns. To create a bigger dataset, all sce-
narios have been simulated for 100 iterations, each scenario having a different random seed. With
each chosen random seed in AIMSUN, slight differences in network loading and vehicle character-
istics can occur. Therefore, within each scenario, each iteration contains some differences from the
other iterations, resulting in a quite diverse dataset.

The design parameters used while building the model can be seen in Table 6.1. The standard
virtual loop detectors of AIMSUN were used, which save flow, (TIME/SPACE) mean speed and den-
sity at each location, which were aggregated on a 2 minute level. The road type ’motorway’ has a
maximum speed of 120 km/h, although the mean desired speeds of cars (110 km/h) and trucks (85
km/h) was slightly lower. From the driving parameters, both the aggressiveness and cooperation
were changed to create more realistic traffic patterns. The aggressiveness is increased from 0 to
30%, to create more sudden lane changes leading to more traffic breakdown. By reducing the coop-
eration from 80 to 60%, the resulting car merging process was less smooth, which also resulted in
more congestion.

6.2. Dataset Characteristics
As mentioned before, three different highways have been simulated, which lead to three different
dataset. Each dataset consisted of a couple of scenarios, which each have a unique traffic demand
and therefore different resulting flow and speed patterns. Of each scenario, 100 iterations have been
simulated. Each iteration corresponds to what would be a day when using simulation data. The
resulting sizes of each dataset can be found in Table 6.2.

In this section, the datasets will be presented in a chronological order. Since the development of
each next dataset has been done using insights of the previous dataset(s), the thought process and
considerations done while developing these datasets will be explained first. This introduction will
be followed-up by a in-depth introduction of each dataset individually.

The first dataset consists of a short three-lane highway (1.5 km) with at the end a lane merge
bottleneck, as this is a relatively simple bottleneck which results in the formation of a moving syn-
chronised pattern (MSP) upstream of the bottleneck location. As the road is relatively short and the
congestion patterns rather simple, this would make for a good first assessment of the possibilities
of a neural network for traffic forecasting. However, from the first results could be concluded that
the low accuracy of the model was also caused by the dataset. The short road length resulted in

Table 6.2: Sizes of datasets resulting from simulations.

Dataset Scenarios
Iterations
per scenario

Total days Road segments Time per iteration

Dataset 1 2 100 200 16 5.5 hours
Dataset 2 3 100 300 101 6 hours
Dataset 3 4 100 400 108 5.5 hours
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little information for the model to base its predictions on. Besides, the simple congestion patterns
resulted in a relatively good performance of the baseline model.

The second dataset should therefore consist of more complex congestion patterns. To do this,
a much longer three-lane highway (10.7 km) was created, containing several on- and off-ramps.
Traffic demand was tuned so that a mix of GPs with stop-and-go waves and MSPs occurred. As a
result, the model accuracy improved, resulting in a lower error compared to the baseline model.
However, after assessing the results qualitatively, it was observed that the model had difficulties
tracking the correct shockwave speeds of the stop-and-go waves in the GP and the congestion tail
of the MSP.

This resulted in the creation of the third dataset which, like the first dataset, consisted of a 3-lane
highway with a lane merge bottleneck. However, the road length increased to 10 km and the differ-
ent demand patterns resulted in the formation of one MSP per simulation iteration, each scenario
having a different shockwave speed. Therefore, this dataset is very suitable in checking whether a
neural network is able to predict the correct shockwave speed while only having to predict traffic
breakdown once per day.

6.2.1. First Dataset
As a first dataset, a simple lane merge bottleneck has been simulated. It consists of a 2000 m straight
3-lane section followed by a 300 m 2-lane section, which is shown in Figure 6.1. Detectors are placed
every 100 m from 1500 m upstream of the lane merge until the lane merge. Two traffic demand pat-
terns have been created, which simulate traffic patterns on the A20 around the evening peak hours
between 14:00 and 19:30. Traffic inflow is set per half hour, and is shown in Figure 6.2 One of them
creates heavy congestion whereas the other creates lighter, reoccurring congestion waves. Since
Hoogendoorn et al. [28] argue that the traffic composition (trucks/cars) clearly has an influence
on the breakdown characteristics, the demand pattern contains only cars. From the two demand
patterns, 100 ’draws’ are taken which contain slight differences in model results, which results in
200 ’days’ of data in total. The first scenario results in very heavy congestion, with high shockwave

Figure 6.1: Schematic view of simulated road with detectors (in purple).

Figure 6.2: Demand patterns of two simulation scenarios.
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Table 6.3: Traffic in- and outflow for first dataset (in veh/h).

14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00

Scenario 1 1200 1300 1600 1750 1800 1750 1800 1750 1800 1400 1000
Scenario 2 1200 1200 1300 1500 1400 1600 1700 1700 1700 1400 1000
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(b) Second scenario, speed
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(c) First scenario, flow
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Figure 6.3: Speed and flow data heatmaps for first dataset.

speeds with which the upstream congestion head moves upstream and downstream. For the second
scenario, traffic demand was slightly lower and the resulting shockwave speeds were more diverse.

6.2.2. Second Dataset
Since the first dataset had some shortcomings, some other requirements were formulated for the
second dataset. The first requirement was that the road layout and congestion patterns resulting
from the simulation should be more complex. By doing so, the baseline will be a less favourable
prediction method and more complex prediction methods will most likely perform better. As a sec-
ond requirement, the road length should increase and the patterns themselves should propagate
over a larger distance. Therefore, there will be more information present in the data to base a pre-
diction on, which possibly will lead to much better results.

Figure 6.4: Schematic view of road of second dataset.

To meet both requirements, a longer, more complex road with a length of 10,7 km long was created,
containing of several on- and off ramps, as can be seen in Figure 6.4. For this road, three traffic de-
mand scenarios have been generated. To simplify the process of loading the model, each scenario
consists of a base traffic demand, as can be seen in Table 6.4, which is then per point in time mul-
tiplied with a fixed factor, as depicted in Figure 6.6. Although this multiplication factor over time
is the same for each scenario, the difference in base traffic demands results in a big difference be-
tween the roads. We now zoom in on each scenario to provide a brief description of the scenario
and the resulting speed heatmap. Both trucks and cars are present in the vehicle inflow, which leads
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(a) First scenario, speed
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(b) Second scenario, speed
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(c) Third scenario, speed
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(d) First scenario, flow
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(e) Second scenario, flow
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(f ) Third scenario, flow

Figure 6.5: Speed and flow data heatmaps for second dataset.

Table 6.4: Traffic in- and outflow for road second dataset (in veh/h).

Section a b c d e f g h

Scenario 1 2600 200 -500 300 -700 500 -300 600
Scenario 2 2600 150 -700 100 -100 600 -150 200
Scenario 3 2400 50 -200 100 -50 200 -100 200

to additional turbulence and increases the complexity of the traffic jam. The resulting speed data
can be seen in Figure 6.5

Scenario 1 is characterised by a large moving synchronised pattern (MSP) which starts 4.3 km up-
stream from the end of the road, as can be seen in Figure 6.5a. As it occurs just upstream from
off-ramp e (see Figure 6.4), one can conclude an off-ramp induced traffic jam occurs since there is
a large amount of vehicles exiting the road at this off-ramp. The resulting lane changing behaviour
upstream of this off-ramp causes a reduction in capacity and therefore the occurrence of a traffic
jam.

Scenario 2 is characterised by a critical traffic flow from b to g and high merging and diverging
flows on the on- and off-ramps in between, resulting in a complex speed pattern as can be seen in
Figure 6.5b. A general pattern occurs as the pattern consists of synchronised flow and stop-and-
go waves between weaving section f/g and to weaving section b/c. A stationary congestion head
occurs at the weaving section between f and g, since the inflow at on-ramp f is higher compared to
the first scenario. Together with the lane-changing from the off-ramp, stop-and-go waves emerge
too from this location, which either solve at off-ramp e or propagate downstream to weaving section
b/c. Between weaving section b/c to the upstream end of the road, a larger amount of stop-and-go
waves and more consistent synchronised flow conditions occurs.

Scenario 3 is characterised by a lower inflow on the main highway section a, and also has far
lower in- and outflows at the intermediate on- and off-ramps. Therefore, free-flow conditions occur
during most time on the road, as can be seen in Figure 6.5c. However, one can see that between
16:00 and 18:00, the higher traffic flows result in slightly lower traffic speeds, which possibly also
is due to the inhomogeneity in speeds between the two vehicle types. Furthermore, some smaller
localised synchronised pattern (LSP)s are triggered near on-ramp h.
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Figure 6.6: Demand patterns of two simulation scenarios.

Table 6.5: Traffic In- and Outflow for Third Dataset (in veh/h)

14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00

Scenario 1 4000 4500 5000 6300 6300 6300 5200 5200 4100 4100 4100
Scenario 2 4000 4500 5000 5800 5800 6100 6100 4500 4500 4100 4100
Scenario 3 4000 4500 5000 5000 5000 5100 5200 5200 5000 4000 3500
Scenario 4 4000 4500 5000 5800 5800 5800 5200 5200 4600 4600 4600

6.2.3. Third Dataset
Therefore, for the third dataset, a different approach was taken. The approach was the same as with
the first dataset, by taking a road with a lane merge bottleneck and simulating a stationary jam wave.
However, two things were changed, namely:

1. the road length was increased from 2 km to 10 km, and

2. per scenario, the propagation speed of the upstream jam head was changed.

This resulted in the road design shown in Figure 6.7. By increasing the road length, more data was
available for the neural network to train on, making it easier to predict traffic speeds given the pre-
diction horizon of 20 minutes. Besides having more data for the neural network, the longer road
length also resulted in a longer time for the upstream jam head until it reaches the border of the
road. This will likely increase the accuracy of the predictions, as the propagation time of the up-
stream jam head is much lower than the prediction horizon. By changing the shockwave speed of
the upstream jam head between the scenarios, one could validate whether the model could make
a distinction between different demand patterns leading to the prediction of different speeds with
which the jam head propagates.

Figure 6.7: Schematic View of Road of Third Dataset

Based on this, four different scenarios were formulated, which all consist of a moving synchro-
nised pattern (MSP) with different shockwave speeds. Each scenario has the same start, between
14:00 and 15:30, where traffic demand was below road capacity leading to free-flow traffic speeds.
After this period, the different traffic demand patterns lead to differences in traffic patterns.
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(a) First scenario, speed
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(b) Second scenario, speed
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(c) Third scenario, speed
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(d) Fourth scenario, speed
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(e) First scenario, flow
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(f ) Second scenario, flow
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(g) Third scenario, flow
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(h) Fourth scenario, flow

Figure 6.8: Speed and flow data heatmaps for third dataset
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Traffic Demand Third Dataset
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Figure 6.9: Traffic demand of third dataset

Scenario 1 has a high traffic demand between 15:30 and 17:00 (vw ave = −5 km/h), as well as a
low traffic demand between 18:00 and 19:30 (vw ave = 5 km/h). Between 17:00 and 18:00, a traffic
demand was chosen leading to a shockwave speed of approximately 0 km/h, leading to a stabilised
jam head location over time. This leads to a high shockwave speed of the upstream jam head both
when congestion increases and solves again, so traffic congestion almost moves upstream to the
edge of the road, as can be seen in Figure 6.8a.

Scenario 2 is quite similar to the first scenario, although traffic flows are lower between 15:30
and 17:00 (vw ave =−2.5 km/h) but higher between 18:00 and 19:30 (vw ave = 2.5 km/h). Therefore,
both shockwave speeds are lower and congestion propagates upstream less, leading to a different
congestion pattern which can be seen in Figure 6.8b.

Scenario 3 has a different approach as the shockwave speeds of both developing as well as solv-
ing congestion vary over time, to see whether these differences can be captured. Therefore, the
traffic demand pattern between 15:30 and 19:30 was divided into four sections, where in the first
two hours traffic demand gradually increased and the last two hours it gradually decreased. This
lead to differences in shockwave speeds over time which are mentioned in Table 6.6.

Scenario 4 is again a scenario without congestion, representing for example the weekends. Al-
though traffic demand is highest between 17:00 and 18:00, speeds remain to be equal to the free-flow
speed, as can be seen in Figure 6.8d.

Table 6.6: Shockwave speeds third scenario of third dataset.

15:30-16:30 16:30-17:30 17:30-18:30 18:30-19:30

vw ave -2 km/h -4 km/h 3 km/h 5 km/h
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6.3. Data Preparation for Neural Network

Table 6.7: Excerpt of SQLite database AIMSUN

did oid eid sid ent countveh countveh_d flow flow_d speed speed_d density density_d occupancy occupancy_d headway headway_d

611 477 d10 0 1 777.0 -1.0 4662.0 -1.0 74.53 -1.0 61.469 -1.0 36.93 -1.0 -1.0 -1.0
611 478 d09 0 1 783.0 -1.0 4698.0 -1.0 70.47 -1.0 61.84 -1.0 37.15 -1.0 -1.0 -1.0
611 479 d08 0 1 791.0 -1.0 4746.0 -1.0 67.99 -1.0 63.99 -1.0 38.45 -1.0 -1.0 -1.0
611 480 d07 0 1 799.0 -1.0 4794.0 -1.0 56.96 -1.0 73.81 -1.0 44.35 -1.0 -1.0 -1.0

Before the neural networks can be trained on a dataset, the simulation data from AIMSUN had
to be transformed so it has the correct structure for training the neural network. The simulation
data from AIMSUN was stored in an SQLite database, containing a table in which all detector data
was stored, aggregated on a 2-minute level. Each entry consists of one detector observation at one
timepoint, as can be seen in a data excerpt in Table 6.7. The original SQLite databases were up to 1.2
GB in size and contained a lot of data columns which were irrelevant for the neural network inputs
Therefore, the first step was to delete all irrelevant columns and storing this new dataset, reducing
the file size to approximately 25%. Only data related to the simulation run, timepoint, detector ID
was stored, as well as flow and speed data aggregated for all vehicle types.



7
Results

After the retrieval and preparation of the data from the experimental setup, the prespecified neural
networks have been trained and their results have been analysed. In this chapter, the results and
findings of the experiments proposed in the methodology will be presented. In order to select the
best performing model, first, several models have been trained according to the hyperparameters
specified in chapter 5. The validation error of all models was calculated using the validation dataset
in order to select the best hyperparameter combinations for each dataset. These final models were
then evaluated using a test dataset to compare and select the best performing model.

The chapter is structured as follows. First, the results of the hyperparameter tuning will be pre-
sented for all three datasets, including an analysis of the effects of the hyperparameter combinations
on the model accuracy. Secondly, the test errors of the best performing models will be introduced,
comparing the prediction results in a qualitative way and presenting the spatial error. Lastly, the
results of the sensitivity analysis will be discussed, to get insight in the effect of the input sequence
length and prediction horizon on the model accuracy.

7.1. Hyperparameter Tuning
In chapter 5, different hyperparameters have been proposed which were then tested using grid
search. A separate validation dataset was used to assess the error metrics of each hyperparame-
ter combination in order to select the best performing model within these hyperparameters. The
best hyperparameter combination was then selected for each dataset, input data type and model
type. This section shows the validation errors of each of these models and also comments on the
differences in accuracy found when changing the hyperparameters.

First, the results of the first dataset will be presented as well as the results of the custom input
layers proposed. Secondly, the results of the second dataset will be introduced. Lastly, the results of
the third dataset will be discussed.

7.1.1. Validation Errors First Dataset
The first dataset, which has been introduced in subsection 6.2.1, consists of a 2 km long road with
a lane merge bottleneck on the downstream end, causing several moving synchronised patterns to
occur. The prediction results in general were quite poor compared to the baseline, as can be seen
assessing the error metrics of the best performing models within the hyperparameter grid search in
Table 7.1. Only the RMSE of the models is lower than the baseline and all best performing models
are relatively shallow, having only one layer.

In order to increase prediction accuracy, many different methods have been tested, such as
using different loss functions, not scaling the input data, dropout, cross-validation, changing the
output activation functions and drastically increasing the number of units per layer, of which
the results can be found in Appendix A. Since these options did not lead to an error reduction
and the model accuracy was still worse than the baseline, this dataset has not been tested on the

77
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Table 7.1: Results and configuration of best performing models for different model types. The lowest values per error
metric are shown in bold.

Model Type MAE (km/h) RMSE (km/h) MAPE (%) layers units

speed only, MSE loss 8.94 15.42 18.27 1 32
speed only, MAE loss 7.61 16.12 14.74 1 32
flow and speed, a
(perceptron)

9.32 15.99 19.20 1 32

flow and speed, b
(non-linear)

9.29 16.01 19.37 1 32

flow and speed, c
(fully connected)

8.90 15.30 18.24 1 64

Baseline (vt+20 = vt ) 7.26 16.33 12.82 - -

sequence-to-sequence architecture and no sensitivity analysis will be executed. However, since the
dataset was used to test several input layer structures to combine spatiotemporal speed and flow
data as formulated in subsection 5.3.2, and was proven to be important for the choices of some
hyperparameters, this section will focus on the model results with respect to these topics.

Although the dataset had some shortcomings, some results were proven to be relevant with respect
to the other datasets and will be shared in this section. First, the model results will be assessed
when using speed data as input only, as well as the effect of several loss functions on the resulting
errors. Secondly, since this dataset was used to test several input layer structures to combine spa-
tiotemporal speed and flow data as formulated in subsection 5.3.2, these results will be presented
too.

Results Speed Data Only
From Table 7.1 could be concluded that the error metrics of both speed-only models were quite high
with respect to the baseline. In order to see what the cause is of these high errors, the resulting speed
heatmaps were analysed as shown in Figure 7.1. It seems like the speed predictions look like a copy
of the ground truth values but then shifted by 20 minutes, a period equal to the prediction horizon.
This indicates the model does not predict traffic based on the input variables, but actually reuses
the most recent input data value as prediction, although it does so with a lower accuracy compared
to the naive baseline model.
In order to increase the model accuracy, different loss functions have been tested for the speed
prediction model, namely both an a MAE and a MSE loss function. When comparing the results
in Table 7.1, a significant difference in error metrics can be observed between the two used loss
functions. Using a MAE loss function, the MAE and MAPE are relatively low, but using an MSE loss
function, the RMSE is lower. To see how the model predictions led to this result, let us qualitatively
compare the resulting speed heatmaps of models trained on both loss functions on one exemplary
congestion pattern.
When looking at the results when using a MSE loss function (Figure 7.1), a continuous overesti-
mation of the speed during the congested phase can be observed, as the predicted speed is much
higher than the true, observed speed. However, when assessing the predicted speed heatmap using
the MAE loss function of the same congestion pattern (Figure 7.2), no overestimation of the speed
takes place. As a result, the residuals are much higher when the solution of the congestion tail is
mispredicted.

This difference in prediction results for the two different loss functions is confirmed by Fig-
ure 7.3, in which the predicted speed is plotted against the ground truth speed. When using
the MSE loss, one can see that predicted speeds do not fall below 40 km/h, although ground
truth speeds reach below 20 km/h. Besides overestimating low speeds, high speeds seem to be
underestimated too. For MAE loss, there also is a slight underestimation of high speeds, but the
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(a) Heavy Congestion Pattern

(b) Medium Congestion Pattern

Figure 7.1: Speed heatmaps of prediction result for the model with the highest accuracy when trained on dataset 1,
using only speed data and a MSE loss function.

Figure 7.2: Speed heatmaps of prediction result for the model with the highest accuracy when trained on dataset 1,
using only speed data and a MAE loss function.

overestimation of speeds when in congestion is largely absent. The large concentration of observa-
tions at [vpr ed , vg t ] = [25,105] or [105,25] km/h for both loss functions shows that the model does
not correctly predict the phase changes between free-flow and congestion.

Figure 7.3: Predicted speed versus ground truth speed

Combining Flow and Speed Data
In subsection 5.3.2, several input layer structures have been proposed combining the flow and speed
data belonging to a road segment at a certain time. It was assumed these custom structures had
several advantages over a fully connected approach, as the number of trainable parameters would
be smaller and parallels could be drawn with the concept of traffic phases within traffic flow theory.
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Table 7.2: Results of grid search for models trained on the second dataset. For each data and loss function
combination, the lowest values of each error metric have been made bold, whereas the model with the overall

lowest error has been highlighted in green.

MAPE (%) RMSE (km/h) MAE (km/h)

Data Loss Layers 108* 216* 432* 108* 216* 432* 108* 216* 432*

Speed

MAE
1 7.80 7.76 7.84 8.41 8.33 8.38 5.04 4.98 5.01
2 7.55 7.71 7.80 8.20 8.25 8.30 4.92 5.00 5.00
4 7.84 7.83 7.81 8.32 8.34 8.41 5.10 5.01 5.07

MSE
1 9.52 9.50 9.55 8.84 8.78 8.84 5.93 5.83 5.86
2 9.61 9.64 9.59 8.81 8.90 8.88 5.89 6.02 5.97
4 9.46 9.75 9.72 8.74 9.11 8.95 5.87 6.19 6.11

Speed
+ flow

MAE
1 7.55 7.53 7.66 8.14 8.09 8.42 4.89 4.87 4.95
2 7.53 7.43 7.51 8.21 8.07 8.08 4.93 4.83 4.82
4 7.67 7.60 7.48 8.22 8.24 8.27 4.94 4.88 4.86

MSE
1 9.14 9.14 9.28 8.54 8.52 8.65 5.72 5.69 5.75
2 9.40 9.38 9.58 8.63 8.62 8.76 5.73 5.67 5.82
4 9.42 9.38 9.58 8.61 8.63 8.75 5.70 5.71 5.89

Baseline - - 14.05 15.71 8.98

* = units per hidden layer

Table 7.3: Results of grid search sequence-to-sequence for models trained on the second dataset. For
each data and loss function combination, the lowest values of each error metric have been made bold,

whereas the model with the overall lowest error has been highlighted in green.

MAPE (%) RMSE (km/h) MAE (km/h)

Data Loss 108* 216* 432* 108* 216* 432* 108* 216* 432*

Speed
MAE 7.86 7.28 7.05 8.51 8.06 8.20 4.88 4.74 4.76
MSE 8.58 7.80 8.33 8.37 8.00 8.28 5.26 5.09 5.14

Speed
+ flow

MAE 8.47 10.98 10.73 8.91 11.97 11.44 6.06 8.20 7.86
MSE 10.35 8.92 8.51 10.55 9.10 8.54 7.39 6.31 6.01

Baseline - 14.05 15.72 8.98

* = units per hidden layer

Variant (a) used a perceptron to connect flow and speed, variant (b) a small feed-forward neural
network (FFNN) combining flow and speed data per segment and variant (c) connected all input
parameters directly to the first GRU layer in a fully connected way. The FFNN in variant (b) consists
of one hidden layer having four units, each having a ReLU as output activation function. The results
of the best performing model structures, presented in Table 7.1, show that variant (c) using the fully
connected input layer performed significantly better than the other two. Besides, the more complex
non-linear approach of variant (b) performed worse than the perceptron approach of (a). Since the
results of variant (c) were significantly better, the conclusion can be drawn that designing a custom
input layer will not improve the accuracy and that in this case, accuracy decreases when complexity
increases. Therefore, on the following datasets, only variant (c) will be used when combining flow
and speed.

7.1.2. Validation Errors Second Dataset
The second dataset, as explained in subsection 6.2.2, consisted of three scenarios: a free-flow
scenario, a scenario with moving synchronised patterns and a scenario with general patterns
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containing many stop-and-go waves. The results of the one-shot model are presented in Table 7.2
and for the sequence-to-sequence model in Table 7.3, where the lowest error metrics per dataset
and loss function are in bold and the overall best model is marked green. In general, the sequence-
to-sequence model has a lower error than the one-shot GRU RNN model, although the difference
between both models is quite small. When looking at the two models, no clear conclusions can be
drawn with respect to the best performing loss function, input variables and number of layers and
neurons. To go into more detail, a short assessment will be given per model type.

When assessing the results of the hyperparameter grid search for the one-shot model in Table 7.2,
a couple of things can be noticed. The lowest errors are achieved when using speed and flow
data as input, having a model with two GRU RNN layers consisting of 216 units which was trained
using a MAE loss function. This best performing model, as well as all other models, performed
significantly better than the baseline. Zooming in on each of the hyperparameters individually
gives the following conclusions. First, using a MAE loss function leads to a significantly lower error
compared to a MSE loss function for all three error metrics, including the RMSE. For all layer, unit
and node combinations, models using both flow and speed data as inputs perform better than
models using only speed data, although the difference is small (MAPE: -0.12 %pnt, RMSE: - 0.13
km/h, MAE: -0.10 km/h). The number of hidden layers and neurons per layer have no clear effect
on the model accuracy as all error metrics are quite similar for different layer-unit combinations.
However, a clear optimum in the model structure can be found, as both the deepest as well as the
shallowest models led to an increase in error.

When looking at the sequence-to-sequence model results in Table 7.3, the best performing model
uses only speed data, has 216 units and was trained using a MAE loss function (as both RMSE and
MAE are lowest for this model type). It is quite striking that using speed and flow as input data in-
creases the model error significantly, opposite to the one-shot model. Besides, it seems the models
using flow and speed data have less stable results, as there are larger fluctuations in error observed
with changing the number of units per layer compared to the one-shot model. The effect of the loss
function on the model results differs from the one-shot model in two ways. First, no loss function
was found to give the overall lowest errors, as the lowest MAE and MAPE is obtained using an MAE
loss function, whereas a MSE leads to a lower RMSE value. Secondly, the differences in error metrics
between the two loss functions are not as big as for the one-shot model.

7.1.3. Validation Errors Third Dataset
The third dataset, as presented in subsection 6.2.3, consists of four different scenarios: one
free-flow scenario and three scenarios consisting of a localised synchronised pattern with dif-
ferent shockwave speeds. When comparing the results of the one-shot GRU RNN (Table 7.4)
with the sequence-to-sequence GRU RNN (Table 7.5), the sequence-to-sequence model has a
significantly better accuracy compared to the one-shot model. For both model types, the speed
and flow dataset in combination with a MAE loss function results in the highest accuracy. As some
differences could be observed between the two model types, their results will be assessed separately.

For the one-shot model, the lowest errors were observed when the speed and flow dataset and a MAE
loss function were used for training, on a model with 4 layers which each consist of 202 units. This
is quite similar to the second dataset, although the optimal number of layers is higher (4 instead of
2 layers).

One can see that the loss function had a significant influence on the model quality. Predictions
are much worse using a MSE loss function (Figure 7.4b) as there is no sharp border between the two
traffic phases, but it seems the speed values are gradually shifting around the shockwave separating
the two speeds. When using a MAE loss function (Figure 7.4a) the prediction errors are limited to
mispredictions of the position of this shockwave. The accuracy of the predictions is quite good
as the residuals are small and the predicted speed heatmap accurately resembles the true speed
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Table 7.4: Results of grid search for models trained on the third dataset. For each data and loss function combination,
the lowest values of each error metric have been made bold, whereas the model with the overall lowest error has been

highlighted in green.

MAPE (%) RMSE (km/h) MAE (km/h)

Data Loss Layers 101* 202* 404* 101* 202* 404* 101* 202* 404*

Speed

MAE
1 9.66 9.40 9.39 10.68 10.75 10.72 4.18 3.99 3.95
2 9.31 8.52 8.85 10.47 10.27 10.47 3.99 3.70 3.83
4 8.20 8.56 8.91 10.20 10.23 10.39 3.73 3.70 3.79

MSE
1 18.01 18.06 17.83 12.94 12.87 12.81 7.92 7.65 7.68
2 17.83 17.56 17.34 12.73 12.71 12.65 7.55 7.45 7.47
4 17.10 17.58 17.30 12.64 12.60 12.65 7.55 7.42 7.58

Speed
+ flow

MAE
1 8.22 7.49 7.55 9.68 9.20 9.34 3.64 3.57 3.55
2 8.26 7.43 7.22 9.66 9.24 9.23 3.82 3.49 3.48
4 7.53 7.08 7.26 9.28 9.14 9.24 3.63 3.50 3.49

MSE
1 17.40 17.23 17.30 12.48 12.42 12.49 7.43 7.33 7.46
2 17.19 17.11 16.83 12.32 12.32 12.36 7.21 7.21 7.34
4 17.01 16.91 16.84 12.30 12.38 12.47 7.21 7.32 7.49

Baseline - - 25.73 25.27 10.28

* = units per hidden layer

Table 7.5: Results of grid search sequence-to-sequence model third dataset. For each data and loss
function combination, the lowest values of each error metric have been made bold, whereas the

model with the overall lowest error has been highlighted in green.

MAPE (%) RMSE (km/h) MAE (km/h)

Data Loss 101* 202* 404* 101* 202* 404* 101* 202* 404*

Speed
MAE 6.51 7.39 7.54 10.77 10.56 10.88 3.64 3.54 3.68
MSE 7.83 8.27 8.72 9.71 10.04 9.97 3.88 4.09 4.17

Speed
+ flow

MAE 5.21 5.87 5.33 8.62 8.21 8.71 2.84 3.09 2.88
MSE 6.22 5.31 6.18 8.24 8.98 8.42 3.20 2.97 3.33

Baseline - 25.73 25.27 10.28

* = units per hidden layer

heatmap. These differences cause the error metrics to be much higher using the MSE loss function
compared to the MAE loss function.

For the sequence-to-sequence model, the best results were achieved using both flow and speed
input data, a MAE loss function and 202 hidden units. For all models, including speed and flow data
resulted in a significant decrease in error metrics. The effect of the number of hidden units on the
prediction error is less significant, although using 404 hidden nodes clearly leads to worse results
compared to the other combinations. In general, using a MAE loss function leads to lower values for
all error metrics, although the difference is not as big compared to the one-shot model. No major
differences can be found between the predictions and residuals between the two loss functions, as
their predictions and residuals shown in Figure 7.5 look very much alike. However, especially when
the upstream congestion tail location remains stable over time, one can see that a MAE loss function
results in a sharper difference in speed between the two phases. The sequence-to-sequence model
training seems to be much more robust, as in this case neither model did not get stuck in a local
minimum during training.
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(a) Heatmaps using MAE loss function

(b) Heatmaps using MSE loss function

Figure 7.4: Speed heatmaps of prediction result for best one-shot model when having a MAE or MSE loss function

(a) Heatmaps using MAE loss function

(b) Heatmaps using MSE loss function

Figure 7.5: Speed heatmaps of prediction result for best sequence-to-sequence model when having a MAE or MSE loss
function.

7.2. Model Test Results
After assessing the effect of hyperparameter tuning using validation data, the loss function, number
of hidden layers and number of units per hidden layer could be fixed for each combination of input
data and model type per dataset. By calculating the test errors of these best performing models, the
best performing model structure in general could be given. By also analysing the resulting speed
heatmaps qualitatively, the implications of these differences in error between the models can be
interpreted.

This section is structured as follows. First, the test errors will be discussed for both datasets. Sec-
ondly, the prediction results of the most accurate GRU RNNs will be analysed qualitatively. Lastly,
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Table 7.6: Test errors of the models having lowest training error per dataset, data types and model type, both for the
second and third dataset. The lowest error metric values have been made bold.

Dataset 2 Dataset 3

Model Data
MAPE

(%)
RMSE

(km/h)
MAE

(km/h)
MAPE

(%)
RMSE

(km/h)
MAE

(km/h)

S2S Speed 7.16 8.09 4.73 6.41 10.84 3.64
Speed+flow 7.67 8.13 5.06 5.12 8.68 2.85

1-shot Speed 7.58 8.35 4.96 7.89 10.01 3.67
Speed+flow 7.38 8.12 4.83 6.91 9.10 3.47

Baseline - 14.06 15.71 8.98 25.73 25.27 10.28
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Figure 7.6: Learning rates for best models of test set.

the error terms will be shown per segment, to see how the errors differ over space. Individual speed
heatmaps of each model considered in this chapter can be assessed in Appendix B.

7.2.1. Test Error Results
When assessing the test errors for the four different model type and input data combinations on the
second and third dataset, as shown in Table 7.6, the test errors do not differ much from the validation
errors. For both datasets, the sequence-to-sequence model led to the best results, although the best
performing dataset differed. Although adding flow data resulted in a significant drop in errors for
dataset 3, it led to an increase in MAE and MAPE for dataset 2.

The learning rates, present in Figure 7.6, show that the learning process was stable, and all loss
function values converged well within the 250 learning epochs. However, since both the validation
and training loss converge to the same value, we see that both datasets are quite similar and the
model might overfit or have limited generalisation power, as explained in chapter 3. In case the
maximum number of epochs is smaller, the early stopping mechanism intervened and the training
process was halted. Only for the sequence-to-sequence model of the third model, the early stopping
did not intervene, so it was trained over the full 250 epochs.

7.2.2. Qualitative Comparison of Model Configurations
For the best one-shot and sequence-to-sequence models of both datasets, a speed heatmap of each
scenario has been included in Appendix B. This section will zoom in on the most interesting find-
ings found from these heatmaps. When assessing the heatmaps of dataset 2, one can see that the
predictions look quite accurate. However, both the one-shot and the sequence-to-sequence model
are unable to correctly capture the propagation of the upstream jam head for the first scenario (con-
taining an MSP) and the exact positions of the stop-and-go waves for the second scenario (contain-
ing a GP). However, for the third dataset, both models could quite accurately capture the shockwave
speeds for all different models.

In this paragraph, the effect of both the model type as well as the input data on the prediction
quality will be assessed in order to explain the differences found in the error metrics.
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Model Type
For both datasets, the best performing model was a sequence-to-sequence model structure, espe-
cially for the third dataset. When qualitatively assessing the results of congestion patterns on a one-
shot and sequence-to-sequence model trained on flow and speed data of the third dataset, a couple
of differences can be noted, which are also visible in Figure 7.7. Firstly, the sequence-to-sequence
model seems to predict the shockwaves between traffic phases in a much better way. Secondly, it
seems as if the sequence-to-sequence model can better capture the traffic breakdown at the bottle-
neck location.

(a) Speed heatmaps for one-shot model

(b) Speed heatmaps for sequence-to-sequence model

Figure 7.7: Speed heatmaps of prediction result on third dataset for sequence-to-sequence and one-shot model having
the highest accuracy.

Let us first zoom in on the differences in shockwave prediction. In the one-shot model, the pre-
dicted speed heatmap has rough, ’low-resolution’ borders between the free-flow and congested
phase, as the shockwave does not propagate smoothly and there is a larger zone of ’averaged’
speeds between the free-flow and congested phase. The shockwaves resulting from the sequence-
to-sequence model seem to be better predicted and also smoother compared to the one-shot mode.
Although there are some mispredictions of the shockwave speed when looking at the residuals, the
overall prediction result looks much better. A similar observation can be made when comparing
speed heatmaps from dataset 2 of the best one-shot model (Figure B.1b) and the best sequence-to-
sequence model (Figure B.2c) in Appendix B, as the sequence-to-sequence model more accurately
predicts the breakdown of the first stop-and-go wave compared to the one-shot model.

Besides, it seems as if the sequence-to-sequence model can capture the traffic breakdown pro-
cess in a better way, as the error around t=15:40 and x = 0.5 km is much lower for the sequence-to-
sequence model compared to the one-shot model. Since temporal data is not encoded in the RNN
input data, traffic breakdown can be predicted by looking at correlations due to an increase in flow
or the decrease in speed present before traffic breakdown (as can be seen in Figure 6.5). Apparently,
the sequence-to-sequence model is better at capturing these correlations than the one-shot model.

Input Data
When looking at the effect of input data, only the sequence-to-sequence models will be assessed as
these were the best performing models. Since dataset 3 led to different conclusions with respect to
the input data to be included compared to dataset 2, both will be assessed separately.

For the second dataset, including flow in the input data led to a small increase in error, albeit not
very high. When looking qualitatively at the difference in the resulting heatmaps, both predictions
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seem to be of rather low quality. In Figure 7.8, one can see that individual stop-and-go waves cannot
be captured by both models.

(a) Speed heatmaps for model trained on speed data only.

(b) Speed heatmaps for model trained on speed data only.

Figure 7.8: Speed heatmaps for a model trained on the second dataset, for a scenario containing general patterns with
stop-and-go waves. The models having the highest accuracy when trained on either speed data or both flow and speed

data are shown..

For the third dataset, including flow data led to a significant decrease of all error metrics compared
to only flow data. After analysis of the resulting predicted speed heatmaps, it seems that includ-
ing flow data leads to a better prediction of the time at which the congestion pattern emerges or
starts solving, as can be seen by the example in Figure 7.9. Looking at the model using flow and
speed data, this can be observed at two locations. When looking at the emergence of the jam wave
around 15:45, this model predicts the time at which the congestion emerges fairly accurately and
also correctly predicts the speed with which the shockwaves propagates upstream. When looking at
the point at which the jam wave starts solving, around 17:40, it accurately predicts the point in time
after which traffic flow decreases and the congestion tail propagates upstream, although the posi-
tion of the upstream jam head is not predicted correctly. From the prediction results of the model
using only speed data can be observed that the model initially mispredicts the emergence of the
congestion and also suffers from an ’overshoot’, where it initially predicts the shockwave will move
further upstream than it actually will. The GRU RNN also has trouble predicting the time at which
the congestion starts to solve, as one can see it predicts the congestion tail moves upstream further
than it actually does.

7.2.3. Results Custom Error Metrics
In subsection 5.6.4, it was suggested to also assess the error metrics on a spatial and/or temporal
level. By calculating error metrics for each segment, one can see whether there are large spatial or
temporal differences in the performance of the GRU RNN. In this section, the results of these error
metrics will be presented for both the second and third dataset. For the model with the highest
accuracy of each dataset, the spatial error metric will be presented first, the temporal error metric
secondly and lastly, the spatiotemporal error metric results will be shown.

Dataset 2
For the highest model of the second dataset, which was the sequence-to-sequence model with only
speed data, the results of the spatial error metrics can be seen in Figure 7.10. One can see that the
error is the lowest at 0 km and between 1 and 2 km, as in all scenarios traffic is in free-flow around
these positions. Between 2 and 4 km, the error increases more as the stop-and-go waves of the
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(a) Speed heatmaps for model having speed input data.

(b) Speed heatmaps for model having flow and speed input data.

Figure 7.9: Speed heatmaps of prediction result on third dataset for sequence-to-sequence model having either flow or
flow and speed input data.

second scenario emerge here. Between 4.5 and 10.7 km, the error increases again since in this zone,
both the stop-and-go waves of the second scenario and the MSPs of the first scenario emerge. The
location of the on- and off-ramps also shows a clear correlation between the spatial error and the on-
and off-ramp locations. Errors increase upstream from off-ramps, due to lane changing turbulence,
or downstream from on-ramps, due to an increase in traffic flow. The higher errors at these locations
are in line with the expectations, since these situations are prone to cause traffic breakdowns.

Analysing the interquartile range (IQR) of the MAE allows us to quickly retrieve insights related
to differences in errors over the different scenarios. The confidence interval is largest between 2.5
and 4 km, as congestion only occurs in this area for one simulation scenario. It is lowest between
0 and 2 km as in this area, congestion is either fairly stable over the scenarios or non-existent. As
errors generally increase when congestion occurs but decrease if traffic flows at free-flow, large
fluctuations in MAE can be expected at locations where congestion occurs irregularly.

Assessing the temporal error metrics in Figure 7.11, a couple of conclusions can be drawn more
clearly compared to looking at the qualitative heatmaps. One can see instantaneously that both the
error as well as the IQR increases during peak hours and then decreases in the shoulder regions. At
16:20, a small peak can be observed due to congestion caused by an increase in demand. A much
larger peak can be observed at 18:20, which coincides with the start of congestion solution. Qual-
itative assessment of the prediction heatmaps already showed that large errors can be observed
around this time, which becomes even clearer when looking at this graph.

The spatiotemporal error metrics in Figure 7.12 summarise the conclusions that could be drawn
from the spatial and temporal error metrics and show quite some overlap with the qualitative speed
heatmaps made. It confirms that the highest errors are observed during the solution of the MSP
patterns, where little stop-and-go waves are present. One can also see that the network has difficul-
ties with capturing the finer stop-and-go wave patterns. As the heatmap is quite noisy due to the
various scenarios which are present in the data, a spatiotemporal error heatmap per scenario can
be found in Appendix D.

Dataset 3
For the third dataset, the spatial error metrics show that difference in error over space varies more
than for the second dataset. The error is highest at 0.6 km, as this is the location where the down-
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(a) Error over space of best performing model on dataset 2.

(b) Road layout dataset 2.

Figure 7.10: MAE/MAPE error metrics assessed over space for the highest accuracy model of dataset 2. The coloured
band over the MAE represents the interquartile range (IQR) of the MAE values per replication.
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Figure 7.11: MAE/MAPE error metrics assessed over time for the highest accuracy model of dataset 2. The coloured
band over the MAE represents the IQR of the MAE values per replication.

stream congestion head is situated and the MSPs emerge. After this initial peak, error stabilise but
smaller peaks are present at 4 km and between 7 and 8 km. This coincides with the most down-
stream locations of the congestion heads in the scenarios. The error decreases rapidly between 9
and 10 km since traffic is always in free-flow at this section. One can also see that the RMSE in-
creases more compared to the MAE when congestion occurs.

The temporal error metrics in Figure 7.14 show that, similar to the second dataset, errors increase
during peak hours and then decrease in the shoulder regions. At 15:50, a peak can be observed since
an increase in traffic flow initiates congestion for all scenarios. At 17:50 and 18:20, an error peak is
visible which coincides with the start of congestion solution for different scenarios. One can see that
around these two peaks, the 95% confidence interval is largest, which again is caused by variability
in the scenarios.

The spatiotemporal error metrics in Figure 7.15 are much noisier compared to those of the sec-
ond dataset, probably caused by the larger variability in scenarios. Therefore, an spatiotemporal
error metric per scenario can be found in Appendix D However, they enable to draw some conclu-
sions regarding the error which cannot be seen when looking at only space or time. First, one can
see that the higher error during peak hour is caused by mispredicting the shockwave speed between
free-flow and congestion, as the error is larger around the contours of the congested phases. Sec-
ondly, one can see that a larger error is not concentrated on a location or time separately, but rather
a combination of space and time. The largest errors are observed at 0.6 km around 15:50, which
corresponds to the traffic breakdown at the downstream congestion head, and at 4 km and 6-8 km



7. Results 89

Figure 7.12: Error metrics calculated over space and time for the highest accuracy model of dataset 2.
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(b) Road layout dataset 3.

Figure 7.13: Error over space of best performing model and road layout of dataset 3.

around 17:50 and 18:20, which corresponds to the traffic solution from the upstream congestion
tail. Compared to the spatial and temporal error metrics, the heatmaps show that large errors occur
at a combination of space and time, either at the start of peak hour near the congestion head or the
end of peak hour near the congestion tail.
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Figure 7.14: MAE/MAPE error metrics assessed over time for the highest accuracy model of dataset 3. The coloured
band over the MAE represents the 95% confidence interval of the MAE values per replication.

Figure 7.15: Error metrics calculated over space and time for the highest accuracy model of dataset 3.

7.3. Sensitivity Analysis
In section 5.5, a sensitivity analysis was proposed to validate whether the chosen prediction horizon
and input sequence length led to the best results, since it was assumed the prediction horizon had
a big impact on the prediction errors. In this section, the results of this sensitivity analysis will be
discussed. In Appendix C, the speed heatmaps can be found of the best models for each dataset and
prediction horizon.

7.3.1. Dataset 2
Looking at the sensitivity analysis in Table 7.7, one can see that the lower the prediction horizon
is, the lower the observed error is, as the decrease in RMSE and MAE is almost linearly. This is as
expected in the hypotheses and not very surprising. However, it is also striking to see that the input
sequence length has a big effect on the prediction accuracy, especially the input sequence having a
length of 25 steps. As the prediction horizon increases, the accuracy of this longest input sequence
increases as well, leading to significantly lower errors with a prediction horizon of 10 steps. Although
it cannot be concluded that the input sequence length should increase with an increasing prediction
horizon.

When assessing the results qualitatively, the biggest difference could be observed on the sce-
nario where many stop-and-go waves emerged from the bottleneck. One can see that at lower pre-

Table 7.7: Test errors of sensitivity analysis best model on dataset 2. Per prediction horizon, the
lowest error metric values have been made bold.

MAPE (%) RMSE (km/h) MAE (km/h)

Prediction Horizon 10* 15* 25* 10* 15* 25* 10* 15* 25*

2 steps 4.54 4.52 5.00 4.95 4.92 5.26 3.18 3.17 3.43
5 steps 5.83 5.90 6.04 6.35 6.38 6.46 3.96 3.99 4.03
10 steps 7.30 7.19 7.41 8.27 8.50 7.88 4.78 4.85 4.70

* = input sequence length, in steps (∆t = 2 min)
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diction horizons, the model is able to predict the propagation of the stop-and-go in a better way.
When the prediction horizon is two timesteps (4 minutes), one can see in Figure 7.16a that the
stop-and-go waves are clearly visible in the prediction and the speed with which they propagate
backwards is (approximately) equal to the speed observed in the ground truth. However, looking at
the residuals, a fine pattern of underpredicted speeds is visible which indicates that some mispre-
dictions still happen.

When the prediction horizon is five timesteps (10 minutes), one can see in Figure 7.16b that
the prediction of these fine stop-and-go waves deteriorates quite quickly, as the residuals show
systematic underprediction of stop-and-go wave speeds. Although the model cannot capture the
specific structure of these stop-and-go waves, the prediction might still be accurate enough for
travel times or getting a general overview of traffic conditions.

(a) Speed heatmap for input sequence length = 15 and prediction horizon = 2.

(b) Speed heatmap for input sequence length = 10 and prediction horizon = 5.

Figure 7.16: Sensitivity analysis results on one congestion pattern of best sequence-to-sequence model for dataset 2.

7.3.2. Dataset 3
The results for dataset 3, shown in Table 7.8, look different compared to dataset 2. One sees that a
decrease in prediction horizon from 10 to 5 timesteps leads to a large decrease in error, although an
increase in prediction horizon to 15 steps leads to a relatively smaller error increase. It is striking
to see that for both a 10 and 15 step prediction horizon, an input sequence length of 25 timesteps
(50 minutes) leads to a significantly lower error compared to the used input sequence length of 15
timesteps (30 minutes).

Table 7.8: Test errors of sensitivity analysis best model on dataset 3. Per prediction horizon, the lowest
error metric values have been made bold.

MAPE (%) RMSE (km/h) MAE (km/h)

Prediction Horizon 10* 15* 25* 10* 15* 25* 10* 15* 25*

5 steps 3.18 3.18 3.26 4.90 4.89 4.89 1.95 1.95 1.97
10 steps 5.14 5.36 4.95 8.48 8.42 7.94 2.74 2.78 2.65
15 steps 7.48 7.74 7.23 11.46 11.24 10.46 3.60 3.57 3.36

* = input sequence length

For the third dataset, a shorter prediction horizon of 5 steps (10 minutes), combined with an input
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sequence length of 15 steps (30 minutes), results a lower model error, which is as expected. Looking
at the resulting speed heatmaps in Figure 7.17a, one can see the residuals are low and the shock-
waves are well predicted. Since there is not much difference between the error metrics when the
input sequence length changes, the GRU RNN is capable to extract the most important data from
longer sequences.

When the prediction horizon is set at 15 steps (30 minutes), it is remarkable to see the quality of
the predictions still is quite high. When looking at the predicted speeds in Figure 7.17b, the shock-
wave is predicted quite accurately, and the shape of the shockwave is preserved quite well. However,
artefacts can be observed in the data as well as higher residuals near the shockwaves. The model
also has difficulties predicting the solution of the congestion, as the residuals are high near the most
upstream position of the upstream congestion tail.

(a) Speed heatmap for input sequence length = 15 and prediction horizon = 5.

(b) Speed heatmap for input sequence length = 25 and prediction horizon = 15.

Figure 7.17: Sensitivity analysis of best sequence-to-sequence model for dataset 3.



8
Discussion

After presenting the main findings obtained by analysing the different GRU RNN combinations, this
chapter will discuss the results in more detail. This will be done based on the several hypotheses
which were formulated regarding the functioning of the models. Besides assessing the validity of
the hypotheses, this chapter will also comment on three other findings on 1) the usefulness of the
proposed error metrics, 2) the results of the sensitivity analysis and 3) the shortcomings of using
simulation data. Furthermore, as using simulation data has significantly influenced the results,
comments will be made on the shortcomings of using simulation data.

This chapter is structured as follows. First, the hypotheses will be restated according to their cat-
egories and they will be accepted or rejected, based on the results. Secondly, the results of the sen-
sitivity analysis performed on the prediction horizon and input sequence length will be discussed.
Thirdly, the proposed error metrics will be evaluated by commenting on the conclusions that can
be drawn for them and discussing ways one could use them for other traffic forecasting problems.
Lastly, comments will be made on both using simulation data in general as well as specific short-
comings in the datasets.

8.1. Hypothesis Testing
In this section, the hypotheses formulated in subsection 5.1.2 will be accepted and rejected, based
on the findings stated in the results. They will be presented according to the same categorisation as
has been used in chapter 5. First, hypotheses regarding traffic flow theory are evaluated, focussing
on what elements of a congestion pattern the model should be able to predict. Secondly, hypotheses
on the neural network architectures will be evaluated. Lastly, hypotheses regarding which input and
output data is most useful will be evaluated.

Hypotheses Regarding Traffic Flow Theory
Hypothesis 1: the model should be able to make traffic predictions while implicitly using input-
output relations based on the shockwave theory which can be used to calculate the shockwave speed
between different traffic phases, as explained in chapter 2.

After quantitatively and qualitatively assessing the predicted traffic speed patterns of all datasets,
we can conclude that it is possible to accurately predict shockwaves in congestion patterns which
can also be deduced based on shockwave theory. However, for the second dataset, the best results
were achieved using only speed as input data, although for shockwave theory two of the three
fundamental traffic variables, i.e. flow, speed, and density, are needed. Therefore, this hypothesis
cannot be accepted for all datasets. Based on the flaws present in the predictions for dataset 1 and
2, it was concluded some prerequisites have to be met regarding to the prediction horizon and the
input data. If only the data of a small road stretch was used as input or the prediction horizon
has become too high to predict fast propagating shockwaves, it is unlikely the model can correctly
predict the propagation of these shockwaves. This statement will now be substantiated using the
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results from the datasets.

When looking at the prediction results of the several datasets, the accuracy of the predictions dif-
fered greatly, from which can be concluded that not only model parameters, but also the road seg-
ment is a very important factor on the accuracy of the model. This was found using the spatial error
metric in subsection 7.2.3 and the resulting heatmaps which can be found in Appendix B. For the
first dataset, the congestion heads could not be tracked accurately, which could be contributed to
limitations of the dataset and will be assessed later in this chapter.

Looking at the results of the second dataset, which consisted of both moving synchronised pat-
terns (MSPs) as well as general patterns (GPs) in which both synchronised flow as well as stop-and-
go waves are present. For a prediction horizon of 10 steps (20 minutes), both the stop-and-go waves
as well as the congestion heads of the MSPs were not clearly displayed in the resulting speed pre-
dictions. However, for smaller prediction horizons (of 4 or 10 minutes), the finer structure of the
stop-and-go waves and the congestion head of the MSPs were made visible (see Figure 7.16).

The results were best for the third dataset, where patterns were of the type MSP having a
stationary downstream jam heads and a moving upstream jam head. On this dataset, especially
the sequence-to-sequence model is capable of predicting the propagation of shockwaves between
the free-flow and congested phase in an accurate way. For all different shockwave speeds that
were tested within the scenarios, the model could predict the propagation of the shockwaves quite
well. Therefore, the model did not just generalise to learning or detecting one specific shockwave
speed, but is able to accurately make predictions for situations having different shockwave speeds.
As the input of the model having the highest accuracy consists of spatiotemporal flow and speed
data, it is likely to do so by comparing speed and flow data of both the free-flow as well as the
congested phase. However, when the upstream congestion tail remained stationary over time, a
correct shockwave speed was hard to predict, resulting in high errors (as shown in Figure 8.1 and
Figure 7.15). It is likely this is due to two causes. First, the exact position of the border between
free-flow and congestion was unstable, causing the shockwave speed to fluctuate constantly. On
the other hand, the model might have difficulties predicting the suddenly decreasing flow causing
the shockwave speed to decrease, as little upstream flow segments was present in the dataset.

Hypothesis 2: it is expected that the model will have a higher accuracy when the congestion patterns
consist of synchronised patterns with a single jam head, as for example the moving synchronised
pattern, compared to general patterns containing many stop-and-go waves.

When comparing the error metrics between models trained on the second dataset and models
trained on the third dataset, no large difference could be observed. However, assessing prediction
results and errors over space and/or time reveals that the predicted congestion patterns of the
second dataset, containing general patterns, were of much lower quality compared to the third
dataset, containing moving synchronised patterns. Besides, for dataset 2, there are much larger
fluctuations in errors compared to dataset, both over space and time as well as when assessing
the interquartile range of the MAE. Therefore, the assumption that these stop-and-go waves were
harder to predict than synchronised patterns (at least at longer prediction horizons) was true and

Figure 8.1: Speed heatmap for best sequence-to-sequence model trained on the third dataset, second scenario.
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this hypothesis can be accepted. In chapter 2, it was concluded that the emergence of congestion,
which is the moment congestion starts to form due to traffic breakdown, is harder to predict
compared to the propagation of the congestion heads once traffic has broken down. As these
stop-and-go waves emerge more often than a single moving synchronised pattern and propagate
upstream quite quickly, it is harder to correctly predict their emergence and upstream propagation
given the long prediction horizon.

Hypothesis 3: it is assumed that there will be large differences in accuracy over space, depending both
on the congestion patterns as well as the spatial road characteristics.

In general, it was observed that the error depends on the complexity of the congestion patterns and
whether the causes leading to changes in the shockwave speed where present in the input data, as
errors were only lower on sections where no congestion was observed. As the errors did not always
increase near the spatial edges of the traffic data, no clear relation between accuracy and edges of
the roads was observed. Therefore, this hypothesis could be partially accepted.
When formulating this hypothesis, it was assumed a high prediction error at a point in space could
be caused by two factors. First, errors could be higher at locations where congestion is present,
since this will lead to higher errors compared to predicting free-flow. Secondly, errors could be
higher at the upstream and downstream edges of a road, due to missing upstream or downstream
flow and/or speed data the model can base its predictions on. After assessing the error metrics of
the predictions over space for the second and third dataset, the errors indeed seem to differ greatly
over space. The error is mostly related to the congestion patterns, as it is higher at locations where
congestion occurs. However, no increase in error was observed at the upstream and downstream
edges of the road, although this could be expected since upstream or downstream traffic data is
missing at these sections. Therefore, the congestion patterns in the data influence the accuracy
over space most.

After relating the error metrics over space to the road layout and the observed speed patterns (see
Figure 7.10 and Figure 7.13), the following observations were made. The error metrics were highest
near the lane merge, on- and off-ramp locations. Near the on- and off-ramps, the changing traffic
flows and speeds were hard to predict as changes in traffic demands at these discontinuities are not
observable. Near the lane merge, this higher error is caused by mispredictions in this breakdown
process due to the stochasticity in the traffic breakdown process. For the third dataset, some peaks
in error were also noticed at the maximum propagation of the upstream congestion heads in the
different simulations, because of difficulties with predicting the new correct shockwave speed. This
partially can also be caused by the aggressive changes in traffic demand within the simulations,
as traffic demand decreases quite abruptly when the upstream congestion head should remain
stationary or should start to propagate downstream for the solution.

Hypotheses Regarding Neural Network Architecture
Hypothesis 4: the sequence-to-sequence GRU RNN is expected to perform better than the one-shot
model for traffic speed prediction.

From Table 7.6 could be concluded that the sequence-to-sequence model structure leads to better
predictions than the one-shot model for both datasets, but the difference was especially big for the
third dataset containing only GPs. In Figure 7.7, it was shown that the overall shape of the result-
ing predictions was of much better quality for the sequence-to-sequence model, as the resulting
shockwaves were more continuous and smooth compared to the one-shot model. Therefore, this
hypothesis can be accepted.

Several reasons might make a sequence-to-sequence model beneficial over a one-shot model.
As the sequence-to-sequence model predicts a sequence of values instead of a single value in
the future (see chapter 3), it can break down the prediction process in steps of 2 minutes, using
a previous prediction when predicting the next sequence value [6, 8]. As its loss function is not
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based on one predicted value, but rather over the whole predicted sequence, this can lead to more
accurate training [6, 8]. The propagation of errors over the prediction sequence, which can be a
disadvantage of autoregressive models over one-shot models, seems to not be a problem here.
Since the prediction process is quite continuous and the shockwave speed is almost constant
over a longer time period, this particular prediction type could be very suitable for a sequence-to-
sequence model. Especially on the third dataset, the sequence-to-sequence model outperformed
the one-shot model, since the third dataset contained localised synchronised patterns with a clear
shockwave speed compared to the many stop-and-go waves present in the second dataset. For
the second dataset, the difference was less big and qualitatively, not much improvement could
be observed from the sequence-to-sequence prediction heatmaps over the one-shot prediction
heatmaps.

Hypothesis 5: the loss function will influence the prediction accuracy, as sharp fluctuations in speed
between the traffic phases differ from a regular regression problem.

When analysing the results of the neural networks based on the used loss function, great differences
in model error were observed for the first and third dataset when using a one-shot model. In case
of the first dataset, using a MSE led to low RMSE values whereas using a MAE led to low MAE and
MAPE values. However, for the third dataset, a MSE loss function resulted in consistently large
errors for all model combinations.

For the first dataset, the prediction accuracy is quite low, both when using a MSE and a MAE loss
function. However, one could observe that when using MSE loss, speeds were systematically under-
predicted during congestion. This large difference results from their definition, as given in Equa-
tion 3.2 (MSE) and Equation 3.3 (MAE) in subsection 3.1.1. The MSE penalises large differences be-
tween prediction and ground truth higher. These are especially present at the phase transition posi-
tions where the upstream congestion tail moves upstream or downstream, since the model cannot
accurately predict the emergence and propagation of this jam wave. By overestimating the speeds
during congestion, the MSE loss values and RMSE values will be lower when the jam wave is solv-
ing, leading to a better model prediction according to the MSE loss function. Since the MAE loss
function does not penalise large prediction errors more compared to smaller errors, as it is a linear
loss function, this model will not suffer from the same artefacts.

For the third dataset, one can see that the predictions are much worse using a MSE loss function
(Figure 7.4b), compared to the MAE loss function (Figure 7.4a). However, in contrast to the first
dataset, the congestion patterns predicted using the MAE loss were quite accurate, leading to an
even higher difference in error comparing both loss functions. When using a MSE loss function,
there is no sharp border between the two traffic phases as speed values are gradually shifting around
the shockwave separating the two speeds. Although there are differences between the datasets, the
problem seems to be similar to the first dataset. First, since the MSE penalises large errors more
than smaller ones, a wrong prediction of this shockwave will lead to large errors as the difference
in speed between the phases is quite large. As the precise location of this shockwave is uncertain,
having gradually increasing speeds near the shockwave prevent MSE values from becoming too
high as speeds around the exact shockwave location are similar to this speed difference. Apparently,
the sum of having a relatively smaller error on both the free-flow and congestion phase is smaller
than mispredicting the shockwave. However, since the resulting errors of the trained model are
large, the model seems to be getting stuck in a local minimum during the training process as a
result from this approach.

Based on the findings on both datasets, it seems as if the model results are much more stable when
using a MAE loss function compared to a MSE loss function. This might be because traffic speed pre-
diction is different compared to regular regression problems (and even traffic flow prediction) since
speeds can differ greatly between traffic phases and can change rather abruptly when a congestion
pattern occurs. In case a certain congestion pattern can not be predicted well, neural network train-
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ing is more likely to get stuck in a local minimum when using a MSE loss function. From the results
it seems the MAE loss function is better able to capture sharp changes in speed between the two
traffic phases than the MSE loss function and in general leads to more stable results. This suggests
that using a MAE loss function is preferable over a MSE loss function.

Hypotheses Regarding Input & Output Data
Hypothesis 6: having both flow and speed data as model input will improve the accuracy of the speed
predictions compared to only using speed.

As for the second dataset, results were more accurate when using speed data only, this hypoth-
esis is rejected. Based on traffic flow theory, it makes sense to both use flow and speed data, this
strongly depends on the chosen model and the traffic flow and speed data of the specific road. The
combination of model limitations and the complexity of the input data can cause the results to vary
greatly. It is therefore advised to make the decision to include flow data per situation, by testing
both options when implementing a new neural network.

Based on the test results in Table 7.6, it is unclear whether adding flow data always leads to a
higher accuracy compared to having only speed data. On the simple congestion patterns from
the lane merge bottleneck of dataset 3, adding flow data clearly leads to better predictions. The
resulting predicted speed heatmaps are capturing the congestion patterns well, as the shockwave
speeds are well estimated. However, for the more complex general patterns in dataset 2, adding
flow data actually leads to an increase in prediction error on the sequence-to-sequence model.
Although for one-shot models, adding flow data always resulted in lower errors, this is not the case
for sequence-to-sequence models on dataset 2.

It is likely that this can be explained by the differences in the generated output of both the sequence-
to-sequence and the one-shot model. A downside of using sequence-to-sequence models is that
due to its autoregressive nature, the model output always has to be equal to the model input, as the
prediction of the previous time step is used as input for predicting the next time step. Therefore, the
sequence-to-sequence model also has to correctly predict the traffic flows since during training,
the loss function is evaluated on both flow and speed data. When comparing the ground truth flow
and speed patterns of the scenarios of the second (Figure 6.5) and third dataset (Figure 6.8), one
can observe that both the flow as well as the speed patterns of the second dataset are much more
complex than the third dataset. Since the loss function of the model is optimised on both depends
on the accuracy on flow and speed predictions, correctly predicting traffic flows might come at the
expense of the accuracy of the speed predictions.

Hypothesis 7: by combining the flow and speed data per road segment and per time interval, the
model accuracy will increase.

In subsection 5.3.2, two input layer structures have been proposed combining flow and speed
data per section and time interval, which should lead to an equal or better accuracy compared
to not combining the data. These input layer structures have been tested on the first dataset,
but the results show that they both lead to an increase in model errors compared to a regular
fully-connected approach. Since the error increase was quite significant (MAE: +0.4 km/h, RMSE:
+0.7 km/h, MAPE + 1 %pnt), the hypothesis was rejected and has not been tested on other datasets.

Although combining the flow and speed data per segment results in less trainable parameters of
the model (see Table 7.1), this might not be advantageous if ample training data is available since
the model can ultimately fit the correct parameters itself. If enough data is available, one can argue
that the added flexibility of the fully connected input layer might even result in a higher accuracy,
since the neural network can then fit individual weights for each flow and speed value for each
road segment instead of having to do so for each combined flow/speed variable. This is especially
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advantageous in case flows and speeds have different spatial correlations. Hence, combining flow
and speed into one variable might be too restrictive and can therefore decrease the model accuracy.

8.2. Sensitivity Analysis of Temporal Horizon
From the results of the sensitivity analysis, some surprising conclusions can be drawn. For the sec-
ond dataset, a decrease in the prediction horizon led to a great decrease in the resulting prediction
error. The resulting prediction heatmaps were also able to capture the complex stop-and-go pat-
terns emerging from the bottleneck. This concludes that the model can capture these stop-and-go
waves, given the input data and prediction horizon is well specified. For the third dataset, it was
found that a higher prediction horizon of 15 steps resulted in an increase in errors but the resulting
heatmaps show the results are still accurate.

However, one could also see that for both datasets, an input sequence length of 25 steps
(50 minutes) resulted in the lowest errors given the standard prediction horizon of 10 steps (20
minutes). This would mean that flow and speed data from up to 70 minutes before the actual
prediction contribute to a higher prediction accuracy. However, from a traffic point of view, it is
unlikely that there is a causality between flow and speed data over a time span of 70 minutes over
a 10 kilometre long road section. As traffic will a maximum travel time of 20 minutes during heavy
congestion, this will provide limited information on the future traffic flow.

As it is unlikely the added data will give more insight on the traffic conditions, some kind of over-
fitting could occur on the neural network when having too large prediction horizons, especially in
case of the used simulation data. As there is no traffic flow theory related correlation over such long
temporal horizons, the model might fit on trends present in the demand pattern of a road instead
of it learning general traffic characteristics. Since there are only three to four unique demand
patterns per dataset, many simulation replications in each dataset are quite similar. Although
AIMSUN introduces stochasticity to the simulation variables for each replication within a scenario,
this mostly result in small differences between the replications within a scenario. However, a
longer input sequence length might increase the amount of unique sequences available in the
dataset, which might incentivise fitting on previously observed traffic conditions instead of learning
general traffic patterns. Having too high input sequence length might therefore decrease the model
generalisability.

Signs of overfitting can actually be observed analysing the resulting heatmaps of the best model
belonging to the third dataset, where the prediction horizon was 15 steps (30 minutes) and the in-
put sequence length 25 steps (50 minutes). It can be seen that, almost by default, the predictions
between 15:40 and 16:10 look exactly the same, as in all speed heatmaps a small congestion wave
occurs at that time. Although the neural network has no input related to time, the longer input se-
quences might introduce some uniqueness to the inputs which can still cause overfitting to happen.
Besides, it does not correctly predict the propagation of the shockwave when congestion starts to
solve in Figure 8.2c, as it expects it to propagate further but correctly predicts the solution of con-
gestion in Figure 8.2a and Figure 8.2b. From this might be concluded that the dataset has overfitted
on Figure 8.2a and Figure 8.2b too, at the expense of a misprediction of a traffic breakdown in Fig-
ure 8.2c.
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

Figure 8.2: Speed heatmaps of sensitivity analysis best sequence-to-sequence model trained on dataset 3 (input
sequence length = 25 steps, prediction horizon = 15 steps).

8.3. Evaluation of the Error Metrics
In subsection 7.2.3, the results of all custom error metrics proposed in subsection 5.6.4 were
presented. Presenting the errors in this manner lead to valuable insights which could be extracted
in a more straight-forward way, compared to qualitatively assessing the resulting speed heatmaps.
In this section, their usefulness will be discussed further, including guidelines on the interpretation
if they would be used on other datasets.

In general, the RMSE and MAE were found to be the most relevant error metrics. As the MAPE
weighs overestimations (v̂ > v) significantly more than underestimations (v̂ < v), it has to be
interpreted with caution making it less suitable as an error metric. The results of both the RMSE
and the MAE were quite similar, with the most important difference being the scale of the error
metrics. The RMSE value will increase more than the MAE value when the magnitude of the
residuals increases. The results section shows that when comparing different models, RMSE and
MAE values can deviate quite strongly between the models, making it relevant to assess both.
However, when assessing the accuracy of one single model over space and time, using only one will
suffice. In this case, the MAE is preferred since the interquartile range (IQR) provides information
on the distribution of the error over different days.

Assessing the error over space can aid with the interpretation of model predictions as it gives po-
tential users insight in the locations where erroneous predictions are more likely to occur. By also
marking the locations of on- and off-ramps, higher error values can be directly related to bottleneck
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locations. The same holds for the correlation over time, as it makes it easy to identify at what times
potential fluctuations in traffic demand cannot be predicted by the model. After analysing these ag-
gregated spatial or temporal graphs, the spatiotemporal heatmaps can be used to relate spatial and
temporal peaks to each other. It can also be an intuitive way to interpret the model accuracy for traf-
fic engineers, as its formatting is similar to speed heatmaps used to interpret congestion patterns.
In case more information is necessary on the model accuracy in specific situations, comparing the
speed heatmaps of the prediction and ground truth can also be a valuable tool.

The confidence intervals of the MAE show at which locations the error metrics can fluctuate
strongly. When comparing the IQR over the different simulation iterations with the mean values
of the MAE, one can see that the MAE values are strongly influenced by outliers. However, these
outliers are probably important in predictions, as these consist of the deviant congestion patterns
that disturb traffic most. The IQR will especially be large if there is a wide variety of congestion
patterns present in the dataset and the model is not able to predict all different congestion patterns
with the same accuracy. Therefore, this IQR can be seen as a measure of stability, giving insight
in how well the model performs on all the different congestion patterns present in the dataset.
Comparing the stability of the model accuracy by assessing the interquartile range of different
models can therefore be very helpful to assess the model accuracy. It might be more beneficial
to have a model where the MAE distribution over different days or congestion patterns is much
narrower, although the overall MAE might be higher.

Although these error metrics work quite well with the simulation dataset, it is unclear what they
will look like using empirical loop detector data, as this data source has much more variability in
congestion patterns. Traffic flow and speed data of a road over different days are likely to have some
similarity, as bottlenecks are often constant and morning and evening peak hours start around the
same time. However, traffic demand in the simulation data is much more similar as traffic flows
increase and decrease (mostly) at the same time for each dataset. Especially the spatiotemporal
heatmaps can become quite noisy when a lot of different traffic congestion patterns are present in
the dataset. Therefore, it is important to assess this shortcoming when these metrics are tested on
other empirical data.

8.4. Simulation Data Quality
As the results and the conclusions on the previously discussed hypotheses highlight that the
datasets had a big influence on the results of the neural networks, this chapter will briefly discuss
the shortcomings of each dataset individually, as well as the general shortcomings of using simula-
tion data and the implications on the retrieved results. First, the shortcomings of each dataset are
discussed. Secondly, the shortcomings found in the simulation data will be assessed. Lastly, some
artefacts present in the microscopic simulation software AIMSUN will be discussed.

8.4.1. First Dataset
The first dataset consisted of a 2 km long road with a lane merge bottleneck, resulting in the oc-
curence of a moving synchronised pattern (MSP). The errors of the models trained on the first
dataset are significantly higher compared to the second and third dataset. In other words, it is
expected that the errors are partly caused by the simulation dataset used to train and assess this
model. The shortcomings of the first dataset were as follows. First, the road length was quite small,
as the total road length was only two kilometres of which 1.5 km was equipped with detectors. In
combination with a high traffic demand, the congestion propagated to the most upstream road sec-
tion in around 20-30 minutes. Together with a large prediction horizon, this resulted in too little
’information’ present in the dataset to base the prediction on. This can be explained by the fol-
lowing scenario. When training the model, there should be both a clear relation between a change
in the input data and a change in the output data so a clear input-output function can be formed.
However, as soon as there was one input sequence value which had some lower speeds or higher
flows compared to free-flow, the related output data already showed that in 20 minutes from the
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last sequence value, traffic speeds had to drop for all road segments in the data.

8.4.2. Second Dataset
The second dataset consisted of a 10.7 km long road stretch containing many on- and off-ramps,
resulting in a mixture of MSPs and a general pattern (GP) containing stop-and-go waves. For this
dataset, some shortcomings were also noted. First, the complex traffic pattern of the second sce-
nario, containing many stop-and-go waves was proven to be hard to predict by the neural network.
Since the traffic breakdown process leads to the random formation of stop-and-go waves, it is al-
most impossible to predict the occurrence of individual waves. As a single stop-and-go wave would
dissolve in around 20 minutes, it is not feasible for the model to predict the propagation individual
stop-and-go waves over the road segment. Therefore, the resulting speed heatmaps did not cap-
ture these stop-and-go waves, resulting in a low prediction quality. For the scenario which mostly
consisted of MSPs, the jam head propagated over only 6 km of the simulated road the increase in
traffic flow during congestion was large. This resulted in a high shockwave speed, as the upstream
congestion head reached the upstream border of the road within half an hour. As this is approxi-
mately equal to the prediction horizon, the resulting predictions did not clearly predict the correct
propagation of this jam head.

8.4.3. Third Dataset
The third dataset consists of a 10 km long road with only a lane merge at the end of the road. The re-
sulting MSPs have some more variety as scenarios had different shockwave speeds. The main idea
behind introducing the third dataset was to check whether the neural network predictions could
correctly predict congestion patterns having different or fluctuating shockwaves. Although it suc-
ceeded on that part, the used demand patterns and the resulting congestion patterns were quite
artificial. When using empirical data, changes in traffic flow due to a different traffic demand will
happen more gradually compared to the simulation data. This will lead to more fluctuating shock
wave speeds and less abrupt changes in the shockwave speed. Besides, there will be far more dis-
continuities such as on-ramps and off-ramps present on actual highways, making a 10 kilometre
road which only has one lane merge an unrealistic highway scenario.

8.4.4. Limitations of Simulation Data
Besides commenting on the limitations per dataset, due to the road layout or the demand pat-
terns used, using simulation data in general for training neural networks has some shortcomings.
Although this could not directly be observed in the results, it is expected that using simulation
data greatly impacted the results obtained in this thesis as the variation in the congestion patterns
present in each simulated dataset is much lower compared to actual traffic data. Since the replica-
tions of each scenario within a dataset all contained the same traffic demand pattern and the num-
ber of scenarios per dataset was limited, only little difference was found in the congestion patterns
per dataset.

When using actual traffic data, there are much more different traffic patterns present compared
to the simulations as several factors were not captured by the datasets. First, traffic demand can
differ greatly between days, as events, holidays or extreme weather conditions can lead to conges-
tion patterns which differ greatly from the average weekday congestion pattern. Secondly, traffic
accidents can cause large disruptions on a road and are highly unpredictable, as the occurrence of
traffic accidents cannot be predicted based on flow and speed data. Thirdly, as traffic demand in
general grows over the years and traffic flows increase, the historical congestion patterns on which
a model is trained can be quite different compared to the traffic flows and speeds it will use as input
when it is applied. Therefore, to correctly assess the results of a neural network, the dataset should
not be shuffled over time. It should be tested on the most recent spatiotemporal traffic data and
trained on data from before that period, to see whether the model results are generalisable over
time.
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Due to the aforementioned factors, the accuracy of the model used on empirical data will most
likely be lower compared to the simulation datasets. Secondly, because there is limited variation
in the congestion patterns in the simulation dataset, a high risk in overfitting exists for the neural
network. The learning rates in Figure 7.6, presented in section 7.2, already show that the validation
loss is quite similar tot he training loss. When comparing the validation errors to the test errors,
one can also see the difference is quite minimal. As the training, validation and test errors are quite
similar, one can conclude that the three datasets are quite similar too making it not possible to
assess whether the model is generalisable to different datasets. This increases the probability of the
model being overfitted on the dataset.

What could also be observed when comparing the flow and speed of the loop detector data of the
lane merge at A20 (in Figure 4.5 and Figure 4.4) with data from the simulated lane merge bottleneck
(in Figure 6.8) was that the resulting flow and speed patterns differ greatly. Within the simulation,
a clear capacity drop could be observed and speeds within the congested phase were largely stable.
For the empirical data, this capacity drop could not be observed and traffic flows and speeds could
fluctuate greatly over time.

For the lane merge simulation in the first and third simulation dataset, traffic speeds were rather
homogeneous within the congested region. However, when looking at the speed heatmaps in chap-
ter 4, one could see a fine pattern of stop-and-go waves (or narrow moving jams) within a synchro-
nised flow area. Although traffic situations were quite similar, as the lane merge was the predomi-
nant source of congestion in the empirical dataset, this seems like a large difference in the resulting
congestion patterns.

When the flow and speed data between the simulation and empirical loop detector data are
compared qualitatively, one could see that the data quality of the simulation data was much higher
compared to the empirical loop detector data. In the simulation, the resolution of the flow and
speed data is quite high, having clear changes in flow near on- and off-ramps and rather abrupt
changes in speed near the edges of the congested road section. This is not the case for the actual
loop detector data, as flow as well as speed data changes happen rather gradually and large flow
differences are observed although no on- or off-ramp was present.

Although it is outside the scope of this thesis to thoroughly assess the shortcomings of mi-
croscopic simulations or the data quality of loop detector data, using this data likely poses some
limitations on the resulting flow and speed data.

8.4.5. Artefacts in Simulation Data
Some artefacts could also be observed. As was explained earlier in this chapter, the cooperation and
aggressiveness values were change to obtain more realistic results on a macroscopic level. However,
in practice, this lead to frequent vehicle collisions which lead to situations as shown in Figure 8.3,
where situations are encircled in red where two vehicles have a negative headway (i.e. are positioned
on top of each other). Although it is unlikely these situations will have had much impact on the
retrieved flow and speed data, it is good to notice that density data from this model is likely to be
invalid, especially on the upstream border between free-flow and congestion.

Figure 8.3: Example of simulation artefacts in AIMSUN.
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Towards Spatially Flexible and

Generalisable Traffic Forecasting Neural
Networks

In the introduction, it was mentioned that there are some practical limitations on implementing
neural networks for traffic forecasting. The neural networks used for traffic flow prediction have
been trained on only one specific road, which also means that their hyperparameter settings and
model structure have been optimised on one road only. Some researchers already tried to capture
whether a machine learning traffic forecasting method can be used for traffic situations which are
different from the ones it has been trained on. Van Lint and Van Hinsbergen [12], Oh et al. [15], Do
et al. [44] mentioned ‘location-specific’ or ‘site-specific’ neural networks, Smith and Demetsky [111]
are talking about ‘model portability’, as they ‘develop’ a model on one road and see if it performs
comparably on different sites. Karlaftis and Vlahogianni [10] are talking about transferability of
results when mentioning over-specified models having no generalisation power.

As one currently has to create a new neural network for each new road, based on a previously
design neural network architecture, implementing a neural network poses couple of downsides,
namely:

• it requires a lot of data of the new road to train the neural network on: although in general (and
for the Netherlands) loop detector data is available and floating car data quality has increased
tremendously, checking the data quality and preprocessing the data can pose a significant
amount of work if this does not happen automatically; and

• extensive hyperparameter tuning might be required to reach the desired level of accuracy of
the neural network for the specific road: depending on the computational effort of the neural
network configuration used, this might require a lot of (computational) resources and time to
train and assess all model variants.

A solution for the problems stated above might be to make traffic forecasting neural networks both
more generalisable as well as spatially flexible. This chapter is used to explore both concepts and
to identify which solution strategies can be used.

9.1. Definitions
This section will start of with some definitions which will be used throughout this chapter.

9.1.1. Model Generalisability
There are some concerns that training neural networks on data from one road only leads to
overfitted models with little generalisation power [15]. As two roads can be very different, one
cannot just use the same neural network which was trained on one road for traffic forecasting on
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different roads. Due to differences in road layouts and different traffic demands, different types
of congestion patterns are likely to occur. This can then lead to differences in model accuracy
over different roads. Another side effect is that neural networks which are not generalisable are
also likely to suffer from concept drift [11, 43], meaning that as time progresses, the data on
which the model has been trained might not be representative for the current situation [112].
In the context of traffic, the traffic patterns on a road might change over time, due to (for ex-
ample) differences in (i) traffic demand, (ii) driver behaviour, (iii) vehicle characteristics, (iv)
road design or (v) policy and legislation [18]. This would mean that the neural network has to be
retrained continuously for the accuracy to remain high. Therefore, the following term is introduced:

Congestion pattern generalisability: the extent to which a model will have a comparable accuracy
on traffic patterns of either different categories or having different properties within a traffic pattern.

A model having a high generalisability may have the following advantages, as (i) it can indicate the
model has learnt underlying traffic characteristics instead of location specific patterns in the traffic
flow data and (ii) it can indicate the model is more robust to location specific changes in traffic flow.

9.1.2. Spatial Flexibility
A practical problem of using the same neural network for different roads is the incompatibility of
the input and output layer sizes. Often, these depend on the characteristics of the data from the
road it was designed on, which depends both on the number of segments the road was subdivided
in and the length of a segment. When traffic data is retrieved from roads having different sizes,
the dimensionality of this data can change due to a different number of segments and segment
spacing. This can make it impossible to use the same neural network on different roads. Besides,
from chapter 2 could be concluded that the resulting congestion pattern strongly depends on
the road layout and positions of on- and off-ramps. Not accounting for both of them can result
wrong predictions, as the model was not able to distinguish between the different (implicit) spatial
dimensions of the datasets. Therefore, the following definition is proposed:

Spatial flexibility: the ability of a traffic forecasting neural network structure to accurately predict
traffic variables on roads consisting of a different amount of segments and/or different segment
lengths.

9.2. Traffic Predictability by Neural Networks
The quality of a prediction in general depends on two different factors. On the one hand, the model
or method used for the prediction is important, as its strengths and weaknesses have implications
on the quality of the prediction. On the other hand, this also depends on the specific prediction
problem as some processes are easier to predict than others. Therefore, the term predictability is
coined, which is defined as the ability of a system’s state to be predicted. This section will further
explore both concepts in the context of traffic prediction by neural networks.

In chapter 2, an overview was given of the aspects which are proven to be predictable, when
looking at traffic flow theory. The conclusion was that predicting congestion can be broken down in
predicting two aspects, namely the traffic breakdown process, or the emergence of congestion, and
the propagation of a congestion pattern.

Predicting the exact time at which traffic breaks down is hard if not impossible to predict, as this
is a stochastic process, influenced by many parameters. Although the breakdown process can be
defined as a situation where supply, governed by the road capacity, is larger than traffic demand.
As there is no fixed road capacity, it is unknown at which traffic flow a breakdown will be initi-
ated. Brilon et al. [26] expects the road capacity depends on road geometry, control conditions,
driver/vehicle populations and even travel purposes. van Lint [27] also suggests factors as ambient
conditions (weather, road visibility), road works and traffic collisions. On the other hand, traffic de-
mand is influenced by effects like traffic information, network effects (influenced by the traffic state
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of unobserved roads) and traffic demand in general [27].

A problem of some of these parameters is that they cannot be captured quantitatively, or are
hard to predict. Variables which are hard to capture quantitatively are driver/vehicle populations
traffic information, network effects (outside the considered highway), road works and road geom-
etry. Although they can be observed, it is hard to to use them as neural network inputs. Variables
which are not predictable are the actual traffic demand and the exact time and location a traffic
collision will occur. Therefore, the model is expected to perform worse if these variables change
significantly, as they cannot be accounted for in the input space.

When a traffic forecasting neural network has to be made generalisable and spatially flexible, many
of these properties have to be explicitly passed in the input layer. All current traffic forecasting
neural networks can implicitly learn these road-specific variables, since they are fitted on only one
road. If a neural network should be applicable to several roads, this is not possible anymore and
these parameters need to be explicitly passed to the neural network. This can pose a challenge
when creating spatially flexibile and generalisable neural networks.

Let us present an example of the implications of this missing demand data, highlighting one of
the most important unobservable parameters, namely traffic demand. In dataset 3, there were
no traffic access and egress points besides the upstream and downstream edges of the road. As
a higher traffic inflow on the upstream edge of the road would eventually reach the bottleneck
causing congestion, the prediction process would be fairly easy. However, on actual roads, traffic
flow near on- and off-ramps can vary quickly and cannot be predicted, since the future traffic
demand of these on- and off-ramps is hard to observe. For example, a sudden increase in traffic
demand on a on-ramp can cause a traffic breakdown which is unlikely to be predicted by the model.
Since it is virtually impossible to predict short-term traffic demand, it is unlikely any model can
accurately predict this situation.

The propagation of a congestion pattern was found to be predictable when at least two of the three
macroscopic traffic variables are known. However, a prerequisite would be that either these traffic
variables remain constant over space and time or are predictable. If, again, unobservable or un-
predictable parameters change, the model cannot capture the effects of this. For example, if during
congestion traffic demand changes or a traffic condition occurs, it is unlikely that these effects can
be predicted. However, once they are observed and the traffic situation is rather stable, it will be
able to predict the onset of these changes.

9.3. Scale-Free Approaches
In this section, two different approaches are proposed in order to make traffic forecasting neural
networks scale-free. The first one, segmental neural networks, relies on training a neural network
on a smaller road section, as these show more similarity compared to regular roads. By combining
these smaller sections according to the layout and properties of that road, a larger neural network
can be formed. This means that traffic can be predicted for different roads using the same build-
ing blocks. The second one is based on the term ’neuroscopic traffic model’, coined by Hans van
Lint. This approach relies on a core neural network which has learnt the general concept of traffic
prediction, and can therefore be used on a range of roads with only minor changes.

9.3.1. Segmental Neural Networks
It could also be possible to not just have one neural network which predicts traffic speeds on one
road, but to have a large variety of neural networks which can all predict traffic on a specific type
of segment of a road. Although the road layout of two highways can differ quite a lot, individual
segments of different roads can be quite similar. Two different three-lane segments, curves with a
similar radius or on- and off-ramps with a similar split ratio (i.e. in-/outflow as function of the main
traffic flow) will have similar capacities and will therefore have a similar ’effect’ on the resulting flow
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Figure 9.1: Schematic representation of a segmental neural network. The inputs belonging to each segment are depicted
with X , whereas the outputs are shown by Y . Within the neural network, each road segment has a specific element
corresponding to the characteristics of this section. These elements are connected so information can be shared.

and speed patterns. By creating a database of trained neural networks, each representing a specific
segment, each road can be simulated by combining these ’segmental’ neural networks with each
other. In this case, limited extra variables have to be explicitly used as input for the neural network.

This would be similar to a (macroscopic) cell transmission model, where traffic on each link is
modelled as well as the interactions with other links. In this model, one specifies traffic demands
and supply based on the link characteristics (such as the flow,density relation from the fundamen-
tal diagram), leading to a model of the traffic flows on all links. Each time step, traffic flow and
density in a cell is updated based on the supply of the upstream cell and demand of the down-
stream cell. Let us start with an example when upstream traffic conditions are relevant. If high
traffic flows are observed or predicted on a segment upstream of a bottleneck, this can cause traffic
flow to exceed capacity when these vehicles reach the bottleneck location and can therefore cause
traffic breakdown. However downstream segments can also be of relevance as due to spillback, as
the downstream congestion head can eventually reach more downstream segments.

When predicting traffic using a neural network, using only flow and speed data, supply and
demand are not observable. Only the product of the two, which is traffic flow, is given as input.
The neural network is expected to implicitly learn a representation of this process, by trying to fit
its parameters so from a set of input values the correct output values can be found. The reason
that these neural networks are not generalisable is that this supply and demand relation is unique
for each road and as this relation is not captured in the input variables, the same neural network
cannot be used on other roads.

Although this supply and demand relation is different for each road, it can be quite similar for
individual segments within a road. The idea of these segmental neural networks is that we can
have this large database of segmental neural networks, which are very well trained on a specific
traffic situation, and combine them in a plug-and-play fashion. To forecast traffic an arbitrary road,
one just has to combine segments of this database which are most similar to the segments of the
simulated road to have accurate predictions. One does not have to train a new neural network from
scratch in order to do this.

Challenges
In case we want this segmental neural network to predict flow and speed on a segment in a way
similar to a regular (autoregressive recurrent) neural network, the model should be able to correlate
the following variables or processes:

1. recently observed flow and speed of the assessed segment,

2. recently observed flow and speed of neighbouring segments,

3. the predicted flow and speed of the assessed segment.
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4. predicted flow and speed of neighbouring segments,

5. weights and biases which correlate the observed/predicted flows and speeds of other seg-
ments to the assessed segment.

Although 1 to 4 can be relatively simple, the fifth process is tricky. One problem can be observed
here. In a regular short-term traffic forecasting RNN, the segments located around the considered
segment are always the same and the model weights determined during training take this into ac-
count. However, for this segmental RNN, this is not the case as segments can be coupled arbitrarily.
As each segmental neural network is trained separately and should be used in a plug-and-play set-
ting, it did not learn which weights would represent this particular combination of segments.

Essentially, this interaction between road segments in combination with the restrictions present
in the observed data means that the future traffic conditions of a segment also depends on the spe-
cific combination of segments around this segment. However, since the idea is that these segment-
specific properties are captured by the neural network of that specific network, it is not easy to share
this ’information’ with the other segments.

9.3.2. ’Neuroscopic’ Core Traffic Model
Another possibility would be to reuse the same (core) neural network to predict traffic on several
roads. This poses two challenges for which different methods can be used. First, it would be ideal if
one can reuse a neural network which has learnt the general concept of traffic flow prediction and
can be reused roads with different congestion patterns. Secondly, the model structure should allow
a similar neural network to predict traffic on roads where the input and output data has a different
dimensionality, for example when the number of road segments differs. Thirdly, it should be able to
differentiate between roads, as different road layouts can lead to different congestion patterns.

In order to reuse a model on different roads transfer learning can play a role. Using transfer
learning, instead of training a blank model to perform a particular task, one uses an already trained
model on a similar task as a starting point. This can influence performance in three ways compared
to a regular neural network: (i) the out-of-the-box performance of the model is higher, (ii) it trains
faster, needing less training time to reach a higher performance or (iii) after extensive training, it
performs better [6].

It is unlikely that it is possible to reuse exactly the same core neural network on all prediction tasks.
If this was the case, it would be much easier to just take a current macroscopic model and use that
for traffic forecasting. A quality of neural networks is that they can be fitted to the input data to find
case-specific correlations. Within transfer learning, it is also possible to further train a pre-trained
structure, for example by allowing the neural network weights to change within a certain bandwidth
[6]. This might also lead to a better generalisable model, since it does not have to learn to distinct
different highways based on the input parameters. By partially fitting this core neural network to
one road, it can learn road-specific properties by using relations in the road-specific input-output
data, deducing these relations from the data instead of specifying them in the input data.

In order for the model to handle different input dimensionalities, representation learning, which
actually is a way to automatically extract features from large datasets containing raw data [39]. Many
representation learning methods rely on dimensionality reduction, such as principal component
analysis which finds the eigenvectors, along which the maximum variance in the data is found [30].
Essentially, deep neural networks also perform some form of representation learning, as the added
complexity in the network can be used learn complex relations in large datasets. Within traffic flow
forecasting, one could even see the flow and speed data inputs as raw data of which features need
to be extracted.

There are several ways this (flexible) dimensionality reduction could be done, which will now be
presented.



9. Towards Spatially Flexible and Generalisable Traffic Forecasting Neural Networks 108

RNN Sequences as Spatial Dimension
When using a recurrent neural network, one could ’transpose’ the spatiotemporal matrix: each in-
put unit consists of a time interval and the sequence belonging to an input contains the data of all
segments at that time. Similar to language processing, one can use padding or ’end of sequence’
markers to account for these variable sequence lengths.

However, using this method might have some downsides. This can result in very long sequence
lengths, as even the number of segments on the simulated highways was around 100 nodes. It makes
sense to apply the same transformation to each timepoint per segment, if we assume traffic is sta-
tionary. Most of the times this is the case (see section 2.1. However, in other case, it has to apply
the same transformation to each segment per timepoint, which would assume traffic is homoge-
neous. This definitely is not the case, as traffic conditions change over space. Therefore, this variant
is disregarded.

Padding
Secondly, one could make use of padding [8] without having to transpose the input data. In this
case, the number of input units would be set to the maximum number of road segments the neural
network would be able to process. In case the number of segments of the input data is lower than
the input dimension of the neural network, one can simply fill the input data of the non-used input
units segments with zeros (or other values). Although the term padding is general is used within a
sequence context, it can also be used in this way.

However, this rather simplistic solution might not work well in practice. First of all, this will only
work on different highways which have a very high traffic pattern similarity, as the data of each road
is directly given to this generalisable core neural network. As has been noted in the traffic pattern
similarity definition, highways can differ significantly over space in ways which is not encoded in
the flow and speed data. This can lead to very different traffic patterns. In order for this simple
padding approach to work, many different highway-related parameters have to be included.

Autoencoders
A more sophisticated approach would be to use autoencoders [8], creating an encoder-decoder
structure. Autoencoders are a more sophisticated dimensionality reduction method which can
transform tensors to a different dimensionality. The encoder can do the following transformation
on the input data:

Ri×l →R j×l (9.1)

(9.2)

where i = the number of input units (the number of road segments), j = the number of output
units (equal to the other neural network) and l = the temporal input sequence length. The decoder
will then do the reverse operation to retrieve the desired output dimensions. These autoencoder
structures essentially corresponds to an extra neural network layer with the purpose of changing
the dimensionality. An exemplary graph structure of this neural network is presented in Figure 9.2.
Since the number of segments per road structure can change, a different autoencoder has to be
trained for each specific road as the dimensionality of the input can differ. Traffic pattern dissim-
ilarity between roads might also require a different autoencoder to be trained on each road since
a different transformation is required to transform the data to this traffic representation which the
pre-trained core neural network can then use.

Challenges
The main challenge of these neuroscopic traffic models the model should receive input which is
information which helps the model distinguish different highways. Previously, different parameters
have been introduced which can change both the traffic supply and demand. As many of these
parameters have to be explicitly passed to the neural network, this can result in a rather complex
neural network structure. The extra parameters and increase in complexity, training this model will
also be a challenge.
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Figure 9.2: Autoencoder structure of ’neuroscopic’ neural network. In this case, i = 12, j = 8 and the number of hidden
layers is 2.

Besides, there still is a lot unclear on what this neuroscopic core network should actually learn
and to what extent traffic over different highways actually is generalisable. Further research is there-
fore needed to assess the feasibility of this concept.
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Conclusion & Recommendations

Neural networks are a promising method for short-term traffic flow prediction, as they can capture
the complex nonlinear relations between traffic variables. However, most research focuses on devel-
oping complex neural network structures leading to lower errors compared to other architectures.
This can result in overly complex models which are overfitted on a specific traffic network and hard
to implement in practice [10]. Therefore, developing scale-free models which could be deployed on
several different roads would aid the practical implementation of traffic predicting neural networks
within an intelligent transportation system.

For the development of these scale-free models, several difficulties have to be overcome, one of
them being a more thorough assessment of the accuracy of neural networks for traffic prediction.
Bridging the gap between neural networks and traffic flow theory can provide insights in the poten-
tial and limitations of using neural networks for traffic flow prediction. In this thesis, the resulting
predictions will be assessed in a spatiotemporal way, in order to be able to relate the resulting traffic
prediction back to traffic flow theory. By doing this for several congestion patterns, conclusions can
be drawn on whether the neural network can predict different types of traffic.

10.1. Conclusion
Based on this problem statement, the following research question could be formulated:

What is the accuracy, assessed on different spatiotemporal levels, of neural network-based
short-term traffic speed forecasting models on highways for different congestion patterns?

In order to answer this research question in a structured way, this conclusion has been split up in
several parts. First, the accuracy per congestion pattern is assessed from a traffic flow theory point
of view. Secondly, the influence of several neural network architecture choices on model accuracy
is explained. Thirdly, the added value of spatiotemporal error metrics is explained. Fourthly, the
effect of using both flow and speed data is assessed. Lastly, the contributions to both the industry
and science will be presented.

Accuracy per Congestion Pattern
Based on the literature research done in chapter 2, we could split up the traffic prediction process
into two steps, namely (i) the emergence of congestion, describing at which point in space and time
traffic will break down, and (ii) the propagation of congestion, which described how the congestion
pattern would evolve after traffic broke down.

Little theory was available on predicting congestion emergence from a macroscopic perspec-
tive. As road capacity is not constant but rather stochastic and no clear variables could be found on
which this probability depends, it is hard to predict the exact moment of traffic breakdown. How-
ever, plenty of theory was found on predicting the congestion propagation. Using shockwave theory,
the propagation speed of congestion heads can be calculated using traffic flows and speeds. Since
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this theoretical framework was based on some assumptions which are not always met, empirical
congestion patterns were also discussed. These could roughly be divided into a synchronised pat-
tern (SP), containing synchronised flow, and a general pattern (GP), in which stop-and-go waves
occurred.
Although congestion emergence is hard to predict, predicting congestion propagation and finding
the right ’shape’ of the congestion pattern is possible. Both flow and speed were found to be relevant
input parameters to predict this propagation, although predicting speeds as output is better for
determining congestion than predicting flows. In general, synchronised patterns with a jam head or
tail moving at a constant speed were found to be predictable, resulting in a high accuracy. However,
predicting the exact emergence and propagation of stop-and-go waves was found to be impossible
using a longer prediction horizon of 20 minutes, as the emergence of these congestion patterns can
not be predicted. The accuracy of these predictions were therefore lower, although the model could
beat the baseline by accurately predicting an average speed within this traffic phase.

Using Flow and Speed Data
Inputting flow and speed using a fully connected input layer resulted in the highest accuracy com-
pared to efforts to combine flow and speed in a traffic phase. No clear conclusion could be drawn
on whether adding flow data always leads to an increase in accuracy. On a dataset where a GPs were
simulated, the best performing model used only speed data as input data. However, on a dataset
containing mainly SPs, adding flow data resulted in a significant decrease of the prediction error.
Both the model architecture as well as the complexity of the congestion patterns in the flow and
speed data were found to be crucial factors. As for a sequence-to-sequence model the output pa-
rameters should be equal to the input parameters, both flow and speed have to be predicted. In case
complex traffic flows are present in the dataset, adding flow data can lead to a decrease in accuracy.

Spatiotemporal Error Metrics
The spatial and temporal error metric were found to give relevant insight in the accuracy over space
and time. The distribution of the MAE using the IQR gave insights in how the model error could
deviate from day to day, probably due to a large variety of congestion patterns. In general, the spa-
tial prediction error increased at locations where congestion occurs, such as bottleneck locations.
The temporal errors peaked and during peak hours, especially at the start and end. The spatiotem-
poral error metric showed correlations of the error over space and time. Using this error could be
concluded the model especially had trouble predicting the shockwave speeds.

Accuracy of Different Neural Network Architectures
This research focused on the use of a gated recurrent unit (GRU) recurrent neural network (RNN)
for traffic speed prediction, since this network structure was found to perform well on input data
containing temporal sequences where correlations between the input units remain stationary over
time. A wide variety of RNN configurations has been proposed for short-term traffic predictions
containing many different design choices, of which a taxonomy is given in Figure 3.10. The most
promising neural network structures used speed and flow as model inputs and flow as model
output, both spatiotemporal to capture correlations in the data over space and time. A taxonomy
was proposed to distinct different design choices one can make when designing a neural network
architecture. Within time series analysis, a GRU RNN neural network can be applied using a
one-shot architecture, outputting a single value per output unit, or an autoregressive sequence-
to-sequence model, outputting an output sequence where the previously outputted value is used
when predicting the next sequence value. The sequence-to-sequence model lead to the highest
prediction accuracy, probably due to its step-wise prediction process.

When looking at loss functions, a mean absolute error loss function lead to a higher accuracy and
more stability in the results compared to a mean squared error loss function. Presumably, this is
caused by the abrupt speed changes which can be present in the input data and high resulting errors
when a traffic phase change is not correctly predicted.
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Both the input sequence length and the prediction horizon were found to strongly impact the
model accuracy. Although predicting GPs clearly benefitted from a shorter prediction horizon,
longer prediction horizons still gave accurate results when predicting SPs. Larger input sequences
lead to a higher accuracies, although the added value of a longer input sequence could not be sub-
stantiated using traffic flow theory. It is likely this increase in accuracy is caused by overfitting on
the dataset, as the simulation data showed limited variation in demand patterns. It important to
carefully assess the temporal horizon, also with respect to traffic flow theory, and to not only rely
on accuracy when making a choice. The maximum travel time on a segment and shockwave speed
of congestion can provide traffic flow theory-based guidelines on which maximum input sequence
length can provide relevant information.

Main Contributions
The contributions to the industry can be summarised as follows. The conclusions drawn regarding
the model accuracy give practical insights in several ways. Firstly, the feedback to traffic flow theory
provides some theoretical limitations on the model accuracy. Secondly, by assessing the errors of
different neural network architectures for different congestion patterns, guidelines are given on
which traffic scenarios will be suitable for traffic forecasting. Thirdly, the proposed spatiotemporal
error metrics are good to assess the practical usefulness of the predictions and can aid users in
the interpretations of the model results. Besides, several other elements of this thesis can contain
valuable information on designing traffic forecasting neural networks. An introductory chapter
in both macroscopic traffic flow theory as well as (recurrent) neural networks gives potential
developers an introduction in the theory behind both subjects. The proposed baseline model can
be helpful to assess the usefulness of the predictions and the proposed GRU RNN provides a good
starting point when designing a neural network.

The following contributions to science can be identified. Firstly, the taxonomy proposed in the lit-
erature analysis of RNNs can aid the development of new traffic forecasting RNNs, as it provides
clear categories on which new neural network architectures can be designed. Secondly, the newly
proposed baseline and GRU RNN models, as well as the dataset generated in the experimental setup,
can be used as benchmarks to test more complex neural networks with. Thirdly, the results of the
tested models give some guidelines on which neural network architectures, input data, loss func-
tions and temporal horizons provides a good starting point when testing or proposing new neural
network structures. Fourthly, by relating the prediction results to traffic flow theory, information
is given on how predictable different congestion patterns are and what theoretical limitations exist
on traffic forecasting. Lastly, the new spatiotemporal error metrics and model assessment could be
used to assess and compare the results of a new neural network architecture in more depth.

10.2. Recommendations
As with the conclusions, the recommendations have been categorised into several categories. First,
recommendations will be given on how the contents of this thesis can be used for proposing new
neural network architectures for traffic forecasting. Secondly, options will be assessed to overcome
the shortcomings of the simulation data used in this thesis. Thirdly, extensions to the spatiotempo-
ral error metrics will be proposed, also with respect to using empirical data. Fourthly, an explanation
is given on how the explainability of neural networks can help to validate whether a neural network
predicts traffic in accordance with traffic flow theory.

Proposing New Neural Network Architectures
In case researchers want to design and implement new neural network architectures, this thesis can
be used as a guideline for the design process or to evaluate its accuracy into more depth. There-
fore, some recommendations are done which can help the development of new neural network
architectures. First of all, the taxonomy proposed in chapter 3 can be used to pinpoint the areas in
which one wants to make changes to the neural network architecture or to suggest new additions.
It can also guide the process of designing better traffic forecasting neural networks, as it makes it
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easier to pinpoint the areas to which other researchers have made changes. In this way, one can
easier use and extend the work done by other researchers. A recommendation would therefore be
to further use and develop this taxonomy when designing new neural network structures. Secondly,
the newly proposed error metrics can give more insight in the accuracy of a neural network. This
enables a more critical assessment of the added value of a newly proposed neural network archi-
tecture. Other researchers are therefore encourage to adopt these error metrics. Thirdly, the neural
network theory and discussed theoretical limitations of traffic flow prediction can set boundaries
on whether an even higher accuracy is feasible. Its insights can also better guide the search to cer-
tain specific neural network elements which are likely to increase accuracy. Stricter guidelines on
neural network architecture, possibly based on traffic flow theory or a thorough data analysis, might
tame the proliferation of different neural network architectures which is happening at the moment.
I would encourage other researchers to also take this into account when proposing new neural net-
work architectures. Lastly, it would be interesting to test whether the conclusions made regarding
the inclusion of both flow and speed data and the effect of the loss function also hold for other
neural network types and architectures, as already large differences could be observed between the
one-shot and sequence-to-sequence architecture.

Shortcomings of Data
It was concluded that using simulation data poses some shortcomings as the limited variation of
congestion patterns can lead to overfitting and the resulting flow and speed patterns might miss
some details which can be observed in empirically obtained data. First, it would be interesting
to thoroughly assess the accuracy of a neural network trained on actual loop detector data using
the methodology proposed in this thesis. Also, since actual loop detector data will contain a larger
diversity of congestion patterns, it would be interesting to analyse a couple of these patterns in
depth and to assess the accuracy on that level.

However, since the quality of the flow and speed data retrieved from the loop detectors in chap-
ter 4 was quite low, questions were raised regarding the usefulness of this data for predictions. In
case the loop detector data does not accurately represent the actual traffic situation, the predictions
would still be poor regardless of a high accuracy. It would therefore be interesting to see what the
effect is of the data quality of loop detector data on the predictions.

Spatiotemporal Error Metrics
With regard to the spatiotemporal error metrics, some recommendations can be made regarding
improving these error metrics. First of all, the IQR gave insight in how the model accuracy can
deviate from day to day. Although the depiction of it as an error band already provides some insight,
it would be interesting to see whether this deviation can be quantified. For example, the median
absolute deviation (MAD), defined as median

(∣∣yi − ȳ
∣∣), can be added for the MSE, to see how the

error deviates over different days. Another way of visualising this would be to make a boxplot of
the MAE values for each day, as this would provide even more information on the distribution. This
would also lead to more quantitative results.

Besides assessing the error over both space and time or per day, it would also be interesting to
do this per congestion pattern. Although this is quite easy when simulation data is used containing
only a couple of congestion patterns, this is more difficult for empirical data. This could be done by
first detecting and classifying congestion patterns, for example using the method proposed by [113]
and then assessing the error per congestion pattern. In this way, the error per congestion pattern
can also be assessed when using empirical data.

Explainability of Neural Networks
Besides, it would also be interesting to see to what extent explainable AI (xAI) can be used to get
more insight on the factors the neural network bases its predictions on. Some researches also used
xAI tools in the traffic domain (e.g. [16, 17]), however no clear conclusions could be drawn from
the interpretation. Techniques like (a) visualisation techniques such as surrogate models such as
SHAP [114] and LIME or partial dependence plots, (b) knowledge extraction techniques such as
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rule extraction techniques and (c) influence methods such as sensitivity analysis, layer-wise rele-
vance propagation and feature importance [115] could provide some relevant insights. However,
as spatiotemporal predictions are quite a niche within AI applications, using these techniques in a
traffic prediction context might be challenging.
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A
Results Obsolete Experiments

A.1. K-Fold Cross-Validation
Cross validation is often used in machine learning when the validation set is small, to cope with
the fact that validation results can be noisy [30]. By dividing the training set into K folds, having K
datasets where K-1 folds are the training set and 1 fold is the validation set, the model will be trained
K times. In the end, either the performance result can be averaged or the best performing model
can be chosen. A 1-layer 16-neuron GRU model has been trained on speed of the first dataset, using
10-fold cross-validation. When assessing the results of the cross-validation, shown in figure A.1,

Figure A.1: Results Cross-Validation

one can see that there are large differences in the error metrics on the validation testset, however,
the distances for the test set are rather small. When comparing the average cross-validation results
versus a model which was not cross-validated, the differences in errors are also negligible.

A.2. Output activation one-shot
To assess which output activation function works best for the one-shot model, both a linear and
a sigmoidal activation function have been tested. The results, shown in table A.1, show that the
lowest error metric values are observed for the linear output activation, although the difference is
quite small.
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Table A.1: Results of linear and sigmoidal output activation function for one-shot model dataset 1.

RMSE (km/h) MAE (km/h) MAPE (%)
Output activation Layers 128 256 128 256 128 256

Sigmoid
1 16.93 16.90 7.72 7.70 15.05 15.10
2 16.87 16.82 7.68 7.66 15.17 15.20
4 16.79 16.71 7.67 7.73 15.50 15.65

Linear
1 16.91 16.86 7.68 7.65 15.07 15.05
2 16.89 16.94 7.61 7.62 15.01 15.10
4 16.99 17.12 7.56 7.61 14.99 15.39

A.3. Output activation sequence-to-sequence
To find the best output function for the sequence-to-sequence model, both a sigmoidal and a linear
output function have been tried. The sequence-to-sequence model was trained on speed data of the
second dataset. The results in table A.2 show that a sigmoidal output function leads to significantly
better results.

Table A.2: Results of linear and sigmoidal output activation function for sequence-to-sequence model dataset 2.

RMSE (km/h) MAE (km/h) MAPE (%)

Output activation 108 216 432 108 216 432 108 216 432

Sigmoid 7.13 7.11 6.96 4.32 4.27 4.28 6.47 6.37 6.33
Linear 8.04 7.35 7.03 4.89 4.97 4.38 7.56 7.56 6.52



B
Heatmaps of Best Test Models

In this appendix, the resulting speed heatmaps are presented for the best performing models result-
ing from section 7.2. They are split out per dataset, and the results for both the best one-shot as well
as the best sequence-to-sequence model (in terms of accuracy) are shown.

B.1. Dataset 2
When looking at the results, in general, one can conclude that the finer patterns in the speed predic-
tions are not captured by the neural network. Furthermore, both GRU RNNs could not accurately
capture the shock waves separating either the general pattern or synchronised pattern phase with
the free-flow phase. However, some differences were observed too. The best one-shot model con-
sisted of 2 layers, each having 216 nodes, having a MAE loss function and trained on both flow and
speed data. When assessing the results, it can be seen that the shockwaves separating the free-flow
and MSP or GP phase are not predicted quite accurately, as it seems they propagate with an infinite
speed (represented by the horizontal borders).

The best sequence-to-sequence model was trained on speed data only, having a MAE loss func-
tion and 216 units per hidden layer. Compared to the one-shot model, the shockwave speeds are
much better captured since the spatiotemporal border along which a traffic phase change takes
place (between SP/GP and free-flow) propagates upstream in the speed prediction instead of prop-
agating (almost) instantaneously for the one-shot models. Within the free-flow conditions, almost
no difference could be observed between the models.

However, for the GP in the first scenario, artefacts in the congestion solution were also visible,
as several narrow spikes of free-flow intruded these heatmaps. This indicates that for this particular
setting, the mdoel could have trouble accurately predicting the solution of this jam wave.
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

Figure B.1: Speed heatmaps of prediction result best one-shot model trained on dataset 2.
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

Figure B.2: Speed heatmaps of predictions best sequence-to-sequence model trained on dataset 2.
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B.2. Dataset 3
In general, the predictions of the models from the third dataset are of much higher accuracy com-
pared to the second dataset. The predicted congestion patterns are quite accurate as the shock-
waves between the free-flow and congested state are tracked quite accurately
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

(d) Speed heatmaps fourth scenario.

Figure B.3: Speed heatmaps of prediction result of best one-shot model trained on dataset 3.
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

(d) Speed heatmaps fourth scenario.

Figure B.4: Speed heatmaps of prediction result of best sequence-to-sequence model trained on dataset 3.



C
Heatmaps of Sensitivity Analysis

In this appendix, exemplary predicted speed heatmaps are presented resulting from the sensitivity
analysis proposed in section 5.5. They are split out per dataset and prediction horizon, presenting
only the results of the input sequence length which lead to the highest accuracy for that prediction
horizon.

C.1. Heatmaps Dataset 2

(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

Figure C.1: Speed heatmaps of sensitivity analysis with prediction horizon = 2 steps on dataset 2.
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

Figure C.2: Speed heatmaps of sensitivity analysis with prediction horizon = 5 steps on dataset 2.
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

Figure C.3: Speed heatmaps of sensitivity analysis with prediction horizon = 10 steps on dataset 2.



C. Heatmaps of Sensitivity Analysis 138

C.2. Heatmaps Dataset 3
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

(d) Speed heatmaps fourth scenario.

Figure C.4: Speed heatmaps of sensitivity analysis with prediction horizon = 5 steps on dataset 3.
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

(d) Speed heatmaps fourth scenario.

Figure C.5: Speed heatmaps of sensitivity analysis with prediction horizon = 10 steps on dataset 3.
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(a) Speed heatmaps first scenario.

(b) Speed heatmaps second scenario.

(c) Speed heatmaps third scenario.

(d) Speed heatmaps fourth scenario.

Figure C.6: Speed heatmaps of sensitivity analysis with prediction horizon = 15 steps on dataset 3.





D
Spatiotemporal Error Heatmaps per

Scenario

In this appendix, the spatiotemporal error heatmaps are presented for each individual scenario.
Using these heatmaps, it is easier to identify per congestion pattern which points in space and time
had high prediction errors. The error metrics are split out per dataset.

D.1. Heatmaps Dataset 2
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(a) Spatiotemporal error first scenario.

(b) Spatiotemporal error second scenario.

(c) Spatiotemporal error third scenario.

Figure D.1: Spatiotemporal error of different scenarios for the second dataset.

D.2. Heatmaps Dataset 3
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(a) Spatiotemporal error first scenario.

(b) Spatiotemporal error second scenario.

(c) Spatiotemporal error third scenario.

(d) Spatiotemporal error fourth scenario.

Figure D.2: Spatiotemporal error of different scenarios for the second dataset.
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