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Abstract

Core-annular flow is an efficient flow regime for the transportation of viscous oils. The viscous oil in
the core is surrounded and lubricated with an annulus of water. Water has a low viscosity and there-
fore reduces the pressure drop. Numerical simulations are performed for horizontal core-annular flow
by using the Volume of fluid (VOF) method to solve the Reynolds-averaged Navier-Stokes equations
(RANS) in OpenFOAM. Periodic boundary conditions are used for a small pipe section. With periodic
boundary conditions the maximum wavelength at the oil-water interface is imposed together with the
oil and water holdup fractions.

Numerical results are compared with recent experimental data. Oil viscosities between 3338 cSt at
20°C and 383 cSt at 50°C are solved with a fixed total flow rate. The 20°C simulation converged to
the desired water cut of 20%, similar to the experiment. At this 20% water cut a comparable pressure
gradient is found with the experiment. At higher temperatures (i.e. lower viscosities) deviations from
the desired water cut of 20% are obtained. The different water cut values lead to differences between
the numerical and experimental pressure gradients.

Additional simulations are carried out for the oil viscosity of 718 cSt at 40°C. Instead of a fixed to-
tal flow rate these simulations are solved with a fixed pressure gradient. This solving method is found
to be considerable faster. Different holdup fractions and pressure gradients are imposed which resulted
in different water cut and flow rate values. Numerical results are interpolated for the experimental wa-
ter cut values of 9%, 12% and 15% at similar flow rates. Differences of 98%, 24% and 37% are found
for the water cut of 9%, 12% and 15% respectively. An interpolation is not possible for the exper-
imental water cut of 20% as this experiment is outside the covered solution region of the numerical
results. This difference is caused due to an incorrectly used domain length.

The study is finished with holdup estimations of the experiments. Flow visualizations from a high
speed camera are used which are made during the experiments. Oil holdup fractions of 0.749 are
found for a water cut of 20%. This holdup fraction corresponds exactly with the imposed holdup frac-
tion for the different viscosity simulations which are solves with the fixed total flow rate. Only the 3338
cSt at 20°C converged, however, to the water cut of 20%. ’

v





Contents

Preface iii

Abstract v

List of Figures ix

List of Tables xi

List of Symbols xiii

1 Introduction 1

2 Multiphase flows 3
2.1 Flow patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Non-dimensional numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Levitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Experimental approach 9
3.1 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Numerical method 13
4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Navier Stokes equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Volume of Fluid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.3 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Time step restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Linear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5.1 Boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 Pressure-velocity coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 Application solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7.1 Constant Pressure Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7.2 Flux Imposed Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.8 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Numerical results for 20% water cut 23
5.1 Simulation I: temperature 20°C (ν = 3338 cSt) . . . . . . . . . . . . . . . . . . . . . 23
5.2 Simulation II: temperature 30°C (ν = 1472 cSt) . . . . . . . . . . . . . . . . . . . . 27
5.3 Simulation III: temperature 40°C (ν = 718 cSt). . . . . . . . . . . . . . . . . . . . . 29
5.4 Simulation IV: temperature 50°C (ν = 383 cSt). . . . . . . . . . . . . . . . . . . . . 31
5.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Numerical accuracy 35
6.1 Mesh description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Pressure gradient verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Interface verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Comparison of solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 New decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



viii Contents

7 Numerical results for 40°C (ν = 718 cSt) 41
7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Interface comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Ullmann & Brauner model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 Velocity field comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5 Turbulence comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Results from flow visualizations 51
8.1 Numerical holdup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Experimental holdup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3 Comparison of experimental and numerical results . . . . . . . . . . . . . . . . . . 54
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 Conclusions and recommendations 57
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 59



List of Figures

1.1 Visualization of horizontal CAF by van Duin [1]. . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Flow patterns for oil and water flow through a horizontal pipeline. Black indicates oil and
blue indicates water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Flow map of horizontal flow when the oil is lighter than water [2]. . . . . . . . . . . . . 4
2.3 Sketch of PCAF (left) and realistic CAF (right). . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Trough and crest of the waves at the bottom and top interface of a slice through the

length of the pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Schematic representation of the lubricated-film model and the flying-core model.[2]. . 7

3.1 Water density [3] and measured oil density [1]. . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Water viscosity [3] and measured oil viscosity [1]. . . . . . . . . . . . . . . . . . . . . 10

4.1 Speedup and efficiency function. Squares and triangles are the measured data. . . . . 21

5.1 Cross-sectional snapshots of the distribution of water (blue) and oil (black) at 20°C . . 24
5.2 Ratio of turbulent eddy viscosity to the molecular viscosity at 20°C. . . . . . . . . . . . 24
5.3 Turbulent to molecular viscosity ratio of single phase water flow. . . . . . . . . . . . . 24
5.4 Flow rates at 20°C of water (blue), oil (red) and the imposed total flow rate (magenta). 25
5.5 Zoom in of oil flow rate from 9 to 9.6 seconds. Sampling time is 0.005 sec. . . . . . . . 25
5.6 Water cut at 20°C. Sampling time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . 26
5.7 Pressure gradient at 20°C. Sampling time is 3⋅10-6 sec. . . . . . . . . . . . . . . . . . . 26
5.8 Scaled water layer thickness at the top (orange) and bottom (blue) for 20°C. Sampling

time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.9 Scale wave amplitudes at the top (orange) and bottom (blue) interface for 20°C. Sam-

pling time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.10 Cross-sections for the distribution of water (blue) and oil (black) at 30°C. . . . . . . . . 27
5.11 Ratio of the turbulent to molecular viscosity at 30°C. . . . . . . . . . . . . . . . . . . . 27
5.12 Water cut at 30°C. Orange line is the time average water cut for clarification. Sampling

time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.13 Pressure gradient at 30°C. Sampling time is 3⋅10-6 sec. . . . . . . . . . . . . . . . . . . 28
5.14 Scaled water layer thickness at the top (orange) and bottom (blue) for 30°C. Sampling

time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.15 Scaled wave amplitudes at the top (orange) and bottom (blue) interface for 30°C. Sam-

pling time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.16 Cross-sections for the distribution of water (blue) and oil (black) at 40°C. . . . . . . . . 30
5.17 Ratio of the turbulent to molecular viscosity at 40°C. . . . . . . . . . . . . . . . . . . . 30
5.18 Water cut for 40°C. Sampling time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . 30
5.19 Pressure gradient for 40°C. Sampling time is 3⋅10-6 sec. . . . . . . . . . . . . . . . . . 30
5.20 Scaled water layer thickness at the top (orange) and bottom (blue) for 40°C. Sampling

time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.21 Scaled wave amplitudes at the top (orange) and bottom (blue) interface for 40°C. Sam-

pling time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.22 Cross-section and longitudinal cross-section for the distribution of water (blue) and oil

(black) at 50°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.23 Ratio of turbulent viscosity to the molecular viscosity at 50°C. . . . . . . . . . . . . . . 32
5.24 Water cut at 50°C. Sampling time is 0.005 sec. . . . . . . . . . . . . . . . . . . . . . . 32
5.25 Pressure gradient at 50°C. Sampling time is 3⋅10-6 sec. . . . . . . . . . . . . . . . . . . 33

ix



x List of Figures

6.1 Pressure gradient results for simulation I for the different meshes of table 6.1. . . . . . 36
6.2 Absolute differences of amplitudes at the bottom interface (purple) and upper interface

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Pressure gradient results of mesh Org, P and M for simulation III. . . . . . . . . . . . . 38
6.4 Simulation III repeated with the pressure gradient solver. Shown are the water flow rate

(blue), oil flow rate (red) and the total flow rate (magenta). . . . . . . . . . . . . . . . 39
6.5 Speedup and efficiency function. Squares and triangles are the real measured data. . . 40

7.1 Water cut and total flow rate results for different holdup fractions (black lines) and pres-
sure gradients (colored lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Longitudinal cross section for simulations with different holdup fractions at a pressure
gradient of 1100 Pa/m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3 Numerical results (solid lines) and predictions with the Ullmann & Brauner model (dashed
lines) at various values of the oil holdup fraction at a pressure gradient of 1100 Pa/m.
Water flow rates are blue, oil flow rates are red and the total flow rates are represented
with the magenta color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.4 Numerical (solid lines), analytical (dashes lines) and experimental (black stars) results
for a water cut range between 8% and 23%. . . . . . . . . . . . . . . . . . . . . . . . 46

7.5 Velocity profiles for simulations I,II and III. Different temperatures for Ho=0.749 at a
constant total flow rate of 0.430⋅10-3m /s. Right figure is zoomed in at the oil core. . . 47

7.6 Velocity profiles for simulations V,VII and X. Different holdup fractions for a pressure
gradient of 1100 Pa/m at 40°C. Right figure is zoomed in at the oil core. . . . . . . . . 47

7.7 Velocity profiles simulations VI,VII,VIII and IX. Different pressure gradients for Ho=0.792
at 40°C. Right figure is zoomed in at the oil core. . . . . . . . . . . . . . . . . . . . . . 47

7.8 Turbulence properties for simulations I,II and III. Different temperatures for Ho=0.749
at a constant total flow rate of 0.430⋅10-3m /s. . . . . . . . . . . . . . . . . . . . . . . 49

7.9 Turbulence properties for simulations V,VII and X. Different holdup fractions for a pres-
sure gradient of 1100 Pa/m at 40°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.10 Turbulence properties for simulations VI,VII,VIII and IX. Different pressure gradients for
Ho=0.792 at 40°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.1 Interface estimation for simulation II. The blue line is a estimation of the interface and
red line is the real interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.2 Front view of 30°C and 20% water cut. Interface estimation displayed with a white line. 52



List of Tables

3.1 Measured interfacial tension at 20°C [1]. . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Experimental results from van Duin [1] for a water cut of 20%. . . . . . . . . . . . . . 11

4.1 k-𝜖 model constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Selected numerical schemes. Term phi is used for the velocity flux, 𝜙 = 𝜌�⃗�. . . . . . . 17
4.3 Selected linear solver settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Parameters for the simulations I to IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Overview of the results of the simulations I to IV. . . . . . . . . . . . . . . . . . . . . . 34

6.1 Overview of the meshes used for the mesh dependence study. . . . . . . . . . . . . . 36
6.2 Absolute differences with respect to the ’Org’ grid. . . . . . . . . . . . . . . . . . . . . 37

7.1 Oil and water holdup fractions for the water cuts of figure 7.1. . . . . . . . . . . . . . . 42
7.2 Linear interpolated numerical results from the solution grid of figure 7.1. The water cut

and total flow rate values are similar with the experimental values. . . . . . . . . . . . 42
7.3 Interface results of simulations V to X. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 Predictions with the Ullmann & Brauner model for the experiments at 40°C. . . . . . . 45
7.5 Overview of experimental, analytical model and numerical results at 40°C (𝜈 = 718 cSt). 50

8.1 Numerical comparison of real and spline holdup fraction. . . . . . . . . . . . . . . . . . 52
8.2 Flow visualization results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Experimental, numerical and Ullmann & Brauner model estimations for the oil holdup at

similar water cut and flow rate values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.4 Comparison of experimental and numerical interface results for 20°C at 20% water cut. 55

xi





List of Symbols

𝜖 Turbulent dissipation [m /𝑠 ]

𝜖 Water cut [-]

𝜇 Dynamic viscosity [kg/(m⋅s)]

𝜇 Turbulent eddy viscosity [kg/(m⋅s)]

𝜈 Kinematic viscosity [cSt]

𝜌 Density [kg/m ]

𝜎 Surface tension [N/m]

𝜏 Wall shear stress [Pa]

𝐴 Area [m ]

𝐴∗ Scaled amplitude size [-]

𝐶𝑜 Courant number [-]

𝐻 Phase holdup [-]

ℎ Holdup ratio [-]

𝑘 Turbulent kinetic energy [kg/(m⋅s)]

𝑄 Volumetric flow rate [m /𝑠]

𝑅1 Inner radius pipe [m]

𝑅2 Outer radius pipe [m]

𝑅𝑒 Reynolds number [-]

𝑇 Temperature [°C]

𝑇𝑤 Scaled water thickness [-]

𝑈 Flow velocity [m/s]

𝑢⋆ Friction velocity [m/s]

𝑈 Superficial velocity [m/s]

xiii





1
Introduction

Heavy oil resources are becoming more important due to the decaying amount of available light oils.
But these heavy oils have a practical disadvantage in the exploration process. The name heavy refers
to the high viscosity property which is responsible for a high wall resistance when pumped through a
pipeline. This results in large pressure losses and high operating cost.

Technologies to decrease the wall resistance of heavy oils are required. An efficient technique to
achieve this is water-lubricated flow. This flow regime, where oil flows through the core of a pipeline
surrounded by a lubrication film of water, is ideal for heavy oil transportation. In the multiphase flow
field this flow regime is known as core-annular flow (CAF). The pressure loss in the pipeline decreases
significantly which makes the operating conditions better and affordable.

The best CAF pipeline example is the pipeline of Shell in the North Midway Sunset Reservoir. This
pipeline in California has been used from 1970 till 1982. Despite the high efficiency and low invest-
ment cost this technique is not used frequently. The possibility of the oil core touching the pipe wall is
a main reason for the rare use of CAF. This occurrence, which is called fouling, increases the pressure
loss largely with the possibility of even damaging the transportation line. A better understanding of
CAF behavior is needed to improve this technology and to optimize the operating conditions.

Already a century ago (Isaacs & Speed, 1904) the study of CAF started with a high increase in re-
search activity in the last few decades. At the University of Minnesota quite some research has been
done on vertical and horizontal core-annular flow by Bai (1992), Arney (1993), Joseph et al. (1997)
and Li and Renardy (1999). But also at more places around the world the CAF phenomenon has drawn
the attention. For example Charles (1961) and McKibben (2000) in Canada, Bannwart (2004) at the
University of Campinas in Brazil, Grassi et al. (2008) and Sotgia et al. (2008) at the University of Bres-
cia and Modena in Italy and Al-Awadi (2011) and Alagbe (2013) at the Cranfield University in the UK.
In addition to the experimental work, the state-of-the-art technique of computational fluid dynamics
(CFD) has been used more frequently during the last two decades. The numerical work started with
the assumption of a rigid core with imposed waves as empirical input. With the strong development of
the field of CFD the results are faster and more accurate. Setting up a numerical simulation for a single
phase pipe flow is well-known these days, but a two phase CAF simulation is still a field of development.

Both experimental and numerical techniques are of equal importance in the field of fluid mechanics.
Both techniques have their own pros and cons. Specific experimental techniques have limited appli-
cability ranges, can be expensive and it can be hard to access all valuable information. In numerical
simulations these problems are less relevant. Parameters can easily be varied, all data are accessible
and simulations are a lot cheaper. Numerical results on the other hand depend on mathematical mod-
els and calculation methods with inherent errors. For numerical results it is always important to check
if the results are realistic, whereas experiments are dealing with real flows. Both techniques are widely
used nowadays to validate each other and to use the benefits of both techniques.
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2 1. Introduction

Ooms (1972) and Oliemans (1986) studied the CAF phenomenon with experiments and theory at the
Delft University of Technology and recently students started graduating on the CAF topic. This started
with Beerens (2013) followed by Ingen Housz (2016), Radhakrishnan (2016) and van Duin (2017).

Beerens continued the work of Li and Renardy (1999) with numerical simulations with an improved
volume of fluid method for vertical CAF. Beerens validated his work with experiments from Bai et al.
(1992). Periodic boundary conditions were used in the main flow direction to reduce the simulation
time. With the use of periodic boundary conditions the length of the waves on the interface is restricted.
Beerens performed a good validation to support his chosen domain length and finished his work with
the start of horizontal CAF simulations.

Ingen Housz continued the numerical work for horizontal core-annular flow with a slightly improved
numerical solver. Ingen Housz found that a turbulence model was needed and validated his numerical
results by performing experimental work in the laboratory of Process and Energy. For the experiments
a minimum pressure loss was found at a water addition of 12%. In the numerical work the wall friction
was underestimated which resulted in too high mixture velocities.

Radhakrishnan directly followed up the work of Ingen Housz by also performing numerical and exper-
imental studies. Radhakrishnan investigated the temperature dependency for vertical and horizontal
CAF. In the end of his work Radhakrishnan changed the set-up of the simulations. So far the simula-
tions were driven by a prescribed pressure gradient. Radhakrishnan changed this according to Kouris
and Tsampopoulous (2001) by forcing an imposed total flow rate. The advantage of this set-up is that
it is more in line with the experiments.

Van Duin (2017) continued Radhakrishnan’s experimental work and started with improving the set-
up. An extensive investigation to the oil viscosity influence was done and different scaling parameters
have been investigated. The results were compared with Ingen Housz and visualizations have been
done with a high-speed camera.

Figure 1.1: Visualization of horizontal CAF by van Duin [1].

The use of the solver with imposed flow rates, which ended the simulation study by Radhakrishnan,
is the start of the present research. The experimental results of van Duin are tried to be reproduced
with numerical calculations. In chapter 2 some theoretical background on multiphase flow is given,
whereas chapter 3 gives some background on the experiments. In chapter 4 the numerical settings
are described and in chapter 5 the first numerical results are given. In the first numerical results it is
tried to reproduce the experiments with 20% water cut for different temperatures (giving different vis-
cosities). In chapter 6 a grid dependence study is performed and two different solvers are compared.
Chapter 7 describes new numerical results for different water cuts and pressure gradients at 40°C. The
report is finished with holdup estimations that are derived from the flow visualization experiments (see
figure 1.1) by van Duin.



2
Multiphase flows

Core-annular flow is a multiphase flow phenomenon. The two phases are both fluids and the flow
can be characterized by different flow patterns and corresponding dimensionless numbers. These
characteristics are described in this chapter together with the used definitions. At the end of the
chapter two different theories are given about the levitation mechanism of the core and an analytical
model is described.

2.1. Flow patterns
Different distributions are available for two immiscible fluids flowing through a pipe. Two-phase pipe
flow can be classified according to these distributions, which usually are referred to as flow regimes
or flow patterns. Which flow pattern can be expected depends on different operating conditions. The
physical properties of the fluids, the pipe geometry, the flow rates, the volume ratio and the operating
pressure and temperature are all of influence. For an oil-water pipe flow different flow patterns are

Figure 2.1: Flow patterns for oil and water flow through a horizontal pipeline. Black indicates oil and blue indicates water.

shown in figure 2.1. The oil has a lower density than water. Due to the density difference gravity will
push the water to the lower part of the pipe and buoyancy will cause the oil to flow in the upper part
of the pipe. For relatively low flow rates stratified smooth flow is likely to occur. When increasing the
velocity difference between the two fluids instabilities at the interface can develop resulting in stratified
wavy flow. Bubble flow is a flow pattern when in particular the water flow rate is higher than the oil
flow rate. The oil bubbles, which actually are droplets, will settle mainly in the top of the pipe due the
density difference. These droplets can differ in size but when these droplets grow sufficiently large the
flow pattern will transfer into slug flow. Slug flow in pipelines is unwanted because this flow pattern

3
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is creating high pressure fluctuations. The flow regime of interest for this research is when the oil
flows through the center of the pipe with the water in an annulus around it. With the water completely
surrounding the oil, the oil is not touching the pipe wall. Not only should the oil flow rate be higher than
the water flow rate, all other operating conditions are also of importance to maintain this flow regime.
An eccentric position of oil in the pipe can be observed due to the density difference and instabilities at
the interface will likely occur due to a velocity difference. A concentric oil core with a smooth interface,
known as perfect core-annular flow (PCAF), is rarely seen in practice.

Different investigations have been conducted to determine the dependence of different factors on
the flow pattern. These results are often presented in a flow pattern map for which an example is
given in figure 2.2. For a horizontal pipe different regimes are plotted as function of the water and oil
velocities. Such a flow map is created for a specific pipe size and specific values for the other impor-
tant operating conditions. The flow pattern map will differ when some conditions are changed. The
boundaries between the flow regimes are denoted by lines. The transitions between different regimes
are caused by growing instabilities which are hard to predict with a very good accuracy. The lines have
to be seen more as transitions zones.

Figure 2.2: Flow map of horizontal flow when the oil is lighter than water [2].

2.2. Definitions
In this section some definitions are given which are used in the report. On the left side of figure 2.3
the front view of PCAF is sketched. For PCAF the oil is settled perfectly in the center of the pipe. On
the right side core-annular flow is sketched observed in reality due to the eccentric position of the core
and the waves at the interface. In the figure the areas of oil and water are specified. With the notation
of 𝑈 and 𝑈 for the oil and water velocities respectively the following definitions are defined:

• Volumetric flow rates:

𝑄 = 𝑈 𝐴 , 𝑄 = 𝑈 𝐴 (𝑚 /𝑠) (2.1)

• Superficial velocities:

𝑢 = 𝑄
𝐴 = 𝑈 𝐴

𝐴 , 𝑢 = 𝑄
𝐴 = 𝑈 𝐴

𝐴 (𝑚/𝑠) (2.2)

• Phase holdups:

𝐻 = 𝐴
𝐴 , 𝐻 = 𝐴

𝐴 , 𝐻 + 𝐻 = 1 (2.3)
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• Water addition / water cut:

𝜖 = 𝑄
𝑄 + 𝑄 (2.4)

• Holdup ratio:

ℎ = 𝑄 /𝑉
𝑄 /𝑉 = 𝑄 /𝑄

𝑉 /𝑉 (2.5)

The superficial velocity and holdup ratio are two common definitions for multiphase pipe flow. The
superficial velocity is the velocity when each phase would flow through the pipe as a single phase flow.
The holdup ratio is an important core-annular flow definition and it is the ratio between the ratio of
the flow rates and the ratio of the in situ volume fractions. When the holdup ratio is smaller than unity
the oil phase is accumulating and when larger then unity the water phase is accumulating. In the
experiments of Bai et al. [29] the interesting result was found that the holdup ratio was approximately
1.39 for all their CAF experiments.

Figure 2.3: Sketch of PCAF (left) and realistic CAF (right).

For the specific case of PCAF, where the core is exactly at the center with R1 and R2 as defined in
figure 2.3, the following definitions are applicable,

• Volumes PCAF:

𝑉 = 𝜋𝑅 𝐿, 𝑉 = 𝜋(𝑅 − 𝑅 )𝐿 (2.6)

• Holdup ratio PCAF:

ℎ = 𝑄 /𝑄
𝑉 /𝑉 = 𝑄

𝑄
𝜋(𝑅 − 𝑅 )𝐿

𝜋𝑅 𝐿 = 𝑄
𝑄 (𝑅𝑅 − 1) (2.7)

2.3. Non-dimensional numbers
Results with dimensions are often difficult to interpret. Therefore nondimensionalization is a well known
technique in fluid dynamics as this has several advantages. By taking the ratio of relevant forces of the
problem several dimensionless numbers can be created. These dimensionless numbers give insight
on the importance of the different terms which makes it easier to understand the physics. Five forces
which play a role in multiphase flow with a characteristic length 𝐿 and velocity 𝑈 are:

• Inertial Force: ∼ 𝜌𝑈 𝐿
• Viscous Force: ∼ 𝜇𝑈𝐿
• Surface tension: ∼ 𝜎𝐿
• Gravitational Force: ∼ 𝜌𝑔𝐿
• Pressure Force: ∼ Δ𝑝𝐿
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With these forces the following familiar dimensionless numbers can be created:

Reynolds number (Re) = Inertial force
Viscous force

= 𝜌𝑈 𝐿
𝜇𝑈𝐿 = 𝜌𝑈𝐿

𝜇 (2.8a)

Froude number (Fr) = √ Inertial force
Gravitational Force

= √𝜌𝑈 𝐿
𝜌𝑔𝐿 = √𝑈𝑔𝐿 (2.8b)

Eötvös number (Eö) = Gravitational force
Surface tension

= 𝜌𝑔𝐿
𝜎𝐿 = 𝜌𝑔𝐿

𝜎 (2.8c)

These numbers are expressed for a single phase flow and have been adjusted for two phase flow. The
Reynolds numbers for the water and oil phases can be expressed in terms of their superficial velocities:

𝑅𝑒 = 𝜌 𝑈 𝐷
𝜇 , (2.9a)

𝑅𝑒 = 𝜌 𝑈 𝐷
𝜇 . (2.9b)

For the Froude number the buoyancy force on the core is important. Therefore the density difference
is taken into account giving:

𝐹𝑟 = √ 𝜌Δ𝜌
𝑈
𝑔𝐿 . (2.10)

Another advantage of dimensionless numbers is the independency of the units. This independency
makes it easier to compare results which are obtained for different systems. For core annular flow Li
and Renardy (1999) defined the following dimensionless numbers:

Viscosity Ratio: 𝑚 = 𝜇
𝜇 (2.11a)

Density Ratio: 𝜉 = 𝜌
𝜌 (2.11b)

Radius Ratio: 𝑎 = 𝑅
𝑅 (2.11c)

Surface tension parameter: 𝐽 = 𝜎⋆𝑅 𝜌
𝜇 (2.11d)

Next to these numbers two new dimensionless numbers are used in the present report. Special atten-
tion is given to the interface shape and the thickness of the water layer around the core. The radial
notations from figure 2.3 are used and the notations for the crest and trough from figure 2.4 are ap-
plied. The crest and trough heights are defined from the center line of the pipe, which are used in the
following quantities:

Amplitude: 𝐴∗ =
𝑌 − 𝑌

2𝑅 (2.12a)

Water Thickness: 𝑇𝑤 =
𝑅 − 0.5 (𝑌 + 𝑌 )

𝑅 (2.12b)
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Figure 2.4: Trough and crest of the waves at the bottom and top interface of a slice through the length of the pipe.

2.4. Levitation
Due to the density difference between oil and water there is an upward buoyancy force on the oil core
pushing the core in an eccentric position. To prevent the oil from rising further upwards there has
to be another force counterbalancing this upward buoyancy force. Two different theories exist in the
literature in which the waves at the interface play a crucial role. Without the waves at the interface
core-annular flow is not stable.

The lubricated-film model was proposed by Ooms and Oliemans [10]. In this model the inertia terms
are neglected with respect to the viscous terms and the interface has a rippled shape. The movement
of the interface with respect to the pipe wall creates pressure variations in the water film at the top
which exerts a downward force on the oil core. An asymmetrical shape of the waves is therefore im-
portant. This asymmetry creates a higher pressure build-up before the wave crest than a pressure
drop after the wave crest. This creates a pressure difference between the top and bottom which can
grow so large that it counterbalances the buoyancy force on the core. The ripples on the interface
must have a sharp angle before the crest and a smooth angle after the crest.

The second model is the flying-core model of Joseph et al. [2]. In this model the inertia terms
are not neglected which changes the theory. They state that the ripple shapes are unstable since the
pressure is high at the location where the gap is the smallest. The waves are therefore sharp where
it was smooth and smooth where it was steep, resulting in the flying core model. Due to the inertia
forces the build-up of pressure after the wave crest is now larger than the pressure drop before the
wave crest. This creates again a force downwards which counterbalances the buoyancy force on the
core.

Figure 2.5: Schematic representation of the lubricated-film model and the flying-core model.[2].
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2.5. Analytical model
Besides the experimental and numerical technique also the analytical model of Ullmann & Brauner
[24] is used to study the core-annular flow phenomenon. This model can predict the pressure drop of
core-annular flow with a laminar core and turbulent annulus. A two-fluid model is used where Ullmann
& Brauner derived closure relations for the interfacial and wall shear stress. After the closure relations
are applied the scaled pressure drop is predicted with,

𝑑P
𝑑P = X

HW
. (2.13)

In this equation is X the Martinelli parameter, which expresses the phase fraction of a flowing fluid.
Ullmann & Brauner derived this parameter as:

X = 0.046
16 (𝜇𝜇 )

.
(𝜌𝜌 )

. 𝑅𝑒 .

�̃� . , (2.14)

where 𝑅𝑒 is the Reynolds number based on the superficial oil velocity and �̃� the ratio of the oil and
water flow rates. The water holdup fraction, 𝐻 , is derived by Ullmann & Brauner as:

𝐻 =
− 𝑋 �̃�𝐹 + [1 + 4𝑋 ( ̃ ) 𝐹 ]

.

𝑐 + �̃� − 𝑋 �̃�𝐹 , (2.15)

where 𝑐 is the slip parameter and 𝐹 the interfacial friction factor. The slip parameter is taken as 1.17
and the interfacial friction factor as 1, according to Ullmann & Brauner [24].

With these relations the scaled pressure drop is estimated. The dimensional pressure drop is ob-
tained by multiplying the scaled pressure drop by the pressure drop of a single phase flow of oil at the
same conditions. The oil phase is laminar as the Reynolds number of oil is not higher than 50. The
pressure drop can therefore be calculated as:

𝑑P
𝑑𝑍 = 128

𝜋
𝜇 𝑄
𝐷 (2.16)

.



3
Experimental approach

Since numerical simulation use all kind of models and assumptions it is always important to validate the
results. The simulations in this research are validated with van Duin’s experiments. A brief description
of the set-up is given in this chapter together with the used oil properties. Different temperatures are
investigated during the experiments to study the effect of the viscosity on the pressure losses. For
a water cut of 20% the results are given in section 3.2. For more results and for a more thorough
description the work of van Duin [1] should be consulted.

3.1. Physical properties
The core-annular flow is investigated with the very viscous oil 𝑆ℎ𝑒𝑙𝑙 𝑀𝑜𝑟𝑙𝑖𝑛𝑎 𝑆2 𝐵 680 and simple tap
water. In the experiments the temperature effect on the flow is investigated. The density and viscosity
change with the temperature, see the measurements results for the density in figure 3.1 and for the
viscosity in figure 3.2. The water properties are added in the figures using data from [3] for the same
temperature range.

The density and viscosity decrease with increasing temperature. The density of water drops a bit
more than oil so the density ratio 𝜉 increases a bit. This difference is however very small. The ratio
between the viscosities is very large, the oil is between 1000 and 3000 times more viscous than water.
The ratio of the viscosities increases with approximately a factor of 5 from 20°C to 50°C. During the
experiments only the oil has been heated up and the water is injected at room temperature. In the
simulations water is taken at the same temperature as the oil core. No influence is expected in the
results for this difference as the viscosity of water is already very low compared to the oil viscosity.

Another physical property which plays a role in multiphase flow is the surface tension 𝜎. Surface
tension is a result of an uneven attraction of molecular forces between different phases. This creates
a surface force which could be seen as an elastic skin. For liquid-liquid interfaces this phenomenon is
referred to as the interfacial tension 𝛾. The interfacial tension between water and oil has been mea-
sured by a 𝐾𝑟�̈�𝑠𝑠 ring tensiometer at Shell Amsterdam. The interfacial tension has been measured at
the start of the experiments and at the end when all the experiments were completed; see table 3.1.
Due to the interaction of oil and water in the experiments the interfacial tension can change. This can
influence the surface tension when the oil is reused.

Table 3.1: Measured interfacial tension at 20°C [1].

Oil Sample Measurement

Start 13.8 ⋅10-3 N/m
Used 16.9 ⋅10-3 N/m

9
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These measurements were somewhat unexpected as it would physically be more logical for the inter-
facial tension to remain constant or decrease. The unexpected trend is probably due to the susceptible
technique for measurements errors. The interfacial tension is only measured at 20°C. The literature
suggests that the interfacial tension is not changing much to at least 50°C but this is something that still
should be validated with measurements. The surface tension measurements for the used oil were not
available at the start of the simulations and are therefore chosen as 16⋅10-3 N/m from the experiments
of Ingen Housz. In retrospect this value can be assumed to be in the suitable range.

Figure 3.1: Water density [3] and measured oil density [1].

Figure 3.2: Water viscosity [3] and measured oil viscosity [1].
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3.2. Experimental results
The experiments were performed at the lab of Process and Energy at the TU Delft. The used pipe was
approximately 7.5 meter long with an inner diameter of 21 millimeter. The pipe is built up by a divider
for creating CAF at the inlet followed by a 2 meter straight section. Thereafter a 180 degree bend
is followed by a 3 meter straight section, another 180 degree bend and the last 0.25 meter straight
section. In the horizontal 3 meter section the relative pressure drop is measured by two pressure
probes sufficiently far away from the bends. After the last straight section the fluids are collected in a
large vessel. Due to the density difference the oil and water are separated after one day. As the oil is
not recirculated in the pipe, it is assumed that the temperature of the oil is not decreasing significantly
during the experiments.

The oil is heated by a device in front of the inlet to the desired temperature. The oil is pumped
into the pipe by a frequency driven pump to a flow rate of approximately 0.345 liter per second. The
tap water flow rate is adjusted such that the water cut of interest is obtained. The water cut during
the experiments has been varied from 9 to 25%. For the first numerical simulations the water cut is
restricted to 20%. The experimental results are given in table 3.2.

Table 3.2: Experimental results from van Duin [1] for a water cut of 20%.

Oil flow rate Water flow rate Water cut Temperature Oil viscosity Pressure drop
[m /𝑠] [m /𝑠] [%] [°C] [cSt] [Pa/m]

0.3450 ⋅10 8.638 ⋅10 20.02 21.28 3338 1004
0.3450 ⋅10 8.635 ⋅10 20.02 30.92 1472 1086
0.3449 ⋅10 8.628 ⋅10 20.01 38.91 718 1123
0.3448 ⋅10 8.637 ⋅10 20.03 48.21 383 1045





4
Numerical method

Computational Fluid Dynamics (CFD) is the study of predicting fluid flow using numerical calculations.
Numerical calculations are done because analytical solutions are only possible for simple mathematical
equations. Hence, CFD is an area of interest that over the last decades has increased in popularity due
to the increase in computer power. CFD has transformed from a more mathematical curiosity into an
essential tool used in almost all branches of fluid mechanics.

For simulating horizontal core-annular flow the open source CFD package OpenFOAM is used for setting
up the calculations. The geometry and mesh are created with the software GAMBIT. In this chapter
the solution method is described with all the used models.

4.1. Problem formulation
The start of simulating a physical problem with CFD is setting up a mathematical description of the
physical phenomena. The physical laws are translated with mathematical relations into partial differen-
tial equations. For a correct modeling the relations have to be chosen carefully but, as will be explained,
sometimes assumptions need to be made for simulating the physical problem.

4.1.1. Navier Stokes equations
The Navier-Stokes equations are the basic governing equations for a viscous fluid. They consist of
two parts: the conservation equations for mass and the conservation equations for momentum. The
mass conservation equation is also referred to as the continuity equation. The momentum equations
are derived from applying Newton’s second law to a fluid element. The final form contains an inertia,
pressure and viscous term. For a three dimensional problem the momentum equation consist of three
equations, one for each direction.

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌�⃗�) = 0, Continuity equation. (4.1)

𝜌𝐷�⃗�𝐷𝑡 = −∇𝑝 + ∇𝜏 + 𝜌�⃗�, Momentum conservation equation. (4.2)

Equation 4.2 uses the material derivative which is defined as:

𝐷�⃗�
𝐷𝑡 =

𝜕�⃗�
𝜕𝑡 + �⃗� ⋅ ∇�⃗�. (4.3)

The material derivative describes the velocity change of a fluid particle while moving with the fluid
flow. The viscous term is linearly proportional to the velocity derivative of the fluid when the fluid is
Newtonian.

∇𝜏 = 2𝜇Δ𝑆, (4.4)

𝑆 = 1
2 (∇�⃗� + ∇�⃗� ) . (4.5)

13
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For an incompressible fluid the assumption is made that the density is constant. Therefore the density
can be taken outside the spatial derivative and the time derivative is equal zero, 𝜕𝜌/𝜕𝑡 = 0. This results
in the Navier Stokes equation for an incompressible, Newtonian fluid:

∇ ⋅ �⃗� = 0 (4.6)

𝜌𝐷�⃗�𝐷𝑡 = −∇𝑝 + 𝜇Δ�⃗� + 𝜌�⃗�. (4.7)

4.1.2. Volume of Fluid Method
Equations 4.6 and 4.7 are the Navier Stokes equations for a single phase flow. Because core-annular
flow is a two phase flow the equations need some adjustments. Different approaches to solve such
two phase problem are available. In this research the ’Volume of Fluid’ (VOF) method is used. In the
VOF method both fluids are treated as a single homogeneous fluid where an indicator function 𝛼 is
used which represents the fluid fraction. The indicator function is restricted to 0 ≤ 𝛼 ≤ 1 where a value
of zero refers to the water phase and a value of one to the oil phase. As the phases move through the
flow domain the indicator function is tracked with an additional equation:

𝜕𝛼
𝜕𝑡 + ∇ ⋅ (�⃗�𝛼) = 0. (4.8)

This indicator equation is a continuous function; therefore 𝛼 varies over some space near the interface
form zero to one. In reality the oil and water are immiscible which means that they should be modeled
with a discontinuous function with only values of zero and one. The indicator function should be as
less diffusive as possible to simulate the reality as good as possible. The VOF method of OpenFOAM
takes care of this by making use of the MULES solver for the second term of 4.8. The MULES solver
uses two different schemes for this advection term. A straightforward upwind scheme away from the
interface and a more sophisticated treatment close at the interface. The more sophisticated treatment
is a higher order method with an interfacial compression flux to reduce the numerical diffusion. A fine
grid is however still needed at the interface for a correct modeling. With the indicator function the
viscosity and density in the momentum equations are replaced by a weighted average.

𝜌 = 𝛼𝜌oil + (1 − 𝛼)𝜌water (4.9)
𝜇 = 𝛼𝜇oil + (1 − 𝛼)𝜇water (4.10)

As a last adjustment for two phase flow the interfacial tension is taken into account. This is done by
adding a surface force 𝑓⋆ to the momentum equations. The surface force is modeled according to
Brackbill et al. [17] with 𝜅 being the curvature of the interface surface.

𝑓⋆ = −𝜎⋆𝜅∇𝛼 (4.11)
𝜅 = −∇ ⋅ �⃗� (4.12)

The surface force is modeled as a volume force which simulates the surface pressure on the interface.
The discontinuous tension is replaced by a smooth function over a small transition region along the
interface with a length comparable to the computational mesh.

4.1.3. Turbulence
In the report of Ingen Housz it was found that the oil core is laminar but that turbulence can be present
in the water annulus. An appropriate treatment of the turbulence will therefore be important to obtain
good results. Turbulence can be expected when the inertia forces are much larger than the viscous
forces. This corresponds to a sufficient high Reynolds number (2.9b). As the Reynolds number is
inversely proportional with viscosity, the Reynolds number of oil is much lower than that of water. This
explains the occurrence of turbulence only in the water annulus. The governing equations obtained in
section 4.1.1 and 4.1.2 have to be adjusted to incorporate turbulence into the model.
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Turbulence modeling
Turbulence is a property of the flow which can be featured by chaotic changes in pressure and velocity.
To model the chaotic fluctuations a very fine grid is required which results in very high computational
cost. Using the Reynolds averaged Navier-Stokes (RANS) equations reduces the computational cost by
solving only the statistically averaged quantities which allows for using a coarser grid. For obtaining the
RANS equations the fluctuating pressure and velocities quantities are first separated with a Reynolds
decomposition. The pressure and velocity are separated into a time-average and the perturbations
around them,

𝑝 = 𝑃 + 𝑝 (4.13)

�⃗� = �⃗� + �⃗� . (4.14)

The capital letters refer to the time-average quantities and the accent marks to the perturbations.
These decompositions are inserted into the Navier-Stokes equations and then averaged to obtain the
equations for the averaged motion. With this final averaging all fluctuating parts are cancelled out
except the part in the non-linear advection term. This part will result in an extra term −𝜌𝑢 𝑢 which
can be rewritten as the Reynolds stress 𝜏 for the incompressible RANS equations:

∇ ⋅ �⃗� = 0, (4.15)

𝜌𝐷�⃗�𝐷𝑡 = −∇𝑃 + ∇(𝜏
visc − 𝜏turb) + 𝜌�⃗�. (4.16)

The Reynolds stress is a new term which has to be modeled to close the equations. This is known as
the closure problem in turbulence. A way to start closing the RANS equations is to use the Boussinesq
hypothesis. This hypothesis models the Reynolds stress with a linear constitutive relationship. It
introduces a new concept of the eddy viscosity 𝜇 and turbulent kinetic energy k.

𝜏turb = 𝜇 (∇�⃗� + ∇�⃗� ) − 23𝜌𝑘�̄�, (4.17)

where �̄� is the Dirac delta function. This hypothesis uses the idea of modeling the Reynolds stress with
an eddy viscosity 𝜇 in the same way as the viscous stress for a Newtonian fluid is modelled with the
molecular viscosity 𝜇. This assumption is not generally valid and it is a great simplification.

Low Reynolds k-𝜖 model of Launder Sharma
With the Boussinesq hypothesis the RANS equations can be closed with different closure models. The
𝑘−𝜖 model is one of the most common models used in CFD for turbulence. It is a two equation model
which gives a general description of turbulence by means of two transport equations. The first equation
is for the turbulent kinetic energy and the second for the turbulent dissipation 𝜖. As the core-annular
flow experiments can be classified with a low Reynolds number the specific low Reynolds 𝑘 − 𝜖 model
of OpenFOAM is used. This model has additional damping functions and extra source terms close to
solid walls.

𝜇 = 𝐶 𝑓 𝜌𝑘𝜖 (4.18a)

𝜕𝑘
𝜕𝑡 +

𝜕
𝜕𝑥 (𝑘𝑈 − [𝜇 + 𝜇

𝜎 ] 𝜕𝑘𝜕𝑥 ) =
𝜏turb
𝜌
𝜕𝑈
𝜕𝑥 − 𝜖 − 𝐷 (4.18b)

𝜕𝜖
𝜕𝑡 +

𝜕
𝜕𝑥 (𝜖𝑈 − [𝜇 + 𝜇

𝜎 ] 𝜕𝜖𝜕𝑥 ) = (𝐶 𝑓
𝜏turb
𝜌
𝜕𝑈
𝜕𝑥 − 𝐶 𝑓 𝜌𝜖) 𝜖𝑘 + 𝐸 (4.18c)

In these equations 𝐶 𝐶 𝐶 𝜎 𝜎 are model constants, 𝑓 , 𝑓 , 𝑓 damping functions and 𝐷, 𝐸 the
source terms active at the solid walls. For choosing the values of these variables the Launder-Sharma
constants are chosen.
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Table 4.1: k- model constants.

Model constants Launder-Sharma
𝐶 0.09
𝜎 1
𝜎 1.3
𝐷 2𝜈( √ )
𝐸 2𝜈𝜈 ( )

𝜖 0
𝐶 1.44
𝐶 1.92
𝑓 𝑒

.
( / )

𝑓 1
𝑓 1 − 0.3𝑒( )

Near wall treatment
Special care has to be taken for wall-bounded turbulent flow. In turbulent flow the gradients at the
wall can be much higher whereby linear interpolation can give wrong results. Two different techniques
are to fully resolve the boundary layers or to use wall functions. To fully resolve the boundary layers
the first control volume at the wall should have an 𝑦 value of approximately 1. The 𝑦 value is a
dimensionless wall distance number defined by:

𝑦 = 𝑢⋆𝑦
𝜈 (4.19)

Where 𝑦 is the distance to the wall, 𝜈 the kinematic viscosity of the fluid and 𝑢⋆ the friction velocity.
The 𝑦 has the same form of the Reynolds number only now based on the friction velocity,

𝑢⋆ = √
𝜏
𝜌 (4.20)

with 𝜏 the wall shear stress. When using wall functions the size of the first cell should be increased so
that the 𝑦 is at least above 20. During this report the boundary layers are fully resolved in accordance
with the previous simulations of Housz and Radhakrishnan.

4.2. Discretisation
As the obtained mathematical equations cannot be solved analytically they have to be solved numer-
ically. First the partial differential equations have to be approximated with a set of linear algebraic
equations for a number of discrete locations. These discrete locations are defined by a grid which is a
division of the flow domain in a finite number of control volumes. Accurate results will only be obtained
when enough control volumes are used. Therefore the grid should be sufficiently fine for accurate
results. The grid should however not be too fine as more control volumes will results in larger compu-
tational effort. An extensive study of the grid is done in chapter 6 and until that point the domain of
Radhakrishnan [6] is used. That mesh consists of 80 control volumes around the circumference of the
pipe, with a length of 0.426 millimeter in the flow direction and 0.0375 millimeter in the radial direction.

The numerical discretization is carried out with the Finite Volume Method (FVM). This is a numeri-
cal technique which uses an integral form to discretize the mathematical equations of 4.1. For some
terms the fluxes at the boundaries of the control volumes are needed. These fluxes are based on
interpolation of the values at the center of the volumes. As the flux leaving a control volume is equal
to the flux of the receiving neighbouring control volume the FVM method is conservative. This conser-
vative property and the applicability to unstructured grids makes the FVM the mostly used numerical
technique for CFD applications.
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A variety of schemes can be chosen in OpenFOAM for interpolation and discretization. The selected
formulas for the CAF simulations are listed in table 4.2. Also the chosen scheme for time discretiza-
tion and the surface normal gradient scheme are given. The scheme for the surface normal gradient
scheme allows for a non-orthogonal correction of the normal gradients at a boundary. When Gaussian
integration is used also an interpolation scheme is specified.

Table 4.2: Selected numerical schemes. Term phi is used for the velocity flux, ⃗ .

Equation term Discretisation scheme
Interpolation schemes Linear
Surface normal gradient scheme Corrected
Gradient schemes Gauss linear
Laplacian schemes Gauss linear corrected
Divergence schemes

div(rho phi U) Gauss limitedLinearV 1
div(phi alpha) Gauss vanLeer
div(phirbr alpha) Gauss interfaceCompression
div(phi epsilon) Gauss upwind
div(phi k) Gauss upwind
div(muEff*dev(T(grad(U)))) Gauss linear

Time scheme Backward Euler

4.3. Time step restriction
To keep the simulation numerically stable, the time step is limited to a maximum value. The time steps
is calculated in OpenFOAM by selecting a maximum value for the Courant number which is defined as,

Co = 𝑈Δ𝑡
Δ𝑥 . (4.21)

By selecting a maximum value for the Courant number the maximum allowed Δ𝑡 is calculated every
iteration so that 4.21 is satisfied for every control volume. By selecting a maximum Courant number
of one, the time steps are restricted such that a fluid element is not moving more than one length
of a control volume. Also other physical timescales, which play a crucial role for stable and accurate
simulations, have to be set by the Courant number. Therefore, for the core-annular simulations another
Courant number is specified for only the interface,

Co = 𝑈 Δ𝑡
Δ𝑥 . (4.22)

The interface Courant number is based on only the normal velocities on the interface. Because of
the large viscosity difference between water and oil the diffusivity around the interface is very large.
Radhakrishnan found that the interface Courant number should be smaller than 0.01 for stable and
accurate results [6]. For larger values the interface changed too much during one time iteration which
led to wrong results.

4.4. Linear solvers
The finite volume discretization for partial differential equations will generate large sparse matrices. As
the CFD program will spend a lot of computational time in solving these linearized equations it is an
important aspect of the program to use an efficient solver. The solvers for those equations are sorted
in two different categories: direct methods and iterative methods. As direct methods are more efficient
for small problems are the iterative methods usually the best choice for CFD. Iterative methods scale
much better with larger mesh sizes.
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For iterative methods many different options are available. The different options can be divided into
simple methods, incomplete factorization schemes, gradient methods and multigrid methods. The
multigrid method is used for the pressure term and the gradient schemes for the other terms shown
in table 4.3. The incomplete factorization schemes are used as preconditioner and smoother. For a
detailed explaining about the solvers the book of Ferizger [13] or Moukalled [14] can be consulted. For
all available choices the user guide of OpenFOAM can be viewed.

Table 4.3: Selected linear solver settings.

Variable Solver Preconditioner Smoother Tolerance
pcorr PCG DIC - 1e-10
p-rgh GAMG DIC DICGaussSeidel 1e-6
U PBiCG DILU - 1e-6

epsilon PBiCG DILU - 1e-8
k PBiCG DILU - 1e-8

4.5. Boundary and initial conditions
Before the matrices can be solved special care has to be taken for setting the values for the control
volumes at the boundary. Appropriate boundary conditions must be chosen, and also smart starting
conditions must be set from where the linear solvers start the iteration process.

4.5.1. Boundary conditions
The diameter of the pipe is taken equal to 21 millimeter, which is equal to the size of the pipe used
in the experiment, but the length of the pipe in the simulation is different from what is used in the
experiment. Solving the full length of the pipe as used in the experiment would take a large amount of
CPU time which is not feasible. To reduce the CPU time a small length of the pipe is taken and periodic
boundary conditions are applied at the inlet and outlet. The periodic boundary conditions have a con-
sequence that the wavelengths at the interface are restricted to the chosen domain length. The waves
leaving the outlet are entering directly at the inlet so only an integer number of waves can occur in the
domain. The length of the domain has to be chosen in such a way that it fits the physical expected
wavelengths. As the physical expected wavelengths are not known these have to be estimated. Linear
stability theory can for example be used, but also this is only a rough estimate. The length of the pipe
for this research is taken as 25.58 millimeter, which is similar to Radhakrishnan’s work [6].

Next to the periodic boundary conditions the boundary conditions at the wall need to be defined.
The velocity at the wall is set to zero. The kinetic energy k is set to 1⋅10-15 m2/s2 and and turbulent
dissipation 𝜖 is set to 1⋅10-15 m2/s3 as suggested in Wilcox [15].

4.5.2. Initial conditions
Analytic results for the velocities of perfect core-annular flow are derived in Li and Renardy (1998) for
the core and the annulus. These velocities are taken as initial guess for the simulation with the aim
that these velocities converge faster to the velocity field of CAF than an uniform velocity field.

Core: 𝑈(𝑟) = 1 − 𝑚𝑟𝐴 (4.23)

Annulus: 𝑈(𝑟) = 𝑎 − 𝑟
𝐴 (4.24)

These are the velocity profiles for horizontal CAF with the dimensionless numbers of 2.11a and 2.11c.
The initial values for 𝛼 are obtained by rewriting the holdup radio 2.7 into:

𝑅 = 𝑅
√(𝑄 /𝑄 )ℎ + 1

(4.25)
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With this formula the volume of oil is determined by using the finding of Bai et al. (1992) that the
holdup ratio is always 1.39. For increasing the convergence speed a small perturbation is given to the
initial PCAF distribution. With this small perturbation the waves at the interface develop much faster
which results in some time gain. Note that while in the experiments the volume ratio could vary due
to accumulation, this is not possible in the simulations because of the periodic boundary conditions.
After initializing the volumes the volume ratio is fixed for the whole simulation. The kinetic energy k is
initialized with 0.2 m2/s2 and the turbulent dissipation with 200 m2/s3 to expedite the development of
turbulence.

4.6. Pressure-velocity coupling
The final governing equations consist of one continuity and three momentum equations. In these four
equations there are also four quantities which have to be solved: one pressure and three velocity
components. The number of equations and quantities are matched but in the continuity equation the
pressure component is missing. This requires a careful choice of an iterative solution procedure.

OpenFOAM has three different choices for the coupling problem. The SIMPLE algorithm, which is
a technique invented by Patankar and Spalding (1972), is a predictor - corrector procedure. Based
on the discretized momentum equation an initial guess for the pressure 𝑝⋆ is taken to calculate an
intermediate velocity field �⃗�⋆. The momentum equations are then satisfied but the mass fluxes at the
cell faces do not have to satisfy the continuity equation. A correction to the pressure and velocity is
applied with variables 𝑝 and �⃗� so that the continuity equation is satisfied. With the guessed variables
at the start and the requirement that the continuity equation has to be satisfied the corrections can be
calculated and be added to the guessed values. These new pressure 𝑝 = 𝑝⋆+𝑝 and velocity �⃗� = �⃗�⋆+�⃗�
values do satisfy the continuity equation but not the momentum equations. This procedure is repeated
until convergence has been achieved.

The corrected velocities always satisfy the continuity equation. Large differences between guessed
and corrected pressure values can however lead to a slow convergence or even a blow up. An under-
relaxation 𝜃 can be used for the pressure correction, 𝑝 = 𝑝⋆ +𝜃𝑝 , to reach the converged state faster
or to make the algorithm more stable. The values of 𝜃 are restricted between zero and one. Note that
only the pressure can be under-relaxed and not the velocity terms because otherwise the continuity
equation will be violated.

An algorithm to solve the coupled pressure-velocity equations for a transient problem is the PISO
algorithm. It works almost the same as the SIMPLE algorithm but additional pressure-corrector stages
are used. As the PISO algorithm is a transient algorithm it has a natural time limiter,

𝐶𝑜 = 𝑈Δ𝑡
Δ𝑥 ≤ 1 (4.26)

This restriction can lead to expensive computations when solving transient problems. Therefore Open-
FOAM has another PIMPLE algorithm, which is a merged PISO-SIMPLE algorithm. It is a transient solver
but makes use of the advantage of SIMPLE method to use under-relaxation. This method can reduce
the computational cost as this removes the time limit restriction. A larger time-step can be used as 𝐶𝑜
can be larger than unity. Although the Co number is restricted to 0.01 for the simulations the PIMPLE
algorithm is however still used. The PIMPLE algorithm seems to work better than the PISO algorithm
because of some still unknown reasons.

4.7. Application solver
For solving an incompressible, isothermal two phase flow with immiscible fluids the application solver
interFoam of OpenFOAM is used. This solver uses the finite volume method for discretisation and the
volume of fluid method to track the phase fraction. With the choice of periodic boundary conditions
at the inlet and outlet this has created the problem that there is no driving force. To overcome this
problem adjustments have been made to this solver. The constant pressure solver has been used
by Beerens, Ingen Housz and partly also by Radhakrishnan. In addition, another solver was used by
Radhakrishnan which is the flux imposed solver.
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4.7.1. Constant Pressure Solver
In the constant pressure solver a stream wise pressure gradient is imposed. Prescribing a pressure
difference between the inlet and outlet is very common in CFD but with the periodic boundary conditions
this is not possible. To overcome this, the pressure difference is imposed by adding a body force term
𝑓 to the momentum equations. With this extra term the flow is still driven through the pipe.

𝜌𝐷�⃗�𝐷𝑡 = −∇𝑝 + 𝜇Δ�⃗� + 𝜌�⃗� + 𝑓
⋆ + 𝑓 . (4.27)

4.7.2. Flux Imposed Solver
In the flux imposed solver the total flow rate is imposed. The advantage of this solver is that it is more
in line with how the experiments were performed. The pressure drop is now the result of the simu-
lations, which is similar with the experiments. Although there is still a difference: in the experiments
the individual flow rates of oil and water are imposed and not the total flow rate. This means that the
flux imposed solver gives the desired total flow rate, but not the desired water cut. In fact the holdup
fraction is also imposed in the simulations, whereas this is a result in the experiments. To summarize:
the total flow rate and holdup are imposed in the simulations which lead to a pressure drop and water
cut, whereas in the experiments the total flow rate and the water cut are imposed, which lead to a
pressure drop and hold-up.

The desired total flow rate 𝑄desired is imposed and during every time step iteration the realized flow
rate is calculated.

𝑄realized = ∫𝑈𝑑𝐴 (4.28)

As there is no driving force the desired and realized total flow rate may differ. The flow velocity must
be increased to get the realized and desired flow rate equal.

𝑄desired = ∫(𝑈 + 𝑑𝑈)𝑑𝐴 = ∫𝑈𝑑𝐴 +∫𝑑𝑈𝑑𝐴 (4.29)

If 𝑑𝑈 is taken the same for all volumes, ∫𝑑𝑈𝑑𝐴 = 𝑑𝑈𝐴, then these equations can be rewritten into:

𝑑𝑈 = 𝑄desired − 𝑄realized
𝐴 . (4.30)

This incremental velocity is translated into 𝑓 , which is a body force term defined as an acceleration
term multiplied with the density. The term then has the same form as the initial term which is already
in the momentum equations.

𝑓 = 𝑑𝑈
𝑑𝑡 ∗

∫ 𝜌𝑑𝐴
∫𝑑𝐴 (4.31)

The density is taken as a constant value which is a weighted average of the oil and water densities.
Otherwise it is unclear for the interfoam solver which density should be used. The term 𝑓 is added as
extra body force term to the momentum equation. This force 𝑓 can be seen as the force term which
drives the flow every time to the desired flow rate. The velocity adjustment is built-in the PIMPLE
algorithm so is corrected within every PIMPLE iteration.

𝜌𝐷�⃗�𝐷𝑡 = −∇𝑝 + 𝜇Δ�⃗� + 𝜌�⃗� + 𝑓
⋆ + 𝑓 . (4.32)

4.8. Decomposition
Parallel computing in CFD is used to speed up the simulation time. This improvement is achieved by ex-
ecuting the simulations with more processors. OpenFOAM divides the domain into smaller parts where
the calculations of every part are run simultaneously on the different processors. More calculations can
be run simultaneously by using more processors. In an ideal case the simulation is twice as fast when
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Figure 4.1: Speedup and efficiency function. Squares and triangles are the measured data.

twice the number of processors are used. In reality however there is a maximum number of processors
above which no further speed up is obtained. Since the solving procedure is shared among different
processors some data have to be exchanged now and then. At a certain number of processors this can
slow down the simulation more than it speeds up the simulation. To run the simulations as efficient as
possible this sensitivity is tested.

In figure 4.1 two graphs are shown. In the left graph the speedup is plotted against the number
of used processors. The speedup is hereby defined by:

Speedup(X) = clock time on 1 processor
clock time on X processors

. (4.33)

The orange line is the linear speedup case for the ideal decomposition. It is found that with up to
30 processors the problem is scaled better than the ideal case. This occurrence is seen more often
with coupled nonlinear equations. This is caused by a better use of the memory compared to the use
of 1 processor. With more than 30 processors the speedup is increased a bit until 35 processors are
applied, above which the speed-up can assumed to be constant. The right graph shows the efficiency
as function of the number of processors. The used definition for the efficiency is:

Efficiency(X) = Speedup(X)
number of processors

. (4.34)

Until 30 processors the problem scales better than the ideal case which results in an efficiency larger
than 100%. Between approximately 15 and 20 processors the efficiency is found to be at the maximum
value of 111%. After increasing the number of processor above 25 the efficiency decreases rapidly.
Based on these test results the simulation will be done with 24 processors. In total 28 processors are
available on 1 node so with this choice there are still 4 processors free. This gives the opportunity for
other users of the cluster to use the same node for smaller calculations. Note that the 24 processors
have to be located at the same node to obtain the efficiency of 111%.





5
Numerical results for 20% water cut

In this chapter simulation results are compared with the experiments from table 3.2 that have a water
cut of 20%. The density, viscosity and surface tension values as given in section 3.1 are used. The
initialization is done according to section 4.5.2 with a holdup ratio of 1.39. The flux imposed solver is
used and for all simulations the total flow rate is 0.430⋅10 m3/s.

Table 5.1: Parameters for the simulations I to IV.

Simulation I II III IV
Temperature [°C] 20 30 40 50

𝜈 [cSt] 3338 1472 718 383
𝜈 [cSt] 1.00 0.80 0.66 0.55
𝜌 [kg/m3] 912 906 902 896
𝜌 [kg/m3] 998 996 993 989
𝑅 ⋅10 [m] 10.5 10.5 10.5 10.5
𝑅 ⋅10 [m] 9.05 9.05 9.05 9.05
𝜎 ⋅10 [N/m] 16.0 16.0 16.0 16.0

Qtotal ⋅10 [m3/s] 0.430 0.430 0.430 0.430

The simulations were run on the cluster of 3mE of the TU Delft. A single simulation solved around
0.3 to 0.35 seconds physical time in 1 day. As the system used a slurm queuing system this resulted
in 40 to 60 days of simulation time including queuing time.

5.1. Simulation I: temperature 20°C (ν𝑂 = 3338 cSt)
Two snapshots of the water and oil distribution are presented in figure 5.1. The core-annular flow is
started from a PCAF distribution. After 9 seconds, when the flow is settled, the irregular wavy interface
is visible. From the slices through the three dimensional pipe there are two waves visible on the top
interface and two waves at the bottom interface. On a few snapshots only one wave is visible at the
bottom interface. In the longitudinal cross section the eccentricity of the oil core is also visible, which
is caused by the density difference. The water layer at the top is smaller than the water layer at the
bottom.

Figure 5.2 shows the ratio of the turbulent eddy viscosity and the molecular viscosity. This ratio
gives an indication about how strong the Reynolds stresses are compared with the molecular stresses.
Therefore it can be seen as an indication of the turbulence strength. The molecular viscosity of wa-
ter is used because only turbulence in the water layer is expected. After convergence the Reynolds
numbers, based on the superficial velocities, are 7 and 5390 for the oil and water flows, respectively.
From the figures it is seen that this viscosity ratio only indicates some turbulence at the bottom and
the maximum of the turbulence ratio is about 19. For comparison a simulation is performed where

23
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Figure 5.1: Cross-sectional snapshots of the distribution of water (blue) and oil (black) at 20°C

Figure 5.2: Ratio of turbulent eddy viscosity to the molecular viscosity at 20°C.

water is flowing as a single phase flow through the pipe. For the same conditions the maximum of
the turbulent to molecular viscosity is found to be around 95; see figure 5.3. A ratio of 100 indicates
that the flow is certainly turbulent. For the core-annular flow simulation the turbulence is somewhat
reduced and only present in the water layer at the bottom.

Figure 5.3: Turbulent to molecular viscosity ratio of single phase water flow.

The key results of the flux imposed solver and prescribed holdup are the water cut and the pressure
gradient. For this temperature also the individual flow rates are studied more thoroughly. The flow
rates are taken at the right periodic boundary face and plotted over time in figure 5.4. There are some
large and small scale fluctuations visible in the graph. The flow rates are taken with a sampling time of
0.005 seconds so the small scale fluctuations are hard to see in a 9 second plot. Hence, in figure 5.5
there is a zoom in of the oil flow rate for half a second. In this figure the continuously ascending and
descending behaviour at the small scale are well visible. As the flow rates are obtained from a cross
section, this results in variations of the flow rates as wave crests and troughs are passing by. As the
waves are randomly formed over the surface the crests and troughs at the bottom and top interface
do not necessary pass by at the same time. Furthermore, the waves at the bottom interface are larger
than at the top interface so these waves create larger fluctuations.

The large scale variations are linked to the different wave shapes. The numerical simulation does
not converge to one specific wave size. For figure 5.5 a wave at 9.2 seconds starts growing in ampli-
tude until around 9.4 seconds. From here, the wave amplitude starts to decrease again until shortly
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after 9.5 seconds. The wave at 9.2 seconds is thereby smaller than the wave at 9.5 seconds. Note
that as the waves at the upper interface are smaller they have less influence on the fluctuations.

Figure 5.4: Flow rates at 20°C of water (blue), oil (red) and the imposed total flow rate (magenta).

Figure 5.5: Zoom in of oil flow rate from 9 to 9.6 seconds. Sampling time is 0.005 sec.

The water flow rate shows the same behaviour as the oil flow rate, which is the consequence of the
constant total flow rate. Obviously the water cut shows exactly the same behaviour as the water flow
rate; see figure 5.6. When the numerical simulations are continued long enough over time, the average
of fluctuations can be determined. When the average over a sufficient long time interval is taken the
results are compared with the experiments. The numerical flow rates show a good comparison with
the experiments. While for the experiment the water cut was 20.02% the water cut of the simulation
is 19.94%.
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Figure 5.6: Water cut at 20°C. Sampling time is 0.005 sec.

For the used holdup fraction of 1.39 and the imposed total flow rate the simulation successfully simu-
lated core-annular flow with a water cut of 19.94%, which is close to the value of 20.02% used in the
experiments. The other important result is the pressure gradient in the pipe. The pressure gradient
seems to stabilize between 2 and 3 seconds in figure 5.7. The averaged pressure gradient is then
approximately 951 Pa/m. This is a 5% difference with the experiment which denotes a fairly good
agreement. As the pressure gradient is also calculated at the right boundary the fluctuations are again
visible. The pressure gradient however has a sampling time of 3 ⋅10 seconds because it is calculated
during every pressure-velocity coupling iteration. Therefore the small fluctuations are now smoother
than for the flow rates.

Figure 5.7: Pressure gradient at 20°C. Sampling time is 3⋅10-6 sec.

As the key quantities in the simulations show a good agreement with the experiments the wave char-
acteristics are studied. In figure 5.8 and 5.9 the non-dimensional amplitude 2.12a and water layer
thickness 2.12b are plotted. These quantities are measured from a longitudinal cross-section as shown
in figure 5.1. The strong irregular behaviour of the waves is clearly visible together with the eccentricity
of the oil core. Also the expectation of larger waves at the bottom is again confirmed with these plots.
The mean values are averaged over the same time interval as the pressure gradient. The scaled water
thickness Tw is 0.098 at the top and 0.186 at the bottom. The scaled average amplitude A∗ of the
waves is 0.034 at the top interface and 0.075 at the bottom. The thickness of the water layer at the
bottom is 1.90 times the value of the top. The waves at the bottom are 2.17 times as large as at the
top. These are averaged values and the deviations from these values are quite high. Therefore it is
important to run the simulation long enough to obtain representative values.
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Figure 5.8: Scaled water layer thickness at the top (orange) and bottom (blue) for 20°C. Sampling time is 0.005 sec.

Figure 5.9: Scale wave amplitudes at the top (orange) and bottom (blue) interface for 20°C. Sampling time is 0.005 sec.

5.2. Simulation II: temperature 30°C (ν𝑂 = 1472 cSt)
Core-annular flow is found with irregular waves at the interface with two waves at the top interface
and two at the bottom. The oil core looks more eccentric in figure 5.10 compared to the case with the
higher oil viscosity at 20°C. The ratio between the turbulent viscosity and the molecular water viscosity
again indicates only turbulence at the bottom, the ratio has increased with 50% to a maximum value
of around 30; see figure 5.11.

Figure 5.10: Cross-sections for the distribution of water (blue)
and oil (black) at 30°C.

Figure 5.11: Ratio of the turbulent to molecular viscosity at
30°C.

The water cut as obtained in the simulation shows a small deviation with respect to the experimental
value of 20%. As shown for the simulation in figure 5.12, the average value for the water cut from 0 to
3 seconds is 20% but from 3 to 8 seconds the water cut decreases. From 8 seconds on the water cut
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is converged to an average value of 19.1%. This means that the flow rate of water is slightly lower.
As the total flow rate is constant the oil flow rate in the simulation is higher than in the experiment.
The holdup fraction in this simulation is the same as in simulation I, which means that the oil core is
flowing slightly faster in this simulation II.

When the water cut at 3 seconds starts to deviate from 20% the pressure gradient also starts to
change; see figure 5.13. The oil starts to flow faster and the velocity difference with the water in-
creases. The viscous core is experiencing more resistance. From 8 seconds the water cut is converged
and the pressure gradient stops increasing. The calculated pressure gradient for the converged situa-
tion is approximately 1215 Pa/m. This is a difference of 12% with the experimental result.

Figure 5.12: Water cut at 30°C. Orange line is the time average water cut for clarification. Sampling time is 0.005 sec.

Figure 5.13: Pressure gradient at 30°C. Sampling time is 3⋅10-6 sec.

Despite the 12% deviation of the pressure gradient with the experiment it is still interesting to look at
the wave characteristics at the interface. Figures 5.14 and 5.15 show again the water layer thicknesses
and the wave amplitudes. These calculations are made on a same slice through the pipe as was done
for the 20°C case. From 3 until 8 seconds especially the interface at the bottom is varying with the
changing water cut. The converged scaled water thickness Tw at the bottom interface is 0.254. The
thickness of the top annulus changes slightly during this time interval and it finally obtains a scaled
thickness of 0.080. The water annulus is 3.2 times thicker at the bottom compared to the top. Although
the water layer at the bottom becomes larger, the top layer does not change much. The reason for
this is that between 3 and 8 seconds the water layers at the left and right side of the pipe become
smaller. The rising water layer at the bottom is compensated by decreasing water layers at the sides
and not at the top. The levitation mechanism retains the core-annular flow pattern. The amplitude A∗

of 0.087 at the bottom is 3.0 times the value of 0.029 at the top. Again strong deviations are present
due the irregularity of the waves.
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Figure 5.14: Scaled water layer thickness at the top (orange) and bottom (blue) for 30°C. Sampling time is 0.005 sec.

Figure 5.15: Scaled wave amplitudes at the top (orange) and bottom (blue) interface for 30°C. Sampling time is 0.005 sec.

5.3. Simulation III: temperature 40°C (ν𝑂 = 718 cSt)
The density ratio is similar to the value used in the previous simulations but the viscosity ratio is 2.7
times as large as for 20°C. Again core-annular is found in figure 5.16 with two to three waves at the top
and bottom interface. The interface is more wavy than in the previous two simulations. At 12 seconds
when the simulation is converged the eccentricity of the core is not very clear anymore. The turbulent
to molecular viscosity ratio has values of 15 to 20 around the whole annulus; see figure 5.17. At the
bottom a maximum value of 23 is found.

The water cut shows a similar behaviour as in the 30°C case, but now its value is even more dif-
ferent from the 20% water cut in the experiment. Until 2 seconds the water cut is 20% and thereafter
it decreases to 16.8% at 10 seconds; see figure 5.18. Therefore is the oil flow rate higher than intended
and the water flow rate lower. From figure 5.19 is seen that the pressure gradient strongly increases
between 2 to 10 seconds and converges to a value of around 2830 Pa/m.

The waves at the interface show an interesting behaviour. Starting from perfect core-annular flow
the core quickly becomes eccentric. The thickness of the water annulus at the bottom is larger than in
the previous two simulations and the thickness at the top is smaller; see figure 5.20. After the waves
on the interface are developed the core is moving down closer to the center. The scaled thickness of
the water layer at the bottom decreases from approximately 0.25 to about 0.16. At the same time the
thickness of the water layer at the top increases. The width of the oil core is reduced to compensate
for the sharp decrease of the bottom annulus. Although figure 5.16 is a snapshot, this change in the
core shape is clearly visible. The core is still eccentric, but not as much anymore as for simulations I
and II. The amplitudes of the waves change together with the changing water thicknesses; see figure
5.21. At the bottom interface the waves show large variations but when the interface has been moved
to the wall the amplitude of the waves becomes smaller and less varied. The converged thickness of
the annulus at the bottom is 1.47 larger than at the top and the amplitudes at the bottom are 1.44
times larger than at the top.
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Figure 5.16: Cross-sections for the distribution of water (blue) and oil (black)
at 40°C.

Figure 5.17: Ratio of the turbulent to
molecular viscosity at 40°C.

Figure 5.18: Water cut for 40°C. Sampling time is 0.005 sec.

Figure 5.19: Pressure gradient for 40°C. Sampling time is 3⋅10-6 sec.



5.4. Simulation IV: temperature 50°C (ν = 383 cSt) 31

Figure 5.20: Scaled water layer thickness at the top (orange) and bottom (blue) for 40°C. Sampling time is 0.005 sec.

Figure 5.21: Scaled wave amplitudes at the top (orange) and bottom (blue) interface for 40°C. Sampling time is 0.005 sec.

5.4. Simulation IV: temperature 50°C (ν𝑂 = 383 cSt)
The numerical simulation failed to reproduce core-annular flow in contrast to the experiment. Similarly
as in the 40°C simulation the core directly becomes very eccentric. From the cross-sections it is seen
that at 1 second the waves at the interface are no longer present; see figure 5.22. The levitation
mechanism is based on the shape of the waves and as these are absent the oil is fouling the pipe
wall. A Kelvin-Helmholtz instability is found during the transition from core-annular flow to stratified
flow. At 8 seconds the stratified flow regime is visible but still with some water at the top of the pipe.
It is expected that for longer simulation time all the water will settle at the bottom of the pipe. The
turbulent to molecular viscosity ratio shows values around 95 in the water layer; see figure 5.23. This
is the same result as when water would flow through the pipe as a single phase flow. For stratified
flow the water is more turbulent than for core-annular flow.

The effect of fouling is also visible in the simulation results for the water cut and the pressure gradient
in figures 5.24 and 5.25. When the oil touches the pipe wall the lubrication layer disappears. Due
the high viscosity of oil the resistance of the flow largely increases. The flow rate of oil decreases
and therefore the water flow rate increases to maintain the total flow rate constant. The water cut in-
creases very quickly during the fouling and it reaches a value of approximately 32%. With the absence
of the lubrication layer the pressure gradient increases to 15250 Pa/m and probably even to a higher
value if the simulation is extended longer in time. The simulation is not yet converged to a completely
stratified flow but as the core-annular flow is already gone it is very unlikely that the flow can return
to the core-annular flow pattern.
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Figure 5.22: Cross-section and longitudinal cross-section for the distribution of water (blue) and oil (black) at 50°C.

Figure 5.23: Ratio of turbulent viscosity to the molecular viscosity at 50°C.

Figure 5.24: Water cut at 50°C. Sampling time is 0.005 sec.
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Figure 5.25: Pressure gradient at 50°C. Sampling time is 3⋅10-6 sec.

5.5. Overview
Four experiments with a watercut of 20% were simulated with OpenFOAM. Each of the cases has a
different temperature, which means a different oil viscosity. The simulations were performed with an
imposed total flow rate of 0.430⋅10-3 m /s. The imposed oil holdup fraction was taken the same in the
4 cases, namely 0.749. For 20°C the water cut that is found as a result of the simulation is similar with
the experimental value of 20%. The pressure gradient for this case deviated 5% with the experimental
value. For the simulations at 30°C and 40°C the water cut is deviating from 20% which also leads to
differences between the numerical pressure gradient and the measured experimental pressure gradi-
ent. The 50°C simulation converged to the stratified flow pattern in contrast to the core-annular flow
pattern that was found in the experiment. To try obtaining a value of the water cut closer to 20% in
the simulations for the higher temperatures (i.e. lower oil viscosities), additional simulations need to
be carried out that impose a different value for the oil holdup fraction.

The amplitude of the waves show a dependency on the thickness of the water layers. For larger
water layers the waves have more space to grow. For smaller water layers the amplitudes of the
waves become smaller. The position of the core influences the shape of the waves and also has a
strong influence on the water cut and pressure gradient. It is found that similar with the eccentricity
the watercut and pressure gradient changes. All properties are thus highly interdependent.

In table 5.2 all the results of the simulations are collected. Besides the interface on the top and
bottom also the characteristics of the interface at the left and right are included for completeness.
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Table 5.2: Overview of the results of the simulations I to IV.

Simulation I II III IV
Temperature 20°C 30°C 40°C 50°C
Oil viscosity [cSt] 3338 1472 718 383
Qtotal ⋅10 [m /s] 0.430 0.430 0.430 0.430
Oil holdup [-] 0.749 0.749 0.749 0.749
Water holdup [-] 0.251 0.251 0.251 0.251

Flow properties
Water cut [%] 19.9 19.2 16.8 32.2
(𝜇 /𝜇 )max [-] 19 30 23 95
Pressure gradient:
- Simulation [Pa/m] 951 1215 2829 15240
- Experimental [Pa/m] 1004 1086 1123 1045

Water thickness Tw [-]
Left 0.134 0.115 0.132 x
Right 0.131 0.117 0.129 x
Top 0.098 0.080 0.113 x
Bottom 0.186 0.254 0.166 x

Amplitude A∗ [-]
Left 0.050 0.046 0.047 x
Right 0.050 0.045 0.048 x
Top 0.034 0.029 0.041 x
Bottom 0.075 0.087 0.059 x

Ratios [-]
Tw - Right/Left 0.98 1.01 0.98 x
Tw - Bottom/Top 1.90 3.18 1.47 x
A∗ - Right/Left 1.02 0.98 1.02 x
A∗ - Bottom/Top 2.17 2.97 1.44 x



6
Numerical accuracy

The simulation times for obtaining the results described in the previous chapter were quite long. To
optimize the computational effort a study for the used mesh is performed. First the meshes are de-
scribed followed by their influence on the pressure drop and on the interface shape. Furthermore the
application solvers from section 4.7 are compared with special attention for their simulation time.

6.1. Mesh description
When solving core-annular flow with CFD the continuous solution is approximated by discrete values in
numerical control volumes. All the control volumes together are called the mesh or the grid. With an
increase in the number of applied control volumes the accuracy of the numerical solution will improve.
Above a certain number of volumes the results will hardly change anymore. This means that the mesh
is fine enough to capture all the details of the flow and the solution is mesh independent. Increasing
the number of volumes, however, will increase the required computational time. An optimum mesh of
the problem would be a mesh with as little computational cost as possible while still giving a sufficiently
accurate numerical solution.

On every control volume a solution will be calculated with the iterative schemes of chapter 4. If
the total number of volumes decreases by a factor of two the number of floating point operations will
also go down by approximately a factor of two. Besides this advantage, the increased control volume
sizes also have an effect on the Courant number. This number is inversely proportional to the volume
size. So for larger volumes a larger time step is allowed for the same Courant number restriction.
Because the largest flow velocity is in the direction of the pipe length the volume sizes in this direction
probably have the largest influence on the time step.

Solutions on 17 different meshes were obtained and they are all denoted by a different letter in table
6.1. The name ’Org’ refers to the original mesh as used in chapter 5, which was taken from the work of
Radhakrishnan [6]. All other meshes can be divided into three different categories. For meshes D and
E only the influence of the volume size in the radial direction is tested. The number of volumes in the
main flow direction and in the perimeter direction are kept the same with respect to the original mesh.
For the other meshes until letter L the number of volumes in the radial direction is kept the same, but
the number is changed in the main flow direction and perimeter direction. The last category contains
the meshes L to Q. The concentrations of volumes should be increased in areas with larger gradients
in the solution. For the specific case of core-annular flow this means a fine mesh at the interface and
a coarse mesh at the core. The volume sizes in the radial direction at the interface are still the same,
but in the center of the pipe the volumes are larger. A reduction of a factor two in the radial direction
is achieved with these meshes.

35
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Table 6.1: Overview of the meshes used for the mesh dependence study.

Mesh Total volumes Number of volumes in direction of
Main flow Perimeter Radius

Org 527040 60 80 126
A 395280 45 80 120
B 303885 45 60 126
C 263520 30 80 126
D 304110 45 80 94
E 226710 45 60 94
F 202590 30 60 126
G 161160 30 48 126
H 135060 20 60 126
I 107440 20 48 126
J 110520 30 32 126
K 73680 10 32 126
L 67680 30 48 53
M 87900 30 60 53
N 101520 45 48 53
O 131850 45 60 53
P 225240 60 80 53
Q 410560 80 95 60

6.2. Pressure gradient verification
Simulation I at 20°C, 𝜈 =3338 cSt, is used to compare the simulation results obtained on the different
meshes. To verify the accuracy of the solution the pressure gradient is considered as this is an important
property of the flow. The results are presented in figure 6.1 with three different colors for the three
different categories.

Figure 6.1: Pressure gradient results for simulation I for the different meshes of table 6.1.

Green category meshes
It is obvious that for a decrease in control volumes in the radial direction the pressure gradient sig-
nificantly changes. For mesh E the pressure gradient is not even converged and still increasing. The
interface is simulated too coarsely and from the visualizations it is seen that the interface is sometimes
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spread over more than 8 to 10 volumes in the radial direction. For the original grid the volume of fluid
method spreads the interface over 3 to 5 volumes. The water cut is decreased to 19.4% for mesh D
and 18.8% for mesh E. The water cut of mesh D is however still decreasing.

Blue category meshes
For different lengths in the main flow direction and in the perimeter direction the solutions are more
accurate. For meshes A and B the pressure gradient is similar with the original mesh while mesh B uses
1.7 times as few volumes. From mesh C the pressure gradient results starts to lose accuracy. For mesh
A and B the water cut is 19.9% and 19.92% respectively. For meshes C to I the water cut decreases
from 19.7% to 19.2%. A lower water cut means that the oil phase has a higher flow rate and water
a lower flow rate. The increase in pressure gradient can be the result of the larger velocity difference
which creates a larger shear stress along the interface. In the next section also the characteristics of
the interface are studied.

Orange category meshes
For these meshes it is found that for 100000 volumes the pressure gradient results are fairly accurate.
Meshes N and L show some deviation but mesh M gives fairly the same pressure loss as the original
mesh. Mesh O has the same number of volumes in the main flow and perimeter directions as mesh
B but now with coarser volumes in the core. In the same manner meshes F and M are similar except
for the volumes in the core. A remarkable result is that mesh M looks accurate while mesh F does not.
Mesh Q is created to check whether he original mesh is actually mesh independent. This mesh has
more volumes than the original mesh. The pressure gradient was found to be almost the same as the
original mesh which suggest that the original mesh is sufficiently reliable.

The purpose of this research is to find accurate results with as little volumes as possible. Although it
follows from the pressure gradient verification of simulation I that mesh M is a good mesh, this has
resulted in considerable different results for simulations II and III of chapter 5. To determine the cause
of this, the influence of the meshes on the interfaces are studied.

6.3. Interface verification
In this section the shape of the interfaces are compared for the different meshes. From the pres-
sure gradient verification already a selection could be made of which meshes do not work and can
be excluded. Only mesh K is added for extra comparison. With respect to the interfaces, the wave
amplitudes and the thickness of the water layers as obtained with the various meshes are compared
with the results for the original mesh. The results are summarized in table 6.2.

Table 6.2: Absolute differences with respect to the ’Org’ grid.

Mesh Amplitude Amplitude Water thickness Water thickness
Upper Interface Lower Interface Upper Interface Lower Interface

Q 2% -4% -1% 2%
A -1% -9% 16% -8%
B -3% -16% 18% -13%
P -2% -5% 11% -2%
O -12% -14% 11% -6%
M -24% -34% -2% 34%
K -52% -66% -4% 43%

Grid Q has many volumes in the main flow and perimeter directions and it is found that the interfaces
have similar properties as found with the original grid. Still some very small differences are found which
are partly due to how these results are obtained from the simulation. A slice is taken in the longitudinal
direction and then the average thickness value is taken over some time interval. By choosing slightly
different time intervals small deviations can occur.

For the other meshes larger differences are found. All the amplitudes have a negative difference
which means that the amplitudes are all simulated to be smaller than the values found on the original
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mesh. By taking less volumes the waves are flattened on the interface. Despite the smaller waves still
core-annular flow is found. The difference in the water thickness is alternately positive and negative
for the upper and lower interface. When the water thickness at the top is smaller, the water thickness
at the bottom is larger, and vice versa. This makes sense since the volumes of oil and water are
constant during a simulation. Although this does not seem to hold for at least mesh M and K. The
amplitudes of the waves are so small that the oil is settled differently in the pipe. The increasing lower
interface is compensated by a smaller water layer thickness at the left and right side of the pipe. As
the water thickness at the top is smaller than at the bottom this thickness shows a larger difference
when expressed as a percentage.

Figure 6.2: Absolute differences of amplitudes at the bottom interface (purple) and upper interface (red).

Figure 6.2 gives an overview of the accuracy of the amplitudes of the meshes from table 6.2. On the
vertical axis the absolute values of the differences are displayed. While for mesh M the pressure result
is accurate for the 20°C case, the interface looks different. From the interface comparison mesh P
seems to be the best choice. In contrast to mesh M this mesh also shows a good agreement with
simulations II and III of chapter 5. As displayed in figure 6.3 mesh M follows the same behaviour but
in the simulation the increase in pressure is smaller. For 20°C the pressure gradient was not changing
much after the start so this deviation was not found. In mesh P the number of volumes is decreased
by a factor of 2.34. As the Courant number is mainly dependent on the volume sizes in the main
flow direction the required time steps are still similar. Mesh P will from now on be used for all further
numerical simulations.

Figure 6.3: Pressure gradient results of mesh Org, P and M for simulation III.
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6.4. Comparison of solvers
In contrast to the flux imposed solver, which keeps the imposed total flow rate constant, the pressure
gradient solver provides the flow rate as output result. Simulation III is used to test the performance
of the constant pressure gradient solver. The flux imposed solver for simulation III gave a pressure
gradient of 2830 Pa/m and a water cut of 16.8% for a fixed flow rate of 0.430⋅10-3 m3/s. Using the
same physical properties, the pressure gradient solver is run for an imposed pressure gradient of 2830
Pa/m. The total flow rate behaviour during that simulation is shown in figure 6.4. At the start the oil
core is concentric and the interface is smooth. As there are no waves the phases can flow more easily
and the total flow rate increases. At the point where the core is more eccentric and waves start to
develop more accumulation occurs. The total flow rate starts to decrease. When the core height and
waves are settled the total flow rate is 0.445⋅10-3 m3/s. This flow rate is quite close the imposed flow
rate of 0.430⋅10-3 m /s for simulation III. The found water cut is 16.6% versus the 16.8% water cut
from simulation III.

Figure 6.4: Simulation III repeated with the pressure gradient solver. Shown are the water flow rate (blue), oil flow rate (red)
and the total flow rate (magenta).

The first difference which is noticeable is that for the flux imposed solver the simulation was converged
after around 12 seconds whereas the pressure gradient solver seems to be converged after around
6 seconds. The flux imposed solver is dependent on the waves passing through the right periodic
boundary. For the pressure gradient solver only the fluctuations for the irregular wave amplitudes
are present. The removal of this dependency results is a much quicker convergence for the pressure
gradient solver. It is found that for other simulations with the pressure gradient solver the convergence
time is between 6 and 10 seconds. The pressure gradient solver has another advantage compared with
to the flux imposed solver. During every pressure-velocity coupling iteration in the flux imposed solver
the pressure is calculated that is required to keep the total flow rate constant. These iterations are not
needed in the pressure gradient solver. This resulted in an extra time advantage of around 15%. The
required iterations for the other variables from table 4.3 are similar.

6.5. New decomposition
As a new grid is going to be used with a new application solver, namely the pressure gradient solver
instead of the flux imposed solver, the problem will have a different efficiency when computing in
parallel mode. Thus the speedup and efficiency functions of section 4.8 are no longer valid. For mesh
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Figure 6.5: Speedup and efficiency function. Squares and triangles are the real measured data.

P the new functions are shown in figure 6.5. A large efficiency is achieved at 8 processors and the
efficiency starts to decrease when more processors are used. The speedup is the largest between 16
and 20 processors and then starts to decrease. For the fastest calculations 16 processors should be
used. As there are 28 processors available at one node the problems are solved with 14 processors.
This improves the efficiency and 2 simulations at the same time can be solved at a single node.

6.6. Conclusion
It is found that fine control volumes close to the interface are required for obtaining accurate numerical
solutions. However, a reduced computational time can be achieved by taking larger volumes in the
center of the pipe. This has reduced the total number of volumes by a factor of 2.34 with a signifi-
cant reduction in simulation time. For the new mesh one very important point of attention is that the
interface at the bottom remains in the fine part of the mesh. When the water layer thickness at the bot-
tom will increase too much and enters the coarse part of the mesh the results will directly lose accuracy.

From the comparison of the solvers it is found that the imposed flux solver and the pressure gra-
dient solver give similar results. The pressure gradient solver, however, is more efficient. The switch
to the flux imposed solver was done because it is more in line with how the conditions are imposed in
the experiments. A new solver is desired in which both the oil flow rate and the water flow rate can
be imposed, and in which the pressure gradient and the oil holdup are obtained as output results from
the simulation. Without this, the solver with the imposed total flux is now not preferred due to the
longer simulation time than the pressure gradient solver. With the new grid and the new solver the
simulation time is reduced from 40 to 60 days in 15 to 25 days.
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Numerical results for 40°C

(ν𝑂 = 718 cSt)
The numerical simulations presented in chapter 5 failed to correctly reproduce the experiments of
van Duin at a water cut of 20%. For 20°C the simulation was in reasonable agreement with the
experiments, but the results for higher temperatures (i.e. lower viscosities) were deviating too much.
New simulations are performed in this chapter. The new grid of chapter 6 and the pressure gradient
solver are used. The simulation of 40°C is tried to be improved by taking different phase holdups.

7.1. Results
For the simulation of 40°C of chapter 5, which is at a kinematic oil viscosity of 718 cSt, the oil and
water volumes present in the simulated pipe section were initialized with a holdup ratio of 1.39. The
corresponding holdup fraction of 0.749 converged to a water cut of 16.8%. The desired water cut of
20% is tried to be obtained by changing the initial amount of oil in the pipe. Water cut values of 9%,

Figure 7.1: Water cut and total flow rate results for different holdup fractions (black lines) and pressure gradients (colored lines).

41
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12% and 15% are also investigated since experiments at these water cuts also have been performed.
Besides the different holdups also different pressure gradients are imposed. In figure 7.1 all the results
are shown. Numerical simulations with nine different holdups and four different pressure gradients
are done. The similar holdups are connected with black lines and the similar pressure gradients are
connected with colored lines. With all the connections a grid is created which covers a solution region
with the help of all the performed simulations. The experimental results are displayed with black stars
in the figure.

By varying the oil holdup between 0.820 and 0.684 in the simulations a range of water cuts are found
between 8.2% and 22%. For the same holdup and the different imposed pressure gradients small
changes in the water cut are found. It is found that for higher pressure gradients the water cut de-
creases. The differences are however small. The corresponding initial oil holdups of the vertical black
lines in figure 7.1 are given in table 7.1.

Table 7.1: Oil and water holdup fractions for the water cuts of figure 7.1.

Oil holdup [-]: 0.820 0.806 0.792 0.764 0.751 0.737 0.724 0.697 0.684
Water holdup [-]: 0.180 0.194 0.208 0.236 0.249 0.263 0.276 0.303 0.316
Water cut [%]: ∼8.2 ∼10.1 ∼11.9 ∼14.0 ∼14.7 ∼15.2 ∼15.9 ∼18.6 ∼22.0

Along the constant pressure gradient curves larger differences are found. From a water cut of 8%
the flow rate firstly increases followed by a decreasing flow rate after 14%. A maximum flow rate is
found between a water cut of 12% and 14%. Using the created solution grid, numerical results at
the experimental conditions for the water cut and total flow rate are estimated by linear interpolation
within the covered solution region. A linear interpolation estimate is not possible for the experiment
at a water cut of 20% as this experiment is outside the solution grid. For the other three experiments
the numerical pressure gradients and oil holdups are interpolated for the same water cut and the same
total flow rate values as the experiments.

Table 7.2: Linear interpolated numerical results from the solution grid of figure 7.1. The water cut and total flow rate values are
similar with the experimental values.

Water cut Qtotal Pressure gradient Oil holdup

9% 0.379⋅10-3 m3/s 1434 Pa/m (98% error) 0.814
12% 0.392⋅10-3 m3/s 1028 Pa/m (24% error) 0.792
15% 0.406⋅10-3 m3/s 1240 Pa/m (37% error) 0.772
20% 0.430⋅10-3 m3/s - - -

The numerical pressure gradient found at a water cut of 12% is the most accurate with 24% difference
with the measured pressure gradient. At 15% water cut a difference of 37% is found and at a water
cut of 9% the pressure gradient differs almost by a factor of two. An interpolation is not possible for
the 20% water cut but this difference will be even larger.

In the following sections the flow properties will be studied more thoroughly for six different cases.
Three simulations at imposed oil holdups of 0.820, 0.792 and 0.697 at a pressure gradient of 1100
Pa/m. At the imposed oil holdup of 0.792 also the other pressure gradients of 900,1300 and 1500
Pa/m are studied.

7.2. Interface comparison
Longitudinal cross sections for simulations with different holdup fractions are shown in figure 7.2 for a
pressure gradient of 1100 Pa/m. The thickness of the water layers at the top look quite similar. Only
the water layer for Ho=0.697 is a bit thicker than the other two. Larger differences for the various
holdups are found at the bottom. Most of the extra water, due to the increased water cut, settles
in the bottom layer. At Ho=0.820 the amount of oil in the pipe becomes so low that the difference
between the top and bottom does not look very large anymore. For this holdup a water cut of 8% was
found and the total flow rate was already strongly decreasing when the oil holdup was increased. In
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the previous part of this report the statement was already made that the amplitudes of the waves are
dependent on the thickness of the water layers. For all holdups therefore similar waves are found at
the top. Two waves are found with approximately the same amplitudes. The wave amplitudes at the
top layer of Ho=0.697 are a bit larger than those for the other two holdups. As the thickness of the
water layers at the bottom show larger differences, the wave shapes are different. For the oil holdup
of 0.820 three waves are visible, two waves for the oil holdup of 0.792 and one wave for the oil holdup
of 0.697. All wave characteristics are summarized in table 7.3. For the same holdup, but different
pressure gradients, there are small differences in the wave characteristics.

Figure 7.2: Longitudinal cross section for simulations with different holdup fractions at a pressure gradient of 1100 Pa/m.

Table 7.3: Interface results of simulations V to X.

Simulation V VI VII VIII IX X
Oil holdup [-] 0.820 0.792 0.792 0.792 0.792 0.697
Water holdup [-] 0.180 0.208 0.208 0.208 0.208 0.303
Water cut [%] 8.24 12.01 11.98 11.95 11.92 18.62
Pressure gradient [Pa/m] 1100 900 1100 1300 1500 1100

Water thickness Tw [-]
Left 0.090 0.087 0.087 0.082 0.080 0.133
Right 0.095 0.086 0.084 0.083 0.082 0.140
Top 0.073 0.064 0.061 0.062 0.061 0.099
Bottom 0.127 0.230 0.229 0.237 0.234 0.289

Amplitude A∗ [-]
Left 0.027 0.030 0.032 0.028 0.024 0.057
Right 0.025 0.029 0.031 0.029 0.024 0.056
Top 0.018 0.016 0.018 0.017 0.015 0.038
Bottom 0.041 0.063 0.070 0.074 0.069 0.101

Ratios [-]
Tw - Right/Left 1.06 0.99 0.96 1.01 1.00 1.05
Tw - Bottom/Top 1.76 3.69 3.73 3.82 3.80 2.91
A∗ - Right/Left 0.93 0.96 0.98 1.03 1.00 0.99
A∗ - Bottom/Top 2.26 3.90 3.95 4.40 4.65 2.65

7.3. Ullmann & Brauner model
The experimental and numerical results are compared with the predictions from the model [24] de-
scribed in section 2.5. The model predicts the pressure gradient and holdup for certain oil and water
flow rates. The numerical results described in this chapter are performed with the pressure gradient
solver. The Ullmann & Brauner model is therefore also iteratively solved for a given pressure gradient
at various values of the oil holdup fraction. Figure 7.3 shows the flow rate results from the Ullmann &
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Brauner model and from the numerical simulations. All results are obtained for a pressure gradient of
1100 Pa/m. The numerical simulations results are only available between a water cut of 8% and 23%.

Figure 7.3: Numerical results (solid lines) and predictions with the Ullmann & Brauner model (dashed lines) at various values of
the oil holdup fraction at a pressure gradient of 1100 Pa/m. Water flow rates are blue, oil flow rates are red and the total flow
rates are represented with the magenta color.

Some remarkable differences are found between the Ullmann & Brauner model and the numerical sim-
ulations. In particular below a water cut of 11% and above 14% the differences are large. Above 14%
the numerical water flow rates increase less quickly than the predicted water flow rate. At the same
time the numerical flow rate of oil decreases much faster than the predicted oil flow rate. The nu-
merical oil flow rate decreases so fast that the total flow rate also decreases. The Ullmann & Brauner
model, however, still predicts an increase of the total flow rate. All performed experiments show a
similar behaviour as the Ullmann & Brauner model, which indicates that the error is in the numerical
simulations.

In the numerical simulations thicker water layers are found at the bottom when the oil holdup is
reduced. Thicker water layers at the bottom resulted in a smaller number of waves with larger ampli-
tudes. For Ho=0.820 there are three waves at the bottom interface while for Ho=0.697 there is only
one. At a holdup of 0.751, alternately one and two waves are visible. When decreasing the oil holdup
further, and increasing the water cut, the number of waves at the bottom is one. There is a large
difference in amplitude size between one and two waves and the resistance between the oil and water
phase is increased too much as compared to the experiments. It thus seems that the domain length
has a too large influence on the results when the number of waves in the domain becomes lower than
two.

Below 10% water cut, with the fixed pressure gradient, the numerical flow rates decrease strongly
when the water cut is reduced. This strong decrease for the Ullmann & Brauner model is only pre-
dicted below a water cut of about 2.5%. This difference can be due to inaccuracies in the Ullmann &
Brauner model and the numerical results. The Ullmann & Brauner model still predicts a quite high flow
rate at a water cut of 2.5%, while in reality it is unlikely that core-annular flow can exist for such a low
water cut. The model is less accurate for water cuts below 10%. From table 7.2 it is, however, also
found that the numerical simulations become less accurate at a water cut of 9%. No experiments are
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performed below a water cut of 9%, but as the water cut goes to 0% the total flow rate should go to
almost 0 m3/s. At 0% water cut only the very viscous oil is present in the pipe which is too viscous to
be driven by pressure gradients of 900 to 1500 Pa/m. The predications with the Ullmann & Brauner
model and the numerical results both have their inaccuracies below a water cut of 10%. The behaviour
of the experiments will lie somewhere in between.

In table 7.4 the predictions of the Ullmann & Brauner model are shown for exactly the same water
cut and flow rates of the experiments performed at 40°C. At water cuts of 12% and 15% the predic-
tions match the experiments very well. At 9% water cut the model over predicts the pressure gradient
and at 20% water cut the model underestimates the pressure gradient. All the errors fall within an
accuracy interval of 20%.

Table 7.4: Predictions with the Ullmann & Brauner model for the experiments at 40°C.

Water cut Qtotal Pressure gradient Oil holdup

9% 0.379⋅10-3 m3/s 856 Pa/m (18% error) 0.894
12% 0.392⋅10-3 m3/s 872 Pa/m (5% error) 0.860
15% 0.406⋅10-3 m3/s 896 Pa/m (-1% error) 0.828
20% 0.430⋅10-3 m3/s 964 Pa/m (-14% error) 0.772

Figure 7.4 also shows the solutions of section 7.1 and the curves obtained at constant pressure gradient
obtained with the Ullmann & Brauner model. The same imposed pressure gradient values are used in
the Ullmann & Brauner model as for the numerical simulations, indicated with the same colors. For
all different pressure gradients the same differences are found below the water cut of 11% and above
the water cut of 14%. The Ullmann & Brauner model predicts the pressure gradients better than the
numerical simulations.
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Figure 7.4: Numerical (solid lines), analytical (dashes lines) and experimental (black stars) results for a water cut range between
8% and 23%.

7.4. Velocity field comparison
In the previous section it was found that the numerical results above 14% start to deviate due to an
incorrect length of the computational domain. The results below a water cut of 14% are however also
deviating from the experiments. Therefore it is interesting to look at more quantities in the simulations
like the velocity profiles. The velocity profiles for different simulations are shown in figure 7.5. In the
first graph the velocity profiles of chapter 5 are also shown for a complete overview of all performed
simulations. The velocity profile for 50°C is not displayed as stratified flow was found. On the left the
complete velocity profile is shown and on the right a zoom in of the velocity profile of the oil core is
shown.

From the velocity profile for 30°C it is seen that the oil core moves as a solid body through the pipe.
The velocity across the whole core is constant. At a temperature of 20°C a small gradient is found at
the oil core, and for the 40°C case even a bit larger. For 40°C there is a difference of around 0.08 m/s
between the core center and the sides.

A large difference is seen between the holdup of 0.792 and the other two holdups. The total flow
rate of this holdup is at the maximum of the pressure gradient contour lines in figure 7.1. The velocity
profiles are a logical reflection of the different total flow rates. For the holdup of 0.697 the domain
length was incorrect which resulted in a larger resistance and smaller velocities. Nearly constant ve-
locities along the oil phase are again observed for the holdups 0.820 and 0.697. For the zoomed in
figure of the holdup 0.792 again a velocity difference of 0.08 m/s is seen. While changing the pressure
gradients for this holdup the profile shape is unchanged and only the absolute values differ. Between
900 and 1100 Pa/m a larger increase in velocity is found than between the other pressure gradients.

The velocity profiles of the experiments are not known. From the simulations a constant velocity
profile is expected across the oil phase. For 40°C where the pressure loss became very high or at a
holdup of 0.792 where a larger total flow rate was observed, small velocity gradients in the oil phase
start to occur. The velocity differences are however still small.
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Figure 7.5: Velocity profiles for simulations I,II and III. Different temperatures for Ho=0.749 at a constant total flow rate of
0.430⋅10-3m /s. Right figure is zoomed in at the oil core.

Figure 7.6: Velocity profiles for simulations V,VII and X. Different holdup fractions for a pressure gradient of 1100 Pa/m at 40°C.
Right figure is zoomed in at the oil core.

Figure 7.7: Velocity profiles simulations VI,VII,VIII and IX. Different pressure gradients for Ho=0.792 at 40°C. Right figure is
zoomed in at the oil core.
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7.5. Turbulence comparison
In chapter 5 the ratio of the turbulent and molecular viscosities was described as indication for the
turbulence. A single phase water flow, at the same pressure gradient, has a ratio of around 95 which
indicates that the flow is certainly turbulent. The ratios for core-annular flow were calculated between
19 and 30. For a temperature of 50°C the simulation converged to a stratified flow for which the ratio
became approximately 95 again. Ratios of 14, 22 and 20 are found for the holdups of 0.820, 0.792
and 0.697, respectively. For the holdup of 0.792 no significant change in this ratio is observed for the
different pressure gradients.

Figure 7.8 shows the turbulent kinetic energy and the non-dimensional turbulent kinetic energy. The
simulation results are taken along a vertical line from the bottom to the top of the pipe. The data are
representative values for the converged simulations. The figures are shown for the different temper-
atures of chapter 5, the different holdups and the different pressure gradients. The turbulent kinetic
energy k is the mean kinetic energy of the turbulent fluctuations of equations 4.14,

𝑘 = 1
2 (𝑢 + 𝑣 + 𝑤 ) . (7.1)

When solving the problem with the Reynolds Averaged Navier Stokes equations the fluctuations are
not available as only the averaged velocities are solved. The turbulent kinetic energy is however solved
with a transport equation of the 𝑘 − 𝜖 model. The kinetic energy is made non-dimensional with the
friction velocity 𝑢⋆ similar as in [16]. The 𝑢⋆ is calculated as in equation 4.20 with the water density
and 𝜏 calculated from a force balance for a cylindrical pipe,

𝑃 𝜋𝑅 − 𝑃 𝜋𝑅 = 2𝜋𝑅𝐿𝜏 ⇒ 𝜏 = Δ𝑃
𝐿
𝑅
2 . (7.2)

At the wall the turbulent kinetic energy is low due to the damping effect of the wall. In the oil phase the
values are low as expected due to the low Reynolds number. Close to the wall the highest intensities
are obtained in the water phase. Some sharp peaks are observed but also some more flattened maxima
are found. For 20°C most of the turbulence in indicated at the bottom and for 30°C and 40°C also
some turbulence is indicated in the top water layer. For the different holdups some small differences
are found. For the different pressure gradients the non-dimensional turbulent kinetic energy seems to
be similar for all pressure gradients.

The numerical results for the high water cuts were found to be incorrect due to the short domain
length but also the results below 14% water cut differ with the experiments. A still open question
is how accurate the used turbulent model is for core-annular flow. The model is frequently used for
single phase flow. For core-annular flow with a deformable interface the accuracy of the turbulent
model is not yet known. Large eddy simulations or direct numerical simulations could be a suitable
way to validate the low Reynolds k-𝜖 model of Launder Sharma.
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Figure 7.8: Turbulence properties for simulations I,II and III. Different temperatures for Ho=0.749 at a constant total flow rate
of 0.430⋅10-3m /s.

Figure 7.9: Turbulence properties for simulations V,VII and X. Different holdup fractions for a pressure gradient of 1100 Pa/m at
40°C.

Figure 7.10: Turbulence properties for simulations VI,VII,VIII and IX. Different pressure gradients for Ho=0.792 at 40°C.
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7.6. Conclusion
Simulation III from chapter 5 resulted in a water cut of 16.8%. The experiment to be reproduced
has a water cut of 20%. To remove this deviation different initial holdup fractions are imposed in the
simulations as described in this chapter. Through changing the oil holdups between 0.684 and 0.820 a
range of water cuts is found between 8% and 22%. In addition to the experiment at 20% water cut,
experiments were also conducted at water cuts of 9%, 12% and 15%. These experiments are used
for additional comparison. Different pressure gradients are imposed and a solution grid is created with
all the performed simulations. Linear interpolation is used to find the numerical pressure gradients and
oil holdups for the similar water cut and flow rate values as the experiments.

The numerical and experimental techniques are compared with the analytical model of Ullmann &
Brauner. The Ullmann & Brauner model is used to predict the oil and water flow rates for a prescribed
pressure gradient at various values of the oil holdup fraction. A difference in behaviour between the
numerical and analytical model is found. Above a water cut of 14% the difference is due to a wrong
domain length in the numerical simulations. Below a water cut of 10% the difference is expected to
be due to inaccuracies in both the Ullmann & Brauner model and the numerical simulations.

With the Ullmann & Brauner model, similar as with the numerical simulations, pressure gradients and
oil holdups are predicted for the similar water cut and flow rate values as the experiments. The results
of both the Ullmann & Brauner model and the numerical simulations are repeated here in table 7.5.
It is found that for the pressure gradient the numerical simulations show large deviations. The Ull-
mann & Brauner model predicts the pressure gradient more accurately within 20% of the experimental
measurements. At similar water cut the Ullmann & Brauner model predicts higher oil holdups than the
numerical simulations.

Velocity profiles and profiles for the turbulent kinetic energy have been investigated for different tem-
peratures, holdups and pressure gradients. Large velocity gradients are found in the water phase. For
40°C and for a holdup of 0.792 some small velocity gradients are found in the oil core. The other cases
obtain a nearly constant velocity across the whole oil region. The turbulent characteristics indicate
laminar flow in the oil core and possible turbulence in the water layer. Stronger turbulence is indicated
at the bottom than at the top.

Table 7.5: Overview of experimental, analytical model and numerical results at 40°C ( = 718 cSt).

Water cut Qtotal Pressure gradient Oil holdup
[%] ⋅10 [m /s] [Pa/m] [-]

Experimental 9.06 0.379 726 -
Ullmann & Brauner model 9.06 0.379 856 (18% error) 0.894
Numerical 9.06 0.379 1434 (98% error) 0.814

Experimental 12.04 0.392 829 -
Ullmann & Brauner model 12.04 0.392 872 (5% error) 0.860
Numerical 12.04 0.392 1028 (24% error) 0.792

Experimental 14.93 0.406 906 -
Ullmann & Brauner model 14.93 0.406 896 (-1% error) 0.828
Numerical 14.93 0.406 1240 (37% error) 0.745

Experimental 20.17 0.430 1122 -
Ullmann & Brauner model 20.17 0.430 964 (-14% error) 0.772
Numerical 20.17 0.430 - -
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Results from flow visualizations

Due to using periodic boundaries conditions the phase holdup in the simulation is fixed after initializa-
tion. A holdup ratio of 1.39 was used to initialize the phase holdup in chapter 5 and different phase
holdups are investigated in chapter 7. The question is what the real phase holdup fractions are dur-
ing the performed experiments. As part of his experimental study, van Duin also carried out a flow
visualization with a high-speed camera. In this chapter a method is described to determine the phase
holdup from these visualizations.

8.1. Numerical holdup
The flow in the experiments is recorded with a high-speed camera from the front and top view of the
pipe. From the front view an average thickness of the water layer is obtained at the bottom and top
interface. The left and right water layers are obtained from the top view visualizations. These images
give four measurement points along the whole oil-water interface. Through these points a spline is
fitted to obtain an estimate of the complete interface surface along the pipe perimeter. A spline is a
function of piecewise polynomials which gives a smooth curve. With the area enclosed by this interface
curve the phase holdup is estimated. As in reality the interface is irregular and not smooth the question
is how accurate this method is.

For the numerical simulations of chapter 5 the same four points of the interface are obtained. Through
these points also a spline is created for estimating the holdup. In the simulations, however, the real
shape of the interface is known. The real phase holdup is compared with the spline holdup to find the
accuracy of the method. On the left of figure 8.1 the four interface points of simulation II are indicated
by blue dots. Through these points a spline is fitted, which is displayed by the blue line. The area
enclosed by the spline is 74.13% of the full pipe area. The real oil holdup of the simulation is 74.94%
which is a difference of 0.81%. As a reference also the real interface is included with the red curve,
which can be compared with the spline.

Figure 8.1: Interface estimation for simulation II. The blue line is a estimation of the interface and red line is the real interface.
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Table 8.1 shows the results of six simulation cases to test the accuracy of the holdup estimation. Three
simulations of chapter 5 are taken with four extra cases of chapter 7. Different holdups are tested with
the last four extra cases. It is found that the oil holdup is mostly underestimated. When the core is
concentric the real interface becomes close to a perfect circle making the spline more accurate. When
the bottom interface raises this is mostly compensated with smaller water layers on the left and right
side. This makes the interface less circular leading to a less accurate spline. The underestimation of
the oil holdup fraction is found to be less than 0.01.

Equation 2.7, with a holdup ratio of 1.39, gives an oil holdup of 74.27% for the experimental flow
rates. The oil holdup in the simulation is however 74.94%. This is the result of the control volumes
size in the radial direction. All initial radii in one control volume are rounded off to the upper bound
of the control size in the radial direction. In equation 2.7 an oil holdup of 74.94% corresponds to a
holdup ratio of 1.34 for similar flow rates.

Table 8.1: Numerical comparison of real and spline holdup fraction.

Temp. Initialization h 𝐻 Real 𝐻 Splines Difference
20°C 1.39 0.7494 0.7447 -0.0047
30°C 1.39 0.7494 0.7413 -0.0081
40°C 1.39 0.7494 0.7498 0.0004
40°C 1.05 0.7919 0.7869 -0.0060
40°C 1.27 0.7641 0.7600 -0.0041
40°C 1.51 0.7235 0.7193 -0.0042
40°C 1.71 0.6963 0.6960 -0.0003

8.2. Experimental holdup
The visualizations for the temperatures 20°C to 50°C are processed for a water cut of 20%. For 40°C
also the 12% water cut visualization is processed for comparison. From these visualizations grayscale
images are obtained for the front and top view. In a grayscale image every pixel contains an intensity
value which represents the amount of transmitted or reflected light. The intensity varies from black at
the weakest intensity to white at the strongest intensity. Between black and white there is a range of
gray shades varying between a value of 0 and 255. As oil has a high intensity and water a low intensity
the phases can be distinguished. By choosing a proper grayscale threshold the interface between water
and oil are tracked. The results are improved by enhancing the visualization such that the contrast
between the phases is increased.

Figure 8.2: Front view of 30°C and 20% water cut. Interface estimation displayed with a white line.

Per experiment 1000 frames are captured corresponding to one second of flow. This corresponds with
1.25 meter based on the mixture velocity. For every frame the averaged height and amplitude are
calculated from the number of pixels. The amplitude is taken as the largest vertical distance between a
crest and a trough. These values are averaged over the 1000 available frames to obtain representative
values of the experiments.

When the camera was focused it was not possible to get both views sharp in one image, although
it was very close. This was because the aperture was far open for absorbing sufficient light, which
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resulted in a small depth of field. This is probably also the reason for the different stripes in the area
of the inner wall. In figure 8.2 the different grey stripes are well visible. It is therefore not entirely
clear where the inner wall is located. Therefore, the outer wall of the pipe is used as a reference in the
post-processing as this wall is better visible. Note that the diameter of the outer wall is 25 mm and the
diameter of the inter wall is 21 mm. From the number of pixels covering the pipe outer diameter the
pixels are converted to the SI unit of meters, and the thickness of the water layers and the amplitude
sizes can be obtained. The results obtained from the data processing are summarized in table 8.2.

Table 8.2: Flow visualization results.

Experiment I II III IV
Temperature 20°C 30°C 40°C 40°C
Water cut 20% 20% 20% 12%

Water thickness Tw [-]
Left 0.112 0.107 0.094 0.078
Right 0.126 0.124 0.114 0.096
Top 0.143 0.135 0.125 0.071
Bottom 0.153 0.174 0.181 0.120

Amplitude A∗ [-]
Left 0.115 0.101 0.117 0.064
Right 0.126 0.113 0.126 0.064
Top 0.157 0.121 0.121 0.078
Bottom 0.166 0.152 0.181 0.126

Ratio [-]
Tw - Right/Left 1.13 1.16 1.21 1.22
Tw - Bottom/Top 1.07 1.29 1.45 1.68
A∗ - Right/Left 1.10 1.11 1.07 0.99
A∗ - Bottom/Top 1.06 1.25 1.50 1.62

Results [-]
Oil holdup 0.749 0.748 0.749 0.836
Water holdup 0.251 0.252 0.251 0.164
Holdup ratio 1.34 1.35 1.34 1.43

The results for 50°C at a water cut of 20% are missing. In this experiment many oil droplets were
present in the flow. These oil droplet often cross the interface on the visualization which makes it
difficult to track the interface. The number of droplets on the interface were so high that these results
are not reliable. For the other temperatures at a water cut of 20%, oil holdups of 74.8% and 74.9%
are found. These values correspond to the imposed values of chapter 5 and correspond to a holdup
ratio of 1.34 and 1.35. For the 12% water cut the oil holdup is 83.6% which corresponds to a holdup
ratio of 1.43.

For the experiment I to III it is found that the eccentricity of the core is increasing for lower vis-
cosities. At the top and bottom interface the linear dependency between the water layer thickness
and the amplitudes are again found. Besides the expected eccentricity between the top and bottom
there is also an unexpected eccentricity between the right and left side. Gravity is not playing a role
in the horizontal direction so these water layers should logically be of equal width. A reason for this
could be the limited depth of field in the flow visualization and because the top view was not perfectly
in the focus. Another reason could be that the angle of the mirror for the top view was not perfectly
45 degrees. A ratio of 1.13 between the right and left water layers is the consequence of three pixels
difference. A ratio of 1.21 is the consequence of five pixels difference.
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8.3. Comparison of experimental and numerical results
In this section the holdup and wave characteristics of the flow visualizations are compared with the
simulations results. For the holdup comparison also the analytical Ullmann & Brauner predictions are
taken into account.

In table 8.3 the experimental, numerical and analytical oil holdups are shown. The 40°C results are
repeated from table 7.5 and the results of 20°C are added. The Ullmann & Brauner model over predicts
the oil holdup for all three cases with about 3%. The simulation for 20% water cut at 20°C, and thus
also the other simulations from chapter 5, was initialized with exactly the same oil holdup as now found
during the experiment. A difference of -5.3% is however found for the water cut of 12% at 40°C.

Table 8.3: Experimental, numerical and Ullmann & Brauner model estimations for the oil holdup at similar water cut and flow
rate values.

Temperature Water cut Qtotal Oil holdup

Experimental 20°C 20% 0.430⋅10-3 m3/s 0.749
Ullmann & Brauner model 20°C 20% 0.430⋅10-3 m3/s 0.773 (3.2% error)
Numerical 20°C 20% 0.430⋅10-3 m3/s 0.749 (0.0% error)

Experimental 40°C 12% 0.392⋅10-3 m3/s 0.836
Ullmann & Brauner model 40°C 12% 0.392⋅10-3 m3/s 0.860 (2.9% error)
Numerical 40°C 12% 0.392⋅10-3 m3/s 0.792 (-5.3% error)

Experimental 40°C 20% 0.430⋅10-3 m3/s 0.749
Ullmann & Brauner model 40°C 20% 0.430⋅10-3 m3/s 0.772 (3.1% error)
Numerical 40°C 20% 0.430⋅10-3 m3/s -

The wave characteristics of the experiment and numerical simulation for 20% water cut at 20°C are
compared. Here the flow rates, viscosities, pressure gradients and the oil holdups are similar. For
clarity the wave characteristics are repeated in table 8.4. In contrast to the almost concentric oil core
in the experiment, a water layer thickness at the bottom of almost twice as large as at the top is found
in the numerical simulation. The scaled water layers at the left and right side are a bit larger than the
experiments but are in the same order of magnitude. The scaled amplitudes show the same behaviour
as the water layers but the wave amplitudes are twice to five times as large in the experiment than in
the numerical simulation.

8.4. Conclusion
The applied data processing method for the flow visualization results as described in this chapter is
found to give accurate estimations of the holdups in the experiments. With this method oil holdups of
0.748 and 0.749 are found for the 20% water cut at different temperatures. These holdups corresponds
to a holdup ratio of 1.34. At 40°C the oil phase up is 0.836 at 12% water cut which correspond to a
holdup ratio of 1.43. It is found that the Ullmann & Brauner model slightly over predicts the oil holdup
ratio by about 3%. The imposed holdups from chapter 5 correspond to the holdups of the experiments.
Nevertheless only the 20°C simulation converged to the desired water cut of 20%. For this simulation
all the key quantities are similar but a different eccentricity of the core is found and different wave
amplitude sizes are found.
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Table 8.4: Comparison of experimental and numerical interface results for 20°C at 20% water cut.

Simulation Experimental Numerical
Temperature 20°C 20°C
Oil viscosity [cSt] 3338 3338
Water cut [%] 20.02 19.9
Qtotal ⋅10 [m /s] 0.430 0.430
Pressure gradient [Pa/m] 1004 951
Oil holdup [-] 0.749 0.749
Water holdup [-] 0.251 0.251

Water thickness Tw [-]
Left 0.112 0.134
Right 0.126 0.131
Top 0.143 0.098
Bottom 0.153 0.186

Amplitude A∗ [-]
Left 0.115 0.050
Right 0.126 0.050
Top 0.157 0.034
Bottom 0.166 0.075

Ratios [-]
Tw - Right/Left 1.13 0.98
Tw - Bottom/Top 1.07 1.90
A∗ - Right/Left 1.10 1.02
A∗ - Bottom/Top 1.06 2.17
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Conclusions and recommendations

9.1. Conclusions
Computational fluid dynamics has been used in OpenFOAM to study core-annular flow through a hor-
izontal pipe. The RANS equations are solved with the Launder & Sharma low-Reynolds number k-𝜖
turbulence model. The simulations are quite expensive as the Courant number must be low for a
correct modelling of the interface. Periodic boundary conditions are used to speed up the simulation
process. The holdups are imposed in the simulations, using an estimate based on the finding of Bai
et al. [29] that the holdup ratio is 1.39. In part of the simulations the flux imposed solver is used
which retains the total flow rate constant; here the pressure gradient and water cut are obtained as
output results from the simulation. In the other part of the simulations the pressure gradient solver is
used, which means that the pressure gradient is imposed; here the total flow rate and the water cut
are obtained as output results.

Numerical results are compared with experimental data of van Duin [1]. Numerical simulations are
carried out with oil viscosities of 3338 cSt at 20°C to 383 cSt at 50°C at a water cut of 20%. The key
quantities at 20°C are similar but for the higher temperatures (i.e. lower viscosities) wrong water cuts
results were obtained. The different water cut values also led to differences between the numerical
and experimental pressure gradients. At 50°C stratified flow was found in the numerical simulation in
contrast to the core-annular flow pattern in the experiment.

An extensive study on the mesh dependence has been performed with the aim of reducing the simula-
tion time. The number of control volumes in all directions has been tested. It is found that fine control
volumes at the interface are required for correct results. Therefore the number of control volumes used
at the interface can not be decreased. Nevertheless, the computer time could be reduced by taking
coarser volumes in the center of the pipe, away from the interface. A decrease in computer time could
also be obtained by switching from the flux imposed solver to the pressure gradient solver. It is found
that the pressure gradient solver converges faster than the flux imposed solver.

Holdup variations are simulated for the 40°C case at an oil viscosity of 718 cSt. While varying the
holdup, a range of water cuts are found between 8% and 23%. Four experiments are performed by
van Duin in this water cut range which are used for validation. A grid of solutions is created by varying
the imposed holdup and the imposed pressure gradient in the numerical simulations. With linear in-
terpolation pressure gradients and oil holdups can be obtained from the simulation results for the four
combinations of specific water cut and flow rates values for which experimental results are available.
With this technique the numerical pressure gradients are compared with the experimental pressure
gradients at similar water cuts and similar flow rates. However, differences of 24%, 37%, 98% are
found at 40°C for a water cut of 12%, 15% and 9% respectively.

The experimental and numerical results at 40°C are compared with predications from the analytical
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model of Ullmann & Brauner. Large differences are found between the numerical results and Ullmann
& Brauner model below a 10% water cut and above a 14% water cut. The large difference above the
water cut of 14% is due to an inaccuracy in the numerical simulations. The number of waves on the
bottom dropped to only one above 14% water cut, which gives an increase in wave amplitude and
therefore a decrease in total flow rate. The chosen domain length in the simulation may have a too
large influence on the results if only a single wave is present. Below a water cut of 10% the difference
is due to inaccuracies in both the Ullmann & Brauner model and the numerical simulations.

The holdups in the experiments are estimated from the flow visualizations which have been carried
out by van Duin. The average thickness of the water layers are derived from four measurement points
along the oil-water interface. Through these points a spline was fitted to obtain an estimate of the
complete interface surface along the pipe perimeter. With the area enclosed by this interface curve the
phase holdup was estimated. Oil holdup fractions of 74.8% and 74.9% at a water cut of 20°C were
found. These holdups exactly match the holdups which have been imposed for the numerical simula-
tions at different viscosities in chapter 5. Nevertheless, only the temperature 20°C case converged to
a water cut of 20%.

9.2. Recommendations
Differences are found between the numerical results and the experiments. A reason for these differ-
ences could be due to the turbulence model. The k-𝜖 model with the Lauder-Sharma constants are
used. This model does not contain correction terms for the damped turbulence in the water layer close
to the water/oil interface for core-annular flow. A Large eddy simulation would be an useful extension
to this research to test the turbulence model.

In chapter 7 it is suggested that the simulations are influenced by the domain length. The influ-
ence of the chosen domain length for horizontal core-annular flow should be studied in more detail.
In this respect it can be noted that the wave shapes are different for different viscosity and holdup
values. Unfortunately, for larger domain lengths the simulation time will significantly increase. Some
extra computational efficiency might be achieved by using a vertical symmetry plane in the longitudinal
direction.

In the 20°C simulation from chapter 5 all the key quantities are similar to the experiment. The wave
characteristics and eccentricity of the oil, however, are found to be different. A similar extension with
holdups and pressure gradients variations as for the 40°C temperature would be very valuable for 20°C.
The same applies for the 30°C and 50°C conditions.

At the end of Radhakrishnan’s work the application solver was switched from the pressure gradient
solver to the flux imposed solver. The advantage of the flux imposed solver is that it is more in com-
mon with the performed experiments. However, the flux imposed solver is not preferred due to the
faster pressure gradient solver. A flux imposed solver where not the total flow rate is prescribed but the
individual flow rates would be an improvement. This is because such a solver should not only prescribe
the total flow rate but also the water cut, which is similar as in the experimental approach.

The numerical simulations at different temperatures are performed with the same surface tension.
This assumption should be validated by measuring the surface tension of the oil which has been used
during the experiments for different temperatures.

From the experimental flow visualizations a difference in the water layers are found between the
left and right side of the pipe. As gravity only has influence vertically this difference is unexpected.
New visualizations should be performed to study this difference more thoroughly. A more accurate
technique to measure the thickness of the water film (e.g. by using conductivity probes) can also be
considered. Furthermore a technique to determine the velocity profiles for the experiments could be
very useful for validating the numerical simulations.
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