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Abstract

This research paper proposes a discrete agent-based model to simulate territorial development among micro-organisms. The
model involves two species that interact through marker signals left behind by agents as they move through a three-dimensional
lattice. The study builds on previous research that established a phase transition from a well-mixed to a well-segregated state
for two-dimensional lattices. This research extends the finding to three dimensions and confirms that the properties observed
in the two-dimensional model are also present in the three-dimensional model. We conclude that the addition of more mass or
the ratio between gamma and lambda behaves similarly to the two-dimensional model. However, the three-dimensional model
needs a larger mass to reach the same critical point as the two-dimensional one.

1. Introduction

Territory formation has been studied in depth in two dimensions
(2D) in many other papers. Some applications include bacteria
[PPC*13], [EMJ09] or fungi [KSDP21]. Micro-organisms will of-
ten use chemo repellents to establish and maintain their territories,
and to avoid direct competition with other species [GGRBRG22].

By excreting these chemicals, micro-organisms can create a
chemical boundary that serves as a warning to other organisms to
avoid direct contact. This can be especially important in environ-
ments where resources are limited and competition for those re-
sources is high. By avoiding direct competition with other species,
organisms can increase their chances of survival and reproduction.

Another notable example of territory formation in two dimen-
sions is the territories of human gangs, which were researched by
A. Alsenafi and A.B. Barbaro [AB18] (hereafter referred to as the
previous territory paper). In their paper, a model is proposed for
gang territory using graffiti. Two gangs will leave behind their own
graffiti tags at different locations that the other gang will attempt
to avoid. The paper studies biased random agent movement on a
two-dimensional (2D) lattice. However, the same model can be ex-
tended to micro-organisms living in a three-dimensional (3D) lat-
tice. To make the model more applicable to our case, our paper re-
places gangs with species, graffiti with (chemo-repellent) markers,
and gang members with agents.

The purpose of this paper is to show how a random walker model
behaves in three dimensions with different strengths of avoid-
ance for opposing species. The main question attempted to be an-
swered is: “What similarities exist between properties of the two-
dimensional and three-dimensional lattice models?”. This question
is answered with the following sub-questions: "What are the states
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of the three-dimensional lattice model, and are they well-mixed or
well-segregated?", "How does mass and gamma/lambda ratio influ-
ence the phase transition of the 3D model?".

The paper is structured in the following way: First, Section 2
shows the background which is needed to understand this paper.
Section 3.1 explains how a random walker model is used with
pseudo-code. Section 3.2 shows an intuitive algorithm derived from
mathematics. Sections 3.3 and 3.4 demonstrate how CPU (Cen-
tral Processing Unit) and GPU (Graphics Processing Unit) paral-
lel computing can improve the performance of the model. Section
3.5 explains how the client is interacting and visualising the model.
Section 4 presents the simulations for multiple configurations. Sec-
tion 5 discusses what similarities a 3D random walker model cre-
ates. Section 6 is the conclusion of the paper. Finally, section 7
discusses the responsibility and accountability of this research pa-
per.

2. Background and related work

This section is for readers to gain a thorough understanding of the
background.

2.1. Taking a drunkard walk

Random walk models were first popularised by British mathemati-
cian K. Pearson in 1905. He was intrigued by the problem of
the random walk and sought assistance from the readers of Na-
ture [PEAOS5]. The model is built with a lattice in a certain dimen-
sion and multiple agents walking the lattice. In each iteration step,
all agents chose a random neighbour to walk to.

Back in 1905, when K. Pearson first popularised the random
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walk model, calculations were mostly done by hand. However, with
the invention of better computers, calculations have become much
more manageable. However, the random walk is difficult to inter-
pret by humans due to the amount of data generated by the model.
This can be a tedious and difficult endeavour.

2.2. Higher-dimensional walks

Properties of higher-dimensional random walks were studied by
Hungarian mathematician G. Pdlya in 1921 [P621]. He demon-
strated that random walks in higher dimensions possess more in-
triguing characteristics than those in lower dimensions. For in-
stance, unbiased random walkers tend to end up in the same spot
less frequently, when the number of dimensions is increased.

This indicates that higher-dimensional walks are significantly
less stable than their lower-dimensional counterparts. It is interest-
ing to find out how stable our model will become in comparison to
a 2D model.

2.3. Human gang territories

A dual-layered walker model for human gang territories was pro-
posed by A. Alsenafi and A.B. Barbaro. One layer is dedicated to
agents walking on a cyclic 2D lattice. The other layer serves to store
markers that indicate how popular a given node is for each species.

The number of markers in each lattice node varies over time. At
each time step, some markers decay, while agents add their own
markers to the node with a certain probability. This is expressed
with the following formula:

éi(x7y>t+l):(1_7\')'éi(xvyJ)_.—'Y'pi(x?yJ) (1)

For species i, &;(x,y,?) is the number of markers at position (x,y)
at a time step ¢, and p;(x,y,¢) is the number of agents of species i at
location (x,y) at time ¢ multiplied by the area of the lattice. Global
parameter A controls the rate of marker decay, and 7y controls the
rate of marker production.

The agents take a biased random walk toward the neighbour with
the least amount of markers from the other gang. The probability
of an agent from species A moving from location (x,y) to (£,3) is
formulated with the following equation:
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Let B be a global parameter that regulates the strength of avoiding
the markers of the other species. Lowering the value of B in this
function will decrease the degree of bias towards an agent’s pre-
ferred neighbour. (%,7) is the direct neighbours of (x,y) or formally
written as (%,7) € {(x£ 1,y), (x,y£ 1)}.

To evaluate the state of well-mixed versus well-segregated sys-
tems an order parameter is defined:
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This order parameter is defined such that if neighbouring nodes
have the same dominant species, the summand is positive. Con-
versely, if neighbouring nodes have opposite dominant species, the
summand is negative. The coefficient normalises so that the maxi-
mum value is capped at 1. For states that are well-mixed, this order
parameter produces a value close to 0. In well-segregated states,
this value reaches 1.

They concluded that after many iterations, the model began to
exhibit segregated states, with a final order parameter greater than
0.01. Furthermore, both the model’s mass and gamma to lambda ra-
tio were inversely proportional to the critical beta parameter value.

3. Method

A general model, independent of dimensions is presented in sec-
tion 3.1. A naive example model (later referred to as CPU serial
model) is described in section 3.2 with pseudo-code to give the
reader an impression of how a 3D territory model is represented in
code. In section 3.3 a Central processing unit (CPU) algorithm us-
ing parallelism is proposed that significantly improves the run-time
of the naive model. The model has again improved been in run-
time in section 3.4, where a dedicated GPU takes some work over.
Although the model produces the same output, spotting how the
mathematical model is represented in these faster models is harder.
This is followed by section 3.5, where the method for visualising
the model in a browser is presented. Lastly, the method for quanti-
fying territory using an order parameter is presented in section 3.6.

3.1. A generalised random walker model

The model consists of two processes. The first process is initialisa-
tion, where a lattice of dimension D and side length L is created. N
number of agents are randomly and uniformly distributed across the
lattice nodes. The mass per species, also known as &, is the same
for both species A (red) and B (blue). The second process involves
each agent leaving behind markers and moving to a neighbouring
node based on the number of markers of the opposing species sim-
ilar to equation 1. Further details about each process are provided
in the following paragraphs.

The model is initialised with a cyclic lattice, where D num-
ber of dimensions is created. We assume each lattice side to have
the same length. This results in a lattice with LP nodes with
X1,%2,...,xp € {0,1,2,3,...,L—2,L — 1}. Each node is connected
to its direct neighbours. Thus, node (x,x,...,xp) is connected to
(#1,%2, ...,Xp), which can be formulated with the following equa-
tion:

(fl,fz,“.,xb) € {(xl +1,x,... .,XD)7
(x1,x0£1,...,xp), ..., (x1,x0, .., xpE 1)} (4)

Each node keeps track of its own amount of agents, and the amount
of markers.

At each iteration, all nodes adjust their amount of markers and
agent count. For adjusting markers, equation 1 is adapted for &; and
p; to reference to a location in D-dimensional space. Therefore,
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our model applies the following equation for adjusting markers be-
tween time steps:

E_,,‘(xl , X2, oy XD+ 1) = (1 77\,) vZ:.,'(x] 3 X2, .,XD,I)+
Y'pi(xl7x27"'axD7[) (5)

Similarly, in equation 2, the movement of agents is transformed to
the following formula:
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By utilising these formulae, the adaptability of the model is
demonstrated to any number of dimensions, whether it be one, ten,
or a thousand. The model’s movement in higher dimensions should
resemble that of the 2D model proposed in section 2.3.

3.2. A naive model

We have established that the previous territory paper can be ex-
tended to any number of dimensions. To illustrate this, an example
is presented with figures and pseudo-codes of how mathematics is
used in the 3D model. The example is divided into two sections,
similar to the mathematics in section 3.1.

3.2.1. Initialisation

The initialization process is executed every time the model needs
to be started or reset. The model is set up with an L x L x L lattice,
where each node is connected to its direct neighbours. This con-
nection is described by Equation 4, with D = 3. All global hyper-
parameters (beta, lambda, gamma) are initialised so they can be
accessed by the iteration process.

To maintain the separation of concerns, a separate layer is allo-
cated for agents and markers. N agents from both species A and
B are randomly (uniformly) distributed over all nodes. Initially, all
markers for each species are set to zero.

3.2.2. Iteration

The iteration process runs for each forward time step and will up-
date the model as constructed in the initialisation process. In each
iteration, a new empty layer is constructed for both agents and
markers to write to. The old layers are only used to read from.
This is done to prohibit the behaviour that a node from time t is
requested to be read. However, the node data is already partially
updated with data for time (t + 1).

The iteration process starts by writing to the layer of the new
marker using equation 5. The data from the old agent and marker
layers are read and computed together. The result of the equation is
stored in the layer of the new markers as illustrated in figure 1.

The iteration process continues with each agent randomly select-
ing one of its neighbours, weighted by the number of markers the
neighbours possess. As mentioned before, agents prefer neighbours
with lower markers of the opposite species. A pseudo-code imple-
mentation for moving the red agents is given in algorithm 1.

© 2023 The Author(s)

ld agent layer

New marker layer

Figure 1: This figure shows an example of a lattice with L = 3
and D = 3. The example highlights how the markers are updated at
position (0,0,0). A new lattice is created to store the next iteration
of markers. The old data from the marker and agent layers are read
and combined to write to the new layer:

Each iteration ends by removing the old lattices and replacing
them with the newer ones. If no errors occur, the iteration count
increases.

3.3. CPU improvements

The straightforward nature of the naive model makes it easy to un-
derstand and apply using the mathematics provided. However, as
will be shown in section 4.1, its execution speed is slow. Iteration
is the most time-consuming part of the process. The model is built
only once, but the program may have to iterate thousands or even
millions of times. To speed up this process while still producing the
same output, this section will introduce a faster method of iteration.

Introducing parallel CPU computing can be a good solution
when algorithms are running slowly [CCPM14]. Ideally, using K
threads can speed up your program by a factor of K. However, this
comes with a cost of unpredictability when multiple threads write
to the same memory address. This can lead to a behaviour known
as a 'race condition’ [LWZW22].

Race conditions can introduce unpredictable and unstable be-
haviour. An example can be where an agent is moving from one
node to another. When threads A and B read the agent count of
node X simultaneously and both try to write one agent to it, only
one agent will be added to node X. This results in a loss of to-
tal agents which is not allowed in this model. A Mutex [Klel1]
prevents simultaneous access to a piece of memory, though this
comes with a performance cost as only one thread can access it at a
time. By performing all writing calculations within each node and
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Algorithm 1 Naive way of moving the red agents

Algorithm 2 Moving red agents with parallisation

for (agent_node,marker_node,index) < old_lattices.iter() do
> Loop over every agent and marker node in the old lattices
prng < new PRNG(index, iteration, seed); > Setup a
pseudorandom number generator (PRNG). The seed should de-
pend on the index and iteration amount, as well as a global seed
provided by the user.
neighbour_markers = marker_node.neighbours() > Get the 6
neighbours of this marker node
blue_strength = {} > Store push strengths of all neighbours
for marker < neighbour_markers.iter() do
blue_strengths < pow(e, —beta X marker.blue_value) >
Append the blue strength for each marker defined in equation 6

for red_agent < agent_node.red_agents do > Loop over

each red_agent and move it to one of its neighbours according to
the strengths of the blue markers

direction = PICK_WEIGHTED(prng, blue_strengths) >
Pick one of the neighbours and return the chosen direction to
move in (Top, Left, Front, etc.). More info about the method in
appendix A

new_index < agent_node.index_from_dir(direction)
Get the neighbours index from the direction

new_lattices.agent_nodes.add_red_agent(new_index)
Increment the new lattice with agent nodes at the position of
new_index by one

spawning one thread per node, we ensure that only one thread is
writing to a memory address during the node’s lifetime.

Only the walking part needs to be updated from the naive model,
as updating the markers is not writing to other nodes other than
itself, as shown in figure 1. Algorithm 1 is adopted, whereby each
node can read all other nodes but can only write to its own. An
impression of how the movement of red agents is changed is visible
in algorithm 2.

3.4. GPU improvements

The speed of the parallelised CPU implementation was still insuf-
ficient, as will be discussed in section 4.1. Most GPUs have many
more working threads compared to CPUs, this means that GPUs
are able to do parallel computations. The GPU implementation was
written using WebGPU [MJIN23] as the core technology. This web
API provides direct access to most GPUs on desktop computers,
making the model versatile and more easily reproducible.

WebGPU is often described as a successor of WebGL. We-
bGL was mostly used for drawing images on the browser screen,
whereas WebGPU was designed from the ground up to handle com-
plex GPU computations. WebGPU uses its own shader-language
WGSL to reach near-native performance.

GPUs have one downside: data transfers between the CPU and
GPU take a relatively significant amount of time. The algorithm is
designed to use a ping-pong buffer to store the old and new lattices
in GPU memory, reducing the time needed to transfer data to the
CPU. A ping-pong buffer consists of two buffers that are used in

new_lattices = new Lattices(old_lattices.parameters)

for (marker_node,agent_node,index) < old_lattices do >
Move agents out by storing the newly distributed agents in this
agent node

neighbour_markers = marker_node.neighbours()
prng = new PRNG(index, iteration);
agents_out = {top:0,right:0,front:0,bottom:0,left:0,back:0}
for red_agent < agent_node.red_agents.iter() do
blue_strengths = neighbour_markers.blue_strengths >
Set of blue strength for each neighbouring node
dir = pick_weighted(prng, blue_strengths)
agents_out[dir] +=1
new_lattices.agent_nodes[index].red_agents_out(agents_out)
> Write the number of agents that will go to each neighbour to
own (index) of the new agent node

for (agent_node,index) <— new_lattices do > Read agents from
neighbouring nodes and move to this node. For instance, get top
neighbours agents that should move down (i.e. to this node).
neighbour_agents = agent_node.neighbours()
total_red_agents = 0
for dir < neighbour_agents do
red_agents_dir < neighbour_agents[dir].red_agents_out
> Set of all agents in the neighbour at dir (top, right, etc)
total_red_agents += red_agents_dir[dir.opposite] > Add
red agents from dir.opposite (top -> bottom, right -> left)
agent_node.red_agents(total_red_agents) > Set red agents
that this node gets from all neighbours

an alternating fashion. One buffer is used for input, while the other
is used for output. Each iteration they swap their function as in-
put or output buffer. This technique reduces latency and enhances
performance in real-time applications.

3.5. Visualisations

To interpret the raw data model, several visualisation methods have
been developed. These fall into three categories: 2D slice, 3D View
and Real-time data view. These categories can be seen in figure
18. To study these views in detail, visit https://3d-walker.
vercel.app/vision/slice for a live view. The purpose for each
category is explained further in the respective paragraphs.

The left figure is the slice view and is useful for comparing the
current 3D state to the 2D one. If patterns similar to those expected
from the 2D case start emerging from a given configuration, it often
indicates that we are moving towards an interesting state to com-
pare against. However, each slice is in general an invalid 2D state
because agents can cluster and move to slices in the front and back.
The assumption of an equal number of agents from species A and
B is often not true, so direct comparisons should be made with cau-
tion.

The centre figure shows the 3D view. Drawing each node as a
coloured block is difficult to interpret in 3D, because blocks that
are hidden by others are hard to spot. The marching cubes algo-
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Slice view 3D view Data view

Figure 2: Left: 2D slicing view. Centre: 3D view and right: data
view. All three views display the visuals for lattice area 503, itera-
tions 31001, beta = 1.5¢-5, y= 0.5, A = 0.5.

rithm [LC87] is often used in the three-dimensional visualisation
of territories. This technique shows the border at which species are
equally dominant. Blue-shaded areas describe territories, where the
blue species is most dominant. Observe how the slicing view at in-
dex z=0 is recognised at the front (left) side of the cube.

Lastly, the right figure is real-time data view. This is for ab-
stracting the visuals away and showing condensed metrics about
the model. Here, the order parameter over time which will be de-
fined in section 3.6 is shown. Hovering over each data point reveals
the exact order parameter at each time step.

3.6. 3D order parameter

The previous territorial paper employed an order parameter to mea-
sure the effect of various parameters on the state of well-mixed ver-
sus segregated systems. The order parameter (as defined in equation
3) is adapted to use agent densities in three dimensions, where the
agent density of species i is formulated as p;(x,y,z,7) = (amount of
agents at position (x,y,z) and time t) * L°.

1

N2
6L° N’ (x3,2) €S (£,5,2)~(x,3,2)

(pA (X,y7z,f) - PB(X,y,Z,f))(PA(f,)NJ,Zl‘) - pB(f,)N/',Zt)) (7)

The normalisation coefficient is adapted too. We divide the entire
equation by the product of the number of neighbours, lattice area,
and total mass squared. This keeps the order parameter bounded at
1, making comparisons between papers easier.

4. Results

Having established the methodology for defining the model with
varying levels of complexity, we explain why speed-ups were nec-
essary in Section 4.1. These speed-ups enabled us to simulate mul-
tiple models and compare them to some properties of the previous
territorial paper; using the newly established order parameter. Sec-
tion 4.2 presents how the phase transition is affected by different
parameters in our model.

4.1. Compare algorithm speed

The advantage of improving the time-complexity of our model is
evident when table 1 is examined. Parallelisation on a CPU yields
approximately five times the speedup of serialisation. Introducing
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GPU acceleration yields another approximately 200-fold improve-
ment between CPU and GPU parallelization for larger iterations.
Table 1 does not take the initialisation step into consideration, be-
cause most of the time will be spent in the iteration step, especially

with many iterations.

Iterations CPU Serial | CPU Parallel | GPU Parallel
1 5.13s s 999 ms 54ms
10 40.70 s 9.48 s 99ms
100 6m 55s 1m 37s 388ms
1000 62m 13s 11m 12s 2852ms

Table 1: Iteration process for the three different methods of com-
puting in sections 3.2, 3.3 and 3.4. These tests were performed on
a Mac-Book Pro with a M1 Pro chip, 12 CPU cores, 14 GPU cores
and 32 GB RAM.

The CPU’s speed is approximately ten times slower when per-
forming ten times the work, while the GPU does not follow this
pattern. This may be due to the significant time overhead involved
in transferring data between the CPU and GPU during GPU compu-
tations. Data is transferred from the CPU to GPU when the model
is initialised. Measuring the state of the model requires data to be
transferred from the GPU to the CPU.

To enhance the algorithm’s speed, it is advisable to minimise the
number of measurements taken, as demonstrated in table 2. Each
row displays the number of measures performed for getting to time
step 1000, the number of iterations between measurements and the
total time taken to reach the 1000 step. The table shows that mea-
suring less will drastically improve the run-time of the algorithm.
Often, we only need the final state of the model to compare the 2D
and 3D models. We’ll explain this further in sub-section 4.2.2.

Measures | Iterations between Time
1 1000 2s 852ms
10 100 3s 313ms
100 10 6s 85ms
1000 1 46s 449ms

Table 2: Iterating to P iterations can be done with M measurements
where M spans O to P in between P/M iterations. Doing fewer mea-
surements between iterations will speed up the GPU algorithm sig-
nificantly. For this table, the value 1000 is used for P.

4.2. Comparing phase transitions between papers

Previous research showed that various parameters had a significant
impact on the phase transition of the model. We first detect a phase
transition in our model in Section 4.2.1. Then, we analyse how total
mass affects both 2D and 3D models in Section 4.2.2. Finally, we
compare phase transition with the ratio of y/ A between models in
section 4.2.3.



6 A. de Bruijn / Three dimensional random walker model

4.2.1. Well-mixed, well-segregated and partial-segregated
states

The random walker model from A. Alsenafi and A.B. Barbaro
[AB18] identified three different states for a model.

1. Well-mixed: Species will move with an unbiased walk. This is
translated to a low beta value.

2. Partial-segregated: Species will move together, but not to the
point of complete separation.

3. Well-segregated: Species will move to a state where only two
territories remain, one for each species. This corresponds to a
beta parameter approaching 1.

These states were also observed for the 3D model. This can be
observed in figure 3, where all images are using L = 50, y= 0.5,
A = 0.5, the total mass is 12.5 million (50 agents per node per
species) and an iteration count of 60,000. The top left image is
a state observed at iteration 0. Because each agent starts off at a
uniformly random location, this state is by definition a well-mixed
state. The top right image displays a mix of blue and red species
with many small territories. This suggests that species do not form
distinct territories and remain well-mixed. The bottom left image
depicts a partially segregated state with some islands of territo-
ries. We can see that agents have formed some structures from the
initially mixed state, making them partially segregated. The bot-
tom right image is well-segregated, with large territories for each
species.

Understanding how the model would further evolve can be done
by looking at the trend of the order parameter defined in equation 7.
The corresponding order parameters over time for figure 3 are dis-
played in figure 4. All states reach 90% of their final order param-
eter before 1000 iterations. At the 20000 iteration mark, all states
have reached over 97% of their final order parameter. We notice
from the evolution of the order parameter that the segregation oc-
curs well before the first 50000 iterations.

4.2.2. Comparing mass parameters

Using the knowledge from section 4.2.1, the model is unlikely to
switch from well-mixed to well-segregated after 50,000 iterations.
The previous territory paper concluded that using more mass cor-
responds to fewer beta required to reach a segregated state.

After 50,000 iterations, we calculate the final order parameter
value for three different beta values. The results are presented in
figure 5. We set the critical B to be the same as the previous paper
for easier comparison. This B corresponds to an order parameter of
0.01, which we denote as *. Validation that this value is correct in
3D is provided in appendix B.

The first plot in figure 5 shows that for a mass of 1,600,000, the
critical B value for the phase transition is approximately 3.55¢°.
In contrast, when the mass is increased to 3,200,000, the critical 3
value decreases to around 2.32 x ¢ %, as shown in the right plot.
These findings suggest that as the system’s mass increases, the crit-
ical B value for the phase transition decreases. This observation is
consistent with the previous work on 2D territory formation.

Generalising this finding with different masses to critical betas is
shown in figure 6. The continuous stability analysis is plotted next

iterations=0

beta=1e-8, iterations=60,000

beta=5e-6, iterations=60,000 beta=1.5e-5, iterations=60,000

Figure 3: Top left: A model without iterating over it, all mod-
els start off as well-mixed. Top right: A model with beta = le-8,
this model is still classified as well-mixed. Bottom left: A model
with beta = 5e-6, this model is classified as partial-segregated.
Bottom right: A model with beta 1.5¢-5, and is classified as well-
segregated. All models have total mass of 12.5 million, lattice area
=50%, y=05and . = 0.5

Order Parameter over iterations with different beta values

0.41 f’—"—/m/—h

0.2

—— beta=1.5e-05
—— beta=5e-06
—— beta=1e-06

Order Parameter

0.0

0 10000 20000 30000 40000 50000 60000
Iterations.

Figure 4: Order parameters for different beta values correspond-
ing to (from top to bottom) a well-segregated, partial-segregated
and well-mixed state. Using a lattice length of 50, the mass is 12.5
million, Y= 0.5 and A = 0.5

to our measurements. It can be observed how the discrete 3D model
has a similar shape to the two-dimensional stability analysis case.

4.2.3. Comparing lambda/gamma parameters

The same procedure can be done to compare the behaviour of the
ratio of gamma and lambda. The previous paper concluded that

© 2023 The Author(s)
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Total mass = 1600000, Total mass = 3200000,

y=05A=0.5, y=05A=05,
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Figure 5: Final order-parameters for different values of beta. The
left graph has a total mass of 1,600,000, and the right has a total
mass of 3,200,000. Both graphs were produced with a lattice length
of 20, lambda = 0.5 and gamma = 0.5.
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Figure 6: Critical B for different total masses. Left: (their) 2D
stability analysis, measure where taken with lattice length of 50, A
= 0.5 and y = 0.5. Right: (our) 3D discreet model, measures were
taken with a lattice length of 20, A = 0.5 and ¥ = 0.5.

changing and making the ratio of gamma/lambda smaller resulted
in an approximate doubling of critical beta.

We investigated this finding in three dimensions for two ratios:
0.25/0.5 and 0.75/0.5 (see figure 7). The ratio of 1/2 was measured
with a critical beta of 7.14e-6. When the ratio was increased to 3/2,
the critical beta decreased to 2.27e-6. This roughly corresponds to
a threefold decrease in critical beta. This finding is consistent with
previous research on two-dimensional territory formation.

Figure 8 reveals generalised measurements for a range of ratios.
We plot our 3D model findings alongside the previous 2D model
results. We scale both axes to the same size to allow for better anal-
ysis. The graphs have a similar shape, although remember that the
total mass and lattice sizes differ between models.

5. Argumentation and discussion

Using the results obtained in the previous section, we address the
limitations of the presented model for territory formation, which in-
cludes the consideration of how well our comparisons can be made
between models. However, the section will also explore the possi-
bilities for future work, such as the extension of the model to mul-

© 2023 The Author(s)
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Figure 7: Final order-parameters for different ratios of Y/\. The
left graph has a ratio of 0.25/0.5 = 1/2, and the right has a ratio of
0.75/0.5 = 3/2. Both graphs were produced with a lattice length of
20, and a total mass of 3,200,000.
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Figure 8: Critical B for different ratios of Y/\. Left: (their) 2D
analysis both stability analysis and discrete measurements, mea-
sures were taken with a lattice length of 50, total mass = 200,000.
Right: (our) 3D discreet model, measures were taken with a lattice
length of 20, and a total mass of 3,200,000.

tiple species, the exploration of different metrics for analysing be-
havioural patterns, and the application of the model to other fields
of research, such as disease spread.

5.1. Discuss results

This section revisits the two sub-questions asked in the introduc-
tion to determine if they have been adequately answered. Each sub-
question is elaborated in its own subsection.

5.1.1. Three-dimensional lattice phase states

The first sub-question to be discussed is: "What are the states of the
three-dimensional lattice model, and are they well-mixed or well-
segregated". Well-mixed states are, by definition, present at the start
of each model. Figures 3 and 4 demonstrate how an ordered state is
created from chaos. We observed that larger values of beta produce
larger territories, which are classified as well-segregated.

The previous paper noted that models showed signs of segre-
gation after the order parameter surpassed the value of 0.01. The
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same threshold was chosen for our model for better comparisons.
Curious readers can find multiple two-dimensional slices and three-
dimensional models in the appendix B, which validate that the
threshold is still a valid measure.

5.1.2. Contrast and similarities between models

The second sub-question was: "How does mass and gamma/lambda
ratio influence the phase transition of the 3D model?". Figures 5
and 7 demonstrate that similarly to the findings of the previous
paper, increasing the total mass or the y to A ratio decreases the
amount of beta required to reach a segregated state.

To determine if the behaviour was consistent across a wider
range of masses and ratios, we plotted them and compared them to
the 2D model. We noticed that the graph shape was similar between
the models, concluding that the same behaviour could be observed.
We take caution when making direct comparisons between models;
this will be discussed in Section 5.2.

5.2. Discussion on discreet models

Analysis of the critical beta parameter in relation to total mass for
both 2D continuous and 3D discrete models displays similar be-
haviour across dimensions. However, a noteworthy difference is
that the 3D model needs significantly more beta to reach the same
critical point for each total mass. The same holds for comparing the
behaviour of y/ A ratio.

The main cause for this large increase must be linked to the num-
ber of dimensions an agent can walk towards. Other smaller factors
may also be involved. To enable direct comparisons between mod-
els, a continuous 3D model should be developed for further analy-
sis.

Discrete models are useful for exploring new behaviours, while
continuous models provide more accurate representations for com-
paring models. Continuous models eliminate random fluctuations
that can be introduced by discrete models. In summary, further re-
search should be devoted to transforming our discrete results into a
continuous model to allow for direct comparisons between models.

5.3. Find other metrics

Research is a collaborative effort, and often, one study can lead to
the discovery of new insights and avenues for exploration. Because
this paper has an accessible web version published, it is easy to find
new interesting behaviour for other researchers.

In the background of this paper, in section 2.1 it is noted that the
amount of data that can be generated with random walker models
is endless. An infinite amount of parameters and iterations can be
combined to produce a meaningful output. This paper computes
behavioural patterns using our order parameter, defined in Section
3.6. Different (order) functions can be defined to analyse different
types of behavioural patterns in territory formation.

For example, M. Skrodzki et al. [SRZ21] uncovered a metric re-
lated to the typology of certain states in three-dimensional Turing-
like patterns. Further research can be conducted into finding a sim-
ilar behaviour for our three-dimensional patterns.

In their extension paper [AB21], A. Alsenafi and A.B. Barbaro
proposed a multi-species model (with n>2) that has many new in-
triguing properties relevant to this paper. Examining how the many
species would interact with one another could provide meaningful
insight into the realm of micro-organisms.

5.4. Other fields of research

This paper was inspired by micro-organisms forming a territory.
However, this paper is mathematically created so it can be extended
to many other fields of research.

Territory formation is also apparent for ant colony formation
[Lep21] [Tscl1]. Ants are known for their remarkable ability to
form complex societies, which are often characterised by the for-
mation of territories. These territories are established through a
variety of mechanisms, including chemical communication. How-
ever, studying ant behaviour in the wild can be challenging due to
the harsh environments in which they live and the confined spaces
in which they operate. By using computer models, researchers can
manipulate various parameters and observe how they affect ant
colony behaviour, allowing them to gain insights into the under-
lying mechanisms of ant colony formation.

6. Conclusion

We conclude that the main question: "What similarities exist be-
tween properties of the two-dimensional and three-dimensional lat-
tice models?" can be answered by that both models have a well-
mixed and segregated state. Furthermore, the point at which the
state changes from well-mixed to well-segregated is in both mod-
els determined by the amount of mass present in the lattices and
the ratio between y/ A plays a large role. For both models, the more
mass or Y/ A they have, the less beta is required to reach the critical
point. Additionally, the 3D model needs significantly more beta to
reach the same critical point for the same amount of mass or y/ A
ratio.

We conclude that the model has many behaviours that remain un-
explored in this paper. Making the model easily accessible to other
researchers can enable the measurement and observation of more
interesting behaviours, helping to better understand the complex
world of higher-dimensional random walks.

© 2023 The Author(s)
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7. Responsible research

Responsibility in research was carefully considered while writing
this paper. All images referenced in this paper are easy to repro-
duce with the public web app created alongside this paper. The
code for this paper is available on GitHub (https://github.com/
yustarandomname/territories-in-three-dimensions) un-
der the MIT license, allowing abundant opportunities for extension.
The code is thus reproducible and extendable for future work. Fi-
nally, any work used by other researchers is properly cited and ref-
erenced in the text to locate the sources correctly.

We were supplied with the original code from the previous ter-
ritory paper. However, this code was not reproducible on the ma-
chines used by the author. Our method was created from scratch
and checked with the mathematics from the paper. Small discrep-
ancies could be the result of this method. For instance, differences
in PRNGs (Pseudo Random Number Generators) could give small
differences between results. We thus opted to look if the behaviour
between models was similar and were careful with making direct
comparisons between models. We noted that direct comparisons
are only possible if our method was reproduced with a continuous
mathematical model.

Finally, the author mentioned on the title page wrote the entire
original paper. Al models such as OpenAl GPT-4 and Grammarly
were used to improve grammar and readability. The author and sev-
eral other people validated all the changes.
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Appendix A: Algorithm 1 extended

Algorithm 3 Extended algorithm for PICK_WEIGHTED(prng,
blue_strengths)
prng = RANDOM(prng.state)
total_blue_strength < blue_strength.sum()
random_result = prng.value * total_blue_strength;
blue_strength_acc < 0
for direction < directions do
blue_strength < blue_strengths.get(direction.index)
blue_strength_acc += blue_strength
if random_result <= blue_strength_acc then return direction

Appendix B: Validation that order parameter of 0.01 is a
well-defined threshold

The following figures (figure B-B) display different order param-
eters for certain beta values. Each beta parameter has a 2D slice
and a 3D view. It is evident that there is still a slight difference be-
tween a final order parameter of 0.016 and 0.010. However, almost
no change can be seen between the final order parameter of 0.010
and 0.097. Both of these states appear visually to be well-mixed.

Figure 10: 3D view. Beta = 1.5-5, final order parameter = 0.941

Figure 9: 2D slicing view. Beta = 1.5¢-5, final order parameter =

0.941 Figure 11: 2D slicing view. Beta = le-5, final order parameter =
0.897

© 2023 The Author(s)
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Figure 12: 3D view. Beta = le-5, final order parameter = 0.897 Figure 14: 3D view. Beta = le-6, final order parameter = 0.016

Figure 13: 2D slicing view. Beta = le-6, final order parameter = Figure 15: 2D slicing view. Beta = le-7, final order parameter =
0.016 0.010

©2023 The Author(s)
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Figure 16: 3D view. Beta = le-7, final order parameter = 0.010
Figure 18: 3D view. Beta = 1e-8, final order parameter = 0.097

Figure 17: 2D slicing view. Beta = le-8, final order parameter =
0.097
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