




Assimilating GRACE Terrestrial Water
Storage observations into a conceptual

hydrological model

Efstratios Tsompanopoulos

10th December 2010



Title:
Assimilating GRACE Terrestrial Water Storage observations into a concep-
tual hydrological model

By:
Efstratios Tsompanopoulos
Student Number:1541749
Msc Geomatics

Graduation professor:
Prof. dr. ir. Nick C. van de Giesen
Water Resources Management, Faculty of Civil Engineering and Geosciences,
TU Delft.

Daily supervisor:
Dr. ir. Susan C. Steele-Dunne
Water Resources Management, Faculty of Civil Engineering and Geosciences,
TU Delft.

Committee members:
Dr. Brian C. Gunter
Physical and Space Geodesy, Faculty of Aerospace Engineering, TU Delft.
Dr. Albrecht Weerts
Deltares

Date: 10th December 2010

ii



Abstract

Based on satellite observations of Earths time variable gravity field from
the Gravity Recovery and Climate Experiment (GRACE), it is possible to
derive variations in terrestrial water storage. Tiny variations of gravity from
monthly into a decade time scales are mainly due to redistributions of water
mass inside the surface fluid envelops of our planet (Ramillien et al., 2008).
This allows us to derive variations in TWS (Terrestrial Water Storage) from
satellite observations of the gravity field.

Firstly, the Ensemble Kalman filter (EnKF) and the Ensemble Kalman
smoother (EnKS) have been applied to assimilate the GRACE TWS varia-
tion data into the HBV-96 model, a conceptual rainfall-runoff model over
the Rhine river basin. Based on prior work on this field, in this thesis it was
intended from the very beginning the improvement of methods used, star-
ting from the study period, which was extended from February 1st 2003 to
December 26st 2006.

Afterwards, newer versions of TWS variation estimates were inferred from
three sets of GRACE solutions, one from DEOS TU Delft, and another from
CSR - University of Texas. A third dataset named as RBF, based on radial
basis function was also included. All of the solutions use different filtering
methods which yield different estimates.

The following step was to change the state vector and how it is updated.
In this way a more realistic method for the individual stores of the Terrestrial
Water Stores was used.

Finally the Ensemble Moving Batch Smoother have been applied to as-
similate the GRACE data into the HBV-96 model. This new assimilation
smoother uses observations beyond the estimation time, which are also useful
in the estimation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Estimates of terrestrial water storage can have important political and eco-
nomic implications, as they are critical for understanding and predicting cli-
mate change, weather, agriculture productivity, flooding, and other natural
hazards (Tapley et al., 2004).

As it will be explained in the next chapters, it is difficult to determine
directly the Terrestrial Water Storage on continental scales. Research (Ra-
millien et al., 2008; Rodell et al., 2007; Schmidt et al., 2006; Werth et al.,
2009; Widiastuti, 2009) has shown that GRACE satellite gravimetry offers
a very interesting alternative remote sensing technique to measure changes
in total water storage (ice, snow, surface waters, soil moisture, groundwater)
over continental areas, representing a new source of information for hydrolo-
gists and global hydrological modelers.

The outcome of my research in assimilating GRACE terrestrial water sto-
rage data into the HBV-96, should be to improve even more the methodology
developed by Widiastuti (2009). The qualitative impact should be to extract
better quality results after the simulation; more accurate and closer to the
expected outcomes. The final evaluation of my work will be based on how are
those changes on the algorithms or in the previous procedures, will affect the
result and if the new procedures will be included into the method in total.
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1.2 Research objectives

Already from Widiastuti (2009) case study, the results are very promising.The
Ensemble Kalman Filter and Smoother were successfully implemented; they
where used to assimilate GRACE observations to the HBV model.

The first thing I am going to improve in the implementation period is to
extend the period of simulation. In this way, I can answer my basic questions:
what leads to an update? Do the initial conditions create the ensemble spread
or the winter which creates some kind of seasonality? The implementation
period will be separated in four steps:

• Algorithm development (Time extension from one year to three years
and change of update vector)

• Test several different GRACE observations algorithms

• Test a new state vector, where the individual stores of the Terrestrial
Water Storage will be updated individually

• Test a new ensemble smoother (Ensemble Moving Batch Smoother) for
data assimilation

All those implementation steps will be done by acquiring the GRACE
data from Dr. Brian C. Gunter (Physical and Space Geodesy, Faculty of
Aerospace Engineering, TU Delft), and the Hydrological model and data
from Dr. Albrecht Weerts (Deltares).

1.3 Thesis Outline

The scope of this master thesis is to use Kalman filters, to assimilate satellite
observations into a hydrological model. In the 2nd chapter, all the background
information for the proper understanding and use of this master thesis is
introduced. In the beginning of the chapter the Terrestrial Water Storage is
defined. Then, general information for hydrological modelling are given and
also all details for the model used in this master thesis. Afterwards GRACE
mission is explained, as well as the three datasets which are used in the
simulations. Also, some cases where hydrological modelling was combined
with GRACE data are analyzed. Finally, some basic information for the case
study area is presented.
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In the next chapter there is an analysis of data assimilation and also for
the specific Kalman Filters and Smoothers used in this master thesis. In
chapter number four, the model uncertainty is analyzed and the results of
the initial perturbation and Ensemble Open Loop are shown.

In the 5th chapter the initial simulations are presented. In this chapter
the first two research questions are answered. The 6th chapter is dealing with
the third research objective which has to do with the state vector definition.
In the 7th chapter the Ensemble Moving Batch is analyzed, applied and the
results are commented.

Finally, the conclusions chapter should give an overall view of the progress
which was made through this thesis, some comments about the final results
and suggestions for future work.
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CHAPTER 2

BACKGROUND

This Chapter provides background information for this master thesis. In the
first part the terrestrial water storage and its importance to water manage-
ment is analyzed and also how it can be estimated by means of hydrological
modelling. The hydrological model which is used in this master thesis is also
described.

In the next part there is description of GRACE satellite mission and
gravity field observations. Also the different algorithms of processing the
initial GRACE data are explained.

Afterwards those two different sections are combined to explain how in-
formation from both hydrological modelling and GRACE observation can be
combined to provide a better estimate of terrestrial water storage. Finally
details are given for the study area of this master thesis.

2.1 Terrestrial Water Storage

Terrestrial water storage (TWS) can be defined as all forms of water stored
above and underneath the surface of the Earth (Syed et al., 2008), which
can include water in vegetation surfaces, snow, ice, soil water, groundwater,
surface water in rivers, lakes, wetlands and man-made reservoirs.

For a hydrologist there are two major problems to deal with; firstly to
quantify the amount of water in the different hydrological cycle phases and
seasonally to evaluate the rate of transfer of water between the cycle phases

5



Figure 2.1: Conceptualization of the Water Cycle (www.usgcrp.gov/)

(Shaw, 1983). Individual soil moisture or groundwater measurements provide
only local estimates of water storage. Thus temporal and spatial variations
of water storage are presently not known with sufficient accuracy for large
areas (Schmidt et al., 2006).

Estimation of terrestrial water storage is possible by using hydrological
models. There is a large number of hydrological models available, and they
vary in terms of process description, temporal resolution, spatial resolution,
and the detail in process representation. The following section explains the
different types of hydrological model.

2.2 Hydrological model

As mentioned in the previous section, the TWS estimation is really difficult in
large-scale monitoring systems. But as the latest decades the technology had
developed, also in the field of Hydrology there were some changes. High speed
processors and the large storage capability of modern personal computer,
provide to the Hydrology scientists the appropriate tools to develop more
efficient and effective models.

A rainfall-runoff model describes the rainfall-runoff relations of a rainfall
catchment area, drainage basin or watershed. There are two really important
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parameters which affects this kind of models. Firstly those models are very
much dependent on the time scale being considered. For short timescales
their relationship cannot be easily defined but in a long duration period the
connection becomes much simpler. The other important parameter is the size
of area to be considered. Small and homogenous areas could be treated easily
while large drainage basins with national or international scales, differences
in catchment effects are smoothed out giving relatively simply rainfall-runoff
relationships (Shaw, 1983).

Already from 1960, the Hydrologists started to investigate the rainfall -
runoff relations of a rainfall catchment area (Dooge, 1959; Nash, 1960). Nash
(1960) presented his concept of the unit hydrograph as the end product of a
series of successive linear storages in the watershed. And it was also Dooge
(1959) who used linear storages interspersed with time delays. The 1960’s
brought intensive studies of this outflow hydrography as a nonlinear function
(Linsley, 1967).

An hydrological transport model (or simply Hydrological model) could be
defined as a mathematical model used to simulate river or stream flow and
calculate water quality parameters. According to Shaw (1983) Hydrological
models can be divided into two groups. Firstly there are the deterministic
models (also known as Physically-based models), which seek to simulate the
physical processes in the catchment involved in the transformation of rainfall
to streamflow. Secondly there are the stochastic models which describe the
hydrological time series of the input variables such as rainfall, evapotranspi-
ration or streamflow involving distributions in probability (Shaw, 1983).

Finally, conceptual modelling should be mentioned. Hydrologists use
conceptual modelling to simplify the complex processes which take place in
the hydrological cycle. This kind of modelling divides the whole hydrology
possesses of a drainage basin, into reservoirs for which water budgets are kept
(Shaw, 1983).

2.2.1 HBV-96

In the previous section there is a discussion about what is an Hydrological
model and the different types of hydrological models were analyzed. Also,
there is a discussion about the characterization rainfall-runoff of a model and
how a conceptual model could simplify the complex processes of hydrology.
In this section a brief description of the hydrology model used in this mas-
ter thesis, known as HBV-96 (Hydrologiska Byrans Vattenbalansavdelning
model of 1996) is given.
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Figure 2.2: Structure of the HBV model (parameters in bold capitals)(after Sei-
bert (1999))

The HBV-Model is a semi-distributed conceptual rainfall-runoff model,
which simulates snow accumulation, snow melt, actual evapotranspiration,
soil moisture storage, groundwater depth and runoff (www.smhi.se/en). The
HBV-96 model is a newer version of the SMHI model (Swedish Meteorological
and Hydrological Institute) created by Bergstrom (1976). Lindstrom et al.
(1997) created the final HBV-96 model after a comprehensive reevaluation.

As shown in Figure 2.2, the model consists of different routines, where
snow-melt is computed by a degree-day method. Groundwater recharge and
actual evaporation are functions of actual water storage in a soil box and ru-
noff formation is represented by three linear reservoir equations and channel
routing is simulated by a triangular weighting function (Seibert, 1999).

We already have defined HBV model as semi-distributed. This means
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that a basin may be separated into a number of subbasins and that each one
of these is distributed according to elevation and vegetation. The HBV model
has gradually been developed into a semi-distributed model (Lindstrom et al.,
1997).

The hydrological model which is used in this case is a calibrated version
of HBV-96 model, by Deltares research institute, for the Rhine river-basin
Weerts (2010). The model used in this thesis was programmed in PCRaster
environment (Utrecht University).

The input data required by the HBV-96 model are precipitation, air tem-
perature, and evapotranspiration of a daily timestep. The available data
for this thesis are from January 1st 2001 until December 31st 2005, and the
grid size is 1 km (Weerts, 2009). All prior work (mostly MatLab code) was
developed and provided by Widiastuti (2009).

2.3 GRACE

The launch of the Gravity Recovery and Climate Experiment (GRACE) twin
satellite mission in March 2002 has provided the first space based data-set for
large scale TWS estimates. Although primarily aimed at accurately mapping
time variations in Earth’s gravity field at 30 day intervals, GRACE has shown
remarkable prospects for inferring water mass changes over the globe (Tapley
et al., 2004). The GRACE satellite mission’s goal is to map the Earths time-
varying gravity field with a temporal resolution of 1 month or better and a
spatial resolution of about 400 km.

The GRACE mission is a first realization of the so-called satellite-to-
satellite tracking concept in the low-low mode dating back to the fundamental
paper by Wolff (1969). Wolff (1969) in his article ”Direct measurements of
the Earth’s Gravitational Potential Using a satellite pair”, said that it is
possible to measure variations of intensity of the earth’s gravity field by
orbiting two geometrically identical satellites spaced about 200 kilometers
apart and equipped to measure their relative velocity. The basic idea is
to trace the spatio-temporal gravity field with an increased sensitivity by
means of micrometer-precise inter-satellite range and range-rate observations
of two co-planar orbiting satellites. As the two satellites move along their
orbit, separated by a mean inter-satellite distance of approximately 220 km,
the relative motion of the spacecraft, visible as continuous variations in the
measured range and range-rate, respectively, is proportional to the integrated
differences of the gravity accelerations felt by each satellite at its individual
position (Schmidt et al., 2008).
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Figure 2.3: GRACE satellite mission: the flight configuration and ground support
(after eospso.gsfc.nasa.gov/)

Some basic characteristics are given below:

• The mission was launched on 17 March 2002 and it has recently been
agreed to extend the experiment to the end of its on-orbit life, which
expected in 2015 (www.nasa.gov)

• The system’s initial altitude was 500 km (the orbit altitude is not kept
fixed and decreases due to air drag with an average rate of about 2.7
km/year). This low altitude was selected to allow for a detection of the
gravity signals in the inter-satellite data well above the micron level,
as Wolff (1969) suggested
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Figure 2.4: Spatial coverage of GRACE groundtracks, indicating the trade-off
between spatial and temporal resolution (after Schmidt et al. (2008))

• To yield a global coverage, an almost polar inclination has been selected
of 89.5◦

• Absolute positioning of the two spacecraft and the inter-satellite obser-
vations, is provided by a space-proofed multi-channel, two-frequency
GPS receiver onboard each GRACE satellite, known as GPS-SST (sa-
tellite to satellite)

• K-band range and range-rate satellite-to-satellite tracking between the
two GRACE satellites, known as KBR-SST (satellite to satellite)

Monthly gravity field estimates made by the twin Gravity Recovery and
Climate Experiment (GRACE) satellites have a geoid height accuracy of 2-3
millimeters at a spatial resolution as small as 400 kilometers. The trade-off
detween spatial and temporal resolutionis illustrated in Figure 2.4.

Observations of seasonal variations in Earths gravity field place impor-
tant constraints on models of global mass variability and temporal exchange
among the land, ocean, and atmosphere. This is particularly important for
subsystems that might otherwise be extremely difficult to detect and moni-
tor. Terrestrial water variations are the largest omitted phenomena and are
thus the dominant unmodeled signal that should be evident in the monthly
gravity estimates (Tapley et al., 2004).
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2.4 GRACE Data-sets

Monthly GRACE gravity field models are very noisy. When computing the
monthly mean water storage variation over a target area, the noise is partially
reduced, but still is unacceptable high. Therefore, some additional spatial
smoothing is required prior to the computation of mean monthly mass va-
riations over a target area (Jekeli, 1981; Klees et al., 2006; Kusche, 2007).

The standard method is to apply Gaussian Smoothing with radius of
300-500 Km (Jekeli, 1981). More recent works tend to apply probabilistic
decorrelation methods in the post-processing of GRACE solutions, usually in
conjunction with an additional smoothing. The idea behind the decorrelation
is to identify and remove error correlation in the sets of spherical harmonic
coefficients (i.e. between different coefficients).

Official global gravity field models are computed from GRACE data by
the Center of Space Research (CSR) of the University of Texas at Austin;
by the GeoForschungsZentrum Postsdam in collaboration with Groupe de
Recherche de Geodesie Spatiele (GFZ/GRGS) and by the Jet Propulsion
Laboratory (JPL) of the California Institute of Technology. In addition,
alternative solutions are computed by several other research groups like the
Delft Institute of Earth Observation and Space Systems (DEOS) at Delft
University of Technology; the Centre National dEtudes Spatiales (CNES). In
this thesis there are used three types of datasets, the DEOS DMT-1 solution,
the CSR-RL04 solution and the RBF solution (radial basis functions (RBFs)
as parametrization). Details about the GRACE solutions used for simulation
are described in the following subsections.

The idea behind the GRACE gravity field solution, is to follow four basic
steps:

• Firstly, to obtain the monthly sets of inter-satellite differences. Those
differences in most cases of datasets are range-rates, but alternatively
could be to use directly to use range measurements and also derived
range-accelerations

• Monthly mass variations (unconstrained) in equivalent water height

• Monthly mass variations (optimally filtered). This is the step where
the basic modelling for each of the databases takes place

• Linear trends (filtered). This final step is where the filter, the additional
smoothing is applied to the datasets

12



All the data used and presented in this thesis are in the Gauss Krueger
Zone 3 coordinate system. The Gauss Krueger Zone 3 (Pulkovo 1942(83))
is a German coordinate system, and it was used because the majority of the
study area lies on Germany.

2.4.1 DEOS DMT-1

The DEOS solutions are a series of monthly estimates of the Earths gravity
field variation with respect to the static gravity field EIGEN-GL04C (Liu,
2008). The N-Body Perturbations where done according to DE405 planetary
ephemerides. There where used IERS 2003 conventions for the Solid Earth
(pole) tides. For the Ocean tides FES2004 model is used. Finally for general
relativity effects were used, IERS 2003 conventions (DEOS, 2009).

Computation of the monthly solutions involved the following basic steps:
First the computation of purely dynamic orbits of GRACE satellites. Se-
condly the derivation of residual range combinations and afterwards the
computation of monthly solutions and corresponding covariance matrices.
Fourth and final step is the post-processing of the monthly solutions. The
first three steps are described in detail in Liu (2008). A detailed description
of the posteriori filtering of monthly solutions, which is the most essential
part of the final step, is given in Klees et al. (2008b).

The series of monthly solutions is post-processed by applying statically
optimal Wiener-type filters based on full signal and noise covariance matrices
(Klees et al., 2008b). Details on the procedure of building this filters are given
by Liu et al. (2010).

The data which where used was from February of 2003 until February
of 2009. Both of datasets there where provided by the DEOS department
(Gunter, 2010).

2.4.2 CSR RL04

The CSR solutions are produced by the Center of Space Research (CSR)
at University of Austin. The monthly solutions issued by CSR have several
versions. The Release 04 (RL04) products are used in this thesis for the
simulations, analysis and comparison with the other solutions. The monthly
solutions contain fully normalized spherical harmonic coefficients up to degree
and order 60 (Liu, 2008). More details of the RL04 model computation
processing can be found in (Bettadpur, 2007).
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Figure 2.5: Maps of GRACE TWS for April 2005 for the three datasets. The
datasets depict the differences to a reference month. Beware of the different color-
bars (the mean on those plots is not added).

The data where processed in the Delft Institute of Earth Observation and
Space Systems (DEOS) of TU Delft. The datasets were ’destriped’ using the
Swenson and Wahr (2006) approach. It was applied a 400 km halfwidth
Gaussian smoothing in the spherical harmonics and then converted to grids
f equivalent water height, using the methodology presented by Wahr et al.
(1998). Then the DS400 was applied as explained in depth from Swenson
et al. (2008).

2.4.3 RBF

Radial basis functions are radial-symmetric functions which are localising in
space, i.e. most of their energy is confined to a local area. They have either
global or local support (Wittwer, 2009).
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There are several analysis centers such as DEOS, the Institute of Theo-
retical Geodesy (ITG) at the University of Bonn, the Goddard Space Flight
Center (GSFC), and others, that compute solutions for several areas of in-
terest using spherical radial basis functions (SRBFs) or single layer densities
(mascons) as an alternative to the spherical harmonic representation of sur-
face mass change. Those solutions are attractive for two main reasons firstly
they require only a limited set of GRACE data to be processed and a re-
latively small number of basis functions, and secondly they are expected to
exploit the resolution of the GRACE observations better than the spherical
harmonic basis functions (Klees et al., 2008a). More details on how the RBF
dataset is created are given by Wittwer (2009). The datasets in this thesis
provided by the DEOS department (Gunter, 2010).

Figure of all three datasets, interpolated for the whole time span which
they are going to be used is provided in section 5.3.3 (Figure 5.10).

2.5 GRACE - Hydrological Model

The launch of the GRACE satellite mission in 2002, has provided a new
source of information for hydrologists and global hydrological modelers (Ra-
millien et al., 2008). In the next paragraphs a summary of the researches
done using GRACE data and a Hydrological model is given.

In Ramillien et al. (2008), there is an analysis of several areas of Hydro-
logy, affected by the ability of GRACE to detect hydrological signals with
sufficient accuracy. Pre-launch assessments (Rodell and Famiglietti, 1999,
2001, 2002) as well as several post-launch studies (Ramillien et al., 2004;
Wahr et al., 2004) have clearly demonstrated the capability of GRACE to
monitor water storage variations like.

In the same article (Ramillien et al., 2008), there is a clear reference in
the fact that a global network for monitoring continental water storage will
likely not appear in the near-future, while the spatial resolution of GRACE
data has been steadily improving thanks to advances in both processing of
the instrument data and post-processing of the gravity field solutions using
linear filtering.

When Rodell and Famiglietti (1999) compared some modelled datasets of
TWS to expected GRACE instrument errors, they found that the detectable
limit of spatial scales to water storage changes would be 200,000 km2 or
greater, and at the same time for monthly or longer timescales, and with
monthly accuracies of roughly 1.5 cm.
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In terms of accuracy, studies have demonstrated the possibilities of such
a satellite system to detect and monitor spatial redistribution of TWS versus
time, at the precision of only tens of millimeters of equivalent-water height.
The accuracy of the results still depends upon the low-pass filtering method
used, and so the level of noise in the GRACE data (Ramillien et al., 2008).

Also, Klees et al. (2008a) describes that the typical accuracy of current
GRACE solution for river basins above 1 million km2 is 20 mm equivalent
water height. In this master thesis and for all the GRACE datasets which
are used for the simulations, an accuracy of 20 mm will be used, following
the typical accuracy of GRACE.

2.6 Study Area

Figure 2.6: The location of Rhine river Basin in Europe (after Terink et al.
(2010))

The study area of this Master Thesis is the Rhine river basin. The Rhine
is one of the longest and most important rivers in Europe, at 1320 km, with
an average discharge of 2200 m3/s. The river basin has a population of 50
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million. The total drainage area is 185000 Km2, although in this case study,
the lowland region is excluded, leaving an area of 160000 Km2.
(en.wikipedia.org/wiki/Rhine; www.grid.unep.ch)

Etymologically Rhine’s name has its roots from the Gaulish ”Renos”,
which means literally ”that which flows”. The spelling with -h- seems to be
borrowed from the Greek form of the name, Rhenos (www.etymonline.com/).

The Rhine river is the major river in western Europe, and as we can
see from Figures 2.6 and 2.7, its basin covers portions of seven European
countries: Switzerland, Liechtenstein, Austria, Germany, Germany, France
and Netherlands. It is also important that in the Rhine river basin there are
18 Ramsar Sites protected.

Figure 2.7: The Rhine river Basin and its subcatchments (after Widiastuti
(2009))

The basins climate is determined by its location in a zone of temperate
climatic conditions with frequent weather changes. There is precipitation all
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the year round, varying from 700 to 1,200 mm. The annual mean tempera-
ture is around 9 C. The impacts resulting from Climate Change scenarios on
the discharge regime of the Rhine, based on simulations using the Rhineflow
model, are:

• The discharge regime of the Rhine (and especially in the Swiss part
of the catchment) is expected to shift away from a snowfall-snowmelt
controlled regime to one that is much more rainfall controlled.

• This change in discharge regime, combined with the increased winter
precipitation, will result in substantially increased winter discharges
(up to 40 percent increase)

• The change in discharge regime, combined with the increased tempera-
ture will result in a decrease in summer discharge of about 15 percent
(www.unesco ihe.org/; www.waterandclimate.org/)
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CHAPTER 3

DATA ASSIMILATION

3.1 Introduction

In order to assimilate the GRACE data into the hydrological model the
method that it will be used is the Ensemble Kalman Filter and the Ensemble
Kalman Smoother. Previous research (Margulis et al. (2002), Reichle et al.
(2002), Dunne and Entekhabi (2006), Widiastuti (2009), Drecourt (2004)),
has shown that applying Ensemble Kalman methods to assimilate remote
sensing data into hydrology data had great results. In particular Reichle
et al. (2002) mention in their research that EnKF (Ensemble Kalman Filter)
is an attractive option for land applications. That is because (i) its sequential
structure is convenient for processing remotely sensed measurements in real
time, (ii) it provides information on the accuracy of its estimates, (iii) it is
relatively easy to implement even if the model and measurement equations
include thresholds and other nonlinearities, and (iv) it is able to account for
a wide range of possible model errors.

Data assimilation can be loosely defined as the combination of the com-
plementary information from reliable observations and dynamic model into
an optimal estimate of an unknown true state.

The EnKS (Ensemble Kalman Smoother), was firstly introduced by Even-
sen and van Leeuwen (2000). The EnKS can be regarded as an extension
of the EnKF (Ensemble Kalman Filter). The EnKF was first introduced by
Evensen (1994) and it gained popularity because of its simple conceptual
formulation and relative ease of implementation. The EnKS, as described in
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Evensen and van Leeuwen (2000), updates the ensemble at prior times every
time new measurements are available. It allows for a sequential processing
of the measurements in time. Thus, every time a new set of measurements
becomes available, the ensemble at the current and all prior times can be up-
dated (Evensen, 2003). The Ensemble Moving Batch Smoother was initially
introduced by Dunne and Entekhabi (2005). It is a simple extension of the
EnKF in which the states are distributed in time and updated in a ’batch’.

In section 3.2 the term data assimilation is explained. In the following
sections the the different methods which are used (Ensemble Kalman Filter,
Ensemble Kalman Smoother and Ensemble Moving Batch Smoother) are
explained.

3.2 What is Data Assimilation?

Data assimilation is a mathematical method in which observations of the
current (and possibly, past), are combined with results of a numerical model.
This combination takes place in every analysis step of the analysis cycle in
which the model proceeds. At the analysis step, data assimilation tries to
balance the uncertainty in the data and in the forecast. The model is then
advanced in time and its result becomes the forecast in the next analysis
cycle (Bouttier and Courtier, 1999).

Why use Data Assimilation rather than modeling alone? Always in a
model we have to deal with some kind of structural errors which could be
some weak assumptions in the basis of the model due to insufficient knowledge
of the working field, or there could be simplifications, or approximations.
Imperfect model inputs could compromise the result and there are always in
modelling some uncertain model parameters (Evensen, 2007).

Drecourt (2004), in his PhD thesis, mentions that the main strength of
data assimilation is the ability to extract the optimal amount of information
out of the observations. Provided that the errors on the observations and the
model are estimated properly, data assimilation gives the optimal estimate
of the state of the system .

There are two basic approaches to data assimilation: sequential assimi-
lation, that only considers observation made in the past until the analysis
step, which is the case of real-time assimilation systems, and non-sequential,
or variational assimilation, where observation from the future can be used,
for instance in a reanalysis exercise. Sequential methods include the classic
Kalman Filter, the Extended Kalman Filter, the Ensemble Kalman Filter
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and the Ensemble Kalman Smoother, while variational methods are 3D-Var
or 4D-Var (Bouttier and Courtier, 1999).

Figure 3.1: Variational data assimilation method. The prior model state is given
a better initial condition that leads to an update model state that is closer to the
observations (Widiastuti (2009), after (Drecourt, 2004))

Figure 3.2: Sequential data assimilation method. When an observation is avai-
lable, the model state is updated to a value closer to the observation that is used to
make the next prediction (Widiastuti (2009), after (Drecourt, 2004))

Both the Ensemble Kalman Filter and Ensemble Kalman Smoother(EnKS)
use a Monte Carlo or ensemble representation for the pdfs (Probability den-
sity function), an ensemble integration using stochastic models to model the
time evolution of the pdfs (Evensen, 2007).

3.3 Ensemble Kalman Filter

The Kalman filter is the most well-known data assimilation technique. It has
quite simple implementation and it has also gained this popularity due to its
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relative robustness to the misspecification of the error sources (Madsen and
Canizares, 1999).

The reason for not using KF (Kalman filter) or EKF (Ensemble Kalman
Filter) is that both of them propagate error information with a dynamic
equation for the state error covariance matrix. However, the integration of
this equation is not computationally feasible for large scale environmental
systems. Is the same reason that made Evensen (1994) to use an ensemble of
model trajectories from which the necessary error covariances are estimated
at the time of an update. The technique has since become known as the
Ensemble Kalman filter (Reichle et al., 2002). The method uses the nonlinear
model to propagate the ensemble states. Some of the linearizations that make
the EKF prone to failure are thereby avoided.

The Kalman filter is in essence a Best Linear Unbiased Predictor (BLUP).
This means that Kalman Filter is optimal in situations when we have a linear
model. Also it is a minimum variance estimate, i.e. given a model forecast
and an observation, it provides the estimate that minimizes the estimation
variance (Drecourt, 2004).

The objective of the Ensemble Kalman Filter is to estimate the value of
the states of the system stored in the state vector y. The state y is propagated
forward in time using the model, in this case the hydrological model. At each
update time t, a vector of observations (z) becomes available. A non linear
operator M relates the true state to the measured variable.

z(t) = M [y(t)] + e(t) (3.1)

where the uncertainty in the observation is given in the vector e, which
is assumed to be zero mean with covariance matrix Re. For a given vector of
measurements at time t, an ensemble of perturbed observation is generated:

zj(t) = z(t) + εj(t) (3.2)

where j refers to the jth ensemble member. If the ensemble of pertur-
bations is gathered into the matrix γ = (ε1, ε2, . . . , ε1N), the measurement
covariance can be written as

Rε =
γγT

N − 1
(3.3)

The analysis or update (a) is obtained by updating each replicate indivi-
dually:
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yaj (t) = yj(t) +K(t)(zj(t)−M [yj(t)]) (3.4)

where K(t) is the Kalman gain matrix:

K(t) = CYM(CM +Rε)
−1 (3.5)

CYM is the forecast cross covariance between the state y(t) and the mea-
surement predictions M [y(t)]. CM is the forecast error covariance of the
measurement predictions. If the states, perturbed observations and predic-
ted measurements are gathered into the matrices Y, Z and M respectively,
then the terms of the Kalman gain matrix can be written as

CYM =
1

N − 1
Y ′M ′T (3.6)

CM =
1

N − 1
M ′M ′T (3.7)

Equation 3.4 can therefore be expressed as:

Y a(t) = Y (t) + Y ′(t)M ′T (t){M ′(t)M ′T (t) + γγT}−1(Z(t)−M(t)) (3.8)

In Figure 3.3, the EnKF is explained schematically. The horizontal axis
is time and the measurements are indicated at regular intervals. The ver-
tical axis indicates the number of updates with measurements. The blue
arrows represent the forward ensemble integration, the red arrows are the
introduction of measurements, while the green arrows is the EnKF update
algorithm. Thus, the blue arrows indicate the EnKF solution as a function
of time, which is updated every time measurements are available.

3.4 Ensemble Kalman Smoother

The Ensemble Kalman Smoother was firstly introduced by Evensen and van
Leeuwen (2000) and it is based on ensemble statistics. It bears a strong
resemblance with the ensemble Kalman filter. The difference is that every
time a new dataset is available during the forward integration, an analysis is
computed for all previous times up to this time. Thus, the first guess for the
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Figure 3.3: Illustration of the update procedure used in the EnKF (Evensen,
2007)

Figure 3.4: Illustration of the update procedure used in the EnKS (Evensen, 2007)

smoother is the ensemble Kalman filter solution, and the smoother estimate
provides an improvement of this, as one would expect a smoother to do.

The Ensemble Kalman Smoother (EnKS) is a straight forward extension
of the EnKF. As the EnKF uses the ensemble covariances in space to spread
the information from the measurements, the EnKS uses the ensemble cova-
riances in space and time to spread the information also backward in time
Evensen (2007).

In the EnKS, the information from the observation at update time t is
used to update the state estimate at the update time and also at previous
times t′ using:
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Y a(t′) = Y (t′) + Y ′(t′)M ′T (t){M ′(t)M ′T (t) + γγT}−1(Z(t)−M(t)) (3.9)

The EnKS is a sequential algorithm, requiring only forward model runs,
and no additional model runs beyond those required by the EnKF. The
EnKF solution is used as the first estimate of the EnKS. Each update with
a subsequent set of observations results in a change in ensemble mean and
a reduction in ensemble variance. So, the EnKS estimates should always be
at least as good as the EnKF. As observations further into the future are
used, the improvements become negligible, indicating that they are beyond
the decorrelation time (Evensen, 2003).

In equation 3.9, if the terms pertaining to time (t) are grouped together
in B(t), then we have:

Y a(t′) = Y (t′) + Y ′(t′)B(t) (3.10)

which B(t) is common with equation 3.8 of the EnKF. So, at an update
time t, the matrix B(t) is computed to update the current state in the EnKF.
The same matrix could be used in EnKS. A computationally expensive cal-
culation is therefore avoided.

Figure 3.4, explains the EnKS schematically. The horizontal axis is time
and the measurements are indicated at regular intervals. The vertical axis
indicates the number of updates with measurements. The blue arrows re-
present the forward ensemble integration, the red arrows are the introduc-
tion of measurements, while the green arrows denote updates. Thus, the blue
arrows indicate the EnKF solution as a function of time, which is updated
every time measurements are available. The magenta arrows are the updates
for the EnKS, which goes backward in time, and which is computed following
the EnKF update every time measurements are available.

3.5 Ensemble Moving Batch Smoother

In the development and application of EnKF techniques there have been se-
veral recent changes. Dunne and Entekhabi (2005) argued that soil moisture
estimation is a reanalysis-type problem as observations beyond the estima-
tion time are also useful in the estimation. However, the EnKF uses only
observations prior to the estimation time to update the current state. To
overcome this problem they developed an Ensemble Moving Batch (EnMB)
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smoother in which all observations within a prescribed window were used to
update all of the soil moisture states in a batch. The EnMB uses the EnKF
equations but has a state vector that is distributed in time. It was shown
that smoothing improved the estimates of soil moisture.

Figure 3.5: Conceptual diagram of EnMB smoother algorithm. An estimate of
the state is required at every time step, while observations are available at every
fourth time step (after Dunne and Entekhabi (2005))

The Ensemble Moving Batch Smoother is a simple extension of the EnKF
in which the states are distributed in time and updated in a ’batch’. The
number of observations included determines the length of the observation
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vector, the state vector and consequently the covariance matrices (Dunne
and Entekhabi, 2005).

In the conceptual diagram in Figure 3.5 the batch contains three observa-
tions. The smoother window refers to the interval between the first and last
observation. The forward model runs through to the end of the smoother
window to obtain the prior estimate of the state. An augmented state vector
Y contains the states of interest (y) at all time steps of interest, which may
include times at which the state is not observed.

Y = [y1 y2 ... y9]
T (3.11)

The augmented measurement vector Z contains all the observations in
the smoother window:

Z = [z1 z5 z9]
T (3.12)

The EnKF equations in the previous section are applied to these aug-
mented vectors to yield an updated estimate. When the EnKF equations
are implemented for a batch of observations, the covariance matrices relate
the state at multiple times to all observations in the batch. The Kalman
Gain matrix reflects the relevance of future observations to the current state.
The smoother window is moved along the study interval one observation at
a time, as including a new observation introduces new information.

In Chapter 7, where the Ensemble Moving Batch Smoother simulations
are shown, there is an explanation of the EnMB used in this master thesis,
and an analysis of the different parameters.
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CHAPTER 4

MODEL UNCERTAINTY

4.1 Introduction

In this chapter the perturbation of the parameters is analyzed, both for
the parameter model maps and for the forcing data maps. At the end of
the chapter there is also the explanation of the 7 years simulation of the
Ensemble Open Loop, as well as some comments of the EnsOL(Ensemble
Open Loop) results.

4.2 Perturbing Parameters

The initial ensemble of data should ideally be chosen to properly represent
the error statistics of the initial guess for the model state. But because of
uncertainty of the nominal initial input parameters, we need to perturb these
parameters. This should be done adding a normally distributed random
fluctuation (Margulis et al., 2002). This will ensure that the system is in
dynamical balance and that proper multivariate correlations have developed.

So, two types of maps were perturbed in this research: the parameter
model maps and the forcing data maps. Both of them were perturbed in the
most appropriate way as proved in the research of Widiastuti (2009).
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4.2.1 Parameter Model Maps

The parameter model maps used in this thesis have the form of PC Ras-
ter maps. (Widiastuti, 2009), in her research recommended the following
parameters based on her sensitivity study:

• beta: Exponent in soil runoff generation equation

• cflux: Maximum capillary rise from runoff response routine to soil mois-
ture routine

• fc: Total water holding capacity of the soil

• Icfi: Maximum interception storage in non forested area

• Icfo: Maximum interception storage in forested area

• Ip: Fraction of field capacity below which actual evaporation = poten-
tial evaporation

• k4: Recession constant base flow

• khq: Recession rate at flow HQ

• maxbas: Number of days in unit hydrograph (<= 10)

• perc: Exponent in soil runoff generation equation

The standard deviation of the perturbation was dev=0.1 of the parameter
value, and the type of the perturbation size was:

dev = 0.1 ∗ (maxvalue−minvalue) (4.1)

so, standard deviation is equal to 0.1 times the range of the parameter.

4.2.2 Forcing Data Maps

In this thesis the meteorological forcing data used are precipitation, air tem-
perature, and evapotranspiration of a daily timestep. The available data are
from January 1st 2001 until December 31st 2005, and the grid size is 1 km
(Widiastuti, 2009).

The form of the data is PC Raster maps and the used unit is millimeter
for precipitation and evapotranspiration while for the temperature is Celsius
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degrees. The precipitation data originates from observations at 46 stations
that provide hourly values of precipitation. Interpolation from these point
observations into the whole map was required. This was done by making use
of mean monthly precipitation background grids. The measured precipitation
is divided by these grids to derive the precipitation anomaly. The anomaly
is then interpolated to a grid with the same size as the background grid, and
then is multiplied with the background grid to derive the interpolated field.
This approach take into account the orientation of the terrain and corrects
for orography. The interpolation methodology was developed in Deltares
(Weerts et al., 2008).

The temperature observations came from approximately 200 stations,
providing hourly values of temperature. Missing temperature data at sta-
tions are filled using Kriging, using variogram parameters derived for Swit-
zerland and taking into account the east-west direction of Alps (anisotropic
variogram)(Widiastuti, 2009). Next, the temperature is interpolated to mean
height of the sub-basin. Then the mean height can be used to calculate the
temperature in different elevation zone using the parameter tcalt with a de-
fault value of 0.6, resulting in temperature maps for each time step (Weerts
et al., 2008).

Potential evaporation data is derived from long term mean potential eva-
poration measurements from limited stations, and the potential evaporation
is the same for every day of a month (Weerts et al., 2008).

For the perturbation of the forcing data maps, the method followed is
the same as that used in Widiastuti (2009). In this case, exponential spatial
correlation functions are used to model the spatial covariances of the forcing
data. This is done to ensure that the perturbed maps maintain a reasonable
spatial correlation. For example when there is precipitation at one pixel, it
can be expected that precipitation also occurs in the neighbouring pixels.

In the perturbation, the spatial correlation is applied using an exponential
function:

C(i, j) = exp(−1 ∗ (

√
(X(i)−X(j))2 + (Y (i)− Y (j))2

L
)) (4.2)

where C(i, j) is the spatial correlation, i and j denotes the row and column
respectively, X and Y denotes the coordinates in X and Y direction, and L
is the correlation length. The covariance matrix now becomes:

Cdev = dev2 ∗ (C + CT − I) (4.3)
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where I is an identity matrix. The deviation sizes used in this master
thesis are: 0.15 for the precipitation and evapotranspiration, and 0.1 for the
air temperature.

Figure 4.1: Catchment averaged ensemble mean Terrestrial Water Storage of En-
semble Open Loop (upper plot). Catchment averaged ensemble standard deviation
of TWS for Ensemble Open Loop (lower plot)

4.3 Ensemble Open Loop

The scope of the Ensemble Open Loop(EnsOL) is to let us see how the
model performs without assimilation and observations. This can be viewed
as a ”first” guess of the true states available without the grace GRACE
observations. At the same time the first results of the EnsOL will be used
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as initial conditions for the experiments. Thus the EnsOL is a way to check
the effect of the uncertainty.

Figure 4.2: TWS individual stores of the Ensemble Open Loop (ensemble mean
and standard deviation)

In the Ensemble Open Loop, a sample of 30 ensembles were taken. Per-
turbed parameters were used both for forcing data maps and forcing model
maps. As mentioned earlier the data given were for a seven year period.

In Figure 4.1 we can see the catchment averaged ensemble mean TWS
of the ensemble open loop and the catchment averaged standard deviation
in TWS. In the upper plot we can observe that there is an annual pattern
of catchment mean, which has its highest peak always somewhere between
January to March, and the lowest peak in the summer season, usually at the
end of it.
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In the second plot, the standard deviation of the catchment for the same
period, we can see that there is a continuously increasing error in the en-
semble open loop, and that is because of the continuously added perturbed
parameters.

The ensemble mean TWS of the Figure 4.1 is the ensemble of the model
state Y (t) in equation 3.8, which is the TWS (terrestrial water storage) and
calculated as:

Y (t) =
∑

(SM(t) + UZ(t) + LZ(t)) (4.4)

where SM is the soil moisture storage, UZ is the upper zone storage and LZ
is the lower zone storage.

In Figure 4.2 we see the plots of the mean and standard deviation of the
individual storages of the TWS (soil moisture, upper zone and lower zone
storage). It is obvious that the max values of the three stores which are
determined by the HBV-96, are very important for the resulting magnitude
of the individual storages of the TWS. So, as it is calibrated from the model
, the soil moisture is the storage that responds faster than the other two
stores. This is the reason for the high values of the soil moisture storage for
the hole time span. At the same time it is characteristic of the model that
the lower zone has a smooth movement for the time span. This is because
the lower zone storage is the last one to be updated from the model.

In the following chapters, the Ensemble Open Loop will be analyzed fur-
thermore compared with the Ensemble Kalman Filter, the Ensemble Kalman
Smoother and the Ensemble Moving Batch Smoother results.
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CHAPTER 5

INITIAL SIMULATIONS

5.1 Extending the simulation period

5.1.1 Introduction

As mentioned in the Research objectives section, the first thing to do in
this master thesis is to extend the period of simulation. In the conclusions
chapter of Widiastuti (2009) it was mentioned that the most important step
in the data assimilation of GRACE TWS into an hydrological model using
EnKF and EnKS is to perform longer simulation period. The indications of
seasonality in Widiastuti’s simulations, and the same indications from the
Ensemble Open Loop, lead my research initially to the extension of the si-
mulation period. This was done in order to investigate if there is a yearly
repeated pattern or if the initial conditions are affecting the annual distribu-
tion of water. In this section are given the details of the implementation and
afterwards there is an analysis of the results. Finally, in the last part of the
section there is an analysis of a bug discovered in the simulation script and
a general discussion of the extended simulation period results.

5.1.2 Implementation

In the previous chapter, when the Ensemble Open Loop simulation was done,
the resulted Figure 4.1 indicated the annual pattern of catchment mean as
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Figure 5.1: Flow diagram of the GRACE Ensemble Kalman Filter and Ensemble
Kalman Smoother. SM is for soil moisture, UZ is for upper zone and LZ is for
lower zone (after Widiastuti (2009)).

expected. Although simulating the EnKF/EnKS in the model could produce
a different result.

In this section assimilation of the GRACE data DMT1 into the HBV-
96 model for the region of Rhine river basin was done, using the EnKF
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Figure 5.2: Averaged catchment ensemble mean TWS of Ensemble Kalman Filter
compared with the GRACE DMT observation dataset and ensemble mean TWS of
Ensemble Open Loop (upper plot). Averaged catchment ensemble standard devia-
tion of TWS for Ensemble Kalman Filter compared with EnsOL (lower plot).

and EnKS filters. For the implementation of the EnKF and EnKS for the
period between February of 2003 and December of 2006, the DMT1 GRACE
dataset was used. As initial condition for the simulation, the first 20 days of
the Ensemble Open Loop where used.

As mentioned in a previous chapter the EnKS is a straight forward exten-
sion of the EnKF because the EnKS uses the ensemble covariances timely to
spread the information also backward in time Evensen (2007). In this case
there are defined three different updates: i) lag1 is when the observation k is
used to update state vector back as far as observation (k-5), ii) lag2 is when
the observation k is used to update state vector back as far as observation
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(k-10) and iii) lag3 is when the observation k is used to update state vector
back as far as observation (k-15). Those are denoted from now on simply as
lag1, lag2 and lag3.

Figure 5.3: EnKF and EnKS ensemble mean TWS of the averaged catchment
and ensemble standard deviation of TWS. The observation dataset used is GRACE
DMT. The three different EnKS updates (5, 10, and 15 days before the update day)
denoted as lag1,2,3

The parameters used are the same as the previous simulation of the En-
semble Open Loop. The algorithm used in the simulation is best described
in the Figure 5.1 featuring the flow diagram of the algorithm.
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Figure 5.4: Zoom in at the first eight months of the EnKF and EnKS simulation
of the previous plot (Standard Deviation of the averaged catchment)

5.1.3 Results

From the EnsOL already, it is understood that there is a yearly repeated
pattern. In the upper part of Figure 5.2 we can see the resulting TWS
estimates from the EnKF/EnKS DMT1. The yearly pattern is also occurred
in the result of this simulation. Highest values in the winter time for all three
years and lowest values during the dry summer period.

The effect of the initial conditions is also visible, because of the highest
and lowest values through the first year. Those are because of the initial
perturbation. At the highest and lowest values, the EnKF and EnKS are
trying to correct the initial conditions, but through the next years the pattern
is normalized, and the variation of the TWS is almost the same.

As it was expected before the simulation the Ensemble Kalman Filter is
updating towards the observation through the whole time span. But also,
this is the reason of the low curve in the last part of the simulation, when the
observation is quite low (as shown in Figure 5.9). At this stage the variation
of the mean TWS value is not so big whenever an observation is introduced.
This is also visible at the standard deviation plot (lower part of Figure 5.2)
when the lowest values are meet.

Also, in the lower part of Figure 5.2 the standard deviation values of the
first year are higher compared with the sequential years. That is once again
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Figure 5.5: Bug-Debug comparison of Ensemble Kalman Filter (in mm)

because of the initial conditions. Also every winter time there is a bit of a rise
in the standard deviation, and that is because of the season’s rainfall when
the individual stores are full of water. It is also worth mentioning that the
standard deviation values are almost for the whole simulation period, except
from the initialization period, under the critical 20mm GRACE accuracy.

The standard deviation in the lower part of Figure 5.2, every time that
there is an update it grows rapidly. This ”sawtooth” pattern is probably
because of a bug in the code which leads to a mistake in the update of the
state vector.

In the Figure 5.3 we can see the results of the EnKS. The lag1, lag2
and lag3, are mostly following the GRACE observations as it is visible in
catchment mean plot. At the same time they have lowest standard deviation
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than the EnKF solution, and as the smoother works backwards in days, the
lowest standard deviation we get, and so as a result the lag3 is the lowest.

Finally in Figure 5.4 a detail of the Figure 5.3 is shown. It is a zoom
in at the first eight months of the EnKF and EnKS simulation. In this
figure is clear how the Ensemble Kalman Smoother improves the result as
the observation k is used to update state vector as back as possible. As far
as the k-15 is working perfectly, smoothing the simulation result and at the
same time obtaining lower standard deviation.

5.2 Debugging

Figure 5.6: Debugged EnKF and EnKS ensemble mean TWS of the averaged
catchment. The observation dataset used is GRACE DMT. The three different
EnKS updates (5 days step) denoted as lag1,2,3

In the initial implementation of the algorithm, the produced results had
a minor anomaly. In every step, where an observation from the GRACE
dataset was involving in the simulation the catchment-averaged mean TWS
was increasing by 10 − 20mm approximately, as it is obvious in the upper
part of Figure 5.2; and also the standard deviation has the same ”sawtooth”
reaction to it as we see in the lower part of Figure 5.2.

After several tests and tries, a bug was found in the script, through the
update process. Debugging the code, the results are really promising, as it
is shown in Figure 5.5. In those two figures there is comparison of the catch-
ment mean and standard deviation of those two simulation. The behavior of
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Figure 5.7: Debugged EnKF and EnKS ensemble standard deviation of the TWS
for the averaged catchment. The observation dataset used is GRACE DMT. The
three different EnKS updates (5 days step) denoted as lag1,2,3

the debugged version seems more normal and more close to what was expec-
ted. The standard deviation of catchment is almost the half of the bugged
standard deviation. It is always close to 10mm.

Figure 5.8: Individual stores (Upper zone, Lower zone and Soil moisture) of the
averaged catchment after de-bugging compared with Ensemble Open Loop individual
stores (in mm)

In Figure 5.6 we can see that the EnKS has the same effect in the de-
bugged version as it has in the bugged version. The lag1, lag2 and lag3,
are mostly following the GRACE observations and the standard deviation of
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debugged simulation is even lower in this case, where lag3 has always close
6− 8 mm of standard deviation.

Figure 5.9: Averaged catchment mean TWS (in mm) for: Ensemble Open Loop,
Ensemble Kalman Filter, Ensemble Kalman Smoother with three different steps
denoted as lag1,2,3. All compared to GRACE observation (DMT algorithm).

In Figure 5.8 the individual contributors of the TWS are shown. In this
figure we can see that the soil moisture is following mostly the pattern of the
ensemble mean TWS and also has the highest peaks. The lower zone has
also high magnitude compared to the upper zone which has lower values and
also is not following the TWS pattern. But we can see that in the winter
season where the catchment mean is increasing, also the upper zone has its
highest peaks.

In the same Figure 5.8, the contributors of the Ensemble Open Loop
results are also plotted. It is the first comparison of the different layers
between the model and the simulation. The EnKF results seem to react as
expected in the simulation. Except from lower zone which is significantly
higher than the Ensemble Open Loop results. This might be an indication
of mistreat on the limitations of the lower zone value. Also the EnKF soil
moisture layer is not reaching the high values of the EnsOL.

In Figure 5.9 the comparison between GRACE observation, Ensemble
Open Loop, Ensemble Kalman Filter and Ensemble Kalman Smoother is
shown. The GRACE observation is the DMT algorithm dataset. For the
EnKS three different updates are used denoted as lag1, lag2 and lag3.
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5.3 GRACE Algorithms Comparison

5.3.1 Introduction

To understand the effect of different algorithms applied in the GRACE data,
there were used three different datasets in this master thesis. Firstly the
already used DMT but this time extended from February of 2003 until Fe-
bruary of 2009, the second one is the CSR covering a period between February
of 2003 until December of 2009, and finally the RBF dataset, which covers a
period between February of 2003 and December of 2006.

The same method used for all three datasets in the implementation which
lead to the result given latter on. Finally in the next section of the chapter
there is a discussion about the commonalities, differences of those three da-
tasets and the effectiveness of them when used with the Ensemble Kalman
Filter and the Ensemble Kalman Smoother.

5.3.2 Implementation

In section 2.4, the different algorithms of the GRACE observations were
analyzed. In this part of my master thesis, those three different GRACE
datasets (DMT, CSR, RBF) are assimilated into the HBV-96 model for the
region of Rhine river basin, using the EnKF and EnKS filters. This was done
for the period between February of 2003 and December of 2006. As initial
condition for the simulation, the first 20 days of the Ensemble Open Loop
where used for all three cases.

Before implementing those three different GRACE datasets a change was
done in the disaggregation of the TWS, because the prior disaggregation of
the TWS didn’t have logical sequence. Due to the minor effect on the result
and because of the importance of this change on the state vector research, it
is analyzed in chapter 6, and section 6.1

5.3.3 Results - Discussion

After simulating the DMT dataset the other two data sets where used for
the simulations. All the three simulations were done following the same flow
diagram (presented in Figure 5.1).

The results of those simulations are shown in Figures 5.11 and 5.12. Fi-
gure 5.11 is the averaged catchment ensemble mean TWS and Figure 5.12
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Figure 5.10: Comparison of the three datasets of GRACE Observations, DTM,
RBF and CSR (TWS averaged catchment in mm)

Figure 5.11: Comparison of the different GRACE algorithms. Ensemble Kalman
Filter was used for the mean of the TWS averaged catchment in mm

is the averaged catchment ensemble standard deviation of TWS, after the
assimilation of GRACE data into the HBV model using EnKF.

To be able to compare those results with the GRACE observations, in
Figure 5.10 the differences in time of the three datasets before the simulations
are plotted.

Clearly there is a distinction between CSR and the other two algorithms.
At the mid-season of each year the simulation with the CSR algorithm is
producing less water than the other two in the averaged catchment. This

45



Figure 5.12: Comparison of the different GRACE algorithms. The standard
deviation of the of the TWS averaged catchment in mm (Ensemble Kalman Filter)

Figure 5.13: The three different algorithms compared for the 18-May-2003, si-
mulated using the Ensemble Kalman Filter (Catchment in mm)

difference is more clear in the first year of the simulation while in the following
years is not so tense. This is probably because of the initial conditions. Also
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at the end of each season, the CSR not only covers the water balance between
all the three algorithms, but it also overcomes the other two and produces
more water in the averaged mean. This phenomena it seems to get more
intense through the years. Once again this is also probably because of the
initial perturbed conditions.

In Figure 5.13 the resulted TWS is plot for all three datasets for May
18th of 2003. This day was selected in purpose, as it is one of the days that
the difference between CSR and the other two algorithms is quite significant.
Those lower values of the whole catchment for the CSR dataset lead the
mean catchment value to be lower.

The RBF and DMT dataset as shown in Figure 5.11 and 5.13, seem to
have similar attitude and they seem to react with the same way in the season
changes. Also, annually, those two datasets seem to have very similar pattern
of the mean TWS value of the averaged catchment.

Figure 5.14: The three different algorithms (simulated using the Ensemble Kal-
man Filter) compared with the Ensemble Open Loop (TWS averaged catchment in
mm)

The standard deviation values (as presented in Figure 5.12) of the three
datasets are similar, and they follow the same pattern for the whole period
of the simulation. The highest peaks of the simulation for the standard
deviation is in the rain season of each year when the EnKF is dealing with
the high rainfall. In the early steps of the first year the standard deviation
is more than twice bigger than the standard deviation in the dry season.
That is because of the perturbed parameters of the initial conditions which
are introduced in the first steps. Generally the values are between six and
thirteen.
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In Figure 5.14, the resulted values of the three datasets are compared with
the Ensemble Open Loop mean value of the averaged catchment. This figure
could be compared with Figure 5.10, to understand why the different GRACE
observation algorithm are reacting in this way when they are assimilated
into the HBV model. In Figure 5.10 the interpolated values of the three
GRACE observation datasets are presented. It is clear how the resulted
values are affected from the observation datasets to produce the result after
the simulations.

Figure 5.15: Comparison of the individual stores for the three different algo-
rithms (simulated using the Ensemble Kalman Filter)(ensemble mean for averaged
catchment per store in mm)

In Figure 5.15 a comparison of the individual stores for the three different
algorithms is shown. In this plot the difference between CSR and the other
two algorithms (DMT and RBF) could be explained. The difference is mostly
because of the difference in the soil moisture, but also minor changes are
shown in the lower zone.
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CHAPTER 6

DEFINITION OF STATE VECTOR

In this chapter there is an analysis of the state vector and how it is updated.
Different approaches are explained and implemented. In the first section
the same method as Widiastuti (2009) was used, but there was a change in
the Terrestrial Water Storage disaggregation, while in the second section the
state vector change, and the three individual layers are updated individually.

6.1 State Vector Disaggregation Change

6.1.1 Introduction

When the first simulation of this master thesis was done, it was realized that
the disaggregation sequence of the updated state vector was hydrologically
incorrect. So, after de-bugging the code (as presented in section 5.2) and
before the different GRACE algorithms comparison (as presented in section
5.3) a change to this sequence was made. Through this section this change
is analyzed in depth and the the results are compared.

6.1.2 Implementation

In the previous chapter three stages of different simulations were explained
and analyzed; the extension of the simulation period of the experiment, the
debugging of the code which resulted in a more reasonable result and the
different GRACE algorithm comparison. In between the debugging stage
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and the GRACE algorithm comparison, an experiment for the state vector
was done.

In Figure 5.1 where the flow diagram for the Ensemble Kalman Filter is
shown, the input of the state vector of EnKF is the M(t). So, the state vector
Y (t) consists of the TWS of the catchment. After the update of the state
vector, the resultant Y a(t) is disaggregated between the different layers. This
sequence until now was SM → LZ → UZ (Widiastuti, 2009). Firstly the
soil moisture layer was filled, then the lower zone and finally the upper zone.
The strange sequence, that it was first the lower zone and then the upper
zone, was probably because of the inability to set a maximum limitation
for the upper zone layer. In this section, the sequence was changed into
SM → UZ → LZ, and a maximum limitation for the upper zone change
was set, as explained below. The change is presented schematically in Figure
6.1.

Figure 6.1: Schematic view of the state vector change. In prior simulations the
updated TWS was disaggregated into SM-LZ-UZ, while afterwards the sequence
was changed into SM-UZ-LZ.

In previous simulation the maximum limitations used for each layer were:

• for the soil moisture the field capacity is used as maximum limitation

• for the lower zone layer, the equation of the limitation is: LZmax =
(k4/perc)∗LZold, where LZmax is the lower zone maximum limitation,
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k4 is the recession constant (as defined by the HBV model), perc is the
percolation from upper to lower zone (mm/day) (Weerts, 2010)

• for the last layer in the sequence the upper zone there is no maximum
value

For the new simulation the maximum limitations used for each layer were:

• for the soil moisture the already used field capacity is also used

• for the upper zone layer, the maximum value which is the 110% of the
previous upper zone value. So, it is the change of the upper zone that
is limited

• for the last layer in the sequence the lower zone there is no maximum
value

From the state vector disaggregation change it is expected to see diffe-
rences on the magnitude of both upper and lower zone. There is also the
possibility to see differences in the resulted terrestrial water storage of the
averaged catchment. To assimilate the data, Ensemble Kalman Filter is used
for both of the simulations. The observation data are created using the DMT
algorithm.

6.1.3 Results - Discussion

In Figure 6.2 the different results of the simulations for the different disag-
gregation of the updated state vector is shown. The lines are almost identical
with minor changes in the initial part.

This denotes that the result is not affected by the sequence of lower and
upper zone. The maximum limits of the layers are reached and the layers are
filled in the updates. So either if the lower zone is first or the upper zone it
doesn’t make any difference to the TWS.

In Figure 6.3 the standard deviation for the same two simulations is
shown. The result is almost identical, as expected after Figure 6.2. Mi-
nor differences are apparent in the initial part of the simulations and also
during the rain season of 2005.

In Figure 6.4 the individual stores are compared. While the TWS may
not change, we need to see if the individual stores are different. Also from
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Figure 6.2: Ensemble mean TWS value of the averaged catchment for both of
the simulations. In prior simulations the updated TWS was disaggregated into
SM-LZ-UZ, while afterwards the sequence was changed into SM-UZ-LZ

Figure 6.3: Averaged Catchment ensemble standard deviation of TWS for the
simulations. In prior simulations the updated TWS was disaggregated into SM-
LZ-UZ, while afterwards the sequence was changed into SM-UZ-LZ

this figure is understandable that the change between the simulations is not
significant and only in some parts, differences are shown. Like in previous
plots, also here in the initial part there is a minor change of lower and upper
zone between the simulations.

In section 5.2, it was discussed that the lower zone has a suspiciously high
value. In Figure 5.8, it was compared with the Ensemble Open Loop and it

52



Figure 6.4: Comparison of the individual stores for both of the simulations. In
prior simulations the updated TWS was disaggregated into SM-LZ-UZ (old), while
afterwards the sequence was changed into SM-UZ-LZ (new)

was concluded that there is something wrong with the lower zone maximum
limitation treatment in the code of the simulation. Also here in Figure 6.4,
it seems that regardless of which store is limited, the lower zone still has
high value. This means that there is a possibility that the maximum limits
are not implemented as they should be. In the following section this bug is
identified and corrected.

6.2 State Vector Change

6.2.1 Introduction

The need for a more hydrologically correct update of the state vector lead to
this section of the chapter. In this section of the master thesis the change of
the state vector is analyzed. The different layers are now in the state vector
and they update individually. At the same time the maximum limitation
check of the layers is corrected and explained.

6.2.2 Implementation

Until now the terrestrial water storage was updated in the state vector and it
was using the methods explained. Afterwards it was disaggregated between
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the individual TWS stores as shown in previous section. The next experiment
which was done, was to update the layers individually. So, the different layers
(soil moisture, upper zone and lower zone) were added in the state vector.

Figure 6.5: Flow diagram of the Ensemble Kalman Filter and Ensemble Kalman
Smoother simulation with the new state update vector. SM is for soil moisture, UZ
is for upper zone and LZ is for lower zone.

As shown in the flow diagram in Figure 6.5 the state vector in this simu-
lation consists of the three layers and so the update is done individually for
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the three different layers (Soil Moisture, Upper Zone and Lower Zone).

After the update the maximum limitations are checked. The maximum
limitations are almost the same as in previous section and they are explained
below:

• For the soil moisture the maximum value is the field capacity

• for the upper zone layer, the maximum value which is used is the 110%
of the previous upper zone value. So, in essence it is the change of the
upper zone that is limited

• the maximum limit for the lower zone layer is also based in the change.
The equation of the limitation is: LZmax = (k4/perc) ∗LZold, where
LZmax is the lower zone maximum limitation, k4 is the recession
constant base flow (as defined by the HBV model), perc is the per-
colation from upper to lower zone (mm/day) (Weerts, 2010)

As already commented in section 5.2, there was an indication of mistreat
on the maximum limitations of the lower zone value. This was commen-
ted because, as shown in Figure 5.8 the lower zone was significantly higher
compared with the Ensemble Open Loop results. In previous section, in Fi-
gure 6.4, it was proved that with or without the lower zone limitation the
result was the same. This suggested that there may be a bug in the original
Matlab code. This bug was corrected and the maximum limitations in this
simulation are implemented correctly.

6.2.3 Results - Discussion

The result of the simulation is shown in Figure 6.6. Ensemble Kalman Filter
and Ensemble Kalman Smoother were applied for the data assimilation, while
the GRACE observation dataset was created with the DMT algorithm. In
the upper part where the mean of the averaged catchment is plot, the annual
pattern is followed once again but this time the spikes in the start of each
season are more tense.

Also, at the end of the third year the result is not it was in previous
simulations. The Ensemble Kalman Smoother works as expected with the
three different updates (lag1 for k-5 days, lag2 for k-10 days and lag3 for
k-15 days) to be more close between them than previous simulations.

In the lower part of Figure 6.6 the standard deviation is shown. The
values are very low compared with previous plots. Actually, compared with
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Figure 6.6: Ensemble Kalman Filter and Ensemble Kalman Smoother assimila-
ting the DMT observation data where the layers are updated individually. Ensemble
mean TWS and ensemble Standard deviation of TWS for the averaged catchment

Figure 6.3, it has more than half of the the magnitude and it seems to be
more smooth for the whole time span.

In Figure 6.7 the contributors of the simulation are plotted and compared
with the contributors of the Ensemble Open Loop. In Figure 6.8 the contri-
butors of the simulation are plotted and compared with the contributors of
the previous simulation which had the old state vector.

The soil moisture layer of the simulation with the new state vector it
is more close to the values of the Ensemble Open Loop as it is shown in
Figure 6.7. Although the magnitude of them is not the same; the high and
low values of the Ensemble Open Loop are more extreme. Compared with
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Figure 6.7: Individual stores update compared with the Ensemble open loop. SM
is for soil moisture, UZ is for upper zone and LZ is for lower zone.

Figure 6.8: Individual stores comparison between the EnKF simulation with (New
SV) and without (Old SV) individual update of the layers. SM is for soil moisture,
UZ is for upper zone and LZ is for lower zone. Also, SV is for state vector.

Figure 6.8 the soil moisture is significantly raised but it follows the same
annual pattern.

The upper zone of the simulation with the new state vector is lower than
the previous simulation (Figure 6.8) and even lower when compared with
ensemble open loop (Figure 6.7).

Finally the problem of the lower zone which was commented in section 5.2
and also in the previous one is solved. The lower zone is quite low compared
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even with the Ensemble Open Loop. This indicates that previously when the
vector wasn’t updating individually the zones but it was updating the TWS
and then disaggregated it into the layers was not correct.

But, the main problem still remains the maximum limitation of the layers.
The values of the lower and upper zones seem to be quite low compared to the
Ensemble Open Loop, but correct (if compared with the previous simulation).
This problem will be also in concern in the next chapter, when the maximum
limitations are going to be changed and tested using the Ensemble Moving
Batch.

Figure 6.9: Terrestrial Water Storage comparison between the Ensemble Kal-
man Filter simulation with individual update in state vector (new) and without
individual update (old), with the Ensemble Open Loop and DMT observation

In Figure 6.9 the comparison between the two different versions of the
state vector with the Ensemble Open loop and the GRACE observation
(DMT algorithm). When the layers are updated individually, it seems that
the total amount of water which is stored in the system is lower. The previous
simulation seem to be more reasonable, but the pattern which is followed
seems to be the same between the two simulations.

So, the problem of the limitations for the lower and upper zone seems to
affect the total amount of stored water. As mentioned earlier, in the next
chapter there will be an experiment concerning the max limitations of the
lower and upper zone. This will prove that the water which needs to be
updated in the simulation is higher than the maximum limitations of the
layers.

Because of the persistent problem of the maximum limitation it is not
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clear if the change in the state vector applied in this section had positive or
negative effect in the assimilation. It is clear although, that the new state
vector works; and so the stores are updated individually, but there is no proof
that it improves the model.
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CHAPTER 7

ENSEMBLE MOVING BATCH SMOOTHER

In the following sections, it is explained, how the Ensemble Moving Batch
Smoother is applied. Firstly the functionality of the EnMB is analyzed and
also the implementation steps are given. Finally the results and the discus-
sion about them.

7.1 Ensemble Moving Batch Smoother

7.1.1 Implementation

The decision to use the Ensemble Moving Batch Smoother to assimilate data
was taken in order to check if it is possible to use what is ’known’ from
the model about how the terrestrial water storage varies during the month,
rather than using the interpolated data. So, the monthly GRACE data could
be directly be used.

The Ensemble moving Batch which was used in this master thesis has
length of batch window of 30 days. The use of it, is shown in the flow
diagram in Figure 7.1. In the first part the forward model runs through
the end of the smoother window to obtain the prior estimate of the state
(as shown in Figure 7.2). An augmented state vector Y is created, which
contains the states of the 5th, 15th and 25th day of the month (every ten
days).
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Figure 7.1: Flow diagram of the Ensemble Moving Batch Smoother

Yj(t) = [SMj5 UZj5 LZj5 SMj15 UZj15 LZj15 SMj25 UZj25 LZj25]T

(7.1)

where SM is soil moisture, UZ is the upper zone and LZ is the lower zone.

As observation the GRACE DMT dataset was used. So the augmented
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measurement vector Z contains each time the monthly value of GRACE ob-
servation. Then, the EnKF equations (as presented in previous sections) are
applied to these augmented vectors to yield an updated estimate.

Figure 7.2: Conceptual diagram of the Ensemble Moving Batch Smoother used
in this master thesis

From the update estimate created the SMj25+, UZj25+, LZj25+ are used
as initial conditions for the first day of the batch for the next period, to run
the forward model .

In Figure 7.2, the conceptual diagram of the EnMB used in this case is
given. In the upper side of the figure forward model run for a month x is
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shown. The batch window is shown with red color and the GRACE obser-
vation with the green line. After applying EnKF to the vector, the updated
state vector Y a(t) is produced. Then, as explained, the SMj25+, UZj25+,
LZj25+ are used as prior state for the next month. For the first model run
data from the Ensemble Open Loop were used as prior data.

Finally as shown in Figure 7.1 when the whole time span is covered, an
Ensemble Open Loop in applied, using all the updated estimates Y a(t), to
get values for the in between days of the updates.

7.1.2 Results - Discussion

In this section the results of the Ensemble Moving Batch simulation are
presented. In Figure 7.3 the mean of the averaged catchment is presented
and at the same time is compared with the resulted mean of the averaged
catchment of the Ensemble open loop.

Figure 7.3: Ensemble mean TWS of the averaged catchment for Ensemble Moving
Batch and Ensemble Open Loop (DMT algorithm was used)

Like in the previous chapter, when the state vector consisted of the dif-
ferent layers and when the maximum limitations were applied correctly, the
mean values significantly lower compared with the Ensemble Open Loop.
The annual pattern is followed also in this case and the new result is more
smooth than the previous as expected after applying the Ensemble Moving
Batch.

In Figure 7.4 the catchment averaged standard deviation of the TWS,
from the Ensemble Moving Batch Smoother is given and it is compared with
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Figure 7.4: Averaged catchment ensemble standard deviation of TWS for the
Ensemble Moving Batch and the Ensemble Kalman Filter (DMT algorithm was
used)

Figure 7.5: Comparison of individual stores for the Ensemble Moving Batch
compared with the Ensemble Open Loop. SM is for soil moisture, UZ is for upper
zone and LZ is for lower zone.

the Ensemble Kalman Filter simulation of the previous chapter (lower part
of Figure 6.6), where the state vector includes the individual layers. The
standard deviation values have the same phase, except of some spikes that
both of the simulations have. The standard deviation values are really low if
they are compared with the critical GRACE accuracy of 20mm.

Observing Figures 7.3 and 7.4, the application of Ensemble Moving Batch
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to the experiment can be characterized as successful. The annual pattern
which is followed in Figure 7.3 and the low standard deviation in Figure 7.4
is the proof of that. The lower values of the mean TWS is an indication of
the persistent problem with the maximum limitation of the lower and upper
zone.

Figure 7.6: Individual stores for the Ensemble Moving Batch compared with the
Ensemble Kalman Filter. SM is for soil moisture, UZ is for upper zone and LZ is
for lower zone.

In Figure 7.5 the contributors of the Ensemble Moving Batch are shown
and compared with the EnsOL. The behavior of the different layers in En-
semble moving batch are the same as the Ensemble Kalman Filter as shown
in Figure 7.6 where they are compared. The lower and upper zone layers have
low values compared to the EnsOL, but only lower zone is significantly lower
than the EnsOL. Also here it is proved that the EnMB is working well and
as expected, but the problem with the maximum limitations still remains.

Finally, in Figure 7.7 the soil moisture layer of the Ensemble moving
batch is compared with EnsOL. As explained also earlier, their phase is
similar; although the soil moisture of the EnsOL has bigger variations from
the rain to the dry season.

In this figure is also shown the soil moisture of the Ensemble Moving
Batch before the final step is done. This final step, as shown in the flow
diagram of Figure 7.1, is the application of the EnsOL to create data for the
days between the updates. It seems that in general the before the application
of the EnsOL to the updates, they are quite smooth with not big variation
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Figure 7.7: Comparison of the Soil Moisture layer for the Ensemble Moving
Batch with the Ensemble Open Loop. The Ensemble Moving Batch is plotted with
and without the final step of the EnsOL (in mm)

between them. Also, it is obvious that through the days that the EnsOL is
applied the data are moving towards the Ensemble Open Loop simulation.

The experiment could be characterized successful also for another reason.
Just by using the observation itself and the prior knowledge of model, the
result is satisfying. The lower values in Figure 7.3 are because of the maxi-
mum limitation problem, as proved in the previous chapter. Soil moisture
is reacting as expected in the simulation, and this is an indication that the
mean TWS results might be corrected, if the maximum limitation problem
is going to be solved.

7.2 EnMB with increased maximum limitations

7.2.1 Introduction

In previous sections it was mentioned several times that the maximum limi-
tation of the lower and upper zone layers, it seems not to react as expected.
In this section the limitations of the those two layers are slightly changed to
become more flexible and to track the differences of the simulation.
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7.2.2 Implementation

The Ensemble Moving Batch was also used in this simulation which worked
as expected in the previous section. The GRACE observation was again the
one created with the DMT algorithm, so as the results could be comparable
with the previous ones.

The change which was applied in this simulation was to increase the
allowed capacity in each layer. In this way it would be possible to check
what is the amount of water which should be added by the update of the
Ensemble Moving Batch and it is not allowed by the maximum limitations.

For both lower and upper zone the maximum limitation was set to 130%
of the previous value of each one of them. So, in each update the limitations
were:

• The same limitation for the soil moisture, which is the field capacity

• LZmax = 1.3 ∗ LZold where the LZold is the old value of the Lower
Zone and LZmax is the maximum value of it

• UZmax = 1.3 ∗ UZold where the UZold is the old value of the Upper
Zone and UZmax is the maximum value of it

In this simulation the final step of the EnMB (the EnsOL to create data
for the days between the updates) was not applied, because this is a test
for the maximum limitations of the lower and upper zone in the assimilation
and not from the model. In every figure the updates of the Ensemble Moving
Batch are denoted with a symbol and simply connected between them.

7.2.3 Results - Discussion

In Figure 7.8 the resultant mean value of the averaged catchment are plotted
and compared with the simulation of the previous section of the chapter. At
the same time the Ensemble Open Loop is plotted as well as the GRACE
observation. The increase of the lower and upper zone capacity has allowed
the terrestrial water storage capacity to increase. The phase of the stored
water value through the whole time-span for both of the EnMB simulation
is almost identical, but the increased limitation simulation has increased the
TWS by 10− 50 mm of water.

Except from the initial period of the experiment, the simulation seems
to be closer to the GRACE simulation than the ensemble open loop, for the
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Figure 7.8: Averaged catchment ensemble mean TWS value for the Ensemble
Moving Batch simulations, Ensemble Open Loop and GRACE observation. The
different EnMB plots represent the old and new limitations of the Lower and Upper
zone (in mm).

rest of the time span of the simulation, but at the same time to follow the
pattern of the ensemble open loop.

Figure 7.9: Averaged catchment ensemble standard deviation of the TWS for
the Ensemble Moving Batch simulations. The different EnMB plots represent the
old and new limitations of the Lower and Upper zone (in mm). The framed parts
depict the ′M ′ pattern.

The standard deviation is plotted in Figure 7.9 and compared with the
previous simulation. Increasing the lower and upper zone layer capacity had
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the effect of increased standard deviation for the whole time span except
for the initial period. The high values should be expected as the different
ensemble members of the simulation have more flexibility to add water in
those two layers with the increased maximum limitations.

In this figure an annual pattern is also visible. In the dry season the
standard deviation has the lowest values of the season with almost half of
the magnitude compared to the rain season. The maximum limitations are
not frequently used in dry season because of water absence to fill in the layers
and so the different ensemble members have more similar results.

Figure 7.10: Individual stores for the different Ensemble Moving Batch simula-
tions, with and without increased limitation for lower and upper zone. SM is for
soil moisture, UZ is for upper zone and LZ is for lower zone (in mm)

Also, in Figure 7.9, there is an ′M ′ pattern repeated every 6 updates
(as denoted with the frames in the figure). This could be because of the
strange pattern followed by the upper and lower zone as shown in Figure
7.10. In this figure the individual storage terms are shown for the Ensemble
Moving Batch with the old and revised limitations of upper zone and lower
zone. The soil moisture of the increased limitation Ensemble moving batch
is lower by 10− 15 mm compared with the previous simulation. Upper zone
layer appears to have slightly increased value with the increased maximum
limitation, which was expected. But for the lower zone big difference revealed
between the simulation with the different limitations. Before the change the
lower zone had values close to zero but now it seems to have larger values
even compared to the upper zone.

As mentioned in previous paragraph, the repeated ′M ′ pattern which
appeared in Figure 7.9, could be explained by the strange pattern followed

70



by the upper and lower zone. Through the whole time span there is a repeated
up and down movement for both of them but it appears in different direction.
Also, the peaks in lower and upper zone in the limited and unlimited case
occur at the same time.

Figure 7.11: Individual stores for the different Ensemble Moving Batch simula-
tions, with and without increased limitation for lower and upper zone. SM is for
soil moisture, UZ+LZ is the accumulated lower and upper zone (in mm)

Figure 7.12: Comparison of the Soil Moisture layer for the Ensemble Moving
Batch with the Ensemble Open Loop. The Ensemble Moving Batch is plotted with
and without the final step of the EnsOL (in mm)

Because of repeated pattern of the lower and upper zone, Figure 7.11
was created. In this Figure the lower and upper zones are added together to
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produce the ′LZ +UZ ′ layer. The new layer created looks like a nice slowly-
varying storage term for both of the simulations. Both of the simulations
seem to have the same attitude and changes through the whole time-span
for this new layer. Also, there is not an annual pattern followed by both of
them, but there are high spikes at the rain seasons and lower values for the
dry season.

Figure 7.12 compares the Soil Moisture layer between the two different
Ensemble Moving Batch simulations with the Ensemble Open Loop. As men-
tioned in a previous paragraph, the soil moisture of the increased limitation
Ensemble moving batch is lower by 10− 15mm compared with the previous
simulation. But compared with the Ensemble Open Loop this does not seem
to be incorrect.
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CHAPTER 8

CONCLUSIONS

In this master thesis there were four basic question which should be answe-
red. Firstly it should be answered the question what leads to an update and
if the seasonality is created by the winter or if the initial conditions create
the ensemble spread. The next question which should be answered was to
understand which one, of the given GRACE observations algorithms, pro-
vides better improvement to the model. The third research objective was
to test Ensemble Moving Batch Smoother for data assimilation, in order to
understand if using observations beyond the estimation time, could provide
better results. Finally, the fourth research objective was to test a new state
vector, where the individual stores of the Terrestrial Water Storage will be
updated individually.

The first question was answered in section 5.1, where the simulation was
done for an extended period. The period extension was the best way to check
the seasonality and as expected, the new simulation with the three year time
span proved that there is an annual pattern followed by the resulted terres-
trial water storage values, with high values in the rainy season and low values
for the dry season. The initial conditions are creating the high values obser-
ved in the very first steps of the simulation but this is corrected in the start
of the second year and even more in the third year. The ’sawtooth’ pattern
and the ensemble spread was created from the bug found and corrected in
the simulation code in section 5.2. After de-bugging, standard deviation had
low values and the ensemble mean TWS of the averaged catchment didn’t
have the ’sawtooth’ pattern any more.

The de-bugging result could be comparable with the Ensemble Open Loop
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TWS or with the GRACE observation. This could provide answers for the
different GRACE observation provided. This led to the next question on
which different GRACE data sets were used in data assimilating, to unders-
tand which one provides better improvement to the model. Although that
the results are more clear now (compared to Widiastuti (2009)), yet again it
is not easy to conclude in which of the provided algorithms is the one that
reacts in the most appropriate way and if it is improving the model. The
results shown different behavior through the simulation period and none of
them could be considered as incorrect or inappropriate. The only comment
which should be done is that the DMT and RBF data-sets are following
more close patterns than the CSR algorithm. Further action on the different
GRACE algorithm comparison could be to check this difference between the
DMT and RBF compared to the CSR algorithm.

The third research objective was the application of the Ensemble Moving
Batch to assimilate the GRACE terrestrial water storage change data into
the HBV-96 model. The Ensemble Moving Batch Smoother experiment was
characterized as succesfull. The followed annual pattern and the low stan-
dard deviation is a proof of that. But because of the maximum limitation
problem (which is discussed bellow) the TWS was significantly low, but the
soil moisture is reacting as expected. So, EnMB should be used in future
work to assimilate data as it has the advantage of using directly the monthly
GRACE observations.

In section 6.1 the need for a more rational sequence of the state vector
split was tested. The results were almost the same as previously and this was
not what expected. The problem was traced on the maximum limitation of
the lower zone and its application in the simulation. This problem was partly
solved when the fourth research objective was implemented, which included
the change of the state vector. The individual stores were added to it, with
different use of the maximum limitation. When the soil moisture result was
compared with the Ensemble Open Loop it was clear that it reacts more
correctly and not just filled up until the maximum limitation was reached.
But, at the same time, the lower values of the lower and upper zone was
reducing the ensemble mean TWS of the averaged catchment value.

After the first application of the Ensemble Moving Batch, another test
was done to explore even more in depth the maximum limitation problem of
the lower zone. A change on the limitation was applied in the lower zone but
also in the upper zone, in order to explore which could be the effect also on
it. As a result the lower zone was increased significantly and upper zone was
also increased, but not with the same magnitude. Also, after this simulation
the TWS values for the whole time span was increased. Because of those
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results, it is recommended that in future work research should be done on
which should be the maximum limitation for those two layers and how they
should be applied.

In all the simulation after the state vector change (section 6.2), when the
maximum limitations are reached for soil moisture and upper zone there was
a surplus of water, especially during the rainy season, which it wasn’t used.
In future work it should be considered the possibility to add the surplus of
water to the next layers (SMsurplus → LZ and LZsurplus → UZ).

During further research based on the HBV-model, a new routing model
should be used, which is already created for the HBV-model (Weerts, 2010).
Better water distribution could produce more efficient result either in simple
HBV-model simulations or in data assimilation simulations.

The correction of the leakage error could be the most interesting ’next
step’ in the research on this field. Leakage error is the effect of neighboring
basins, when there is a ’leakage’ of the signal from the neighboring area. This
happens because GRACE is affected by such a large areas, especially when
a spatial filter is applied to reduce the noise due to hydrological signals that
vary with a timescale shorter than one month. Although the filter reduces
these errors, it introduces new errors because part of the gravity anomaly of
the target area leaks out of the target area and part of the outside anomaly
leaks into the target area (For more details the leakage error is described by,
e.g., Wahr et al. (1998), Swenson and Wahr (2002), Swenson et al. (2003),
Winsemius et al. (2006)).

Research could be done to include the GRACE ground track information.
Based on Winsemius et al. (2006) the within-month ground track coverage
of GRACE could be added to the experiments and this could lead to better
spatial distribution of the assimilation updates. It would be interesting if
combined with the research on the leakage error.
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