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Abstract
Explanations have been shown to significantly increase the performance of propagators, when applied
to solvers that make use of Lazy Clause Generation. However, to date, there has been little work
in exploring explanations for the disjunctive constraint and how they perform compared to simple
propagation making use of Naive Explanations. I address this gap by considering an Edge-Finding
propagation algorithm for the disjunctive and evaluating the performance of three variants of a solver
on job-shop problems, each of them using different explanation techniques, which have been adapted
from previous work. I also provide an algorithm serving as an extension to Edge-Finding, which can
be used to generate explanations. Then, I compare all approaches in relation to a baseline consisting
of a solver that has no support for the disjunctive and uses decomposition. Through experiments, I
demonstrate that good explanations provide a significant improvement in terms of recorded metrics
compared to the naive method, even if generating them requires additional computational overhead.
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1 Introduction

Constraint Programming (CP) is a paradigm for solving combinatorial optimisation problems
by enforcing logical constraints on possible values a variable can take. One common practical
representation of such problems arises in scheduling, for instance, assigning jobs to machines
or creating timetables for classes or employees [10]. CP aims to solve these problems by
enforcing constraints on variables and then using search algorithms to rule out infeasible
schedules. This can be achieved through specialised algorithms, called propagators, that
apply logical reasoning to identify infeasible solutions and reduce the search space.

One notable recent advancement in this field is the idea of Lazy Clause Generation,
currently explored in the context of optimising propagation [15, 8]. Its goal is to extract the
reasoning used by the propagator to rule out infeasible solutions, referred to as an explanation,
and use it to generate clauses. These clauses can determine whether the assignments directly
responsible for conflicts happened at earlier decision levels and ensure that those subtrees
are not explored further.

In scheduling problems, one key challenge is to ensure that no two tasks are scheduled to
be executed at the same time. This is modelled using the "disjunctive" constraint, which
is applied on a collection of tasks and enforces that any two tasks with a duration greater
than zero should never be processed simultaneously by one machine [6]. One of the first
algorithms explored to propagate this constraint is Edge-Finding, which remains a popular
choice to date, thanks to its efficiency. The name originates from the initial use of graphs
to represent the disjunctive, and the algorithm is based on the idea of identifying a task
that must start after others have been completed. Due to its predominance, this paper
also focuses on further exploring this algorithm, particularly exploring techniques that help
improve its performance.

There has been tremendous progress in optimising the performance of an edge-finding
propagator. The first efforts were made by Carlier and Pinson [5], giving an initial imple-
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mentation with a time complexity of O(n log n), but using a complicated algorithm based
on preemptive schedules and disjunctive graphs. Recently, Petr Vilím presents a simplified
algorithm based on the idea of quickly computing the earliest completion time of subsets of
tasks, achieving the same time complexity of O(n log n), however, with additional memory
overhead due to the use of a custom data structure [20]. Moreover, in his recent work, Vilím
also explores the idea of computing explanations for propagating disjunctive constraints,
which appear to achieve significant speed-ups in combination with backjumping algorithms,
specifically for larger instances [19].

However, while providing such massive improvements, previous work appears to focus
only on optimising the propagation process and only scratches the surface on the impact
of explanations on the performance of a search algorithm. Vilím explores the theoretical
idea of justifications and provides instructions on how to generate them in a few disjunctive
propagators, such as Edge-finding, Not-first/Not-last and Detectable Precedence, but lacks
offering concrete algorithms to obtain them. Since then, it seems that the focus of exploring
explanations has been shifted to other constraints [9, 15, 17], leaving the disjunctive behind.
With the most recent developments in solvers, such as the idea of Lazy Clause Generation,
having occurred after the latest advancements for the disjunctive constraint, the matter of
how explanations would affect a propagator for the disjunctive constraint in a solver making
use of LCG remains underexplored.

In this paper, I present an extension to the Edge-Finding algorithm introduced by Vilím
with the purpose of extracting the variables for which explanations need to be generated. I
also evaluate four strategies for handling the disjunctive constraint on a state-of-the-art CP
solver that makes use of Lazy Clause Generation. Each variant reflects a different strategy
for handling the disjunctive, ranging from no definition of the constraint to propagation
combined with explanations. Specifically, I will compare the performance of the following:
(a) Decomposed constraint: The solver does not have any definition for the disjunctive

and uses decomposition to define it.
(b) Naive explanations: The solver makes use of a basic Edge-Finding propagator for

the disjunctive constraint. Explanations only consist of current domains of variables.
Therefore, no generalisation is attempted.

(c) Overload explanations: The propagator generates explanations when a Resource
Overload is detected but uses naive explanations for assignments.

(d) Overload + Edge-finding explanations: The propagator attempts to generalise
explanations by extending variable domains every time an assignment is done or when
a conflict is detected. The explanations are created using the introduced extension to
Edge-Finding.

The formulas used to generate explanations are adapted from Vilím’s work [19] to fit the
problem definition used in this paper. The performance of each approach is assessed on
instances taken from the OR-library [2]. These experiments will provide some insights on
whether good explanations are worth exploring for an edge-finding algorithm, and how much
can they improve the performance of a state-of-the-art solver, equipped with LCG.

From the experiments conducted, we confirm that the solver that makes use of meaningful
explanations performs better than other versions, bringing improvements in recorded metrics
of around 700% compared to Naive, on instances where both solvers terminate in time.
Interestingly, the Overload Explanations variant only performed slightly better than the
Naive one, producing very similar metrics but proving optimality faster. One unexpected
result is the Decomposition variant that finds a solution closer to the optimal one than the
Naive and Overload versions on most instances, however, struggling to prove optimality even
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on the easiest cases within the time limit.
In summary, my contribution is twofold. First, I introduce an adaptation of the algorithm

described by Vilím to integrate explanation support. Second, I present an in-depth comparison
of three different techniques to compute explanations in Edge-Finding and an evaluation of
their performance. I also compare them to a baseline that makes use of decomposition.

The rest of the paper will be organised as follows. Section 2 presents a detailed definition
of the problem at hand. Section 3 illustrates the current state-of-the-art and how this paper
aims to improve the current body of knowledge. Section 4 introduces the notation and
concepts that will be used throughout the rest of the paper. Section 5 presents the main
contribution of the paper. Section 6 contains details about the way the experiment was
conducted. It also describes and motivates the chosen datasets and benchmarks, and contains
a discussion on the outcome of each experiment. Section 7 touches on the ethical aspects
of this research and on the reproducibility of the methods. Finally, Section 8 presents the
conclusions along with indications for possible future research.

2 Problem Description

2.1 Constraint Satisfaction Problem
A Constraint Satisfaction Problem (CSP) is the result of modelling a combinatorial optimisa-
tion problem. It consists of a set of variables X = {x1, ..., xn}, each of them having a set of
possible values, also known as the domain D, where D(xi) denotes the domain of variable i,
as well as a set of constraints C. The constraints are applied to a subset of variables X ′ ⊆ X

and enforce some properties that must be met at all times by the variables in X ′. In our
case, we restrict the domain of variables to integers, meaning that D(xi) ∈ Z, ∀ i ∈ 1, n.
A CSP is called satisfiable if there exists at least one feasible assignment of values to each
variable such that all constraints are fulfilled [3].

Constraint Programming is a popular approach that can be used to solve CSPs. It makes
use of propagators to remove values from variable domains that lead to infeasible solutions.
A propagator is a function that receives as input the domain of one variable, analyses the
constraints of which it is part, along with previous assignments, and reasons about which
values lead to unsatisfiability of the problem.

2.2 Disjunctive Constraint
To visualise the disjunctive, consider the following small example. We are given two tasks
and one machine to process them: the first can start at any time in the interval [0, 3], with a
duration of 5 time units, while the second can start at [2, 4], having a duration of 1. The
objective is to find a schedule that completes all tasks as soon as possible. An optimal
schedule for this example is shown in Figure 1.

Figure 1 Optimal schedule for two task example.

Since this is a small example, we can apply simple reasoning on why task 2 must precede
the first one: If the first task were to start at any other time point, it would be executed during



4 Evaluating the Impact of Explanations on the Performance of an Edge-Finding Propagator

all possible start times of task 2 (time points 2,3,4), meaning that it would be impossible to
fit the second task into the schedule without violating the constraints. This implies that, in
a feasible solution, task 2 must precede task 1, resulting in the above.

The formal definition of the disjunctive follows. We are given a collection of N tasks
to execute on one machine, labelled as: T = {task1, ..., taskn}. Each of the tasks has a set
of possible start times, denoted as an interval [esti, lsti], and a duration pi, indicating the
execution time of taski on the machine. The objective is to find a feasible schedule such
that no two tasks are executed at the same time. This definition assumes that all tasks
must be executed exactly once, there can be no preemptiveness (execution cannot be paused
and resumed later), and the machine requires no setup time initially or between tasks. For
simplicity, we also assume that all values of esti and lsti are non-negative integers, while all
values for pi are strictly positive integers, since tasks with duration 0 can be scheduled at
any time without affecting the outcome.

Using this definition, we can use multiple disjunctive constraints to model job-shop
scheduling problems, which are generalisations of practical problems that many people face
nowadays [10]. Providing quick solutions to these problems is imperative for certain clients,
such as factories manufacturing pieces that must pass through multiple machines, or even
educational institutions scheduling classes for students [4]. They consist of scheduling N jobs
over M machines, each taking a different time to process each task, so that the makespan
(total time it takes for all jobs to finish executing) is minimised.

3 Related Work

3.1 Propagation Algorithms
The job-shop scheduling problem has many practical applications and has gained a lot of
attention, ever since most of its variants, including the one I focus on in this paper, have
been proven to be NP-hard [12]. This shows that a Constraint Programming approach based
on exhaustive search is reasonable, since no algorithm that runs in polynomial time can
be found. Therefore, there has been previous effort in defining constraint models for this
problem, as well as developing an efficient propagator in order to help reduce the search
space, and thus provide optimal solutions faster.

One of the first algorithms to be explored in propagating the disjunctive constraint was
based on the idea of Edge-Finding, which remains a popular approach to this day. The
first to explore such an algorithm were Carlier and Pinson [5], who explored computing
preemptive schedules and identifying precedence relations based on the graph representation
of the disjunctive, making it quite complicated to understand and implement in practice.
Nevertheless, it achieves a worst-case time complexity of O(n log n), resulting in one of the
quickest approaches to propagate a disjunctive constraint to date.

These ideas were later extended by Martin and Shmoys [14], providing other approaches to
update the bounds of variables in Edge-Finding, however, with a worst-case time complexity
of O(n2). Despite their algorithms seeming slower, they were sometimes preferred in practice
due to them using conceptually simple ideas, through renouncing the disjunctive graph
formulation, and therefore being easier to implement.

The current state-of-the-art for Edge-Finding is presented by Petr Vilím, who shows an
approach that is conceptually easy to understand and achieves an improved worst-case time
complexity of O(n log n) [20]. He achieves these results by making use of a custom data
structure, allowing for precomputation and fast retrieval of subsets of tasks by storing them
in a balanced binary tree, for which a precedence relation can then be found. Vilím also
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provides efficient algorithms for two other disjunctive propagation algorithms: Not-first/Not-
last and Detectable Precedences, which are newer, less popular approaches to propagating the
disjunctive constraint [20]. This research makes use of this implementation for Edge-Finding,
as it balances performance and conceptual complexity.

3.2 Solver Improvements
More recent methods explored to boost the performance of solvers have focused not on
improving the propagation techniques, but on advancing the search part of solvers. The first
idea was to record explanations for domain modifications during propagation and use them
to reason about the level on which an infeasible assignment may have happened. If this can
be deduced, the solver would be able to backtrack multiple levels upon identifying a conflict
and directly reassign the variable most likely to cause conflicts. This reasoning is achieved
by lazily generating clauses from explanations and combining them whenever possible, as
their efficiency is directly proportional to the quality of an explanation [15, 8]. This idea is
incorporated in most of the top-performing solvers available today.

An initial intuition for explanations was also explored for an edge-finding propagator
by Vilím, which presents an idea of computing justifications based on conflict windows
[19]. However, the work was done before LCG was discovered, and thus it remains unclear
what the effects of conflict windows are on the performance of a propagator integrated in a
state-of-the-art solver. This represents the base motivation for this research: understanding
whether these conflict windows can be used in combination with Lazy Clause Generation,
and how effective these clauses are in pruning domains. Moreover, Vilím only mentions that
O(n2) edge-finding algorithms can be modified to incorporate justifications, having published
his own work on propagators after those findings [19]. Therefore, I also explore how his own
O(n log n) algorithm can be modified to generate explanations.

4 Preliminaries

4.1 Notations
In our problem, we are given an interval of start times, defined through a lower and upper
bound. However, we also need to introduce notation for extracting the earliest and latest
completion times of tasks, since Edge-Finding makes use of those to reason about precedence.
We can do so by adding the duration to the boundaries of the intervals as follows:

ecti = esti + pi

lcti = lsti + pi

This can also be extended to define the start and completion times for sets, which will be
used in later formulas. Consider a subset of tasks Ω ⊆ T , for which:

estΩ = min{esti|i ∈ Ω} = Earliest start time of all tasks in Ω.
ectΩ = max{estΩ′ + pΩ′ |Ω′ ⊆ Ω} = Earliest completion time of all tasks in Ω.
lctΩ = max{lcti|i ∈ Ω} = Latest completion time of all tasks in Ω.
pΩ =

∑
i∈Ω pi = Sum of all the durations of tasks in Ω.

We denote a precedence relation using the ≪ operator. Thus, the relation i ≪ j means
that j must start after i has been completed. We can also define the precedence relation
between a set and a task as follows: Ω ≪ i means that i can only start after all tasks in
Ω have been completed. More formally, we can interpret this precedence rule as follows:
i ≪ j → estj ≥ ecti. The same applies also for sets: Ω ≪ i → esti ≥ ectΩ.
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4.2 Propagation
4.2.1 Edge-finding
Edge-Finding is a propagation algorithm that is based on identifying pairs of: a subset of
tasks Ω ⊆ T and a task i such that i must start after all tasks in Ω have been completed [5].
Formally, the rule can be defined as follows:

∀ Ω ⊂ T, ∀ i ∈ T, i /∈ Ω =⇒ estΩ∪{i} + pΩ∪{i} > lctΩ → Ω ≪ i

This formula shows that, if task i was part of Ω, there would be no feasible way to
schedule all tasks, and therefore i must start after all tasks in Ω are completed. If such pairs
(Ω, i) are found, we can infer the following update rule:

esti = max {esti, ectΩ}

which means that i must start after all tasks in Ω can be finished earliest.

4.2.2 Θ-Λ-Trees
This data structure was introduced by Petr Vilím [20] and plays an important role in
keeping the complexity of the propagation algorithm at O(n log n). It is represented as a
balanced binary tree, with leaves representing tasks, sorted by earliest start time in non-
strictly increasing order, and internal nodes keeping track of some precomputed values for
intermediate sets, comprised of tasks that are stored in leaves for which the respective internal
node is an ancestor. The idea behind this tree is to keep track of two sets Θ and Λ, each
having the following purpose [20]:

Θ: A subset of tasks for which we want to compute the earliest completion time: ectΘ.
These are also called "white tasks".
Λ: A subset of tasks which are not in Θ, but for which we want to know how ectΘ would
change if we were to add one taski ∈ Λ to Θ. These are also known as grey tasks. Note
that Θ ∩ Λ = ∅.

The goal is to quickly compute ectΘ, which is an extension of Ω, with ectΩ = ectΘ, to be
used in the Edge-Finding rule. For this, each node ν in the tree should keep track of the
following values:

ectν = ECT of white tasks for which ν is an ancestor.
ΣPν = Sum of all durations of white tasks for which ν is an ancestor.
ectν = ECT of white tasks for which ν is an ancestor, including at most one grey task.
ΣP ν = Sum of all durations of tasks in Θ for which ν is an ancestor, including at most
one grey task.

This allows for quick application of the edge-finding rule to many sets, considering Ω ⊆ Θ
and i ∈ Λ the task included in the calculation of ectν . Moreover, due to the balanced binary
tree structure, the most time-consuming operations such as generating a tree from scratch,
or pre-computing values in nodes have a worst-case time complexity of O(n log n), while the
operations of adding/removing elements from Θ have a time complexity of just O(log n) [20].

4.3 Explanations
4.3.1 General Concept
Explanations are a fundamental concept for LCG solvers. They are recorded once a domain
has been modified, or when a conflict occurs, and represent the reason for the inferences
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Figure 2 Conflict Window Illustration. Adapted from [19].

made by the propagation algorithm. These reasons can be combined to generate clauses on
demand, which contribute to learning nogoods, a conjunction of predicates which can be
used for as long as they remain valid. This process is called Lazy Clause Generation and
is used in almost all modern CP solvers, providing noticeable improvements in the search
process.

Explanations for scheduling problems are recorded in the form of conflict windows. They
are defined per activity and represent an extension of its domain [esti, lcti]. The extended
interval illustrates the largest possible period in which, if all tasks are executed, there is no
solution to the scheduling problem. They can be identified by considering potential conflicts
with other tasks and extending the interval until a feasible solution exists. Note that a task
can still start at a time in its conflict window, the problem only arises if all tasks are assigned
a starting time that is part of their conflict windows.

4.3.2 Overload Conflict Windows

Consider the example in Figure 2, consisting of two tasks, each having their execution window
represented by the small bars below the rectangles. We see that there exists no feasible
schedule such that the tasks do not overlap. Following the above definition, we can generalise
the conflict windows for both tasks to the interval represented by the thicker bar, since a
feasible schedule would still not be possible in this generalisation [19].

Following this idea, we can define explanations for Resource Overloads, used in the third
and fourth variants. Let Ω be the set of tasks for which there is no feasible schedule and ∆
be the maximum time which can be added to the schedule so that there would still be an
overload. Formally, ∆ = pΩ − (lctΩ − estΩ) − 1. In this case, the conflict windows for all
tasks in Ω can be widened per Vilím’s definition, as follows [19]:[

estΩ − ⌊∆
2 ⌋, lctΩ + ⌈∆

2 ⌉
]

Now, we must adapt this to our problem definition. First, we notice that the upper
bound of this formula is for lct, however, we care for lst. It may also be the case that the
overload occurs close to time point 0 (estΩ ≈ 0), and the left bound of the window would go
beyond that (estΩ − ⌊ ∆

2 ⌋ < 0). Following our non-negativity assumption from Section 2, we
lose value from the explanation if we allow for this, since those values are impossible anyway.
Taking these into account, we end up with the following conflict windows:

∀ i ∈ Ω → [estΩ − ol, lctΩ + ∆ − ol − pi]

where ol = min{estΩ, ⌊ ∆
2 ⌋}
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4.3.3 Edge-finding Conflict Windows
For the edge-finding algorithm, we can infer the necessary explanations by extending the
bounds in the edge-finding rules. Logically, if a precedence Ω ≪ i is found, this means that:
if i ∈ Ω and i were to start at some time before ectΩ, there would be an overload. Thus,
intuitively, we should set the conflict window as follows:

∀ j ∈ Ω ∪ {i} → [estΩ∪{i}, estΩ∪{i} + pΩ∪{i} − 1 − pj ]

However, this rule does not take into account the definition of ectΩ. It might not be the
case that estΩ∪{i} + pΩ∪{i} = ectΩ∪{i}. This means that we need to consider the way in
which ectΩ was computed and, consequently, set more specific windows for the activities in
Ω′ ⊆ Ω, which is the subset of tasks directly responsible for the result of ectΩ. Following this
reasoning, we obtain the following rules, as per Vilím [19], adapted to our problem definition:

∀ j ∈ Ω′ →
[
max{est′

i − pΩ′ , estΩ∪{i}}, estΩ∪{i} + pΩ∪{i} − 1 − pj

]
∀ j ∈ (Ω \ Ω′) →

[
estΩ∪{i}, estΩ∪{i} + pΩ∪{i} − 1 − pj

]
i →

[
estΩ∪{i}, ∞

)
where est′

i is the new lower bound for activity i.

5 Main Contributions: Computing Explanations from Θ-Λ-Trees

From this point forward, the main accomplishments of this research are presented. Spe-
cifically, a description of an algorithm used to generate explanations from an Edge-Finding
implementation using Θ-Λ-Trees is defined. The next section also presents details regarding
the experiments conducted. These results should provide an answer to the knowledge gaps
presented in previous sections.

Modifying the algorithm based on Θ-Λ-Trees to support these explanations is not trivial.
The algorithm propagates by finding i ∈ Λ such that Θ ≪ i, however, assuming that Θ = Ω
is incorrect. Since the algorithm removes tasks from Θ in decreasing order by lct, it may be
the case that Θ still contains some tasks with a very low est, which should not be included
in Ω and should not have conflict windows set.

To visualise this, consider the following three-task example: the first task has an interval
[0, 25] and a duration of 5, the second task has [24, 24] and p = 3, and the third task has
start times [24, 30] and p = 4. According to the Edge-Finding rule, when Ω = {task2}, we
have: 24 + 7 > 27 → est3 = max{24, 27} = 27. When task 3 is updated, Edge-Finding also
finds ectΘ = 27. However, Θ = {task1, task2}, for which the rule does not hold.

To address this, we need to iterate over Θ and remove tasks, in increasing order by est,
until we have ectΘ∪{i} + pΘ∪{i} > lctΘ. This new set represents the Ω we are looking for. To
obtain Ω′, we can apply the same logic, which is to remove tasks from Ω until the following
holds: ectΩ = estΩ′ + pΩ′ . The algorithm for obtaining Ω and Ω′ works as follows:

Listing 1 Algorithm for Computing Edge-Finding Explanations. Input: (Θ-Λ-Tree, i)
tasks := Θ
∆ := min {esti , esttasks} + ptasks + pi

while ∆ ≤ lcttree do begin
tasks := tasks \ {j ; estj = esttasks}
∆ := min {esti , esttasks}

end
Ω := tasks
while ecttree ̸= ecttasks + ptasks do begin
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tasks := tasks \ {j ; estj = esttasks}
end
Ω′ := tasks
Ω := Ω \ Ω′

The algorithm exploits the fact that Θ-Λ-Trees store tasks sorted by est, thus reducing
the complexity from O(2n) to O(n). This does increase the total runtime complexity of
Edge-Finding to O(n2 log n), however, it is necessary to record explanations. The first while
loop is responsible for removing activities from "tasks" until the condition for Ω is satisfied,
while the second loop continues to remove activities until we obtain Ω′. By definition, these
sets must exist. Therefore, the situation where any while loop terminates by removing all
tasks from the set cannot occur.

6 Experimental Setup and Results

This section presents a description of the experiments conducted in this paper, their results,
and how they can be interpreted. The main goal is to evaluate the performance of the
four variants of the Pumpkin solver and thus gain insight into whether explanations are
worth exploring for the disjunctive constraint and how do the solver variations perform when
compared against the baseline. The results confirm this hypothesis, namely that the solver
variant using explanations performs significantly better than the other ones in terms of all
recorded metrics, regardless of the computational overhead required to generate them.

6.1 Setup
All code related to the propagator that was used for this experiment is open source and
added as an extension to the TU Delft Pumpkin Solver [7]. Various optimisations were
tested in terms of using different data structures on every variant of the solver, and the best
performing code in terms of runtime was chosen for each of them.

Based on previous research, most of the tests used were taken from the OR-library [2],
which contains a wide collection of job-shop instances. I also use a subset of those tests,
specifically the instances from Lawrence [11], as they contain many tests covering a wide range
of difficulties. I also consider the ORB test instances [1] as they are small but challenging
problems. Only these datasets are considered because they are the only ones where each
variant can make continuous progress, as well as having the additional benefit of knowing
the optimal makespan, which we can use to check the correctness of the variants. Another
collection of used tests are generated pseudo-randomly using a specialised algorithm [18],
then translated into MiniZinc1 format. This approach is taken into account to see whether
the results measured on known instances also hold on random inputs. This has previously
been used with predefined seeds. However, the reported instances are very large and would
not provide significant insight, due to solvers getting stuck at intermediate solutions for a
very long amount of time. Therefore, I use the generator to create some easier instances,
while ensuring to report the seeds used.

Metrics will be reported for tests that show the most interesting results related to the
performance of each solver variant. Other instances that provide similar results can be found
in the GitHub repository. Some instances will be compared individually, containing tests
from all difficulty ranges, while others will be presented in the form of an average of recorded

1 High-level constraint modelling language, which supports Pumpkin. https://www.minizinc.org/
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Test la05 la06 la19 la21 la26 la34 la37 la38 la11-15 orb 10j10m 15j8m la31-35
Size 10x5 15x5 10x10 15x10 20x10 30x10 15x15 15x15 20x5 10x10 10x10 15x8 30x10
OM 593 926 842 1046 1218 1721 1397 1196 – – – – –

Table 1 Test instances used in result discussion. OM = known Optimal Makespan

metrics from multiple instances with the same size. The performance of each strategy is
assessed on all chosen test instances, on an Intel I7-11370H processor, with a time limit of
20 minutes per run, reporting all intermediate solutions found during the allotted time. In
all cases, the solver uses a free search strategy, based on VSIDS [13]. Many solver metrics
are also measured during the execution, saved for each identified solution, as well as when
the time limit has been reached or when optimality has been proven. Table 1 contains
an overview of the tests chosen for the comparison, their size, and their known optimal
makespan.

As metrics, I am primarily interested in the Number of Conflicts (NC). This provides a
good estimate of how nogoods are used during the search process, as good explanations lead
to better learnt clauses, which are used in pruning the search space, thus leading to fewer
conflicts. Another important metric to consider is the average Literal Block Distance (LBD),
which shows how many unique decision levels there are in a learnt clause. Ideally, predicates
learnt on the same decision level are better, as they are more likely to imply each other and
can produce better nogoods, which is why we want this value to be low. Additionally, I
report the Average Backtrack Amount (ABA), which is relevant to how different explanation
techniques influence the backtracking process. A higher number means that conflict-directed
backjumping can be used more often, which is a direct consequence of good explanations.
Finally, we also record the total runtime, as it represents how quickly an instance can be
solved. Although this metric does not provide interesting results on its own, we can use it to
study the relative performance in a direct comparison between two methods.

6.2 Tested Variants
The first variant of the solver used for testing is Pumpkin, using decomposed constraints. In
this case, the solver has no definition for the disjunctive and has to represent it by introducing
additional variables and imposing available constraints on them. There are some known
advantages to this approach, the main one being that decomposition can be used to break
the large problem into many smaller ones and can make use of relevant generated nogoods
throughout the search process to compete with propagators. This has been proven to be
a viable approach for the cumulative constraint [16] and therefore should serve as a viable
baseline to compare against the different representations of the disjunctive.

The second variant of the solver would be a modified version of Pumpkin, having a
definition for the disjunctive, as well as an Edge-Finding propagator, but using Naive
explanations. This strategy explains all decisions with a conjunction of the domains of all
variables, without attempting any generalisation. We cannot guarantee the generation of
any useful clauses in this case, thus the solver relies more on the variable and value selection
logic, rather than explanations.

The third variant we are evaluating builds upon the above by adding overload explanations.
In this case, we are able to explain why a conflict occurs by generating conflict windows for
the variables involved. This is the first approach in which the solver is able to generalise the
bounds of variables, and thus should lead to better learnt clauses. However, conflicts are not
a common outcome of propagation. Therefore, I do not expect this approach to bring any
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significant improvements.
The final variant considered in this experiment comes by also explaining domain pruning.

This is achieved through the Edge-Finding explanation formulas defined previously in Section
4.3.3. This approach allows us to investigate the full potential of explanations and their true
impact on the propagator performance. Although generating these explanations adds some
complexity overload to the algorithm, I expect this to be mitigated by the quality of the
explanations and their usefulness in the search process. Therefore, I expect a large difference
between this approach and the aforementioned.

6.3 Results and Discussion

The following subsections present tables containing results, each providing a direct comparison
between two solver variants, which have been chosen to highlight the main differences
each strategy brings. Specifically, the following strategies will be compared: Naive vs.
Decomposition, Overload vs. Naive, and Edge-Finding vs. Naive. The goal is to compare the
performance of advanced explanation strategies to the Naive variant, while also relating the
results to the Decomposition approach, which provides the most insight when also compared
to the Naive approach. The tables will contain values for the recorded metrics, as well as the
column "End", which refers to the total time spent until the solver proves optimality.

6.3.1 Naive vs. Decomposition

Test Decomposition Naive
BM NC LBD ABA Time End BM NC LBD ABA Time End

la05 593 165 4.1 6.3 2.5s 5.3s 593 38 11.5 3.1 0.84s 0.84s
la06 926 8.8K 9.9 1.7 13s 20m 926 172 18.2 4.2 5.37s 5.37s
la19 842 3.8K 8.4 2.6 18.6s 20.4s 842 16.7K 21.2 1.4 39.2s 107s
la21 1050 30K 14.6 2.4 107s 20m 1053 109K 32.7 1.2 878s 20m
la26 1218 100K 9.6 2.2 316s 20m 1258 10.5K 70 2.1 343s 20m
la34 3106 13K 6.7 20.4 1172s 20m 2109 10.8K 62.1 2.9 1200s 20m
la37 1397 12.5K 14.9 4.6 343s 604s 1397 15.8K 38 2.2 667s 667s
la38 1196 135K 10.3 2.0 825s 20m 1235 21.5K 39.8 1.9 685s 20m

Table 2 Metric comparison between Pumpkin using decomposition (left) and Naive explanations
(right), on individual tests. BM = Best Makespan found in the time limit, NC = Number of Conflicts,
LBD = Literal Block Distance, ABA = Average Backtrack Amount, End = Time needed to prove
optimality

Tests Decomposition Naive
AD NC LBD ABA Time End AD NC LBD ABA Time End

la11-15 0 5.3K 9.8 4.3 29.3s 20m 0 1.3K 25.9 3.1 10.9s 10.9s
orb01-10 0 12.5K 8.9 2.4 24s 45.6s 0 33K 17 1.3 84.1s 389s

10j10m01-10 0 474 4.4 9.2 11.6s 11.9s 0 6K 16.5 4.2 16.4s 19.4s
15j8m01-10 0 7.9K 11 5.4 36.7s 567s 0 5.3K 28.8 3.2 32.5s 32.5s

la31-35 539 9.3K 6.2 24.3 1172s 20m 87.6 8.9K 49.4 3.7 1172s 20m
Table 3 Metric comparison between Pumpkin using decomposition (left) and Naive explanations

(right), on averaged tests. AD = Average distance from the best makespan found to the known
Optimal.
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Interestingly, the solver variant using decomposition shows surprising results, as can be
seen in both Tables 2 and 3, outperforming the Naive on some difficult tests such as la21, la26,
la37, and la38, in terms of runtime. However, it seems like it struggles to prove optimality, as
can be seen in instances la06 and la26, where it finds the known optimal solution surprisingly
quickly, but it gets stuck and runs out of the 20 minutes allotted time. It also performs well
in terms of the metrics relevant to explanations, namely average LBD and ABA, where it
demonstrates that it also makes use of good clauses to speed up its search process.

The performance is also surprising on averaged tests. Although the issue regarding
proving optimality persists, the solver is still able to find good solutions quickly. The most
surprising performance can be seen for the orb tests, in Table 3, where it is also able to prove
optimality in a rather short amount of time. However, on harder tests, such as la31-35, it
shows that it struggles with advancing solutions, as can be seen in the "AD" column which
tells us that, on average, the solver using decomposition is significantly farther from the
optimal solution than the Naive approach.

6.3.2 Overload vs. Naive

Test Naive Overload
BM NC LBD ABA Time End BM NC LBD ABA Time End

la05 593 38 11.5 3.1 0.84s 0.84s 593 20 11.2 5.3 0.7s 0.7s
la06 926 172 18.2 4.2 5.37s 5.37s 926 230 19.1 6.1 6.94s 6.94s
la19 842 16.7K 21.2 1.4 39.2s 107s 842 5.5K 17.1 1.8 23.6s 108s
la21 1053 109K 32.7 1.2 878s 20m 1052 66.5K 30.7 1.3 398s 20m
la26 1258 10.5K 70 2.1 343s 20m 1218 50.7K 45.6 1.5 822s 823s
la34 2109 10.8K 62.1 2.9 1200s 20m 1721 12.8K 74.5 3.6 1197s 1197s
la37 1397 15.8K 38 2.2 667s 667s 1400 44.7K 27.3 1.7 1036s 20m
la38 1235 21.5K 39.8 1.9 685s 20m 1208 63.4K 35.8 1.6 1192s 20m

Table 4 Metric comparison between Pumpkin using Naive explanations (left) and Overload
explanations (right), on individual tests.

Tests Naive Overload
AD NC LBD ABA Time End AD NC LBD ABA Time End

la11-15 0 1.3K 25.9 3.1 10.9s 10.9s 0 667 23.7 4.6 12s 12s
orb01-10 0 33K 17 1.3 84.1s 389s 0 28.3K 17.9 1.5 56.2s 168s

10j10m01-10 0 6K 16.5 4.2 16.4s 19.4s 0 5K 15.3 3.9 17s 18.4s
15j8m01-10 0 5.3K 28.8 3.2 32.5s 32.5s 0 7.7K 25.2 3.2 52.8s 52.8s

la31-35 87.6 8.9K 49.4 3.7 1172s 20m 0 10.4K 48.8 4.9 871s 871s
Table 5 Metric comparison between Pumpkin using Naive explanations (left) and Overload

explanations (right), on averaged tests.

Using Overload explanations slightly outperforms Naive in terms of all recorded metrics,
which is an expected result, as conflicts are not a common result of propagation, resulting in
using Naive explanations in most cases. An interesting result is la37, where the Naive solver
managed to prove optimality, while the one making use of explanations did not even reach
the optimal solution, as can be seen in Table 4. A similar situation can be seen in Table 5,
in the third row, where the Naive outperforms the Overload version in terms of runtime on
the randomly generated tests. However, this seems like an isolated situation, where it may
be the case that the former took a good path in the search tree. In general, on larger tests,
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it seems that, even with just overload explanations, the performance improvement can still
be noticeable, as it appears on tests la31-la35 in Table 5, where we manage to decrease the
average difference between the best solution found and the known optimal from 87.6 straight
to 0.

On the other hand, both the Overload and Naive versions appear to perform poorly
in terms of average LBD and ABA, when compared to the baseline solver. The figures
for LBD are higher, indicating that the predicates in the learnt clauses were inferred at
different decision levels, suggesting lower-quality nogoods. At the same time, we see that
the numbers for ABA are low in all cases, suggesting that the solver cannot make good use
of conflict-driven backjumping, thus potentially getting stuck in subtrees that only lead to
infeasible solutions. It may be the case that low values for ABA can be good, for instance, in
the situation where a solver takes a good path in the search tree, it may not be necessary to
backtrack many steps. However, being in a "good" subtree would also imply that the solver
would converge more quickly to optimal solutions, which is not always the case, given that
the baseline mostly outperforms these variants, as we learnt from Tables 2 and 3.

6.3.3 Edge-Finding vs. Naive

Test Naive Edge-Finding
BM NC LBD ABA Time End BM NC LBD ABA Time End

la05 593 38 11.5 3.1 0.84s 0.84s 593 63 3.6 14 0.86s 0.86s
la06 926 172 18.2 4.2 5.37s 5.37s 926 200 3.8 27.1 2.7s 2.7s
la19 842 16.7K 21.2 1.4 39.2s 107s 842 1.6K 9.8 7.8 7.1s 10s
la21 1053 109K 32.7 1.2 878s 20m 1046 1.1K 7.2 31.9 24.4s 212s
la26 1258 10.5K 70 2.1 343s 20m 1218 2.9K 10.9 59.3 182s 182s
la34 2109 10.8K 62.1 2.9 1200s 20m 1721 4.3K 5.2 121.7 774s 774s
la37 1397 15.8K 38 2.2 667s 667s 1397 2.9K 8.6 40 98.5s 98.5s
la38 1235 21.5K 39.8 1.9 685s 20m 1196 44K 16.3 6.8 457s 20m

Table 6 Metric comparison between Pumpkin using Naive explanations (left) and Edge-Finding
explanations (right), on individual tests.

Tests Naive Edge-Finding
AD NC LBD ABA Time End AD NC LBD ABA Time End

la11-15 0 1.3K 25.9 3.1 10.9s 10.9s 0 398 6.2 36.8 7.95s 7.95s
orb01-10 0 33K 17 1.3 84.1s 389s 0 6.2K 11.9 6.4 15.8s 23s

10j10m01-10 0 6K 16.5 4.2 16.4s 19.4s 0 567 4.4 24 7.4s 7.5s
15j8m01-10 0 5.3K 28.8 3.2 32.5s 32.5s 0 740 6.1 35.7 15.8s 15.8s

la31-35 87.6 8.9K 49.4 3.7 1172s 20m 0 4.3K 5.2 119.7 715s 715s
Table 7 Metric comparison between Pumpkin using Naive explanations (left) and Edge-finding

explanations (right), on averaged tests.

Tables 6 and 7 show that the initial hypothesis is correct, that is, good explanations do
provide a significant improvement in most cases, when compared to naive explanations, or
even decomposition, when looking back at Tables 2 and 3. There is a sharp decrease in the
average LBD, as well as a noticeable increase in the Average Backtrack Amount metrics,
indicating that the learnt clauses are more general and can be used more often. This also
leads to a sharp decrease in the Number of Conflicts metric, as we can use these clauses
to prevent future assignments that lead to infeasible schedules. We also show that proving
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optimality also becomes an easier task when the solver makes use of good explanations on
instances orb01-orb10, in Table 7, where previous versions indicate large differences between
the average time it takes to find the optimal solution and the average time to demonstrate it.
The randomly generated instances also presented in Table 7 confirm these results, showing
significant improvements in terms of NC, LBD and total runtime.

7 Responsible Research

In this research, I work with an algorithm that attempts to find an optimal solution to
instances of the job-shop scheduling problem. The algorithm used is deterministic and will
produce the same output when executed on the same input every time. All code used in
this project is open source and publicly available2, and all datasets and the source where I
obtained them have been clearly stated in the paper. All results are clearly presented, and a
detailed discussion is carried out. The only instance where ethical considerations may arise
is related to using randomly generated test cases. To address this, I ensure that my work is
reproducible by clearly stating the seeds used in generating the test cases, as well as having
the generator code publicly accessible.

For the purpose of writing this paper, I have not used generative AI for content or ideas.
The only instance arises when using a spell checker powered by artificial intelligence, with
the scope of identifying potential spelling mistakes. Throughout the research, I have also
used code autocompletion tools based on AI, such as GitHub Copilot, to help me with
syntax-specific issues and generate unit tests to verify the correctness of the solutions.

8 Conclusions and Future Work

In summary, I have presented a method for generating explanations from Θ-Λ-Trees. I also
used it in a benchmark between multiple variants of computing explanations for propagating
a disjunctive constraint using an Edge-Finding algorithm. I also compared these methods
with a baseline solver that uses decomposition to represent the disjunctive. The experiments
are carried out in such a way that they can be reproducible under any conditions.

The results prove the initial hypothesis, showing that good explanations can achieve
significant speed-ups in the performance of a state-of-the-art solver that makes use of Lazy
Clause Generation. We also show a less expected result: Decomposition sometimes performs
better than a propagator using Naive explanations, and even than the version that provides
explanations when an Overload occurs. However, the best approach is the variant that
provides meaningful explanations from propagation, which significantly outperforms the rest
on all test cases.

This work is limited to exploring four variants of solvers to propagate the disjunctive.
Future work could expand this idea by exploring other explanation strategies and seeing
whether they perform better than the current state-of-the-art. Another approach that would
be interesting is to explore new explanation strategies for an edge-finding algorithm, or even
a different one, and see whether these results can be improved even further. A different
path to follow in future research would be to further investigate the results achieved by
decomposition. This has been previously studied for the cumulative constraint [16], and it
would be interesting to learn whether similar results can be obtained for the disjunctive.

2 Accessible at: https://github.com/Bradul/Pumpkin
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A Seeds of randomly generated tests

This section presents a table containing the seeds used for obtaining the randomly generated
tests, which have been used in Section 6 for reporting results.

Filename Time Seed Machine Seed
instance_10j10m01.dzn 595312809 1226873846
instance_10j10m02.dzn 1994010092 674268132
instance_10j10m03.dzn 684069210 17711631
instance_10j10m04.dzn 433393242 1856683078
instance_10j10m05.dzn 1737541870 2123655630
instance_10j10m06.dzn 1053901157 2093288715
instance_10j10m07.dzn 197486053 2072736806
instance_10j10m08.dzn 541533994 836141230
instance_10j10m09.dzn 591728687 1250988364
instance_10j10m10.dzn 64076732 175007812
instance_15j8m01.dzn 166140137 21143938
instance_15j8m02.dzn 472453410 1957606298
instance_15j8m03.dzn 325953502 1085494782
instance_15j8m04.dzn 417269198 833500955
instance_15j8m05.dzn 1001380920 1585883286
instance_15j8m06.dzn 607390163 1104152727
instance_15j8m07.dzn 1561051784 2003679251
instance_15j8m08.dzn 422129019 1697884185
instance_15j8m09.dzn 1213865971 957331870
instance_15j8m10.dzn 1039225514 117613006

Table 8 Seeds used for randomly generated instances
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