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Summary

An estuary is a semi-enclosed coastal body of water, having both a free connection to the open sea and a connection
to fresh water coming from land-regions. Cook Inlet is an estuary in Alaska, and a major part of the Alaskan citizens
live near its shores. The inlet is an important shipping route for oil, gas and petroleum products, and the port of
Anchorage, near the head of the estuary, serves approximately 80% of the Alaskan population.

The tidal waves and currents in Cook Inlet can be quite strong. To ensure the safety of local communities and to
assess the risks of the transport of goods and raw materials through Cook Inlet, it is important that the local water
velocity and tidal currents can be predicted. However, Cook Inlet is often covered by ice, and the influence of ice on
the tidal water motion is not thoroughly investigated yet. The ice cover varies seasonally, and with climate change,
these variations will be even larger. To increase our understanding of the influence of ice on the tidal water motion in
high-latitude estuaries such as Cook Inlet, this thesis will focus on modelling and analysing the ice-water interaction
within estuaries. To investigate the most important processes that determine the ice-water interactions, an idealised
modelling approach is used.

In estuaries, one generally distinguishes two types of ice: landfast ice, and ice floes. Landfast ice is a stationary type
of ice that finds itself on the surface of the estuary. This type of ice causes a frictional force at the interface between
the water and the ice. Ice floes are drifting sheets of ice, that interact with both the water and each other. In this
thesis, we focus on the effect of ice floes that drift relatively freely, so that the interaction between floes is negligible,
and their velocity is close to the velocity of the water.

The effect of landfast ice and ice floes on the water motion are analysed separately, and the time-dependency of
both model both models is solved by a Fourier/method. The model for landfast ice allowed for analytical solutions
to be found under the assumption of and exponentially converging estuary-width and a constant estuary-depth.
Using these analytical solutions, the effect of the percentage of landfast ice coverage in general estuaries is analysed.
This analysis led to the conclusion that landfast ice covers can either increase or decrease the height of tidal waves,
depending on the length of the estuary and the convergence of its width.

The model for ice floes without vertical stresses cannot be solved analytically, since the horizontal viscosity can
no longer be neglected due to the presence of ice floes. As a first step, the depth is assumed to be constant. In
the numerical solution method, the vertical structure of the longitudinal water velocity is approximated by depth-
dependent eigenfunctions. The surface level and amplitudes of the eigenfunctions, which vary over the longitudinal
coordinate, are solved using a finite difference method. The effect of the percentage of ice floe coverage in general
estuaries is analysed using these approximations. It is found that an increased ice cover could either attenuate or
amplify the waterlevel, depending on the length of the estuary.
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Chapter 1

Introduction

1.1 Estuaries

An estuary is a semi-enclosed coastal body of water, having both a free connection to salt water from the open sea
and to fresh water coming from landward regions (Pritchard, 1967). Cook Inlet is an example of an estuary, and is
situated in Alaska (see Figure 1.1). The port of Anchorage, which finds itself near the northern end of this inlet, is
Alaska’s largest commercial, industrial, recreational and transportational center. The estuary serves year-round as a
shipping route for oil, natural gas and petroleum products. Approximately 80% of Alaska’s population and its four
largest military bases are served through Anchorage’s port. Furthermore, the behaviour of the tidal water motion in
Cook Inlet is quite unique. At the port of Anchorage, the height of the tidal waves can reach up to 9 meters, and
tidal currents can be twice as strong as typical tidal currents (Mulherin et al., 2001, p.2), making Cook Inlet the
estuary with the world’s second most extreme tidal variations.

Figure 1.1: A map of Alaska, with the estuary Cook Inlet indicated in the southern parts (Guide, 2025).

Since approximately half of Alaska’s population resides near its shores (Mulherin et al., 2001, p.2), being able to
predict flood risks is of the utmost importance for the safety of the Alaskan society. Therefore, accurate predictions of
only the waterlevel and of the strength and direction of tidal currents is essential. Furthermore, these water motions
greatly influence local ecologies, both through natural processes and in combination with human interference. For
example, the transport of oil and gas through Cook Inlet poses a threat for local ecologies, communities and the
Alaskan economy, as shown by the Exxon Valdez oil spill in 1989 (see Figure 1.2). In order to accurately assess the
risk of transporting oil and gas through estuaries such as Cook Inlet, one has to be able to predict the behaviour of
the water-driven transport of particulate matter. To be able to do so, an understanding of the processes influencing
the large-scale water motion is necessary.
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Figure 1.2: The Exxon-Valdez oil spill in 1989, having major consequences for the local communities, ecology and
economy (HISTORY, 2025).

1.2 Ice in Estuaries

The tidal motion in estuaries at higher latitudes such as Cook Inlet, is influenced by the coverage of ice. In Cook
Inlet, this ice coverage can range from about 10% to 50% in the coldest months of the year (see Figure 1.4). In
estuaries, one often distinguishes three types of ice: landfast ice, ice floes in the vertical shear region and ice floes
in the horizontal shear region, (see Figure 1.5). Landfast ice is stationary and attached to the shore, and ice floes
are defined as sheets of ice that float on the surface of the estuary’s water. In the vertical regions, ice floes are close
together and exert strong stresses on each other, so that the velocity of the ice floes decreases, causing a strong
vertical shear stress within the underlying water. In the horizontal shear region, the floes are drifiting more freely,
having little to no interaction. In this region, their velocity is close to the water’s velocity, so that the vertical shear
stress is negligible (Vasulkar, 2024, p.75-77).

With climate change, the ice coverage in high-latitude coastal systems such as Cook Inlet is prone to change and
become more variable (Overeem et al., 2022). While the effect of ice on oceanic water motions has been studied
intensively, its effect on tidal water motions within estuaries remains poorly investigated (Irrgang et al., 2022).
Therefore, this thesis aims to make improve our understanding of the effects of ice on watermotion in high-latitude
estuaries.

1.3 Idealised Modelling Approach

Mathematical models describing geophysical processes, such as the dynamic behaviour of water in estuaries, can
be classified from complex, simulational models to highly simplified, exploratory models (Murray, 2003, p.1). The
simulational models are focused on creating quantitatively accurate results, and are created to duplicate systems as
thoroughly as possible. These models are generally computationally expensive, and require an extensive calibration of
parameters. Such models are not well-suited for exploring the processes and interactions within a poorly investigated
phenomenon, such as the effect of ice on tidal motions in estuaries. Indeed, the calibration of parameters in simulation
models can be shown to be accurate for the situation without ice, but it is not abvious that these parameters are still
optimal when ice is introduced (Schuttelaars et al., 2013, p.71). However, changing the parameters systematically
over a wide range of values is not feasible for the complex models, due to their computationally expensive nature.

On the other hand, the aim of highly simplified, exploratory models is to find a clear and transparent explanation for
poorly understood physical phenomena. This is acheived by including only those processes that are deemed essential
to reproduce the aspects of interest (Murray, 2003, p.1). Due to the simplicity of the models, computational times
can be much shorter than in simulational models, allowing for the parameter values to be varied over a large range of
values in a systematic way. Since the effect of ice on the tidal water motion in high-latitude estuaries is still poorly
investigated, this thesis uses an idealised modelling approach to distinguish the important features of ice-water
interactions in high-latitude estuaries.

1.4 Research Questions

The focus of this thesis will lie in answering the following questions:
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Figure 1.3: A bird’s eye view of Cook Inlet and the surrounding area (Mulherin et al., 2001, p.4).

1. What are the important physical processes that influence the large-scale longitudinal hydrodynamics (i.e. water
motion) in an estuary?

2. How can we include landfast ice and ice floes in the horizontal shear region parametrically in our idealised
model?

3. How does landfast ice influence an estuary’s hydrodynamics?

4. How do ice floes in the horizontal shear region influence an estuary’s hydrodynamics?

1.5 Outlook

The above questions will be answered in the upcoming chapters. First of all, in Chapter 2, a model is developed
that parametrically includes the influence of landfast ice and ice floes on the large-scale water motion, with a focus
on describing the important physical processes. To allow the analysis of landfast ice and ice floes in the horizontal
shear zone separately, two models in which these effects are isolated are developed in Chapter 3. Chapter 4 describes
the solution methods that are used to derive the solutions and approximations to these models. In Chapter 5, the
properties and parameter-sensitivities of the solution to the model without ice are analysed. With this knowledge,
Chapter 6 analyses the effect of landfast ice on the estuary’s water motion. Then, Chapter 7 discusses the effect of
ice floes in the horizontal shear region. Finally, Chapter 8 will summarise all conclusions drawn from these results,
and provide an overview of future work that is deemed useful within this research topic.
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(a) An ice coverage of about 10% in the first half of De-
cember.

(b) An ice coverage of about 10% in the first half of
March.

Figure 1.4: The mean ice coverage and development stage in Cook Inlet for given time periods (Mulherin et al., 2001,
p.26-34).

Figure 1.5: The three types of ice that are distinguished in Cook Inlet. Ice is given a white colour.
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Chapter 2

The Width- and Reynolds-Averaged
Shallow-Water Equations Including
Landfast Ice and Ice Floes

In this chapter, an idealised model describing the influence of both landfast ice and ice floes on the longitudinal
and vertical velocity profiles and weterlevel within an estuary is presented. The model is attained by deriving the
width- and Reynolds-averaged Shallow Water Equations, and including landfast ice and ice floes. Special attention
is paid to the assumptions and conditions for validity of the equations, allowing for an understanding of the physical
assumptions made in deriving of the equations and helping to build a framework in which the results of upcoming
chapters can be interpreted.

To derive the width- and Reynolds-Averaged Shallow Water equations, one starts with the Navier-Stokes equations,
which are based on merely the physical principles of mass- and momentum balances (assuming that water can be
modelled as a continuous medium). In section 2.1 slightly simplified form of the Navier-Stokes Equations is taken
as the starting point of the model description, after which a Reynolds-averaging procedure is applied, allowing us to
focus on the large-scale hydrodynamics. In section 2.2, the assumption of hydrostatic pressure is discussed and in
section 2.3, the equations are averaged over the estuary’s width, leading to a two-dimensional set of equations. In
section 2.4, the consequences of only modelling the core region of the flow are discussed. Subsequently, in section 2.5,
the parametrisations for landfast ice and ice floes are introduced. Lastly, the boundary conditions that are required
to complete the model are given in section 2.6.

2.1 Navier-Stokes Equations

Typically, in modelling the dynamics of water motion, water is considered to be a Newtonian fluid. Furthermore,
incompressibility is usually assumed, density-variations in all terms except the pressure- and gravitational term (the
Boussinesq-assumption) are neglected, and the reciprocal Coriolis-forces are neglected. The Navier-Stokes Equations
under these assumptions read:

ux + vy + wz = 0, (2.1a)

ut + uux + vuy + wuz = fv − 1

ρ0
px + ν(uxx + uyy + uzz), (2.1b)

vt + uvx + vvy + wvz = −fu− 1

ρ0
py + ν(vxx + vyy + vzz), (2.1c)

wt + uwx + vwy + wwz = −gρ
ρ0
− 1

ρ0
pz + ν(wxx + wyy + wzz). (2.1d)

Here, we defined the following variables, which are used to describe the hydrodynamics in the Navier-Stokes equations.

� u(x, y, z) =

u(x, y, z)
v(x, y, z)
w(x, y, z)

 is the velocity vector, describing the velocities in the longitudinal, lateral and vertical

directions, respectively, in meters per second.

� ρ(x, y, z) denotes the density of the water in kilogram per cubic meter.
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� p(x, y, z) gives the local pressure in Pascal (Newton per square meter).

� f := 2Ωz = 2Ω sin(ϕ) is the Coriolisparameter in Newton per kilogram (Cushman-Roisin and Beckers, 2011,
p.49). Here, ϕ is the latitude.

Since we are mostly interested in gaining insight in the longitudinal hydrodynamics, we model the estuary as if it
had a straight middle-axis, which we denote by the x-axis. This axis runs from the sea to the riverine side. The
(vertical) z-axis is pointed upwards, so that the (lateral) y-axis points to the right with respect to the x-axis; see
Figure 2.1 for a schematic overview. As shown in this figure, the longitudinal coordinate x varies between x = 0 at
the seaside and x = L at the riverside. The lateral coordinate y varies between y = B1(x) and y = B2(x). We define
the width as ∆(x) := B2(x)−B1(x). The vertical coordinate z varies between z = −H(x)− z0 and the free surface
at z = ζ(x, y, t). Note that the free surface level ζ is an unknown and follows from the internal dynamics.

(a) A top-view. (b) A side-view.

Figure 2.1: A top-view (a) and a side-view (b) of the estuary considered. For an explanation of the symbols, see the
main text.

To focus on the large-scale water flow without solving the small-scale turbulent processes, a Reynolds-averaging is
applied to the equations. The Reynolds-average of the velocity field is defined as a so-called ensemble average, making
use of the statistical character of turbulence (Nieuwstadt et al., 2016, p.76):

〈u〉 (x, y, z, t) := lim
N→∞

1

N

N∑
1=1

u(i)(x, y, z, t), (2.2)

where
(
u(i)
)∞
i=1

are experiments with the same inital conditions and under the same external forces. Using this
average, one can derive the Reynolds-averaged Navier-Stokes Equations (see Appendix A.1).

Due to the nonlinear advection-terms, the effect of turbulence on the Reynolds-averaged flow is shown by the
correlation terms. To turn the model into a set of solvable differential equations, we must either set up a new set of
equations describing the turbulent motion (u′i, i = 1, 2, 3), or introduce a closing hypothesis that parametrises the
turbulent effects on the Reynolds-averaged velocity field. Since our aim is to create a simpler model rather than a
more complex one, we decide upon the second option, and do so by applying the Boussinesq closure hypothesis. This
hypothesis uses the empirical knowledge that the main effect of turbulence in liquids is dissipation, and therefore
the turbulent influence is modelled as a viscous effect: the eddy viscosity (Cushman-Roisin and Beckers, 2011, p.93).
Furthermore, for this hypothesis to be applicable, the length-scales on which eddies develop must be much smaller
than the length-scales upon which the Reynolds-averaged velocity field varies. Thus, letting L and H denote the
length-scales for the horizontal and vertical eddies, and L0 and H0 the length-scales for the vertical and horizontal
dimensions of the estuary, we require that (Nieuwstadt et al., 2016, p.84)

L
L0
� 1 and

H
H0
� 1. (2.3)

Turbulent motions in the horizontal plane cover a much larger distance than in the vertical direction, and therefore,
the dissipative effect of turbulence in the horizontal direction is much larger than in the vertical one. This leads to
a distinction between the horizontal eddy viscosity Ah(x, y, z, t) and the vertical eddy viscosity Av(x, y, z, t), where
Ah(x, y, z, t)� Av(x, y, z, t) (Cushman-Roisin and Beckers, 2011, p.93). Now, we defineAh := Ah+ν enAv := Av+ν,
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which leads to the following Reynolds-Averaged Navier-Stokes Equations.

ux + vy + wz = 0, (2.4a)

ut +
(
u2
)
x

+ (vu)y + (wu)z = fv − 1

ρ0
px + (Ahux)x + (Ahuy)y + (Avuz)z, (2.4b)

vt + (uv)x +
(
v2
)
y

+ (wv)z = −fu− 1

ρ0
py + (Ahvx)x + (Ahvy)y + (Avvz)z, (2.4c)

wt + (uw)x + (vw)y +
(
w2
)
z

= −gρ
ρ0
− 1

ρ0
pz + (Ahwx)x + (Ahwy)y + (Avwz)z. (2.4d)

Here, the ensemble averaging symbol 〈·〉 is omitted for readability.

2.2 Hydrostatic Pressure

As a next step in simplifying the model euations, hydrostatic pressure is assumed. For this assumption to be valid,
the following requirements must be satasfied (Pedlosky, 2013, p.57-63).

1. The influence of stratification on the estuary’s water motion is negligible.

2. Horizontal variations happen over a much larger length-scale than in the vertical direction,1 i.e.

H0

L0
� 1. (2.5)

Under these assumptions, the local pressure can be approximated by

p(x, y, z) =

∫ ζ

z

ρ(x, y, ẑ) dẑ, (2.6)

leading to the so-called Reynolds-Averaged Shallow-Water Equations

∂xu+ ∂yv + ∂zw = 0, (2.7a)

ut +
(
u2
)
x

+ (vu)y + (wu)z = fv − g

ρ0

(∫ ζ

z

ρ dẑ

)
x

+ +(Ahux)x + (Ahuy)y + (Avuz)z, (2.7b)

vt + (uv)x +
(
v2
)
y

+ (wv)z = −fu− g

ρ0

(∫ ζ

z

ρ dẑ

)
y

+ (Ahvx)x + (Ahvy)y + (Avvz)z (2.7c)

2.3 Width-Averaging

In order to further simplify the model, without losing the depth-dependency - which may prove insightful in modelling
the effects of ice layers on the water’s surface - we average the model over the width. For this, we assume that
lateral variations have a negligible effect on the general behaviour of the width-averaged hydrodynamics in the vertical
and longitudinal direction. This leads to, among others, the assumption that the width-averaged lateral velocity
component vanishes:

{v} = 0, (2.8)

where, {·} denotes the width-averaging operator, defined by:

{·} : {α : K × [0,∞) s.t. K ⊂ R3 is bounded and α <∞} → {α : K × [0,∞) s.t. K ⊂ R2 is bounded and α <∞},

{α} (x, z, t) :=
1

∆(x)

∫ B2(x,z)

B1(x,z)

α(x, y, z, t)dy.

We furthermore assume that the influence of the lateral momentum balance is not of significant importance. These
approximations are valid if the following two requirements are satisfied (Ianniello, 1977, p.758).

1. The Coriolis terms must be of negligible importance. This is the case if the Kelvin number is small, i.e.

KE :=
f∆√
gH
� 1. (2.9)

1For Cook Inlet, the depth of the estuary is of the order of ten of meters, i.e. H0 = O(10) m, while the length is of the order of

hundreds of kilometers, i.e. L0 = O(105) m. Thus, in Cook Inlet, H0
L0
∼ 10−4.
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2. The importance of the lateral velocity in the lateral momentum balance has to be negligible. This is satisfied
if the horizontal aspect ratio δ is small (δ2 � 1), where

δ :=
σ∆√
gH

. (2.10)

This allows us to focus on the (width-averaged) continuity equation and longitudinal momentum balance. A detailed
description width-averaging procedure can be found in Appendix A.2.2. The form of the Reynolds- and Width-
Averaged Shallow Water Equations that we will use is given by

ux + wz +
∆x

∆
u = 0, (2.11a)

ut + uux + wuz + gζx +
g

ρ0

∫ ζ

z

ρx dẑ =
(
Âhux

)
x

+
(
Âvuz

)
z
, (2.11b)

where the width-averaging symbol {·} is omitted for readability. In deriving these equations, we have used that:

1. the walls at y = B1(x) and y = B2(x) are impermeable, i.e.

u ·

−B′i1
0

 = 0 for y = Bi(x) with i = 1, 2; (2.12)

2. the influence of the pressure and the eddy viscosity at the lateral boundaries are assumed to be negligible.

2.4 Modeling the Core Region

The water-flow along a boundary can be divided into multiple layers, of which the most important are: The core
region, the wall region and the viscous sublayer (see Figure 2.2). In the wall region, eddies are smaller than in
the core-regoin; in the viscous sublayer, the influence of turbulence is much smaller than the influence of viscosity
(Nieuwstadt et al., 2016, p.89-94).2

Since the thickness of the viscous sublayer and the wall region are much smaller than the core region, we will focus on
the hydrodynamics in the core region. To do so, we must introduce a boundary condition that finds itself at the top
of the wall layer. This is often done through a parametrisation of the shear stress, given by the so-called quadratic
bottom stress:

τbottom,x = ρ0cd|u|u, at z = −H(x), (2.13)

where −H(x) is now the z-coordinate at the top of the wall layer (see Figure 2.2), and cd is the drag coefficient. To
further simplify our model, we linearise this condition, leading to the so-called partial-slip condition:

τbottom,x = sFu, (2.14)

where sF is the bottom friction coefficient. This linearisation was first implemented by H.A. Lorentz, who applied
an iterative process to update the bottom friction coefficient sF , leading to qualitatively fitting predictions of the
tidal flow in the Waddenzee (De Swart, 2009, p.40). We will, however, not apply this itarative process, but leave sF
constant. Since in our model, the shear stress is parametrised as τx = Âv∂zu, we find the following expression for
the partial-slip condition near the bottom:

Âvuz = sFu for z = −H(x). (2.15)

The value of the eddy viscosity scales with the size L of the eddies and the flow velocity U within the eddies
(Nieuwstadt et al., 2016, p.84):

Âv ∝ LU . (2.16)

The eddy viscosity decreases as the flow nears the bottom (or a wall), since the eddies get smaller. Also, near
the water surface, it is expected to be smaller than in the core of the flow (Ianniello, 1977, p. 759). Since we are
interested in the qualitative behaviour of the current, the vertical eddy viscosity is taken to be independent of the
depth, which will simplify our mathematical analysis (De Swart, 2009, p.22). Thus, from now on, Âv is considered
to be a constant parameter, both in time and space.

2An estimate of the thickness of the combination of the viscous sublayer and the wall layer is given by 100 · ν/u∗ (Nieuwstadt et al.,
2016, p.94), where u∗ is the wall friction velocity (Nieuwstadt et al., 2016, p.88). The order of magnitude of the kinematic viscosity of

water is given by ν ∼ 10−12 m2/s (Batchelor, 2000, p.597). u∗ =
√

τs
ρ0

, with τs is the wall friction stress (Nieuwstadt et al., 2016, p.88).

The density is ρ0 ∼ 103 kg/m3 (Batchelor, 2000, p.597).
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Figure 2.2: The three layers in which the sizes of eddies are notably different.

2.5 Modelling Ice

Figure 2.3 shows three ice-covered regions, as already meantoned in the introduction (Chapter 1): a region with
landfast ice (right), a region with ice floes floating relatively freely, which we call the horizontal shear region (left),
and a region in which ice has a strong internal friction, which we call the vertical shear region (middle). According
to Vasulkar (2024, p.5), in the horizontal shear region, the vertical stresses are small compared to the horizontal
shear, so that the vertical stresses do not influence the ice-water interaction considerably and can be neglected. In
the vertical shear region, however, the vertical stresses are larger due to the interactions between ice floes. Therefore,
vertical shears can not be neglected in this region. As a start, we focus on modelling ice floes in the horizontal shear
region.

Figure 2.3: The three types of ice that we distinguish are shown schematically: ice floes with negligible vertical
stresses (left), ice floes with strong vertical stresses (middle), and landfast ice (right). The ice floes in the horizontal
shear region and landfast ice are analysed in the upcoming Chapters.

2.5.1 Modelling Landfast Ice

Since landfast ice is stationary, Burchard et al. (2023, p.61) models landfast ice as a no-slip condition at the surface,
similar to the way bottom friction is often included in hydrodynamic models:

u = 0 for z = ζ. (2.17)

However, this condition requires us to solve not only the general Reynolds-averaged hydrodynamics in the core-
region of the estuary, but also to solve the small-scale hydrodynamics in the boundary layers near the ice. For
bottom friction, we have parametrised and idealised the influence of the boundary layer by applying a partial slip
condition (see equation (2.14)). By applying the same reasoning, we will model the influence of landfast ice by

10



applying a partial slip condition at the surface, introducing the ice friction parameter sI (m/s):

Âvuz = −sIu for z = ζ. (2.18)

2.5.2 Modelling Ice Floe in the Horizontal Shear Regions

The rheology of ice floes is, in general, assumed to be two-dimensional: the influence of vertical stresses within the
ice is one order of magnitude less than that of horizontal stresses. There are many models that describe the ice’s
rheology, and all take into account different properties of ice (Leppäranta, 2005, p.116-131). One such model is
introduced by Hibler III (1979, p.818), describing the ice as a nonlinear viscous compressible fluid. This model has
been applied in a simplified way by Vasulkar (2024, p.74-78), who assumes that there is a relatively strong vertical
shear force between the ice floes and the underlying water, which allows for the assumption that the velocity of the
ice floes equals the water’s velocity. The main effect of the ice layer on the water motion is then accounted for by
including the internal horizontal stress as an additional frictional term in a depth-averaged hydrodynamic model.
Furthermore, it is assumed that the internal friction of the ice floes can be approximated as linearly viscous.

To describe this linear viscous behaviour, Hibler III (1979) defines the ice floes’ horizontal viscosity η as follows:

η =
P ∗hIe

−C(1−A)

4D0e2
c

, (2.19)

where P ∗ is the compressive strength of compact ice of unit thickness, hI is the ice thickness, C is a strength reduction
constant for lead opening, A is the ice compactness, D0 is the maximum viscous creep parameter, and ec is the aspect
ratio of the yield ellipse of the ice’s rheology. The model of Hibler III (1979) and the simplifications done by Vasulkar
(2024) function as the inspiration for our idealised way of modelling the ice floes’ influence. Following these authors,
we will assume that the ice floes’ internal friction can be described as

σ = η

[
uIx

1
2

(
uIy + vIx

)
1
2

(
uIy + vIx

)
vIy

]
, (2.20)

where uI and vI are the longitudinal and lateral ice velocities, respectively. This leads to the following force
component in the longitudinal momentum-balance for the ice velocity field:

F1 := ∂xσ11 + ∂yσ12 (2.21)

=
(
ηuIx

)
x

+
1

2

(
η
(
uIy + vIx

))
y
. (2.22)

Applying the width-averaging procedure, it is found that:

{F1} =
1

2∆

[
B2

(
η
(
uIy + vIx

))∣∣
y=B2

−B1

(
η
(
uIy + vIx

))∣∣
y=B1

]
(2.23)

+
1

∆

[(
{η}

[(
∆{uI}

)
x

+B′1 u
I
∣∣
y=B1

−B′2 uI
∣∣
y=B2

])
x

+B′1
(
ηuIx

)∣∣
y=B1

−B′2
(
ηuIx

)∣∣
y=B2

]
, (2.24)

where it is supposed that the width-variations of η have a negligible influence on the large-scale wdth-averaged
ice-dynamics. A full derivation of this expression can be found in Appendix A.2.4. Furthermore, assuming that - as
a first modelling step - the influence of the boundary onto the width-averaged ice floe-behaviour is negligible, this
expression simplifies to:

{F1} =
1

∆

(
η
(
∆{uI}

)
x

)
x
. (2.25)

As sketched in Figure 2.4, we make use of the fact that ice floes only find themselves in a layer close to the water’s
surface. Within this layer, and within the horizontal shear region, we assume that the vertical coupling between the
floes and the water is strong. Therefore, the width-averaged ice velocity is close to the width-averaged water velocity,
allowing us to neglect the vertical shear force at the boundary, described by equation (2.18). Moreover, this strong
coupling inspires us to model the influence of the internal ice floe stress (2.25) as an additional viscosity term in the
layer in which ice floes find themselves. This leads to the following longitudinal momentum equation:

ut + gζx − Âvuzz −
(
Âhuxx +

F

∆
(η (∆u)x)

x

)
= 0, (2.26)

where F is a z-dependent parameter that accounts for the occurrence of enhanced horizontal viscosity due to the
presence of ice floes in the upper layer. Outside this layer, the horizontal eddy viscosity will be equal to the eddy
viscosity as discussed earlier. The exact size of the layer is unknown, and therefore, F will be taken as a smooth
function that vanishes as z moves out of the ice-floe-layer.
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Figure 2.4: A schematic side-view of ice floes in the top layer of the water in the estuary.

2.6 Additional Boundary Conditions

In addition to the boundary condition (2.18) at the surface (either a partial slip condition for landfast ice (sI 6= 0),
or a no-slip condition for ice floes (sI = 0)) and the partial slip condition (2.15) for bottom friction, we require more
boundary conditions for the system to be solvable. In this section, we introduce the boundary conditions boundary:

The Free Surface (z = ζ)

The free surface at z = ζ is defined as the top of the water layer;

1. The coordinates at the surface of the water, must remain at the surface. This leads to the kinamatic boundary
condition at the water’s surface,

w = uζx for z = ζ(x, t). (2.27)

Note that we assume here that there are no overturning waves, which is consistent with the length-scales of
tidal waves (Cushman-Roisin and Beckers, 2011, p.103).

2. We assume that the pressure at the surface equals the atmospheric pressure:

p = patm for z = ζ(x, t), (2.28)

Where the pressure is assumed to be spatially uniform. Furthermore, we neglect the surface tension, which
is only of importance for short water-waves with wavelengths of only a few centimetres (Cushman-Roisin and
Beckers, 2011, p.104).

The Bottom

1. A commonly used assumption is that the flow is parallel to the bottom; in other words, the flow is perpendicular
to the normal vector at the bottom. This translates into the following impermeable bottom condition (Cushman-
Roisin and Beckers, 2011, p.103):

u ·

Hx

0
1

 = 0 for z = −H(x). (2.29)

Seaward Side

1. At the seaward side, we prescribe the influence of tides on the water height. The M2-tide, with a period of
twelve hours and twenty-five minutes is often dominant (De Swart, 2009, p.31), we will focus on the dynamics
of this tidal constituent. We will also include the M4-tide, which can be used to analyse the residual transport
of particulate matter or sediments (Chernetsky, 2012). This transport, however, is not part of the scope of this
thesis

ζ = AM2
cos(σt) +AM4

cos(2σt) for x = 0, (2.30)

where σ ≈ 1.406 · 10−4 s−1 is the frequency of the semi-diurnal (M2) tide, and AM2
its amplitude; AM4

is the
amplitude of the M4-tide.
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2. The behaviour of the longitudinal water velocity at the seaward side is highly dependent on the dynamics in
the adjacent sea and the internal, estuarine dynamics, and therefore, it is difficult to determine a physically
correct boundary condition. To circumvent this issue, we prescribe the following condition,

ux = 0 for x = 0, z ∈ [−H, ζ]. (2.31)

Since this boundary condition is not consistent with the internal dynamics, a non-physical boundary region near
x = 0 will be formed. Hence, we will not base any conclusions on the behaviour of the estuary’s hydrodynamics
near x = 0.

Riverine Side

1. We assume that pointwise in z, the longitudinal water velocity vanishes at the riverine side, i.e.

u = 0 for x = L, z ∈ [−H, ζ]. (2.32)
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Chapter 3

Model Formulations

In this chapter, models are derived that separate the effects of landfast ice and ice floes in the horizontal shear region.
In section 3.1, a perturbative method is applied to the model that was created in the previous chapter, allowing us
to separate the effects of various tidal consitutents. The so-called leading order model that follows is linear, and
only forced at the seaward side by the M2-tidal consituent. In sections 3.2 and 3.3, this model is used to derive the
equations describing the hydrodynamics in an estuary under the influence of either landfast ice or ice floes in the
horizontal shear region.

3.1 Separating Tidal Constituents

If an estuary is not vertically stratified and if it its depth is large compared to the amplitude of the tide, it is
expected that the influence of nonlinear terms in the longitudinal momentum balance is relatively small (Ianniello,
1977, p.756). Nonlinearly induced currents scale with the ratio of the tidal amplitude and the depth, i.e. ε = AM2

/H.
Using this ratio, a decomposition of the model equations into leading order equations and equations of smaller order
can be created. Since the resulting ordered system of equations is linear at leading order, allows for a systematic way
to study various tidal constitutents (Chernetsky, 2012, p.25-32). This perturbative method requires the definition of
asymptotic expansions of our variables:

u = u0 + ε u1 + ε2 u2 + ..., (3.1)

w = w0 + εw1 + ε2 w2 + ..., (3.2)

ζ = ζ0 + ε ζ1 + ε2 ζ2 + .... (3.3)

In order for this method to be valid, the following requirements must be satisfied (Chernetsky, 2012, p. 120-123).

1. The water’s horizontal velocity is much smaller than the velocity required to travel through the full estuary
within one M2-oscillation, i.e. U

σL = O(ε).

2. The density-driven residual circulation’s velocity is much smaller than the water’s horizontal velocity.

3. The amplitude of the other tidal constituent at the seaward side is much smaller than the amplitude of the

M2-tide at the seaward side, i.e.
AM4

AM2
= O(ε).

4. The river discharge at the riverine side is much smaller than the cross-sectional flow within the river, i.e.
Q

UH0B0(L) = O(ε).

Assuming that the above requirements are met, one can derive the equations corresponding to the various orders
by substituting the asymptotic expansions into the contiuity equation, longitudinal momentum balance and the
boundary conditions. Focusing on the leading order model, we observe that it is only forced by the M2-tide at the
seaward side. Since the leading order equations are linear, all variables oscillate with the same M2-frequency σ. This
allows us to write u0(x, z, t)

w0(x, z, t)
ζ0(x, t)

 = Re

û0(x, z)
ŵ0(x, z)

ζ̂0(x)

 eiσt
 (3.4)
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Resulting in the following linear partial differential equations for û0, ζ̂0 and ŵ0:
û0
x + ŵ0

z +
∆x

∆
û0 = 0, (3.5a)

iσû0 + gζ̂0
x − Âvû

0
zz −

(
Âhû

0
xx +

F

∆

(
η
(
∆û0

)
x

)
x

)
= 0, (3.5b)

with the boundary conditions: 

Âvû
0
z = −sI û0 for z = 0, (3.6a)

ŵ0 = iσζ̂0 for z = 0, (3.6b)

ŵ0 +Hxû
0 = 0 for z = -H(x), (3.6c)

Âvû
0
z = sF û

0 for z = -H(x), (3.6d)

ζ̂0 = AM2 for x=0, (3.6e)

û0
x = 0 for x = 0, (3.6f)

û0 = 0 for x = L. (3.6g)

A detailed derivation of these equations without ice can be found in Chernetsky (2012, p. 120-127).

3.2 Landfast Ice

To focus on the effect of landfast ice, one removes the ice floes’ horizontal viscosity by setting F ≡ 0. This leads to
the following partial differential equations: û0

x + ŵ0
z +

∆x

∆
û0 = 0, (3.7a)

iσû0 + gζ̂0
x − Âvû

0
zz − Âhû

0
xx = 0. (3.7b)

The longitudinal momentum balance can be simplifiedy neglecting the horizontal viscosity term. Indeed, the magni-
tude of the viscosity terms can be estimated as follows:(

Âhux

)
x
∼ Âh

L2
0

and
(
Âvuz

)
z
∼ Âv

H2
0

. (3.8)

Using that Âh ∼ 0.1 − 10 m2/s, Âv ∼ 10−4 − 10−2 m2/s (De Swart, 2009, p.21) and L0/H0 ∼ 105/10 = 104, it
follows that (

Âhux

)
x
�

(
Âvuz

)
z
. (3.9)

Therefore, when ice floes are omitted from the model, the horizontal viscosity term is negligible. However, by
neglcting the horizontal viscosity term, we cannot prescribe pointwise velocity boundary conditions at x = 0 and
x = L (i.e. û0

x = 0 for x = 0 and û0 = 0 for x = L). Instead of the pointwise boundary condition at x = L, a
condition on the depth-integrated velocity at x = L is prescribed:∫ 0

−H
û0dz = 0 for x = L (3.10)

This leads to the following model, describing the effect of landfast ice on the estuary’s leading order hydrodynamics.
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The Leading Order Model for Landfast Ice is given by û0
x + ŵ0

z +
∆x

∆
û0 = 0, (3.11a)

iσû0 + gζ̂0
x − Âvû

0
zz = 0, (3.11b)

with the following boundary conditions:

Âvû
0
z = −sI û0 for z = 0, (3.12a)

ŵ0 = iσζ̂0 for z = 0, (3.12b)

ŵ0 +Hxû
0 = 0 for z = -H(x), (3.12c)

Âvû
0
z = sF û

0 for z = -H(x), (3.12d)

ζ̂0 = AM2
for x=0, (3.12e)∫ 0

−H
û0dz = 0 for x=L. (3.12f)

To remove the effects of ice altogether, one additionally takes the limit sI ↓ 0 in equation (3.12a).

3.3 Ice Floes in the Horizontal Shear Region

By omitting the vertical shear friction caused by landfast ice, the leading order model can be simplified to describe
only the effect of ice floes in the horizontal shear region. The depth-profile of the longitudinal water velocity is
approximated by z-dependent eigenfunctions. The free surface level and the amplitudes of the eigenfunctions are
approximated by means of a finite difference method in the x-direction.

3.3.1 The Leading Order Equations for Only Ice Floes in the Horizontal Shear Region

In the region with ice floes where the vertical shear is negligible with respect to the horizontal shear, the leading
order model is simplified by taking sI ↓ 0 in the partial slip boundary condition in (3.6a). This leads to the following
model.

The Leading Order Model for Ice Floes in the Horizontal Shear Zone is given byu0
x + w0

z +
∆x

∆
u0 = 0, (3.13a)

u0
t + gζ0

x − Âvu
0
zz − Âhû

0
xx − F

(
ηu0

x

)
x

= 0, (3.13b)

with the boundary conditions, 

Âvû
0
z = 0 for z = 0, (3.14a)

ŵ0 = iσζ̂0 for z = 0, (3.14b)

ŵ0 +Hxû
0 = 0 for z = -H(x), (3.14c)

Âvû
0
z = sF û

0 for z = -H(x), (3.14d)

ζ̂0 = AM2 for x=0, (3.14e)

û0
x = 0 for x = 0, (3.14f)

∆

∫ 0

−H
û0dz = 0 for x=L, (3.14g)

û0 = 0 for x = L. (3.14h)
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Chapter 4

The Solution Methods

This chapter describes the methods that are used to derive solutions to the models that were given in the previous
chapter. For the models with landfast ice and without ice, analytical solutions are derived in section 4.1. For the
model describing the influence of ice floes in the horizontal shear zone, the solutions can no longer be determined
analytically. A numerical method to approximate solutions to this model is described in section 4.2.

In this thesis, we will focus on computing the longitudinal water velocity and the waterlevel, and we will not
determine the vertical water velocity. Indeed, writing W0 and U0 for the magnitudes of the width-averaged vertical
and longitudinal water velocities, repectively, the width-averaged continuity equation implies that

U0

L0
∼ W0

H0
. (4.1)

Since it is assumed that the horizontal length-scale L0 is much smaller than the vertical length-scale H0 (i.e. H0 �
L0), it follows that W0 � U0. In other words, the longitudinal velocities are assumed to be much larger than the
vertical velocities, and thus the latter are of much less significance.

4.1 Landfast Ice and No Ice

The analytical solutions to the models for landfast ice and no ice can be computed in a similar way, and therefore,
the description of these methods is combined in this section. The longitudinal momentum balance (3.11b) is an

ordinary differential equation for û0 with ζ̂0
x an inhomogeneous term. Solving this differential equation leads to the

following general solution for the leading order longtudinal water velocity:

û0 =
gζ̂0
x

iσ
(−1 + α1 cosh(βz) + α2 sinh(βz)) , (4.2)

where

β =

√
σ

2Âv

(1 + i). (4.3)

The expressions for the coefficients α1 and α2 can be determined by applying the partial slip conditions at the bottom
and at the surface. These coefficients read:

α1 =
−sF Âvβ − sI

(
Âvβ cosh(−βH)− sF sinh(−βH)

)
Âvβ

(
Âvβ sinh(−βH)− sF cosh(−βH)

)
− sI

(
Âvβ cosh(−βH)− sF sinh(−βH)

) , (4.4)

α2 =
sI

(
Âvβ sinh(−βH)− sF cosh(−βH)

)
+ sIsF

Âvβ
(
Âvβ sinh(−βH)− sF cosh(−βH)

)
− sI

(
Âvβ cosh(−βH)− sF sinh(−βH)

) . (4.5)

To derive an ordinary differential equation that is satisfied by the leading order waterlevel, the continuity equation
in (3.11a) is integrated over the depth (i.e. from z = −H until z = 0). Applying Leibniz’ integral rule, the kinematic
boundary condition for the surface and the impermeable bottom conditon, the following expression is found:

Û0
x + iσζ̂0 +

∆x

∆
Û0 = 0, (4.6)
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where

Û0 :=

∫ 0

−H
û0 dz (4.7)

= −gζ̂
0
x

iσ

(
H +

1

β
[α1 sinh(−βH) + α2 (1− cosh(−βH))]

)
. (4.8)

For notational convience, we define the frictional wave velocity as

c2FI := gH +
g

β
[α1 sinh(−βH) + α2 (cosh(−βH)− 1)] . (4.9)

With this definition, one can write

Û0 = −c
2
FI ζ̂

0
x

iσ
, (4.10)

and

Û0
x = − 1

iσ

(
ζ̂0
xx c

2
FI + ζ̂0

x

(
c2FI
)
x

)
. (4.11)

Substituting these expressions into (4.6) leads to the following ODE for ζ̂0:

c2FI ζ̂
0
xx +

((
c2FI
)
x

+
∆x

∆
c2FI

)
ζ̂0
x + σ2ζ̂0 = 0. (4.12)

This equation requires two boundary conditions for ζ̂0, the first of which is given by the M2-forcing at the seawrd
side:

ζ̂0 = AM2 for x = 0. (4.13)

The second boundary condition is found by substituting (4.10) into the boundary condition (3.10):

Û0 = −c
2
FI ζ̂

0
x

iσ
= 0 for x = L. (4.14)

Since c2FI/(iσ) 6= 0, this condition reduces to:

ζ̂0
x = 0 for x = L. (4.15)

The differential equation (4.12) is too complex to solve with analytical methods. To simplify it into an equation that
can be solved analytically, it is assumed that the depth H and the friction parameters sI and sF are constant, and
that the estuary-width is exponentially converging with convergence length Lb:

∆(x) = B0e
− x
Lb . (4.16)

These assumptions lead to the following system for ζ̂0:
ζ̂0
xx −

1

Lb
ζ̂0
x +

σ2

c2FI
ζ̂0 = 0, (4.17a)

ζ̂0 = AM2
for x=0, (4.17b)

ζ̂0
x = 0 for x=L. (4.17c)

We will solve this system for three cases: one where the estuary is fully covered by landfast ice, one where there is
no ice, and one in which the estuary is partially covered in landfast ice.

In case of a full landfast ice cover, the general solution to equation (4.17a) is given by

ζ̂0 = ã1e
λFI2 (x−L) + ã2e

λFI1 (x−L), (4.18)

where

λFI1,2 =
1

2Lb
± i

√
σ2

c2FI
−
(

1

2Lb

)2

. (4.19)
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Applying the boundary conditions leads to the following expression for the leading order waterlevel:

ζ̂0 = AM2

λFI1 eλ
FI
2 (x−L) − λFI2 eλ

FI
1 (x−L)

λFI1 e−λ
FI
2 L − λFI2 e−λ

FI
1 L

. (4.20)

The solution for a constant estuary-width is found by taking the limit Lb →∞, leading to the following expression:

ζ̂0 =
AM2

cos
(
σ(x−L)
cFI

)
cos
(
σL
cFI

) . (4.21)

The solutions without ice can be found by setting taking the limit sI ↓ 0. This leads to similar expressions for the
leading order waterlevel as given by (5.13), (4.20) and (4.21), with the only difference being that cFI is replaced by

c2F = lim
sI↓0

c2FI = gH +
gα sinh(−βH)

β
, (4.22)

where

α =
sF

sF cosh(−βH)− Âvβ sinh(−βH)
. (4.23)

These solutions without ice agree with the solutions given by Chernetsky (2012).

In case of a partial ice cover, a new parameter xI is introduced, splitting the longitudinal axis in two parts: part
I corresponding to 0 < x < xI , where there is no ice, and part II corresponding to xI < x < L, where there is a
landfast ice cover; see Figure 4.1. This leads to the following landfast ice boundary condition at the water’s surface:

Âvû
0
z =

{
0, if 0 < x < xI , (4.24a)

−sI û0, if xI < x < L, (4.24b)

for z = 0. In each part, the ODE (4.17a) for the waterlevel is solved. However, two additional boundary conditions

Figure 4.1: A schematic side-view of the partial ice cover model. For 0 < x < xI (part I), there is no ice, and for
xI < x < L (part II), the estuary is covered in landfast ice.

are required, linking the no-ice solution (in part I) to the ice-solution (in part II) at x = xI . This is done by
demanding continuity of both the waterlevel and the total discharge at x = xI :

lim
x↑xI

ζ̂0 = lim
x↓xI

ζ̂0, (4.25a)

lim
x↑xI

∫ 0

z=−H
û0(x, z) dz = lim

x↓xI

∫ 0

z=−H
û0(x, z) dz. (4.25b)

By applying (4.10), the second condition reduces to

cF lim
x↑xI

ζ̂0
x = cFI lim

x↓xI
ζ̂0
x, (4.26)
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so that the system for this situation is given by

ζ̂0
xx −

1

Lb
ζ̂0
x +

σ2

c2FI
ζ̂0 = 0, (4.27a)

ζ̂0 = AM2
for x = 0, (4.27b)

ζ̂0
x = 0 for x = L, (4.27c)

lim
x↑xI

ζ̂0 = lim
x↓xI

ζ̂0, (4.27d)

cF lim
x↑xI

ζ̂0
x = cFI lim

x↓xI
ζ̂0
x. (4.27e)

A solution to this system is given by

ζ̂0(x) =


ãF1 e

λF1 (x−xI ) + eλ
F
2 xI

(
AM2 − ã

F
1 e
−λF1 xI

)
eλ
F
2 (x−xI ), if 0 < x < xI , (4.28a)

ãFI1 eλ
FI
1 (x−xI ) − ãFI1

λFI1

λFI2

e(λ
FI
1 −λ

FI
2 )(L−xI )eλ

FI
2 (x−xI ), if xI < x < L, (4.28b)

where λF1,2 = limsI↓0 λ
FI
1,2 and the coefficients are given by

ãF1 =

(
−eλ

F
2 xIAM2

)(
−c2FIλFI1 + c2FIλ

FI
1 e(λ

FI
1 −λ

FI
2 )(L−xI )

)
−
(
−1 +

λFI1

λFI2
e(λ

FI
1 −λ

FI
2 )(L−xI )

)(
−c2FλF2 eλ

F
2 xIAM2

)
(

1− e(λF2 −λF1 )xI
)(
−c2FIλFI1 + c2FIλ

FI
1 e(λ

FI
1 −λ

FI
2 )(L−xI )

)
−
(
−1 +

λFI1

λFI2
e(λ

FI
1 −λ

FI
2 )(L−xI )

)(
c2Fλ

F
1 − c2FλF2 e(

λF2 −λ
F
1 )xI

) ,
(4.29)

ãFI1 =

(
1− e(λ

F
2 −λ

F
1 )xI

)(
−c2FλF2 eλ

F
2 xIAM2

)
−
(
−eλ

F
2 xIAM2

)(
c2Fλ

F
1 − c2FλF2 e(λ

F
2 −λ

F
1 )xI

)
(

1− e(λF2 −λF1 )xI
)(
−c2FIλFI1 + c2FIλ

FI
1 e(λ

FI
1 −λ

FI
2 )(L−xI )

)
−
(
−1 +

λFI1

λFI2
e(λ

FI
1 −λ

FI
2 )(L−xI )

)(
c2Fλ

F
1 − c2FλF2 e(

λF2 −λ
F
1 )xI

) .
(4.30)

For a constant estuary-width, this expression can be simplified by taking the limit Lb →∞, leading to:

ζ̂0 =


aF1 cos

(
σ(x− xI)

cF

)
+ aF2 sin

(
σ(x− xI)

cF

)
, if 0 < x < xI , (4.31a)

aF1 cos

(
σ(x− xI)

cFI

)
+

cF
cFI

aF2 sin

(
σ(x− xI)

cFI

)
, if xI < x < L, (4.31b)

where the coefficients are given by

aF1 =
cFIAM2

cos
(
σ(L−xI)
cFI

)
cF cos

(
−σxIcF

)
cos
(
σ(L−xI)
cFI

)
+ cFI sin

(
−σxIcF

)
sin
(
σ(L−xI)
cFI

) , (4.32)

aF2 =
cFAM2

sin
(
σ(L−xI)
cFI

)
cF cos

(
−σxIcF

)
cos
(
σ(L−xI)
cFI

)
+ cFI sin

(
−σxIcF

)
sin
(
σ(L−xI)
cFI

) . (4.33)

The solutions for full ice covers have been checked by comparing to the numerical solution, described in Appendix
B. The solution for constant width and a partial ice cover is checked by relating it to the solution for full ice covers;
see Appendix C.

4.2 Ice Floes in the Horizontal Shear Region

Due to the importance of the horizontal viscosity in the model describing the effect of ice floes in the horizontal
shear region, one cannot first solve for the vertical profile of û0 and then for ζ̂0. Instead, both the longitudinal water
velocity and the waterlevel must be solved simultaneously. This implies that both the horizontal and the vertical
direction have to be discretised, and this discretised system will be solved to get approximations for û0 and ζ̂0.

As a first step, it is assumed that the estuary-depth H is constant. In this case, the z-coordinate does not have to
be rescaled.

The vertical dependency of u is discretised using a spectral method:

û0(x, z) =

∞∑
n=1

an(x)φn(z), (4.34)
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where (φn)
∞
n=1 are the eigenfunctions. Using information from the longitudinal momentum balance, the free slip and

the partial bottom slip boundary conditions, it is natural to require that these eigenfunctions satisfy the following
boundary value problem: 

φ′′n(z) + λnφn(z) = 0, (4.35a)

φ′n(0) = 0, (4.35b)

Âvφ
′
n(−H) = sFφn(−H). (4.35c)

This leads to the following expression for the eigenfunctions,

φn(z) := cos
(
z
√
λn

)
, (4.36)

where the eigenvalues (λn)
∞
n=1 satisfy the following condition:

tan
(
−H

√
λn

)
= − sF

Âv

√
λn
. (4.37)

No closed expressions for these λn exist. Therefore, the eigenvalues are approximated numerically using a bisection
method. The approximations for the first eleven eigenvalues are shown with green dots in Figure 4.2a, and - based on
these approximations - the first 11 eigenfunctions are shown in Figure 4.2b. To be able to apply the spectral method

(a) The approximations of the square-roots of the first
eleven eigenvalues.

(b) The first four eigenfunctions (φn)4n=1.

Figure 4.2: The approximations of the eigenvalues are done by a bisection method applied to the function

tan
(
−H
√
λ
)

+ sF
Âv

√
λ

, where the stopping criterion is that the absolute value of this function is smaller than 10−14.

in a numerical setting, we will cut off the infinite sum representation of û0 after n = Na, leading to the following
approximation:

û0(x, z) ≈
Na∑
n=1

an(x)φn(z). (4.38)

To determine the x-dependent coefficients (an)
Na
n=1, we substitute the spectral approximation (4.38) in the longitudinal

momentum balance, and using that φ′′n(z) = −λnφn(z), we find that

Na∑
n=1

[(
iσ + Âvλn

)
an(x)φn(z) + Âha

′′
n(x)φn(z)

]
+ gζ̂0x (4.39)

− F (z)

∆

Na∑
n=1

[
(ηx∆x + η∆xx) an(x) + (ηx∆ + 2η∆x) a′n(x) + η∆a′′n(x)

]
φn(z) = 0. (4.40)

Multiplying by φm for some m ∈ {1, ..., Na}, integrating over z from −H until 0 and using orthogonality of eigen-
functions leads to the following equations:(

iσ + Âvλm
)
am(x)〈φm, φm〉+ Âha

′′
m(x)〈φm, φm〉+ g〈1, φm〉 ζ̂0x (4.41)

−
Na∑
n=1

[
(ηx∆x + η∆xx) an(x) + (ηx∆ + 2η∆x) a′n(x) + η∆a′′n(x)

] 〈Fφn, φm〉
∆

= 0, (4.42)
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where the inner product is defined as

〈a(z), b(z)〉 :=

∫ 0

−H
a(z)b(z) dz, (4.43)

and ’ means differentiating with respect to x. These equations come with the following boundary conditions for
m = 1, ..., Na:

a′m(0) = 0, (4.44)

am(L) = 0. (4.45)

Integrating the continuity equation (3.13a) from z = −H to z = 0 leads to the following equation:

Û0
x +

∆x

∆
Û0 + iσζ̂0 = 0, (4.46)

where Û0 is defined as in (4.7). Substituting the spectral approximation (4.38) in equation (4.46) leads to the
following equation:

Na∑
n=1

[(
a′n(x) +

∆x

∆
an(x)

)
〈1, φn(z)〉

]
+ iσζ̂0 = 0. (4.47)

For ζ̂0, the following boundary conditions are also imposed:

ζ̂0(0) = AM2
, (4.48)

ζ̂0
x(L) = 0. (4.49)

The unknowns
(
a1(x), ..., aNa(x), ζ̂0(x)

)
in equations (4.41) and (4.47), together with the appropriate boundary

conditions abtained using a finite-difference approach. To that end, we define the grid xj = jh for j = 0, ..., Nx, with
h = L/Nx. The derivatives are approximated as follows:

1. The gradient of the waterlevel is approximated by a central difference, i.e. for j = 1, ..., Nx − 1,

ζ̂0
x(xj) =

ζ̂0,j+1 − ζ̂0,j−1

2h
+O(h2), (4.50)

where ζ̂0,j := ζ̂0(xj).

2. The first-order derivatives of the coefficients (an)
Na
n=1 are approximated by a right-sided first-order finite differ-

ence, to make sure numerical oscillations do not occur. This reads:

a′n(xj) =
aj+1
n − ajn

h
+O(h), (4.51)

for n = 1, ..., Na and j = 1, ..., Nx − 1, where ajn := an(xj).

3. The diffusive terms are approximated by central difference scheme:

a′′n(xj) =
aj+1
n − 2ajn + aj−1

n

h2
+O(h2), (4.52)

for n = 1, ..., Na.

4. The Neumann boundary conditions are approximated by first-order one-sided derivatives, so that we do not
require ghost-nodes:

ζ̂0
x(L) =

ζ̂0,Nx − ζ̂0,Nx−1

h
+O(h), (4.53)

and

a′n(0) =
a1
n − a0

n

h
+O(h), (4.54)

for n = 1, ..., Na.

The complete linear system that follows from these discretisations is given in Appendix D. The implementation
is checked in Appendix E by analysing the error made in approximating the approximations for F ≡ 0 with the
analytical solution without ice from section 3.2.
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Chapter 5

Physical Interpretation Framework for
the Model Without Ice

In this chapter, a physical interpretation framework for the hydrodynamics described by the equations from section
3.1 is built, where the effects of ice are left out. Section 5.1 introduces the parameter values that are used to model
Cook Inlet. In section 5.2, the development of solutions over time is considered. Section 5.3 discusses the effect
of bottom friction and vertical eddy vescosity on the profile of the longitudinal water velocity. Then, section 5.4
discusses the effect of bottom friction and an exponentially converging estuary-width on the resonance properties of
the tide.

5.1 Parameter Values for Cook Inlet

The parameter values that apply to Cook inlet are given in Table 5.1. Unless specified otherwise, these values are
used to create the results in the coming chapters.

Quantity Symbol Value Source

Estuary-length L 350 · 103 m
The length of Cook Inlet is given

by Mulherin et al. (2001, p.2)

Convergence-length Lb
L
3

Approximating the convergence
of the cross-sectional area by

exponential convergence of the width

Eddy-viscosity Âv 0.0155 m2/s
The average of the values in the Ems-estuary

found by Chernetsky et al. (2010, p.1228)

Bottom friction sF 0.0735 m/s
The average of the values in the Ems-estuary

found by Chernetsky et al. (2010, p.1228)

Amplitude of the semi-diurnal
tide at the entrance

AM2
1.8 m

The wave height at the entrance of the inlet
according to Mulherin et al. (2001, p.58)

Gravitational acceleration g 10 m/s2 A rounded value

Estuary-depth H 85 m
This depth leads to solutions with a mean

tidal amplitude of around 4.5 m at the riverine
side of Cook Inlet (Mulherin et al., 2001, p.57)

Table 5.1: The values of the parameters used for modelling the leading order water motion in Cook Inlet.
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5.2 Time Dependency of the Solutions

As discussed in section 3.1, the solutions to the leading order model can be written as follows.[
u0(x, z, t)
ζ0(x, t)

]
= Re

([
û0(x, z)

ζ̂0(x)

]
eiσt

)
(5.1)

One can rewrite this by singling out the local amplitudes and phases:[
u0(x, z, t)
ζ0(x, t)

]
= Re

([∣∣û0(x, z)
∣∣ eiϕu(x,z)∣∣∣ζ̂0(x)
∣∣∣ eiϕζ(x)

]
eiσt

)
, (5.2)

where
∣∣û0(x, z)

∣∣ and
∣∣∣ζ̂0(x)

∣∣∣ are the local amplitudes of the leading order longitudinal water velocity and waterlevel,

and ϕu(x, z) and ϕζ(x) their local phases, respectively. For most of the thesis, the focus will be on the local
amplitudes. However, in analysing amplification properties of the tidal waves, it proves useful to consider the time-
development of the waterlevel through the system, as will be discussed in section 5.4.

From equation (5.1), it is clear that all solutions are 2π/σ-periodic. Figure 5.2 show the time-development of the
leading order longitudinal water velocity and waterlevel within one period.

(a) The longitudinal water velocity. (b) The free surface level.

Figure 5.1: The time-development of the leading order longitudinal water velocity and waterlevel. A darker colour
corresponds to a later time-stamp.

5.3 The Effect of Bottom Friction and Vertical Eddy Viscosity on the
Longitudinal Water Velocity’s Profile

The effect of the bottom friction coefficient sF on the longitudinal water velocity’s profile is shown in Figure 5.2a. It
is clear that an increased friction cofficient leads to a decreased water velocity near the bottom of the estuary. The
extent to which this influences the water velocity’s profile is dependent on the value of the vertical eddy viscosity
Âv, as shown in Figure 5.2b. The larger the value of Âv, the larger the region of influence of the bottom friction.

5.4 The Effect of Bottom Friction and Exponential Convergence on the
Resonance Properties of the Waterlevel

In this section, the influence of bottom friction and exponential convergence on the resonance properties of the leading
order waterlevel is considered.1 First of all, section 5.4.1 discusses the amplification properties of the waterlevel in a
frictionless system with a constant width. Then, sections and consider the effects of bottom friction and exponential
convergence separately. Lastly, the combined effect of the tow is discussed in section 5.4.4.

1The term resonance is only applicable in systems without friction. However, in this theses, ”resonance properties” also refers to the
strong amplification of tidal waves.
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(a) The effect of bottom friction on the longitudinal water
velocity’s profile.

(b) The effect of vertical eddy viscosity on the longitudi-
nal water velocity’s profile.

Figure 5.2: The time-development of the leading order longitudinal water velocity and waterlevel. A darker colour
corresponds to a later time-stamp.

5.4.1 A Frictionless System with Constant Width

In this section, the influence of bottom friction and exponential convergence on the leading order waterlevel in a
system wihtout friction and with a constant width is analysed. We start by writing the solution (4.21) as the sum of
an incoming wave and a reflected wave:

ζ0 =
AM2

(
e−

σ(x−L)
c0

+iσt + e
σ(x−L)
c0

+iσt
)

cos
(
σL
c0

) (5.3)

where c0 =
√
gH is the frictionless wave velocity. Without friction, the system approaches a state of resonance when

the denominator in this expression vanishes:

cos

(
σL

c0

)
= 0, (5.4)

which occurs if
σL

c0
=

(2n+ 1)π

2
for some n ∈ {0, 1, 2, ...}. (5.5)

This resonance condition can be interpreeted physically in multiple ways. One of those is by considering the propa-
gation of a tidal wave through the estuary, and its interaction with the tidal forcing at the seaward side.

Figure 5.3 shows this wave-propagation schematically by distinguishing four steps. We assume that a wave starts at
x = 0 when the tide at the seaward side is at its highest point. The first step shows the propagation of this wave
through the estuary with a given velocity. For a frictionless system, this velocity is given by c0, in which case the
time T0 needed to reach x = L is given by

T0 =
L

c0
. (5.6)

Step 2 shows the reflection of the tidal wave at x = L. In step 3, the wave moves back towards x = 0, and the time
needed for that is again given by T0 = L/c0. In step 4, the wave has reach the seaward side again. Thus, for a
frictionless system, this process takes a total time of 2T = 2L/c0 seconds.

For the system to be in resonance, the return of this tidal wave to the seaside (step four) must coincide with the
moment at which the tide of the sea is at its lowest point. This occurs after half a tidal oscillation, but also after
one and a half oscillations, two and a half oscillations, etc. Since the radial frequency of the tide is given by σ, a full
oscillation takes 2π/σ seconds. Thus for the return of the tidal wave to coincide with a minimum of the tidal forcing
at the seaside, one requires that

2L

c0
=

(2n+ 1)π

σ
for some n ∈ {0, 1, 2, ...}. (5.7)

Note that this condition is equivalent to the (5.5). One can rewrite this condition by defining the frictionless
wavelength Lg := 2πc0/σ, leading to the well-known quarter wavelength condition for frictionless systems (De Swart,
2009, p.37):

L =
Lg
4
,

3Lg
4
,

5Lg
4
, ... (5.8)
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Figure 5.3: A schematic view of a tidal wave propagating through the estuary in four steps.

Figure 5.4 shows the maximum of the leading order waterlevel given by (5.3) as a function of L. The horizontal
axis denotes L/Lg, where Lg ≈ 1305 km. The figure shows that the amplification of the leading order waterlevel is
indeed largest around L/Lg = 1/4, 3/4, 5/4.

Figure 5.4: The maximum of the leading order waterlevel as a function of L for a frictionless system with a constant
width. The horizontal axis is scaled by the frictionless wavelength Lg ≈ 1305 km.

5.4.2 A System with Bottom Friction and Constant Width

When bottom friction is introduced, the leading order waterlevel’s expression (5.3) turns into:

ζ0 =
AM2

(
e
−σ(x−L)

cF
+iσt

+ e
σ(x−L)
cF

+iσt
)

cos
(
σL
cF

) (5.9)

The frictionless wave velocity c0 has been replaced by the complex-valued frictional wave velocity cF (see equation
(4.22)). Figure 5.5 shows the effect of the bottom friction parameter sF on the wave velocity’s real and imaginary
value.

Due to the imaginary part of cF being nonzero in the presence of bottom friction, the denominator in (5.9) can no
longer vanish. Therefore, true resonance can no longer occur, but the amplification of the waterlevel can still be
large. Indeed, the steps for wave propagation in Figure 5.3 still apply, though the tidal wave’s velocity is reduced
due to energy loss at the bottom. The time for a tidal wave to reach x = L, reflect and return is now given by

2TF =
2L

Re(cF )
. (5.10)

As can be seen from Figure 5.5, the real part of cF has decreased, and thus a tidal wave in a system with bottom
friction takes longer to propagate through the system than in a frictionless system. For amplification in this system
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Figure 5.5: The real and imaginary part of the frictional wave velocity cF as a function of sF .

to be maximal, one requires the following equality, similar to (5.7):

2L

Re(cF )
=

(2n+ 1)π

σ
for some n ∈ {0, 1, 2, ...}. (5.11)

Since the wave propagation in the presence of friction is slower, it follows that the estuary lengths L for which
this condition holds must be smaller. This effect is shown in Figure 5.6, in which the maximal amplification of the
waterlevel is shown with and without bottom friction.

Figure 5.6: The maximum of the leading order waterlevel as a function of L for a frictionless system and a system
with friction, both with a constant width. The horizontal axis is scaled by the frictionless wavelength Lg ≈ 1305 km.

Thus, the effect of the introduction of bottom friction on the amplification properties of the leading order waterlevel is
summarised by two effects. One is that resonance no longer occurs, as the introduction of bottom friction damps the
oscillations. However, amplification can still be large. Since bottom friction reduces the wave velocity, the maximal
amplification in systems with bottom friction occurs for smaller estuary-lengths L than in frictionless systems.

5.4.3 A Frictionless System with an Exponentially Convergencing Width

When in a frictionless system, exponential convergence with a convergence length Lb is introduced, the leading order
waterlevel’s expression (5.9) becomes:

ζ0 = AM2

λ0
1e
λ0

2(x−L)+iσt − λ0
2e
λ0

1(x−L)+iσt

λ0
1e
−λ0

2L − λ0
2e
−λ0

1L
, (5.12)

where

λ0
1,2 =

1

2Lb
± i

√
σ2

c20
−
(

1

2Lb

)2

. (5.13)
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The effect of exponential convergence on the propagation of tidal waves through the systems is threefold. Firstly,
it should be noted that, due to the exponential narrowing of the estuary, the waterlevel is amplified along the
longitudinal axis. Secondly, the velocity of the tidal waves propagating through the system is decreased, and is now

given by

√
σ2

c20
−
(

1
2Lb

)2

.2 This has the effect that the time needed for steps 1 and 3 in Figure 5.3 is increased.

However, the exponential convergence furthermore introduces a phase difference between the incoming wave and the
reflected wave at x = L. This phase difference comes to light when determining the condition for resonance to occur
by setting the denominator in (5.12) equal to 0:

−2L

√
σ2

c20
−
(

1

2Lb

)2

= Arg

(2

(
1

2Lb

)2

− σ2

c20

)
+ i

 1

Lb

√
σ2

c20
−
(

1

2Lb

)2
− 2nπ for some n ∈ {0, 1, 2, ...}.

(5.14)
Thus, the values of L for which resonance occur not only depend on the propagation speed of waves through the
estuary, but are also influenced by the phase difference between the incoming and reflected wave that occurs in
step 2 in Figure 5.3. Figure 5.6 shows the effect of exponential convergence on the amplification properties of the
leading order waterlevel by displaying the leading order waterlevel as a function of the estuary length L. Thus,

Figure 5.7: The maximum of the leading order waterlevel as a function of L for a frictionless system with a constant
width and with an exponentially converging width. The horizontal axis is scaled by the frictionless wavelength Lg ≈
1305 km.

an exponentially converging width causes the amplification of the leading order waterlevel to be maximal for larger
values of L, due to a combination of a slower wave propagation and a phase difference between the incoming and the
reflected wave at x = L.

5.4.4 A System with Bottom Friction and an Exponentially Converging Width

The combined effect of bottom friction and an exponentially converging width leads to the following expression for
the leading order waterlevel:

ζ̂0 = AM2

λF1 e
λF2 (x−L)+iσt − λF2 eλ

F
1 (x−L)+iσt

λF1 e
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Bottom friction causes resonance to turn into strong amplification, and slows down the propagtion of waves, as
discussed in section 5.4.2. Exponential convergence also slows down the waves, but furthermore introduces a phase
difference between the incoming wave and the reflected wave at x = L, as discussed in section 5.4.3. The combined
effect of the two is presented in Figure 5.8, where bottom friction and exponential convergence are introduced, and
the maximal leading order waterlevel is shown as a function of L.

2Note that if
(

1
2Lb

)2
> σ2

c20
, the solution is exponential.
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Figure 5.8: The maximum of the leading order waterlevel as a function of L for a frictionless system with a constant
width and with an exponentially converging width. The horizontal axis is scaled by the frictionless wavelength Lg ≈
1305 km.
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Chapter 6

The Effect of Landfast Ice

In this chapter, the effect of landfast ice on the large-scale leading order hydrodynamics is studied. In section 6.1,
the effect of several ice coverages on the hydrodynamics in Cook Inlet is analysed. To understand the behaviour
shown in Cook Inlet and to understand what effect ice coverage has on general estuaries, the effect of the percentage
of ice coverage on resonance properties of the tide is analysed in section 6.2.

6.1 Landfast Ice in Cook Inlet: Variable Coverage

According to Mulherin et al. (2001, p.26-34), the ice coverage within Cook Inlet can vary between 10% and 50% from
December through March. As a first step in analysing the effect of ice on the tidal hydrodynamics, it is assumed
that the ice cover consists of solely landfast ice. The ice cover is assumed to start at x = xI and reach the landward
side of the estuary x = L; see Figure 6.1. Table 5.1 gives the values that are applied within the model. Furthermore,
it is assumed that the ice friction parameter sI is equal to the bottom friction parameter sF .

For the leading order longitudinal water velocity at x/L = 0.3, x/L = 0.7 and x/L = 0.95, Figure 6.4 shows its
depth-profiles. Two effects of the landfast ice are notable. When ice is present at the water’s surface, the water’s
velocity decreases near the surface in a way that is symmetric to the effect of the bottom friction. This behaviour is
expected, since the two partial slip conditions have a symmetric effect - specially when sI = sF . When no landfast
ice is present, the free slip condition requires the vertical gradient of û0 to vanish near the surface, leading to a
vertically uniform profile outside of the region where the flow is affected by the bottom.

Figure 6.1: A schematic side-view of an estuary that is partially covered by landfast ice. The values for x/L that
are used later in the text are indicated, as well as the values that are used for xI/L.

Figure 6.2 shows the leading order waterlevel along the estuary for the parameter values given in Table 5.1 for three
cases: no ice, an ice coverage of 10% (xI/L = 0.9), and an ice coverage of 50% (xI/L = 0.5). It can be seen that for
a larger ice coverage, the leading order waterlevel is amplified.

To see whether all landfast ice coverages will amplify the waterlevel in Cook Inlet, Figure 6.3 shows

6.2 The Influence of Coverage by Landfast Ice in General Estuaries

One might wonder whether the coverage by landfast ice generally results in amplifying the leading order waterlevel.
To analyse that, Figure 6.3 shows the maximum of the leading order waterlevel as a function of xI/L. From this
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Figure 6.2: The leading order waterlevel in Cook Inlet for several landfast ice coverages. The ice friction parametr
sI is assumed to equal the bottom friction parametr sF .

Figure 6.3: The maximal leading order waterlevel as a function of xI/L in Cook Inlet.

(a) At x/L = 0.3. (b) At x/L = 0.7. (c) At x/L = 0.95.

Figure 6.4: The leading order longitudinal water velocity in Cook Inlet at various x-coordinates for three cases: no
ice, 10% landfast ice coverage and 50% landfast ice coverage. The x-coordinates are indicated in Figure 6.1.

figure, it is clear that an increased landfast ice cover (decreasing xI − L) indeed leads to an amplified leading order
waterlevel for the parameter settings given in Table 5.1 and several values of the ice friction parameter sI .

To analyse why the increase of landfast ice coverage leads to an amplified waterlevel, the resonance properties of the
system are examined. Figure 6.5 shows the maximum of the leading order waterlevel as a function of the estuary-
length L, similar to the plots shown in section 5.4. The maximum of the waterlevel is shown for various ice coverages.
Furthermore, the estuary-length of Cook Inlet is indicated by the dotted line.

Figure 6.5a shows that the effect of an increased ice coverage is twofold. One effect is that for an increased ice
coverage, the heights of the amplification peaks decrease. As can be seen, for estuary-lengths in between 0.375Lg ≈
490 km and 0.450Lg ≈ 585 km, this leads to a decrease in the maximal waterlevel. However, another effect is that
for an increased ice coverage, the amplification peaks shift towards larger values of L. As can be seen in Figure 6.5b,
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(a) L varies from 0.26Lg until 0.44Lg. (b) L varies from 0.26Lg until 0.3Lg.

Figure 6.5: The maximal leading order waterlevel as a function of the estuary-length L for various values of xI/L.
The horizontal axis is scaled by the frictionless wavelength Lg ≈ 1305 km.

this is the effect that causes the amplification of the waterlevel in Cook Inlet when more landfast ice is present.

To further analyse the effect of ice coverage on estuaries, Figure 6.6 shows the following information:

1. The estuary-lengths are shown on the horizontal axis, and are scaled with the frictionless wavelength Lg ≈ 1305
km. The vertical axis shows how much of the estuary is covered by landfast ice, i.e. xI/L.

2. For each combination of estuary-length and ice coverage, the shade of green indicates the maximum of the
leading order waterlevel. A darker green corresponds to a larger waterlevel.

3. For al estuary-lengths lengths, the red curve gives the amount of ice coverage that yields the largest waterlevel.

4. For all ice coverages, the blue curve indicates the estuary-length for which amplification is maximal.

5. Cook Inlet’s length L = 350 km is indicated by the dashed blue line.

6. The dashed grey lines show the values of xI/L for which the maximum of the waterlevel is shown in Figure
6.5a.

Figure 6.6: A colourplot showing the maximal leading order waterlevel as a function of the estuary-length L and
the percentage of coverage xI/L. A darker green colour corresponds to a larger maximal waterlevel. The red curve
indicates which ice coverage yields the largest maximal amplitude for each value of L. The blue curve indicates for
each ice coverage what the value of L is for which the amplification is maximal. The dashed blue line corresponds
to Cook Inlet’s estuary-length L = 350 km. The dashed grey lines correspond to the ice-coverages that are shown in
Figur 6.5. The horizontal axis is scaled with the frictionless wavelength Lg, where Lg ≈ 1305 km.

The blue curve in Figure 6.6 indicates that indeed, for increased landfast ice coverages, the amplification peak shifts
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towards smaller values of L. Furthermore, the red curve confirms that for L smaller than approximately 0.3Lg ≈
390 km, the amplification of the tide is maximal when the estuary is fully coverd in ice, and for L larger than
0.375Lg ≈490 km, the amplification is maximal without an ice cover. When the length of the estuary is in between
these values, there is a nontrivial landfast ice coverage for which the amplification of the tide is maximal.

The decrease of the amplification peaks for increasing ice coverages can be explained by the energy-loss caused by
the ice-friction. The shift of these peaks towards smaller values of L can be explained by considering the propagation
of tidal waves through the estuary, as explained in section 5.4. Indeed, for a given ice coverage, the tidal wave has
wave velocity Re(cF ) for 0 < x < xI and Re(cFI) for xI < x < L, where cF and cFI are given in (B.2) and (4.22).

Figure 6.7 shows the dependency of Re(cFI) on the ice friction parameter sI . It can be seen that due to ice friction,
the real part of cFI decreases. In other words, the velocity at which the wave propagates through the system decreases
due to ice friction. Therefore the time T xIFI needed for a tidal wave to propagate through the system increases when
the landfast ice cover is larger. From section 5.4, we know that the requirement for maximal amplification of the
tide is given by

2T xIFI =
(2n+ 1)π

σ
for some n ∈ {0, 1, 2, ...}, (6.1)

where 2T xIFI denotes the time needed for a tidal wave to propagate to the landward side and back towards the
seaward side. For every estuary-length L, this time increases as the percentage of ice coverage increases. Therefore,
the estuary length that satisfies the condition (6.1) must shrink as the ice coverage increases. Furthermore, it should

Figure 6.7: The real and imaginary part of the frictional wave velocity cFI as a function of sI .

be noted that T xIFI also depends on the convergence length Lb. When an estuary has a different convergence length,
its resonance properties are changed, and therefore, the effect of an increased landfast ice coverage is expected to be
different.

Summarising, we have found that for increasing ice covers, the effect on the amplification of tidal waves in estuaries
is twofold. Due to increased energy-loss, the maximal amplification of the tides decreases. Furthermore, due to tidal
waves propagating at a lower velocity when the ice cover is increased, the estuary-lengths for which these maximal
amplifications occur decrease as well. The combined effect of the two determines whether an increased ice coverage
increases or decrases the waterlevel in a given estuary, depending on the length of the estuary and on the convergence
length.
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Chapter 7

The Effect of Ice Floes in the Horizontal
Shear Region

In this chapter, the effect of ice floes in the horizontal shear region of the leading order tidal waves and currents is
analysed. In section 7.1, the parameter values that correspond to the effect of ice floes are given. In section 7.2,
the influence of several ice floe coverages in Cook Inlet is analysed. These results are clarified in section 7.3 by
considering the effect of ice coverage on the resonance properties of more general estuaries. All approximations in
this chapter are computed using Nx = 200 and Na = 6.

7.1 Parameter Values

The parameter values used in the experiments below are given in Table 7.1, together with the values in Table 5.1.
The values, given in the former table, are used to calculate η, which indicates the strength of the horizontal viscosity
due to the ice floes.

This section presents the effect ice floes is various settings on the leading order longitudinal water velocity and the
waterlevel in a model for Cook Inlet. The parameter values from Table 5.1 are used, in addition to the values in
Table 7.1. Based on the values form the table, the ice’s horizontal shear is taken to be

η =
5 · 109

16
e−20(1−A). (7.1)

In contrast to the setting in the previous chapter, it is assumed that the ice covers in Cook Inlet only consists of ice
floes. For that, we introduce the following functions for the thickness of the ice and the top-layer parametrisation F .

1. The ice thickness is modelled by the following function:

hI(xI , x) :=
tanh

(
(x− xI) · 10−4

)
+ 1

2
, (7.2)

where we have assumed that the thickness varies between 0 and 1. Figure 7.1a shows the function for various
ice coverages.

2. The thickness of the layer near the surface of the region in which ice floes cause an increased viscosity is assumed
to be 1/10th of the estuary’s depth. Therefore, the parameter F is modelled as:

F (z) =
tanh

(
z + H

10

)
+ 1

2
, (7.3)

Figure 7.1b whows F as a function of the depth.

Furthermore, it is assumed that the ice floes’ compactness satsfies A = 0.9 and that the maximum viscous creep
parameter is equal to D0 = 10−6.
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Quantity Symbol Value Source

Compressive strength of compact ice
of unit thickness

P ∗ 5 · 103 N/m Hibler III (1979, p.825)

Strength reduction constant
for lead opening

C 20 Hibler III (1979, p.825)

Maximum viscous creep parameter D0 10−7 to 10−6 s−1 Vasulkar (2024, p.81)

Aspect ratio of the yield ellipse
of the ice’s rheology

ec 2 Hibler III (1979, p.825)

Horizontal eddy viscosity Âh 0.1-10 m2/s De Swart (2009, p.21)

Ice thickness hI 0.5-2 m Mulherin et al. (2001, p.13)

The ice’s horizontal shear η = P∗hIe
−C(1−A)

4D0e2c

0.25
16 · 109 − 10

16 · 1010 m2/s
if A = 1, and smaller

if 0 < A < 1
equation (2.19)

Table 7.1: The values of the parameters used for modelling the effect of ice floes in Cook Inlet.

(a) The ice-thickness function for various values of xI/L. (b) The parametrisation of the top-layer in which ice floes
cause an increased horizontal viscosity.

Figure 7.1: The functions that are applied to model the effect of ice floes in the horizontal shear zone.

7.2 The Effect of Ice Floe Coverages in Cook Inlet

To illustrate the influence of a 10% and a 50% ice floe cover on the leading order waterlevel in the model for Cook
Inlet, the amplitude of the free surface elevation is shown in Figure 7.2 as a function of x. It is clear that the 10%
ice cover mostly influences the waterlevel by a small increase of the amplitude near the head of the inlet. This effect
is enhanced when the estuary is covered for 50% by ice floes.

The effect of these ice floe covers on the leading order longitudinal water velocity is shown in Figure 7.3. As can
be seen, the introduction of ice floes has the effect of increasing the velocity in the middle of the core region and
decreasing the velocity within the ice-floe region near the surface. This effect on the water velocity’s profile bears a
similarity with the effect of landfast ice, as shown in Figure 6.4. However, the ice floes reduce the velocity in a larger
layer below the surface than landfast ice. This implies that the energy-loss due to ice floes with a compactness of
A = 0.9 is generally larger than the energy-loss due to landfast ice with friction parameter sI = 0.07350.
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Figure 7.2: The influence of a 10% and a 50% ice floe cover on the leading order waterlevel in Cook Inlet.

(a) At x/L = 0.3. (b) At x/L = 0.7. (c) At x/L = 0.95.

Figure 7.3: The leading order longitudinal water velocity at various x-coordinates for three cases: no ice, 10% ice
floe coverage and 50% ice floe coverage. The presented x-coordinates are indicated in the schematic view in Figure
6.1.

7.3 The Influence of Coverage by Ice Floes in General Estuaries

To explain why the ice floe coverages cause an amplification of the free surface level in Cook Inlet, we turn to the
resonance properties of estuaries under the influence of ice floe covers. Indeed, similar to Figure 6.5a, Figure 7.5
shows the maximal waterlevel in estuaries as a function of the estuary-length L for several ice coverages. It is clear
that the effect of ice floes on the resonance peaks is similar to the effect of landfast ice: for a larger ice cover, the
maximal amplification peak decreases and shifts towards smaller values of L. This effect is can likely be explained
by the energy-loss due to the enhanced horizontal viscosity in the upper layer of the water column due to ice floes,
leading to a damping of the tide. Furthermore, the increased viscosity leads to a smaller wave velocity, so that -
following the explanation from section 5.4 - the time required for a tidal wave to propagate from x = 0 to x = L,
reflect, and move back to x = 0 is longer, thus requiring a shorter estuary-length to satisfy the requirement of
maximal amplification given by (6.1).

To extend these results to general ice coverages, Figure 7.5 shows a colourplot of the maximum of the free surface
elevation. Like in figure 6.6, the following information is shown:

1. The estuary-lengths are shown on the horizontal axis, and are scaled with the frictionless wavelength Lg ≈ 1305
km. The vertical axis shows how much of the estuary is covered by landfast ice, i.e. xI/L.

2. For each combination of estuary-length and ice coverage, the shade of green indicates the maximum of the
leading order waterlevel. A darker green corresponds to a larger waterlevel.

3. For al estuary-lengths lengths, the red curve gives the amount of ice coverage that yields the largest waterlevel.

4. For all ice coverages, the blue curve indicates the estuary-length for which amplification is maximal.

5. Cook Inlet’s length L = 350 km is indicated by the dashed blue line.

6. The dashed grey lines show the values of xI/L for which the maximum of the waterlevel is shown in Figure
7.5.

The blue curve in this figure indeed shows the decreasing trend of the estuary-lengths L for which amplification
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Figure 7.4: The maximal leading order waterlevel as a function of the estuary-length L for various values of xI/L.
The horizontal axis is scaled by the frictionless wavelength Lg ≈ 1305 km.

Figure 7.5: A colourplot showing the maximal leading order waterlevel as a function of the estuary-length L and
the percentage of coverage xI/L. A darker green colour corresponds to a larger maximal waterlevel. The red curve
indicates which ice coverage yields the largest maximal amplitude for each value of L. The blue curve indicates for
each ice coverage what the value of L is for which the amplification is maximal. The dashed blue line corresponds
to Cook Inlet’s estuary-length L = 350 km. The dashed grey lines correspond to the ice-coverages that are shown in
Figur 6.5. The horizontal axis is scaled with the frictionless wavelength Lg, where Lg ≈ 1305 km.

of the free surface level is maximal. Furthermore, the red curve shows that for estuary-lengths L smaller than
approximately 0.3Lg ≈ 390 km, amplification of the tide is maximal for a full ice floe cover, and for estuary-lengths
close to 0.4Lg ≈ 520 km, amplification is maximal without ice. For all other estuary-lengths in Figure 7.5, there is a
specific value for which the waterlevel is maximally amplified. For the values larger than 0.4Lg, this is likely cause
by the shift of a second resonance peak towards smaller values of L.

Concluding, we have found that the effect of ice floe coverage on the amplification or attenuation of the tides in
estuaries is similar to that of landfast ice coverage: the maximal amplification peak shifts towards smaller values of
L, and the height of these peaks decreases due to energy-loss as a consequence of the ice floes. However, this effect
is larger for ice floes with compactness A = 0.9 than for landfast ice with ice friction coefficient sI = 0.07350. This
is probably a consequence of the fact that the ice floes reduce the longitudinal water velocity for a larger part than
landfast ice, as is seen by comparing Figures 7.3 and 6.4.
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Chapter 8

Conclusion

In this thesis, a two-dimensional model describing the effect of landfast ice and ice floes on the large-scale hydrody-
namics in an estuary was developed. The linear effect of the M2-tide on the width-averaged leading order longitudinal
water velocity and waterlevel has been analysed in two cases: when only landfast ice is present, and when only ice
floes with a negligible vertical shear force are present. The effect of landfast ice was modelled by a partial slip
condition at the water’s surface, and the ice floes were modelled by an increased horizontal viscosity in the top-layer
of the water.

The two different cases were solved independently. Solutions to the model with only landfast ice were found an-
alytically in the frequency-domain by computing the depth-profile of the leading order longitudinal water veolcity
in terms of the local waterlevel’s gradient, using the partial slip conditions due to bottom- and ice-friction. Sub-
sequently integrating the continuity equation over the depth of the estuary led to an ODE for the leading order
waterlevel, which was solved analytically under the assumptions of a constant estuary-depth and -width. For the
ice floe model, solutions in the frequency-domain were approximated using a combination of a spectral method and
a finite difference method. The spectral method was applied in the z-direction, allowing for a representation of
the depth-profile of the longitudinal velocity in terms of eigenfunctions that satisfy the partial slip condition at the
bottom. The finite-difference method was applied to solve the the longitudinal direction of the coupled leading order
water velocity and waterlevel.

The effect of landfast ice coverage in Cook Inlet was studied by analysing the influence of the degree of ice coverage
on the leading order waterlevel. For the case of Cook Inlet in particular, an increasing percentage of landfast ice
coverage led to an increased waterlevel. This effect was explained by the fact that for increasing ice coverage, the
system got closer to resonance. Furthermore, it was shown that for general estuaries, the effect of the degree of
landfast ice coverage is highly dependent on the length of the estuary and the degree of (exponential) convergence,
since these factors determine whether the systems moves away from or closer to resonance when the ice coverage is
increased.

The influence of ice floe coverage in the horizontal shear region in Cook Inlet was studied by analysing the effect of
the percentage of ice coverage by ice floes. Again, the model for Cook Inlet led to an increase of the leading order
waterlevel as the ice coverage increased, as a consequence of the system getting closer to resonance. The influence of
this ice floe coverage on the amplification of the tide was also highly dependent on the length of the estuary, which
has a great influence on whether the system moves closer to resonance or away from it.
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Chapter 9

Discussion and Future Work

The model that was introduced in this thesis and the results that follow from it give insight in the influence of ice
coverage on the water motions in estuaries such as Cook Inlet. There are, however, limitations to the work done
here. Recommendations for further invstigation are given below, along with discussions on the relevance of the results
presented in this thesis.

1. Calibrate the model parameters by using data from Cook Inlet. The choice of parameters for modelling
Cook Inlet is only verified by comparing the waterlevel at the head of the Inlet to the modelled leading order
waterlevel, and by noticing that depths of 85 m do occur in Cook Inlet. The convergence length Lb = L/3
has been estimated by capturing the development of the cross-sectional area in the exponential convergence
of the width. These estimations are rough, and therefore, the accuracy of the results in this thesis is not
optimal. Still, the results and methods are of value for predicting the influence of ice coverages on the estuary’s
amplification properties, as the variation of parameters and the explanation of the results give insight in the
effects of ice covers. A more elaborate comparison with measurements can lead to a better calibration for
the convergence length, vertical eddy viscosity, bottom friction parameter and width-averaged estuary-depth.
Since Chapters 6 and 7 explain what the effect of the convergence length and degree of ice coverage is on the
amplification properties of the tidal waves, the attenuation or amplification properties of tidal waves with this
new calibration can be predicted using that same analysis.

2. Systematically analyse the effect of different parameters describing the estuary’s and the water’s
characteristics. In addition to a better calibration of the parameters, it can prove useful to systematically
analyse the effect of the (constant) parameters H, Âv and sF on the effects of ice on the water velocity and
waterlevel. Indeed, a better understanding of the effect of these parameters can lead to a better understanding
of the amplification properties of the water, as it will be clear whether and how the choice of these parameters
influence the results presented in Chapters 6 and 7.

3. Systematically analyse the effect of different parameters describing the ice floes’ characteristics.
The influence of ice floes in the horizontal shear zone is only done for certain parameter settings, where a
decision is made for the value of D0, the ice compactness A, the ice thickness hI , and the thickness of the
top-layer in which ice floes induce an amplified horizontal viscosity. Although these values have been taken
within their physically relevant ranges, their effects are greatly generalised in doing so, and thus may be over-
or underestimated. Therefore, it is recommended that in future research, these parameters are systematically
varied, so that the consequences of choosing a certain parameter setting can be understood. Furthermore, by
spatially varying the ice compactness and the ice thickness in different ways, the effect of more specific ice floe
coverages can be modelled, allowing for a better understanding of the influence of these parameters.

4. Investigate the effect of combined landfast ice and ice floe coverages. In this thesis, a clear distin-
guishment is made between the effects of landfast ice and the effect of ice floes in the horizontal shear region
on the leading order hydrodynamics in estuaries. However, in practice, these different types of ice do occur
simultaneously in estuaries such as Cook Inlet. Therefore, to better predict the effect of different ice coverages
on estuaries, the combined effect of the landfast ice and ice floes - both in the horizontal shear and the vertical
shear region - must be analysed. This can be done by, for example, applying a spectral method similar to the
method described in section 4.2 to a model in which the shear friction at the surface is not neglected.

5. Investigate the effect of x-dependent parameters. The effects on the large-scale hydrodynamics that
were presented and discussed in this thesis are limited by the assumptions made in creating the two-dimensional
model, distinguishing between the influence of types of ice, and finding solutions and approximations describing
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the tidal water motion influenced by ice. As mentioned before, by further calibrating the model parameters,
it can be verified whether the effect of ice is well-captured by the solutions and approximations shown in this
thesis. Furthermore, combining the effect of landfast ice and ice floes will increase the chances of capturing the
large-scale effects of ice well. In case one wants to proceed in using the model presented in this thesis to capture
large-scale effect of ice in more specific situations, it is recommended to start by making parameters, such as
the depth H and the bottom friction parameter sF , dependent on the longitudinal coordinate, and making the
width ∆ dependent on the longitudinal coordinate in a different way than by exponential convergence. This
does have the consequence that, for general functions H(x), sF (x) and ∆(x), the solution to the ODE for the
leading order waterlevel (4.12) must be approximated numerically.

In line with this, one can choose to make the ice friction parameter sI dependent on x, allowing for the effect
of different kinds of landfast ice coverages to be modelled, instead of the ice coverage only being able to start
at x = xI . Furthermore, this allows for the effect of different landfast ice-thicknesses and -roughnesses to be
taken into account. However, also for general functions sI(x), the ODE for the leading order waterlevel (4.12)
cannot be solved analytically, and a numerical method must be applied.

6. Increase the accuracy of the model by making less simplifications of the Navier-Stokes Equations.
It is important to note that, due to the strong idealised nature of the model, its results will not be able to
capture the effects of ice coverage on the even more detailed, small-scale water motion. To model those effects,
it is recommended that one makes less or no assumptions to simplify the Navier-Stokes Equations (2.1).

7. Include more complex behaviour of the ice floes’ rhoelogy and their interaction with the estuary’s
boundaries. In parametrising the effect of ice floes on the water motion in an estuary, the rheology of ice floes
is greatly simplified by only taking into account the linear viscous term. Furthermore, when width-averaging,
it is assumed that the boundary has a negligible effect on the large-scale width-averaged hydrodynamics. It is
interesting to investigate further whether leaving out some of these assumptions has a notable influence on the
results shown in this thesis.

8. Investigate the effect of ice on the residual flow by solving the first order model. The perturbative
method described in Chapter 3 allows one to capture the effect of ice of the large-scale hyrdodynamics induced
by a semidiurnal tides. Though the focus of this thesis has been to analyse the effect of this dominant tide by
solving the leading order model, when one is interested in the effect of ice on the residual flow of particulate
matter or sediment, the first order model (i.e. the model corresponding to order O(ε) must be analysed. A
method to do so is described by Chernetsky et al. (2010, p.127-130), for a case without ice.

9. Analyse the convergence properties of the spectral method in case ice floes are present. For
the spectral method that is applied to approximate the hydrodynamics under the influence of ice floes in
the horizontal shear region, the convergence of the approximation towards the analytical solution is shown
only in case no ice is present. However, when ice is present, the convergence of the solution is not analysed.
The convergence without ice does not give an indication as to whether the convergence when ice floes are
included is equally reliable, and this convergence is highly dependent on the interaction between the top-layer
parametrisation F and the eigenfunctions. Further research on this convergence behaviour is necessary to
establish more trust in the results.

10. Reduce computational costs for the solution method of the model describing ice floes in the
horizontal shear region. The numerical method that was used for approximating solutions to the model
describing the effect of ice floes in the horizontal shear zone is computationally quite expensive. Applying
methods, such as preconditioning, to reduce computational costs allows for a more systmatic and less time-
consuming way to analyse the effect of ice floes.
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Appendix A

Averaging Procedures

In this Appendix, the Reynolds- and width-averaging procedures are written out.

A.1 Reynolds-Averaging

We wish to rewrite the system (??) into a Reynolds-averaged system of equations. For this, we make use of the
Reynoldsdecomposition, being defined by an ensemble average (see (2.2)). For any function α(x, y, z, t), the averaging
procedure satisfies the following Reynolds decomposition:

a = 〈a〉+ a′, (A.1)

where 〈a〉 is the Reynolds average and a′ := a−〈a〉 denotes the (statistical) fluctuations with respect to the Reynolds
average. We will apply the operation 〈·〉 to the equations in (??). In order to do so, we make use of the following
properties (Rozendaal (2019), p. 8):

〈〈a〉〉 = 〈a〉, 〈γa+ ζb〉 = γ〈a〉+ ζ〈b〉, 〈〈a〉b〉 = 〈a〉〈b〉, 〈∂sa〉 = ∂s〈a〉, (A.2)

for s = x, y, z, t. Note that it follows that

〈a′〉 = 〈a− 〈a〉〉 (A.3)

= 〈a〉 − 〈〈a〉〉 (A.4)

= 〈a〉 − 〈a〉 (A.5)

= 0. (A.6)

A.1.1 Continuity Equation

We take the Reynolds average of the continuity equation

〈∂xu+ ∂yv + ∂zw〉 = 〈0〉 (A.7)

⇔ ∂x〈u〉+ ∂y〈v〉+ ∂z〈w〉 = 0 (A.8)

A.1.2 Momentum Balances

1. Time-derivatives.
〈∂tui〉 = ∂t〈ui〉, voor i = 1, 2, 3. (A.9)

2. Body forces.

〈fui〉 = f〈ui〉, voor i = x, y, (A.10)〈
ρ

ρ0
g

〉
=
g〈ρ〉
ρ0

, (A.11)

3. Pressure gradients. 〈
1

ρ0
∂ip

〉
=

1

ρ0
∂i〈p〉, voor i = x, y, z. (A.12)
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4. Viscosity terms.
〈ν∂iiuj〉 = ν∂ii〈uj〉, voor i = x, y, z. (A.13)

5. We need a bit more attention when Reynolds-averaging the advection terms. First of all, using the continuity
equation (??), we must rewrite the advection terms in their conservative form for i = 1, 2, 3:

u∂xui + v∂yui + w∂zui = u∂xui + v∂yui + w∂zui + ui (∂xu+ ∂yv + ∂zw) (A.14)

= ∂x(uui) + ∂y(vui) + ∂z(wui) (A.15)

We can average these term-by-term:

〈∂j(uiuj)〉 = 〈∂j((〈ui〉+ u′i)(〈uj〉+ u′j))〉 (A.16)

= 〈∂j(〈ui〉〈uj〉)〉+ 〈∂j(〈ui〉u′j)〉+ 〈∂j(u′i〈uj〉)〉+ 〈∂j(u′iu′j)〉 (A.17)

= ∂j(〈ui〉〈〈uj〉〉) + ∂j(〈ui〉〈u′j〉) + ∂j(〈u′i〉〈uj〉) + ∂j(〈u′iu′j〉) (A.18)

= ∂j(〈ui〉〈uj〉) + 0 + 0 + ∂j(〈u′iu′j〉) (A.19)

= ∂j(〈ui〉〈uj〉) + ∂j〈u′iu′j〉. (A.20)

As is described in ??, we parametrise the effect of the correlation terms ∂j〈u′iu′j〉 by means of the Boussinesq closeure
hypothesis (Rozendaal (2019), p. 9):

〈u′u′〉 = −2Ah∂x〈u〉, 〈v′v′〉 = −2Ah∂y〈v〉, 〈w′w′〉 = −2Av∂z〈w〉, (A.21)

〈u′v′〉 = −Ah(∂y〈u〉+ ∂x〈v〉), 〈u′w′〉 = −Av∂z〈u〉 −Ah∂x〈w〉, 〈v′w′〉 = −Av∂z〈v〉 −Ah∂y〈w〉. (A.22)

Substituting this parametrisation into the Reynoldsaveraging of (??) and applying the width-averaged continuity
equation (A.8), leads to the following Reynolds-averaged Navier-Stokes Equations:

∂x〈u〉+ ∂y〈v〉+ ∂z〈w〉 = 0,

∂t〈u〉+ ∂x〈u〉2 + ∂y(〈v〉〈u〉) + ∂z(〈w〉〈u〉) = f〈v〉 − 1
ρ0
∂x〈p〉+ ∂x(Ah∂x〈u〉) + ∂y(Ah∂y〈u〉) + ∂z(Av∂z〈u〉),

∂t〈v〉+ ∂x(〈u〉〈v〉) + ∂y〈v〉2 + ∂z(〈w〉〈v〉) = −f〈u〉 − 1
ρ0
∂y〈p〉+ ∂x(Ah∂x〈v〉) + ∂y(Ah∂y〈v〉) + ∂z(Av∂z〈v〉),

∂t〈w〉+ ∂x(〈u〉〈w〉) + ∂y(〈v〉〈w〉) + ∂z〈w〉2 = − g〈ρ〉
ρ0
− 1

ρ0
∂z〈p〉+ ∂x(Ah∂x〈w〉) + ∂y(Ah∂y〈w〉) + ∂z(Av∂z〈w〉),

(A.23)

where Ah := Ah + ν en Av := Av + ν.

A.2 Width-Averaging

A.2.1 The Width-Averaging Operator’s Properties

The width-averaging operator {·} is defined in the beginning of section 2.3. Similar to the Reynolds decomposition
(A.1), we can define a width-averaging decomposition: α = {α}+α∗, where α∗ := {α}−α describe the fluctuations
of α with respect to the width-averaged quantity. Again, these fluctuations satisfy

{a∗} = 0. (A.24)

Applying Leipniz’ Integral Rule (Rozendaal (2019), p. 14),(∫ B2(x)

B1(x)

α(x, y, z, t)dy

)
x

= (B2)x α|y=B2
− (B1)x α|y=B1

+

∫ B2(x)

B1(x)

αx(x, y, z, t)dy, (A.25)

the Fundamental Theorem of Calculus, and the product rule, we can prove that the following identities are true.

1. The width-average of a derivative w.r.t x.

{αx} =
1

∆

[
(∆{α})x + (B1)x α|y=B1

− (B2)x α|y=B2

]
(A.26)

2. The width-average of a derivative w.r.t y.

{αy} =
1

∆

[
(vu)|y=B2

− (vu)|y=B1

]
(A.27)
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3. The width-average of a derivative w.r.t z.

{αz} = {α}z. (A.28)

4. The width-average of a derivative w.r.t t.

{αt}t = {α}t. (A.29)

Since we assume that all lateral variations have a negligible influence on the width-averaged hydrodynamics in the
vertical and longitudinal direction - as described in section 2.3 - we assume that the width-averaged lateral velocity
component vanishes:

{v} = 0. (A.30)

in line with this assumption, the influence of the lateral momentum balance vanishes as well. Therefore, the width-
averaged model does not contain this lateral balance, and we will focus on the continuity equation and the longitudinal
momentum balance from the Shallow Water Equations (2.7a).

A.2.2 Width-Averaging of the Shallow Water Equations

Continuity Equation

Applying the above properties to the terms in the continuity equation in (2.7a) leads to the following expression:

1

∆
(∆{u})x + ∂z{w} =

1

∆

[(
∂xB1 u|y=B1

− ∂yB1 v|y=B1

)
−
(
∂xB2 u|y=B2

+ ∂yB2 v|y=B2

)]
(A.31)

Making use of the boundary condition given in (2.12), it follows that the right-hand side of this equation vanishes,
leading to the width-averaged continuity equation:

1

∆
(∆{u})x + {w}z = 0. (A.32)

Longitudinal Momentum Balance

We will width-average the longitudinal momentum balance in (2.7a) term-by-term.

1. The time-derivative.
{ut} = {u}t. (A.33)

2. The Coriolis term.
{fv} = f{v} = 0. (A.34)

3. The advective terms. For i = 1, 2, 3, we can show that

{uiu} = {ui}{u}+ {u∗i u∗}. (A.35)

Using this, it follows that

{
(
u2
)
x
} =

1

∆

[(
∆{u}2

)
x

+ (B1)x u
2
∣∣
y=B1

− (B2)x u
2
∣∣
y=B2

+ (∆{u∗u∗})x
]
, (A.36)

{(vu)y} =
1

∆

[
(vu)|y=B2

−B1 (vu)|y=B1

]
, (A.37)

{(wu)z} = ({w}{u})z + {w∗u∗}z. (A.38)

Applying the impermeable wall condition (2.12) leads to the following sum of the width-averaged advection-
terms.

{
(
u2
)
x

+ (vu)y + (wu)z} =
1

∆

[(
∆{u}2

)
x

+ (∆{u∗u∗})x
]

+ ({w}{u})z + {w∗u∗}z. (A.39)

4. The eddy-visosity terms. Similar to the advective terms, we can derive that

{(Ahux)x} =
1

∆

(
{Ah} (∆(x){u})x

)
x

+
1

∆

(
{Ah}

[
(B1)x u|y=B1

− (B2)x u|y=B2

])
x

:::::::::::::::::::::::::::::::::::

(A.40)

+
1

∆

[
(B1)x (Ahux)|y=B1

− (B2)x (Ahux)|y=B2
:::::::::::::::::::::::::::::::::

+ (∆{A∗h(ux)∗})x

]
, (A.41)

{(Ahuy)y} =
1

∆

[
(Ahuy)|y=B2

− (Ahuy)|y=B1

]
:::::::::::::::::::::::::::

, (A.42)

{(Avuz)z} = ∂z({Av} {u}z) + {A∗v(uz)
∗}z. (A.43)
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5. The pressure gradient. First of all, we will consider the pressure gradient as it appears in the longitudinal
momentum balance (2.4a).

{px} =
1

∆

[
(∆{p})x + (B1)x p|y=B1

− (B2)x p|y=B2

]
. (A.44)

Given the expression of the hydrostatic pressure (??), we find that

{p} = patm + g

{∫ ζ(x,y,t)

z

ρ(x, y, ẑ, t) dẑ

}
(A.45)

Now write F (a) :=
∫ ζ
z
ρ dẑ. using this, we Taylor-expand around a = {ζ} and evaluate in a = ζ:

{F (ζ)} = {F ({ζ})}+
{
ζ∗∂a F |a={ζ}

}
+O

(
(ζ∗)

2
)
. (A.46)

Now define R(x, z, t) :=
{
ζ∗∂a F |a={ζ}

}
+O

(
(ζ∗)

2
)

. Using a variant of Leibniz’Integral Rule (A.25), we find

the following expression for the width-averaged pressure term.{
1

ρ0
px

}
=

1

ρ0∆

[
∆x

(
patm + g

∫ {ζ}
z

{ρ} dẑ

)
+ (∆R)x + (B1)x p|y=B1

− (B2)x p|y=B2
:::::::::::::::::::::::::

]
(A.47)

+
g{ζ}x {ρ}|z={ζ}

ρ0
+

g

ρ0

(∫ {ζ}(x,t)
z

{ρ}x dẑ

)
(A.48)

A.2.3 Simplification

The width-averaged expressions for the advective terms, the eddy-viscosity terms and the pressure gradient still
contain terms concerning the lateral fluctuations and boundaries. Since these terms are difficult to determine, we
will make the following assumptions in order to further simplify the expressions.

1. All boundary terms that are left have a negligible influence on the width-averaged hydrodynamics. These terms
are indicated with a waving underline, and will be set to 0.

2. The influence of the terms that depend on the lateral variations is small, and can be modelled as an effective
dissipation. Therefore, we define Âh and Âv as eddy viscosity terms that - in contrast to Ah and Av - contain
the dissipative influence of width-variations. The terms that are taken into these eddy-coefficients are given a
straight underline.

3. We assume that the following term is negligible:

∆x

∆

(
patm + g

∫ {ζ}
z
{ρ} dẑ

)
ρ0

. (A.49)

This leads to the following width-averaged longitudinal momentum balance.

{u}t +
1

∆(x)

(
∆(x){u}2

)
x

+ ({w}{u})z + g{ζ}x +
g

ρ0

∫ {ζ}
z

{ρ}x dẑ =
(
Âh{u}x

)
x

+
(
Âv{u}z

)
z
. (A.50)

Applying the product rule and the width-averaged coninuity equation, we find tits non-conservative form:

ut + uux + wuz + gζx +
g

ρ0

∫ ζ

z

ρx dẑ =
(
Âhux

)
x

+
(
Âvuz

)
z

(A.51)

A.2.4 Width-Averaging of the Ice Floe Friction Term

We want to width-average the following term:

F1 :=
(
ηIx
)
x

+
1

2

(
η
(
uIy + vIx

))
y
. (A.52)
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1. First, we focus on the second term, which is

1

2

(
η
(
uIy + vIx

))
y
. (A.53)

We width-average:{
1

2

(
η
(
uIy + vIx

))
y

}
=

1

2

{(
η
(
uIy + vIx

))
y

}
(A.54)

=
1

2∆

[
B2

(
η
(
uIy + vIx

))∣∣
y=B2

−B1

(
η
(
uIy + vIx

))∣∣
y=B1

]
. (A.55)

2. Now, we look at the first term. For that, we write γ := ηux, so that(
ηuIx

)
x

= Fγx. (A.56)

We width-average: {(
ηuIx

)
x

}
= {γx} (A.57)

=
1

∆

[
(∆{γ})x +B′1 γ|y=B1

−B′2 γ|y=B2

]
. (A.58)

In here, we require an expression for {γ}, i.e.

{γ} = {ηuIx} (A.59)

= {η}{uIx}+ η∗{uIx}. (A.60)

Assuming that η∗, the width-variations of the horizontal ice-viscosity, is negigible compared to {η}, we proceed:

{γ} ≈ {η}{uIx} (A.61)

=
{η}
∆

[(
∆{uI}

)
x

+B′1 u
I
∣∣
y=B1

−B′2 uI
∣∣
y=B2

]
. (A.62)

Therefore, the width-average of the first term is given by{(
ηuIx

)
x

}
=

1

∆

[
(∆{γ})x +B′1 γ|y=B1

−B′2 γ|y=B2

]
(A.63)

=
1

∆

[(
∆{η}

∆

[(
∆{uI}

)
x

+B′1 u
I
∣∣
y=B1

−B′2 uI
∣∣
y=B2

])
x

+B′1 γ|y=B1
−B′2 γ|y=B2

]
(A.64)

=
1

∆

[(
{η}

[(
∆{uI}

)
x

+B′1 u
I
∣∣
y=B1

−B′2 uI
∣∣
y=B2

])
x

+B′1 γ|y=B1
−B′2 γ|y=B2

]
. (A.65)

As a first step for modelling ice floes, we assume that the influence of the boundary on the large-scale ice-dynamics is
negligible. With this, we find that the width-average of the second term and many of the terms in the width-average
of the first term vanish, leading to the following width-average of the ice floe longitudinal friction term:

{F1} =
1

∆

(
{η}

(
∆
{
uI
})
x

)
x

(A.66)
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Appendix B

Description of the Numerical Model for
Landfast Ice

The most general equation for the waterlevel is given by:

c2FI ζ̂
0
xx +

((
c2FI
)
x

+
∆x

∆
c2FI

)
ζ̂0
x + σ2ζ̂0 = 0, (B.1)

where

c2FI := gH +
g

β
[α1 sinh(−βH) + α2 (cosh(−βH)− 1)] . (B.2)

These coefficients can be x-dependent, which makes it very general. Furthermore, we have the following boundary
conditions: {

ζ̂0(0) = AM2
,

ζ̂0
x(L) = 0.

(B.3)

A finite-difference method is applied to discretisce this equation. The grid is defined by xj := j
N for j = 0, 1, 2, ..., N ,

and h := L
N .

For the inner grid points, central differences are applied, leading to the following equations:

c2FI
ζ̂0,j+1 − 2ζ̂0,j + ζ̂0,j−1

h2
+

((
c2FI
)
x

+
∆x

∆
c2FI − gHx aFI |z=−H

)
ζ̂0,j+1 − ζ̂0,j−1

2h
+ σ2ζ̂0,j = 0, (B.4)

where ζ̂0,j := ζ̂0(xj).

If we accumulate this per term, we find:

B−1 ζ̂
0,j−1 +B0 ζ̂

0,j +B1 ζ̂
0,j+1 = 0, for j = 1, 2, ..., n− 1, (B.5)

where: 
B−1 =

c2FI
h2 −

(c2FI)x+ ∆x
∆ c2FI−gHx aFI |z=−H

2h ,

B0 =
−2c2FI
h2 + σ2,

B1 =
c2FI
h2 +

(c2FI)x+ ∆x
∆ c2FI−gHx aFI |z=−H

2h .

(B.6)

The Neumann boundary condition at the landward side is approximated by a second-order (i.e. O(h2)) left-sided
approximation, given by

ζ̂0,N−2 − 4ζ̂0,N−1 + 3ζ̂0,N

2h
= 0. (B.7)

The above discretisation leads to a linear system of the form

ALvL = bL, (B.8)
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where the L stands for Landfast. Here, we define

vL =


ζ̂0,0

ζ̂0,1

...

ζ̂0,N−1

ζ̂0,N

 (B.9)

and

(bL)k =

{
AM2

, if k = 1,

0, if k 6= 1,
(B.10)

and

AL =



1 0 0 0 · · · 0 0 0
B−1 B0 B1 0 · · · 0 0 0

0 B−1 B0 B1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · B−1 B0 B1

0 0 0 0 · · · 1
2h − 4

2h
3

2h


(B.11)
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Appendix C

Landfast Ice: Agreement of the Partial
Cover Solution to the Full Ice Cover
Solution for Constant Width

We can compare our partial-landfast-ice model, as given by the boundary condition (??), to the full-landfast-ice-cover
model, as given by the boundary condition (2.18), in several ways: By setting sI = 0, xI = L and xI = 0, where
the former two should lead to the situation without ice, and the latter to the situation with a full ice cover. We will
apply all three to the solution given in (4.1) and compare it to the solution given in (??).

C.1 The Limit sI ↓ 0
If sI = 0, then the ice that has been introduced in our split model does not cause eny friction. Therefore, we
expect that the solution this yields corresponds to the solution without ice (which follows from setting sI = 0 in the
boundary condition (2.18)). Note that, with our notation, taking sI = 0 merely leads to cFI being equal to cF , and
thus

ζ̂0 = a1 cos

(
σ(x− xI)

cF

)
+ a2 sin

(
σ(x− xI)

cF

)
, (C.1)

with

a1 =
cFAM2 cos

(
σ(L−xI)

cF

)
cF cos

(
−σxIcF

)
cos
(
σ(L−xI)

cF

)
+ cF sin

(
−σxIcF

)
sin
(
σ(L−xI)

cF

) , (C.2)

a2 =
cFAM2

sin
(
σ(L−xI)

cF

)
cF cos

(
−σxIcF

)
cos
(
σ(L−xI)

cF

)
+ cF sin

(
−σxIcF

)
sin
(
σ(L−xI)

cF

) , (C.3)

which can be simplified to

a1 =
AM2 cos

(
σ(L−xI)

cF

)
cos
(
−σxIcF

)
cos
(
σ(L−xI)

cF

)
+ sin

(
−σxIcF

)
sin
(
σ(L−xI)

cF

) , (C.4)

a2 =
AM2

sin
(
σ(L−xI)

cF

)
cos
(
−σxIcF

)
cos
(
σ(L−xI)

cF

)
+ sin

(
−σxIcF

)
sin
(
σ(L−xI)

cF

) . (C.5)
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Furthermore, we can rewrite the denominator of these two coefficients:

d0 = cos

(
−σxI
cF

)
cos

(
σ (L− xI)

cF

)
+ sin

(
−σxI
cF

)
sin

(
σ (L− xI)

cF

)
(C.6)

=
1

2
cos

(
σ (L− 2xI)

cF

)
+

1

2
cos

(
σL

cF

)
+

1

2
cos

(
σL

cF

)
− 1

2
cos

(
σ (L− 2xI)

cF

)
(C.7)

= cos

(
σL

cF

)
. (C.8)

This allows us to further rewrite our expression:

ζ̂0 =
AM2

cos
(
σL
cF

) [cos

(
σ (L− xI)

cF

)
cos

(
σ(x− xI)

cF

)
+ sin

(
σ (L− xI)

cF

)
sin

(
σ(x− xI)

cF

)]
(C.9)

=
AM2

cos
(
σL
cF

) cos

(
σ (L− x)

cF

)
(C.10)

ζ̂0 =
AM2

cos
(
σ(L−x)
cF

)
cos
(
σL
cF

) , (C.11)

which agrees with (??) if we set cFI = cF . A plot for the agreement of the two solutions can be seen in Figure C.1.

Figure C.1: An example of the agreement of the waterlevel for sI = 0.

C.2 The Limit xI ↑ L
If xI = L, we expect that the solution to our partial-ice model agrees with our no-ice model. Let us fill in xI = L.

ζ̂0 =

 a1 cos
(
σ(x−L)
cF

)
+ a2 sin

(
σ(x−L)
cF

)
, if 0 < x < L,

a1 cos
(
σ(x−L)
cFI

)
+ cFI

cF
a2 sin

(
σ(x−L)
cFI

)
, if L < x < L.

(C.12)

= a1 cos

(
σ(x− L)

cF

)
+ a2 sin

(
σ(x− L)

cF

)
. (C.13)

We also substitute xI = L into the coefficients.

a1 =
cFIAM2 cos

(
σ(L−L)
cFI

)
cFI cos

(
−σLcF

)
cos
(
σ(L−L)
cFI

)
+ cF sin

(
−σLcF

)
sin
(
σ(L−L)
cFI

) (C.14)

=
cFIAM2

cFI cos
(
−σLcF

) (C.15)

=
AM2

cos
(
−σLcF

) . (C.16)
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and

a2 =
cFAM2 sin

(
σ(L−L)
cFI

)
cFI cos

(
−σLcF

)
cos
(
σ(L−L)
cFI

)
+ cF sin

(
−σLcF

)
sin
(
σ(L−L)
cFI

) (C.17)

= 0 (C.18)

Thus now,

ζ̂0 =
AM2 cos

(
σ(x−L)
cF

)
cos
(
−σLcF

) . (C.19)

As we saw before, this again is what we expect to happen. See Figure C.2 for a visual representation of the agreement.

Figure C.2: An example of the agreement of the waterlevel for xI = L.

C.3 The limit xI ↓ 0
If xI = 0, we expect that the solution to our partial-ice model agrees with our full-ice model. Let us fill in xI = 0.

ζ̂0 =

 a1 cos
(
σx
cF

)
+ a2 sin

(
σx
cF

)
, if 0 < x < 0,

a1 cos
(
σx
cFI

)
+ cFI

cF
a2 sin

(
σx
cFI

)
, if 0 < x < L.

(C.20)

= a1 cos

(
σx

cFI

)
+
cFI
cF

a2 sin

(
σx

cFI

)
(C.21)

We also substitute xI = 0 into the coefficients.

a1 =
cFIAM2 cos

(
σL
cFI

)
cFI cos (0) cos

(
σL
cFI

)
+ cF sin (0) sin

(
σL
cFI

) (C.22)

=
cFIAM2

cos
(
σL
cFI

)
cFI cos

(
σL
cFI

) (C.23)

=
AM2

cos
(
σL
cFI

)
cos
(
σL
cFI

) . (C.24)
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a2 =
cFAM2

sin
(
σL
cFI

)
cFI cos (0) cos

(
σL
cFI

)
+ cFI sin (0) sin

(
σL
cFI

) (C.25)

=
cFAM2 sin

(
σL
cFI

)
cFI cos

(
σL
cFI

) (C.26)

=
cF
cFI

AM2
sin
(
σL
cFI

)
cos
(
σL
cFI

) (C.27)

We fill this in in our solution.

ζ̂0 =
AM2

cos
(
σL
cFI

)
cos
(
σL
cFI

) cos

(
σx

cFI

)
+
cFI
cF

cF
cFI

AM2
sin
(
σL
cFI

)
cos
(
σL
cFI

) sin

(
σx

cFI

)
(C.28)

=
AM2

cF cos
(
σL
cFI

) [cos

(
σL

cFI

)
cos

(
σx

cFI

)
+ sin

(
σL

cFI

)
sin

(
σx

cFI

)]
(C.29)

ζ̂0 =
AM2 cos

(
σ(x−L)
cFI

)
cos
(
σL
cFI

) . (C.30)

This is as expected. See Figure C.3 for a visualisation.

Figure C.3: An example of the agreement of the waterlevel for xI = 0.
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Appendix D

The Linear System for the Numerical Ice
Floe Model

The method described in Section 4.2 leads to the following discretisiations of the longitudinal momentum balances
and the continuity equation. In our computations, we set the horizontal eddy viscosity Âv to 0, since it is negligible
in the momentum balance (see section 3.2)

1. The longitudinal momentum balance; for m = 1, ..., Na:(
iσ + Âvλm

)
am(x)〈φm, φm〉+ Âha

′′
m(x)〈φm, φm〉+ g〈1, φm〉 ζ̂0x (D.1)

−
Na∑
n=1

[
(ηx∆x + η∆xx) an(x) + (ηx∆ + 2η∆x) a′n(x) + η∆a′′n(x)

] 〈Fφn, φm〉
∆

= 0, (D.2)

2. The continuity equation:

Na∑
n=1

[
〈1, φn(z)〉

(
aj+1
n − ajn

h

)]
+ iσζ̂0,j = 0. (D.3)

Furthermore, we have the following boundary conditions. For m = 1, .., Na,

a1
n − a0

n

h
= 0, (D.4)

aNam = 0, (D.5)

and

ζ̂0,0 = AM2
, (D.6)

ζ̂0,Na − ζ̂0,Na−1

h
= 0. (D.7)

The above discretisation leads to a linear system of the form

AFvF = bF, (D.8)
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where the F stands for Floes. Here, we have used the following definitions

vfloes =


a0

a1

...
aK

ζ̂
0

 =



a0
0
...
aN0

a0
1
...
aN1

...

a0
K
...
aNK

ζ̂0,0

...

ζ̂ ,N



(D.9)

and

(bfloes)k =

{
0, if k 6= 1 +K(N + 1),

AM2
, if k = 1 +K(N + 1).

(D.10)

The matrix is defined as follows.

AF =



Aa
1,1 Aa

1,2 Aa
1,3 · · · Aa

1,Na
Aζ̂0

1

Aa
2,1 Aa

2,2 Aa
2,3 · · · Aa

2,Na Aζ̂0

2

Aa
3,1 Aa

3,2 Aa
3,3 · · · Aa

3,Na
Aζ̂0

3
...

...
...

. . .
...

...

Aa
Na,1

Aa
Na,2

Aa
Na,3

· · · Aa
Na,Na

Aζ̂0

Na

Ba
1 Ba

2 Ba
3 · · · Ba

Na
Bζ̂0


, (D.11)

and is built from sub-matrices, which are given below.

1. The interaction of am with itself, for m = 1, ..., Na.

Aa
m,m =



− 1
h

1
h 0 0 · · · 0 0 0

D̃−1
m D̃0

m D̃1
m 0 · · · 0 0 0

0 D̃−1
m D̃0

m D̃1
m · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 0 · · · D̃−1
m D̃0

m D̃1
m

0 0 0 0 · · · 0 0 1


(D.12)

+



0 0 0 0 · · · 0 0 0
D−1
m,m(x1) D0

m,m(x1) D1
m,m(x1) 0 · · · 0 0 0

0 D−1
m,m(x2) D0

m,m(x2) D1
m,m(x2) · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 0 · · · D−1

m,m(xNx−1) D0
m,m(xNx−1) D1

m,m(xNx−1)
0 0 0 0 · · · 0 0 0


(D.13)
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2. The interaction of am with an, where m 6= n, for n,m = 1, ..., Na.

Aa
m,n =



0 0 0 0 · · · 0 0 0
D−1

1 (x1) D0
m,n(x1) D1

m,n(x1) 0 · · · 0 0 0

0 D−1
1 (x2) D0

m,n(x2) D1
m,n(x2) · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 0 · · · D−1

m,n(xNx−1) D0
m,n(xNx−1) D1

m,n(xNx−1)
0 0 0 0 · · · 0 0 0


(D.14)

3. The interaction with ζ̂0, for m = 1, ..., Na.

Aζ̂0

m =



0 0 0 0 · · · 0 0 0
E−1
m 0 E1

m 0 · · · 0 0 0
0 E−1

m 0 E1
m · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · E−1
m 0 E1

m

0 0 0 0 · · · 0 0 0


(D.15)

Continuity

1. The terms in the sum, for n = 1, ..., Na.

Ba
n =



0 0 0 0 · · · 0 0 0
0 C0

n C1
n 0 · · · 0 0 0

0 0 C0
n C1

n · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 C0

n C1
n

0 0 0 0 · · · 0 0 0


(D.16)

2. The part with ζ̂0.

Bζ̂0

=



1 0 0 0 · · · 0 0 0
0 iσ 0 0 · · · 0 0 0
0 0 iσ 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 iσ 0
0 0 0 0 · · · 0 0 iσ


(D.17)

Notation

Above, we used the following definitions:

C0
n = −〈1, φn〉

h
+

∆x〈1, φn〉
∆

, (D.18)

C1
n =
〈1, φn〉
h

, (D.19)
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and

D̃−1
m =

Âh〈φm, φm〉
h2

(D.20)

D̃0
m =

(
iσ + Âvλm

)
〈φm, φm〉+

−2Âh〈φm, φm〉
h2

, (D.21)

D̃1
m =

Âh〈φm, φm〉
h2

(D.22)

D−1
m,n(xj) = −

[
η(xj)∆(xj)

h2

]
〈Fφn, φm〉

∆(xj)
, (D.23)

D0
m,n(xj) = −

[
ηx(xj)∆x(xj) + η(xj)∆xx(xj)−

ηx(xj)∆(xj) + 2η(xj)∆x(xj)

h
+
−2η(xj)∆(xj)

h2

]
〈Fφn, φm〉

∆(xj)
,

(D.24)

D1
m,n(xj) = −

[
ηx(xj)∆(xj) + 2η(xj)∆x(xj)

h
+
η(xj)∆(xj)

h2

]
〈Fφn, φm〉

∆(xj)
. (D.25)

and

E−1
m = −g〈1, φm〉

2h
, (D.26)

E1
m =

g〈1, φm〉
2h

. (D.27)
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Appendix E

Error Analysis for the Numerical Ice
Floe Model

In this Appendix, the error made in approximating the leading order waterlevel and longitudinal water velocity
without ice is analysed. This is done by setting F ≡ 0, so that the influence of ice floes’ viscosity is negligible.
Since Âh lead to a negligible contribution as well, we set it to 0. The approximated solutions should converge to the
analytical solution without ice given in section 4.1, if one is far enough away from the seaward boundary.

E.1 Examples of Approximations

For Nx = 400 and several values of Na, the approximations of the depth-profile of the leading order longitudinal
water velocity and waterlevel are shown in Figure E.1, along with the analytical solution.

E.2 Error Computation

Let ζ̂
0

(Nx,Na) = [ζ̂0,0, ..., ζ̂0,Nx ] and û0,j
(Nx,Na) = [û0,j(z), ..., û0,j(z)] be approximations for the leading order waterlevel

and longitudinal water velocity without ice, where û0,j(z) approximates û0(z, xj) and ζ̂0,0 approximates ζ̂0(xj).
To assess the accuracy of our numerical solution, we compute the maximal relative errors: for the waterlevel, by
maximising the relative error over the length of the estuary, and for the water velocity, by choosing a grid point xj
and maximising over the depth. This will give insight in the convergence behaviour and accuracy of the solution
for different combinations of Na and Nx. We describe the definition of these relative errors and the maximisation
procedure below.

1. For the waterlevel, for each grid-point xj , we compute the relative error as follows:

Eζj =

∣∣∣∣∣ ζ̂0(xj)− ζ̂0,j

ζ̂0(xj)

∣∣∣∣∣ . (E.1)

For the waterlevel, we define the maximal relative longitudinal error by taking the maximum over all grid-points:

Eζ = max
{
Eζj : j = 0, ..., Nx

}
. (E.2)

2. For the longitudinal water velocity, we will compute the maximal relative vertical error, which is defined per
grid point xj . Specifically, we will not consider the relative error in û0 itself, but in û0/ζ̂0

x. This relative error
at point xj and depth z is defined as

Euj (z) =

∣∣∣∣∣∣
û0(xj ,z)

ζ̂0
x(xj)

− û0,j(z)

ζ̂0,j
x

û0(xj ,z)

ζ̂0,j
x

∣∣∣∣∣∣ . (E.3)

The approximation of the waterlevel’s gradient is done by a central difference, i.e.

ζ̂0,j
x :=

ζ̂0,j+1 − ζ̂0,j−1

2h
. (E.4)
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(a) The longitudinal water velocity’s depth-profile at x =
L/2. (b) The waterlevel for a constant width.

(c) The waterlevel for an exponentially converging width
with convergence length 1/Lb = 1/L.

Figure E.1: A number of approximations for Nx = 400 compared to the analytical solution without ice.

The maximal error is computed by maximising over z, i.e.

Euj = max
{
Euj (z) : z ∈ [−H, 0]

}
. (E.5)

Furthermore, we will compute the relative errors for all grid points. Doing this will give insight in whether there are
places in along the length of the estuary where the error remains particularly large.

1. For the water velocity, we will simply compute the relative error defined in equation (E.1) for j = 1, ..., Nx.
This leads to the following array of errors:

Eζ =
[
Eζ0 , ..., E

ζ
Nx

]
. (E.6)

2. For the longitudinal water velocity, we will choose a value of z and compute the relative error at each grid
point xj . Thus, the array of errors that we compute is defined as follows:

Eu(z) =

[∣∣∣∣ û0,0(z)− û0(x0, z)

û0,0(z)

∣∣∣∣ , ..., ∣∣∣∣ û0,Nx(z)− û0(xNx , z)

û0,Nx(z)

∣∣∣∣] . (E.7)

We expect that this error will not necessarily converge to 0 around x = 0, since the boundary condition stating
that ûx = 0 does not apply to the analytical solution given in (4.2).

Error Plots

Using the numerical method described above, for a number of values of Na, the relative errors in approximating ζ̂0

and û0 are computed as a function of h = L/Nx. The results are shown in Figures E.2, E.3, E.4, E.5.
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In Figure E.2, the maximal relative longitudinal error for the leading order waterlevel as given in (E.2) is shown. By
comparing the subfigures corresponding to different values of Na, it becomes clear that the maximal relative errors
for the waterlevel decrease for increasing Na. It is notable that for Na = 3 and Na = 4, taking a finer grid for the
longitudinal axis does not necessarily improve the accuracy of the approximation. However, for Na = 5 and Na = 6,
decreasing the mesh does lead to a decreasing error. However, the errors do not follow a linear trend in h, which
might be related to Na or the size of h.

Figure E.3 shows the maximal relative vertical error for the leading order longitudinal water velocity as given by
(E.5). It can be seen that - as expected - this error is independent of the mesh-size.

In Figure E.4, the relative error for the leading order waterlevel (E.6) as a function of x is shown. The error gnerally
shows a decreasing trend for a decreasing mesh-size. However, the error near x = 0 does not decrease for increasing
Na, which is likely caused by the boundary condition at x = 0, which does not apply to our analytical solution.
Furthermore, by comparing the subfigures, one sees that the approximations for Na = 5 and Na = 6 are more
accurate than those for Na = 3 and Na = 4. For the larger values of Na, we see again that the error is larger near
x = 0.

Figure E.5 shows the relative error for the leading order water velocity (E.7) as a function of x. As Figure E.2
showed for the leading order waterlevel, for Na = 3 and Na = 4, the relative error is not necessarily decreasing for
a decreasing mesh-size, and the same is seen when Na = 5, but for Na = 6, the error does decrease as h decreases.
Furthermore, for Na = 6, the error tends to be larger near x = 0, which can be explained in a similar way as for the
leading order waterlevel.

Overall, we see that the approximations found with Na = 5 and Na = 6 yield relative errors that are smaller than
0.05 when Nx = 200 and Nx = 400, if one ignores the approximations for x < 30 km.

(a) Na = 3. (b) Na = 4.

(c) Na = 5. (d) Na = 6.

Figure E.2: The maximal relative error for the waterlevel as a function of the mesh-size.
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(a) Na = 3. (b) Na = 4.

(c) Na = 5. (d) Na = 6.

Figure E.3: The maximal relative error for the longitudinal water velocity’s depth-profile at x = L/2 as a function
of the mesh-size.

(a) Na = 3. (b) Na = 4.

(c) Na = 5. (d) Na = 6.

Figure E.4: The relative error for the waterlevel as a function of x.
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(a) Na = 3. (b) Na = 4.

(c) Na = 5. (d) Na = 6.

Figure E.5: The relative error for the longitudinal water velocity at z = H/2 as a function of x.
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