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Abstract

The amount of mineral and energy resources in conventional reservoirs has been drastically
diminished in recent years. This has led to the development of techniques to reach reservoirs
which are not easy to access and, more specifically, where boreholes with complex geometries
need to be drilled. Directional drilling allows to accomplish such complex boreholes. Although
this process is not new to the industry, its complex dynamics have been responsible for the
development of both numerical models and closed-form models in terms of delay differential
equations. Such models can be used to predict the evolution of a borehole or to develop
control strategies.

Current state-of-practice control methods are basically open-loop techniques, where an oper-
ator has the task to steer the drilling system while trying to follow a reference for the borehole
trajectory. This usually generates undesired behavior such as borehole spiraling and kinking.
In order to provide a way to avoid these undesired effects, novel control strategies need to be
designed to improve the directional drilling process.

In order to improve the performance of this type of processes, some efforts have been made
to propose a control strategy. One of the most recent approaches makes use of the model
developed by Perneder and Detournay (PD) at the University of Minnesota, which describes
the three-dimensional evolution of the borehole, with a set of nonlinear delay differential equa-
tions. The proposed control strategy implements a state-feedback controller to this model;
hence it relies on availability of full-states measurements, which are not available in practice.

The goal of this thesis project is to extend this controller design making use of only local mea-
surements of the orientation of the bottom-hole assembly. This is accomplished by including
an observer in the control structure. Furthermore, the proposed controller design is robust
against parameter uncertainty. The approach taken considers initially the case where the bit
does not exhibit the so-called bit walk, simplifying the controller design. The effectiveness
of the resulting robust output-feedback control approach is illustrated on realistic drilling
scenarios.
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Chapter 1

Introduction

The exhaustion of conventional supplies of mineral and energy resources has become an in-
creasing and well-known problem in the past decades. This has lead to the development
of new drilling techniques, which provide the possibility to exploit more difficult-to-reach
reservoirs of these resources, as well as preventing and reducing environmental costs. An
important breakthrough in this matter is directional drilling, a technology that allows to drill
wells with complex geometries in order to access unconventional reservoirs of energy resources
and minerals.

Directional drilling has proven to be a successful and cost-efficient process in important ap-
plications (see Figure 1-1), such as:

(a) Drilling to reservoirs, which are inaccessible using conventional techniques, such as re-
source deposits under a city or a natural area, providing a smaller environmental and
social impact (Figure 1-1a).

(b) Multiple wells can be drilled from the same drill rig, reducing economic and environmental
costs compared to drilling processes that require to drill separate boreholes from a different
rig (Figure 1-1b).

(c) Drilling relief wells to release pressure in hazardous situations when control over a well
is lost. This was demonstrated at the gulf of Mexico Deepwater Horizon oil spill in 2010,
when two reliefs wells where drilled in order to seal the failure (Figure 1-1c).

(d) If a reservoir is close to a geological fault, directional drilling can be used to drill away
from the fault plane avoiding damage to the well caused by fault slippage (Figure 1-1d).

In order to steer the drilling system and therewith the borehole generation, different methods
have been implemented [6].

Conventionally, steerable motors were used to change direction during the drilling process.
This motors have two modes: rotating and sliding. In the first mode, the whole drill rotates
as in conventional drilling in a straight direction. In order to change direction, the drillstring
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2 Introduction

(a) Access to resource deposits under cities or
natural areas.

(b) Drilling of multiple wells from the same drill
rig.

(c) Drilling of relief wells in hazardous situations. (d) Avoid drilling close to geological fault.

Figure 1-1: Applications of directional drilling.

is halted and a downhole motor is used, which is powered by drilling muds in order to point
the bit in the desired drilling direction, the two modes are shown in Figure 1-2. This method
proved to be very challenging, requiring a lot of skill from the drill operators and, as the
complexity of boreholes was increased, the quality diminished due to the crookedness in
the borehole induced by the rotating mode. Because of the previously mentioned issues, a
new method to steer the direction of the drill was developed, namely the Rotary Steerable
System (RSS). This type of technology allows the system to change direction while drilling,
reducing borehole tortuosity, drilling time as well as increasing the Rate of Penetration (ROP).
These are the type of steering mechanisms that will be considered in this research, due to
their extensive use in industry nowadays.

(a) Sliding. (b) Rotating.

Figure 1-2: Drilling modes of a steerable motor.
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1-1 General description of the directional drilling system 3

Rig

Drillstring

Stabilizers

RSS
BHA Bit

Figure 1-3: General description of a directional drilling system.

1-1 General description of the directional drilling system

A directional drilling system consists of the elements depicted in Figure 1-3. The drillsting
(generally of a length in the order of kilometers) is the assembly of components from surface to
bottom. Along this, power is transmitted to provide axial force and rotational speed imposed
at the drilling rig. For the upper part of the drillstring, the axial force (commonly known as
hook-load) along with its own weight, provide tension in the drillstring to prevent buckling.
The Bottom Hole Assembly (BHA) constitutes the lower part of the drillstring and is usually
in the order of hundreds of meters long. The BHA is in compression, in contrast with the
upper part of the drillstring, to induce an axial force transmitted to the drill bit, called weight
on bit. The BHA is commonly equipped with 3 to 5 stabilizers. These stabilizers center the
BHA in the borehole, prevent for buckling as well and minimize torsional vibrations of the
BHA. Between the first stabilizer and the bit, the previously mentioned RSS is placed. It
is equipped with mud actuators and sensors to provide inclination and azimuth control of
the borehole. There exist two main types of RSS: push-the-bit and point-the-bit systems.
The first one applies lateral force, pushing against the borehole using pads actuated by mud
diverted with a disk valve. In point-the-bit systems, the bit is tilted relative to the rest of
the tool to achieve the desired trajectory [6]. In recent years, a new type of RSS is being
researched on [7]. This type of mechanism (called hybrid RSS) combines the principles of
point-the-bit and push-the-bit systems. Despite this, the most widely implemented type of
RSS is the push-the-bit type and its functioning is demonstrated in Figure 1-4.

Along the process to achieve complex geometries using directional drilling systems, effects like
kinking, rippling or spiraling may appear. The latter one has become an important subject of
study in recent years, and it refers to the generation of undesired spiraling patterns along the
borehole walls [8], see Figure 1-6. Reducing this borehole spiraling effect is one of the main
challenges in the directional drilling industry in recent years. All of the previously mentioned
effects may be harmful to the process and can potentially cause:

(a) An increase of frictional resistance of the borehole, which reduces the ROP, considerably
affecting drilling times.
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Extended pad

Figure 1-4: RSS push-the-bit system. Figure 1-5: PDC drill bit [1].

(b) Reduced target-reach accuracy.

(c) Difficulty in the insertion of the casing after the borehole has been drilled.

(d) In a severe case, instability of the borehole evolution.

In most cases for directional drilling, Polycrystalline Diamond Compact (PDC) bits are used,
an example of these is shown in Figure 1-5. This type of bit rotates at the end of the BHA
and it is, in particular, laterally aggressive while drilling a borehole. The latter characteristic,
among other causes, can produce a commonly known phenomenon called bit walk tendency,
which is the natural behavior of the bit to deviate from its original path due to the lateral
forces present while drilling.
In addition to the RSS, directional drilling systems nowadays are equipped with Measurement
While Drilling (MWD) systems, that allow the driller to receive information from the down-
hole elements to the surface at the same time as the drilling process takes place. Current
MWD systems (mud pulse based systems) use the fluid flowing from inside the borehole,
propagating it up to the top of the drillstring, which in practice generates a slow transmission
of information (at a rate of the order of 10 bits per second [3]).
The control process of the RSS is generally conducted by three control loops:

d
d

d
d

Drilling
Direction

Figure 1-6: Borehole spiraling mechanism [2].
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+
-

+
-

+
-

RSS with 
force control

Borehole
evolution

OrientationForce
Force

reference
Orientation
reference

Human
reference

Outer loop

Main loop

Inner loop

Human
control

RSS orientation 
controller

Orientation to Cartesian position transformation

Figure 1-7: Control loops of a directional drilling system.

1. The main control loop, which sends commands for the actuation forces of the RSS in
order to steer the borehole in a desired orientation.

2. An inner control loop which translates the incoming commands of the main loop into
the RSS valve system.

3. An outer control loop which is in charge of correcting possible deviations in Cartesian
coordinates of the borehole; these corrections are generally operated by a human.

A schematic block diagram of the three control loops is shown in Figure 1-7. At present, the
most common practice for RSS type of systems is to apply constant force, expecting to obtain
a constant curvature, which is generally not the case. The focus of this research will be on
the main control loop, as this is the most involved level of control when steering the system.
Furthermore, it is believed that borehole spiraling can be corrected at the level of this loop
by implementing an RSS orientation controller.

There is not much research on control of directional drilling with a RSS, in part because it is
relatively new to the industry [6]. As a consequence of this novelty, there are still discrepancies
between the models that describe it. In most situations, developed controllers are designed for
two-dimensional models, for which the effects that couple the responses of the two orientation
variables (inclination and azimuth) are not considered. This is highly disadvantageous since
some of the previously mentioned undesired effects can be a consequence of this coupling.

1-2 Literature review on directional drilling

To start studying the next steps to be taken regarding controller design of a directional drilling
system, the available literature on the topic was analyzed. One of the most important tools
for control engineers is the mathematical model representation of the dynamical systems to be
controlled. In this regard, it was found that the most reliable way of representing the evolution
of a borehole being drilled with this type of systems, is described by models in terms of delay
differential equations, although other representations were also found during this literature
review. These different models have a great effect on the chosen control strategies that have
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been implemented throughout time. Despite the fact that currently most of the processes are
being performed with essentially open-loop techniques, there are different control strategies,
in the literature, based on different model types.

This section aims to give a general overview of these models and control strategies in order
to set the stage to start developing new ways to cope with the current challenges in the field
such as the avoidance of undesired borehole spiraling behavior and robustness to parametric
uncertainty.

1-2-1 Modeling of directional drilling systems

As directional drilling technology arose, the need to describe its behavior, and predict the
trajectories that a borehole would take, became more important due to the fact that in order
to achieve a desired trajectory, experience of the driller was fundamental. This imposed a
"trial and error" approach to the process. To overcome this problem, the most common way
to assess the issue was to obtain a numerical model for the borehole propagation.

The works of [9], [10] and [11] are a few examples where finite element methods, combined
sometimes with finite difference methods to solve the differential equations that describe the
model, were used. Nevertheless, these examples do not contain crucial information related
to the development of controllers, since most of the properties of the borehole propagation
phenomena are not described in detail.

In recent years, Schlumberger® developed a finite element analysis model called "ST2", made
to calculate trajectories of wells formed using a defined BHA, a bit and steering unit forces [12].
This model has been mainly used to compare the prediction of the borehole evolution from
first principle models such as [13], showing in [14] a good match between the two models.
Nevertheless the "ST2" model has not been directly used to develop control algorithms. Due
to the complexity in finite element models, stability analysis and the influence forces and mo-
ments on the orientation of the borehole is not as evident as in first principles models. This
aspect of numerical models makes controller design highly complex, since most of the control
strategies are based on mathematical properties of a system or process, in order to give a
physical interpretation of how these properties determine its behavior. One could use this
numerical models to implement a method where depending on the current configuration, the
right input (RSS forces) for the system in order to achieve a specific orientation could be com-
puted, in a similar way as a "lookup" table. However, in numerical models the computational
effort to predict the borehole evolution is much greater. This high demand for calculations,
would make the implementation of an on-line closed-loop controller almost impossible, since
it would have to compute the inputs at every instant using the complex numerical model.
In summary, due to the transparency for the analysis, the reduced computational effort and
the possibility to implement closed-loop control strategies on-line, first principles models are
preferred.

A different type of models are the ones based on input-output correlations, for example neural-
networks or polynomial correlations. These models are used to implement controllers in [12].
Since the circumstances where directional drilling systems are used may vary (due to factors
such as type of soil, task to be performed, BHA configuration), the development of these type
of models is not general since it is based on experimental data, meaning that a model should
be built from scratch for every situation. Furthermore, these models are generally complex
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1-2 Literature review on directional drilling 7

and the inner physical effects in the system are not evident. Because of these reasons, it
becomes difficult to perform stability and performance analysis. Finally, in the case of the
controller developed in [12], there is no clear explanation about the behavior and the influence
of forces in the model or the controller itself.

Regarding models useful for control, one of the approaches found in literature for the modeling
of directional drilling systems is the one taken in [15] and [16], where the effects of lateral
and torsional forces on the BHA and the drillstring are disregarded, considering that they
are much faster than the borehole propagation. These models rely on kinematic coordinate
transformations, presenting very simple descriptions of the directional drilling system. This
simplicity provides the advantage that several type of conventional methods for controller
design can be applied. Despite this, since the model has not yet been validated with field
or experimental data, it can not be proven that the considered assumptions hold in general.
Besides, the models that use delay differential equations and take into account forces and
moments of the system, present a good match with both numerical and experimental data
([14], [17]), which can lead to the conclusion that these effects are important to the borehole
evolution.

Neubert and Heisig developed a model in [18], which is considered one of the pioneering steps
in first-principle-based modeling for directional drilling nowadays. The key elements that
were introduced are the use of delay differential equations to describe the borehole evolution,
analysis of kinematics and the deduction of a new bit/rock interaction that takes into account
both axial and lateral effects. Despite this, there is only a small number of publications
regarding this model and the international published paper on this model is not detailed
enough in order to reproduce their results, and analyze the methods they used to develop
controllers. Because of this, it is difficult to comprehend the exact underlying mechanisms in
the model. The basic principles behind this model are extended by other models ([3], [13]).

One of the models that is most commonly found in literature is the one developed by Downton
in [13]. A great advantage of this model is that its match with a specific numerical model
has been tested with promising results [14]. Also, a transfer function representation can be
obtained to use as a basis for controller design. Nevertheless, the bit/rock interaction is not
as detailed as in other models. Another important aspect lies in the fact that this model has
been derived only for a two-dimensional drilling system, although it has been mentioned in
[13] that it could be extended to 3D. This is a major disadvantage since, some of the crucial
causes of borehole spiraling take place due to the effects on three dimensions (i.e., bit walk).
The model is derived in terms of deformation from an initial configuration, restricting the
model to small angle rotations.

Finally, the so-called PD Model, developed by Perneder and Detournay in [3] (hence its
name) at the University of Minnesota, is one of the most complete models developed up to
this day. It possesses a more detailed bit/rock interaction model (compared to the one of
Neubert and Heisig) and it also captures the delayed nature of the process. Furthermore,
the model is developed for a three-dimensional system, and it is not restricted to small angle
rotations. Also, a convenient state-space representation has been worked out in order to
develop controllers in [5] and the model has been validated with field data in [17]. Despite
these advantages, as most of the models developed up to this point, it lacks the inclusion of
nonlinear effects such as bit-tilt saturation (although, bit-tilt saturation has been considered
recently in [19]) and relies on assumptions such as borehole contact with the stabilizers at all
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times.

1-2-2 Control of directional drilling systems

Current state-of-practice control methods are mostly open-loop, which in essence means that
a constant RSS force is applied to the BHA, expecting a constant curvature of the borehole.
This is generally not the case and undesired effects such as borehole spiraling, rippling and
kinking are present when implementing this kind of strategies.

Because of this, some efforts have been made in order to implement more reliable methods to
achieve a desired borehole trajectory. As in most cases in controller design, there is a close
relation between the mathematical models and the controllers that have been developed to
describe the process. As a result of this, the designed algorithms differ depending on the
model that was used as a basis for design.

Due to the simplicity of the previously mentioned models developed in [15] and [20], various
strategies to control the attitude of the bit have been implemented, such as linear feedback
controllers with integral action and Model Predictive Control (MPC) [21], although the same
problem regarding the unreliability of the model description remains. In the case of the model
developed by Downton in [13], two controllers have been derived, one simple proportional
controller in order to test the closed-loop stability of the system [14], and a more interesting
L1 adaptive controller in order to deal with uncertainty [22]. These two controllers though,
face the problem of only being derived for a 2D model, which does not consider effects on the
azimuthal plane, which are crucial in borehole spiraling. This 2D limitation is not present in
the pioneer model developed by Neubert and Heisig, for which two control algorithms were
implemented by using a stabilizer with variable eccentricity. One is just a simple proportional
controller, and the other is a proportional-derivative controller, that uses the tangent vector
of the borehole trajectory at the bit as control variable in order to follow a trajectory [18].
The issue with this controller is not only the unavailability of publications, but also that the
actuation is through the variable eccentricity, which is a suitable description for a point-the-
bit system, and not for a push-the-bit system, the latter of which is studied in this thesis
project.

Finally, there exist two recent works related to the development of control algorithms for
the PD model; initially the control strategy was derived for the 2D case ([23], [24]), which
constituted a first step towards a 3D control strategy [5]. A key element in the 3D model
is the inclusion of what is called the bit walk tendency, which is the trend of the bit to
drift in a lateral direction due to lateral forces acting in a different axis than the lateral
penetration of the bit. It is important to notice that the controller in [5] is designed for the
two stabilizers case. This does not yield loss of generality since the evolution of the system
is not critically affected and the presented methodology can be applied to a higher number
of stabilizers [5]. This controller seems to be highly advantageous in comparison with the
previously presented ones. First of all, it is synthesized for the three-dimensional case of a
directional drilling system, which takes into account the effects caused by bit walk, tackling the
compensation for borehole rippling for both orientation variables of the system (azimuth and
inclination). Furthermore, it considers the possibility of not being able to directly measure the
states of the system, for which it gives an initial approach to an observer design. However, a
stability analysis for the observer and the resulting output-fedback control strategy is lacking.

Octavio A. Villarreal Magaña Master of Science Thesis



1-3 Research objectives 9

Moreover, the controller design in [5] does not yield "a priori" robust stability guarantees in
the presence of uncertainties in e.g. the weight-on-bit and the bit walk angle.

1-3 Research objectives

Considering the previously mentioned aspects, the purpose of this thesis project is to develop
a robust output-fedback control strategy for 3D directional drilling processes. Most of the
existing control strategies, rely on the fact that there is access to all the states of the system
(see Section 1-2). One of the main sub-goals is therefore to propose a control strategy for
a 3D directional system to follow a desired borehole trajectory, which only relies on local
measurements of the BHA orientation. In other words, the research aims to develop an
observer-based controller design for a 3D directional drilling system.

Moreover, this design should take into account the fact that there is uncertainty in the process,
so a strategy that can guarantee stability despite the variation of the parameters of the system
is also a second sub-goal of high importance. The controller design should be robust to changes
in the active weight on bit and the bit walk angle, and be able to reject disturbances present
in the system.

1-4 Outline

The outline of this thesis will be given according to the following structure. Chapter 2 aims
to describe the model that it is going to be used for controller design, namely the PD model.
This chapter describes the key elements of the model and formulates this model in terms
of a state-space delay system description suitable for controller design. Furthermore, in this
section the neutral bit walk model, which will be used for controller design in later chapters
is derived. This chapter also details the open-loop response of the system, in order to give a
better understanding of the underlaying dynamics of the process and its deficiencies, based
on a benchmark drilling system configuration.

Controller design for the case with no parameter uncertainty will be described in Chapter 3.
The developed controller considers the neutral bit walk case, which only presents unilateral
coupling from the inclination to the azimuth. Chapter 4 will use the analysis of the nominal
case as a basis to develop a robustly stable control strategy against parameter uncertainty
on the active weight on bit. The effectiveness of the proposed control strategy is shown in
simulations for both the neutral and non-neutral bit walk model.

The final chapter details the conclusions of the developed control strategies and gives recom-
mendations for further improvement on this work.

Master of Science Thesis Octavio A. Villarreal Magaña



10 Introduction

Octavio A. Villarreal Magaña Master of Science Thesis



Chapter 2

Model of a 3D directional drilling
system

From the literature review, it became evident that the most suitable model for controller
design is the one developed by Perneder and Detournay. In this chapter, a general outline of
the model derived in [3] is considered. Added to this, the state-space description of the system
obtained in [5] is shown along with the neutral bit walk model that is used in the following
chapters. Also the benchmark parameters that are used for the simulations performed during
the research is provided. Finally, the chapter ends with the open-loop simulations of the model
to verify its behavior for the different conditions considered in this thesis and to highlight the
key deficiencies in the open-loop behavior that should be resolved by the control strategy to
be developed.

2-1 Model description

The PD model was developed by Perneder and Detournay in [3], [25], [26] and [4], hence its
name. It is formulated in terms of delay differential equations. A general description of the
system is provided in Section 1-1. The delayed nature comes from the fact that the drillstring
has to fit inside the borehole that has already been drilled. The geometric description for this
model is shown in Figure 2-1. The elements of the geometric description of the model are
listed below:

1. The earth-fixed coordinate basis is given by (~ex, ~ey, ~ez). It is located at the drill rig
and vector ~ez points in the direction of gravity and is perpendicular to ~ex and ~ey for a
right-handed system.

2. The borehole is described as a function of the curvilinear coordinate S, with 0 ≤ S ≤ L
where 0 is the value of the coordinate at the surface and L is the total length of the
borehole.
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Figure 2-1: Geometric description of directional drilling system.

3. The borehole axis B is defined as the trajectory of a reference point at the bit.

4. The vector function ~R(S) for S ∈ [0, L] describes the borehole axis B as a function of S
in the earth-fixed basis.

5. At a certain position along the borehole, the direction of the borehole can be locally
defined by the tangent vector of the borehole axis ~I1 = d~R

dS . Using this vector, a local
basis (~I1, ~I2, ~I3) for the borehole can be defined by stating that ~I2 is in the same vertical
plane as ~I1 and ~I3 is necessarily parallel to ~ey ( i.e., ~I1 × ~I2 = ~I3 and ~I3 · ~ey = 0) and
defining the frame as right-handed.

6. The borehole inclination Θ is the angle between vector ~ez and ~I1 as a function of the
curvilinear coordinate S.

7. The borehole azimuth Φ is the angle between ~ex and the projection of ~I1 to the plane
spanned by ~ex and ~ey.

8. The BHA axis is described as a function of the curvilinear coordinate s ∈ [0, LBHA]
where 0 is the position of the drill bit and LBHA is the length of the BHA.

9. The BHA axis D is considered to be slightly deviated from the borehole axis B (due to
deflection of the BHA piping with respect to the borehole axis).

10. The vector function ~r(s, L) describes the position of the BHA axis D as a function of s
and the current length of the borehole L.
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2-1 Model description 13

11. The basis associated to the BHA (~i1,~i2,~i3) is obtained in a similar fashion as the borehole
basis, such that~i1 is the tangent unit vector to D and~i3 ·~ey = 0 (parallel) and~i1×~i2 =~i3
(perpendicular) and defining the system as right-handed.

12. It is important to notice that in general the borehole and BHA axes are not coaxial,
meaning that the bit does not drill in the same direction as the tangent of the borehole
axis due to lateral forces on the bit generating lateral and angular penetration, so in
general ~I1 6=~i1.

13. The BHA inclination θ is the angle between ~ez and ~i1 as a function of the curvilinear
coordinate s.

14. The BHA azimuth φ is the angle between ~ex and the projection of ~i1 to the plane
spanned by ~ex and ~ey.

15. To simplify notation, a hat (ˆ) is used for variables and bases evaluated at the bit, i.e.,
Θ̂ = Θ(L) and Φ̂ = Φ(L) in the case of the borehole; and θ̂ = θ(L, 0) and φ̂ = φ(L, 0)
in the case of orientation of the bit itself.

16. The differences between the orientation of the bit and the borehole, called the tilt angles,
are given by:

ψ2 = θ̂ − Θ̂,
ψ3 = (φ̂− Φ̂) sin Θ̂, (2-1)

see Figure 2-1. Since it is considered that the predominant element in the borehole evolution
is the BHA, the model considers the effects at the upper part of the drillstring as a mere
boundary condition (in terms of the axial force transmitted from the drill-string to the BHA).

The model of the directional drilling system is obtained from the interaction between three
key model elements:

• kinematic relationships,

• the BHA model,

• bit/rock interface law.

The way these elements relate to each other is depicted in Figure 2-2. Furthermore, the
vibrational effects in the BHA are ignored due to the fact that they take place at a much
faster time scale than the time scales relevant for borehole propagation. This is why the forces
and penetrations are averaged over several revolutions of the bit. An important consideration
is that the stabilizers are assumed to always be in contact with the borehole wall, which in
general is not always the case in practice [27].

The model is scaled at the BHA by introducing two characteristic quantities:

L∗ := `1, F∗ := 3EyI
`21

, (2-2)
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Figure 2-2: Interaction between the elements of the model.

where `1 is the distance between the bit and the first stabilizer (defining the characteristic
length L∗), see Figure 2-3, and the product of the Young’s module Ey with the area moment
of inertia I represents the bending stiffness. The BHA is modeled as an Euler-Bernoulli beam,
since deformations are presumed to be small because the radius of curvature of the borehole
is typically large compared to `1. The reason for F∗ being defined as shown is that this is the
reaction force induced at the end of a simply supported beam of length `1 and stiffness EyI
in response to a unit inclination angle imposed at the end. The characteristic length L∗ is
used to scale the distance drilled L into a dimensionless distance drilled ξ:

ξ = L

L∗
. (2-3)

BHA model. Figure 2-3 shows the elements for a deflected BHA inside a borehole. The
configuration is described by the position of the stabilizers and the RSS. Their location is
given as s = si where si is the s coordinate of the i-th stablizer and Λ`1 is the location
of the RSS where Λ ∈ [0, 1]. The distance between stabilizer i and i − 1 is given by `i for
i = 2, ..., n and `1 defined as the distance between the bit and the first stabilizer again. Herein,
n represents the number of stabilizers.

The external loads acting on the BHA are the distributed weight ~w, the RSS force ~Frss, as
well as the forces acting on the upper and lower boundaries of the BHA. The RSS force has
two components on the direction of the ~I2 and ~I3 axes. These components and the distributed
weight are scaled using the characteristic force F∗ as follows:

Υ = wL∗
F∗

, Γ2 = Frss,2
F∗

, Γ3 = Frss,3
F∗

. (2-4)

where Υ, Γ2 and Γ3 are the scaled versions of the distributed weight, the RSS force applied
along axis ~I2 and ~I3, respectively. In further derivations, uniform bending stiffness EyI and
distributed weight w for the BHA are assumed; it is also assumed that the relative direction
of the distributed weight with respect to the BHA is being aligned with the chord C1 which
links the bit and the first stabilizer, see Figure 2-3.
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w

Figure 2-3: Deflected BHA.

The governing equations for the transverse deflection of the BHA as an Euler-Bernoulli beam
are given by:

EyI
∂3θi
∂s3 = w sin 〈θ〉1, EyI sin 〈θ〉1

∂3φi
∂s3 = 0, (2-5)

where 〈θ〉1 is the average inclination of the BHA between the bit and the first stabilizer. The
BHA is divided in n + 1 (with n being the number of stabilizers) beams connected by ideal
stabilizers. Each section between stabilizers is modeled as a beam and the section between
the bit and the first stabilizer is separated into two parts, one corresponding to the section
from the bit to the RSS and the other from the RSS to the first stabilizer, modeling both as
beams as well. Using the following notation,

θ(ξ, s) = θi(ξ, s), φ(ξ, s) = φi(ξ, s), for s ∈ [si−1, si] for i ∈ [2, ..., n],
θ(ξ, s) = θ1(ξ, s), φ(ξ, s) = φ1(ξ, s), for s ∈ [Λ`1, s1],
θ(ξ, s) = θ0(ξ, s), φ(ξ, s) = φ0(ξ, s), for s ∈ [0,Λ`1], (2-6)

the general solution of Equation (2-5) is given by:

θi(ξ, s) = Ai3
(
s

`1

)3
+Ai2

(
s

`1

)2
+Ai1

(
s

`1

)
+Ai0,

φi(ξ, s) = Bi2
(
s

`1

)2
+ Bi1

(
s

`1

)
+ Bi0. (2-7)
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16 Model of a 3D directional drilling system

where Aij , for j = 0, 1, 2, 3, and Bik, for k = 0, 1, 2, are coefficients corresponding to the
integration constants resulting from the solution of (2-5). To obtain the coefficients in (2-7),
a set of 6(n+1) constraints needs to be imposed depending on factors related to the previously
mentioned assumptions of the model. Firstly, the inclination and azimuth angles of the BHA
are continuous at the boundary between adjacent segments; this results in the first set of
n constraints depending on the number of stabilizers. A second set of constraints comes
from the fact that the moment at all stabilizers is continuous. The third set of constraints
is related to the coincidence of the borehole axis and the BHA axis at the stabilizers. These
three sets of constraints constitute 3n constraints and are all related to the stabilizers. One
of the other three remaining constraints is related to assumptions such as zero moment at
the last stabilizer. This assumption is valid if a sufficient number of stabilizers is considered,
since the amount of stabilizers is inversely proportional to the moment at the bit (as shown
in Appendix B of [3]). The other two assumptions are related to the force balance between
the RSS force and the BHA force at the segment between the bit and the RSS location, and
the fact that θ0 = θ̂ and φ0 = φ̂ at the bit coming from the bit rock interaction. For the
complete derivation of these constraints in the case of the 2D model see Appendix B of [23].
These constraints can also be extended to the 3D case since the expressions for the inclination
and the azimuth are the same, considering that the gravity has no influence on the azimuth,
and that the RSS force is given by Γ3

sin Θ instead of Γ2 (see Appendix A-1). These constraints
and coefficients Aij and Bik for the two stabilizer case are given in Appendix A-1 of this
thesis. It has been proven that studying the two stabilizer case is sufficient, since the first
two stabilizers dominate the dynamics of the directional drilling process [17]. Finally, the
expressions for shear forces and bending moments acting on the bit expressed in the bit basis
are obtained as follows:

F̂2
F∗

= Fb
(
θ̂ − 〈Θ〉1

)
+ FwΥ sin 〈Θ〉1 + FrΓ2 +

n−1∑
i=1
Fi
(
〈Θ〉i − 〈Θ〉i+1

)
,

M̂3
F∗`1

=Mb

(
θ̂ − 〈Θ〉1

)
+MwΥ sin 〈Θ〉1 +MrΓ2 +

n−1∑
i=1
Mi

(
〈Θ〉i − 〈Θ〉i+1

)
,

F̂3
F∗

= Fb
(
φ̂− 〈Φ〉1

)
sin 〈Θ〉1 + FrΓ3 +

n−1∑
i=1
Fi
(
〈Φ〉i − 〈Φ〉i+1

)
sin 〈Θ〉1,

M̂2
F∗`1

= −Mb

(
φ̂− 〈Φ〉1

)
sin 〈Θ〉1 −MrΓ3 −

n−1∑
i=1
Mi

(
〈Φ〉i − 〈Φ〉i+1

)
sin 〈Θ〉1, (2-8)

where Fb, Fr, Fw, Fi,Mb,Mr,Mw,Mi are constant coefficients for a given BHA configu-
ration which can be found in Appendix A-2 for the two stabilizer case. The average borehole
inclination and azimuth at the i-th stabilizer 〈Θ〉i and 〈Φ〉i in (2-8) are given by

〈Θ〉i := 1
κi

ξi−1∫
ξi

Θ(σ)dσ, 〈Φ〉i := 1
κi

ξi−1∫
ξi

Φ(σ)dσ, (2-9)

where κi is the dimensionless length of the i-th BHA section given by κi = `i
`1

and ξi is the
dimensionless position of stabilizer i given by ξi = ξ −

∑i
j=1 κi for i = 1, 2, ..., n.
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Figure 2-4: Definition of the penetration vector ~d, the angular penetration vector ~ϕ and the
angular velocity vector ~Ω [3].

Kinematic relationships. The motion of the bit is described by the linear velocity vector
~v, the spin vector ~ω and the angular velocity ~Ω. The bit is rotating around ~i1 with angular
velocity ~Ω. Using this we can define the two main penetration variables:

~d := 2π~v
|~Ω|

, ~ϕ := 2π~ω
|~Ω|

, (2-10)

where ~d and ~ϕ are the linear and angular penetration, respectively. These variables are
depicted in Figure 2-4. The linear penetration is the increment of the borehole over one
revolution, which is expressed by using the operator δ(.) = |~d|d(.)

dL . With this definition, the
magnitude of the linear penetration d = |~d| is equal to the increment of the borehole length
δL.
The two vector penetration variables are decomposed in five scalar quantities corresponding
to ~d = d1~̂i1 + d2~̂i2 + d3~̂i3, as well as ϕ2 and ϕ3 as the rotations around vectors ~̂i2 and ~̂i3,
respectively. It is assumed that d1 ≈ |~d| because components d2 and d3 depend on the tilt
angles ψ2 and ψ3 (see Figure 2-5) which are generally small under normal drilling conditions
and defined by:

d2 = −ψ2d1,

d3 = −ψ3d1. (2-11)

In addition, the expressions for ϕ2 and ϕ3 are given as:

ϕ2 = −d1
`1

dφ̂

dξ
sin θ̂,

ϕ3 = d1
`1

dθ̂

dξ
, (2-12)

where these expressions are obtained by projecting the cross product ~̂i1 × δ~̂i1 onto the bit
basis [3].
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18 Model of a 3D directional drilling system

Bit/rock interface law. This element of the model represents the interaction between the
kinematics of the bit (defined by the set of penetration variables P = {d1, d2, d3, ϕ2, ϕ3}), and
the forces and moments reacting on the bit (defined by F = {F̂1, F̂2, F̂3, M̂2, M̂3}), due to the
properties of the bit and the drilled rock.

A common type of bit used in directional drilling systems is the PDC bit (see Figure 1-5), and
the interface law is derived for this kind of bit. There are three assumptions to be considered
for this interface model. Firstly, the forces F and kinematic quantities P can be averaged over
at least one revolution, since the time scale of the borehole evolution is much larger than the
period of a revolution. Secondly, the interface law is rate-independent, based on single cutter
experiments, which show independence of the torque on bit with the rotary speed. Hence,
the model does not depend on the bit angular velocity Ω. Finally, the global relationship
between forces and penetrations is assumed to be reduced to a point [28].

In addition to the previous three key assumptions, the rock is assumed to be isotropic and
homogeneous, which means that the rock is uniform in all directions. Based on this as-
sumptions and on single cutter experiments [29], the following linear relationship between the
penetration variables P and the generalized forces and moments F is proposed:


F̂1
F̂2
F̂3
M̂2
M̂3

 = −


G1
0
0
0
0

−

H1 0 0 0 0
0 H2 H3 0 0
0 −H3 H2 0 0
0 0 0 H0 0
0 0 0 0 H0




d1
d2
d3
ϕ2
ϕ3

 . (2-13)

In (2-13), coefficient G1 measures the axial force transmitted to the equivalent single cutter
wear-flats, due to an increase of bluntness of the bit. For a perfectly sharp bit, G1 is equal
to zero. The first row of Equation (2-13) corresponds to the axial forces at the bit. The
applied weight on bit (defined as Wapp = −F̂1) is affected by the frictional forces denoted by
coefficient G1. The actual force applied in the axial direction is defined as the active weight
on bitWact and can be expressed asWact = Wapp−G1. Furthermore, the active weight on bit
can be scaled in the same way as the external loads of the BHA in (2-4) to a dimensionless
parameter Π as follows:

A

a

I1

ψ2

i1

Figure 2-5: Borehole over-gauging caused by the bit tilt angle ψ2 [4].
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Figure 2-6: The bit walk angle $ is the angle between the lateral ~̂Fs = F̂1~̂i1 + F̂2~̂i2 and the
lateral penetration ~ds = d2~̂i2 + d3~̂i3 (view at the front of the bit)[5].

Π = Wact

F ∗
(2-14)

The coefficients H0, H1, H2, H3 depend on the bit geometry (such as cutting structure and
gauge length) and the rock properties. These coefficients along with G1 describe the relation
between the penetration variables and the forces. Using these coefficients, the lateral and
angular steering resistance can be defined as:

η =

√
H2

2 +H3
2

H1
, χ = H0

`1
2H1

. (2-15)

These two parameters, η and χ, measure the opposition to impose lateral and angular pen-
etration to the bit relative to the axial penetration, respectively. Another property of the
system that is derived from the bit/rock interaction, is the bit walk tendency, which is the
natural tendency of the bit to drift in a lateral direction while drilling. Bit walk takes place
when the lateral forces at the bit are not coaxial with the lateral penetration vectors of the
bit, and it can be quantified by measuring the angle between the lateral force and the lateral
penetration (see Figure 2-6), obtained as follows:

$ = arctan H3
H2

. (2-16)

It is important to stress, that the lateral and angular steering resistance η and χ come from
inherent properties of the rock and the cutter geometry. In the case of the scaled active weight
on bit Π, its value can change along the process due to variations in the applied hook-load,
the interaction of the drillstring with the borehole and a reduction of the sharpness of the
bit. Finally, the bit walk angle $ can be dependent on factors such as the rotation of the bit
and over-gauging and it can also vary while drilling [5]. This is why, the active weight on bit
Π and the bit walk angle $ are generally considered as uncertain parameters.

Making use of the expressions for Π, η, χ and $, and using the fact that F̂1 = −G1 −H1d1;
coefficients H0, H1, H2 and H3 can be substituted in the bit/rock interface law given in (2-13).
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20 Model of a 3D directional drilling system

The complete derivation of this interaction law is given in [3], which arrives to the following
dimensionless expression in the three-dimensional case:

F̂2
F∗
F̂3
F∗
M̂2
F∗`1
M̂3
F∗`1

 =


ηΠ cos$ ηΠ sin$ 0 0
−ηΠ sin$ ηΠ cos$ 0 0

0 0 −χΠ`1
d1

0
0 0 0 −χΠ`1

d1



d2
d1
d3
d1
ϕ2
ϕ3

 . (2-17)

This interface law, relates the penetration variables at the bit with the forces and moments
at the bit as well.

Borehole evolution equations. By combining the BHA model Equations (2-8), the kine-
matic relationships (2-11) and (2-12) and the bit/rock interface law (2-17), the borehole
evolution equations are derived as follows:

ηΠ
(
(θ −Θ) cos$ + sin Θ sin$ (φ− Φ)

)
= Fb (θ − 〈Θ〉1) + FwΥ sin 〈Θ〉1 + FrΓ2

+
n−1∑
i=1
Fi
(
〈Θ〉i − 〈Θ〉i+1

)
, (2-18)

− χΠθ′ =Mb (θ − 〈Θ〉1) +MwΥ sin 〈Θ〉1 +MrΓ2 +
n−1∑
i=1
Mi

(
〈Θ〉i − 〈Θ〉i+1

)
, (2-19)

ηΠ
(
− (θ −Θ) sin$ + cos$ sin Θ (φ− Φ)

)
= Fb (φ− 〈Φ〉1) sin 〈Θ〉1 + FrΓ3

+
n−1∑
i=1
Fi
(
〈Φ〉i − 〈Φ〉i+1

)
sin 〈Θ〉1, (2-20)

− χΠφ′ sin θ =Mb (φ− 〈Φ〉1) sin 〈Θ〉1 +MrΓ3 +
n−1∑
i=1
Mi

(
〈Φ〉i − 〈Φ〉i+1

)
sin 〈Θ〉1. (2-21)

Herein, the ( ˆ ) character has been omitted for notational clarity and we emphasize that
in these equations all variables are evaluated at the bit. Moreover, the derivatives of the
inclination and the azimuth of the BHA with respect to the dimensionless length (i.e, dθ

dξ

and dφ
dξ ) are replaced by θ′ and φ′, respectively. This set of equations represents the way

the borehole will evolve along the independent variable ξ in terms of the borehole and BHA
inclination and azimuth. It is important to notice, that the final goal is to be able to describe
how the borehole will change along the process; this means that it would be more convenient
to express the BHA orientation variables θ and φ in terms of the borehole variables Θ and Φ
and input variables Γ2 and Γ3 (which represent the RSS force), i.e, we seek a model in the
form:

Θ′ (ξ) = fΘ(Θξ,Φξ,Γ2,Γ3,Γ2
′,Γ3

′),
Φ′ (ξ) = fΦ(Θξ,Φξ,Γ2,Γ3,Γ2

′,Γ3
′),

(2-22)

using the following notational convention:

Θξ(σ) := Θ(ξ + σ), Φξ(σ) := Φ(ξ + σ).
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2-1 Model description 21

This can be achieved by solving Equations (2-18) and (2-20) for θ and φ, respectively. Prior
to doing this, the borehole evolution equations (2-18)-(2-21) can be simplified by making use
of the following approximation:

sin θ ≈ sin〈Θ〉1 ≈ sin Θ. (2-23)

This approximation is valid under the assumption that the bit tilt angles (the difference
between borehole and BHA orientation) are small, which is usually the case under normal
drilling conditions. It has to be noticed, that this approximation does not imply that one
can neglect the difference between θ, Θ and 〈Θ〉1, since the explicit difference between these
angles is one of the main elements of the borehole evolution, since it is part of the kinematic
relationships that relate the BHA model with the bit/rock interaction. This approximation
was implemented in [5]. The derivation of the model in the form of Equations (2-22) was
done as well without making use of the approximation, and it is given as additional material
included in Appendix B of the same publication.

After applying the approximation in (2-23), the borehole evolution equations are reduced to:

ηΠ
(
(θ −Θ) cos$ + sin Θ sin$ (φ− Φ)

)
= Fb (θ − 〈Θ〉1) + FwΥ sin 〈Θ〉1 + FrΓ2

+
n−1∑
i=1
Fi
(
〈Θ〉i − 〈Θ〉i+1

)
, (2-24)

− χΠθ′ =Mb (θ − 〈Θ〉1) +MwΥ sin 〈Θ〉1 +MrΓ2 +
n−1∑
i=1
Mi

(
〈Θ〉i − 〈Θ〉i+1

)
, (2-25)

ηΠ
(
−(θ −Θ) sin$

sin Θ + cos$ (φ− Φ)
)

= Fb (φ− 〈Φ〉1) + Fr
Γ3

sin Θ +
n−1∑
i=1
Fi
(
〈Φ〉i − 〈Φ〉i+1

)
,

(2-26)

− χΠφ′ =Mb (φ− 〈Φ〉1) +Mr
Γ3

sin Θ +
n−1∑
i=1
Mi

(
〈Φ〉i − 〈Φ〉i+1

)
. (2-27)

From Equations (2-24) and (2-26), expressions for θ and φ can be obtained as follows:

θ = a1 + a2φ, (2-28)
φ = a3 + a4θ, (2-29)
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22 Model of a 3D directional drilling system

where the auxiliary variables ai, for i = 1, ..., 4, are given by:

a0 := 1
ηΠ cos$ −Fb

,

a1(ξ) :=a0
(
ηΠ cos$Θ + ηΠ sin Θ sin$Φ−Fb〈Θ〉1 + FwΥ sin 〈Θ〉1 + FrΓ2+

n−1∑
i=1
Fi
(
〈Θ〉i − 〈Θ〉i+1

) )
,

a2(ξ) :=− a0ηΠ sin Θ sin$,

a3(ξ) :=a0
(
−Fb〈Φ〉1 + Fr

Γ3
sin Θ +

n−1∑
i=1
Fi(〈Φ〉i − 〈Φ〉i+1)− ηΠΘ sin$

sin Θ + ηΠ cos$Φ
)
,

a4(ξ) :=a0
ηΠ sin$

sin Θ .

One can then obtain expressions of θ and φ in terms of Θ, Φ, Γ2 and Γ3 (since all the auxiliary
variables only depend on these variables) resulting in:

θ = a1 + a2a3
1− a2a4

, φ = a3 + a1a4
1− a2a4

. (2-30)

After this, the derivatives of the BHA orientation at the bit with respect to ξ are obtained
and substituted in (2-25) and (2-27) as follows:

θ′ = 1
1− a2a4

(
a′1 +

(
a3 + a4(a1 + a2a3)

1− a2a4

)
a′2 + a2a

′
3 + a2(a1 + a2a3)

1− a2a4
a′4

)
, (2-31)

φ′ = 1
1− a2a4

(
a4a
′
1 + a4(a3 + a4a1)

1− a2a4
a′2 + a′3 +

(
a1 + a2(a3 + a1a4)

1− a2a4

)
a′4

)
, (2-32)

where the derivatives of the auxiliary variables a1-a4 are given by:

a′1 = b1Θ′ + b2Φ′ + b3, (2-33)
a′2 = b4Θ′, (2-34)
a′3 = b5Θ′ + b6Φ′ + b7, (2-35)
a′4 = b8Θ′, (2-36)
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with the new auxiliary variables bi, for i = 1, ..., 8, defined as follows:

b0 := 1
ηΠ cos$ −Fb

,

b1(ξ) :=b0(ηΠ cos$ + ηΠΦ sin$ cos Θ),
b2(ξ) :=b0ηΠ sin Θ sin$,

b3(ξ) :=b0
(
−Fb (Θ−Θ1) + FwΥ cos〈Θ〉1 (Θ−Θ1) + FrΓ

′
2

+
n−1∑
i=1
Fi
(Θi−1 −Θi

κi
− Θi −Θi+1

κi+1

))
,

b4(ξ) :=− b0ηΠ cos Θ sin$,

b5(ξ) :=− b0
(sin Θ)2 (ηΠ sin$ (sin Θ−Θ cos Θ) + FrΓ3 cos Θ),

b6(ξ) :=b0ηΠ cos$,

b7(ξ) :=b0
(
−Fb (Φ− Φ1) + Fr

Γ′3
sin Θ +

n−1∑
i=1
Fi
(Θi−1 −Θi

κi
− Θi −Θi+1

κi+1

))
,

b8(ξ) :=− b0
(sin Θ)2 ηΠ sin$ cos Θ.

It has to be noticed that in order to obtain the derivatives of the ai auxiliary variables, the
derivatives of the average states given in Equation (2-9) have to be obtained (this will be also
helpful in order to formulate a state-space representation of the system). These derivatives
are given by:

〈Θ〉i
′ = 1

κi
(Θi−1 −Θi) , 〈Φ〉i

′ = 1
κi

(Φi−1 − Φi) , (2-37)

where Θi = Θ(ξi) and Φi = Φ(ξi) with ξi being the location of the i-th stabilizer of the BHA.
Finally, one can give the explicit expressions for the evolution of the borehole inclination and
azimuth as follows:

E
[
Θ′
Φ′

]
=



− 1
χΠ

(
Mb

(
a1 + a2a3
1− a2a4

− 〈Θ〉1
)

+MwΥ sin 〈Θ〉1 +MrΓ2 + ...

+
n−1∑
i=1
Mi

(
〈Θ〉i − 〈Θ〉i+1

))
− b3 + a2b7

1− a2a4

− 1
χΠ

(
Mb

(
a3 + a4a1
1− a4a2

− 〈Φ〉1
)

+Mr
Γ3

sin Θ + ...

+
n−1∑
i=1
Mi

(
〈Φ〉i − 〈Φ〉i+1

))
− a4b3 + b7

1− a2a4


,

(2-38)
where E is given by:

E = 1
1− a2a4

[
b1 + a3b4 + a2b5 + (a1+a2a3)(a4b4+a2b8)

1−a2a4
b2 + a2b6

a4b1 + b5 + a1b8 + (a3+a4a1)(a4b4+a2b8)
1−a2a4

a4b2 + b6

]
. (2-39)

This representation of the evolution equations was a contribution of [5], and it represents the
model explicitly in the form of nonlinear second order delay differential equations. The delay
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Figure 2-7: Interaction of Θ and Φ for non-neutral (left) and neutral (right) bit walk models [5].

nature of the system arises from the presence of terms Θi, 〈Θ〉i, Φi and 〈Φ〉i for i = 1, ..., n.
Furthermore the delay terms Θi and Φi can be defined as point-wise delays, and the terms
〈Θ〉i and 〈Φ〉i as distributed delays (due to the fact that they make use of integrals, defining
them continuously along whole function segments).

These system dynamics present significant challenges for controller design. Firstly, since
there is presence of delay effects in the dynamics, there exists an infinite number of poles,
which provides difficulties for stability analysis and renders some controller design strategies
(for example, pole-placement for finite-dimensional Linear Time Invariant (LTI) systems)
unfeasible to implement. Additionally, the nonlinear effects present in the dynamics related
to the bit walk angle $ and the average inclination 〈Θ〉1 discard (a priori) the possibility
to exploit well-known linear control strategies. Furthermore, the presence of uncertainty
on the active weight on bit Π and the bit walk angle $ has to be considered, since they
could affect stability and performance. The model also describes the borehole evolution in
terms of the borehole inclination and azimuth, but in reality these variables are not directly
measurable, since only measurements of the orientation of the BHA at specific locations are
available. Finally, the system is a Multiple Input Multiple Output (MIMO) system with
bilateral coupling between the inclination and the azimuth dynamics. Nevertheless, it can
be noticed that for the specific case where there is no bit walk angle present in the process
($ = 0◦), this coupling is only present from the inclination to the azimuth. These two
situations are depicted in Figure 2-7. The neutral bit walk model (i.e., for zero bit walk
angle) is used as a first approach in order to simplify the controller design process. The
derivation of the equations for $ = 0◦ is performed in Section 2-1-1, with the corresponding
output equations.

2-1-1 Derivation of the neutral bit walk model

As a starting point for the derivation of the model for zero bit walk angle, Equation (2-38)
describing the generic dynamic for non-zero bit walk is considered. If then, as stated, the bit
walk angle is set to be $ = 0◦, then the borehole evolution equations for the neutral bit walk
model read as follows:
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2-1 Model description 25

χΠΘ′ =−Mb(Θ− 〈Θ〉1)− MbF1 +M1 (ηΠ−Fb)
ηΠ (〈Θ〉1 − 〈Θ〉2)

+ χ

η
Fb (Θ−Θ1)− χ

η
F1

(
Θ−Θ1 −

Θ1 −Θ2
κ2

)
− MbFr + (ηΠ− Fb)Mr

ηΠ ΓΘ −
χ

η
FrΓ′Θ +W,

χΠΦ′ =−Mb (Φ− 〈Φ〉1)− MbF1 +M1 (ηΠ− Fb)
ηΠ (〈Φ〉1 − 〈Φ〉2)

+ χ

η
Fb (Φ− Φ1)− χ

η
F1

(
Φ− Φ1 −

Φ1 − Φ2
κ2

)
+
(
χ

η

FrΘ′ cos Θ
(sin Θ)2 − MbFr +Mr (ηΠ−Fb)

ηΠ sin Θ

)
ΓΦ −

χ

η

Fr
sin ΘΓ′Φ,

(2-40)

where the term related to the weight of the BHA is included in the first equation and is given
by W := −MbFw+(ηΠ−Fb)Mw

ηΠ Υ sin〈Θ〉1 − χ
ηFw(Θ − Θ1)Υ cos〈Θ〉1 and Υ is the normalized

distributed weight of the BHA. Moreover, the RSS forces Γ2 and Γ3 have been replaced by
ΓΘ and ΓΦ, to make explicit that these inputs are related to the inclination and azimuth
dynamics, respectively.
From Equation (2-40), the states of the system can be defined as:

xΘ =

 Θ
〈Θ〉1
〈Θ〉2

 , xΦ =

 Φ
〈Φ〉1
〈Φ〉2

 . (2-41)

Output equations. As it has been mentioned before, measurements of the orientation of the
borehole at the bit are not directly available. Instead, inclination and azimuth are measured
at specific locations on the BHA. For a two stabilizer directional drilling system (which is
the case that it is being analyzed here), a common location for the orientation sensors is:
one placed between the RSS and the bit (i.e., the sensor location within the BHA satisfies
sm,1 ∈ [0,Λ`1]) and a second one located between the first and the second stabilizer (i.e.,
sm,2 ∈ [`1, `1 + `2]).
In order to have a reliable representation of the location of these sensors, the system’s output
equations should be given in the following way:

yθ = [θ0(ξ, sm,1), θ2(ξ, sm,2)]T (2-42)
yφ = [φ0(ξ, sm,1), φ2(ξ, sm,2)]T . (2-43)

In order to obtain explicit output equations, we can refer back to the general solution of the
BHA model equation, given by (2-6) and (2-7), which can be rewritten in the following way
to have constant coefficients in terms of sensor location and BHA configuration:

θi(ξ, s) = Ci1(s)θ̂ + Ci2(s)Γ2 + Ci3(s)〈Θ〉1 + Ci4(s)〈Θ〉2 + Ci5(s)Υ sin〈Θ〉1, (2-44)

φi(ξ, s) = Di1(s)φ̂+Di2(s) Γ3
sin Θ +Di3(s)〈Φ〉1 +Di4(s)〈Φ〉2, (2-45)
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26 Model of a 3D directional drilling system

where Cij , j = 1, 2, ..., 5, and Dik, k = 1, 2, ..., 4, are the previously mentioned constant
coefficients. It can be noticed that the BHA inclination and azimuth at the bit are present
in (2-44) and (2-45) (here the (ˆ) character is explicitly shown again). These bit orientations
can be replaced using Equations (2-30), while evaluating these at $ = 0◦; this results in the
following constraint equations:

θ̂ = 1
ηΠ−Fb

(
ηΠΘ−Fb〈Θ〉1 + FwΥ sin 〈Θ〉1 + FrΓ2 +

n−1∑
i=1
Fi
(
〈Θ〉i − 〈Θ〉i+1

) )
, (2-46)

φ̂ = 1
ηΠ−Fb

(
ηΠΦ−Fb〈Φ〉1 + Fr

Γ3
sin Θ +

n−1∑
i=1
Fi(〈Φ〉i − 〈Φ〉i+1)

)
. (2-47)

Next, Equations (2-46) and (2-47) are substituted in (2-44) and (2-45) and as a result the
output equations of the system can be given by:

yΘ = CΘxΘ +DΘΓΘ + EΥ sin〈Θ〉1, (2-48)

yΦ = CΦxΦ +DΦ
ΓΦ

sin Θ . (2-49)

If it is assumed that both the inclination and the azimuth sensors are at the same location
then CΘ = CΦ and DΘ = DΦ. Explicit expressions for the coefficients in (2-48) and (2-49)
are given in [5].

2-2 Benchmark system definition

In order to perform simulations of the system, some parameters have to be chosen to represent
a real directional drilling system. Without loss of generality, it can be assumed that a two
stabilizer system captures the key dynamics of the process, according to [17]. In previous
works ([5], [23]), the geometric characteristics and the steering resistance properties were
selected according to [3].
The BHA is considered to be made of pipes of steel. The key properties to be able to perform
simulations of the system are the Young’s Modulus (Ey), density (ρ), inner (Ir) and outer
(Or) radii of the BHA pipes, their cross section surface area (A = π(O2

r − I2
r )) and the second

moment of inertia (I = π
4 (O4

r − I4
r )), the distance of the bit to the first stabilizer (`1), the

distance of the second stabilizer with respect to the first (`2) and the distance of the RSS
actuator from the bit, expressed as a fraction of `1 (Λ`1). The chosen parameters are shown
in Tables 2-1 and 2-2.

Table 2-1: Geometric properties of the benchmark system.

Ir[m] Or[m] A[m2] I[m4] `1[m] `2[m] Λ`1[m]
0.0533 0.0857 0.0141 3.6× 10−5 3.66 6.10 0.61

Table 2-2: Material properties of the benchmark system.

Ey[N/m2] ρ[kg/m3]
2× 1011 7800
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2-3 Open-loop dynamics 27

Using this set of parameters, the distributed weight of the BHA can be computed as w =
9.81πρ(O2

r − I2
r ) = 1.08× 103N/m. The model makes use of several dimensionless quantities

(which are for the two stabilizer case κ1, κ2, Λ, χ, η, Υ, Π, Γ2, Γ3). The dimensionless location
the i-th stabilizer is defined as κi = `i

`1
, for i = 1, 2. The angular and lateral steering resistance

χ and η are defined as (2-15). Regarding this bit/rock interaction parameters, the chosen
values for η and χ correspond to a bit with a rather long passive gauge. Finally, the scaled
force related quantities Υ, Γ2, Γ3 and Π, are defined as in (2-4) and (2-14), respectively. The
active weight on bit Π and the bit walk angle $ are not given values since they are considered
uncertain (the effect of these parameters is analyzed in further sections), although for Π a
"nominal" value of Π̄ = 14000[N ]

F ∗ is used for controller design. Table 2-3 shows the values for
the dimensionless parameters used for simulation.

Table 2-3: Dimensionless parameters of the benchmark system.

κ1 κ2 Λ χ η

1 1.67 0.167 0.1 30

This set of parameters can be considered to be reliable, as they can be compared to the
quantities shown in [17], as part of a series of analysis for different types of directional drilling
systems. The use of this parameter set will also simplify the comparison between the strategies
developed in this research with the previous works in [5] and [23].

2-3 Open-loop dynamics

Extensive evaluation of the open-loop dynamics has been performed in [5]. It was determined
that for the derived model, the performance using constant RSS forces Γ2 and Γ3, is not
desired, amongst others, due to the fact that oscillations in the borehole trajectory can occur
under certain conditions. This behavior in the response is the so-called borehole spiraling
phenomenon. In this study, also the effect of uncertain parameters active weight on bit Π and
bit walk angle $ was investigated. It draws the conclusion that, as the value of Π decreases
the system response starts to move closer to instability (i.e., the poles of the system move
closer to the right-hand side of the complex plane). The same effect of instability is shown
for increments in the absolute value of $.

One of the main goals of this thesis is to provide a control strategy that displays robustness
properties against the aforementioned parameters. In this section we focus in showing the
presence of the negative effects and their relation to the uncertain parameters in the open-loop
response of the system, by means of simulation.

The initial conditions for these simulations are set to be Θ = 20◦ and Φ = 0◦. The behavior
of the system for several values of active weight on bit Π is tested, considering $ = 0◦. This
simulation is performed using the parameters defined in Section 2-2. It can be seen in Figure
2-8 that as the value of Π decreases, as mentioned before, the system begins to oscillate.
The main reason for this to happen, is that the open-loop poles of the system depend on
the composite parameter ηΠ and, as it is shown in [24], as the value of the active weight on
bit decreases, the open-loop poles are moved towards the right-half complex plane. For the
benchmark system under analysis in this research, the value of Π for which the right-most
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Figure 2-8: Open-loop response of the Θ and the Φ for different values of weight on bit Π and
$ = 0◦ (left) and bit walk angle $ and Π = Π̄ = 0.0087 (right).

pole (pair) crosses the imaginary axis is Π = 0.0037 [5]. Furthermore, for high values of Π,
the system exhibits a non-minimum phase response, and this effect is studied in [24]. The
physical explanation of this behavior, is that for high values of ηΠ, the penetration direction
of the bit is mainly affected by the forces originated due to the deformation of the BHA and
not the lateral cutting action of the bit [3]. It is not the purpose of this research to design a
control strategy for systems that show a non-minimum phase behavior, for which this effect
is not taken into account in the open-loop simulations. Finally, one drawback that has been
dealt with in previous publications ([5], [23]) is the sudden change in inclination and azimuth
due to the fast variation of the applied RSS actuator force (which can be seen at ξ = 0 in
Figure 2-8). This produces a kink in the borehole, which has been denoted as a negative
effect in the borehole in Chapter 1, and it was counteracted by means of a low-pass filter.
The results of this simulation with constant RSS actuator force Γ2 = Γ3 = 0.0074 are shown
in Figure 2-8.

Secondly, evaluating the effect of changing the bit walk angle it is clear that having $ 6= 0◦
has much more harmful consequences to the performance of the system. This is due to the
fact that it is related to nonlinear coupling terms in the model. The same kink present when
the RSS force is applied in the previous simulations appears, followed by a spiraling behavior.
When the bit walk angle is not severe, after some oscillations, the inclination and azimuth
starts to grow linearly (i.e., constant curvature is generated). As mentioned before, as the
absolute value of $ increases, the response becomes more oscillating, and in the severe case
of $ = ±40◦, close to instability. It can be seen that there is a symmetric behavior, since
all the terms in which the bit walk angle is present are sine or cosine functions. This could
be insightful for the robust controller design to reduce the range of parameters for which a
robust controller strategy could be designed.

Finally, a simulation where the combined effect of these two parameters is shown. In this
case, the extreme situations (in terms of low weight-on-bit and large bit walk angle) shown
in the previous simulations are considered (i.e., Π = 0.0043 and $ = −40◦), see Figure 2-9.
It can be seen that not only the system shows undamped oscillations caused by the presence
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Figure 2-9: Open-loop simulation for Π = 0.0043 and $ = −40◦.

of a pole at zero [24], but it is also unstable since the response starts growing unbounded,
which can lead to the conclusion that there is a pole in the right-half of the complex plane.

These results highlight the need to develop a strategy, that is able to cope with the variation
of these two parameters along the process. A decrease of the active weight on bit Π may
shift the poles of the system to the right-half of the complex plane, generating higher levels
of oscillations and potentially instability. On the other hand, a small increase in the absolute
value of the bit walk angle$ already generates negative effects on the response, due to the fact
that this parameter is the cause of the nonlinear bidirectional coupling between the inclination
and the azimuth. Borehole spiraling and rippling may become present while drilling, and in
extreme cases dangerous instability may occur.

2-4 Discussion

In this chapter, the model to be used for controller design was described. The interaction
between the main three elements of the description (BHA model, bit/rock interaction and
kinematic relationships between the bit trajectory and the borehole geometry) was introduced
in order to construct the borehole evolution equations, which describe the way the inclination
Θ and the azimuth Φ change with respect to the dimensionless lenght of the borehole ξ.

The resulting MIMO system constitutes a set of nonlinear delay differential equations with
distributed delays. The model contains parameter uncertainty related to what is called the
active weight on bit (Π) and the bit walk angle ($). The system shows bidirectional coupling
between the inclination and the azimuth, due to the presence of terms related to $. It
was explained that if $ = 0, the coupling is only present from the inclination to azimuth
dynamics. This insight, related to the coupling, will be used later to address the controller
design problem in a simpler manner.

Next, a benchmark BHA configuration was described and the parameters that describe the
geometric and dynamic properties of the system were explained. This set of parameters
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reliably represent a real directional drilling system, and will be used later in order to perform
simulations, stability analysis and controller design and tuning.

Finally, this chapter ends with the open-loop simulations of the model. The results corrob-
orate the negative effects present when only constant RSS actuator force is used. First of
all, a decrease on the active weight on bit Π produces oscillations in the response, and can
potentially lead the system to instability. It was also mentioned that high values of this
parameter can generate a non-minimum phase response, although this type of phenomenon
will not be investigated. On the other hand, it was shown that the bit walk angle $ has as
well a negative influence with respect to the desired response of the system. As the absolute
value of this parameter increases, a higher level of oscillations was observed. Also it was seen
that there is a similar behavior between positive and negative values of $. Also, kinking is
present since a sudden change in the RSS force causes that a rapid variation of the inclination
and azimuth in the system. It was shown, that the changes in this parameters produce many
undesired effects, and on extreme cases may even cause instability of the system.
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Chapter 3

Controller design

In this and the following chapter lies the core of this thesis. This chapter is intended to explain
in detail the control strategies to overcome the negative effects present in directional drilling
processes, such as borehole spiraling, rippling and kinking, which were shown to be present
in certain scenarios when only constant RSS actuator force is applied. Section 3-1 aims to
define the specific control objectives of the system (stability, reference tracking, robustness,
disturbance rejection) in order to start developing a strategy. In this section, the problem
is stated in such a way that the overall goal of the developed controller design is to solve a
tracking problem, while relying on measurements of the inclination and azimuth of the BHA
close to the bit only and being able to maintain stability despite uncertainties in the system
parameters.

Section 3-2 describes the elements present in the proposed control structure for the system.
The input decoupling transformation implemented in [5] is applied here as well, but making
the explicit difference between real and estimated states. This process already implies the
inclusion of an observer. A control strategy for this case is proposed, followed by the derivation
of the closed-loop error dynamics. The system is linearized with the purpose of stability
analysis of the closed-loop system and to perform controller synthesis. The stability analysis
leads to a strategy that makes use of the cascaded structure of the sytem dynamics in the case
of zero bit walk. After synthesizing the controller, its effectiveness is tested via simulation.

3-1 Control problem and approach

To start solving the controller design problem, one needs to specify it by means of specific
measurable quantities. In this case, it has been mentioned that the goal is to be able to
drill boreholes with complex geometries, while avoiding undesired effects such as borehole
spiraling, rippling and kinking. This has to be translated into a specific control objective.

This can be stated as a reference tracking problem. Firstly, the trajectory to be tracked has
to be designed, due to the fact that a smooth continuous geometry is needed. This is because
of several reasons; one reason is that if the trajectory is designed with sudden changes of
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inclination or azimuth, this can diminish the quality of the casting process in the borehole.
The trajectory in terms of Θ and Φ is designed to be continuously differentiable with respect
to ξ. We then consider in this study generic trajectories (continuously differentiable) that
potentially go through an entire range of Θ ∈ (0, π2 ] (due to a singularity in the model Θ = 0
can not be properly described) in inclination and Φ ∈ [0, π]. An specific example of this
trajectory is used in Section 3-5. The controller should be able to solve the tracking problem
such that the designed path is an asymptotically stable trajectory of the closed-loop system.
Thereby, instability leading to steady-state borehole spiraling is avoided, while also avoiding
transient oscillations in the borehole geometry.
Regarding the robustness properties of the system, the objectives for the neutral bit walk
model differ from the ones of the non-neutral bit walk model. In both cases, it is desired
that the system remains stable and avoids undesired behavior, despite the uncertainties in
the active weight on bit Π.
Formally stating this, after considering the results of several data analyses performed in [17], it
is considered that a reasonable window of values for the system to be stable is Π ∈ [0.5Π̄, 1.5Π̄],
where Π̄ represents the nominal weight on bit of the system. Since in the neutral bit walk
case the bit walk angle is equal to zero, robustness against this parameter is considered only
for the non-neutral bit walk case, where we consider the objective for the system to remain
stable and avoid undesired effects for $ ∈ [−40◦, 40◦], where $ = ±40◦ represents a rather
extreme scenario. The robust stability analysis of the system is considered in Chapter 4.
After defining the control objectives of the system, the controller design and synthesis is
derived in the following sections of this chapter.

3-2 Controller design

As mentioned before, this section aims to develop a strategy for the neutral bit walk model.
The reason to start the analysis for this case, is that the system only presents coupling from
inclination to the azimuth, contrary to the case when $ 6= 0, where nonlinear coupling terms
appear as well from the azimuth to the inclination. The strategy should rely only on local
measurements of the BHA inclination and azimuth. One should realize that the purpose of
the control strategy is the stabilization of a desired trajectory in terms of the inclination and
azimuth of the borehole, not that of the BHA. Indeed the inclination and azimuth of the BHA
at the bit differ from those of the borehole due to the deflection of the BHA caused by the
RSS force and gravity. Moreover, the inclination and azimuth of the BHA can not even be
measured at the bit but only at some distance behind the bit. In order to cope with these
sensor constraints, we aim to design an observer that estimates the inclination and azimuth
of the borehole based on (the model) and measurements of the inclination and azimuth of the
BHA at some distance behind the bit.
Next, a combined feedforward and feedback control strategy is developed, that employs the
state estimates provided by the observer and asymptotically stabilizes the desired trajectory.
Figure 3-1 depicts the proposed control strategy for the system. Along with the already
mentioned elements of the structure (feedforward, feedback and observer), the strategy makes
use of an input filter in order to deal with the presence of terms related to the derivatives of
the inputs in Equations (2-40). The strategy also proposes the use of a nonlinear decoupling
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Figure 3-1: Control strategy.

transformation in order to be able to design the controllers for the inclination and azimuth
with a certain degree of independence. A high degree of complexity in the equations of the
closed-loop dynamics is expected, especially because of the fact that the terms related to the
derivatives of the inclination and its estimate are affecting the azimuth dynamics. This is
mainly due to the difference between the inclination Θ and its estimate denoted Θ̌. For the
zero bit walk case (as considered here), this complexity vanishes when Θ̌ = Θ. Assuming
that we will be able to design an observer that indeed provides (asymptotically) such correct
estimate of the inclination, the structure of the controller will be designed for the case when
this condition is met. We proceed to explain the elements that build the proposed control
strategy.

Input decoupling transformation. The input transformation in Equation (3-1) is proposed
in order to achieve decoupling of the system between the inclination and azimuth dynamics:

[
Γ∗Θ
Γ∗Φ

]
:=
[
1 0
0 1

sin Θ̌

] [
ΓΘ
ΓΦ

]
, for Θ ∈ (0, π). (3-1)

We denote the estimate of a state using the character (ˇ ). Herein, Θ̌ denotes the estimate
of the inclination Θ of the borehole at the bit, which will be provided by an observer to be
designed later (N.B.: Θ can not be measured).

Note that if Θ̌ = Θ (a perfect estimate), then (3-1) indeed fully decouples the azimuth
dynamics from the inclination dynamics, which simplifies the design of the structure of the
controller and observer. However, in general Θ̌ 6= Θ (at least in transients of the observer)
and the mismatch between Θ and Θ̌ affects the decoupling transformation. Since the input
transformation does not change the structure of the first equation in (2-40), only the second
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equation in (2-40) (the azimuth dynamics) is shown and is given by:

χΠΦ′ =−Mb (Φ− 〈Φ〉1)− MbF1 +M1 (ηΠ− Fb)
ηΠ (〈Φ〉1 − 〈Φ〉2)

+ χ

η
Fb (Φ− Φ1)− χ

η
F1

(
Φ− Φ1 −

Φ1 − Φ2
κ2

)
+
(
χ

η

FrΘ′ cos Θ sin Θ̌
(sin Θ)2 − (MbFr +Mr (ηΠ−Fb)) sin Θ̌

ηΠ sin Θ − χ

η

FrΘ̌′ cos Θ̌
(sin Θ)

)
Γ∗Φ

− χ

η

Fr sin Θ̌
sin Θ Γ∗′Φ , (3-2)

in terms of the states defined in (2-41), the system dynamics after the decoupling input
transformation can be written as:[

x′Θ
x′Φ

]
=
[
A0 0
0 A0

] [
xΘ(ξ)
xΦ(ξ)

]
+
[
A1 0
0 A1

] [
xΘ(ξ1)
xΦ(ξ1)

]
+
[
A2 0
0 A2

] [
xΘ(ξ2)
xΦ(ξ2)

]

+
[
B0Θ 0

0 B0Φ

] [
Γ∗Θ
Γ∗Φ

]
+
[
B1Θ 0

0 B1Φ

] [
Γ∗′Θ
Γ∗′Φ

]
+
[
BW

0

]
, (3-3)

where the matrices and vectors A0, A1, A2, B, B0i, B1i, are given by:

A0 = 1
χΠ

−Mb + χ
η (Fb −F1) Mb −M1 + FbM1−F1Mb

ηΠ M1 + (−FbM1+F1Mb)
ηΠ

χΠ 0 0
0 0 0

 ,

A1 = 1
χΠ


χ
η (F1 + F1

κ2
−Fb) 0 0

−χΠ 0 0
χΠ
κ2

0 0

 , A2 = 1
χΠ

−
χF1
ηκ2

0 0
0 0 0
−χΠ

κ2
0 0

 ,

B0Θ = 1
χΠ

[
−MbFr+(ηΠ−Fb)Mr

ηΠ , 0, 0
]T
, B1Θ = 1

χΠ
[
−χ
ηFr, 0, 0

]T
,

B0Φ = 1
χΠ

[
χ
η
FrΘ′ cos Θ sin Θ̌

(sin Θ)2 − (MbFr+Mr(ηΠ−Fb)) sin Θ̌
ηΠ sin Θ − χ

η
FrΘ̌′ cos Θ̌

(sin Θ) , 0, 0
]T

B1Φ = 1
χΠ

[
−χ
ηFr

sin Θ̌
sin Θ , 0, 0

]T
, B =

[
1 0 0

]T
.

After the input transformation, the output equations in (2-48) and (2-49) are given by:

yΘ = CΘxΘ +DΘΓ∗Θ + EWy, (3-4)

yΦ = CΦxΦ +DΦΓ∗Φ
sin Θ̌
sin Θ , (3-5)

where the gravity related term in yΘ has been renamed to EWy, with Wy := Υ sin〈Θ〉1
to simplify notation. We emphasize again that we consider W and Wy as quasi-constant
disturbances.
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Input filter design. As a next step, we note that in (3-3) both the (transformed) RSS forces
and their derivatives appear. In order to combine the (transformed) RSS force inputs Γ∗i for
i = Θ,Φ and their derivatives, the following transformation is proposed:

Bui = B0iΓ∗i +B1iΓ∗
′
i , (3-6)

where B =
[
1 0 0

]T
and vectors B0i and B1i correspond to the 3 by 1 vectors related to

the inputs of the azimuth and the inclination defined above.

This would fully replace the terms related to Γ∗i , for i = Θ,Φ, and their derivatives in the
dynamics given by (3-3) with Bui. However, it is not possible to use the input filter as in
(3-6) here, since vectors B0Φ and B1Φ depend on Θ, which is not known to the controller,
since it can not be measured. To overcome this, the design of this input filter will be done
for the ideal case when Θ̌ = Θ, i.e.,

Γ∗′i = −MbFr + (ηΠ−Fb)Mr

χΠFr
Γ∗i −

ηΠ
Fr

ui. (3-7)

Herein, ui is a new control input, comprised of the sum of the feedforward and feedback inputs
(which are defined below in this section) given by

ui = vi + uri. (3-8)

The stability of the filters in (3-7) is guaranteed as long as B0i
B1i

> 0. It can be seen that
considering only uncertainty for the weight on bit, this condition is met up to a certain value
of Π = Πnmp. It was proven in [23] that if indeed Π < Πnmp corresponds to the situation
where the system is minimum-phase. From now on, we will only consider the case that this
minimum-phase condition is met. In (3-8), the feedforward input uri is defined based on the
inverse dynamics of the system for a reference trajectory xri, for i = Θ,Φ:

uri = BT (x′ri(ξ)−A0xri(ξ)−A1xri(ξ1)−A2xri(ξ2)). (3-9)

It is important to mention that the gravity-related term in the inclination dynamics (W in
(3-3)), is omitted from the feedforward design since it can be considered as a quasi-constant
(unknown) disturbance, which can be dealt with by implementing integral action in the control
structure. Furthermore, this feedforward is designed again for the case when Θ̌ = Θ. Due to
this simplification of the feedforward design, a (transient) feedforward error is introduced to
the system, which will be taken into account explicitly in the resulting error dynamics later.

If the input filters in (3-7) are substituted in Equation (3-3), then the system dynamics are
given by:[

x′Θ
x′Φ

]
=
[
A0 0
0 A0

] [
xΘ(ξ)
xΦ(ξ)

]
+
[
A1 0
0 A1

] [
xΘ(ξ1)
xΦ(ξ1)

]
+
[
A2 0
0 A2

] [
xΘ(ξ2)
xΦ(ξ2)

]

+

0 0

0 B Fr
ηΠ sin Θ

(
Θ′ cos Θ sin Θ̌

sin Θ − Θ̌′ cos Θ̌
)[Γ∗Θ

Γ∗Φ

]
+
[
B 0
0 B sin Θ̌

sin Θ

] [
uΘ
uΦ

]
+
[
BW

0

]
.

(3-10)

In the case of the inclination dynamics, the input filter successfully makes the terms related
to Γ∗Θ disappear from the equation. On the other hand, in the equation related to the azimuth
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dynamics, one term related to Γ∗Φ remains due to the mismatch between Θ̌ and Θ. Moreover,
in (3-10) there is a nonlinear factor multiplied by input uΦ. If the input filters in (3-7) are
included in the state-space model, the system dynamics can be rewritten as follows:

x′Θ
Γ∗′Θ
x′Φ
Γ∗′Φ

 =


A0 0 0 0
0 −b0 0 0
0 0 A0 Bα(Θ, Θ̌,Θ′, Θ̌′)
0 0 0 −b0



xΘ(ξ)
Γ∗Θ(ξ)
xΦ(ξ)
Γ∗Φ(ξ)

+


A1 0 0 0
0 0 0 0
0 0 A1 0
0 0 0 0



xΘ(ξ1)
Γ∗Θ(ξ1)
xΦ(ξ1)
Γ∗Φ(ξ1)



+


A2 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



xΘ(ξ2)
Γ∗Θ(ξ2)
xΦ(ξ2)
Γ∗Φ(ξ2)

+


B 0
−b1 0

0 B sin Θ̌
sin Θ

0 −b1


[
uΘ
uΦ

]
+


BW

0
0
0

 , (3-11)

where:

b0 = MbFr + (ηΠ−Fb)Mr

χΠFr
, b1 = ηΠ

Fr
,

α(Θ, Θ̌,Θ′, Θ̌′) = Fr
ηΠ sin Θ

(Θ′ cos Θ sin Θ̌
sin Θ − Θ̌′ cos Θ̌

)
. (3-12)

It has to be noticed that α depends on the states Θ and Θ̌, and their derivatives. To simplify
notation, we will write α instead of α(Θ, Θ̌,Θ′, Θ̌′).

State-feedback controller. We define the state feedback controller corresponding to the
input vi as:

z′1i = ζ
[
k1i 0 0

]
ei (3-13)

z′2i = −γz2i + γ(z1i +Kiei) (3-14)
vi = z2i. (3-15)

This controller consists of a static state (in fact, tracking error ei = xi−xri) feedback part, a
low-pass filter and integral action. The low-pass filter is used in order to prevent fast changes
in the response of the system, since these produce what is called kinking. The purpose of
the integral action, is to reject the influence of the gravity related terms in the inclination
dynamics (as they are considered as a quasi-constant disturbance). This feedback controller
is based on the works of [5].

Observer design. Considering the fact that the states can not be measured directly, an
observer needs to be designed in order to support the implementation of the controller in
(3-13)-(3-15). Since the weight of the BHA is taken into account as a quasi-constant distur-
bance, integral action is also added to the observer design. The integral action of the observer
is embedded through the integral filter:

q′i = ζ[l1, l2](yi − y̌i), for i = Θ,Φ. (3-16)
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The observer consists of a model-based (predictor) part and an output-injection part. The
predictor part of the observer is designed by again considering the model under the condition
where Θ = Θ̌. In total, the dynamics of the observer with integral action are given by:


x̌′Θ
q′Θ
x̌′Φ
q′Φ

 =


A0 0 0 0
0 0 0 0
0 0 A0 0
0 0 0 0



x̌Θ(ξ)
qΘ(ξ)
x̌Φ(ξ)
qΦ(ξ)

+


A1 0 0 0
0 0 0 0
0 0 A1 0
0 0 0 0



x̌Θ(ξ1)
qΘ(ξ1)
x̌Φ(ξ1)
qΦ(ξ1)



+


A2 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



x̌Θ(ξ2)
qΘ(ξ2)
x̌Φ(ξ2)
qΦ(ξ2)

+


LΘ(yΘ − y̌Θ)

ζ[l1Θ, l2Θ](yΘ − y̌Θ)
LΦ(yΦ − y̌Φ)

ζ[l1Φ, l2Φ](yΦ − y̌Φ)

+


BqΘ

0
BqΦ

0

+


B(urΘ + vΘ)

0
B(urΦ + vΦ)

0

 ,
(3-17)

where Li is defined as:

Li =

l1i l2i
0 0
0 0

 , (3-18)

and with the output observer equations (taking into account the ideal input decoupling trans-
formation) given by:

y̌Θ = CΘx̌Θ +DΘΓ∗Θ (3-19)
y̌Φ = CΦx̌Φ +DΦΓ∗Φ. (3-20)

In the next section, the elements of this control strategy are used to derive the closed-loop
error dynamics of the system.

3-3 Closed-loop error dynamics

In this section, the complete derivation of the closed-loop error dynamics is provided. The
previously presented elements that build up the proposed control strategy are analyzed and
used to derive the tracking error and observer error dynamics of the system.

Making use of equation (3-11), the error dynamics of the system (with the tracking errors
defined as ei = xi−xri) are obtained in (3-21), using for the feedforward the expression given
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in (3-9) and the control input decomposition ui = uri + vi:


e′Θ
Γ∗′Θ
e′Φ
Γ∗′Φ

 =


A0 0 0 0
0 −b0 0 0
0 0 A0 Bα
0 0 0 −b0



eΘ(ξ)
Γ∗Θ(ξ)
eΦ(ξ)
Γ∗Φ(ξ)

+


A1 0 0 0
0 0 0 0
0 0 A1 0
0 0 0 0



eΘ(ξ1)
Γ∗Θ(ξ1)
eΦ(ξ1)
Γ∗Φ(ξ1)



+


A2 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



eΘ(ξ2)
Γ∗Θ(ξ2)
eΦ(ξ2)
Γ∗Φ(ξ2)

+


B 0
−b1 0

0 B

(
sin Θ̌
sin Θ

)
0 −b1


[
vΘ
vΦ

]
+


0

−b1urΘ
B

(
sin Θ̌
sin Θ − 1

)
urΦ

−b1urΦ



+


BW

0
0
0

 . (3-21)

As a next step, we will introduce also error coordinates for the transformed RSS force inputs.
In order to do so, an input filter as in equation (3-7) is designed based on the feedforward
input

Γ∗′id = −MbFr + (ηΠ−Fb)
χΠFr

Γ∗id −
ηΠ
Fr

uri, (3-22)

where Γ∗id is a desired input of the RSS corresponding to the feedforward input. Then, an error
coordinate for the transformed input Γ∗i can be defined as ∆Γ∗i = Γ∗i − Γ∗id. Then equation
(3-21) can be rewritten as:


e′Θ

∆Γ∗′Θ
e′Φ

∆Γ∗′Φ

 =


A0 0 0 0
0 −b0 0 0
0 0 A0 Bα
0 0 0 −b0



eΘ(ξ)

∆Γ∗Θ(ξ)
eΦ(ξ)

∆Γ∗Φ(ξ)

+


A1 0 0 0
0 0 0 0
0 0 A1 0
0 0 0 0



eΘ(ξ1)

∆Γ∗Θ(ξ1)
eΦ(ξ1)

∆Γ∗Φ(ξ1)



+


A2 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



eΘ(ξ2)

∆Γ∗Θ(ξ2)
eΦ(ξ2)

∆Γ∗Φ(ξ2)

+


B 0
−b1 0

0 B

(
sin Θ̌
sin Θ

)
0 −b1


[
vΘ
vΦ

]
+


0
0

B

(
sin Θ̌
sin Θ − 1

)
urΦ

0



+


BW

0
BαΓ∗Φd

0

 . (3-23)

Using the observer shown in Equation (3-17), we can compute the observer error dynamics
(with the observer errors defined as δi = xi −x̌i, for i = Θ,Φ) and including the integral
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action results in the following equations:


δ′Θ
q′Θ
δ′Φ
q′Φ

 =


A0 − LΘCΘ −B 0 0
ζ[l1Θ, l2Θ]CΘ 0 0 0

0 0 A0 − LΦCΦ −B
0 0 ζ[l1Φ, l2Φ]CΦ 0



δΘ(ξ)
qΘ(ξ)
δΦ(ξ)
qΦ(ξ)

+


A1 0 0 0
0 0 0 0
0 0 A1 0
0 0 0 0



δΘ(ξ1)
qΘ(ξ1)
δΦ(ξ1)
qΦ(ξ1)



+


A2 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



δΘ(ξ2)
qΘ(ξ2)
δΦ(ξ2)
qΦ(ξ2)

+


0
0

B(urΦ + vΦ)
( sin Θ̌

sin Θ − 1
)

0



+


BW − LΘEWy

ζ[l1Θ, l2Θ]EWy(
Bα− LΦDΦ

( sin Θ̌
sin Θ − 1

))
Γ∗Φ

ζ[l1Φ, l2Φ]DΦ( sin Θ̌
sin Θ − 1)Γ∗Φ

 . (3-24)

If now, the observer is combined with the state-feedback controller, the error dynamics can
be obtained, first applying the controller in the following observer-based feedback form:

z′1i = ζ
[
k1i 0 0

]
(x̌i − xri) (3-25)

z′2i = −γz2i + γ(z1i +Ki(x̌i − xri)) (3-26)
vi = z2i, (3-27)

and using the fact that x̌i− xri = ei − δi and Γ∗i = ∆Γ∗i + Γ∗id, the total error dynamics
corresponding to the state vector:

X(ξ) =
[
eTΘ(ξ) ∆Γ∗Θ(ξ) z1Θ(ξ) z2Θ(ξ) δTΘ(ξ) qΘ(ξ) eTΦ(ξ) ∆Γ∗Φ(ξ) z1Φ(ξ) z2Φ(ξ) δTΦ(ξ) qΦ(ξ)

]T
,

are given by:

X ′(ξ) = A0clX(ξ) +A1clX(ξ1) +A2clX(ξ2) + Pcl(urΦ,Γ∗Φd, α,Θ, Θ̌,W ), (3-28)

where matrices A0cl, A1cl, A2cl are given by

A0cl =
[
A0Θ 0

0 A0Φ

]
, A1cl =

[
A1Θ 0

0 A1Φ

]
, A2cl =

[
A2Θ 0

0 A2Φ

]
, (3-29)
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where the system matrices in (3-29) and the vector Pcl are given by:

A0Θ =



A0 0 0 B 0 0
0 −b0 0 −b1 0 0

ζ
[
k1Θ, 0, 0

]
0 0 0 −ζ

[
k1Θ, 0, 0

]
0

γKΘ 0 γ −γ −γKΘ 0
0 0 0 0 A0 − LΘCΘ −B
0 0 0 0 ζ

[
l1Θ, l2Θ

]
CΘ 0


,

A0Φ =



A0 Bα 0 B

(
sin Θ̌
sin Θ

)
0 0

0 −b0 0 −b1 0 0
ζ
[
k1Φ, 0, 0

]
0 0 0 −ζ

[
k1Φ, 0, 0

]
0

γKΦ 0 γ −γ −γKΦ 0

0 Bα− LΦDΦ

(
sin Θ̌
sin Θ − 1

)
0 B

( sin Θ̌
sin Θ − 1

)
A0 − LΦCΦ −B

0 ζ
[
l1Φ, l2Φ

]
DΦ

(
sin Θ̌
sin Θ − 1

)
0 0 ζ

[
l1Φ, l2Φ

]
CΦ 0


,

A1i =



A1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 A1 0
0 0 0 0 0 0


, A2i =



A2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 A2 0
0 0 0 0 0 0


,

Pcl(urΦ,Γ∗Φd, α,Θ, Θ̌,W ) =



BW
0
0
0

BW − LΘEWy

ζ[l1Θ, l2Θ]EWy

B

(
sin Θ̌
sin Θ − 1

)
urΦ +BαΓ∗Φd
0
0
0

B

(
sin Θ̌
sin Θ − 1

)
urΦ +BαΓ∗Φd − LD

(
sin Θ̌
sin Θ − 1

)
Γ∗Φd

ζ
[
l1Φ, l2Φ

]
DΦ

(
sin Θ̌
sin Θ − 1

)
Γ∗Φd



.
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It can be seen that the vector Pcl contains the gravity-related terms, which were not included
in the feedforward design. This terms in Pcl, can be rejected by dedicated integral action.
As well, the other perturbation terms in Pcl vanish if Θ̌ = Θ (i.e., if the inclination observer
error is zero).

3-3-1 Linearization of the error dynamics

The error dynamics in (3-28) will be linearized around an equilibrium point corresponding
to zero tracking and observer errors, i.e., ei = 0 and δi = 0, for i = Θ,Φ. Recall that the
inclination-related errors have been defined as follows:

eΘ =

 eΘ0

e〈Θ〉1
e〈Θ〉2

 :=

 Θ−Θd

〈Θ〉1 − 〈Θ〉1d
〈Θ〉2 − 〈Θ〉2d

 . (3-30)

From this expression, Θ, 〈Θ〉1 and 〈Θ〉2 can be obtained as:

Θ = eΘ0 + Θd, 〈Θ〉1 = e〈Θ〉1 + 〈Θ〉1d, 〈Θ〉2 = e〈Θ〉2 + 〈Θ〉2d. (3-31)

In a similar fashion, the observer errors related to the inclination have been defined as:

δΘ =

 δΘ0

δ〈Θ〉1
δ〈Θ〉2

 :=

 Θ− Θ̌
〈Θ〉1 − 〈Θ̌〉1
〈Θ〉2 − 〈Θ̌〉2

 . (3-32)

Then Θ̌, 〈Θ̌〉1 and 〈Θ̌〉2 can be obtained as:

Θ̌ = eΘ0 + Θd − δΘ0 , 〈Θ̌〉1 = e〈Θ〉1 + 〈Θ〉1d − δ〈Θ〉1 , 〈Θ̌〉2 = e〈Θ〉2 + 〈Θ〉2d − δ〈Θ〉2 . (3-33)

In order to obtain the nominal values for the rest of the states, the values of ei = 0 and δi = 0
are substituted into Equation (3-28). It has to be noticed that the gravity-related term in
the output Equation (3-4) has been omitted from the equilibrium equations. The reasoning
behind this, is that if the influence of this term is considered, the solution of the equilibrium
equations would lead to a point where δΘ 6= 0, which is clearly not desired. Furthermore, in
[24], it has been noted that the influence of this gravity-related term on the measured output
is generally very small. For this reason the gravity-related term Wy appearing in Equation
(3-28) is not considered for controller and observer design system and its effect will be assessed
by means of simulation. When the observer errors δi are zero, the condition Θ̌ = Θ is met,
and by subsequently setting the derivatives to zero we obtain the following set of equilibrium
equations:

0 = BW +Bz2Θ,

0 = −b0∆Γ∗Θ − b1z2Θ,

0 = −γz2Θ + γz1Θ,

0 = BW −Bqθ,
0 = Bz2Φ,

0 = −b0∆Γ∗Φ − b1z2Φ,

0 = −γz2Φ + γz1Φ,

0 = −BqΦ.

(3-34)
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From the set of equations (3-34), the nominal values for z1i, z2i, ∆Γ∗i and qi can be obtained.
With these remarks, the equilibrium values for all the states are given by:

ei = 0,
δi = 0,

z1Θ = −W,
z2Θ = −W,
qΘ = W,

z1Φ = 0,
z2Φ = 0,
qΦ = 0,

∆Γ∗Θ = b1
b0
W

∆Γ∗Φ = 0. (3-35)

We can then introduce the perturbed versions of the states where the equilibrium is not at a
value of zero as follows:

∆z1Θ = z1Θ − (−W )
∆z2Θ = z2Θ − (−W )

∆qΘ = qΘ −W

∆Γ̄∗Θ = ∆Γ∗Θ −
b1
b0
W (3-36)

In order to perform the linearization, the equations are expressed in terms of the error dy-
namics and the observer error dynamics. Furthermore, the terms related to Θ′ and Θ̌′ in α as
defined in (3-12), were substituted by the dynamics in (2-40). Due to the complexity of the
computations involved this was done using the Symbolic Math Toolbox of MATLAB® [30]
according to the following equation:

X̄ ′(ξ) = ∂X ′(ξ)
∂X(ξ)

∣∣∣∣
N

X̄(ξ) + ∂X ′(ξ)
∂X(ξ1)

∣∣∣∣
N

X̄(ξ1) + ∂X ′(ξ)
∂X(ξ2)

∣∣∣∣
N

X̄(ξ2), (3-37)

where the perturbation state vector X̄(ξ) given by:

X̄(ξ) =
[
eTΘ(ξ) ∆Γ̄∗Θ(ξ) ∆z1Θ(ξ) ∆z2Θ(ξ) δTΘ(ξ) ∆qΘ(ξ) eTΦ(ξ) ∆Γ∗Φ(ξ) z1Φ(ξ) z2Φ(ξ) δTΦ(ξ) qΦ(ξ)

]T
,

After linearizing, the system equations are:

X̄ ′(ξ) = Ā0clX̄(ξ) + Ā1clX̄(ξ1) + Ā2clX̄(ξ2), (3-38)

where the linearized matrices Ā0cl, Ā1cl and Ā2cl, are given by:

Ā0cl =
[
Ā0Θ 0
Ā0c Ā0Φ

]
, Ā1cl =

[
Ā1Θ 0
Ā1c Ā1Φ

]
, Ā2cl =

[
Ā2Θ 0
Ā2c Ā2Φ

]
, (3-39)
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and sub-matrices defined as:

Ā0i =



A0 0 0 B 0 0
0 −b0 0 −b1 0 0

ζ
[
k1i, 0, 0

]
0 0 0 −ζ

[
k1i, 0, 0

]
0

γKi 0 γ −γ −γKi 0
0 0 0 0 A0 − LiCi −B
0 0 0 0 ζ

[
l1i, l2i

]
Ci 0


,

Ā0c =



0 0 0 0 p0e1(ξ) p0e2(ξ)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 p0δ1(ξ) p0δ2(ξ)
0 0 0 0 p0q(ξ) 0


,

Ā1i =



A1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 A1 0
0 0 0 0 0 0


, Ā1c =



0 0 0 0 p1e(ξ) 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 p1δ(ξ) 0
0 0 0 0 0 0


,

Ā2i =



A2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 A2 0
0 0 0 0 0 0


, Ā2c =



0 0 0 0 p2e(ξ) 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 p2δ(ξ) 0
0 0 0 0 0 0


,
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and with coefficients given by:

p0e1(ξ) =−B FrΓ∗Φd
ηΠ sin Θd


β1Θd + β2〈Θ〉1d + β3〈Θ〉2d + β4Θ1d + β5Θ2d

( 1
sin Θd

)
+ ...

(−β1 + β2〈Θ〉1d + β3〈Θ〉2d + β4Θ1d + β5Θ2d) cos Θd

− β2 cos Θd

− β3 cos Θd


T

−B


cos Θd
sin Θd

urΦ

0
0


T

,

p0e2(ξ) =−B FrΓ∗Φd
ηΠ sin Θd

cos Θd,

p0δ1(ξ) =−B FrΓ∗Φd
ηΠ sin Θd


β1Θd + β2〈Θ〉1d + β3〈Θ〉2d + β4Θ1d + β5Θ2d

( 1
sin Θd

)
+ ...

(−β1 + β2〈Θ〉1d + β3〈Θ〉2d + β4Θ1d + β5Θ2d) cos Θd

− β2 cos Θd

− β3 cos Θd


T

−B


cos Θd
sin Θd

urΦ

0
0


T

+ LΦDΦ


Γ∗Φd

cos Θd
sin Θd

0
0


T

,

p0δ2(ξ) =−B FrΓ∗Φd
ηΠ sin Θd

cos Θd, p0q(ξ) = −ζΓ∗Φd[l1Φ, l2Φ]DΦ
cos Θd

sin Θd
,

p1e(ξ) =BFrΓ
∗
Φd cos Θd

ηΠ sin Θd

[
β4 0 0

]
, p1δ(ξ) = B

FrΓ∗Φd cos Θd

ηΠ sin Θd

[
β4 0 0

]
,

p2e(ξ) =BFrΓ
∗
Φd cos Θd

ηΠ sin Θd

[
β5 0 0

]
, p2δ(ξ) = B

FrΓ∗Φd cos Θd

ηΠ sin Θd

[
β5 0 0

]
,

where elements βj , for j ∈ {1, 2..., 5}, correspond to the following elements of the matrices
A0, A1 and A2:

β1 = A0(1, 1), β2 = A0(1, 2), β3 = A0(1, 3), β4 = A1(1, 1), β5 = A2(1, 1). (3-40)

Note that, after the linearization the nonlinear perturbation vector Pcl vanishes. The nonlin-
ear elements in this vector depend on Θ and Θ̌. As a result of expressing these two states
in terms of ei and δi, for i = Θ,Φ, after linearizing these terms affect the Ā0c, Ā1c and Ā2c
matrices. Moreover, the partial derivatives of these terms with respect to eΘ are zero, so only
coefficients in these matrices corresponding to the state δΘ appear in the equation.
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3-4 Optimization-based controller and observer tuning

In this section, the controller and observer gains will be synthesized using an optimization-
based, supported by the analysis of the structure of the error dynamics of the system.

3-4-1 Analysis of the structure of the error dynamics

In order to propose an output-based controller design for the system, the structure of the
matrices of equation (3-38) is analyzed in more detail.

First, we note that the main diagonals of Āocl, Ā1cl and Ā2cl in (3-38) have the same structure
for both the inclination and the azimuth dynamics. The matrices Ā0c, Ā1c and Ā2c couple the
azimuth dynamics with the inclination dynamics, but this coupling is only present in terms
of the inclination observer error and the integral action of the inclination observer. This fact
can be used advantageously, since the inclination observer error dynamics does not depend
on the azimuth dynamics. Figure 3-2 depicts a cascaded structure showing how the error
dynamics and the observer error dynamics are interconnected.

As mentioned before, the inclination dynamics are independent from the azimuth dynamics. It
is important to stress this fact since this unilateral coupling is the key element for the stability
analysis in the neutral bit walk case. Considering the inclination-related dynamics (see top
part of Figure 3-2), the error and the observer error dynamics are in a series interconnection,
and this interconnection involves constant (ξ-independent) gain-terms (see the matrix Ā0Θ in
(3-39)), allowing to design controller and observer for the inclination error dynamics separately
due to its linear time-invariant nature, complying with the separation principle.

It is important to analyze the evolution of the signal δΘ, since it perturbs the rest of the
(azimuth) error dynamics, as depicted in Figure 3-2. As stated before, the design for the
observer gain LΘ for the inclination observer can be done independently and the related
inclination observer error dynamics are guaranteed to be asymptotically stable if the poles of
the inclination observer error dynamics are located in the open left-hand side of the complex
plane. On the other hand, the way this signal is interconnected with the blocks related to the
δΦ-dynamics and the eΦ-dynamics is through ξ-dependent terms (namely, the "p(ξ)" terms
in Equation (3-39)). This may render controller design challenging, since these coefficients

Inclination 
observer error 
dynamics

Inclination 
error 
dynamics

Azimuth 
observer error
dynamics Azimuth 

error 
dynamics

δΘ

δΘ

δΦ

eΘ

δΘ

eΦ

Figure 3-2: Cascaded structure of the error dynamics.
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change along the trajectory, which would not allow to take an eigenvalue-based approach
towards stability analysis or as a basis for designing the gains of the azimuth observer and
controller. Despite this fact, the ξ-dependent terms in (3-39) are entirely related to the
designed reference trajectory, meaning that these terms remain bounded according to the
bounded reference trajectory.

If then the combination (product) of the signal coming from the δΘ-dynamics and the ξ-
dependent terms is considered, we use the fact that the δΘ-dynamics are asymptotically
stable (in fact, δΘ eventually converges to zero exponentially) and that the "p(ξ)" terms
are bounded, making the perturbation signals exciting the δΦ-dynamics and the eΦ-dynamics
bounded and converging to zero in an exponential fashion. Another remark is that there is also
coupling (through a ξ-dependent gain term) towards the δΦ-dynamics and the eΦ-dynamics
related to the state qΘ, for which the same argument of, firstly, it being asymptotically stable
(since it corresponds to the observer integral action of the inclination, which also converges
exponentially by design of the inclination observer) and, secondly, the boundedness of the
related coupling term also holds.

In order to guarantee stability of the whole system, it only remains to check the internal
stability of the δΦ-dynamics and the eΦ-dynamics in Figure 3-2. Considering that the pertur-
bation signals are converging to zero exponentially, the stability of these error and observer
error dynamics can be analysed without considering these perturbation terms. This leads to
the same series interconnection found from the δΘ-dynamics to the eΘ-dynamics, allowing to
design once again, controller and observer gains of the azimuth dynamics separately, without
compromising stability of the whole system. An important observation as well, is that the
stability of the linearized system is independent from the actual desired trajectory, as this
only influences the interconnection terms.

After this analysis, it can be concluded that the controller synthesis of gains Ki and Li, for
i = Θ,Φ can be done using an eigenvalue approach as in [23] and [5], for the following isolated
partial error system dynamics:

1. the isolated inclination tracking error dynamics:


e′Θ(ξ)

∆Γ̄∗′Θ(ξ)
∆z′1Θ(ξ)
∆z′2Θ(ξ)

 =


A0 0 0 B
0 −b0 0 −b1

ζ
[
k1Θ, 0, 0

]
0 0 0

γKΘ 0 γ −γ



eΘ(ξ)

∆Γ̄∗Θ(ξ)
∆z1Θ(ξ)
∆z2Θ(ξ)

+


A1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



eΘ(ξ1)

∆Γ̄∗Θ(ξ1)
∆z1Θ(ξ1)
∆z2Θ(ξ1)



+


A2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



eΘ(ξ2)

∆Γ̄∗Θ(ξ2)
∆z1Θ(ξ2)
∆z2Θ(ξ2)

 , (3-41)
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2. the isolated azimuth tracking error dynamics:
e′Φ(ξ)

∆Γ∗′Φ (ξ)
z′1Φ(ξ)
z′2Φ(ξ)

 =


A0 0 0 B
0 −b0 0 −b1

ζ
[
k1Φ, 0, 0

]
0 0 0

γKΦ 0 γ −γ



eΦ(ξ)

∆Γ∗Φ(ξ)
z1Φ(ξ)
z2Φ(ξ)

+


A1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



eΦ(ξ1)

∆Γ∗Φ(ξ1)
z1Φ(ξ1)
z2Φ(ξ1)



+


A2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



eΦ(ξ2)

∆Γ∗Φ(ξ2)
z1Φ(ξ2)
z2Φ(ξ2)

 , (3-42)

3. the isolated inclination observer error dynamics:[
δ′Θ(ξ)

∆q′Θ(ξ)

]
=
[
A0 − LΘCΘ −B
ζ
[
l1Θ, l2Θ

]
CΘ 0

] [
δΘ(ξ)

∆qΘ(ξ)

]
+
[
A1 0
0 0

] [
δΘ(ξ1)

∆qΘ(ξ1)

]

+
[
A2 0
0 0

] [
δΘ(ξ2)

∆qΘ(ξ2)

]
, (3-43)

4. the isolated azimuth tracking error dynamics:[
δ′Φ(ξ)
q′Φ(ξ)

]
=
[
A0 − LΦCΦ −B
ζ
[
l1Φ, l2Φ

]
CΦ 0

] [
δΦ(ξ)
qΦ(ξ)

]
+
[
A1 0
0 0

] [
δΦ(ξ1)
qΦ(ξ1)

]
+
[
A2 0
0 0

] [
δΦ(ξ2)
qΦ(ξ2)

]
.

(3-44)

Asymptotic stability can be achieved if gains Ki and Li, for i = Θ,Φ are chosen in such way
that the poles of (3-41), (3-42), (3-43) and (3-44) are in the open left-half of the complex plane.
If only stability is considered as a requirement, one could use the same design and tuning
procedure for the controller and observer gains of the azimuth and inclination dynamics.
Despite the fact that asymptotic stability can be ensured this way, the transient performance
of the system could not be adequate, since the initial observer errors could cause a high level
of transient oscillations in the tracking errors (causing transient borehole spiraling).

In order to cope with this initial estimation error in a way favorable for transient performance,
it is proposed to use the available measurements of the BHA orientation close to the bit
as initial values for the observer dynamics. These measurements are given by the output
equations in (2-48) and (2-49). Additionally, in order to avoid undesired transients, the
controller and observer gains (for both the inclination and azimuth dynamics) are designed
differently, making sure that the observer dynamics converge faster than the tracking error
dynamics.

3-4-2 Controller synthesis

Although the structure of the controller has already been designed, it remains to design
the parameters of the controller, observer, integral-action and low-pass filter gains. The
asymptotic stability of the linearized system is guaranteed as long as the closed-loop poles
are located in the open left-hand side of the imaginary axis in the complex plane. In other
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words, for the system to be asymptotically stable, the following conditions have to be met
(for corresponding isolated error systems (3-41), (3-42), (3-43) and (3-44)):

max
j∈[1,2,...,∞]

{Re(λjKΘ(KΘ, ζ, γ))} < 0, (3-45)

max
j∈[1,2,...,∞]

{Re(λjKΦ(KΦ, ζ, γ))} < 0, (3-46)

max
j∈[1,2,...,∞]

{Re(λjLΘ(LΘ, ζ))} < 0, (3-47)

max
j∈[1,2,...,∞]

{Re(λjLΦ(LΦ, ζ))} < 0, (3-48)

where λjKi(Ki, ζ, γ) and λjLi(Li, ζ) for i = Θ,Φ represent the j-th closed-loop pole of the
isolated error systems corresponding to the controller and observer dynamics, respectively.
Furthermore, the transient response of the isolated system becomes faster if the poles are
located further to the left in the complex plane. In order to obtain specific values for the
controller and observer gains, based on the conditions given by (3-45), (3-46), (3-47) and
(3-48), we can formulate an optimization problem consisting on minimizing the following
objective functions:

J1 = max
j∈[1,2,...,∞]

{Re(λjKΘ(KΘ, ζ, γ))}, (3-49)

J2 = max
j∈[1,2,...,∞]

{Re(λjKΦ(KΦ, ζ, γ))}, (3-50)

J3 = max
j∈[1,2,...,∞]

{Re(λjLΘ(LΘ, ζ))}, (3-51)

J4 = max
j∈[1,2,...,∞]

{Re(λjLΦ(LΦ, ζ))}, (3-52)

corresponding to isolated systems (3-41), (3-42), (3-43) and (3-44), respectively. These four
independent non-smooth optimization problems can be solved using a gradient-sampling al-
gorithm [23]. This algorithm can be implemented via the MATLAB® toolbox given in [31],
which also allows to optimize the location of the real part of the right-most pole. Despite
this fact, the evaluation of the objective functions in (3-49), (3-50), (3-51) and (3-52) can be
computationally expensive. In order to reduce the effort, the gains of the integral action ζ and
the low-pass filter γ are fixed for each iteration. This can be done since the control objectives
that these gains pursue are on a different "length" scale than those of the state-feedback and
observer gains [5]. Specifically, in the case of the integral action, its purpose is to counteract
the effects of gravity (which is being considered as a quasi-constant disturbance) in both the
error and the observer error dynamics, implying that its influence varies slowly with respect
to the borehole evolution along the length. On the other hand, the low-pass filter pursues
the objective to avoid aggressive responses against initial errors, preventing borehole kinking.
The selection of these gains will be done in an iterative process until the desired performance
is reached.

It has to be kept in mind that, since the inclination observer dynamics have to converge
faster than the rest of the dynamics of the system, the location of its right-most pole has to
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be chosen further into the left-half complex plane than for the rest of the rest of the dynamics
of the system; this will be explained in more detail in the next section.
The stopping criterion for the optimization routine will be the location of the right-most pole
of each of the isolated error systems (3-41), (3-42), (3-43) and (3-44). In order to propose the
values of these right-most poles for the optimization problem to compute the corresponding
controller and observer gains, a time (’length’) scale for the convergence of δi and ei for
i = [Θ,Φ], based on the cascaded structure of Figure 3-2 is introduced. The determining
dynamics of the cascaded structure are given by the δΘ block. Because of this, it has been
decided to set these dynamics as the fast converging dynamics. As long as the rest of the
elements in the structure have a slower convergence, the inclination observer will not lead to
large transients in the other dynamics (regarding δΦ, eΘ and eΦ) which would invalidate the
assumptions motivating the stability analysis based on linearization. On the other hand, δΦ
has to be faster than eΦ, so it is placed in a medium length scale. For the error dynamics
eΘ and eΦ, the choice can be made to set eΘ in the same medium length scale as δΦ and to
set eΦ in a slow time scale (since inclination does not depend on the azimuth). It has been
decided to keep eΘ and eΦ on the same slow length scale to have a similar behavior for both
Θ and Φ.

3-5 Simulation Results

Table 3-1 shows the values designed for the low-pass filter and integral part fixed for the
optimization, as well as the value of the real part of the right-most pole and its corresponding
feedback and observer gains designed using the optimization-based approach discussed above.

Table 3-1: Parameters for controller gains.

Gain Objective right-most pole location Feedback values γ ζ

eΘ -0.6 KΘ =
[
−6310 −2571 1288

]
0.8 0.5

δΘ -0.9 LΘ =


1014 3299

0 0

0 0

 0 0.5

eΦ -0.6 KΦ =
[
−2146 −1050 524

]
0.8 0

δΦ -0.7 LΦ =


−48.5 2555

0 0

0 0

 0 0.3

The most critical values to be designed are the ones corresponding to the inclination observer
error δΘ, since all of the dynamics are in a series interconnection with its states. It can be
seen that the real part of the right-most pole is chosen to be the furthest from the imaginary
axis (at real -0.9), in order to have a faster convergence. It has to be considered as well,
that if the poles are pushed too much to the left, this could result in high observer gains,
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Figure 3-3: Closed-loop poles of the four different isolated error systems for the neutral bit walk
system for ηΠ = 0.261.

which could potentially amplify the effect of disturbances such as noise or model uncertainty.
The integrator value for the observer is chosen to be the same as the one for the tracking
controller, since it is also counteracting the effect of gravity related terms. It has been chosen
to not implement a low-pass filter in both observers, since its function is to avoid fast changes
in the response, which is not a problem in the estimation error. The low-pass filter gains
are kept the same for both the inclination and azimuth tracking error dynamics. As for
the integral part of the azimuth error eΦ, it has been decided to take the parameter ζ of the
tracking error dynamics as zero, since there are no gravity terms affecting these dynamics and
implementing it would only slow down the response of the controller, potentially generating
a bigger overshoot. On the other hand, due to initial estimation error (despite the fact that
available measurements are used), the observer error δΦ could be disturbed by the observer
error of the inclination δΘ. To account for this effect, the integral action is kept for the azimuth
observer, in order to slow down the influence of this perturbation. This is implemented in both
the controller an observer of the azimuth, although with a smaller value, since the disturbance
to be rejected is of a different type.

Figure 3-3 shows the union of the closed-loop poles of the isolated systems (3-41), (3-42),
(3-43) and (3-44) after implementing the controller gains of Table 3-1. The right-most pole
(poles at the origin are not considered since they are introduced by the state description [23])
is at -0.6195, which is indeed below the chosen maximum value for the right-most poles of
the error dynamics.

As mentioned in Section 3-1, the objective of this controller is to be able to track a desired
trajectory. The proposed reference trajectory is the same as in [5], since it is considered
to represent a real desired borehole geometry, and as long as the trajectory possesses the
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Figure 3-4: Desired borehole geometry and trajectory to be tracked.

properties mentioned in Section 3-1, there will be no loss of generality since the proposed
control strategy should be able to solve the reference tracking for any path. The desired
trajectory is given by

Θr(ξ) = 0.0349, Φr(ξ) = 1.75, ξ ∈ [0, 40],
Θr(ξ) = 0.649− 0.0307ξ + 3.8 · 10−4ξ2, Φr(ξ) = 1.05 + 0.0349ξ − 4.4 · 10−4ξ2, ξ ∈ [40, 60],
Θr(ξ) = −0.733 + 0.0154ξ, Φr(ξ) = 2.62− 0.0175ξ, ξ ∈ [60, 140],
Θr(ξ) = −8.26 + 0.123ξ − 3.8 · 10−4ξ2, Φr(ξ) = 11.2− 0.140ξ + 4.4 · 10−4ξ2, ξ ∈ [140, 160],
Θr(ξ) = 1.57, Φr(ξ) = 0, ξ ∈ [160, 200].

(3-53)

This corresponds to the geometry described in Figure 3-4. The inclination trajectory starts at
Θ = 1◦, this represents an angle close to the vertical (due to a singularity in the model at Θ =
0◦ straight vertical boreholes can not be properly described using this angle parametrization
of rotation). It is followed by a linearly increasing reference in Θ, until ξ = 150, where it
becomes a constant inclination of 90◦. The azimuth starts from a constant reference, followed
by a linearly increasing trajectory, and finally reaching Φ = 0◦. This could represent a typical
three-dimensional borehole geometry, since there are changes of direction in the two planes
that correspond to the azimuth and inclination dynamics and a full transition from a (near)
vertical borehole to a horizontal borehole are represented.

The controller will be tested for several initial conditions, since its behavior could be sensitive
to initial errors in the observer. The first measurements of the (inclination and azimuth)
sensors measuring the orientation of the BHA some distance back from the bit, are taken into
account to improve the transient response. This is done by first simulating the system for
one time step (with sampling length ξs = 0.0005), and obtaining the first entry of the output
vectors given by Equations (2-48) and (2-49), which are used as initial conditions for the ob-
server dynamics. The system will be tested for the initial conditions Θ(0) = {1◦, 10◦, 20◦} and
Φ(0) = {100◦, 90◦, 80◦}. Additionally, the gravity-related terms are considered in simulation
for the system dynamics and the output equations (i.e., W and Wy terms). Figure 3-5 shows
the inclination and azimuth response for each set of initial conditions.
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Figure 3-5: Inclination and azimuth responses of the system for ηΠ = 0.261.

Despite the fact that the initial condition does affect the transient at the beginning of the
response, the controller is able to track the trajectory close to the reference. Also, the influence
of the initial condition on the applied RSS force has to be considered, this is depicted in Figure
3-6.

The influence of the initial condition is clearly seen as well when the RSS begins to be applied,
for both the inclination and the azimuth. This is related to the fact that although the initial
conditions for the observers are taken from the measurements on the BHA orientations, as you
start further away from the reference, the RSS has to apply more force in order to compensate
for that initial error. Finally, the tracking and observer errors are shown in Figure 3-7, up to
ξ = 25 since at that (dimensionless) distance the error already converged (close) to zero.

The error for both the inclination and the azimuth reaches steady state at approximately
ξ = 10 (equivalent to 2.73 meters), this result complies with a fast enough response in order
to drill a complex borehole geometry. The behavior of the observer is as expected in the case of
the inclination. It can be noticed that there is an increment of the initial observer error as the
initial condition starts further from the reference trajectory. This can be explained considering
the location of the sensors. If we consider a completely straight (either vertical or horizontal)
borehole, the orientation being read from the sensors will be the same as the orientation of the
borehole. On the other hand, if a curved geometry of the borehole is considered, measurement
errors will become present, since they are located in "delayed" locations from the bit and on
the BHA. Particularly, the difference between the measurements coming from the output
equations of yΘ and yΦ in (2-48) and (2-49) and the actual borehole inclination and azimuth
Θ and Φ will increase if the curvature increases.

On the other hand, the observer error dynamics of the azimuth show a particular behavior. It
can be seen, that in the case of the initial condition Θ0 = 20◦ and Φ0 = 80◦, the error is much
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Figure 3-6: Scaled (left) and real (right) RSS applied to the system for ηΠ = 0.261.

bigger in comparison with the other two sets of initial conditions. This could be explained,
since the system was linearized to work around ei = 0 and δi = 0, and the nonlinear terms were
all related to the difference between Θ and Θ̌. If there is a big enough difference between these
two variables, the linearized system will no longer be valid and this could generate estimation
errors.
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Figure 3-7: Tracking (left) and observer(right) error dynamics for different initial conditions.
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Furthermore, besides having to deal with its own initial estimation error, the error in δΘ
also affects the azimuth observer until it reaches zero as shown in the nonlinear dynamic
equations (3-28). It can be seen as well, that there are initial fast transients in the observer
error dynamics of the azimuth, which can also be explained with the fact that both the initial
estimation errors of the inclination and the azimuth affect the dynamics of δΦ, and it can be
seen that as the dynamics of δΘ approach steady state this transients become smaller and
less aggressive.

3-6 Discussion

Several conclusions can be drawn from this chapter. After stating the nature of the refer-
ence tracking problem, the approach taken was to derive the closed-loop error dynamics, to
subsequently linearize the system around an operation point corresponding to an equilibrium
where the tracking errors and the observer errors were all equal to zero. This is a reasonable
assumption, considering several facts. First of all the initial conditions can not be far from
this condition, since it is set to drill based on a already designed trajectory. This means that
the operators can orientate the bit close to the initial direction in the trajectory. In order
to reduce initial estimation errors, we considered the first measurement of the BHA orien-
tation in order to provide the initial condition of the observer. Furthermore, if appropriate
state-feedback control gains are synthesized, the error will remain around the equilibrium
point.

The linearized system was used to perform stability analysis and to subsequently propose
a control strategy making use of a cascaded structure of the tracking and observer error
dynamics that included the effects for both the inclination and azimuth dynamics, and their
interconnections for the neutral bit walk case. This structure was used advantageously to
perform controller synthesis, based on the spectral analysis of the location of the closed-
loop poles of the linearized system in order to guarantee stability and provide a desired
performance.

Ultimately, time domain simulations were performed in other to test the performance of
the proposed strategy in a realistic scenario, corresponding to the benchmark system used in
Chapter 2 for open-loop simulations. It was shown that the system is able to track a reference
trajectory, while avoiding undesired effects such as borehole spiraling, rippling or kinking.
Moreover, the strategy was tested for different initial conditions, where the implemented
controller managed to fulfill the reference tracking objectives, even for extreme scenarios
where the initial conditions are significantly far from the reference trajectory (i.e., eΘ(0) = 19◦,
eΦ(0) = −20◦).

A control strategy which only makes use of local measurements of the BHA orientation, which
is able to track complex borehole geometries while avoiding undesired behavior was developed.
In the next chapter, this control strategy is extended to be able to cope with uncertainty in
the active weight on bit Π.
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Chapter 4

Robust stability analysis and controller
design

An important aspect for controller design is the robustness of the control strategy against
uncertainties in the parameters of the model. In the case of a directional drilling system, there
are two main parameters that can be considered to be uncertain: the active weight on bit Π
and the bit walk angle $. In the case of Π, this uncertainty is related to different factors. In
particular, changes in the applied hook-load, the uncertainty in the drag force interaction of
the drillstring with the borehole, and the decrease of sharpness of the bit and the rock layer
properties as the trajectory evolves are some of the factors that may affect the value of this
parameter. It has to be mentioned that all of these changes are usually considered to influence
the fluctuation of Π slowly (i.e., at a large length scale) with respect to the dominant length
scale relevant to the closed-loop dynamics. Hence, Π can be considered uncertain, though
constant. Regarding the bit walk angle $: this parameter is present in the process due to its
3D nature, being one of the main factors that causes undesired behaviors such as borehole
spiraling. This parameter is not based only on properties of the system, but it is also affected
by the orientation of the bit (which is generally not known) and borehole over-gauging [32].
These effects may cause variation on this parameter as the borehole trajectory evolves, which
is why it can be considered as uncertain. The effect of this parameter will be analyzed by
means of simulation, since the terms related to this parameter add nonlinear effects and
coupling to the already complex dynamics of the system. At first, the bit walk angle will be
considered as constant and equal to zero, therefore the analysis in this section will first focus
on the uncertainty in Π.
The controller design of Chapter 3 was based on a nominal value of weight on bit Π. To
test if the designed strategy is able to cope with the uncertainty of this parameter, it will
be considered as Π = Π̄ + δΠ, where Π̄ represents the nominal value of weight on bit, Π the
actual weight on bit and δΠ the uncertainty on the weight on bit.
This chapter starts with the derivation of the closed-loop error dynamics accounting for the
uncertainty on the active weight on bit Π and in the same manner as in the nominal case,
we provide a linearization of the system for stability analysis and controller design. Secondly,
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making use of the previous analysis, we go in detail about the robust controller design strategy
that was implemented to the system and finally, we test the developed control strategy by
means of simulation for two different scenarios: neutral and non-neutral bit walk tendency.

4-1 Error dynamics for robust stability analysis and controller de-
sign

The error dynamics of the system are derived once again, since the uncertainty of the pa-
rameter Π affects the error dynamics (since the real dynamics depend on Π, while in the
controller/observer we can only employ knowledge on Π̄). Recalling Equation (3-3), the
dynamics of the system are given by

[
x′Θ
x′Φ

]
=
[
A0 0
0 A0

] [
xΘ(ξ)
xΦ(ξ)

]
+
[
A1 0
0 A1

] [
xΘ(ξ1)
xΦ(ξ1)

]
+
[
A2 0
0 A2

] [
xΘ(ξ2)
xΦ(ξ2)

]

+
[
B0Θ 0

0 B0Φ(Θ, Θ̌,Θ′, Θ̌′)

] [
Γ∗Θ
Γ∗Φ

]
+
[
B1Θ 0

0 B1Φ(Θ, Θ̌)

] [
Γ∗′Θ
Γ∗′Φ

]
+
[
BW

0

]
, (4-1)

and with output equations given by:

yΘ = CΘxΘ +DΘΓ∗Θ + EWy, (4-2)

yΦ = CΦxΦ +DΦΓ∗Φ
sin Θ̌
sin Θ . (4-3)

Herein matrices A0, A1, A2, B0i, B1i, Ci and Di for i = Θ,Φ defined the same as in (3-3),
evaluated at Π = Π̄ + δΠ. It has to be noted that matrices B0Φ and B1Φ are kept in the
formulation of the dynamics in (4-1) (i.e., not introducing the α term) and have a dependency
with respect to Θ, Θ̌, Θ′ and Θ̌′. From here on, this dependency is not made explicit.

As before, an input filter is introduced as follows:

Γ∗′i = −b̄0Γ∗i − b̄1ui, (4-4)

where b̄0 and b̄1 are defined as in (3-12) and evaluated at Π̄. An important remark is that
this input filter will not be able to eliminate the Γ∗i -related terms (not even in the case of the
inclination dynamics), due to the difference between nominal matrices B̄0i and B̄1i and their
real counterparts. The system dynamics can be derived (using the actual versions of the state
matrices), by applying the input filter and including Γ∗i as a state of the system as follows:
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x′Θ
Γ∗′Θ
x′Φ
Γ∗′Φ

 =


A0 (B0Θ −B1Θb̄0) 0 0
0 −b̄0 0 0
0 0 A0 (B0Φ −B1Φb̄0)
0 0 0 −b̄0



xΘ(ξ)
Γ∗Θ(ξ)
xΦ(ξ)
Γ∗Φ(ξ)

+


A1 0 0 0
0 0 0 0
0 0 A1 0
0 0 0 0



xΘ(ξ1)
Γ∗Θ(ξ1)
xΦ(ξ1)
Γ∗Φ(ξ1)



+


A2 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



xΘ(ξ2)
Γ∗Θ(ξ2)
xΦ(ξ2)
Γ∗Φ(ξ2)

+


−B1Θb̄1 0
−b̄1 0

0 −B1Φb̄1
0 −b̄1


[
uΘ
uΦ

]
+


BW

0
0
0

 . (4-5)

The feedforward input can be now defined as:

uri = BT (x′ri(ξ)− Ā0xri(ξ)− Ā1xri(ξ1)− Ā2xri(ξ2)). (4-6)

This feedforward input can be utilized to define once again a desired input Γ∗id as in Equation
(3-22) and to define an error coordinate ∆Γ∗i . Then, the error dynamics can be defined as in
(4-7) below, using the fact that xi = ei + xri.


e′Θ

∆Γ∗′Θ
e′Φ

∆Γ∗′Φ

 =


A0 (B0Θ −B1Θb̄0) 0 0
0 −b0 0 0
0 0 A0 (B0Φ −B1Φb̄0)
0 0 0 −b0



eΘ(ξ)

∆Γ∗Θ(ξ)
eΦ(ξ)

∆Γ∗Φ(ξ)



+


A1 0 0 0
0 0 0 0
0 0 A1 0
0 0 0 0



eΘ(ξ1)

∆Γ∗Θ(ξ1)
eΦ(ξ1)

∆Γ∗Φ(ξ1)

+


A2 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



eΘ(ξ2)

∆Γ∗Θ(ξ2)
eΦ(ξ2)

∆Γ∗Φ(ξ2)



+


−B1Θb̄1 0
−b̄1 0

0 −B1Φb̄1
0 −b̄1


[
vΘ
vΦ

]
+


(−B −B1Θb̄1)

0
(−B −B1Φb̄1)

0


[
urΘ
urΦ

]
+


FpΘ

0
FpΦ

0

 , (4-7)

where the perturbation terms FpΘ and FpΦ are defined as:

FpΘ = (B0Θ −B1Θb̄0)Γ∗Θd + ∆A0xrΘ(ξ) + ∆A1xrΘ(ξ1) + ∆A2xrΘ(ξ2) +BW, (4-8)
FpΦ = (B0Φ −B1Φb̄0)Γ∗Φd + ∆A0xrΦ(ξ) + ∆A1xrΦ(ξ1) + ∆A2xrΦ(ξ2), (4-9)

and where ∆At = At−Āt for t = 0, 1, 2. Then, the state feedback controller vi is implemented
in the same way as in (3-25), (3-26) and (3-27), i.e,

z′1i = ζ
[
k1i 0 0

]
(x̌i − xri), (4-10)

z′2i = −γz2i + γ(z1i +Ki(x̌i − xri)), (4-11)
vi = z2i. (4-12)
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Accounting for the observer design, the same integral action will be included and defined as
in (3-16), namely,

q′i = ζ[l1i, l2i](yi − y̌i).

Then, the observer dynamics can be defined as:


x̌′Θ
q′Θ
x̌′Φ
q′Φ

 =


Ā0 0 0 0
0 0 0 0
0 0 Ā0 0
0 0 0 0



x̌Θ(ξ)
qΘ(ξ)
x̌Φ(ξ)
qΦ(ξ)

+


Ā1 0 0 0
0 0 0 0
0 0 Ā1 0
0 0 0 0



x̌Θ(ξ1)
qΘ(ξ1)
x̌Φ(ξ1)
qΦ(ξ1)

+


Ā2 0 0 0
0 0 0 0
0 0 Ā2 0
0 0 0 0



x̌Θ(ξ2)
qΘ(ξ2)
x̌Φ(ξ2)
qΦ(ξ2)



+


LΘ(yΘ − y̌Θ)

ζ[l1Θ, l2Θ](yΘ − y̌Θ)
LΦ(yΦ − y̌Φ)

ζ[l1Φ, l2Φ](yΦ − y̌Φ)

+


BqΘ

0
BqΦ

0

+


B(urΘ + vΘ)

0
B(urΦ + vΦ)

0

 , (4-13)

and with corresponding output equations

y̌Θ = C̄Θx̌Θ + D̄ΘΓ∗Θ, (4-14)
y̌Φ = C̄Φx̌Φ + D̄ΦΓ∗Φ. (4-15)

Since matrices Ci and Di differ from their nominal versions (C̄i and D̄i), the description for
the derivatives of the states of the integral action for both inclination and azimuth are defined
by (after substituting the output equations and considering the fact that x̌i = ei + xri − δi):

q′Θ = ζ[l1Θ, l2Θ](∆CΘeΘ + ∆CΘxrΘ + ∆DΘ∆Γ∗Θ + ∆DΘΓ∗Θd + C̄ΘδΘ + EWy), (4-16)

q′Φ = ζ[l1Φ, l2Φ](∆CΦeΦ + ∆CΦxrΦ +DΦ(∆ΓΦ + Γ∗Φd)∗
sin Θ̌
sin Θ − D̄Φ(∆Γ∗Φ + Γ∗Φd) + C̄ΦδΦ),

(4-17)

where ∆Di = Di − D̄i and ∆Ci = Ci − C̄i, for i = Θ,Φ. Now, the observer error dynamics
can be obtained. The main difference is that, in this case, due to model uncertainty, the
observer dynamics are not decoupled from the system dynamics (not even for the inclination
dynamics). The complete system closed-loop error dynamics (for state vector X(ξ) defined
as in (3-28)) are given by

X ′(ξ) =A0clX(ξ) +A1clX(ξ1) +A2clX(ξ2)+
Pcl(urΘ, urΦ,Γ∗Θd,Γ∗Φd, xrΘ(ξ), xrΘ(ξ1), xrΘ(ξ2), xrΦ(ξ), xrΦ(ξ1), xrΦ(ξ2),Θ, Θ̌,W,Wy),

(4-18)

where:

A0cl =
[
A0Θ 0

0 A0Φ

]
, A1cl =

[
A1Θ 0

0 A1Φ

]
, A2cl =

[
A2Θ 0

0 A2Φ

]
, (4-19)
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where the system matrices in (4-19) and the vector Pcl(ξ, ξ1, ξ2,Θ, Θ̌,W,Wy) (where all the
dependencies on terms related to desired trajectory have been expressed by dependencies on
ξ, ξ1 and ξ2) are given by

A0Θ =



A0 (B0Θ −B1Θb̄0) 0 −B1Θb̄1 0 0

0 −b̄0 0 −b̄1 0 0

ζ

[
k1Θ, 0, 0

]
0 0 0 −ζ

[
k1Θ, 0, 0

]
0

γKΘ 0 γ −γ −γKΘ 0

(∆A0 − LΘ∆CΘ) (B0Θ −B1Θb̄0 − LΘ∆DΘ) 0 (−B −B1Θb̄1) Ā0 − LΘC̄Θ −B

ζ

[
l1Θ, l2Θ

]
∆CΘ ζ

[
l1Θ, l2Θ

]
∆DΘ 0 0 ζ

[
l1Θ, l2Θ

]
C̄Θ 0



,

A0Φ =



A0 (B0Φ −B1Φb̄0) 0 −B1Φb̄1 0 0

0 −b̄0 0 −b̄1 0 0

ζ

[
k1Φ, 0, 0

]
0 0 0 −ζ

[
k1Φ, 0, 0

]
0

γKΦ 0 γ −γ −γKΦ 0

(∆A0 − LΦ∆CΦ) (B0Φ −B1Φb̄0 − LΦ(DΦ
sin Θ̌
sin Θ − D̄Φ)) 0 (−B −B1Φb̄1) Ā0 − LΦC̄Φ −B

ζ

[
l1Φ, l2Φ

]
∆CΦ ζ

[
l1Φ, l2Φ

]
(DΦ

sin Θ̌
sin Θ − D̄Φ) 0 0 ζ

[
l1Φ, l2Φ

]
C̄Φ 0



,

A1i =



A1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∆A1 0 0 0 Ā1 0
0 0 0 0 0 0


, A2i =



A2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∆A2 0 0 0 Ā2 0
0 0 0 0 0 0


,
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Pcl(ξ, ξ1, ξ2,Θ, Θ̌,W,Wy) =



FpΘ + (−B −B1Θb̄1)urΘ
0
0
0

FrΘ + (−B −B1Θb̄1)urΘ
ζ
[
l1Θ, l2Θ

]
(∆CΘxrΘ + ∆DΘΓ∗Θd + EWy)

FpΦ + (−B −B1Φb̄1)urΦ
0
0
0

FrΦ + (−B −B1Φb̄1)urΦ
ζ
[
l1Φ, l2Φ

]
(∆CΦxrΦ + (DΦ

sin Θ̌
sin Θ − D̄Φ)Γ∗Φd)



.

The expressions for Fri, for i = Θ,Φ are given by

FrΘ =(B0Θ −B1Θb̄0 − LΘ∆DΘ)Γ∗Θd + (∆A0 − LΘ∆CΘ)xrΘ(ξ) + ∆A1xrΘ(ξ1)
+ ∆A2xrΘ(ξ2) +BW − LΘEWy, (4-20)

FrΦ =
(
B0Φ −B1Φb̄0 − LΦ

(
DΦ

sin Θ̌
sin Θ − D̄Φ

))
Γ∗Φd + (∆A0 − LΦ∆CΦ)xrΦ(ξ)

+ ∆A1xrΦ(ξ1) + ∆A2xrΦ(ξ2), (4-21)

where ∆A0 = A0 − Ā0, ∆A1 = A1 − Ā1 and ∆A2 = A2 − Ā2.

4-1-1 Linearization of the error dynamics with uncertain weight on bit

Following the same design process as in the nominal case, the linearization of the system will
be performed at an equilibrium point, writing all the evolution equations in terms of the errors
ei and δi, for i = Θ, Φ. While linearizing, additional difficulties are encountered due to the
fact that for the robust case, the equilibrium is not at ei = 0 and δi = 0. The latter is caused
by the fact that vector Pcl does not vanish for ei = δi = 0 due to the presence of parameter
uncertainty (among other effects, this causes the feedforward to be inexact, which leads to
non-constant perturbations related to the ξ-dependent desired trajectory). This problem is
approached in two ways: firstly, by considering the same "equilibrium" point as in the nominal
case and secondly, by finding the (quasi-)equilibrium point at different locations along the
desired trajectory, thereby obtaining quasi-static solutions for the equilibrium equations.

Prior to performing the linearization, it is important to recall the dependencies of the terms in
the system matrices with respect to the states, to have a clear view of where coupling terms
may appear. In the case of the inclination, the state matrices and vectors are linear and
dependent on constant (uncertain) terms, meaning that these terms will remain the same.
On the contrary, vectors B0Φ and B1Φ are dependent on states of the inclination dynamics.
Let us first analyze B0Φ, which contains elements in terms of Θ, Θ̌, Θ′ and Θ̌′. As in (3-31)
and (3-33), Θ and Θ̌ can be expressed in terms of eΘ and δΘ. In the case of the derivatives,
this need to be substituted from the system dynamics in Equation (2-40), for the case with
uncertain weight on bit Π. For notational coherence, we denote these vectors corresponding
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to the system where nominal weight on bit Π̄ a B̄0Φ and B̄1Φ and we consider the real ones
without the (¯) symbol. The dependencies of vectors B0Φ and B1Φ can then be expressed in
terms of the states of the system as:

B0Φ(eΘ(ξ), eΘ(ξ1), eΘ(ξ2), δΘ(ξ), δΘ(ξ1), δΘ(ξ2),∆Γ∗Θ(ξ), z2Θ(ξ))
B1Φ(eΘ(ξ), δΘ(ξ)). (4-22)

In order to perform the linearization, an equilibrium point for the system given by Equation
(4-18) needs to be found. In the case for Π = Π̄, the errors ei(ξ), ei(ξ1) and ei(ξ2) (defined as
the difference between the state vector in (2-41) and its desired value), and the observer errors
δi(ξ), δi(ξ1) and δi(ξ2) (defined as the difference between the state vector in (2-41) and its
estimate) for i = Θ,Φ, were both chosen to be equal to zero. As well in the robust linearized
system, the gravity-related terms in the output are disregarded, in accordance with [24]. In
the case of the nominal system, it was possible to find a unique solution for the determined
system of equilibrium equations given in (3-34). Defining all errors and derivatives of system
(4-18) equal to zero results in the equilibrium equations:

0 =(B0Θ −B1Θb̄0)∆Γ∗Θ − (B1Θb̄1)z2Θ + FpΘ + (−B −B1Θb̄1)urΘ,
0 =− b̄0∆Γ∗Θ − b̄1z2Θ,

0 =γz1Θ − γz2Θ,

0 =(B0Θ −B1Θb̄0 − LΘ∆DΘ)∆Γ∗Θ + (−B −B1Θb̄1)z2Θ −BqΘ + FrΘ + (−B −B1Θb̄1)urΘ,

0 =ζ
[
l1Θ l2Θ

]
∆DΘ∆Γ∗Θ + ζ

[
l1Θ l2Θ

]
(∆CΘxrΘ + ∆DΘΓ∗Θd),

0 =(B0Φ −B1Φb̄0)∆Γ∗Φ − (B1Φb̄1)z2Φ + FpΦ + (−B −B1Φb̄1)urΦ,
0 =− b̄0∆Γ∗Φ − b̄1z2Φ,

0 =γz1Φ − γz2Φ,

0 =(B0Φ −B1Φb̄0 − LΦ∆DΦ)∆Γ∗Φ + (−B −B1Φb̄1)z2Φ −BqΦ + FrΦ + (−B −B1Φb̄1)urΦ,

0 =ζ
[
l1Φ l2Φ

]
∆DΦ∆Γ∗Φ + ζ

[
l1Φ l2Φ

]
(∆CΦxrΦ + ∆DΦΓ∗Φd).

(For a nominal point for which δΘ = 0) (4-23)

In this equation it has to be noticed that, since Θ = Θ̌, then B1Θ = B1Φ. Nevertheless, vector
B0Φ is still different from B0Θ, because of its dependency on the derivatives of the inclination
and its estimate.

It can be seen as well that the system is overdetermined, since it possesses less unknowns
than equations, and in general this type of systems has no solution. The main reason for this
discrepancy, is that the fifth and tenth equations of (4-23) are added compared to the ones in
(3-34). This is because disturbances appear due to the ∆-matrices that represent the difference
between the real and nominal system. Two approaches can be taken to find an "equilibrium"
around which the system could be linearized. Considering that the variation of Π is slow
and is small enough such that it does not significantly change the related equilibrium (for the
corresponding constant value of Π), an initial approach is to consider the same linearization
point as in the nominal case given in (3-35). The problem of this approach is that this
linearization would only be valid for variations of Π along the trajectory that do not make
the system diverge to much from its linearized version. The second approach is that instead
of taking ei(ξ) = 0 and δi(ξ) = 0, retain the errors at the current value of ξ as part of the
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equations to obtain a determined system of equations (since ei(ξ) and δi(ξ) would add up
to ten unknowns). There are several problems with this second approach. One of them is,
that the error at current ξ for the equilibrium point could be different from zero, caused by
the fact that the feedforward input is designed based on the nominal version of the system,
which does not represent the real dynamics if there is a discrepancy with respect to the active
weight on bit Π. This could potentially cause that the equilibrium point of the system may
not be where all the error and observer error dynamics are equal to zero, which would mean
that the system would not evolve exactly at the reference trajectory. Another problem of
this approach is that the equilibrium point may result in terms dependent on trajectory for
certain coordinates, because both the B0Φ and vector Pcl are ξ-dependent when considering
parameter uncertainty. This could render the controller design much more complex, since in
order to guarantee stability, the controller should be, strictly speaking, stable for all possible
values of ξ along the trajectory.

A comparison between this two approaches was performed. In the case where the equilibrium
point of the system yields uncertainty, in order to find quasi-static solutions, the error dy-
namics ei(ξ) and the observer error dynamics δi(ξ) where kept as variables in the equilibrium
equations. This approach is discussed in more detail in Appendix B. It has been decided
to use the linearized system around the same equilibrium point as in the nominal case for
analysis and controller design. The reasoning behind this is that, according to the simulation
results, the variations in Π do not result in steady-state solutions that are located far away
from the nominal equilibrium solution of the closed-loop system. Additionally, under normal
drilling conditions, the weight on bit Π should not change greatly, as this variation is mainly
due to a reduction on the sharpness of the bit, the properties of the interaction between the
borehole and the drilling system, and controlled changes on the applied hook-load.

Once more, the linearization is performed according to Equation (3-37) (in this case using the
actual value of Π) and defining the perturbation vector as in (3-38). The linearized system
(considering that matrix A0Φ may be ξ-dependent) is given by

X̄ ′(ξ) = Ā0clX̄(ξ) + Ā1clX̄(ξ1) + Ā2clX̄(ξ2), (4-24)

where the linearized system matrices Ā0cl, Ā1cl and Ā2cl, are given by:

Ā0cl =
[
Ā0Θ 0
Ā0c Ā0Φ

]
, Ā1cl =

[
Ā1Θ 0
Ā1c Ā1Φ

]
, Ā2cl =

[
Ā2Θ 0
Ā2c Ā2Φ

]
, (4-25)

and sub-matrices defined as:

Ā0i =



A0 (B0i −B1ib̄0) 0 −B1ib̄1 0 0
0 −b̄0 0 −b̄1 0 0

ζ
[
k1i, 0, 0

]
0 0 0 −ζ

[
k1i, 0, 0

]
0

γKi 0 γ −γ −γKi 0
(∆A0 − Li∆Ci) (B0i −B1ib̄0 − Li∆Di) 0 (−B −B1ib̄1) A0 − LiC̄i −B
ζ
[
l1i, l2i

]
∆Ci ζ

[
l1i, l2i

]
∆Di 0 0 ζ

[
l1i, l2i

]
C̄i 0


,

Octavio A. Villarreal Magaña Master of Science Thesis



4-1 Error dynamics for robust stability analysis and controller design 63

Ā0c =



p0e1(ξ) p0e2(ξ) 0 p0e3(ξ) p0e4(ξ) p0e4(ξ)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

p0δ1(ξ) p0δ2(ξ) 0 p0δ3(ξ) p0δ4(ξ) p0δ5(ξ)
0 0 0 0 p0q(ξ) 0


,

Ā1i =



A1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∆A1 0 0 0 A1 0
0 0 0 0 0 0


, Ā1c =



p1e1(ξ) 0 0 0 p1e2(ξ) 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

p1δ1(ξ) 0 0 0 p1δ2(ξ) 0
0 0 0 0 0 0


,

Ā2i =



A2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∆A2 0 0 0 A2 0
0 0 0 0 0 0


, Ā2c =



p2e1(ξ) 0 0 0 p2e2(ξ) 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

p2δ1(ξ) 0 0 0 p2δ2(ξ) 0
0 0 0 0 0 0


.

The definition of the p-coefficients inside the coupling matrix Ā0c will depend on the chosen
linearization point. It is important to note, that these coefficients are all dependent on ξ
and the actual value of Π, but as in the previous case, these coefficients are all multiplied by
the states corresponding to the inclination which, if a proper controller design is performed,
will eventually converge to their equilibrium values. Since the inclination dynamics are still
independent from the azimuth dynamics, the controller for those dynamics can be designed
independently in order to achieve asymptotic stability of the inclination error dynamics.
This means that the states of the inclination error dynamics will eventually converge to their
equilibrium values, deeming the influence of the perturbation terms that couple the inclination
dynamics with the azimuth dynamics inside the Ā0c matrix, to be zero as well.
There are two key differences with respect to the nominal case. First, looking at the structure
of matrices Ā0i, it can be concluded that the separation principle between controller and
observer (for both the inclination and azimuth error dynamics) no longer holds, since there
is mutual coupling between the tracking error dynamics and the observer error dynamics in
both the inclination and azimuth error dynamics. This means that it is not possible to design
controller and observer gains separately as in the nominal case. Secondly, in the specific case
of Ā0Φ, it has to be pointed out that this matrix is ξ-dependent. This is due to the fact that
vector B0Φ depends on Θ′ and Θ̌′, which are not equal due to the difference between Π and
Π̄, i.e.:

Θ′ − Θ̌′ =(β1 − β̄1)Θd + (β2 − β̄2)〈Θ〉1d + (β3 − β̄3)〈Θ〉2d + (β4 − β̄4)Θ1d + (β5 − β̄5)Θ2d

+BT (B0Θ −B1Θb̄0)∆Γ∗Θ +BT (−B1Θb̄1 −B)urΘ +BT (−B1Θb̄1 −B)z2Θ

+BT (B0Θ −B1Θb̄0)∆Γ∗Θd, (4-26)

where the β and β̄ terms are defined as in (3-40) for the real and nominal values of Π,
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Figure 4-1: Points of the trajectory used to linearize the system.

respectively. In the nominal case, this difference became equal to zero at the equilibrium
where ei = 0 and δi = 0, which is not the case when taking into account uncertainty on Π.
These two differences render the robust controller synthesis much more challenging than the
controller design for the nominal case, as will be explained in detail in further sections.

4-1-2 Robust stability analysis

As it has been mentioned before, the system is linearized around the equilibrium point for
the system considering Π = Π̄ given by (3-35), due to the fact that under normal drilling
conditions the active weight on bit should not vary to much, and also supported by the
discussion provided in Appendix B.

The point on the trajectory is not a problem in the case of the inclination dynamics, since
the system matrices corresponding to its states are independent from ξ. On the other hand,
in the case of the azimuth, there is still dependency on ξ (even if these dynamics are isolated
from the inclination error dynamics, due to the presence of vector B0Φ in Ā0Φ). Because of
this, it has been decided to do robust stability analysis for several points along the trajectory.
The trajectory is shown in Figure 4-1, along with the marked points chosen for linearization.

The analysis is done by computing the right-most pole of the closed-loop linearized total
system dynamics given by Equation (4-24), implementing the controller designed in Chapter
3. These right-most poles, are computed for a variation of active weight of bit Π ∈ [0.5Π̄, 1.5Π̄]
and for the specified values of ξ depicted in Figure 4-2.

Taking a close look at Figure 4-2, it shows that indeed there is a (slight) variation in the loca-
tion of the right-pole of the closed-loop linearized system. This variation, may be originated
due to the persistence of terms related to the designed trajectory, mostly the ones coming from
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Figure 4-2: Robust stability test for several points along the desired trajectory.

the ∆-matrices and the perturbation vector Pcl. Nevertheless, this difference is mostly seen
for larger values of Π and does not represent a significant change in the stability properties of
the system due to the point on the trajectory. Although the lines corresponding to different
points along the trajectory differ, the variation due to the point in the trajectory is rather
small. It can be noticed as well, that for smaller values of Π, stability may be compromised
(reaching up to a rightmost real part at -0.02). For this reason, a robust controller design is
pursued.

4-2 Robust controller design

Following the line of thought given in the previous section for the controller synthesis, the
linearization point used in the robust case is chosen to be the same as in the nominal case.
The controller synthesis will be performed by isolating the inclination and azimuth dynamics,
and computing controller and observer gains together (due to the absence of the separation
principle) for both dynamics. In the case of the inclination dynamics, there is no dependency
on ξ, which allows to design this gain independently from trajectory. On the other hand,
the azimuth is dependent on the designed trajectory, but as it has been shown, the effect of
this dependency is not significant, for which it has been decided to do the synthesis of the
controller by using the isolated dynamics of the azimuth on one specific point of the trajectory
(ξ = 200 in this case).

In accordance to the previously conducted robust stability analysis, a control strategy that
can guarantee that the right-most pole of the closed-loop system is sufficiently far in the
left-half of the complex plain, despite variations of the uncertain parameter Π, is developed
in this section.

Initially, the system matrices of the system are analyzed, as in the nominal case. Despite the
fact that the separation principle does not longer hold, the same structure with unidirectional
coupling from the inclination dynamics to the azimuth dynamics is present. In a similar
fashion as in Section 3-4-1, Figure 4-3 shows the series interconnection between the inclination
and the azimuth dynamics
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This independence of the inclination (along with the fact that the perturbation terms in
matrix Ā0c in Equation (4-24) from inclination to azimuth are bounded due to the trajectory
design), allows to investigate once again, the stability by only looking at the poles of the
block diagonal elements in the matrices Ā0cl, Ā1cl and Ā2cl. Then as in the nominal case,
if we can guarantee that the perturbation coming from the inclination dynamics is bounded
and converging to zero for ξ → ∞ and, secondly, the internal azimuth error dynamics are
asymptotically stable, then the total system dynamics are asymptotically stable.

Following this argument, we take a look at the poles of the isolated closed-loop error systems
formed by:

X ′Θ(ξ) = Ā0ΘXΘ(ξ) + Ā1ΘXΘ(ξ1) + Ā2ΘXΘ(ξ), (4-27)
X ′Φ(ξ) = Ā0ΦXΦ(ξ) + Ā1ΦXΦ(ξ1) + Ā2ΦXΦ(ξ), (4-28)

where the state vectors XΘ and XΦ correspond to the states related to the inclination and
azimuth, respectively, and matrices Ā0i, Ā1i and Ā2i are defined as in Equation (4-25).

It has been considered that the linearization point chosen along the trajectory does not affect
significantly the location of the right-most pole of the closed-loop system (as depicted in
Figure B-1). Figure 4-4 shows the plot of the right-most poles of the closed-loop dynamics of
Θ and Φ, as in (4-27) and (4-28), against the variation of Π for the linearized system around
the nominal equilibrium point at ξ = 200.

It can be noticed, that the poles, located closer to zero, are the ones corresponding to the
inclination dynamics. In the case of the azimuth dynamics, the closest pole to the imaginary
axis is roughly located around -0.2, which can be considered as sufficiently far from the origin
in order to guarantee robust stability. However, it would be beneficial for performance to be
able to place these poles corresponding to the azimuth dynamics also further into the left-half
complex plane.

Since the separation principle (between controller and observer gains) no longer holds, the
computation of error and observer gains has to be performed considering the closed-loop poles
of the total dynamics of the system in Equations (4-27) and (4-28). The values of ζ and γ
are chosen to be the same as in the nominal case, following the same arguments as in the
previous section. The objective functions to be optimized (without considering uncertainty
on Π yet) can be described as:

Azimuth 
error + observer
dynamicseΘ + δΘ eΦ + δΦ 

Inclination
error + observer
dynamics

Figure 4-3: Cascaded structure for stability of the system with uncertainty on Π.
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J1r(KΘ, LΘ) = max
j∈[1,2,...,∞]

{Re(λjΘ(KΘ, LΘ, Π̄))}, (4-29)

J2r(KΦ, LΦ) = max
j∈[1,2,...,∞]

{Re(λjΦ(KΦ, LΦ, Π̄))}, (4-30)

where λji, for i = Θ,Φ, represents the closed-loop pole j of system (4-27) and (4-28), re-
spectively. Strictly speaking, in order to ensure robust stability against uncertainty of Π, the
optimization based on the objective functions given by Equations (4-29) and (4-30) should be
done for all possible values of Π, which renders the optimization computationally unfeasible.
An approach similar to the one given in [23] is taken, where the objective function is defined
for a grid of values of Π given by Π = Π̄ + δΠi, with δΠi:

δΠi = −δΠmax + i− 1
m− 12δΠmax, for i ∈ {1, 2, ...,m}, (4-31)

wherem represents the number of grid points for which the closed-loop poles will be calculated.
An important remark is that m has to be chosen uneven and higher than two in order to
include nominal weight on bit Π̄ into the objective function. Then the minimization of the
following objective functions (which correspond to (4-29) and (4-30) considering uncertain
weight on bit) will be pursued:

Ψ(KΘ, LΘ) = max
i∈[1,2,...,m]

(J1r(KΘ, LΘ, Π̄ + δΠi)), (4-32)

Ψ(KΦ, LΦ) = max
i∈[1,2,...,m]

(J2r(KΦ, LΦ, Π̄ + δΠi)). (4-33)

Despite the fact that the objective functions are defined for a grid of Π, this is still computa-
tionally much more expensive than in the nominal case, since the optimization has to be done
for five parameters (gains k1i, k2i, k1i, l1i and l2i for i = Θ,Φ) at the same time. Stability is
guaranteed for both observer and controller dynamics, since all the poles of the system are
moved further to the left-hand side of the complex plane. This design strategy is applied in
order to improve robust stability of the system, verifying afterwards the transient response
of the system in order to analyze further improvement.
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Figure 4-4: Robust stability test for inclination (left) and azimuth (right) dynamics.
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Table 4-1: Robust controller settings and gains.

Dynamics Objective right-most pole Controller gains (Ki) Observer gains (Li)

Inclination (Θ) -0.7 [−123987, 27068, 4104]

121 3192
0 0
0 0


Azimuth (Φ) -0.4 [−13595, 1071, 1202]

−1058 3243
0 0
0 0



In a similar way as in the nominal case, the desired length scale has to be chosen for the
dynamics of the system, because the inclination error and observer dynamics have to converge
to zero faster than the azimuth dynamics. It has been decided to relax the right-most pole
location of the inclination dynamics (with respect to the location of the right-most pole of the
inclination observer dynamics in the nominal case), in order to reduce computational time.
The value of the objective real part of the right-most pole is set to be smaller than -0.7. In
the case of the azimuth, this parameter has set to be -0.4, to have a slower convergence than
the inclination dynamics.

4-3 Simulation results of the robust controller design

A summary of the settings chosen and the corresponding gains (knowing that the values of ζ
and γ are the same as in the nominal case) are given in Table 4-1.

It can be observed, that the gains corresponding the tracking error controller (Ki) for the
robust controller design, have much larger values than the ones of the nominal controller. This
may have an effect on the control input applied to the system (namely the RSS force). In the
case of the observer gains (Li), they possess values comparable to the ones of the nominal
case. Using these gains, the same robust stability test is performed for the closed-loop linear
system and compared with the results of the nominal controller design. The comparison is
depicted in Figure 4-5.

As shown in the figure, there is a substantial improvement in the level of robustness in
accordance to the design. Furthermore, it can be seen that the plots start to become "flat",
i.e. independent of Π, (more evident in the case of the azimuth); this can be considered a
positive effect, since they start behaving closer to the specified objective right-most pole for
every possible value of Π. In other words, despite the fact that both dynamics are intrinsically
stable, if for some value of Π the right-most pole of the azimuth dynamics was faster than
the one of the inclination, this could result in poor performance or even instability.

4-3-1 Time domain simulations of the robust controller

To perform the time domain simulations, the value of Π is set to the value of 0.5Π̄. The
initial conditions of the system are set to Θ0 = 20◦ and Φ0 = 80◦, following the same
reference trajectory as in the nominal case. Figure 4-6 shows the error between the reference
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trajectory and the values of the inclination and azimuth along length ξ (up to 80, since the
error converges to zero before this value), for both the nominal and the robust controller.

It is clear that the performance of the robust controller is significantly better than that of
the nominal controller. Observing the inclination response, the overshoot is less in the case
of the robust controller. The difference of performance becomes more evident in the case of
the azimuth response, since the nominal controller transient response possesses a high level
of oscillations, this is precisely one of the undesired behaviors of the system, namely borehole
rippling. It can be seen that the robust controller manages to avoid this rippling and reaches
steady state much faster. Regarding steady state behavior, both controllers manage to reach
zero steady state errors.

An important aspect is the order of magnitude of the RSS force, since the feedback gains
are much larger in the robust controller. Figure 4-7 shows the RSS force applied for both
controllers along the trajectory.

For the inclination, the applied RSS force is bigger than in the nominal case, since the initial
control action is corresponding to the value of the gains. On the other hand, since the
azimuth nominal controller induces severe transient rippling, it uses high levels of RSS force
to compensate for this large variations of the errors. The amount of RSS force applied by the
robust controller is indeed smaller, since it manages to keep the error within a smaller range.
Despite the fact that these values seem big (compared to the ones displayed with no presence
of uncertainty), it has to be kept in mind that the values for the initial conditions of the
system were chosen extremely far away from the reference (i.e., eΘ(0) = 19◦, eΦ(0) = −20◦).
This means that the control action will reduce significantly for more conventional initial values
(as seen in the nominal case for initial conditions close to the reference trajectory).

4-3-2 Simulation results for non-neutral bit walk model

In this section, the previously design robust output-feedback controller for the neutral bit
walk case, will be tested on the non-neutral bit walk system. Unfortunately due to time
constraints, it was not possible to perform a dedicated controller design that could account
for the effect of the bit walk tendency.
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Figure 4-5: Robust stability comparison for inclination (left) and azimuth (right) dynamics.
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Figure 4-6: Comparison between the errors of nominal and robust controllers for Π = 0.5Π̄.

The previously developed strategy is designed, based on the situation when $ = 0, but in
practice this is usually not the case. As it was mentioned, the variation of this parameter can
cause many undesired effects to the borehole geometry. This bit walk tendency is one of the
main factors that cause the so-called borehole spiraling.

In order to see how the strategy developed in this research copes with this effect, the controller
is tested via simulation. As an initial step, the output equations of the system given by (4-2)
and (4-3) are no longer valid, since now the output is affected by the bit walk tendency.
The process to obtain these output equations is equivalent to the one performed in Section
2-1-1. As it was done for the neutral bit walk system, one could obtain the BHA inclination
and azimuth making use of the particular solution of the Euler-Bernoulli equations of the
beam, given by (2-7), substituting s for the sensor locations. The complete derivation of
these equations is not given here, but it is important to notice that coefficients Aij and Bik
for i = 0, 1, 2, j = 0, 1, 2, 3 and k = 0, 1, 2, coming from the particular solution of the BHA
remain the same. The solutions for the BHA inclination at the bit (θ̂ and φ̂), given by
Equations (2-30) as:

θ = a1 + a2a3
1− a2a4

, φ = a3 + a1a4
1− a2a4

.

where the auxiliary variables ai for i = 1, ..., 4 are given in the same as in Section 2-1, and
are now used considering $ 6= 0. This is where the key difference with respect to the neutral
bit walk model output equations is seen. The effect of this parameter originates coupling
between the inclination and azimuth outputs and adds nonlinear terms to these equations as
well (besides the ones related to gravity).

Using the non-neutral bit walk output equations, the previously design strategy will be tested.
Since the controller was designed considering uncertain active weight on bit Π, the simulation
will be performed for the extreme case when Π = 0.5Π̄. Considering the initial conditions,
despite the fact that the robust controller managed to track the reference for large initial
estimation errors (Θ − Θ̌ = 19◦ and Φ − Φ̌ = −20◦), it is believed that the effect of the
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Figure 4-7: Comparison between the inputs of nominal and robust controllers.

bit walk angle can destabilize the system, even if there are no estimation errors. Because
of this the initial conditions are decided to remain close to the reference as Θ0 = 1◦ and
Φ0 = 100◦. The simulation is performed for $ ∈ {−20◦,−25◦,−30◦}. Only considering
negative values is believed to be enough, since the open-loop simulation results in Section 2-
3, showed a symmetrical behavior between negative and positive values of the bit walk angle.
The controller settings are the ones shown in Table 4-1 and Figure 4-8 shows the errors of
the system (the results of the nominal controller applied to the system are not shown for the
sake of clarity, since they are unstable even for small variations of $).

Several conclusions can be drawn from these results. The most evident one is that indeed
there is a great effect of the bit walk angle on the response of the system, reflected as a high
amount of oscillating transient behavior. However, it was noticed that if the nominal controller
values implemented to the closed-loop system, it became completely unstable; meaning that
the robust controller design helps to at least render the system stable, for a certain range of
values of $. Taking a close look to the tracking error dynamics plot at $ = −20◦, it can be
noticed that the oscillations of the transient response vanish as they approach steady state.
Nevertheless, as the value of the bit walk angle increases, the oscillating effect becomes larger
and, for the extreme case of $ = −30◦, unstable. In all three cases, it can be seen that the
oscillations of the azimuth tracking error dynamics are more and of larger values of those
corresponding to the inclination. This may be due to the fact that the azimuth observer, is
dependent of the inclination error dynamics (along with all the other introduced couplings
due to $ 6= 0), which could mean that there are nonlinear components of the inclination
observer affecting the dynamics of the azimuth.

As a general conclusion, the strategy derived in this research, can be valuable to start the
design of a controller that is able to cope with non-neutral bit walk tendency, making use
only of local measurements. Although, despite the fact that the newly designed controller can
manage to stabilize the system for a range of values of Π, it is almost certain that considering
the bit walk tendency in the controller design (as previous works have shown [5]) will improve
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Figure 4-8: Simulation results of the neutral bit walk robust output-feedback controller for
Π = 0.5Π̄, Θ0 = 1◦, Φ0 = 100◦ and $ ∈ {−20◦,−25◦,−30◦}.

the overall performance of the system.

4-4 Discussion

In summary, an output-feedback controller was successfully derived for a 3D directional
drilling system, able to track a complex borehole geometry and robust against uncertainty
related to the active weight on bit Π. The controller relies only on local measurements of the
BHA. This design proved to diminish the amount of negative effects in the borehole such as
spiraling, rippling and kinking.
After performing the nominal controller design, robust stability against uncertainty on weight
on bit was considered. The key element of this analysis, was to make the explicit difference
between the nominal weight on bit Π̄ and the real one Π. An equivalent procedure to the
nominal case was performed, to arrive to the linear error dynamics of the system. In order
to ensure stability, the gains for the controller and observer were synthesized by optimizing
right-most pole location of the closed-loop isolated dynamics of the subsystems comprised by
the tracking and observer error dynamics.
Robustness was tested for this newly designed controller, showing great improvement with
respect to its nominal counterpart. Simulations of the tracking problem were performed for
the same borehole geometry, finding that there was a significant change, with respect to the
nominal controller, for the extreme case where Π = 0.5Π̄, showing an important reduction
of oscillations and overshoot. Furthermore, it yield much better performance against initial
estimation errors.
Despite this improvement in design, it remains to take a decisive step to tackle the non-neutral
bit walk case. Some of the difficulties of this scenario can be derived from this study (bilateral
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coupling, nonlinear effects), and a similar methodology can be used to derived a controller
that takes into account this effect.
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Chapter 5

Conclusions and recommendations

5-1 Conclusions

Several conclusions can be derived from this thesis project. The initial goal to derive a
controller that was able to steer a 3D directional drilling system, only making use of local
measures of the inclination of the BHA was achieved.

In the nominal case, we developed an input transformation (based on the one proposed in
[5]) that decouples the inclination and azimuth dynamics only after the inclination observer
error dynamics converge to zero. To analyze stability, the system was linearized around
the equilibrium where both the tracking error and the observer error were equal to zero
(considering that the assumption on small tracking and observer errors is reasonable under
normal drilling conditions).

Analyzing the closed-loop tracking error dynamics and observer error dynamics, it was found
that the azimuth dynamics were perturbed by the observer error dynamics of the inclination.
However, the inclination dynamics are independent from the azimuth dynamics, which results
in a series interconnection between the two. Moreover, if this coupling perturbation is not
considered, in both inclination and azimuth the separation principle between observer and
controller was proved to hold. This inspired to use a cascaded structure for the error dynamics
to aid in the task of the controller design. A "length" scale was proposed for the convergence
of controller and observer dynamics for the two orientation variables to guarantee the stability
(and transient performance) of the system, making use of the aforementioned structure.

The controller was synthesized considering four isolated error systems, for which stability was
ensured if the right-most pole of the union of the closed-loop eigenvalues of this subsystems
was on the left-half of the complex plane. Furthermore, performance was considered by
proposing a "length" scale for the convergence of controller and observer dynamics for the
two orientation variables, to guarantee that the observer dynamics of the inclination would
not affect the transient of the azimuth, making use of the aforementioned cascaded structure.
This synthesis was done by optimizing the location of the right-most pole of each subsystem,
and implementing a low-pass filter and integral action based on the works of [5]. Simulations
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were subsequently performed, and it was seen that the controller managed to track a proposed
complex borehole geometry, even in the presence of large initial estimation errors.

As a next step, robust stability against uncertainty in the active weight on bit Π was analyzed.
This analysis (which was performed by linearizing the uncertain error system dynamics once
again) showed, that stability may be compromised if the value Π was sufficiently low. Also,
the analysis of the closed-loop error dynamics of the system showed, that there was still a
unilateral coupling from the inclination dynamics to the azimuth dynamics. However, the
separation principle between observer and controller design did not hold anymore, for both
the inclination and azimuth dynamics. To tackle this situation, a similar cascaded structure
was proposed, now considering the tracking and observer error dynamics of the inclination as
one subsystem which perturbed the azimuth tracking and observer error dynamics.

The synthesis of this controller was done by considering two decoupled subsystems of the
inclination and azimuth dynamics, both comprising the controller and observer gains. Fur-
thermore, a "length" scale was also proposed in order to guarantee a faster convergence of
the inclination error dynamics. The low-pass filter and integral action were applied in the
same way as in the nominal controller, and they were synthesized once again, by optimizing
the location of the right-pole of the closed-loop error dynamics of each subsystem. This con-
troller, was proved to be robust against uncertainty related to the active weight on bit Π.
Simulation results showed a significant improvement in the transient performance of the sys-
tem, reducing almost completely the oscillations present while using the nominal controller.
Also, the system showed a much more homogeneous right-most pole location for both isolated
error subsystems for a range of values of Π ∈ [0.5Π̄, 1.5Π̄], which means that the controller
design provided a stable and well-behave controller, with a higher degree of independence
with respect to the active weight on bit.

5-2 Recommendations

Despite the positive results achieved, several tasks were left pending. Here we point out the
ones that are considered the most important.

Extending the current design to the case of non-neutral bit walk tendency. Unfortunately,
due to lack of time, it was not possible to extend this design strategy to the non-neutral bit
walk case. However, from this controller design several guidelines on where to start the
analysis of this case can be obtained. As a first step, the output equations of the system were
derived in this research. These resulted in two nonlinear bilaterally coupled equations. The
robust controller derived was tested, in order to get insight on how the coupling affects this
system. It was shown that the presence of bit walk tendency greatly affects the performance
of the system. In order to proceed with a controller design similar to the one taken here, one
could make use of the linearized system derived in [5], which takes into account the presence of
a bit walk angle different to zero, and proceed then to obtain a linearized version of the output
equations. This process will most likely result in a system that couples inclination and azimuth
dynamics bilaterally. Once again, one could analyze the system matrices to understand how
the coupling acts on both the inclination and azimuth dynamics, and possibly make uses of
tools such as the RGA.

Octavio A. Villarreal Magaña Master of Science Thesis



5-2 Recommendations 77

Analyze the coupling effect of the bit walk angle. Despite the fact that this research
shows some insight with respect to the effect of $, the true consequences of this will not
be known until the closed-loop error dynamics of the system are derived. This closed-loop
error dynamics may yield a strong coupling, for which the input transformation is not even
capable to generate a unilateral coupling from inclination to azimuth. This coupling has to
be formally studied, which can be done in several ways. One could take a similar thinking
process as in this research, were the matrix structure was analyzed, and lead to the proposed
cascaded system. However, if the system matrices yield a high level of complexity, one could
make use of either time domain simulations, to study the effects of the coupling, or make use
of frequency domain tools, such as the Relative Gain Array.

Alternative angle parameterization. In [5], one of the final recommendations was to derive
the borehole evolution equations, making use of different angle parameterization to avoid the
singularity present at Θ = 0◦. This was actually attempted in this research, although it
proved to be more challenging than expected, which is why it was not included in this report.
The attempt consisted in using an alternative angle parameterization proposed in [19]. This
description, was considered to simplify the analysis of a phenomenon called bit tilt saturation,
and it is valid for small changes in the curvature. The model was derived making use of this
description (which replaces the azimuth angle Φ with a pseudo-azimuth ∆), and open-loop
simulations were performed. The results of the simulations were not positive since there was
a discrepancy between the responses of both models. It is believed that this discrepancy has
to do with how the average of the pseudo-azimuth acts in the model.

Analyze the applicability of the developed strategy to models that consider a wider range
of nonlinear effects. Although the PD model has proven to be one of the most advanced in
the field, it does not consider certain effects present in the system. Some work has already
been done in the development of a switching model that takes into account bit tilt saturation
in [19] for a 3D directional drilling system, and currently research is being done to develop
a hybrid model that considers the presence of non-ideal stabilizer contact. One could try to
work on developing this control strategy for this novel system description, in order to improve
performance in a real scenario.
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Appendix A

BHA profile and influence coefficients

The coefficients originated from the model of the BHA profile are given in this appendix.
These coefficients are obtained by imposing 6(n + 1) constraints to the general solution of
Equations (2-5). The BHA is divided in n + 1 beams connected by this set of constraints,
considering the segments between stabilizers, the segment from the first stabilizer and the
RSS and the segment between the RSS and the bit as the total number of sections of the
BHA. These coefficients depend on the dimensionless parameters distance between stabilizers
κi for i = 1, .., n, distance from bit to RSS Λ, external loads Υ, Γ2 and Γ3 and the variables
corresponding to the angles at the bit θ̂ and φ̂ and the average inclination and azimuth angles
〈Θ〉i and 〈Φ〉i for i = 1, 2.
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A-1 Profile coefficients

Ai3 =1
2Υ sin 〈Θ〉1, for i ∈ [0, 1, 2],

A02 = 3
8(4κ2 + 3)

(
24Γ2Λ3 − 36Γ2Λ2 + 8Γ2Λ3κ2 − 24Γ2Λ2κ2 + 16Γ2κ2 + 12Γ2 + 16θ̂κ2 + 24θ̂

− 6Υ sin 〈Θ〉1 + 3Υκ3
2 sin 〈Θ〉1 − 10Υκ2 sin 〈Θ〉1 − 16〈Θ〉1κ2 − 48〈Θ〉1 + 24〈Θ〉2

)
,

A12 = 3
8(4κ2 + 3)

(
24Γ2Λ3 − 36Γ2Λ2 + 8Γ2Λ3κ2 − 24Γ2Λ2κ2 + 16θ̂κ2 + 24θ̂ − 6Υ sin 〈Θ〉1

+ 3Υκ3
2 sin 〈Θ〉1 − 10Υκ2 sin 〈Θ〉1 − 16〈Θ〉1κ2 − 48〈Θ〉1 + 24〈Θ〉2

)
,

A22 =− 3
8κ2(4κ2 + 3)

(
12Γ2Λ3 − 12Γ2Λ2 + 8θ̂ + Υ sin 〈Θ〉1 + 10Υκ3

2 sin 〈Θ〉1 + 22Υκ2
2 sin 〈Θ〉1

+ 12Υκ2 sin 〈Θ〉1 − 24〈Θ〉1 + 16〈Θ〉2
)
,

A01 =− 3
4(4κ2 + 3)

(
12Γ2Λ3 − 24Γ2Λ2 + 12Γ2Λ + 8Γ2Λ3κ2 − 24Γ2Λ2κ2 + 16Γ2Λκ2 + 16θ̂κ2

+ 16θ̂ −Υ sin 〈Θ〉1 + Υκ3
2 sin 〈Θ〉1 − 2Υκ2 sin 〈Θ〉1 − 16〈Θ〉1κ2 − 24〈Θ〉1 + 8〈Θ〉2

)
,

A11 =− 3
4(4κ2 + 3)

(
12Γ2Λ3 − 24Γ2Λ2 + 8Γ2Λ3κ2 − 24Γ2Λ2κ2 + 16θ̂κ2 + 16θ̂ −Υ sin 〈Θ〉1

+ Υκ3
2 sin 〈Θ〉1 − 2Υκ2 sin 〈Θ〉1 − 16〈Θ〉1κ2 − 24〈Θ〉1 + 8〈Θ〉2

)
,

A21 = 3(κ2 + 1)
4κ2(4κ2 + 3)

(
12Γ2Λ3 − 12Γ2Λ2 + 8θ̂ + Υ sin 〈Θ〉1 + 10Υκ3

2 sin 〈Θ〉1 + 22Υκ2
2 sin 〈Θ〉1

+ 12Υκ2 sin 〈Θ〉1 − 24〈Θ〉1 + 16〈Θ〉2 − 2Υκ2(κ2 + 1)(κ2 + 3) sin 〈Θ〉1
)
,

A00 =θ̂,

A10 =1
2
(
2θ̂ − 3Γ2Λ2

)
,
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A20 =
3
(
−3

2κ2 − 1
)

8κ2(4κ2 + 3)

(
12Γ2Λ3 − 12Γ2Λ2 + 8θ̂ + Υ sin 〈Θ〉1 + 10Υκ3

2 sin 〈Θ〉1 + 22Υκ2
2 sin 〈Θ〉1

+ 12Υκ2 sin 〈Θ〉1 − 24〈Θ〉1 + 16〈Θ〉2
)
− 3

4Γ2Λ3 + 3Γ2Λ2

4 − θ̂

2 −
3
16Υ sin 〈Θ〉1 + 3

2〈Θ〉1

+ 9
8Υ(κ2 + 1)2 sin 〈Θ〉1.

These coefficients were obtained by using the same procedure as the one in Appendix B of
[23]. In the case of the general solution of the BHA profile equation (2-5) with respect to
the azimuth, the same constraints can be applied, with the main difference that there are no
gravitational effects on the azimuth and that all the RSS forces will be scaled by the term

1
sin〈Θ〉1 . The profile coefficients of the azimuth BHA angle equation in (2-7) are given by:

B02 = 3
8(4κ2 + 3)

(
24 Γ3

sin〈Θ〉1
Λ3 − 36 Γ3

sin〈Θ〉1
Λ2 + 8 Γ3

sin〈Θ〉1
Λ3κ2 − 24 Γ3

sin〈Θ〉1
Λ2κ2 + 16 Γ3

sin〈Θ〉1
κ2

+ 12 Γ3
sin〈Θ〉1

+ 16φ̂κ2 + 24φ̂− 16〈Φ〉1κ2 − 48〈Φ〉1 + 24〈Φ〉2
)
,

B12 = 3
8(4κ2 + 3)

(
24 Γ3

sin〈Θ〉1
Λ3 − 36 Γ3

sin〈Θ〉1
Λ2 + 8 Γ3

sin〈Θ〉1
Λ3κ2 − 24 Γ3

sin〈Θ〉1
Λ2κ2 + 16φ̂κ2 + 24φ̂

− 16〈Φ〉1κ2 − 48〈Φ〉1 + 24〈Φ〉2
)
,

B22 =− 3
8κ2(4κ2 + 3)

(
12 Γ3

sin〈Θ〉1
Λ3 − 12 Γ3

sin〈Θ〉1
Λ2 + 8φ̂− 24〈Φ〉1 + 16〈Φ〉2

)
,

B01 =− 3
4(4κ2 + 3)

(
12 Γ3

sin〈Θ〉1
Λ3 − 24 Γ3

sin〈Θ〉1
Λ2 + 12 Γ3

sin〈Θ〉1
Λ + 8 Γ3

sin〈Θ〉1
Λ3κ2 − 24 Γ3

sin〈Θ〉1
Λ2κ2

+ 16 Γ3
sin〈Θ〉1

Λκ2 + 16φ̂κ2 + 16φ̂− 16〈Φ〉1κ2 − 24〈Φ〉1 + 8〈Φ〉2
)
,

B11 =− 3
4(4κ2 + 3)

(
12 Γ3

sin〈Θ〉1
Λ3 − 24 Γ3

sin〈Θ〉1
Λ2 + 8 Γ3

sin〈Θ〉1
Λ3κ2 − 24 Γ3

sin〈Θ〉1
Λ2κ2 + 16φ̂κ2

+ 16φ̂− 16〈Φ〉1κ2 − 24〈Φ〉1 + 8〈Φ〉2
)
,

B21 = 3(κ2 + 1)
4κ2(4κ2 + 3)

(
12 Γ3

sin〈Θ〉1
Λ3 − 12 Γ3

sin〈Θ〉1
Λ2 + 8φ̂− 24〈Φ〉1 + 16〈Φ〉2)

)
,
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B00 =φ̂,

B10 =1
2

(
2φ̂− 3 Γ3

sin〈Θ〉1
Λ2
)
,

B20 =
3
(
−3

2κ2 − 1
)

8κ2(4κ2 + 3)

(
12 Γ3

sin〈Θ〉1
Λ3 − 12 Γ3

sin〈Θ〉1
Λ2 + 8φ̂− 24〈Φ〉1 + 16〈Φ〉2

)
− 3

4
Γ3

sin〈Θ〉1
Λ3

+ 3
4

Γ3
sin〈Θ〉1

Λ2 − φ̂

2 + 3
2〈Φ〉1.

A-2 Influence coefficients

The influence coefficients are constants related entirely to the BHA configuration. They
depend on distance between stabilizers κi for i = 1, 2 and distance from bit to RSS Λ. The
complete procedure to obtain these coefficients is given in [3].

Fb = −6 + 4κ2
3 + 4κ2

,

Fw = 6 + 10κ2 − 3κ3
2

12 + 16κ2
,

Fr = −3− 4κ2 + Λ2(9 + 6κ2)− 2Λ3(3 + κ2)
3 + 4κ2

,

F1 = 6
3 + 4κ2

,

Mb = 4(1 + κ2)
3 + 4κ2

,

Mw = −1− 2κ2 + κ3
2

12 + 16κ2
,

Mr = Λ(1− Λ)(3 + 4κ2 − Λ(3 + 2κ2))
3 + 4κ2

,

M1 = − 2
3 + 4κ2

.
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Appendix B

Discussion about equilibrium of the
system with uncertainty on Π

In this appendix the detailed discussion related to the equilibrium point chosen for the system
is given. It aims to explain the aforementioned approach, which keeps the errors ei and δi,
for i = Θ,Φ different to zero, in order to provide a determined set of equilibrium equations.
The resulting system of equations is the one given by

0 =A0eΘ + (B0Θ −B1Θb̄0)∆Γ∗Θ − (B1Θb̄1)z2Θ + FpΘ + (−B −B1Θb̄1)urΘ,
0 =− b̄0∆Γ∗Θ − b̄1z2Θ,

0 =ζ
[
k1Θ 0 0

]
eΘ − ζ

[
k1Θ 0 0

]
δΘ,

0 =γKΘeΘ + γz1Θ − γz2Θ − γKΘδΘ,

0 =(∆A0 − LΘ∆CΘ)eΘ + (B0Θ −B1Θb̄0 − LΘ∆DΘ)∆Γ∗Θ + (−B −B1Θb̄1)z2Θ

+ (Ā0 − LΘC̄Θ)δΘ −BqΘ + FrΘ + (−B −B1Θb̄1)urΘ,

0 =ζ
[
l1Θ l2Θ

]
(∆CΘeΘ + ∆DΘ∆Γ∗Θ + C̄ΘδΘ + ∆CΘxrΘ + ∆DΘΓ∗Θd),

0 =A0eΦ + (B0Φ −B1Φb̄0)∆Γ∗Φ − (B1Φb̄1)z2Φ + FpΦ + (−B −B1Φb̄1)urΦ,
0 =− b̄0∆Γ∗Φ − b̄1z2Φ,

0 =ζ
[
k1Φ 0 0

]
eΦ − ζ

[
k1Φ 0 0

]
δΦ,

0 =γKΦeΦ + γz1Φ − γz2Φ − γKΦδΦ,

0 =(∆A0 − LΦ∆CΦ)eΦ + (B0Φ −B1Φb̄0 − LΦ∆DΦ)∆Γ∗Φ + (−B −B1Φb̄1)z2Φ

+ (Ā0 − LΦC̄Φ)δΦ −BqΦ + FrΦ + (−B −B1Φb̄1)urΦ,

0 =ζ
[
l1Φ l2Φ

]
(∆CΦeΦ + ∆DΦ∆Γ∗Φ + C̄ΦδΦ + ∆CΦxrΦ + ∆DΦΓ∗Φd).

(B-1)

This set of equations has a unique solution. Due to the complexity of the expressions, these
were solved using the Symbolic Math Toolbox of MATLAB [30]. The found solution, is indeed
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ξ-dependent, and the error and observer error dynamics of the orientation at the bit (ei0 and
δi0, for i = Θ,Φ) result equal to zero. The location of the equilibrium at ei0 = δi0 = 0, in
theory, would yield the convergence of the average inclination and azimuth errors. Despite
this fact, the equilibrium point found by solving (B-1), in the case of the average errors (e〈i〉1 ,
e〈i〉2 , δ〈i〉1 and δ〈i〉2) appears to be ξ-dependent. It is believed that the combination of the
terms involving reference points, for specific values of trajectory, should make the equilibrium
points equal to zero. In other words, if the values of desired trajectory are substituted in the
equilibrium solutions for each specific point shown in Figure 4-1, the equilibrium solutions of
the average inclination and azimuth tracking errors and observer errors will be equal to zero.

Due to the difficulty to analytically prove that the solution of the average states at the equi-
librium is equal to zero, the solution found using MATLAB is compared with the equilibrium
point given in the nominal case via simulation. This is done by testing the stability of the
system, computing the right-most pole of the closed-loop linearized system in (4-24) (using
the controller based on the nominal system) for Π ∈ [0.5Π̄, 1.5Π̄], substituting the value of ξ
at the desired trajectory point in the system matrices (i.e., computing quasi-static solutions
of the system along the trajectory in Figure 4-1) for both linearization points (around Π and
Π̄). The result of this comparison is shown in Figure B-1.
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ℜ
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0

ξ = 0
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ξ = 400

Figure B-1: Robustness test for the linearization point around Π̄ (left) and Π (right).

An interesting result comes out of this test. First of all, taking a close look at the plot
corresponding to the equilibrium point using real active weight on bit Π (plot on the right
in Figure B-1), it can be seen that the lines in this plot are exactly on top of each other,
meaning that the change on the location of the right-most pole of the closed-loop system for
different values of Π is the same, irrespective of the point chosen in the trajectory where the
linearization was performed. Secondly, the plot corresponding to the equilibrium point used
in the nominal case (left plot in Figure B-1), it can be seen that the shift in the location of
the right-most closed-loop pool is not significant (there is only a slight change in the location
of the right-most pole for larger values of Π).

In summary, the effect of the chosen linearization point is thought not to be determinant for
the behavior of the system.
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Glossary

List of Acronyms

RSS Rotary Steerable System

ROP Rate of Penetration

BHA Bottom Hole Assembly

MWD Measurement While Drilling

PDC Polycrystalline Diamond Compact

MPC Model Predictive Control

MIMO Multiple Input Multiple Output

RGA Relative Gain Array

LTI Linear Time Invariant

List of Symbols

Greek Symbols

α Lumped inclination-related terms in the azimuth dynamics.
χ Angular steering resistance.
δ Observer error dynamics.
∆Γ Error coordinate for the RSS input.
η Lateral steering resistance.
Γ Scaled RSS force.
γ Low-pass filter gain.
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90 Glossary

Λ Scaling factor for the location of the RSS
λjKi Closed-loop pole i of tracking error dynamics.
λjLi Closed-loop pole i of observer error dynamics.
Φ Borehole azimuth.
φ BHA azimuth.
Φi Azimuth of the i-th stabilizer.
Π Scaled active weight on bit.
ρ Density.
Θ Borehole inclination.
θ BHA inclination.
Θi Inclination of the i-th stabilizer.
Υ Scaled distributed weight.
κi Dimensionless length of i-th section.
$ Bit walk angle.
~Ω Angular velocity vector of the bit.
~ω Spin vector of the bit.
~ϕ Angular penetration.
ξ Dimensionless length.
ξi Dimensionless location of stabilizer i.
ζ Integral part gain.
〈Φ〉i Average borehole azimuth of i-th stabilizer.
〈Θ〉i Average borehole inclination of i-th stabilizer.

Latin Symbols

(~ex, ~ey, ~ez) Fixed coordinate system.
(~I1, ~I2, ~I3) Basis for the borehole axis.
(~i1,~i2,~i3) BHA basis.
`i Length of BHA section i.
F̂1, F̂2, F̂3, M̂2, M̂3 Forces and moments acting on the bit.
Aij Coefficients of inclination angle for general solution of BHA profile.
B Borehole axis.
Bik Coefficients of azimuth angle for general solution of BHA profile.
C1 Chord linking the bit and the first stabilizer.
Cij Constant coefficients of the inclination output equations.
D BHA axis.
Dik Constant coefficients of the azimuth output equations.
Fb, Fr, Fw, Fi Coefficients related to force influence.
Mb,Mr,Mw,Mi Coefficients related to moment influence.
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~d Axial penetration vector.
~Frss RSS force in the BHA.
~R(S) Vector function of borehole axis B in curvilinear coordinates S.
~r(s, L) Vector function of the BHA axis in curvilinear coordinates s.
~v Linear velocity of the bit.
~w Distributed weight on the BHA.
A Cross section surface area of the BHA.
A0, A1, A2 System matrices of the neutral bit walk model.
ai Auxiliary variables for the borehole evolution equations for i = 1, ..., 4.
A0cl, A1cl, A2cl Closed-loop matrices of the system.
B, B0i, B1i System vectors of the neutral bit walk model.
bi Auxiliary variables for the derivatives of the Θ and Φ for i = 1, ..., 8.
d1, d2, d3, ϕ2, ϕ3 Set of scalar penetration variables.
e Tracking error dynamics.
Ey Young’s module.
F∗ Characteristic force
G1 Bluntness coefficient of the bit/rock interaction.
H0, H1, H2, H3 Bit/rock interface geometry and rock properties coefficients.
I Area moment of inertia.
Ir Inner radius of the BHA.
Ki State-feedback gain.
L Total length of borehole.
L∗ Characteristic length.
Li Observer feedback gain matrix.
LBHA Length of the BHA.
n Number of stabilizers.
Or Outer radius of the BHA.
Pcl Perturbation vector of closed-loop system dynamics.
S Curvilinear coordinate from drill rig to bit.
si Location of the i-th stablizer.
ui Sum of the feedback and feedforward inputs.
W Normalized weight of the BHA.
w Uniform distributed weight.
Wy Normalized output-related weight of the BHA.
Wact Active weight on bit.
Wapp Applied weight on bit.
xi State vector.
xri Reference vector.
z1i Integral action state.
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z2i Low-pass filter state.

Subscripts

Φ Borhole azimuth dynamics.
Θ Borehole inclination dynamics.
d Desired value.
r Reference trajectory.

Superscripts

∗ Transformed RSS force.

Diacritic Symbols

¯ Evaluated at nominal active weight on bit.
ˇ Estimated value.
ˆ Evaluated at the bit.
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