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Preface

Although unmanned aerial vehicles date back to the 19th century and are widely used in many industries, full auton-
omy has yet to be reached. Currently commercially available drones have self flying capabilities and their military
counter parts can even track objects for several hours. However, full autonomy can greatly improve the overall safety.
Self flying smart robots can patrol the skies around airports, decreasing the amount of bird strikes. They can be used
in the search for survivors after a natural disaster to cover large areas quickly and efficiently. In this need for full
autonomy our team set out to participate in a competition for fully autonomous drone racing. The goal was not to
only win, but also show the level autonomy that can already be reached using current technology.

The smart autonomous racing drone, RAIDER, has been developed by a team of nine aerospace students. The project
was carried out in the light of the Design Synthesis Exercise, the final course of their bachelor’s degree. The au-
tonomous nature of the drone, together with the high integration needed between software and hardware has been
a driving motivation for all members. The project started in April 2018 under the extensive supervision of ir. C. de
Wagter.

In light of this project we want to thank ir. C. de Wagter for his constant guidance throughout the project and his
continuous feedback on our work. We would also like to thank our two tutors Dr. ir. R. Fénod and ir. N. Lavalette
for their comments on our reports and their valuable expertise during the design process. A special thanks is also
rewarded to the OSCC committee for the development and execution of the Design Synthesis Exercise. The team
would also like to acknowledge the contributions to this project by the members of the TUDelft MAVLab. Especially
the tutoring by Shuo Li has been of great help to the control and stability of the drone. As a team we wish him the
best of luck during the upcoming IROS2018 event.

DSE Group 25
Delft, June 2018



Executive Overview

With every passing year, drones are becoming an increasingly large part of daily life. Drones are utilized by anything
from filmmakers to cheaply record aerial footage, to rescue crews in different search and rescue scenarios to save
countless lives. However, the technological readiness of the autonomous software has not yet reached a point where
the human element can be completely removed from the loop.

One of the best ways to encourage advances in any technical field is to organize competitions. The International
Conference on Intelligent Robots (IROS), has, for the last few years, organized a race specifically for autonomous
drones, the Autonomous Drone Race(ADR). For the ADR, competitors are required to design, build and program a
drone that can autonomously navigate through a series of gates as quickly as possible.

As in the previous iterations of the ADR, each competitor has a 20 minutes time slot to attempt to set the track record.
The gates are orange with a white sheet behind the bars, and the final gate once again includes a dynamic obstacle.
However, there is an additional gate, the jungle gate (gate 6). Only one of the possible entrances will be marked with
the color orange on the day of the race. Last year, the winners of the competition won by completing 70% of the track
in 3 minutes and 11 seconds. Group 25 has been tasked with designing a drone that would not only complete the full
track, but to do it much faster.

Project Objectives and Design Requirements

Since the goal of the project was to advance the capabilities of autonomous drones, designing designing a drone that
would just win the race was not enough. It has to also be capable of significantly outperforming the competition.
The project objective statement was thus defined as:

“Win the IROS 2018 competition by designing a fast and agile autonomous drone with 9 FTE (full time equivalents)
in 10 weeks.”

This objective was reflected using design requirements, with the customer expecting a high performance drone that
would be capable of reaching speeds in excess of 100kmh, small turn radius, as low as 3m at 12m/s, while having a
flight time of 10 minutes. Additional constrains were imposed on the repair times, cost and size. The requirements
aimed to not only capture the need for robust autonomous algorithms, but also the need to be crashworthy.

Concept Design

During the initial design phase a number of possible hardware configurations and autonomous strategies were con-
sidered. During the first literature review, it quickly became clear that most of the concepts were unfeasible. For the
conceptual phase, it was decided to focus only on further exploring the tricopter and quadcopter configurations.

In terms of autonomous strategies, the situation was more complicated. The initial level of experience within the
group was very low, and therefore three different strategies were analyzed, each with a different level of expected
computational intensity. Every autonomous strategy was combined with either a tricopter or a quadcopter configu-
ration, resulting into the three Top Level Concepts (TLCs) shown in Figure 1.

Concept A Concept B ' Concept C

Figure 1: Sketches of the three TLCs

As shown in Figure 1, Concept A was a tricopter. It was the lightest, smallest and fastest of the three concepts. To
achieve this, it relied on an lightweight algorithm that made use of the known gate location to pre-plan a path before
the race, only using an RGB camera to correct in flight. All of the computations were to be performed on a Pocket
Beagle board.
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Concept B was a quadcopter that relied on a more tried and tested autonomous strategy: simultaneous localization
and mapping (SLAM), using an RGB-D camera for sensing and an Intel i5 CPU board to be able to handle the signif-
icantly computationally heavier method.

Concept C sported a much more experimental autonomous strategy, which relied on end-to-end neural networks
running on an nVidia Jetson GPU. It carried a stereo-vision camera to be able to capture high resolution images
depth images. However, due to its weight, Concept C needed two batteries.

It was important that at the end this stage the most important hardware components were chosen correctly to allow
for all of the programs that were needed to be run on them. Therefore, a number of preliminary calculations were
carried out for each concept, such as the expected computational cost of each autonomous strategy, total mass, and
flight time. Very large safety margins were employed at this stage due to the inaccuracies in the methods that were
used.

Trade-off and final concept

For the trade-off of the Top Level Concepts, a number of criteria were considered that rewarded robust and reliable
algorithms, high flight performance, and crashworthiness, while penalizing design complexity. Concept C, while
performing very well in terms of algorithm robustness, carried very expensive components, making it susceptible
to crashes, and was also deemed very complex. Concept B scored on average very well, but because of SLAM the
flight performance suffered greatly, and also carried fragile components. Concept A came out as the winner, scoring
especially well in the flight performance category, due to its high top speed and small size, which allowed for a less
precise autonomous strategy.

After the trade-off, it became apparent that concept A needed some more improvements. The tricopter configuration
was changed to a quadcopter, as this would eliminate the need for a gimbaling rotor, a vulnerable part in concept A.
Secondly an extra computer board, the Raspberry Pi Zero W, was added as this provides more camera interfaces and
yields more computational power to process images. Lastly a second visual sensor, a Time of Flight (ToF) camera,
the Pico Flexx, capable of recording depth information.

Final Design

With the configuration and overall autonomous strategy finalized, it was time to dive into the detailed design of each
subsystem. The team was divided into small subgroups, each responsible for a different subsystem, which focused
on structures, power and propulsion, sensor fusion, stability and control, gate detection, and path planning and
optimization.

Structures

The main tasks of the structure is to survive crashes and ensure that none of the sensitive components are damaged.
During the design phase four different aspects are assessed: the design of the arm, design of additional crumple
zones, selection of the propeller guards, and the damping of the IMU.

In the design of the arms the most demanding load case was the impact at the tip of the arm. To assess the impact,
the drone was modeled as rigid body rotating around the gate. A iterative linearized solver was written to find the
solution to the complex system which includes the deformation of the arm, stress in the bolts and impact force. This
led to an arm design made out of carbon fibre plates being 2.9 mm thick, and with a maximum loading stress of 550
MPa.

As this was not deemed enough to survive a crash additional crumple zones, foam balls with a radius of 7mm, were
added to the bottom of the drone. During a crash the foam balls absorb the potential energy from the fall, gradually
slowing the drone with a maximum deceleration of 500g, the limit for which consumer electronics are rated.

To reduce the likelihood of crashing two other measures were taken. Firstly the propellers are protected by 3D printed
propeller guards surrounding more 50% of the entire drones’ perimeter.Secondly the IMU, who’s measurements are
strongly affected by vibrations with frequencies above the sampling rate, is damped using rubber studs at 400hz, half
the sampling rate and above the control frequency.

Power and propulsion

To assess the power needs of the drone, semi-empirical equations were used, which were corrected with experimen-
tal data. By using battery specifications and propeller geometry, these equations were used to find the specifications
of the motor needed in order to fulfill the requirements. To check such a motor existed, an iterative process was
used where all results were validated with ECalc, an online tool used to estimate the performance of multicopter
components.

The resulting configuration consisted of a Turnigy 1550 mAh 6S battery, with 5 x 4.5 inch carbon fiber propellers,
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30 A electronic speed controllers, and race grade motors: the XRotor 2207-1750 KV. With these components, the
drone was capable of achieving a maximum thrust to weight of 5, a top speed of 160 km/h, nominal flight time of 15
minutes, and full thrust flight time of 1 minute.

Sensor Fusion

In order to ensure that the drone was able to accurately determine its location, orientation and location of the gates,
different sensors are fused, significantly reducing noise. The drone carried 4 sensors with which it localized itself: an
inertial measurement unit (IMU), a height sensor, and 2 cameras. In order to fuse all of these measurements together,
3 sensor fusion methods were explored: a 15 and a 31 state extended kalman filter (EKF), and a 15 state unscented
kalman filter (UKF). In order to determine which method would fit this project best, a trade-off was done, which
evaluated each option in terms of accuracy and computational cost. The 15 state UKF came out as the winner of this
trade-off, as the 31 state filter, although slightly more accurate, was too computational expensive. The unscented
kalman filter was chosen above the extended filter due to its higher accuracy in non linear regions, in which the
drone will mostly be flying when going fast.

Stability and Control

In order to achieve a stable and controllable flight with a quadcopter, an appropriate control system was necessary.
As control solution a linear proportional integral and derivative (PID) controller was selected, as this widely used
and has good performance.

A dynamical model of the drone was first constructed, after which the controller was built and tuned around it. The
controller designed consisted of four PID feedback loops, all nested within one another. The inner loop controls the
pitch, roll, and yaw rate of the drone. The attitude is controlled by another PID loop providing the input to the inner
loop. The input to the attitude controller is given by a PID loop controlling the translational velocity, for which input
is provided by the top position control.

Gate Detection

The computer vision subsystem is essential for the drone’s autonomy. The drone needs to be able to detect obstacles
and recognize gates in the images. After a positive gate detection, the position of the corners was processed to
calculate the relative position of the drone with the respect to the gate.

The algorithm that came out as the most promising after a literature study, was a small, 9 layer, convolutional-
deconvolutional neural network (DeCNN). This network performs background removal. The DeCNN was trained
on 23,000 synthetic images, generated in a CAD environment. In order to decrease the training time, the neural
network was trained on the online GPU service offered by Google Cloud.

The output of the network was a grayscale image as visible in Figure 2. This image is further processed by using di-
lation and binary thresholding. Finally, a lightweight contrast-based algorithms was used to process this image. The
gate contour was interpolated with a linear polynomial function, based on the Ramer-Douglas-Peuckert algorithm
(RDP).

Figure 2: DeCNN-RPD Gate Detection

A benchmark analysis was applied to the DeCNN to evaluate its accuracy and processing time. The results showed
that the algorithm was 67% accurate at detecting gates, but the frame rate had to be down-scaled to 3.5 Hz due to the
high computational cost. This was where the Time of Flight camera came into play, which was used to detect and
track obstacles at high frequencies while racing.
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Path Planning and Optimization

The purpose of path planning was to design a 3D collision free path that took into account the computational limits
of the computer boards, and at the same time minimized the control inputs. None of the algorithms that were
considered during literature research could quickly deal with this problem however.

Therefore, the developed strategy was based on the work of Mellinger[33], who exploited the differential flatness
of quadrotors to produce kino-dynamically feasible trajectories. Differential flatness means that the control inputs
could be described as a function of flat output variables (x, y, z and the yaw angle) and their derivatives. By minimiz-
ing the second derivative of the acceleration, and the yaw angle, the control inputs could be reduced.

It was also important to generate a path that would maximize the time a gate would be in view, to increase the
probability of detecting the gate. The aim was to minimize the second derivative of the yaw angle to achieve smooth
transitions of the yaw between the different segments of the race track. This yawing maneuver was initiated before
fully passing through a gate, so that the Time of Flight camera could be used to track one of the vertical bars of the
gate for localization purposes.

In order to find a nominal racing speed, the probability of completing the track was calculated as a function of the
total track time. This was done taking into account IMU drift, gate detection accuracy and motion blur. This resulted
in a maximum probability of 86% at 60 seconds. However, this time can be decreased at the cost of this probability.

Design assessment

After the detailed design was finished, detailed mass, cost and power breakdowns were made which included even
the mass of the bolts. The total drone weighs 714 grams, costs €1454,- and uses 164 Watt at hover; the size was
29x29x9cm. Most of the electronics are bought, whilst others needed further detailed design and custom manufac-
turing. The other hardware components can be cut out of single carbon fibre plate while the software needs to be
converted to C or C++ for better performance.

By the means of a compliance matrix all requirements were checked and deemed passed or recognized as more
work needed. 16 requirements, of which 7 are stakeholder requirements, also including one about winning the
competition yet unfeasible to assess, need more work and their verification procedures are reasoned. As part of
the compliance and further assessment of the requirements a sensitivity analysis of the design for nominal velocity,
mass, power usage and drag coefficient was done. It was concluded the power usage, drag coefficient and nominal
velocity can be increased by as much as 300% before the design starts to fail requirements. The most critical is the
mass as the drone can only be made 48 grams heavier, before it can no longer meet the turning radius requirement.
During the operation of the drone, it is expected to crash many times. In order to assess how many spare parts
need to be brought to the competition, a failure diagram was made. Each failure mode was then given a probability,
based upon which the amount of spare parts that are needed for this failure was calculated. RAIDER’s safety was also
analyzed. The team found that impact with a head was the most dangerous scenario that could happen. As a result
of this safety analysis, some changes were made to the design. This is for instance he reason carbon fiber propellers
will be used.

The risks of failure were not the only ones that were analyzed. There are also other risks involved with this project.
These were both identified and mitigated. The result of this is for instance the fact that the drone has propeller
guards. These allow the drone to stay up in the air after a low-speed collision. The sustainability was also analyzed.
The resulting graphs are shown in chapter 19. They show that the drone does not just comply with the requirements,
but actually exceeds them.

Post DSE

With the help of a Gantt chart a detailed production and testing plannings is made that will ensure the drone is at its
highest potential during the IROS2018 itself. A more detailed integrated simulation plan including a ROS simulation
is proposed to find software related bugs, assess the performance of algorithms and ensure the drone is able to fly
the track autonomous.

As is often the case for high-tech products, the developments that are made for racing will eventually make their way
onto the consumer market. The most promising market is the bird control market around airports. In order to break
into this market, however, a ground station will have to be developed. Although this requires a lot of extra work,
RAIDER’s autonomy, agility and speed will prove to be invaluable in this market.
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Introduction

For the last 20 years engineers have developed systems with a higher level of autonomy than ever before. They can be
found in numerous situations and applications, like for instance advanced factories and assembly lines. Some help
reduce the workload of the employees, while others are so advanced that they completely replace the employees.
They monitor the complete manufacturing process autonomously, from start to finish. It is not only possible to find
the application of autonomous technology in the manufacturing industry, but also in our daily lives. An example of
this is the self driving cars that drive around the streets now. Those cars can drive on highways, change speed and
switch lanes. All of this is done while monitoring the environment around it, ensuring that everybody’s safety.

Next to autonomous systems, another market that has been booming the last 20 years is the drone market. As mi-
croprocessors and computer boards have become widely available, cheap and lightweight, the price of drones has
dropped drastically, making them affordable. Quadcopters that are piloted by humans as such are already widely
available and being sold by big electronics companies. As quadcopters become more popular, their range of their
applications becomes bigger. Currently, quadcopters are being used for recreational flying, areal photography, mili-
tary applications, search and rescue, drone racing and much more.

Both worlds, the autonomous systems and quadcopter world have been brought together before, resulting in au-
tonomous drones. Although the level of autonomy in such quadcopters is still rather low. They can fly a pre-planned
path, automatically hold an altitude or transmit high quality footage to the other side of the world, but they still rely
on a human pilot making the decisions. It is a challenge to build a drone which incorporates autonomous systems
that exceed human capabilities. This incorporates the long term vision of the project, pursuing the advancement
of drone capabilities to a level exceeding that of human piloted drones. The long term vision can be found in the
mission need statement below.

"Advance the capabilities of autonomous drones to a level exceeding that of human piloted drones"

As it is practically impossible to directly meet the mission need statement, intermediate steps have to be under-
taken. Nowadays, human piloted drone races are held, with drones reaching speeds of over 150 km/h. The top speed
reached yet in the IROS 2018 autonomous drone race is 45 km/h, which goes to show that there is a lot of room for
improvement in this field. Therefore, as a first step to achieve the mission need statement, competing in the IROS
2018 autonomous drone race is a perfect engineering challenge. More specifically, to not only compete in the IROS
2018 autonomous drone race, but to actually win it. This brings us to the project objective statement, which can be
seen below.

"Win the IROS 2018 competition by designing a fast and agile autonomous drone with 9FTE (full time equivalent)
in 10 weeks."

This report was written to show the process and result of designing a fast and agile autonomous drone with 9FTE (full
time equivalent) in 10 weeks. Part 1 includes the process of ending up with a preliminary design, starting from the
project mission. This includes a thorough market analysis, performed in Chapter 2. Followed by a mission analysis
in Chapter 3 and the preliminary design in Chapter 4. Then in part 2, the detailed design is performed. This consists
of Chapters 5 to 11, going over every subsystem design. Finally, part 3 consisting of Chapters 12 to 21, covers the
goals, resources and schedule of the project. The reliability, availability, maintainability, and safety of the design
have also been addressed, together with a risk analysis and a sustainability excursion. Finally, the post-DSE and long
term vision is elaborated upon.
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Market Analysis

Analyzing its market is key to identifying the product’s competitive advantage and establishing a strategy to break
into attractive market segments. Although our primary objective is that of winning the IROS Autonomous Drone
Race, competitions often set the standard for the drone industry and it is worthwhile to seek application areas outside
of the IROS competition in which our product may be competitive. Section 2.1 provides an analysis of the most
promising market segments identified outside of drone racing, while Section 2.2 focuses on examining and further
segmenting the drone racing ecosystem. In Section 2.3 all market insights are compiled into a SWOT matrix, which
is used to define a high-level market growth and entry strategy to take advantage of relevant market opportunities
while still meeting the project objective.

2.1. External Markets

Drones that can autonomously interpret their surroundings and navigate through them are highly sought after in a
number of sectors outside of drone racing. Among the most directly related and promising applications are: search
and rescue, anti-drone operations and bird control. These are all areas in which lightweight and agile drones have an
innate strategic advantage. Other applications such as delivery or surveying and mapping are deemed uninteresting
as our product is designed to be as light as possible for optimal race performance and will therefore not possess the
range and payload-carrying capabilities required to be competitive in these sectors.

2.1.1. Search and Rescue
The search and rescue (SaR) market is very broad. With drone technology on the rise, interesting opportunities have
emerged in this domain that allow for resources to be used more efficiently and that do not require sending people
into life-threatening scenarios.

Little market data is available about the use of drones in search and rescue missions specifically. Search and rescue
missions are often coordinated by governments and military agencies, so the level of disclosure related to the use
of advanced SaR equipment or technology is generally low. As an indication of the market trend, we look at the
general search and rescue equipment market, which also includes advanced equipment such as UAVs; the latter is
currently valued at $113.6 Billion and is projected to grow at a compounded annual growth rate (CAGR) of 2.03%
until 2022'. The North American segment of the SaR market is still the largest to date, and the Asia-Pacific (APAC)
region is projected to experience the most growth due to fast modernization and increasing demand for high-tech
SaR solutions.

Most SaR drones currently in use are focused on combat or other large-scale search and rescue operations, with
significant government and military involvement. Key players in this regard are, for instance: General Dynamics
Corporation (U.S.), Honeywell International Inc. (U.S.), Leonardo S.p.A. (Italy), Raytheon Company (U.S.) and Tex-
tron Systems (U.S.). This kind of application has high barriers to entry and may be difficult to break into for emerging
players, given that firms operating in this segment are typically government or defence contractors. Obtaining simi-
lar contracts entails working through plenty of red tape which can impose procurement costs that are unsustainable
for small businesses.

What has proven successful for small entrepreneurial ventures is to not compete directly with large contractors but
rather offer a substantially different and highly-specialized service, or find a niche which falls outside their scope
of operations. For instance, Dutch startup Avy managed to break into the search and rescue market by developing
drones specifically to detect boats of immigrants stranded in the Mediterranean Sea and deploy inflatable rescue
buoys. Given the small size, agility and autonomy of our product, a suitable niche search and rescue application
could be the search for survivors in the cramped environments that are the result of an earthquake or a similar
natural disaster.

1https ://www.marketsandmarkets.com/Market—-Reports/search-and-rescue-equipment-market-261129036.html
[Visited at 2 may 2018]
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2.1.2. Anti-Drone Operations

With drones becoming increasingly popular and accessible to the public, their use for illegal activities has also been
on the rise. UAVs have recently held pivotal roles in crimes ranging from drug smuggling to police counter espionage,
forcing authorities across the globe to find new ways to counter the use of malicious drones. Among the most inno-
vative solutions to date is that of the Netherlands’ national police, which has decided to train bald eagles to snatch
rogue drones out of the sky. More standard solutions attempt to use methods such as radio-frequency based systems
to communicate and take control of the drones.

The anti-drone market was valued at $ 342.6 Million in 2017 and was projected to grow at a CAGR of 25.9 % between
2017 and 20232. As is the case for most drone-related markets, the largest growth is expected in the APAC market due
to the rapid technological development occurring in emerging Asian countries, which are still quite deregulated. Ag-
ile and lightweight drones are a natural alternative for intercepting malicious UAVs. In particular, drones with special
sensing equipment that can autonomously identify other UAVs are a promising solution to locating malicious drones
in cluttered environments. Competitions like the DroneClash 3 give contestants the opportunity to test their drone’s
ability to intercept and take down other drones, and are beginning to give increasing value to contestants’ level of
autonomy. While being competitive in this segment will likely involve making significant hardware modifications,
the agility and autonomy of our product are attractive characteristics for this application. As discussed in Section 2.3,
competitions like the DroneClash can serve as an opportunity to test whether the product is suitable for a similar
application and be used as a point of entry into this segment.

2.1.3. Bird Control

Birds have been posing serious economic and safety threats in areas such as waste management, agriculture and
especially aviation. Most bird control efforts rely on acoustic or laser systems strategically positioned to repel birds.
This is a relatively unexplored niche market which has recently seen a number of successful entrepreneurial ventures.
The Bird Control Group, for instance, has succeeded in scaling up into a Deloitte Technology Fast50 Rising Star
and operating in 76 different countries, by offering tailored laser-based bird control solutions across a number of
industries.

The issue with current bird control strategies, including those developed by the Bird Control Group, is that they are
static. While their success rate in repelling birds is undeniable, common laser-based solutions involve instruments
that need to be mounted and left in the same position. This makes it problematic when large areas need to be
covered or when birds do not always appear in the same place; drones are a viable and modular alternative to repel
birds in these situations. Bird-chasing drones like those of ClearFlightSolutions (a start-up from the University of
Twente)* have attracted remarkable attention from airports in Europe and internationally; airports are seeking a
more dynamic alternative to the bird-control problem and drones appear to be a very promising and marketable
solution. Very little market data is available about the aggregate value brought by these solutions to airports, as
the volume of recorded transactions is still very limited. However, several studies that attempt to quantify the value
proposition brought by bird control using statistical techniques and case studies have been conducted. In particular,
Nitant Shinde developed a Monte-Carlo tool to perform cost-benefit analysis of bird-control solutions at airports for
different bird species [43]. He concludes that with state-of-the art technology cost-benefit ratios of over 70 can be
achieved, suggesting that high-tech bird control can be an extremely profitable investment for airports and explains
their recent interest in such technologies.

The speed, agility, and degree of autonomy that our drone is designed to achieve are very useful properties for the
chasing of birds. The technical characteristics of our product give it the potential of being very competitive in this
market segment. The biggest challenge will lie in operation and legislation, which can make it difficult to operate
drones commercially in European countries and potentially force us to make a lateral move into more deregulated
international markets.

2.2. Race Drone Market

This section is focused on finding potential opportunities in the race drone market and strategies to be competitive
in these markets. To this end, the race drone market is segmented into autonomous and non-autonomous races.

2.2.1. Trends and Future Developments
The drone sports ecosystem is expanding rapidly, fueled by disruptive advances in technology and by the grow-
ing popularity of drones for recreational purposes. Forecasts by research firm Frost & Sullivan suggests that hobby

2https ://www.marketsandmarkets.com/Market—Reports/anti-drone-market-177013645.html [Visited at 2 May 2018]
Shttp://www.droneclash.nl/ Visited at June 24 2018]
4https://clearflightsolutions. com/ [Visited at June 24 2018]
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drones are set to grow into a $ 4.4 billion market by the year 2020 [11]; interest in drone technology is booming and,
consequently, so is the number of people familiar with drone racing. Drone competition organizers have several rev-
enue generation models, among which four main ones can be distinguished: Ticket sales, sponsoring, participation
and merchandising. Growing global interest in fast and intelligent drones has the potential of driving ticket sales,
sponsoring and merchandising up significantly. Advances in computing technology, autonomous control and man-
ufacturing have the potential of lowering the barriers to entry for aspiring competitors while also generating upwards
pressure on the quality of drones entering competitions; this suggests increases in both the number and quality of
participants in competitions, which are key drivers for the "participation’ revenue stream. The drone competition
market is well equipped to grow and expected to experience large increases in revenue in the coming years.

2.2.2. Autonomous Race Drones vs Piloted Race Drones

At present, the autonomous and piloted segments of the race drone market are still very different, both on a per-
formance and on a market level. Piloted drone races still take up the vast majority of the share in the drone sports
market, and overshadow their autonomous counterparts in both revenue and media exposure. While the team’s
mission is that of advancing autonomous drone technology, it is worthwhile to examine whether it is currently fea-
sible to design a product that can be competitive in both segments. Performing well in a piloted drone race with
an autonomous vehicle, is, after all, in line with the mission need of bridging the gap between the two segments.
Moreover, piloted races offer stronger media exposure and a higher potential profit in the current market. To assess
the feasibility of this objective, the fastest commercially available FPV drone, namely the VRX-190, is studied.

Speed [km/h] 267
Mass [g] 479
Thrust [g] 7400
Thrust to weight [-] 15
Price [€] 615

Figure 2.1: VRX-190 Race Drone

The characteristics of the VRX-190° drone exceed by far what has been observed in autonomous drones, as well as
the driving customer requirements for this project. NASA JPL recently topped off years of research and development
in autonomous vehicle technology with the development of a fully autonomous race drone, that only managed to
sustain speeds of approximately 80 km/h in an obstacle course. Being able to sustain speeds comparable to the 267
km/h of the VRX-190 is currently unfeasible for a drone to be operated autonomously, and attempting to do so for
the sake of this project would impose killer constraints on the instrumentation, control and navigation subsystems.
Moreover, the VRX-190 can be produced for 615 Euro and only weighs 479g; both numbers are far lower than the
customer requirements (2500 Euro and 800g), which better reflect the norm in autonomous drone MAVs(Micro Air
Vehicles). Attempting to cut weight and cost to compete with drones such as the VRX-190 would inevitably require
allocating more scarce resources to structural and aerodynamic design, at the expense of subsystems such as control,
navigation and remote sensing, which are crucial to fulfill the project objective.

It was therefore deemed unfeasible to compete with FPV (First Person View) race drones such as the VRX-190 without
severely compromising the mission of advancing autonomous race drone technology and the project objective of
winning the IROS 2018 competition. Rather, opportunities will be sought in the autonomous race drone market.

2.2.3. Opportunities in Autonomous Drone Racing

In the short term, potential opportunities are found in the IROS 2018 Competition and the IMAV (International Micro
Air Vehicle) 2018 Competition; the main challenges to be overcome in order to be competitive in these competitions
are discussed.

IROS Competition Analysis

The IROS ADR 2018 competition will take place in October in Madrid, and winning this competition is the main
design objective. Little detail is available about the physical characteristics of previous competitor drones, and stan-
dardizing their performance is difficult as the tracks become more demanding every year. Rather, this section will
focus on providing a high-level overview of competitors and the main issues they encountered in previous editions.

As described in [37], the main challenge encountered by teams in the competition was gate recognition due to clut-
tering and the monotonic color. All teams used visual recognition to identify gates, which caused issues in the sharp-
turn path region of the circuit; many teams had a small camera-view angle which lead to recognition failure after
sharp turns [37]. Rumors state that the IROS competition will move towards less 'obvious’ dark grey gates in the

Shttps://fpvdronereviews.com/guides/fastest-racing—-drones/ [Visited at 2 May 2018]
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future to better mimic an indoor disaster-struck area. To be competitive in this race, the main challenge is to come
up with an effective software and navigation strategy, and in designing hardware that can handle the computational
intensiveness and the required measurement accuracy required by the strategy.

IMAV Competition

The IMAV 2018 competition will be held this November in Melbourne, Australia. This competition serves as a tech-
nology demonstration for state-of-the-art performance of small, lightweight and autonomous drone with emphasis
on multi-MAV cooperation. While winning this competition is not a main project objective, it is seen as an effective
way to pursue the team’s overarching mission of advancing autonomous drone technology. Performing well in the
IMAV can lead to strong media exposure, attract investors, and open doors to new projects and ideas for further
development. For instance, the competition in 2016 was focused on performance in a search and rescue scenario,
which is a key external market opportunity for our product. Moreover, it is feasible to enter the IMAV without making
significant changes to the drone hardware as the characteristics that will make the drone perform well in the IROS
(autonomy, image processing and design efficiency) are listed as the focus points of the IMAV competition. The
MAV-Lab8, for instance, entered the IMAV competition in 2016 with a modified Bebop drone, which was also used
in the 2016 IROS competition. Without adjustments to the hardware other than very simple and modular ones (e.g:
plastic chopsticks mounted and used as ’legs’ to grip objects), the MAV-Lab managed to rank 2nd in the IROS and
gain impressive media exposure at the IMAV 7.

2.3. Market Entry and Growth Strategy

In this section, the market opportunities that were identified are summarized in a SWOT (Strengths Weaknesses
Opportunities Threats) matrix (Figure 2.2), and a high-level market entry and growth strategy to take advantage of
such opportunities while still meeting the project objective is suggested.

| Helpful J Harmful )
( ) - N
/K The drone is designed exclusively to Wh / The drone is not designed to carry large \\
the IROS competition, giving us a payloads X X
substantial advantage over competitors *  Thedrone s designed for a low endurance,
= that use off-the-shelf hardware . namely 10.’"'"“‘:5' - |
c *  The drone is designed to be fully The drone is not designed to cover large
- autonomous and very agile distances. .
3 «  Comfortable budget for high-level * High-quality sensors and compttltatlonal
= cemees Al Alese power ma’ke th,e dro.ne 9verdesngned fora
Y— «  The drone is designed to be small and variety of ‘soft” applications, which make up
lightweight a large share of the drone market.
+  The drone is designed to perform a large ¢ Thedrone is not des-igAned to operate under
\ number of computations concurrently.J K harsh weather conditions as the IROS /
_ Y, competition is indoors
() /
*  With minimal hardware modifications\ * Legislation, especially in European markets,\
the drone may be useful to navigate can make it difficult to operate high speed
— autonomously in challenging search and and autonomous drones.commercially
< rescue scenarios - $125 Billion market * Gaining a significant market share outside of
= * Autonomy and agility are keys for drone racing will most likely require a lateral
= success in other drone competitions move into deregulated international markets
8 such as the IMAV *  Competition rules for IROS 2018 still not
A *  Useful for bird-control at airports, a entirely finalized and may change
Lﬂ growing and relatively underdeveloped * Several new competitors are expected to
market. enter the market as autonomous drone
* May be useful for the interception of technology advances.

\ malicious drones - $1.5 Billion marketJ K /

Figure 2.2: Technical SWOT matrix

2.3.1. Product Development

The drone will be developed with the sole intention of winning the IROS ADR 2018 competition while meeting all
user requirements related to budget, operations and sustainability. In the product development phase, all objec-
tives other than winning the IROS competition will be deemed secondary, as will the requirements associated with
this. This short-term "tunnel vision’ will give the team a strategic edge over the competition, which consists of com-
mercially available drones with hardware that is not explicitly designed around the navigation, remote sensing and
control requirements imposed by the race.

8The TU Delft Micro Air Vehicle lab
7http ://mavlab.tudelft.nl/imav2016/ [Visited at 2 May 2018]
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2.3.2. Product Diversification

Upon fulfillment of the project objective (winning the IROS competition), the drone will be adapted to compete in
similar competitions. Priority will be given to competitions which require little hardware adjustments, such as the
IMAV competition. The aim is to progressively enter other competitions that may require more substantial hardware
changes and development costs, such as the DroneClash, and diversify the scope of the product without sacrificing
autonomy. This will allow the team to begin exploring possible external application areas while staying in a compet-
itive setting. In the drone market, competitions often set the standard for industry and good performance may open
the door to funding and development opportunities.

2.3.3. Market Development & Penetration

In this phase, the product will be brought into application areas outside of drone racing to enhance its market po-
tential. The most interesting application areas are considered to be the Anti-bird, Search & Rescue and Anti-drone
markets, which are all analyzed in detail in Section 2.1. Breaking into these larger markets is key to fulfill the mis-
sion need of advancing the global performance of autonomous drones, as it will allow to develop other aspects of
the technology and attract more widespread attention. The key challenges in this phase, especially in the European
market, will be related to operation and legislation. Collaborating with airports such as Schiphol and, more generally,
operating drones for commercial use in the Netherlands, is extremely difficult and poses serious limitations. These
limitations forced innovative companies such as ClearFlightSolutions, an emerging competitor in the anti-bird mar-
ket, to target other regions like Germany and Canada. Success in this stage will most likely demand expansion into
more deregulated international markets.



Mission Analysis

In order to make sure the design completes its mission, while complying with the requirements set by the customer,
the mission has to be analyzed in detail. This will be done in this chapter. Starting with a clear description of the
mission and project objective in Section 3.1, followed by an overview of the race regulations in Section 3.2. Next,
the stakeholder requirements will be discussed in Section 3.3, followed by the functional flow block diagram in Sec-
tion 3.4 and the functional breakdown structure in Section 3.5.

3.1. Project Mission and Objective

In order to have a clear-cut definition of what to achieve in this project, proper mission and project objective state-
ment formulation is of paramount importance. As has been explained in Chapter 2, autonomous drones can be very
useful in many situations, such as search and rescue, and bird control. The industry, however, needs to change its
mindset on the application of autonomous vehicles before they can be widely adopted. They need to create a mind-
set in which autonomy is more centrally placed. Also, referring back to this project, drone autonomy is still on a low
level and has not reached, or exceeded human capabilities. There are drones that are capable of flying a pre-planned
path, that can follow a certain trajectory or that recognize features, but none of them can do so at the speed a human
piloted drone pilot. Therefore, following this philosophy, the mission need statement of this project is formulated as
follows:

"Advance the capabilities of autonomous drones to a level exceeding that of human piloted drones"

Now that a proper mission need statement has been formulated, the project objective statement can be defined as
well. Since it is impossible to achieve the mission at once, intermediate steps have to be undertaken. Steps that
trigger innovation in drone autonomy, or in other words, steps that bring the capabilities of autonomous drones
closer to that of human piloted ones. A good way to show off this advance in autonomous drone technology, is by
means of drone racing. In human piloted drone races, drones race through gates at speeds exceeding 150km/h. It
is an engineering challenge to design an autonomous drone able to exceed this performance. At the moment, the
maximum speed achieved in an autonomous drone race, such as the IROS race, is 43km/h. Therefore, it was decided
to participate and win the IROS 2018 autonomous drone race. This is reflected in the project objective statement of
this project, that can be seen below.

"Win the IROS 2018 competition by designing a fast and agile autonomous drone with 9fte (full time equivalent)
in 10 weeks."

3.2.IROS 2018 Regulations

The IROS 2018 autonomous drone race is a drone race in which, just like in human piloted drone races, the drones
have to fly through a set of gates on a race track. In the IROS 2018 race, the drones get 20 minutes to complete the
track as quickly as possible or to get as far as possible in the track.

The drone that completes the track in the least amount of time, wins the race. If no drone completed the track, the
drone that got furthest in the track wins.

As in any race, the IROS 2018 race is subject to regulations. They are published on the IROS 2018 website and they
will be listed below'. Not complying with the regulations can lead to disqualification.

* Each team will get 20 minutes for as many attempts they need.
¢ Each attempt must start at the starting position.

¢ The team’s official score will be selected from the best attempt.
¢ Each attempt will be recorded in time.

lhttp://rise.skku.edu/iros2018racing/index.php/rules—regulations/ [Visited at June 22 2018]
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¢ The group time does not include the time that is needed for turning on ground computers or ground support
equipment.

¢ Power of the drone can be applied before each attempt. (booting time)

¢ The attempt time is measured from the take off until the finishing of the attempt.

* If twenty minutes passes without finishing the course, the flight time and the last gate the drone passed is
recorded.

¢ Each attempt is considered finished by successful passing the final gate in the correct order.

¢ The attempt is considered not finished if the drone deviates from the course, does not pass each gate in order,
malfunctions, is not able to sustain safe and controlled flight, or if the team operator declares ending the
attempt.

* If the drone does not finish track, the ID number of gate and ending time is recorded.

¢ The winning team shall be the team with shortest flight time if the team finishes the whole course.

* For grading teams who did not finish the whole course will be compared with the ID number of the gate it
reached. If two or more teams reached the same gate, the shorter the flight time the higher the ranking.

¢ The judging committee reserves the right to stop any team’s attempt if considered dangerous or not following
the guidelines.

¢ The judging committee reserves the right to rule out any attempt’s record if any unfair activity is found.

The TROS 2018 ADR is organized annually. Each year, the layout of the track or gates is changed slightly. Changes
such as displacing the gates or changing their color, also changing their shape and functionality is a possibility. This
to stimulate innovation every year.

At the start of this design synthesis exercise, the 2018 race track was not yet published. Therefore, the IROS 2017 race
track was taken as a reference, while taking into account possible track changes. Although the track incorporates
some significant changes this year, the team is confident the drone will perform according to standards.

This year, the track consists of 7 gates. The first 5 gates are normal gates for which the position is known. Gate 6 will
be a jungle gym gate, consisting of a double 2x2 matrix, of which only one entrance and exit will be open. Gate 7 will
be a dynamic gate, having a moving element. The gate color will be orange, exactly like it was in 2017. An overview
of the complete track can be seen in Figure 3.1, and a detail of the jungle gate and the dynamic gate can be seen in
fig. 3.2.

Figure 3.1: Overview of racing track with gates indicated by number

3.3. Stakeholder Requirements

When receiving the design task, several requirements have been set by the customer. These requirements have to be
met in order to fulfill the mission objective. In this case winning the IROS 2018 autonomous drone race competition.
In this section those requirements will be revisited and elaborated upon.

The requirements set by the customer can be divided in several categories. Those categories include performance,



3.3. Stakeholder Requirements 10

AN
iV

\

\
\

>

EERY

Figure 3.2: Overview of the jungle gate [left] and the dynamic gate [right]

safety & repairability, sustainability, engineering budgets, cost and a miscellaneous group. The category the require-
ment belongs to is indicated in the requirement identifier with its respective abbreviation.Although requirements
have to be met in order to win the IROS 2018 autonomous drone race competition, not all requirements are of the
same importance. Some requirements might be critical to win the race, while others have only a small influence on
the drone’s capabilities when not met.

Therefore, the requirements are divided in 3 tiers. Tier 1 containing the most demanding stakeholder requirements,
to which the most resources are allocated. They are requirements that have to be met in order to win the race. Next,
tier 2 requirements are requirements that can be beneficial to fulfill the mission, but are not vital to win the race.
Finally, tier 3 requirements are requirements imposed by the customer, but which can be compromised, in order to
have better performance. The requirements are sorted by tier number in Tables 3.1 to 3.3.

Some requirements that were initially set by the customer have been revised in consultation with the customer. This
because they were poorly defined or technically unfeasible. In Tables 3.1 to 3.3 the revised requirements are labeled
with an 1’ behind the requirement identifier. Finally, the driving and key requirements are indicated with a key or a
steer symbol in the requirement table.

Table 3.1: List of Tier 1 Customer Requirements

Tier 1

SH-P-2r ®=® The drone shall be able to autonomously fly a full lap of the IROS 2018 track, with-
out crashing and in at most 10 minutes.

SH-SR-8r &= Only parts that cost less than 10% of the unit cost and can be replaced in under
1 minute shall require replacement upon impact with concrete when free-falling
from a height of 3m with zero initial velocity.

SH-SR-9r @®™&® Only parts that cost less than 10% of the unit cost and can be replaced in under 1
minute shall require replacement upon crashing into a gate at 100 km/h.

SH-EB-13 & The drone shall comply with all requirements given by the 2018 autonomous drone
race website if available.

SH-0-16 ®™® The drone shall use onboard computation only.

SH-0-18 O™ The drone shall be able to detect IROS 2018 autonomous drone race gates.
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Table 3.2: List of Tier 2 Customer Requirements

Tier 2
SH-P-1 ®=® The drone shall be able to automatically take-off and land.
SH-P-6 = The drone shall be able to fly for at least 10 minutes.
SH-P-7 ®=® The onboard computer vision shall be able to track gates at 30 frames per second.
SH-S-11 @™ The motors, frame, electronics and cameras shall be replaceable.
SH-EB-12r &= No dimension of the drone shall exceed 60 cm.
SH-O0-17r - The drone shall use, but is not restricted to, at least one camera for indoor naviga-
tion.
SH-0-19r &= The aggregate time required to replace all replaceable components of the drone
shall not exceed 7 min.
Table 3.3: List of Tier 3 Customer Requirements
Tier 3
SH-P-3r @™  The drone shall possess the hardware characteristics to fly at a maximum speed of

100 km/h in horizontal straight flight.
SH-P-4 The drone shall be able to linearly accelerate 3g.

SH-P-5 @™  The drone shall be able to make 3m radius arcs at 12 m/s.

SH-S-10r @™ The drone shall be made for 100% of recyclable materials.

SH-EB-14 @®™ The total mass shall be less than 800 gram.

SH-C-15r @™ The aggregate hardware cost of the drone shall not exceed 2500 Euro, excluding

maintenance, repair and operational costs.

3.4. Functional Flow Block Diagram

The functional flow diagram illustrates the operations of the quadcopter trough out its operational lifetime. It is
constructed in a sequential manner, starting from the manufacturing of the drone until it has finished its mission.
In order to maintain clarity and readability, the functional flow diagram is constructed in several levels. The top level
shows the top functions of the quadcopter in sequential manner. The top level functions are elaborated upon in the
second level, with the sub-functions grouped by their respective top level function in a dashed line box. The same
accounts for the third level that elaborates on second level functions and the fourth level that elaborates on third
level functions. Also, when multiple output possibilities are present, a logic gate is used. Their output is true or false,
depicted by the complete functional flow diagram set can be seen inFigures 3.3 and 3.4.

3.5. Functional Breakdown Structure

Another way of representing the quadcopter functions is by means of a functional breakdown structure. This dia-
gram illustrates the same functions as the functional flow diagram, but instead of showing them in chronological
order, it orders them by category. For consistency, the labeling of both the functional breakdown diagram and the
functional flow diagram functions is the same. As alabeling scheme, abbreviations are preferred above numbers. The
using abbreviations in labels instead of numbers allows for painless adaptation or restructuring of the functional
breakdown structure or functional flow diagram. The functional breakdown structure can be seen in Figures 3.5
and 3.6.
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3.5. Functional Breakdown Structure
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Figure 3.3: Functional Flow diagram Part 1
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Figure 3.4: Functional Flow diagram Part 2
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Preliminary Design

The purpose of this chapter is to give an introduction of the design of RAIDER developed up to the midterm before
the detailed design phase started. In this way, what the design philosophy that was employed was and why certain
choices were made.

First the design philosophy is presented in Section 4.1. Afterwards the communication flow diagram identified for
the design are reported in Section 4.2. The hardware selected for the drone is detailed in Section 4.3, and the resource
used until the preliminary design in Section 4.3.3.

4.1. Design Philosophy

The idea behind the philosophy is to build a sturdy agile drone with the smallest size possible. The main conse-
quence of this approach is that the drone has limited payload carrying capabilities, which negatively effect the
amount of computational resources on board. This strategy also has many advantages, however. The biggest of
these is the small size which allows for larger margins of error when passing through gates. The costs are drastically
reduced as well, the material used is lower, the onboard computers and sensors are cheaper, meaning that it is pos-
sible to allow for many replacement parts. Furthermore considering the limited development time available, it is
beneficial to have a lighter software strategy, which allows for more time spent testing it.

4.1.1. Structural Configuration

The structural configuration selected for the design is the quadcopter. Quadcopters are the most widely used multi-
copter, they have been extensively tested in both piloted and autonomous drone racing. The benefits of quadcopters
are the possibility of hovering and the high reliability. As the name implies a quadcopter has four upwards-facing
rotors providing the lift. Controlling the thrust setting of each motor individually allows the drone to be flown. The
yaw motion is decoupled from the other motions, which means that it can be adjusted independently. For our appli-
cation, quadcopters were found to fall in a sweet spot because they provide better payload capabilities of tricopter,
and less structural weight then drones with more than 4 motors.

4.1.2. Algorithms and Payload Interaction

The drone needs to be able to win the IROS 2018 competition by passing through all gates in the shortest amount
of time possible. As a result, a system of sensors and algorithms to outperform the competitors was designed. The
software package includes a path planning algorithm, a gate and obstacle detection algorithm, and a positioning
algorithm.

Path Planning

The main idea is to have an algorithm that is computationally light and able to run online. A prepossessed path
is already loaded offline, and the drone will only have to update it during the course with the inputs from the gate
and obstacle detection and positioning algorithms. This algorithm is to run on the Pocket Beagle ! a very tiny 1GHz
computational unit.

Gate and Obstacle Detection

This algorithm is able to detect the gate, and assess the relative position of the drone to the gate. It employs two
cameras: a small RGB camera and a Time of Flight (ToF) depth camera. The former is used for most of the time
because of the higher range of these cameras. The latter is used from approximately 4 meters from the gate until the
gate is passed because higher frame rates are possible with this at the expense of range. The ToF camera is also used
for detecting obstacles, this is a separate routine that runs continuously to assess the presence of unknown objects.
If any is detected, it estimates its relative position to it and the obstacle’s dimensions. The gate detection algorithm
works on a different processor, which incorporates dedicated connectors for cameras, the Raspberry Pi Zero W2. The
two processor are connected and the relative position estimate is passed to the Pocket Beagle. In case an obstacle is
detected the spatial dimensions of the obstacle together with the relative position are sent to the Pocket Beagle.

lhttp://beagleboard.org/pocket [Visited at ]
2ht)‘:ps ://www.raspberrypi.org/products/raspberry-pi-zero—w/ [Visited at 25 June 2018]
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Positioning Algorithm

The drone needs to be able to track is position, velocity and acceleration at any point in time. In order to do this, an
IMU is used to estimate these at an high frequency. In order to limit the integration error caused by these sensors,
sensor fusion and the absolute position update of the drone are used. The absolute position is obtained from the
relative position of the drone of the gate detection method, given that the exact position of all gates is known before-
hand, and the altimeter. This algorithm runs on the Pocket Beagle. The position estimates from the sensor fusion
are constantly passed to the path planning and control algorithms.

4.2, Subsystem Interface Definition
In this section the interfaces between different subsystems are explained and shown using the communication flow
diagram, the hardware block diagram and the software block diagram.

4.2.1. Communication Flow Diagram

The communication flow diagram is depicted in Figure 4.1. It provides an overview of the different interactions
between software and hardware. In particular, it illustrates the flow of data through the system, and in and out of
the environment. Each block represents an important element for the understanding of how the information flows.
The arrows between the different boxes represent the flow of information between blocks with a brief explanation in
Table 4.1. In the next subsection Section 4.2.2, a more detailed block diagram for the hardware and the software are
shown.
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Figure 4.1: Communication Flow Diagram

4.2.2. Hardware & Software Block Diagram

The hardware and software flow diagrams are used to give an overview of the interactions and mutual relations be-
tween the different parts on both the hardware and software side of the design.

The hardware block diagram is shown in Figure 4.2. Each block represents a component. A link indicates a connec-
tion between 2 components. A double arrow represents a mutual relation, while a single arrow means an interaction
from one component to the other. An explanation for each link is given in Table 4.2. The interactions between the
components will be further refined in the detailed design phase, in particular in Chapter 5, Chapter 15, and Chap-
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Table 4.1: Explanation of Links in Figure 4.1.

Link Explanation Link Explanation

1 ToF camera feed 14 Required thrust from motors

2 Monocular camera video feed 15 Required motor performance

3 IMU measurements 16 Complete set of sensor and status data

4 Altimeter measurements 17 Shut-down command from user

5 Pre-processed trajectory data 18 Updated way points for path update

Complete set of sensor and status data
6 Temperature sensor measurements 19 .
and video feed

7 Battery voltage measurements 20 Monocular camera video feed
Obstacle dimensions and . .

8 relative position of drone to obstacle 21 Required motor performance readings
Relative position of drone to gate

9 p & 22 Battery voltage measurements for telemetry
and centre of gate

10 Received command from user 23 Location of drone estimated by sensor fusion
Absolute position, velocity,

11 b . w 24 Number of passed gates
acceleration and heading

12 Number of passed gates 25 Readings of the temperature sensor

Required trajectory data
(yaw, position, velocity, acceleration)

ter 11, and Chapter 6, where also the electrical block diagram is located.

The software block diagram is shown in Figure 4.3. In this diagram the triangular yellow box represent the inputs
and the triangular red box the output and the blue square box the main piece of software in RAIDER. The arrows be-
tween the different boxes represent the flow of information between blocks with a brief explanation. In the detailed
phase Chapter 7, Chapter 8, Chapter 9 have their own software diagram explaining in detail how the software works.
Section 11.1 focuses on how the data is managed in the system and present the data handling block diagram.
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Figure 4.2: Hardware Diagram
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Table 4.2: Explanation Links of in

Figure 4.2

Link Explanation

1 Provide structural support

2 Provide power

3 Distribute power to sensors and
connect sensor to Pocket Beagle

4 Distribute power and structural
support

5 Distribute power, structural sup-
port and send data from sensors

6 Distribute power

7 Raspberry Pi distributes power to
cameras and cameras provide data
to board

8 Provide control input to ESC

9 Required thrust per motors

10 Provide attachment for propellers

This section provides the hardware preliminary design, in particular it focuses on the choice of sensors. Finally,
initial estimates of the mass and power budgets are given.
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Figure 4.3: The figure shows the software block diagram.

4.3.1. Payload

In general, the sensors should have a small size and a low power consumption. First the IMU will be discussed. After
that the camera selection will be explained. Third, the team’s choice of altimeter is elaborated upon and finally the
choice of onboard computers is explained.

IMU

The IMU is the most critical component of the drone, as its localization system strongly relies on integrated measure-
ments of its accelerometers and gyroscopes. The drawback of using IMU measurements is that its estimate becomes
too imprecise after few seconds. It has multiple sources of error such as the initial bias and the vibrations exerted by
the propellers. These errors are introduce in the integration constants, and for the position they propagate quadrat-
ically. This is further elaborated upon in Section 7.1.1.

The VN-100 is the only sensor in its class to offer a quaternion based drift compensated Kalman filter. It operates
with 32-bit floating point precision at update rates as high as 800 Hz3. Additionally, it can be calibrated for opera-
tional conditions, which minimize structural errors. This IMU has been selected among the best quality off-the shelf
components, this is not only reflected on the sampling rate which is more than eight times higher than a standard
IMU but also in the price.

Cameras

The cameras have the role of detecting gates and obstacles, in particular it should be lightweight and power effi-
cient. RGB race drone cameras were considered for detecting gates because they are very light and cheap. In order
to increase the probability of detecting gates, the RGB camera should have a high resolution and an high fps (frames
per second). The CONNEX ProSight HX* was chosen for its low latency and high resolution with an average power
consumption of 1 W and a mass of 13 grams. More specifically, it has a resolution of 1280x720, a vertical field of view
of 59.06 degrees and a horizontal field of view of 105 degrees.

In order to increases the robustness of the gate detecting approach, the RGB camera is paired with a ToF camera.
Depth is in fact an extra useful parameter, which is independent of object color. These type of technology is currently
under development and multiple cameras exist, that match the requirements. The Pico Flexx’ ToF camera weighs
only 8 grams with a length of 68 mm. It is connected to the onboard computer using a USB2.0/3.0 interface. The
only drawback is that the maximum range of this camera is 4 meters. it has a reolution of 224 * 171, a horizontal
resolution of 62 degrees and a vertical resolution of 45 degrees. This is enough to be useful for detecting the gates
and obstacles, but not enough to allow it to fully replace the RGB camera.

3https ://www.vectornav.com/products/vn-100 [Visited at May 24 2018]

4https://www.amimon.com/fpv-market /prosight-product-page-_2/ [Visited at May 24 2018]

5https ://pmdtec.com/picofamily/assets/datasheet/Data-sheet—-PMD_RD_Brief CB pico_flexx_V0201.pdf [Vis-
ited at May 24 2018]


https://www.vectornav.com/products/vn-100
https://www.amimon.com/fpv-market/prosight-product-page-2/
https://pmdtec.com/picofamily/assets/datasheet/Data-sheet-PMD_RD_Brief_CB_pico_flexx_V0201.pdf
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Altimeter

An altimeter is used to provide an accurate measurement of the drone altitude. An ultrasound senor is preferred
over a barometer because at low altitude, of approximately 1-5 meters, ultrasound sensors are more accurate. The
MB1240 XL-MaxSonar-EZ4 was chosen. The sensor is designed and calibrated to provide reliable information even
in environments with strong acoustic or electrical noise sources®, which helps reduce measurement noise due to the
sound coming from the propellers and motors.

On-board Computers

The main purpose of having two cameras is to increase the gate detection capability, and thus the autonomy of
our drone. As more sensors are added more computational power is needed to process all of the information. Two
computers are taken into consideration: the Raspberry Pi Zero W and the Pocket Beagle. The specifications of both
can be found in Table 4.37.

Table 4.3: Specifications for processors

Pocket beagle Raspberry Pi Zero W

Size 56x35x5mm 65x30x5mm
Processing Power ARM Cortex A-8 1GHz, ARM Cor- single Broadcom BCM2835 1GHz
tex M-3, 2 PRUs at 200MHz

Memory 512MB DDR3 RAM, 64KB Dedi- 512MB DDR2 RAM
cated Memory

Connectivity -USB2.0 -USB2.0
-SD slot -SD slot

-CSI camera interface
-Mini HDMI, WiFi, Bluetooth
Price €25,- €10,-

Since the Pocket Beagle does not have a dedicated camera interface a lot of precious processing power is lost in the
decoding of the signal. ® to connect the camera to the microcontroller. Although this interface can be simulated,
using the PRU inside a dedicated peripheral is preferred, which makes the Raspberry Pi Zero W perfectly suited for
this task.

As a single processor is deemed to be incapable of managing all operations alone, path planning, gate detection
and positioning, with the computational power available.” The depth camera chosen uses a usb connection and
therefore there is no need for an CSI interface. Since the Raspberry Pi has all the interfaces needed for processing the
image of the depth and RGB camera, it will be used for image processing, gate detection and gate dewarping. Given
that the Cortex A-8 has better computing capabilities according to benchmarks °, the Pocket Beagle will be used as
main processing unit.

4.3.2. Planform Design

Special care was taken to make sure the smallest possible propellers were used, this resulted in 4 x 4.5 inch propellers
being chosen. The reason for the team choosing the smallest possible propellers is the design philosophy. Since the
propellers take up most of the horizontal space on the drone, they have to be as small as possible in order to allow
the drone to be as small as possible.

These propellers then had to be combined with motors. It is deemed that the motor should have the following
minimal configuration KV-rating of 2500, thrust of 5 N, and a max peak current of 14 A. The F30 KV2800 from T-
Motor for instance, complies with these requirements, and in the specifications they were tested with the propeller
size selected '!. Once the motor is designed, the battery can be selected considering the hoover requirement of 10
minutes. In this preliminary phase the Turnigy 1300mAh 4S!? was selected.

After sizing the propellers, the rest of the components could be distributed over the frame. Some initial consider-
ation are reported as follows. Both of the cameras need to be in the front. Then, the computer boards and Power

6https ://www.maxbotix.com/Ultrasonic_Sensors/MB1240.htm [Visited at May 25 2018]
"https://www.arrow.com/en/research-and-events/articles/comparing-pocketbeagle-specs—-and-rpi-zero-specs
[Visited at May 25 2018]
8https://www.mipi.org/specifications/csi-2 [Visited at May 25 2018]
Snttps://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/ [Visited
at may 25 2018]
Ohttps://www.teachmemicro.com/raspberry-pi-zero-vs—-pocketbeagle/ [Visited at May 25 2018]
Uhttp://store-en.tmotor.com/goods.php?id=303 [Visited at May 25 2018]
12l’17‘:7‘:1t>s://hobbyking. com/nl_nl/turnigy—-1300mah-4s-45c—-1ipoly—-pack.html [Visited at]
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https://www.mipi.org/specifications/csi-2
https://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/
https://www.teachmemicro.com/raspberry-pi-zero-vs-pocketbeagle/
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https://hobbyking.com/nl_nl/turnigy-1300mah-4s-45c-lipoly-pack.html

4.3. Hardware Preliminary Design 21

Distribution Board (PDB) should be put behind the camera on the top of the frame. Here, they will be cooled by
the airflow produced by the propellers, which allows them to be stacked on top of each other. The IMU was placed
behind the other components, as far away from large currents as possible to lower the amount of interference it will
encounter. Lastly, for the top side of the frame, the ESC’s were placed near each of the motors to save space near the
middle of the drone. After this, the battery was placed in the middle in order to keep the center of gravity as close
to the center of the drone as possible, allowing for the best possible angular accelerations. Finally, the ultrasound
sensor is placed on the bottom.

4.3.3. Preliminary Resource Allocation

The list of components developed in Section 4.3.1 and Section 4.3.2 is used to make an estimate of the preliminary
mass, power and cost for RAIDER, shown in Table 4.4. The final resource allocation of the design is shown in Chap-
ter 12.

Table 4.4: Top level mass, power, and cost budget

# Piecemass[g] Piece power[W] Piece cost[€]
Computer 1 15.0 6.0 €25.00
Graphics computer 1 9.0 5.0 €25.00
Depth camera 1 8.0 0.3 €300.00
RGB camera 1 14.0 1.0 €50.00
Ultrasonic altimeter 1 6.1 0.5 €35.00
Power distribution board 1 10.0 1.0 €100.00
Electronic speed controller 4 10.0 0.5 €15.00
Motor 4 80.0 23.0 €15.00
Propeller 4 2.0 0.0 €2.00
Frame 1 65.0 0.0 €100.00
Battery 1 154.0 0.0 € 30.00
Cables 1 10.0 0.0 €10.00
IMU 1 15.0 0.5 € 450.00
Total 398.1 108.3 €1.253.00

A final mass budget is compiled using the mass of the components selected. The motor, ESC, propeller, battery,
sensors and computers weights are taken from component chosen in the previous sections. The frame and PDB,
however, will be designed for the drone, in the table the weights reported come from commercially available alter-
natives with similar requirements.

Several elements still need to be considered in detail, such as the mounting and the wire length for each sensor. The
cable weight is assumed to be 10 grams for the moment.

Power management is important to ensure the battery is capable of delivering the required power for the required
time. As opposed to a normal race drone an autonomous race drone has a lot of components that use power. A
preliminary power budget is used to manage the amount of power each component can use and to size the battery.
Even if most components have been selected, the actual power might still vary. For instance, the power used by
sensors depend greatly on the update frequency required. Computing units also have a degree of uncertainty. It is
not known which interfaces will be used. In general for all components, but in particular for the motors, the usage
profile is not yet tested before and therefore precise results are unknown. Also the loss of power in cables or imperfect
soldering is not accounted for, but this is deemed very small.

To keep repair cost down parts should be easily replaceable and cheap. For each component a financial budget has
been allocated. Although re-budgeting might be necessary later on,this budget is to ensure that the components can
cheaply be replaced by new ones.
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Structural design

To complete the mission the drone should stay in one piece. The two parts that were identified to be subjected to
the highest loads are the arms and the shock absorbers. The critical load cases in different direction were identified
for both. They were taken directly from the requirements. Furthermore the IMU damping was identified to be of
paramount importance as RAIDER will depend highly on the IMU. Lastly using the risk map from Chapter 18 the
team decided the drone needs propeller guards to protect the propellers and decrease the chance of crashing.

5.1. Arms Design

The arms protrude from the second deck outwards and attach the motors to the frame. They transfer the motor loads
to the center of gravity. The arms are attached to the frame in the center of the body.

5.1.1. Loading
The two load cases that were identified are: Thrust of the motor at the tip and impact with a gate at 100km/h.

Case 1: Thrust of the Motor

As stated above, the arm attaches the motor to the frame. The maximum thrust of the motor needs to be transferred
to the frame where the center of gravity is located. This is a quasi constant load as the arms should be capable of
handling these loads for a long time.

Load case summary

Type Constant force

State When performing high g manoeuvres
Location At the tip of the arm

Orientation In negative z direction of the body reference frame
Magnitude  6.1N

Case 2: Impact of Arm with Gate
Impact is modeled at the tip of the arm. As a consequence of the impact the drone will rotate around the gate.

Consequence of impact at arm
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Figure 5.2: Impact energy at the tip of

Figure 5.1: Impact with a gate at the the arm

end of a the arm

Due to the drone’s inertia and high forward speed it is assumed the centre of gravity of the drone will stay at its initial
trajectory and the drone will need to rotate since the arm can not go through the solid boundary of the gate. The

23
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angle needed for the rotation is derived using Figure 5.1. The absolute angle(Q2) and its derivative(w) are given by
Equation (5.1) and Equation (5.2) respectively. Q is defined as shown in Figure 5.1.

0.147)

Q= arcmn( (5.1)

0147

Y=oz’
The velocity v is assumed to stay constant, but distance x depends on the pitch angle (0) of the drone. As the drone
will be pitching down more than 50 degrees when flying at high speeds, this needs to be taken into account. The
distance x is then given as a function of 6 by Equation (5.3).

(5.2)

x=cos(0)-0.147 (5.3)

The energy that is needed to obtain the near instantaneous rotation can be calculated by multiplying the impact
force with its work. The latter of which is compiled into a energy conservation equation. The former is calculated
using Equation (5.4).

1 2
Uwork= Elw (5.4)

The inertia (I) was estimated using a radius of gyration that puts all of the mass in a sphere with a 1.5cm radius. This
covers the entire width of the frame and should therefore be representative for the entire drone. The impact energy
is highly dependent on the pitch. The ratio between the two is shown in Figure 5.2. In this graph, it can be seen that
the impact energy increases with the pitch angle. The maximum impact energy occurs when the drone has a pitch
angle of 90°. However, according to analysis, the drone will be at a pitch angle of approximately 50°at 100km/h.

Load case summary

Type Impact force

State When flying at 100km/h at a pitch angle of 50°
Location At the tip of the arm

Orientation Opposing the velocity vector
Magnitude  1.2]

5.1.2. Design
Meeting the impact load case is very demanding. Therefore, a trade-off was made
about how this load case should be approached. Two option are identified: The
drone should stay fully impact or the arm is allowed to break off at a predeter- /
A

mined place. The latter is to ensure the arm is not completely lost and can easily
be replaced.

Although both options are feasible, they handle the impact very differently. They
will not result in very different arm designs, but this choice will have great conse- 1 [
quences on the overall design. If the structure is not to fail in any way the arms SE Cﬁ ON

are directly attached to and part of the middle frame. However the high spin rate A
this would induce would result in a hard crash. For this reason the following ap- ——
proach was chosen; The arms are not allowed to break off, but should protect the

drone sufficiently. Furthermore the overall structural design should protect all Figure 5.3: Arm Design

vital components.
The design will consist of four arms, all of which are connected to the center frame plate. The connection mechanism

is designed such that it will partially deform on impact, but will not to break during such a crash. The same holds for
the carbon fibre arm.

The arm will be made out of a solid carbon fibre laminate. The thickness needed will be determined using the
structural analysis described in Section 5.1.3. The arm is mounted on top of the center frame plate. The amount of
overlap, bolt and insert size will follow from the first structural analysis in which the thrust load case is considered.
An overview of the arm is given in Figure 5.3.

SCALE 2:1

Material
Different materials were considered for the design of the arms. All materials in consideration are shown in Table 5.1.

Table 5.1: Arm material trade off
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Material Yield stress Youngs modulus Density Raw price
[MPal] [GPa] [g/cmd] [€/kg]
Steel 350.0 200.0 7.801 0.722
AL-7075 503.0 71.7 2.813 11.314
Carbon composite with resin® 1.45 298.50
Carbon laminate(0°tension) 803.0 57.1
Carbon laminate(0°compression) 750.0 54.8
Carbon laminate(90°tension) 722.0 56.4
Carbon laminate(90°compression) 741.0 48.7 6
Resin 71.0 3.2
Titanium 590.0 103.0 4517 56.97%

The carbon fiber plates with a resin core are by far the lightest. These are also the most popular option in the market
for FPV drones and have therefore proven to be up to the job. Downsides of using carbon fibres plates are their cost
and difficulty to manufacture. Due to the fact that they are anisotropic and consist of two materials they are harder
to model.

For the design four different thicknesses were taken into consideration: 0.7mm, 1.5mm, 2.2mm and 2.9mm. The
thicknesses depend on the fibre laminate which has single ply thickness of approximately 0.7mm.

5.1.3. Model

Modeling composites can be difficult and time consuming, due to the fact that composite structures do not behave
isotropically?. However the carbon plates that will be used for the drone are much thicker than a single sheet of
carbon and consist of multiple layers of carbon oriented in different directions.

Assumptions
During modeling the following assumptions are made:

¢ The carbon layers act as isotropic materials
Although carbon fibres are not isotropic by themselves when a proper layup is used(0°-90°mixed with 45°) the
laminate can be assumed to be quasi isotropic[58]. Furthermore quasi isotropic properties can be obtained for
carbon composites from the manufacturer’s datasheets. These show that the transverse properties are within
5% of the longitudinal properties'©.

* Small deformations
All deformations resulting from forces are small, this ensures that all deformations are independent of each
other.

* Rigid cross section
It is assumed that the cross section will not change shape due to the loading. Since all deformations will be
small, forces will only undergo very small orientation changes due to their different places in the structure.
Furthermore all angles are small so integration can be done by multiplication.

* Rigid frame
During this design phase the focus is on the arm and the bolts that keep it secure. Due to size of the interference
with the arm, it can be assumed to be rigid and replaceable by a single force.

¢ Safety factor 1.5
Although carbon fibre layups can be unpredictable, most properties are known for the proposed materials.

lhttp://www.matweb.com/search/datasheet .aspx?bassnum=MS0001&ckck=1 [Visited at June 5 2018]
2http://www.meps.co.uk/Worlds20Carbon$20Price. htm Visited at June 5 2018]
Shttp://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6 [Visited at June 4 2018]
4https://www.mch.eu/en/metal/aluminum/aluminum-sheet/flat/miscellaneous/aluminium-plate-strip-en-aw—-7075-t651/
p/2800-0056 [Visited at June 4 2018]
Shttps://www.rockwestcomposites.com/plates—panels—angles/carbon-fiber-plate/carbon-fiber-fabric-plate/
403-410-group [Visited at June 5 2018]
Shttps://www.toraycma.com/files/library/166e096be76c7eb7.pdf [Visited at June 8 2018]
"http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTU041 [Visited at June 5 2018]
8http://www.steelforge.com/raw-materials/titanium-forgings/ [Visited at June 52018]
Ynttps://appliedcax.com/docs/presentations/FEMAP-Symposium-2016-Basics—-of-FEA-Composite—-Modeling.
pdf [Visited at 26 June 2018]
1Ohtt:ps ://www.toraycma.com/files/library/166e096be76c7eb7.pdf [Visited at June 8 2018]


http://www.matweb.com/search/datasheet.aspx?bassnum=MS0001&ckck=1
http://www.meps.co.uk/World%20Carbon%20Price.htm
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https://www.mcb.eu/en/metal/aluminum/aluminum-sheet/flat/miscellaneous/aluminium-plate-strip-en-aw-7075-t651/p/2800-0056
https://www.mcb.eu/en/metal/aluminum/aluminum-sheet/flat/miscellaneous/aluminium-plate-strip-en-aw-7075-t651/p/2800-0056
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https://www.rockwestcomposites.com/plates-panels-angles/carbon-fiber-plate/carbon-fiber-fabric-plate/403-410-group
https://www.toraycma.com/files/library/166e096be76c7eb7.pdf
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTU041
http://www.steelforge.com/raw-materials/titanium-forgings/
https://appliedcax.com/docs/presentations/FEMAP-Symposium-2016-Basics-of-FEA-Composite-Modeling.pdf
https://appliedcax.com/docs/presentations/FEMAP-Symposium-2016-Basics-of-FEA-Composite-Modeling.pdf
https://www.toraycma.com/files/library/166e096be76c7eb7.pdf
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Therefore, as the structure is rather simple, a safety factor of 1.5 as used in the aerospace industry was deemed
enough.

¢ Infinitesimal small bolts
The bolts are modelled as point forces instead of around the entire hole as will be done in the FEM analysis.
The stress around the bolts will be higher in reality than modeled, but this assumption simplifies the model
and allows the use of single constant cross section.

External Loads in Case 1

For the first load case the free body diagram in Figure 5.4 was made. By taking moments around the y-axis at the
location of the Ffy g the force on the bolts can be calculated. Both bolts will be taking the same amount of force as
they are symmetrically placed and the motor force only creates a moment around y. The frame force is the normal
force of the center frame on the arm that ensures that the arm does not intersect with the frame. Together with the
bolt force they counteract the moment created by the thrust. The full static equations of motion can be found in
Equation (5.5).

Z F,:

DBy
ZFZ:

—Ftnrust + Fpotr1 + Fpolr2 — Ffmme

oS O O © © ©

(5.5)
Y My:0= y.boltl " Fpoir1 — Ty boit2 - Fpolr2
ZMy :0=" rxrhrust Frhrust — Tx,polr1 " Fooir1 — Tx,bolr2 " Froir2
ZMZ :
F impact Fz,impact
I:\,.',impact
thrust Fx,impact

Fbolts X
! ot
0 NV
I:frame H X

Figure 5.4: Free body diagram of load case 1

z,b2

Figure 5.5: Free body diagram of load case 2

External Loads in Case 2

The second load case is a bit more complex as the impact force is under an angle. Furthermore the precise force is
unknown until the deformations are solved and the force at the point of impact are solved for. This yields a total of
8 unknowns: The six reaction forces at the bolts, a reaction forces by the frame and an unknown force due to the
impact at tip of the arm.

The reaction of the frame is placed on the x-axis at the end of the overlapping part of the frame. In reality the frame
will bend slightly with the arm, however since the frame is assumed to be rigid the arm will solely rotate around the
end of the frame.

Six equations are given by the equilibrium equations in Equation (5.6).

ZFx:O

Zin(): Fx,boltl +Fx,bolt2+Fx,impact

ZFy:0= Fypotr1 + Fypotr2 + Fyimpact

ZFZ :0= Fz,boltl + Fz,boltZ + Ffmme + Fz,impact (5.6)
Y Mi:0= Fzbotn1 * Typotnt + Fzbolr2 * T'ypolr2
ZM;‘ :0= F2 poit1 * Tx,boit1 + Fz boit2 " Tx,bolr2 + Ffrume *T'x,frame

B .o _
ZMz :0=" —Fypoin- T'y,boltl + Fybolr2* Ty,bolt2 — Fy impact* Ty,impact
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The displacement of the tip is caused by the deflection of the carbon plates and the deformation of the bolts. Both
should be taken into account as the force due to the load rapidly decreases with a higher impact deformation, as
given by Equation (5.7).

Uimpact
Fimpact = d
m
Fximpact = ix* Fimpact (5.7

Fy,impact = iy 'Fimpact
Fz,impact = I ‘Fimpuct

The impact force can be related to the displacement. Although this gives 10 equations in total, another unknown, the
displacement, was introduced. To this extend there are 12 unknowns and 10 equations; not enough for a solution.
The displacement at the tip of the arm is a combination of two effects: The bolts’ deformation and the structure’s
deformation. The former is rather difficult to calculate as of yet. The latter, however, can easily be taken into account.
The bolts will be made of aluminum to be as light as possible. Their deformations can be related to their respective
forces using Equation (5.8).

Fz bolt
dzpotr = lporr—"—F—
Epoit Apoir

_ Fy,bolt
dypotr = lpott =———

Gpolt Apolr 5.8)

Fy bo1r1
dypoinn = lpott———"——
Gpolt Apolt

Fx bolt2
dypoirz=  lpott——"———
GpolrApolr

These are combined with geometrical constrains to produce the displacements at the tip, which can be calculated
according to Equation (5.9).

rca
dz,m = dz,balt_
rcB
1 1
dx,m = _dx,boltl + _dx,haltz
2 2 (5.9)
T'AB T'AB
dx,m = dy,holt + dx,boltl - dx,boltz
T'y,boltl T'y,bolt2
dy, = dy,mix+dymiy+dzmiz

The displacement of the arms can now be calculated. With a total of 19 unknowns and 18 equations, the system is still
not fully determined. The last equation results from the fact that both bolts need to stay at the same position. They
are not allowed to move differently in the y direction and therefore the last constraint is given by Equation (5.10).

Fybotr1 = Fybolr2 (5.10)

By linearizing and iterating, the entire system consisting of Equation (5.6)-Equation (5.10) can be solved. This results
in all external forces acting on the arm.

At first the effects of the deformation of the arm was not taken into account when calculating the deformation. This,
however, resulted in very high stress concentrations in the arm and deflection that were the same size as the bolt
deformation. This was solved using an iterative process in which a certain deformation was added to the external
solving methods. The program stop iterating when the error between the added displacement and the actual defor-
mation of the structure dropped below a set threshold.

Internal loads

Using the external loads calculated in Section 5.1.3 and Section 5.1.3, the internal loads were calculated by taking the
moments around Y and Z. Since none of the load cases introduced a torque, it was not taken into account.

Since the carbon plates were assumed to be isotropic, Equation (5.11) was used to model the bending stress.

F, M. M,z
_ fnormal + z) 4
A I, Iy

(5.11)

The stress was calculated for the top and bottom corners of a cross section as these will be the places were the highest
stress will occur. The deformation of the plate was calculated by integrating the deformation of a single section over
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the entire beam. This method allows for extra forces and ensures that the same model can be used for both cases.
The deformation of a single cross section is given by Equation (5.12).

dw  M-x
dx ME"JICZ (5.12)
w==

2E1

5.1.4. Results

The models have been run for four thickness of the arm: 0.7mm, 1.5mm, 2.2mm, and 2.9mm. The maximum stress
for each was calculated in the second load case using the methods described before. The 2.9mm carbon was chosen
as it is the only plate that can withstand the maximum stress caused by an impact at 100 km/h. All results in this
section are all calculated for a plate thickness of 2.9mm.

Case 1: Results

The thrust of the motor is relatively low due to the low weight of the drone. However, due to the small overlap of the
frame and arm, the force on the arm and frame are relatively high compared to thrust force. The exact numbers are
shown in Table 5.2.

Table 5.2: External force load case 1 Table 5.3: Internal loads case 1
External force Point of application = Magnitude Magnitude
[m] (V]

thrust (0.000 0.000 0.000) (0.0 0.0 -6.1) Plate maximum stress 23.7 MPa
Bolt 1 (0.068 -0.003 0.000) (0.0 0.0 44.7) Plate minimum stress -23.7 MPa
Bolt 2 (0.068 0.003 0.000) (0.0 0.0 44.7) Plate bending in z direction 0.5 mm
Frame (0.073 0.000 0.000) (0.0 0.0 -83.3) Bolt normal stress 11.8 MPa

Bolt shear stress 0.0 MPa

Bolt Von Mises stress 11.8 MPa

As can be seen in Table 5.2, the forces on the bolts are very small as is the force that the frame exerts on the arm. This
load case does not induce much bending in the structure.

In Table 5.3 the stresses in the structure are shown. None of them exceed the critical stress of 750MPa for the carbon
plate. Therefore, the structure will not have any issue dealing with the stresses induced by the thrust.

Top Bottom

-20 -10 0

Figure 5.6: Casel: Modelled stress with a deformation scale of 20

The stress distribution in the frame is shown in Figure 5.6. It can clearly be seen that the stress is highest near the
bolts and gradually decreases towards both ends of the arm.

The stress in the arm due to the thrust loading bends the arm upwards, introducing compressive stress in the top
part of arm and tensile stress in the bottom part, as shown in Figure 5.6.

Case 2: Results
The second case was a lot more challenging to solve, especially due to the complex external loading. This was done
as described in Section 5.1.3 using an iterative linear solver. The external forces are summarized in Table 5.4.
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Table 5.4: External force load case 2 Table 5.5: Internal loads case 2
External force Point of application Magnitude Magnitude
[m] (V]

Bolt 1 (0.068; 0.003; 0.000) (409.7; 19.7; 965.9) Plate maximum stress 584.5 MPa

Bolt 2 (0.068; -0.003; 0.000) (-449.2; 19.7; 965.9) Plate minimum stress -582.3 MPa

Frame (0.063; 0.000; 0.000) (0.0; 0.0; -2085.2) Plate z bending 10.1 mm

Impact (0.000; 0.000; 0.000) (39.5; -39.5; 153.4) Bolt normal stress 254.1 MPa
Bolt shear stress 118.2 MPa

Bolt Von Mises stress 280.2 MPa

The external forces introduce a final deformation of approximately 6mm at the tip due to the elongation and defor-
mation of the bolts. Coupled with a deformation due to plate bending of 10mm, the magnitude of the impact force
is calculated to be 180N at deformation of 20mm. The stress distribution is shown in Figure 5.7.

Top Bottom

—400 —200 0 200 400
MPa

Figure 5.7: Case2: Modelled stress with a deformations scale of 4

As can been seen in Figure 5.7 the internal stress reaches zero at the locations of the bolts. The difference is explained
by the downward bending instead of up and the fact that the frame force is now applied at the start of the overlap.
The deformation in the carbon plate is far more excessive than it was in the firstload cases. Note that the deformation
scale used is 5 times as small as for the first load case. The large bending is beneficial as it reduces the load of the
impact.

5.1.5. Verification
The model for internal stresses was verified using the following test cases:

¢ The bending of the arm was validated using simple formulas for beam bending. The arm is roughly clamped at
the side of the frame as the bolts and frame prevent it from bending. This yields the bending of the arm should
be comparable to the bending of a clamped beam, for which Section 5.1.5 holds.

_ FI®

© 3EI

In the first case of the applied thrust the total bending of the beam was modeled to be 1.1mm; the formula
results in a 1.2mm deflection. This is caused by the bolt locations; The arm can not start bending before the
bolts, whereas the clamped beam can.

e When no load is applied to the structure, the structure does not deform. Nor are any reaction forces present.
Furthermore for each load case the static equilibrium was checked before the internal stresses were calculated.

5.1.6. Validation

To make sure the models are correct validation is performed using software that implements Finite Element Anaylsis
(FEA). The first load case of the arms was validated by fixing the location of the bolts and applying the thrust force at
the tip of the arm. The entire structure is drawn using Solidworks, which has a built in FEM workspace that was used
for the analysis. The stress distribution is shown in Figure 5.8 and Figure 5.9.

A big difference can be seen around the holes of the bolt. These were not modelled in the program, but high stress
concentration can be found around them. The main reason is the modeling constrained used, as fixed geometry can
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Figure 5.8: Casel: Stress in the top calculated using Solidworks Figure 5.9: Casel: Stress in the bottom calculated using Solidworks

introduce a lot of stresses that are different than for a bolt. A bolted connection always has some play, whilst a fixed
geometry constrain does not.

When we the holes are ignored and the bottom stress is probed just before the holes the FEA predicts a stress of
24MPa. This number is very similar as the numbers found in the model, which were 23.7MPa. Furthermore when
the same is done for top part of the structure -27MPa in the FEA and -23.7MPa in the model. Both results are close
together, yielding that the model predict the stress rather accurately.

5.2. Crumple Zones

The drone will crash many times while it is being tested and optimized. In order for fast development to be possible,
the drone has to be able to keep going after a crash. In order to achieve this, a sturdy structure with quickly replace-
able crumble zones are needed. This lowers the forces on the electronics and sensors. Although some components
may be able to handle loads up to 1000g[53], the g-load for the drone is limited to the lowest rating of 500g([34].

5.2.1. Loading

The drone has a top speed of 100km/h whilst having a mass of about 700 grams. This yields a total impact energy of
270J, which should be completely absorbed by the drone. This is a lot higher than the impact at the tip of the arm as
the drone is not assumed to tumble after the impact. However unless the drone is flying into a wall at full speed, this
will not happen. In case the drone loses all of its lift when flying at 100km/h it will skid over the ground gradually
slowing down. And when it hits a gate at 100km/h it will tumble over it, without losing too much speed as can be
seen in the previous section.

The drone should be able to stay intact when it suddenly loses lift and falls on the ground. The stakeholder require-
ment states that this could happen from up to a maximum height of 3m. Combined with the mass of 700 grams,
this is a potential energy of 20.5]. The shock absorber has to be able decrease the g-load below g00g in the case this
happens.

5.2.2. Design

The top of the internal structure is protected by propeller guards which will be designed later. They stick out above
the frame and will therefore most of the impacts from above. However the lower side of the frame is still unprotected
and in case the drone falls to the ground the impact energy is too high to survive this without protection. In order to
alleviate some of the impact energy, foam balls will be placed around each corner of the frame to soften the impact
from each angle.

The radius of the ball should be higher than the distance needed to accomplish a deceleration lower than 500g. This
yields a radius of at least 6mm. Since the foam only compresses to about 20% of its initial size, the balls’ radius was
set at 7mm/[12].

Material

Foam consists of bubbles of gasses trapped in cells. Usually air is used, although other gasses are also seen. The cell
structure is made using polymers which are of most interest in designing the damping structure. They define the
plateau region that can be seen in Figure 5.10. Therefore, the different materials shown in the Table 5.6!11>'13 were
considered for the crumple zones.

11https ://plastics.ulprospector.com/generics/45/c/t/polyurethane-pur—-properties-processing [Visited at
June 11 2018]

Rhttps://www.makeit from.com/material-properties/Polystyrene-PS [Visited at June 11 2018]

Bhttp://www.vinidex.com.au/technical /material-properties/polyethylene-properties/ [Visited atJune 112018]
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Polyurethane 1.2 2.2 Plateau |

S~—Linear elasticity |

Polystyrene 1.0 2.4 Linear elasticity !
Polyethylene 0.95 0.8 o Strain ¢ Enax |
Figure 5.10: Stress strain relation for foam

5.2.3. Model

The main task is to act as a crumple zone of the drone. This will ensure that the speed is slowly bled off, reducing
the deceleration. The maximum allowable deceleration is 500g, as discussed in the section intro. The amount of
crumple zone as a function of the drone’s speed is given by Equation (5.13).

0.502
d=2Y
5008

(5.13)

Here, g is the acceleration due to gravity, v is the impact speed and d is the needed amount of crumble zone needed.
This equation assumes the drone is brought to a complete still after crash and al velocity is lost. It can be related to
energy using Equation (5.14).

U

= (5.14)
5008 * m

Both d and g represent the same variables as in Equation (5.13). Now, m is the mass of the drone and U is the impact
energy.
Next to structure of the foam should be calculated. The stress strain curve of foam, see Figure 5.10[12], can be divided
in three sections: The elastic phase, the plateau phase and densification phase.
The plateau phase is of most interest as in this region most of the energy can be absorbed. The elastic phase will be
ignored for the design of the crumple zones since very little energy is absorbed here.
From the stress strain curve it can be assumed that the stress is linear while in the plateau phase and can be calculated
using Equation (5.15).

0=0¢ +€-Ep; (5.15)
The total non dimensional energy absorbed by the foam can be calculated by integrating Equation (5.15) over the
strain, the result of which can be seen in Equation (5.16).

e=0,€+0.5¢Ep; (5.16)
Adding the dimensions results in Equation (5.17).
d d?
U:Aael7+Al—20.5Epl (5.17)

This can be solved to find the deformation distance from a certain energy, the result of which can be seen in Equa-

tion (5.18).
1\/A%02,+2E, AU - Al

AEp;

d= (5.18)
In this equation d is used to denote the compression distance, 1 is the total height of the foam and A is the cross
section area, g is the stress at which the plateau region begins and Ej,; is the stress strain constant in the plateau
region.

The precise value for Ey,; is very hard to compute and is near zero as can be seen in Figure 5.10. Since the purpose
of the model is to give an estimate anyway, it will be assumed to be zero. This greatly simplifies Equation (5.18) into
Equation (5.19).

d l (5.19)

B Ao
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The properties of the foam are expressed by o,;, which describes the stress at which the foam starts failing. The
failing of the foam is due to the cell walls buckling and can be modelled using a thin wall buckling. The buckling load
is given by Equation (5.20)[12].

w2 EI

IZ

Here, F.,;; is the critical load at which the cell wall buckles, E the Youngs modulus of the material used for the foam,
I is the moment of inertia of the wall, and I the cell wall height. This formula holds for square cells which in reality
will not exists but it gives a good approximation. If cubic cells are assumed(width, length and height the same), the
formula simplifies even further into Equation (5.21).

(5.20)

crit =

w2 Est?
1212

Using Equation (5.21) and Equation (5.19) the cell size in the foam can be accurately designed to give enough damp-
ing while still being lightweight. The weight of certain cell size can be deduced using the density of the polymer and
Equation (5.22).

(5.21)

Oel =

t
Pfoam = 3/05? (5.22)

In Equation (5.22), p; is the density of the material used for the foam. Combining this, the foams can be optimized
for their weight.

5.2.4. Result

The case in which a impact of 100km/h was taken into account was deemed unfeasible to reach as it would imply
a crumble zone of over 8cm. As this is twice the width of the frame it was deemed much to big. Therefore only the
second case, a fall from 3m was taken into account. To stay below the g limit a crumple zone of 6mm is needed.

For each material the foam cell structure was calculated, the results are shown in Table 5.7.

Material Cellsize Cell wall thickness Foam density

[mm] (um] [g/cm?]
Polyurethane 0.5 2.01 0.0145
Polystyrene 0.5 1.93 0.0116
Polyethylene 0.5 3.35 0.0190

Table 5.7: Foam design for crash absorbers

As shown in the table polystyrene foam will be the lightest and adequate for the drop requirement. The protective
ball crumple balls will have a radius of 7mm to allow for some extra crumble zone.

5.2.5. Validation
The same formulas were used in by de Vries[12] and he validated them to be within 20% of the actual properties of
the test specimen. As no further derivation or other theories were used these formulas are still valid.

5.3. IMU Damper

The drone is very depended on the measurements of the IMU, therefore they should be very precise and have a high
frequency. However the rotors of the drone introduce high amplitude vibrations which cause excessive IMU drift
and imprecise measurements.

To overcome this issue it was decided the IMU needs to be mechanically filtered from noise by putting a damper
between the IMU and the chassis. According to literature the minimum control frequency is 200Hz. Therefore all
vibrations with frequencies above this threshold should be damped.

5.3.1. Loading

Vibrations in the frame of a quadcopter are mostly caused by instabilities in the motors. This means that the fre-
quency of the vibrations will be similar to the rotational velocity of the motors[56].

Although the motors are located at the end of the arms, the other parts of the structure are considered stiff enough
to transport all vibrations to the mounting plate of the IMU. The noise of the motors is present in all six degrees of
freedom.

Due to the complicated structure it is very hard to predict the precise magnitude of the vibrations that will reach the
the position of the IMU. Since the IMU is gathering data at 800Hz, as explained in Section 7.1.1, any vibrations of up
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to 400Hz can be measured. However, in order to ensure that all vibrations of over 400Hz are completely damped out,
the damping threshold was set at 200Hz.

5.3.2. Design

To dampen the motion of the IMU it will be bolted to the frame with rubber feet. The rubbers will guide the loads
through and dampen all high frequencies. The IMU will be mounted on the rubber feet using the two bolting holes
located 30.48mm apart.

The rubber feet are small circular pieces of rubber with a bolt on top of it, which are commercially available. The
height and diameter will be determined using the models described below.

The commercially available parts use rubber as damping element. In order to keep cost down the commercially
available units will be used. Therefore the main damping material will be rubber. The rubber has a youngs modulus
of 0.02GPa and damping ratio of 0.4!4.

5.3.3. Model
The IMU has six degrees of freedom (DoF) on the dampers, namely the x,y,z position and the three rotations, see
Figure 5.11. The two supporting damped bolts are modeled as a spring and a damper collection. The equation of

NN N N NNNN N NN N NN\ NN
Figure 5.11: Free body diagrams of the IMU damper constellation

motion are noted down for each of the six DoE For these equations it is assumed that there is no coupling between the
rotations. Furthermore all angles are deemed small so velocities can all be calculated by multiplying the rotational
velocity by the radius. Furthermore the distance (d) between the location of the damper and center of mass of the
IMU is 15mm'®. Note that the IMU is approximately a square so I, = I yy- This results in Equation (5.23).

Y Fr=  mi= —2%ayy —2xkyy + Dy (1)
Y F,= mj= =2y ayxy —2zkxy + Dy (1)
Y F.= mi= —2za; —2zk; + D, (1)
i . (5.23)
Y My= L= —2Gag—2qky+Dgy(1)
Y My= ILyp= -2pd*a,—2pd*k;+Dy(1)

Y My= I.i= -2fd*axy—2rd*kyy+ D (D)

The a and k terms in these equations are the damping and spring coefficient of the rubber feet respectively. These
could be calculated by assuming the feet act as clamped mass less beam supporting a mass. For this, Equation (5.24)
hold true.

_ 3E1xx,damper

Axy = ¢ mkxy kxy = 3
AE
a; = C\/ mkz ICZ = T (524)
EI
ag= ({y/Ixxkg quw

In these formulas Iy gamper is the area moment of inertia of the damper, E is the Youngs modulus of the damper
material, { is the damping coefficient of the material and A is the cross sectional area. All the D functions in Equa-
tion (5.23) are disturbance forces acting on the IMU.

The ordinary differential equations were then transferred to the frequency domain and transfer functions were com-
piled. Using these transfer functions bode plots were made for all different vibrations.

YWhttps://www.azom.com/properties.aspx?ArticleID=920 [Visited at June 13 2018]
Bhttps://www.vectornav. com/docs/default-source/documentation/vn-100-documentation/
vn-100-user—-manual- (um001) .pdf?sfvrsn=b49fe6b9_18 [Visited at June 13 2018]
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5.3.4. Result

Although different combination of height and radius of dampers are possible a suitable was found. The IMU will be
damped by two rubber dampers with a height of 3mm and a radius of 3mm. The damping characteristics of these
dampers can be found in Figure 5.12.
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Figure 5.12: Frequency response of the damper system. The black striped vertical line points out the wanted
cutoff frequency. The solid line corresponds to the maximum frequency of oscillations that the IMU can
measure.

The size of the rubber parts dampens the other parts of the drone very well. The graphs at the left show the acceler-
ation response to disturbances in the X, Y and Z direction. The X and Y direction are combined as the damper bends
in the same direction and will yield a similar curve. The 3x3mm damper has a slight peak at the wanted frequency of
200Hz, but also dampens very steeply at higher frequency. This is a wanted effect and lowers all vibrations above the
200Hz.

Secondly the results for the rotational vibrations are given in the right plot. The damping is different in these cases
as it mostly depends on the arms to the dampers. The green and orange curves, showing the Z and Y rotation respec-
tively, are damped at the same frequency. Furthermore the Y and Z rotational damping frequency is slightly higher
than for the accelerations.

However a problem arises in the rotation vibration around the X-axis. The only damping that can be found around
that direction comes from the bending forces in the rubber. The rubber is however not stiff in bending resistance
and therefore a very sharp peek arises at 30Hz. The high peak is 100 times higher than the normal response and is
therefore unwanted. Furthermore directly after the peak the response is damped with a phase difference of 180°.

The problem arose from the fact that the IMU has only two mounting location that could be used for the damping
bolts. To overcome the sharp peek at 30Hz two rubber pieces will be placed along the Y-axis, effectively damping the
IMU at two more locations. This leads to the kinematic equation in Equation (5.25) and the response as shown in
Figure 5.13.

Y My =ILwd=-2qag— Gd*a, — qd*k, —2qky + Dy(1) (5.25)

This configuration removes the high frequency and dampens the X rotation together with the other rotations.

5.4. Propeller Guards

The propellers of the drone will be turning at more than 30000RPM. In the case a propeller collides with its sur-
rounding, the drone will rapidly lose control and crash. During most of its life, the drone will either be hovering or
flying slowly. During this time, a propeller guard would save a propeller from breaking. At high speeds, however, the
propeller guards are allowed to fail.

An added benefit of the propeller guards is the fact that it will also protected the surround and each livings beings
from the rotating blades. The propellers, although small and lightweight, have a lot of kinetic energy due to their
high rotational rate, as explained in Section 17.4.1.

5.4.1. Design

In general four different concepts of propeller guards can be identified: quarter, half, full and side quards. All four
types are shown in Figure 5.15.

The fully circular propeller quards were immediately deemed unfeasible as they would severely obstruct the view of
the camera. A quick trade off based on the most important parameters was made to find the type that best suites
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Figure 5.15: Propeller guard types

the needs, this can be seen in Table 5.8. All values were found using reference part and the perimeter coverage was
determined as a ratio considering a square perimeter. All criteria have the same weight. The score was determined
using Equation (5.26)

Perimetercoverage
Score = - (5.26)
Weight-numberofbolts

This way the guard typ with the highest protection for the best repairability and weight can be chosen.

Table 5.8: Propeller guard trade off

Criteria Quarter Half Fullside
Weight per rotor|[g] 9.0 12.0 14.0
Number of bolts per guard|[#] 4 4 8
Perimeter coverage in total[%] 45.5 68.2 72.3
Score 0.0126  0.0142 0.0065

Itis clear that the full side propeller guards are penalized very heavily for having some many bolts. Having more bolts
extends the time needed to replace a broken one and it also adds to the mounting complexity. The half and quarter
types are at a near tie, however as the half give a lot more protection they were chosen.

The propeller guards are designed such that they can easily be 3d printed when damaged. The files necessary to do
so will be delivered with the drone.

5.4.2. Validation

As no real calculation are done to ensure the propeller guards are able to prevent the propellers from colliding, other
methods are employed to validate the working of the propeller guards.

Alot of parts are 3d printed for small home build drones with great success. This also includes propeller guards as
they break often during hard crashes and are usually easy to print. They are commonly available on thingiverse, an
online platform for 3d parts'. The same methods has also been used for other educationally build drones[52].

Bpttps://www.youtube.com/watch?v=ppAhPB4rgmk [Visited at June 7 2018]
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Propulsion and Power

A number of requirements are dedicated to the Propulsion and Power subsystem, driving the design to be built
around performance and endurance. As the POS states, the aim of the project is to design not only an autonomous
drone, but one that is also fast and agile. A lot of work was already done during the initial sizing of RAIDER during
the Mid Term phase, and the work that was done now, during the detailed design phase, began by going over the
previously conducted research. An overview of the method that was developed during the detailed design phase
is given in Section 6.1, which summarizes the Mid Term and the new approach. Section 6.2 goes over the main
analytical concepts behind rotor aerodynamics to provide the reader with insight in the topic. This is used to justify
certain choices that were taken during the development of the Propulsion and Power sizing method, described in
Section 6.3. A breakdown of the final configuration of the drone is given in Section 6.4.

6.1. Overview of Approach

The approach used in the Mid Term consisted of a semi-empirical method, based on the work of Staples' and Coco
[10]. Staples developed a simple formula to estimate the thrust generated by a drone propeller using as input the
propeller geometry and RPM of the motor, based on simple momentum theory formulas empirically corrected using
experimental data. Coco developed a method of estimating the power required by the propeller to generate the
calculated thrust in a similar manner, and both their work was combined with additional elementary equations for
battery sizing to conduct an initial sizing of the Propulsion and Power subsystem.

One of the problems encountered during the development of this approach was that the team lacked the knowledge
to fully grasp the assumptions and formulas used by Staples and Coco, and due to this, the first week of the detailed
design phase was dedicated on researching the physics behind rotor aerodynamics. The initial idea was to develop
a simple numerical approach to calculate the thrust based on Blade Element Momentum Theory, but as soon as
the difficulty of writing such a script in the time frame available became apparent, the sizing method reverted back
to using semi-empirical formulas, this time with the additional insight provided by the knowledge on helicopter-
like propeller aerodynamics. A program was developed that estimated the thrust and power generated by over 2000
combinations of real Lithium Polymer (LiPo) batteries and propellers, and a suitable configuration was chosen and
validated with the use of external programs such as ECalc®. ECalc, if given a certain multicopter configuration, is
capable of approximating the feasibility of the design, based on statistical data provided by the components’ manu-
facturers and external users. If the configuration was validated, the process was repeated, this time inputting more
accurate estimates of the configuration until the developed script and ECalc values converged. In this way, a final
design was reached, and the breakdown of the final components chosen is given at the end of this Chapter.

6.2. Rotor Aerodynamics

Due to the relatively low complexity and technological novelty of drones, empirical methods such as a Class I or I
weight estimation methods for aircraft do not exist for quadcopters. For the same reason, sources that deal with
the basics of drone aerodynamics are also hard to come by, and in general it is more effective to have a very rough
estimation of the drone’s parameters, build it, and optimize it through trial and error. The financial consequences
of changing the hardware after prototyping a drone are many orders of magnitudes lower than for an aircraft or
spacecraft. Nonetheless, understanding the physics of rotor aerodynamics, even in the broadest terms, can only
help the design process. As such, the basics of helicopter rotor aerodynamics (similar to a drone’s in all but size) are
explained in this section. The theory reported and the insights provided are all based on the work of Seddon [48],
unless stated otherwise.

Ihttps://www.electricrcaircraftguy.com/2013/09/propeller-static—dynamic—-thrust—equation.html [Visited at
May 30 2018]
2https://www.ecalc.ch/xcoptercalc.php [Visited at June 12 2018]
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6.2.1. Momentum Theory

The simplest depiction of the rotor and its aerodynamics is given by Momentum Theory. In this theory, the rotor is
considered an actuator disc, which does not impart any rotation to the flow. This simplification makes this theory
only suitable for roughly describing hover and vertical flight, as the wake generated by the rotor plays too big a role
in forward flight. However, Momentum Theory can still provide some insight on the impact of certain rotor design
choices.

Assuming the flow to be incompressible, the pressure at the actuator disc can be calculated using Bernoulli’s equa-
tion. For hover, the velocity of the flow far enough away from the disc is zero, therefore at the inflow:

1 2
Poozpi"'EPVi (6.1)

While at the outflow, using Ap to describe the pressure imparted by the disc to the flow:

L 5 1 5
p,-+Ap+§pvl.=poo+5pvoo (6.2)

With poo in kg/m® and v, in m/s representing the pressure and velocity far enough away from the actuator disc and
p; and v; the induced pressure and velocity respectively. In general, the subscript i is used to indicate the properties
of the flow at the actuator disc. Combining Equation (6.1) and Equation (6.2):

1 5
Ap= 2 PV (6.3)
Ap is the thrust per unit area of the disc, which, due to conservation of momentum, can be expressed as:

T =pAV; Vs (6.4)

Where T, in N, is the thrust and A in m? the actuator disc area. It then follows from Equation (6.3) and Equation (6.4)
that v; = 2v,. Using this fact and rearranging Equation (6.4) results in:

_ T 6.5)
v; = 207 .

The work done on the air can be expressed by T v;, therefore the power of the rotor can be written as:

T3

P=Tv;=4—
2pA

(6.6)
Where P is the power. The ratio T/ A is called the disc loading. From these simple derivations, it can already be seen
that a low disc loading is beneficial, as at the same thrust the rotor will induce a greater acceleration in the flow and
use less power. More in-depth relationships between thrust, power, and other rotor parameters cannot be found
with just Momentum Theory, and it is thus necessary to introduce a greater level of detail in the description of the
rotor.

6.2.2. Blade Element Momentum Theory

Blade Element Theory (BET) applies the airfoil theory of aircraft to the rotating blades of rotorcraft. When the rela-
tionships derived from Momentum Theory are combined with BET, the overall method is described as Blade Element
Momentum Theory (BEMT). The blades are assumed to be rigid, and the major complication of BEMT with respect
to simple Momentum Theory is the need to integrate over the radius of the blade, as the elementary forces of each
blade segment needs to be summed together.

Vertical Flight

Figure 6.1 shows a top view of the rotor, and a blade segment of width dy at radius y with the relevant angles and
forces. 0 is the pitch of the blade measured from the horizontal plane of the rotor, which for helicopters is controlled
by the pilot through the collective. It is the sum of the angle of attack between the blade chord and the perceived
flow, a, and the inflow angle ®. ® can be described by the tangent of the velocity component perpendicular to the
disc V;: + v; and the in-plane velocity component Qy. The resultant of these two velocity components is defined as
U.

Throughout this section almost all of the equations make use of non-dimensional parameters. The value they repre-
sent and how they are made non-dimensional is described in Table 6.1. The symbols used in the table are p for the
air density, A for the rotor disc area, Q for the angular velocity of the rotor in rad/s, and R for the rotor radius in m.
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Figure 6.1: Illustration of rotor and blade element

Symbol Non-dimensional Symbol Factor Explanation

¥ r R Fraction of blade span
Ve + v A=r¢ QR Inflow factor

dr dc; pA(QR)? Thrust coefficient

dQ dc, pAR(QR)?> Torque coefficient

Table 6.1: Non-dimensional symbols common in BEMT equations

The lift and drag of a blade segment can be expressed using the lift and drag formulae:

1
dL=Cr3 pU?cdy (6.7)

1
dD = Cy3 pU?cdy (6.8)

Where c is the chord length in m of the blade segment. The thrust T and torque Q of a blade segment can be
expressed as a function of the lift, drag, and inflow angle. If the inflow angle is small enough, the expressions become
dT =dL and dQ = (®dL +dD)y. A useful expression for the rotor geometry is the solidity factor:

Nc
og=— (6.9)
TR

Where N is the number of blades of the rotor. For N blades, the thrust and torque expressed in non-dimensional
coefficients become:

1
dT = 5oclrzdr (6.10)

1
dQ = 50(@Cr+ cyridr (6.11)

The rotor power P is equal to the rotor torque. A further distinction is made between the component of the torque
containing the lift term, and the one containing the drag term. These are defined as the induced power and the
profile drag power. In non-dimensional coefficients, and substituting® = A/r:

1 1
dCp =dCq =dCp, +dCp, = 5oC,/lrzdr +50Ca ridr (6.12)

Noting that the induced power can be expressed as AdCr, assuming uniform flow over the blade and constant profile
drag, after integration the power becomes:

1
CPZACT"'gUCdO (6.13)

From Equation (6.13) it can be seen that a low solidity factor is beneficial, in that it results in a lower profile drag and
therefore less power required. This is achieved by a larger rotor radius, and a lower number of blades. However, while
it may reduce the power required, a lower solidity factor reduces the thrust produced (Equation (6.10)), which would
have to be compensated by a higher blade pitch, which impacts the stall behaviour of the rotor and the profile drag.
Therefore a balance must be found to ensure an efficient design, which cannot be found by analytical equations
alone.
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Forward Flight

The equations for forward flight are derived in much the same manner as for vertical flight, but there are compli-
cations introduced by the advancing rotor, which now also has an angle of attack with respect to the flight path. As
a result, the velocity is made of three different components; the first two are the tangential and radial components
to the rotor plane, which are described by similar relationships as those used for the two velocity components in
vertical flight. The third velocity component is a function of the flow normal to the blade, the inflow factor due to
the angle between the rotor and the flight path vector, and an additional velocity caused by the flapping motion of
the blade. This flapping motion is caused by the higher perceived flow velocity as the rotor rotates into the flow, due
to the forward speed.

The additional dependencies of the induced velocity at the rotor adds a degree of complexity that made it prohibitive
to build a program that would be more accurate than simpler formulas in the time frame available. Terms such as
blade flapping could not be ignored, as they have a non-negligible impact even for the much shorter blades of small
quadcopters [21]. Moreover, even if simple approximations of all these terms were found (which would regardless
make the equations barely more accurate than semi-empirical relationships, if at all), many of these parameters
depend on each other, and a numerical approach would require many iterative loops.

Additional complications stem from the application of helicopter equations to drones. For example, many of the de-
rived formulas for helicopter aerodynamics include non-dimensional parameters that are made non-dimensional,
by dividing by the angular velocity of the rotor. For helicopters, the RPM during its operation remains relatively con-
stant, the thrust being generated by a change in the collective setting. For quadcopters, however, a change in thrust
is achieved by changing the RPM, making it more difficult to obtain useful results without re-deriving the equations.
Also, this specific project requires the drone to reach very high speeds, which can only be achieved by a large in-
clination of the drone with respect to the incoming flow, making the small angle approximation invalid and greatly
complicating the equations that need to be solved.

6.3. Sizing Method

In this section, the sizing method developed is discussed. The approach is an amalgamation of formulas developed
by Staples®, Coco [10], concepts covered during courses of the Aerospace Bachelor of the TU Delft, and insights
gained while researching rotor aerodynamics. Section 6.3.1 describes the equations used to calculate the required
motor specifications, and Section 6.3.2 discusses the equations utilized for the flight time estimation. Section 6.3.3
explains the overall logic and flow of the approach that was used to size the drone, and Section 6.3.4 discusses the
tests conducted to verify and validate the method.

6.3.1. Sizing of the Motor

In order to obtain the thrust generated by a rotor, it is necessary to know the distribution of the airflow over the
rotor blades. This is not an easy undertaking, and there have been a number of models derived from analytical
derivation and experimental work that attempts to accurately describe the distribution of the induced velocity, such
as the Drees inflow model or the Mangler and Squire model [27]. However, the more accurate the model, the more
complicated it is and the harder it is to implement. Both the simpler and intricate models require a number of
iterations before reaching an acceptable result, as they require knowledge of parameters that the inflow will then
be used to estimate. Even the Momentum Theory description of the inflow requires thrust to be known or initially
guessed, and the model does not even take into account the wake generated by the rotor, rotor geometry, or the
non-uniformity of the flow. Empirical correction factors can be added to account for phenomena such as the non-
uniformity of the flow and tip losses, but they cannot get around the iterative nature of the process.

The approach utilized in this report to estimate the thrust of the thrust of a drone propeller is based on the equation
derived by Staples®. The equation is based on momentum theory, discussed in Section 6.2.1, and assumes that
the induced velocity of the air is equal to the pitch speed of the propeller, which in turn is solely dependant on
the RPM and the pitch of the rotor. The implied assumptions of this model is that the induced velocity profile is
constant along the blade span and that it is not dependent on the number of blades of a propeller or any other
geometrical parameter but the pitch. As discussed in Section 6.2, this is a very poor assumption. However, Staples
added an empirical correction based on thrust data of drone propellers of many different sizes, provided by Matthew
McCrink of the Ohio State University. The empirical correction is shown in Equation (6.14), where d and rp;sp, are
the diameter and pitch of the propeller respectively, both in meters.

P’https ://www.electricrcaircraftguy.com/2013/09/propeller—static—dynamic-thrust—equation.html [Visited at
May 30 2018]

4https://www.electricrcaircraftguy.com/2013/09/propeller—static—dynamic—thrust-equation.html [Visited at
May 30 2018]
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1 d \'?
Correction Factor = (— ) (6.14)

3295 Tpisen
The formula produces results which consistently estimate a value that is between 15-30% lower than the test data.
This is still not an exceptionally accurate estimate, but as it is a very simple relationship requiring only a single iter-
ation, implementing it allowed for a more efficient allocation of the team’s resources over the rest of the subsystems.
Moreover, the equation is based on geometrical propeller parameters that are extremely easy to obtain, as opposed
to chord and twist distribution, which are almost never provided by drone propeller manufacturers. The thrust
equation is given in full in Equation (6.15).

n-d*\ (RPM RPM

4 ) : (W : rpitch) : (W *Tpitch — VO) : (3-295 :
As was introduced in Section 6.1, the sizing approach developed needs real battery and propeller parameters to
calculate which combinations produce a feasible configuration. One of the outputs of the program was the specifi-
cations of the motor that were needed, and to generate these specifications Equation (6.15) was rearranged to find
the maximum RPM the motor would need to deliver as a function of the thrust. The resulting quadratic equation is
shown in Equation (6.16).

1.5
T=p ( ) (6.15)
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This approach required the thrust to be known beforehand. To estimate the critical thrust required, two critical
cases were considered, namely the maximum forward speed requirement and the turning speed at 3m turn radius
requirement. The free body diagrams of these two cases are shown in Figure 6.2.

Figure 6.2: Free body diagrams of the critical thrust scenarios

Only the profile drag of the drone was considered, as other drag types such as induced drag were assumed to have a
significantly lower impact. The reasoning behind this choice was that the drone, during the critical thrust scenarios,
would have to be pitched to extremely high angles, causing it to behave like a flat plate with its surface perpendic-
ular to the incoming flow. Hoerner [20] collected the Cg, of flat plates and many other shapes from many different
experiments, and the drone’s C,, was taken to be the same as a flat plate with the shape of a cross perpendicular to
the flow, which Hoerner states to be 1.2.

Considering the drone to behave like a flat plate is a very rough assumption, and very little data, other than the de-
rived formulas in Section 6.2, was available to formally justify neglecting other drag types, or at least estimate the
uncertainty caused by this decision. After the sensitivity analysis (discussed in Chapter 13) was conducted, how-
ever, it was found that the outcome of the program was very insensitive to this parameter, and therefore no further
resources were spent attempting to improve the uncertainty in the Cg, value.

The remaining forces shown in Figure 6.2 could be obtained from the drone parameters and requirements. The
only other approximation was for the mass of the motors, as all other components were known a priori from the
sizing of the structure, and, having already been chosen, from the information given by the manufacturer. For each
configuration, since a real battery was considered, its correct mass value could also be taken into account. The
magnitude of the critical required thrust was then obtained by finding the resultant of these forces, and the RPM
from Equation (6.16).

A second semi-empirical equation was used to calculate the power needed by the motor, as a function of thrust and
RPM. This equation followed from the work of Staples and Coco [10], who followed a similar procedure as explained
previously to correct the equation with experimental data. The power equation is given in Equation (6.17).
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Equation (6.17) was validated in a previous report [4] using data obtained from drone motor manufacturers, and
showed that the difference between the predicted values and experiments was 16%. The propeller geometry and the
calculated RPM needed for the critical case was inputted in Equation (6.17) to obtain Pcyj;.

The final steps in the process of obtaining the motor specifications involved using elementary equations learned
during the Aerospace BSc of TU Delft regarding current and voltages. First, the KV of the motor was calculated. The
KV is an indication of the RPM generated per volt, but is a value calculated by manufacturers often for unloaded
motors, and therefore a 25% safety factor was used in calculations. This equation is given in Equation (6.18).

RPM,
KV =125 —"1% (6.18)

bat

Finally, the critical motor current was calculated with Equation (6.19). This equation was used both to check that the
power demanded by the motor did not exceed the motor’s physical capabilities, and to size the ESC.

Acrit = —— (6.19)

6.3.2. Flight Time Estimation

Section 6.3.1 discusses the different equations that were used to find a suitable motor given a certain configuration.
To size the motor, however, the critical case must be considered, as the motor must be capable of delivering peak
performance when required. To find a suitable configuration that can meet the 10 minute flying requirement, sizing
with the values of the critical case leads to a significantly overdesigned solution. It was thus necessary to find an ap-
proach that would approximate the average power needed during nominal operations. This was achieved by scaling
the power required in the critical scenarios by a correction factor that depended on the drone velocity. Intuitively, it
was known that the power depended on V3, and thus a third degree polynomial was derived.

PV = V34V +c3V+cy (6.20)
To solve for the coefficients, the following four conditions were assumed:
* [(Verit) = Perit
* f(0) = Phover
* f(0)=0
e f"0)=0

Where Vi and Pgric are the average velocity and power at the critical condition, and Ppgyer the power required when
hovering, which was obtained with the same approach as P, but by initially considering that the thrust required
would only be equal to the weight. The remaining two conditions were assumed to prevent the polynomial to correct
the power required to values that were below Py qye;. The value of Vi and P were calculated by taking the average
of the velocity and power for the two critical cases of maximum forward speed and maximum turn speed. From
inspecting the IROS 2018 track layout shown in Section 3.2, approximately half of the track is composed of straight
stretches and the other half in turns, and thus a simple average was taken. While it is likely that the distribution
of power will not be split in such a manner, this percentage of maximum forward and turn speed was tested in the
sensitivity analysis and showed no impact on the final outcome of the method (Chapter 13). The coefficients of the
correction polynomial were thus found, and the function is given in Equation (6.21).

Vno m

Poutnom = (Perit — Phover) * ( )3 + Phover (6.21)

crit
Where Pout,,,, [W] is the average power the motor requires during nominal conditions, and Vyom [m/s] the average
speed of the drone during nominal conditions. This speed was found to be 1 m/s, as discussed in Section 9.5.1. The
average power that the battery needs to deliver to the motor is found by dividing Pout,,,, by the motor efficiency,
taken to be 80%.

P
Pinyoy = —nom, 6.22)
Tmot
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The total average power the batter needs to deliver during nominal operations was computed by adding the power
of all the other electrical components, Pother, t0 Pin,,,,- As the computer boards and other electrical components
had already been chosen [4], this value could be calculated exactly and was computed to be 16 W. To test whether
a change in this value could cause a significant change in the model outcome, this parameter was tested in the
sensitivity analysis in Chapter 13, but the model turned out to not be sensitive to changes in this parameter. By
dividing P, by the battery voltage, I cwal, the actual current the batter needs to deliver was computed. This value
was used in Peukert’s formula (Equation (6.23)) to compute the actual battery capacity, taking the Peukert constant
for Lithium Polymer (LiPo) batteries as 1.05 [54].

k

ﬂ) (6.23)
Lacrualtp

In Equation (6.23), Cacrual [Ah] is the actual capacity of the battery, Cypy¢ [Ah] the capacity of the battery as stated by
the manufacturer, Ictq [A]l the current the battery needs to deliver during nominal operations, ¢p [hrs] the nom-
inal discharge time, calculated by finding the reciprocal of the battery C-rating as given by the manufacturer, and
k the Peukert constant. Finally, the flying time under nominal operating conditions was calculated as shown in
Equation (6.24), fp,,, [mins] is the flying time.

Cactual = Cpat - (

C
tDgom = —2244L .60 (6.24)

Lactual

6.3.3. Sizing Approach Logic

The equations discussed in Section 6.3.1 and Section 6.3.2 were applied to over 2000 combinations of batteries and
propeller considered, and the program’s logic is illustrated in Figure 6.3. The batteries considered were obtained
from HobbyKing®, with capacities ranging from 1000 mAh to 3000 mAh with 3, 4, 5, and 6 cells. The propeller geom-
etry considered ranged from 4 to 5 inches, with many varying pitches up to 0.5 inches less than the diameter. The
propeller geometries were generated within the program with steps of 0.5 inches for both diameter and pitch. Dif-
ferent thresholds were placed throughout the program, checking that the calculated values did not exceed physically
reasonable values, or that the flying time was above 10 minutes. If either of these cases were found to be true, the
configuration was regarded as unfeasible and was discarded.

Next
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Figure 6.3: Propulsion and power process flowchart

The output of the program was a list of potentially viable configurations that specified the total mass of the drone,
battery, motor and ESC specifications, the propeller geometry, and various performance parameters. These con-
figurations (j in Figure 6.3) were a subset of all the configurations analyzed at the beginning. The program was not
capable of knowing if a motor with the calculated specifications existed, and therefore the viable configurations were

Shttps://hobbyking.com/nl_nl/? store=nl_nl [Visited at June 8 2018]
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inputted into ECalc®, an online tool that lets users check the expected performance of a certain drone configuration.
ECalc offers the possibility to choose real motor, batteries, ESCs, and other components, calculating the performance
of the inputted configuration and warning users if the configuration is expected to be feasible or not. The problem
of this tool is that all the components need to be more or less known beforehand, while the written program would
be able to output suitable motor specification from just the battery and propeller geometry. ECalc was thus used
to test the output of the program, and, after choosing a suitable motor, the values estimated by ECalc were similar
to those outputted by the written script, the program was rerun using more accurate inputs until the script’s and
ECalc’s values converged, as it was then possible to more accurately estimate the drone’s total mass after choosing
the motors and knowing the diameter of the propeller required. This process is shown in Figure 6.3.

The sizing method discussed in this section was conducted as explained, and it was found that the 4 inch propellers
that had been used for the final concept was not used in any of the viable configurations. In fact, to be able to meet
all the stakeholder requirements for the power and propulsion subsystem, only 5 inch propellers could be used.
12 configurations were found to be viable, and were all given to ECalc, to check if a motor existed with the needed
specifications and to ensure that the configurations were indeed feasible. This process further reduced the number of
viable configurations, and once the remaining configurations were improved through the iterative process, the final
components were chosen based on the configuration with the lowest mass. The design was optimized for lowest
mass, as lighter drones experience lower impact energy in case of a crash and are in general safer, especially for high
performance drones such as this one. The final output of the program, in other words the final specifications of the
hardware, is reported in Table 6.2.

General Motor and Battery

Parameter Value Unit | Parameter Value Unit
Total mass 711 g Max RPM 31470 -
T/W 5 - KV 1668 -
ESC max current 297 A Max power 549 -
Nominal fp 15.6 mins | Battery capacity 1550 mAh
Full thrust tp 0.7 mins | Cells 6 -
Propeller diameter 5 inch | C-Rate 65 C
Propeller pitch 4.5 inch

Table 6.2: Output of sizing approach

6.3.4. Verification and Validation

The implementation of the different equations in the program was, in general, verified by considering a specific
combination of battery and propeller geometry, and performing the calculations of the program by hand, or by
visually inspecting the output of the program.

In terms of validation, the majority of the formulas are basic equations, validated extensively by various industries.
Equation (6.16) and Equation (6.17), however, were not as straightforward. As stated previously, the thrust equations
had already been validated by Staples’, and demonstrated an underestimation of the thrust by approximately 15%.
The equation is conservative, which is advantageous for this type of sizing. The power equation was validated by
comparing the results with the experimental data of five different FPV motors, each tested with two different pro-
peller geometries. The results of these comparison yielded an RMS error of 12.2%, and a total error of 16.6%. For a
more detailed look at the validation process conducted for these two equations, the interested reader is referred to
(4].

As seen in Figure 6.3, a step in the sizing approach involved inputting the results of the program into ECalc, and the
output of ECalc were used to define more accurate inputs in the program, until the values converged. The validation
of the program was thus integrated within the sizing approach itself, and was present at each step of every iteration
of the configuration. ECalc claims to produce values that are within 15% of real results. These values are hard to
validate, as there are no sources that provide a drone configuration to that level of detail together with experimental
data measuring flight time, maximum speed, and other values. However, ECalc has been used in different academic
projects [6] [3], and is, in general, regarded as one of the best online tools for the sizing of radio controlled projects.
Table 6.3 shows the performance estimated by the written program and the predictions made be ECalc.

6hf:f:ps ://www.ecalc.ch/xcoptercalc.php [Visited at June 10 2018]
"https://www.electricrcaircraftguy.com [Visited at May 30 2018]
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Parameter Script ECalc
Max Speed [km/h] 188 162
T/W 5.0 5.3
Max RPM 31470 30307
Max motor current [A] 29.7 20.0
Nominal ¢p [mins] 15.7 14.3
Full thrust tp [mins] 0.7 1.0

Table 6.3: Sizing approach and ECalc outputs

Table 6.3 shows the performance estimated by the written program and the predictions made be ECalc. The top
speed was calculated by first using Equation (6.15), using as inputs the manufacturer’s motor RPM, diameter and
pitch of the final propeller, and an initial forward speed of zero. The static case shown in Figure 6.2 was then solved
iteratively, taking the drag to be initially zero, until the drag grew higher than the thrust. The script outputs a max-
imum speed 16% higher than stated by ECalc, just outside ECalc’s accuracy. This difference is rather pronounced,
could be caused by the fact that at these speeds just considering the profile drag is no longer sufficient, or because
speed effects on the RPM of the motor was not taken into account. Regardless, even taking —15% of the value out-
putted by ECalc, the maximum forward speed is 137.7 km/h, still significantly higher than the requirement of 100
km/h. This follows from the fact that the configuration was sized for the critical case, the cornering requirement,
and has thus higher capabilities in forward flight than required. Until tests can be conducted, RAIDER’s top speed is
taken to 160 km/h, the more conservative estimate.

For the other results, both outputs are very close to each other. In general, almost all the values are within 15%
of the values calculated by ECalc, except for the maximum motor current and the flight time at full thrust. The
large difference in the motor current likely suggests a mistake in the approach. The motor can, however, withstand
currents of up to 39.9 A, and while in the future work can be conducted to obtain a better current estimate, for the
final configuration the maximum motor current should not pose any problems. The difference in flight time at full
thrust is also higher than 15%, but as this flight time was eventually derived from the maximum motor current, a
lower full thrust flight time is expected, as the error in the equations carried forward. One thing to note for the other
outputs is that the nominal flight time calculated by ECalc is the hover time, while the script’s is at a speed of 1
m/s; while not hover, the drone is very close to being stationary, and the two values were deemed close enough for
comparison.

Overall, many approximations were made, but the model was capable of producing the same accuracy as a program
such as ECalc, with the added benefit of being able to run without knowing the configuration a priori. A number
of estimates were found to likely be significantly off the real value, an uncertainty that cannot unfortunately be
quantified until real tests are conducted. A more accurate approach, perhaps a numerical BEMT approach, could
have resulted in values closer to reality, but increasing the model complexity may have result additional parameters,
augmenting the potential sources of errors [28], and would have taken a significantly higher amount of time to run.

6.4. Components Breakdown and Remarks

The sizing approach discussed in Section 6.3 would output the specifications of motor and ESC, and select a specific
battery and propeller geometry, but many of these components still had to be chosen from the multitude of products
offered by multicopter component manufacturers. Due to the configuration sporting a 6S battery, a contraint was
placed on many of these components, as not every motor and ESC is designed to function at the high voltage pro-
vided by a battery with this many cells. The battery that allows this configuration to function is the Turnigy Nanotech
1550 mAh 6S with a 65C continuous maximum C-rating, and burst C-rating of 130C. The rest of the components was
chosen from components for FPV drones, as these components are optimized to be lightweight and at the same time
be capable of handling the high currents needed to reach the desired performance.

Due to the discrete nature of motors and other items, a motor with the exact specifications needed did not exist,
and a motor with the closest performance was picked instead, always rounding up. This had the added benefit
of including a small margin in the final design and slightly overshoot the performance requirements. The chosen
motor is the HobbyWing XRotor Race PRO 2207 1750 KV, specifically designed for the high performance needed by
FPV drones, capable of being able to support a 6S battery, a maximum power of 950 W, and a maximum RPM of over
31000. The ESC is the Turnigy Multistar 30A Rev16 v3. This is ESC is significantly overdesigned, as it can handle 30
A of continuous current, and the configuration’s peak is slightly below 30 A. This specific ESC was chosen as it was
unknown if the duration of the peak current would be longer than what other ESCs could handle, and for an increase
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of only a few grams, a significant safety margin could be added. Operating at significantly lower currents also has
no negative effect on the ESC, as it prevents the temperature of the component from increasing to levels that would
decrease its efficiency [19]. Finally, the propeller chosen was the MasterAirscrew RS 5045 5x4.5. This propeller is
made of carbon fiber, as it is lightweight and was found to be a better material than plastic at reducing the safety risk,
as discussed in the reliability, availability, maintainability and safety (RAMS) analysis in Chapter 17. A summary of
the final power and propulsion components is given in Table 6.4, with the associated electrical block diagram shown
in Figure 6.4, illustrating the connection between the different hardware components.

Component Product
Motor HobbyWing XRotor Race PRO 2207 - 1750KV
ESC Turnigy Multistar 30A Rev16 v3ESC
Propeller Master Airscrew 5045
Battery Turnigy 1550mAh 6s 65-130C

Table 6.4: List of final power and propulsion components

Phase Fhase Fhase
1 2 3

ESCs

Custom Power Distribution Board

Power In  Signal Ground

I Power In 222V Qut

222V | Buck Converter

I Ground 5V Out =

Ground

I

Power In Signal Ground Power In Ground

Pocket Beagle Raspberry Pi Zero

Figure 6.4: Electric block diagram of the final design

While the current configuration should already be sufficient to meet all the requirements, most of the FPV drones
of this size sport 3-blade propeller. 3-blade propellers were not considered during the sizing of the propulsion and
power subsystem, as the equations used to estimate the thrust and the power had been empirically corrected for
drones carrying 2 blade propellers. As was seen in Section 6.2, thrust and power are related to the number of blades
and geometry of propellers with a non-linear relationship, therefore using Equation (6.15) and Equation (6.17) to
estimate the thrust and power generated by propellers with more than 2 blades, or extrapolating new empirical cor-
rection factors, would have introduced larger error than the equations already had. Large sets of experimental thrust
data collected with drone motors with propellers with any number of blades is unfortunately not easily available.
Thus, for a future improvement of the sizing approach, it is suggested to carry out experiments to be able to both
improve the reliability of the current thrust and power equations used, as well find an accurate equation that allows
for 3-blade and 4-blade propellers to also be considered. For RAIDER, using a 3-blade propeller should allow the
diameter to be reduced, as it more blades increases the raw thrust produced, which might be beneficial as the size
reduction would allow the drone to fly with a less frequent positive gate detection.



Electronics and Sensor Fusion

In this chapter, the electronic components that were not completely worked out in Chapter 4 are further expanded
upon. After this, in Section 7.2 through Section 7.2.2, a sensor fusion algorithm will be chosen. Finally, a short
conclusion with a diagram showing the detailed workings of the subsystem will be provided in Section 7.3.

7.1. Electronics

The goal of the electronic subsystem is to provide accurate measurements to the software for localization and house-
keeping.

7.1.1. IMU Sensor

An Inertial Measurement Unit (IMU) combines 3-axis accelerometers, 3-axis gyroscopes and 3-axis magnetometers
into one package. The IMU chosen by the team is the VectorNav VN-100!. This allows the drone to calculate its
pose (location and orientation in the world), linear and angular velocities and its linear accelerations. However, an
IMU has the disadvantage that the pose is not measured directly, rather, it’s calculated through the integration of
the accelerations. Due to this integration, drift is introduced into the pose calculation, quickly making IMU pose
measurements useless. A solution is to use a different localization method to eliminate this drift.

The rate at which this drift increases is quadratic for the position and linear for the linear velocity and angular ori-
entation. This makes the position uncertainty the driving case in terms of drift. This position drift depends on a few
parameters of each IMU: the accelerometer bias, the accelerometer misalignment, and the Gyroscope Angle Ran-
dom Walk (Gyroscope ARW). This can be seen in Equation (7.1) 2 where Drift is the position drift, Eg;,; is the error
due to accelerometer bias, E 4) the error due to accelerometer misalignment, and E4rw the error due to gyroscope
angle random walk.

. 1
Drift= EgOTZ (EBias + Eam + Earw) (7.1

The different errors in Equation (7.1) are expanded upon in Equations (7.2) to (7.4). These equations were taken
from VectorNav’s website. Since RAIDER will be using one of their IMUs, it is assumed that they have verified and
validated these equations.

Egias = ba (7.2)
EAMZSiI’l(Q) (7.3)

T
E =sin|ARW| —— 7.4
ARW 3600) (7.4)

Provided that the IMU is properly calibrated before flight, the parameter b, in Equation (7.2) is the In-Run Bias Sta-
bility provided by the manufacturer. 0 used in Equation (7.3) is the maximum accelerometer misalignment, and the
ARW in Equation (7.4) is the gyroscope angle random walk. This can be approximated by the value of the gyroscope’s
van Allen Deviation after 1 second3. For the VectorNav VN-100, these values can be found in Table 7.1.

Table 7.1: Drift influencing values for the VectorNav VN-100

Parameter Value Unit

by 0.04 mg

0 0.05 Deg
Deg

ARW 0.175 Vour

lhttps://www.vectornav.com/products/vn-100 [Visited at 12 June 2018]
2https://www.vectornav.com/support/library/imu-and-ins#unaided-position-estimate [Visited at June 5 2018]
3https ://ez.analog.com/docs/DOC—-2163 [Visited at 5 June 2018]
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The graphs that were used to calculate the ARW can be found on the manufacturer’s website?.

Since the gates of IROS2018 will be 1.4 x 1.4 meters and RAIDER will be approximately 28 centimeters wide, the drone
is allowed to deviate almost 55 centimeters from the center line. In order to account for an initial position that is not
on the center line and other disturbances, RAIDER is allowed to deviate by 45 centimeters from its initial path. For
the VectorNav VN-100 to drift so much, it takes approximately 9.3 seconds. This means that RAIDER has to pass the
gate in less than 9.3 seconds after the last gate detection and successful location correction. Ideally, within these 9.3
seconds, RAIDER will have already detected the next gate and localized itself. This way it can be assured the virtual
world stays closely aligned to the real world.

7.1.2. Temperature Sensors

In order to prevent the overheating of the computer boards, temperature sensors are placed on them. These sensors
are normally integrated into the boards themselves. However, since RAIDER carries 2 computers, the data of the
Raspberry pi’s sensors will be send to the Pocket Beagle for centralized temperature monitoring. The same will
happen with the temperature sensors aboard the custom Power Distribution Board (PDB) that will connect the 2
computers.

7.1.3. Voltage Sensor

The output voltage of the battery is measured in order to assess its state of charge. When the state of charge gets too
low, the drone will have to perform an autonomous landing in order to ensure the safety of the surroundings and
drone. This voltage will be measured on the custom PDB and will be monitored by the system monitoring segment
aboard the Pocket Beagle (as can be seen in fig. 11.2).

7.2. Sensor Fusion

All sensors are inherently affected by (random) noise and bias, making
their measurements inaccurate [24]. The degree to which this hap-
pens can be reduced by comparing measurements from several sen-
sors and minimizing the mean squared error. This is exactly the prin-
ciple on which all Kalman filters work. 7t

They also allow the combining of low frequency, accurate position &t
measurements with high-frequency, inaccurate position measure-
ments. Which is crucial for the functioning of autonomous drones.
Aboard RAIDER, the IMU will be used to provide high frequency (800
Hz) pose information. However, as stated in Section 7.1.1, IMU’s are " ;|
subject to drift. In order to limit this drift, the drone’s pose and veloc- /
ities have to be corrected for every few seconds. This will be done us- | /
ing Visual Odometry (VO). The drone will use its cameras to find and 1}/
track the gates and its own relative position from them. Combining | Vi ! ) ) ) ) ) )
this with the knowledge of the position of each gate resultsina fulllo- " '@ *® 3D%me (‘f:con d:)m B0
calization of the drone. Although this will be relatively low frequency

(3Hz-30 Hz), it allows for the IMU to be reset’, eliminating the accu- Figure 7.1: IMU Drift Reduction due to Low Frequency
mulated drift. The effect of this can be seen in Figure 7.1 [38], where GPS Measurements (38]

every 120 seconds (at every green circle), the IMU drift is reduced due

to GPS measurements localizing the drone.

Variance
=

7.2.1. Software Packages
In order to implement sensor fusion in the provided time, preexisting software packages have to be used. Three such
packages were identified: ETH Zurich ASL Sensor Fusion®, Robot Pose EKF®, and Robot Localization”.

ETH Zurich’s Autonomous Systems Lab has developed its own sensor fusion package([60]. It is already optimized for
Micro Aerial Vehicles (MAVs) and automatically calibrates itself. The latter allows the drone to quickly re-calibrate
itself after a crash, lowering the expected downtime in between runs. With 31 dimension this sensor fusion package
uses the largest state vector. It tracks not just the pose, but also all velocities, linear accelerations, and sensor biases

4https ://www.vectornav.com/support/faq/acceleromter—gyro—questions [Visited at 5 June 2018]
Shttp://wiki.ros.org/ethzasl_sensor._fusion [Visited at 4 June 2018]

6http ://wiki.ros.org/robot_pose_ekf [Visited at 4 June 2018]

7http://wiki .ros.org/robot_localization [Visited at 4 June 2018]
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among other things. There are two versions of this algorithms, one allows for the IMU with 1 other sensor. The other
allows for any number of other sensors to be used [60].

Robot Pose EKF is the lightest of the sensor fusion algorithms proposed here. It only tracks the drone’s position and
orientation. It, however, cannot estimate the IMU’s orientation. Another filter is needed to implement this [42].

The Robot Localization package was designed by Thomas Moore and Daniel Stouch from the Sensor Processing and
Networking Division of Charles River Analytics, Massachusetts[38]. It includes both an Extended and an Unscented
Kalman Filter (EKF and UKF respectively). Although it tracks more state variables than Robot Pose EKE it does not
track as many as ETH Zurich’s algorithm. Robot Localization has a 15 dimensional state vector, consisting of the
drone’s pose, linear and rotational velocities, and linear accelerations 8 It was designed to be as non-restrictive as
possible, allowing for any combination of sensors to be used with it[38].

7.2.2. Sensor Fusion Comparison

Since RAIDER needs accurate positioning, Robot Pose EKF is quickly eliminated. Although it is the least compu-
tational intensive solution, the accuracy suffers, which is unacceptable for this application. This leaves 3 options:
Robot Localization’s EKF or UKE or ETH Zurich’s EKE

The main difference between an EKF and an UKEF is that the EKF linearizes the system around its estimation and
assumes Additive Gaussian White Noise. UKF works differently, making it much more robust in highly nonlinear
situations. Because the drone is to fly at extreme angles, the drone will most likely often be in the highly nonlinear
region.

The amount of floating point operations (FLOPS) that are needed for each iteration of the filter varies per application.
The result is that a very exact estimate of the computational cost cannot be given at this stage. A rough estimate,
however, can be made based on the findings of [39] and [55]. The average value of the amount of FLOPS that was
calculated by the two methods is used. The values for N, M, and P are 15 or 31, 9, and 4 respectively. The final 2
were chosen to reflect that linear accelerations, and linear and angular velocities are measured and that only the
speed of each of the 4 rotors can be controlled. The first 2 reflect the size of the state vector of the Robot Localization
and ETH Zurich algorithms respectively. One should note that these values for the Extended Kalman Filters are only
valid if the Jacobians of both the F and H matrices are analytically calculated beforehand. The results can be seen in
Table 7.2.

Table 7.2: Computational Cost of each Sensor Fusion Package

FLOPS [-] Percentage of Pocket Beagle Computational Power [%]

ETH Zurich EKF 195 000 40.7
Robot Localization EKF 43000 9.0
Robot Localization UKF 61 000 12.7

The Percentage of Pocket Beagle Computational Power is calculated by assuming the filter runs at 800 Hz, the fre-
quency at which the IMU outputs its data. The total amount of floating-point operations per second were compared
to the computational power of the Pocket Beagle that was calculated in Section 11.3. In order to fairly compare the
three, a small trade-off was done. The result of this can be seen in Table 7.3. The trade-off criteria are:

¢ Computational Cost: Since RAIDER is being designed to be as light as possible, there is not a lot of mass for
computer boards. This makes the lighter algorithms better. Since RAIDER’s design philosophy is based on it
being a light weight drone, this has gotten a weight of 2.

¢ Robustness to Non Linearity: The drone will be flying at large attitudes, meaning that it will often be in the very
non linear part of its model. This means that linearization does not result in a good approximation. Accurate
localization is important for the drone and since it will often fly at high attitudes, it is important to have a
sensor fusion method that is still accurate, even in the non linear part of the drone’s flight envelope. Therefore
the weight of this criterion is 2.

* Internal Model Quality: During the interval where there is no accurate localization coming from the VO, the
internal model has to predict the current state of the drone. The closer this model is to reality, the better this
prediction is going to be. Although it is an advantage to have a model that was designed specifically for MAVs,
the difference in accuracy will not be very large. Thus resulting in a weight of 1.

8http://docs .ros.org/melodic/api/robot_localization/html/ [Visited at4 June 2018]
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 State Vector Size: A bigger state vector results in more accurate prediction. It does come at the cost of com-
putational speed, however. This increase accuracy is clearly important, it is not as big as the increase due to
the use of an algorithm that does not linearize when the drone is in the very non linear domain. Therefore, the

weight of this criterion is 1.

Table 7.3: Trade-off of Sensor Fusion Packages

ETH Zurich EKF

Computational 2
Cost

Robustness to | 2

Non Linearity

Internal Model 1
Quality

State Vector Size | 1 EEINeitantcsko)sk:1

Results

Blue:+2

‘ 15 dimensional

Robot Localization EKF

Robot Localization UKF

Yellow:+0

61000 FLOPS

15 dimensional

Yellow:+0

Yellow:+0

Each of the packages was scored on a scale of -2 to 2 (represented by red, orange, yellow, green and blue from low to
high) on each of the trade-off criteria. Then, to conclude, these scores were multiplied by the weight of each criterion
and summed. This shows that Robot Localization’s Unscented Kalman Filter is the best option for RAIDER.

7.3. Sensor Fusion Conclusion
The detailed working of the Sensor Fusion
subsystem is shown in Figure 7.2. It clearly
shows how the sensor fusion subsystem not
only does the sensor fusion itself, but it also
calculates the absolute position from the data
it is given by both the gate detection and the
path planning subsystems.

7.4. Verification and Validation

The models need to be verified in order for the
results to be of any value.

7.4.1. IMU Drift Model

The model that was used in Section 7.1.1 was
taken from the IMU’s manufacturer’s website.
It is therefore assumed to have been validated.
The calculation for solving the equation was
validated by a colleague.

7.4.2. Software Package Computa-
tional Cost

As a unit test for verification, the excel sheet

that was used to calculate everything in Ta-

ble 7.2 was checked for errors by a colleague.

Since the formulae used are from literature,

they are assumed to have been validated.
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Figure 7.2: Flowchart for the Sensor Fusion Subsystem
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Gate Detection

Detecting and recognizing objects is one of the most important uses of vision systems in intelligent agents. The
human brain can distinguish between more than 30 000 visual categories, and can detect objects in the span of a
few hundred milliseconds. Although technology is nowhere near human performance in this task, there has been a
considerable amount of breakthroughs in the field during the past few years. The work presented here is only a small
part of what research has achieved nowadays, but is an essential element of the drone’s software.

8.1. Approach Overview

This chapter elaborates on the computer vision algorithms that have been considered, their development, their ac-
curacy and throughput time that lead to the final decision for an optimal algorithm to be implemented in the drone’s
software. The three main algorithms that have been considered for further development range from classic color
based algorithm to the state-of-art computer vision techniques. As previously mentioned, the strong suit of the de-
sign is the compromise of selecting the algorithms and the hardware together to meet a specific set of requirements.
Thus, accuracy of detection is not the only parameter to take into account, but also the processing speed.

The development of the gate-detection subsystem has been divided into four different stages. The first part concerns
the image pre-processing where all of the synthetic images that have been generated for testing, verification and
validation are labelled with the corner position and some distortions are applied in order to fill the gap with reality.
Secondly, a general study on the algorithms to use and adapt has been performed followed by the choice of three
main algorithms to consider in more detail. These algorithms have very different working principles: one is color-
based, one mainly relies on template matching, which is similar to cross-correlation, and one is a small convolutional
neural network. After this, a benchmark analysis has been applied to designate the algorithm to integrate in the
on-board computer. Finally, the gate localization, also called gate dewarping, was implemented using the corner
position estimated from the gate images.

8.2. Image Pre-processing

In order to challenge the participants of the ADR and to simulate a real-life environment, new gates have been de-
signed with new dimensions and features. These features are crucial for the gate detection algorithm logic. The fact
that the gates have been changed from a bright thick orange to a thinner gate border with a white contour, reduces
the accuracy of any algorithms based on color significantly. Moreover, since the orange present in the gate is not
really visible from medium to long range, the white contour is the main feature to be observed which is a color com-
monly seen in the background making the sampling for gate detection to be totally independent of the specific color
of the gate.

Besides the challenging track and the new gate features, developing an algorithm of this type without any data is
unfeasible. Due to the change in gate, all of the images provided from previous years became unrepresentative. For
this reason, a data set of synthetic images has been created, using the information provided by the organizers about
the gate dimensions and color. In these images, the background and gate position have been changed.. The first
query that this approach gives rise to, is the reliability of artificial images'. In real life condition images are sensitive
to motion, light and other characteristics that might not give a perfect visualization on the gate such as the CAD
renders. To fill the quality gap with reality all the background used have been taken from real images and only the
gate itself has been positioned in this environments.

Images have been processed implementing different distortions in order to make the simulation as realistic as possi-
ble. The quality distortions that have been implemented in the images are noise, blur, compression (JPEG), contrast,
erosion, dilation, closing, opening and color gradient modification?. These quality distortions have been introduced

lhttps://machinelearning.apple.com/2017/07/07/GAN. html [Visited at 26 June 2018]
thtps ://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py._
morphological_ops.html [Visited at 5 June 2016]
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in different levels within low thresholds, even visible for the human eye, without combining them. At the same time
the available data has been significantly augmented by introducing all of these variables.

The images fed to the algorithms have been compressed to 512x288 pixels keeping the same aspect ratio of the
original image (16:9) in order to lower the computational cost. This also implies a lower depth visibility range to
avoid having too many details in the background that will lead to an overall better performance.

8.3. Gate Detection Algorithms

The IROS race environment is a pre-designed track. Consequently the a-priori knowledge about the geometry of the
gate and their distribution can be used as the basis for a higher-order gate feature detector that will be developed in
this section. In domains such as this one, the track predominantly consists of rectilinear structures. With rectangles
making up much of the key geometry to be recognized, it is prudent to use this as the basis of a feature detector in
order to be able to track the gate while it is in sight. The main feature to be identified is not the gate center but the
corners, which is the main purpose of the algorithms developed in this section. The corner position will be further
passed to the gate dewarping algorithm which is in charge for determining the gate inclination and localizing the
gate with respect to the drone position by using standard mathematical transformations.

The approaches discussed in this section include the algorithms considered during the literature study and the mod-
els that have been developed and benchmarked to choose the best software solution.

8.3.1. Considered Algorithms

Feature Based Matching

Feature based tracking element algorithms are able to recognize specific key points of objects in the image and iden-
tify a probable match in another image containing a similar object. The initial idea was to implement this algorithm
in order to state whether there was a gate or not by tracking the number of key-points encountered in a specific
frame. Furthermore, if accuracy of matching keypoints on both images is high, the homography matrix could be
found, thus the exact location of the gate on image. To remove possible keypoints outliers, that were matched in-
correctly, RANSAC [15] and least median of squares [30]. The main algorithms that have been considered for this
approach are mentioned here below.

SIFT (Scale-Invariant Feature Transform), is a scale invariant method, which might find corners at different scales
on the same image. SIFT is a four steps process that extracts distinctive features from the images [29]. The first step is
to find potential points of interest at different scale levels with the difference-of-Gaussian function. Those keypoints
are then processed further to select only valid ones, by passing them through the stability test. Afterwards for each
selected keypoint their orientation is found. And lastly keypoint descriptors are found by measuring local image
gradients, so that those keypoints can be identified on a rotated and scaled image.

SURF (Speeded Up Robust Features) is a robust feature detector that works on a similar principle to SIFT. The main
difference is that it is faster. Both algorithms output keypoints of the input image that are handled in the same man-
ner.

ORB (Oriented FAST and rotated BRIEF) uses FAST (Features from Accelerated Segment Test) to find keypoints in the
image and then uses a Harris corner detector to select the best match. The point descriptor, direction of intensity
and orientation information, is tackled using Rotated BRIEF [46].

Figure 8.1: Feature based tracking algorithm (SIFT) example. The green line and points indicate the feature
that are present in both images while the red circles are features or key points of the individual images which
are not being matched.

Unfortunately, the IROS gates have a very simple design. This complicates the task of identifying specific patterns.
The gate is made out of thin carbon fibre tubes and it has a homogeneous structure, therefore there are very few
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unique characteristics. The few key-points there were identified were matched to the incorrect sides of the gate as
the four bars are exactly the same on all sides and sometimes these key-points were identified in the background
leading to incorrect gate detections as can be seen in Figure 8.1.

Snake Gate

Snake-gate detection is a simple classifier that consists of a cascade of filters[47], this algorithm relies on color gra-
dient recognition and it is tuned in order to identify the shape of the gate based on color and dimensions. This
algorithm starts analyzing an image by detecting a continuous line of points. When this is found, it looks for the next
edge of the gate in the opposite orientation, horizontally or vertically depending on how the first one was located.
If the recognized door edges meet the minimum length requirement, a sequence of filters is applied to the gate in
order to return the number of identified corners and edges. This is used as an input for another filter which returns
the shape of the gate in order to retrieve the relative position of the drone with respect to the gate.

The search for the gate is performed by implementing the filter on random sample images and the search is efficient
because before diving into computational expensive filters it applies the ones which are easier to verify. For instance
the color gradient of the first pixel is a rather fast scan, and the neighboring pixels are scanned based again on the
color and also the shape, taking into account a possible side view, for instance when the drone is not directly facing
the gate.

Although this algorithm presents a relatively computationally inexpensive alternative for gate recognition, it has
some drawbacks. First of all the snake algorithm heavily relies on the color contrast between the gate borders and
background. Moreover it is very specific which makes it applicable only for determined shapes with the given aspect
ratio and color, instead of looking at contrast in a more general sense. This is however not an aspect that concerns
the team’s autonomous strategy as the main goal is winning the 2018 IROS competition.

8.3.2. Dense Lines Harris Corner Detection

Although corners are easily recognizable for humans, it is very difficult for computers to translate this feature into a
point. These regions in the image are characterized by large variation in intensity in all the directions. The principle
of this algorithms consist on checking the intensity gradient of the image color for a displacement in the vertical and
horizontal direction in order to detect a corner. When the eigenvalues of the Jacobian matrix of the shifted intensity
function are large enough such that these values exceed a certain normalized threshold, the kernel or window that
is being analyzed is considered a corner. The shifted intensity function is shown in Equation (8.1), where I, and
I, are the intensity gradients in the horizontal and vertical direction respectively that are calculated using a Taylor
series expansion with a second order truncation error, w(x,y) is the window matrix that moves along the pixels
of the image during sampling and outputs weights for the pixels in a certain region between one and zero. The
mathematical implementation first calculates the Sobel operator which outputs the gradient of the color intensity
at each pixel. After this the corner detection function will calculate the probability of having a corner in the window
given the fact that the intensity difference needs to be maximized for this case [8].

LI,
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2
LI, I

Ewv)=[u v]-Y wxy- »

(x,y)

(8.1)

Moreover, the algorithm input is reduced to gray-scale image such that the intensity gradient calculation process is
computationally minimized as there is only one single information (intensity) channel instead of three.

Using this already existing algorithm it was possible to make some fine adjustment to the parameters such as the size
of the kernel, the size of the tested area, in order to get the best estimate of a region with a lot of points, and some
image blurring. The high sensitivity of the parameters returned a series of points that were localized mainly around
the edges of the gate. It is possible to notice the density of points throughout the images changes in function of the
image distortion that was applied. Normally really noisy images returned a remarkably higher number of points than
compressed and blurred images.

Furthermore, two different algorithms were applied to detect the gate. The first one is the gradient method, which
considers points at a certain radius from each other and connects them, while the ones that do not meet the radius
requirement are considered outliers and removed. This algorithm detected a corner as soon as the gradient between
the previous and the next connection is above 60 degrees. The fact that the point concentration varies constantly
due to the distortion applied to the figures, made this algorithm highly dependent on the number of points that was
constantly varying and the parameters to be changed were being over-fit for a certain type of distortion.

The algorithm which ended up being more successful in dealing with this sequence of points is the Dense line ap-
proach. In this case the points detected are interpolated by making a vertical linear regression on points lying within
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a certain horizontal range (20 pixels). Out of all the lines found, only the two most dense were considered. The fol-
lowing step consist on drawing the horizontal lines but this time there was a constraint in the space to analyze thanks
to the vertical lines. This allows the algorithm to find the two horizontal lines with highest number of points within
a previously determined vertical range (50 pixels). This range is larger than the previous one because of perspective,
the horizontal distance to a gate will normally be much larger than the vertical distance.

The final step is to find the corner positions. This can be done by solving a simple algebraic equation to calculate the
four intersections between the lines. A direct visualization of this process is in Figure 8.2

o 200 400 600 800 1000 ) 200 400 600 800 1000

(a) Blurred Image (b) Noisy Image (c) Very Noisy Image

Figure 8.2: Gate corners detection using the Dense lines Harris corner algorithm. The parameters have not
been changed from one test to another in order to develop a software as robust as possible.

The main drawback of this algorithm is that it can find a gate when there is none present, as it can happen that a
high concentration of points is processed somewhere else and the lines drawn will intersect in order to detect the
four corner with a shape of a rectangle. In order to avoid this a relatively weak but effective condition has been
implemented: the aspect ratio is checked before determining if the shape detected is an actual gate. This is done
by estimating the gate rotation and dividing the average length of the horizontal bars with the one of the vertical
sides of the gate. Apart from the aspect ratio, the point distribution is considered as most of the points have to be
concentrated in the edges to avoid recognizing a gate just from random points in a background which may form a
squared shape.

As expected, this method is very sensitive to changes in the environment, specially light conditions and high-contrast
objects. The test images have been processed with different distortions but the fact that the background is relatively
smooth and hence does not interfere with the gate contour makes the algorithm work almost perfectly. However,
robustness is one of the main aspects to take into account for the computer vision algorithms. Therefore, this algo-
rithm is not recommended for normal RGB images but it can be very accurate if the background is not visible which,
for instance, is the case the depth images the ToF camera provides.

8.3.3. Template Matching

Template matching is a powerful method for finding the location of a template image (patch) on a source image. This
approach could be used to identify the location of the corners of a gate. The main idea behind this technique is to
find a best-fit location of the template image (T) on the source image (I) by sliding a patch around. At each new patch
location on the source image, the "distance" is calculated, which represents how well patch fits at the current spot.
The result matrix (R) stores the calculated distance, and later is analyzed for the location with the maximum match.
There are multiple methods of calculating metrics, however, the CCORR NORMED Equation (8.2) was selected, as it
performs best in the benchmark.

Yoy (T y) - I(x+x,y+Y))

\/Zx’y’ T(x’, yl)z 'Zx’y’ I(x+ X, y+ y,)Z

In Figure 8.3b this process is clearly shown. From the clean gate synthetic image, the corner patch was cut (20x20
px). The next step would be to slide patch on entire image domain and calculate metric for each coordinate. Lastly,
the global maximum in the result matrix is found, and thus the coordinates of the corner as well.

(8.2)

R(x,y)=

Unfortunately, with the simplicity of this method, a lot of drawbacks arise. The most obvious one is that false corners
could be detected in the background. In order to distinguish true corners from false detections, some conditional
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(b) Example of template matching method detecting all

(a) Example of R matrix for bottom left corner.
four corners.

functions are used. Those function use insights of the gate geometry, such as an order of the corners and the relative
position between them.

The main limitation of this method is to find gate corners when the camera is at angles above 20 degrees. Then gate
warps drastically, so each corner is unique, and does not match any template. To solve this problem either deformed
template of corners should be taken before the race, or current nominal patch could be transformed by Affine Trans-
form? to generate corners at different perspective angles, an example is shown in 8.4. However, practice shows that
the total accuracy increase would be small, compared to the increase in computational time. Another problem is
that template must be scaled, in order to find both gates that are close by and far away. This could be resolved by
re-sizing patch, which, again, adds alot of computational time, especially if the gate is not present in the image, since
all possible scaled patches have to be checked, before stating that the gate is not present in the source image.

Figure 8.4: Example of corner transformation, from left to right 0/30/-30 degrees.

8.3.4. Deconvolutional Neural Network (DeCNN)

Image analysis is one of the most prominent fields in deep learning since, at the moment, the best object detectors
rely on convolutional neural networks. Even though, the cognitive process of the human brain a convolutional neu-
ral network is different, there are some similarities in the layered structure and in the fact that this kind of system
captures specific characteristics of the environment that it is being taught about[13]. The approach that is proposed
here is the most accurate but also the most computationally expensive. The main idea is to remove the background,
outputting the image with the gate in black. After the gate image with no background is produced, the task of detect-
ing the corner can be done with a lightweight algorithm called Ramer-Douglas-Peucker to detect the contour of the
gate (RDP-Contour), also known as the iterative end-point fit algorithm. It takes a curve composed of line segments
and finds a similar curve with fewer points to fit it [62]. In this case only the contour approximation with four points
is selected. The implementation of this algorithm works with more than 90% accuracy in the target images, which
should be similar to the output of the neural network.

The input of the neural network is the RGB image, while the output is only black and white. Figure 8.6 shows what
the system should receive as input and what image it would produce to be processed further.

The training was performed with 11,450 synthetic images of the gate at different distances, positions, rotations in
all the axis, and with different backgrounds. This variety of images allowed for a robust detector that performed
efficiently in any situation. This will solve most of the problems encountered with other algorithms that are sensitive
to changes in the environment like the lighting conditions [59]. Each input image has a similar twin where the
background has been removed in order to "teach" the network the desired output and minimize the error such that
the image coming out from the last deconvolutional layer is exactly the same as the target one. Therefore, the total
number of images used during the training increases to 22,900.

3https ://www.mathworks.com/discovery/affine-transformation.html [Visited at 24 June 2018]
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Figure 8.5: Main structure of the Convolutional-Deconvolutional Neural Network. Apart from the main layers
it is possible to visualize the input image placeholder at the beginning of each training session in the first
convolutional layer and the target images placeholder at the loss function to minimize the error of the output.

The DeConvolutional Neural Network (DeCNN) structure was be visualized in Figure 8.5, there are two placeholders
in order to indicate the data provided to the system. The first one is the input image fed to the neural network. The
second one is introduced in the structure after the last deconvolutional layer, which is a black and white image. At
this point the loss function tries to minimize the error which is the difference in the output and the target image
given in the second placeholder. The "Deconv-3" layer has been marked in red in order to indicate that once the
model is ready to be used the output used for further image processing comes from this layer.

The structure of the DeCNN is minimized in order to save computational power, there are only three convolutional
layers with multiple filters, three pooling layer which progressively reduce the image size as shown in Figure 8.6, and
three deconvolutional layers, also known as transpose convolution. It is important to take into account that in this
DeCNN there are no fully connected neurons as the image does not need to be classified but just compressed and re-
enlarged to produce a background removal. This configuration is optimal because the system needs to detect a gate
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Figure 8.6: Convolutional-Deconvolutional Neural Network pipeline. The image size gets reduced during the

first half of the pipeline and after the information has been processed the neural network enlarges the output

until it obtains another image based on the back error propagation and loss function. The size of the tensors
that comes out of each layer is indicated after each set of (de)convolutional-(un)pooling layers

which has very simple features. The choice of three convolutional layers comes from the fact that each one extract
basic features from the image, and based on research the features extracted after the third layer become very abstract
[64]. For instance the first layer could detect lines, the second one borders and the last one corners and contours.
The choice of three pooling and deconvolution layers is made simply because of symmetry as the output image must
have the same size of the input one. Moreover, the number of elements included in the structure is a key factor for
the software development as the limited computational resources represent a major restriction, especially in these
kinds of algorithms were the number of layers escalates very quickly to increase the accuracy of the classifier. In
fact the number of operations to be performed increases very quickly with the number of layers. The convolutional
layers need to "swipe" over all of the pixels of the image, it is not only about the number of layers but the specific
parameters of the filters used, like the kernel size.

While training, one of the most important parameters to look at in order to evaluate whether the neural networks
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is actually working is the loss function. The loss, which is the difference between the target image and the output
image, decreases exponentially with the number of iterations. However, this is not a clear indicator of how well
the neural network would perform in real life because the parameters might be overfit for the images used during
training. In simple terms the neural network would be memorizing instead of learning. In order to avoid overfitting,
the number of images needs to be as big as possible and the list of images needs to be shuffled to have different cases
in the batches fed to the model at each iteration.

The result of the model is visible in Figure 8.7. The image is not as perfect as the targets because there is some noise
and the system is relatively small. This can be easily filtered using erosion, dilation, blur and binary threshold in
order to highlight the gate which is clearly evident to the human eye. After the post-processing of the image the RDP
contour approximation detection is executed to output the same as the other algorithms.

(a) Output image retrieved from third (b) DeCNN output image after (c) RDP-Contour result plotted on
Deconvolutional layer thresholding DeCNN input image

Figure 8.7: DeCNN-RPD gate detection

8.4. Results: Benchmark

The software integration concerning the computer vision department is finalized in this section. Out of the three
proposed algorithms, one has been selected. Each of the algorithms was tested and tuned with different images.
However, the images for this analysis were not used before in order to simulate the performance of the algorithm
in a real-life condition. For all the images the validation process records whether the algorithm has found the gate
or not. In this way it is possible to report a performance estimation as shown in Table 8.1 in order to have some
statistical data about the binary predictor (gate or no-gate) of each method to quantify and benchmark them. If the
gate is detected it calculates accuracy based on the Mean Squared Error (MSE) of the position of each corner in order
to verify that the detected corners are not randomly allocated in the image. Moreover, the accuracy of each frame
is considered to check whether the points are correctly identified for the True Positive Rate (TPR) and False Positive
Rate (FPR) estimation.

The throughput time has been measured on an Intel i5-4210 H processor equipped with 2 cores running at a base
frequency of 2.9 GHz. Even if this measurement do not reflect the real testing conditions, it was deemed to be enough
for relative comparison, further information about the compatibility between the software and the chosen hardware
(Raspberry Pi Zero W) will be elaborated after the algorithm selection in the design system integration chapter.

Then Receiver Operating Characteristic (ROC) space is used to have a reference frame for the performance of a binary
classifier, which, in this case, refers to determining if there is a gate or not. The space is defined by the TPR which
indicates the probability of correct detection, and the FPR or the probability of a false alarm, also called a Type I error
in statistical analysis. The benchmark evaluation outputs a value for these two probabilities at each iteration where
a different batch of images will be tested for the three tested algorithms. The ratio between this two probabilities
should be higher than 50% detection reliability, which refers to perform better than a random guess generator. The
image batch categories used for the benchmark are displayed in Table 8.1, this classification has been chosen based
on the video feed recorded by the drone during the optimal trajectory planning. The first category has images where
the drone is approaching the gate, from 5 to 3 m distance. The following batch contains images where the drone
rotates around the gate up to an angle of 60 degrees from a distance of 3 meters. In the third image set, the drone
flies away from the gate, from 3 to 5 meters. On the fourth benchmark iteration, the images used consider a rotation
up to 60 degrees of the drone with respect to the gate from a 5 meters radius. Finally the last set of images contains
random backgrounds, to test the robustness of the algorithm when no gates are on sight. The benchmark parameters
used to quantify the algorithms are the True-Positive ratio (TP), the True-Positive ratio with random backgrounds
that have been added to the gate renders(TP-B) in order to demonstrate the robustness of the algorithm. The other
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parameters are the mean squared error of the corner position (MSE) measured in pixels squared, and the throughput
time measured in milliseconds.

Table 8.1: Algorithms Benchmarking

. Name of method

Image Batch [Batch size] Benchmark Parameters Dense Lines-Harris Template Matching DeCNN

TP [%] 0 0 66.7

. TP-B[%] 0 0 53.3

Approaching Gate (5m to 3m) [15] MSE [p?] [l L 133.3
e Ve s} 122 354 167.1

TP [%] 26.7 26.7 26.7

. o TP-B[%] 0 13.4 26.7

Rotating w.r.t. Gate (=60, R=3m) [15] MSE [p?] 18,884 55 33.6
e Ymefms) 161 354 1235

TP [%] 6.7 60.0 86.7

TP-B[%] 6.7 0 100

Fly away from Gate (3m to 5m) [15] MSE [px?] 51 105.8 137.7
e Ymefms) 153 374 1199

. 3 _ TP [%] 60.0 46.7 100

Rotating w.r.t. Gate (=60, R=5m) [15] TP-B[%)] 0 0 86.7

MSE [px?] 688 213 186.6
e Nmefms) 185 376 119.2.

. TN [%] 3 100 100

Background images (No Gate) [60] Time [ms] 259 413 119.7

From the analysis conducted above, it is possible to deduce that the algorithms that outperforms the other two is
the DeCNN as it is the most robust to changes in background and it is not highly affected by the gate position with
respect to the drone. In fact, the machine learning approach stands out because it is able to recognize and learn
specific features of the gate, rather than looking for the best point combination or match in the figure. This aspect is
extremely important specially because the gate will not be positioned in front of a white background and the gate-
detector needs to be able to identify the gate at different distances and angles. Even in some cases such as in the first
batch image test, when the drone is approaching the next waypoint and not all the corners are visible. Therefore, the
final computer vision software for the RAIDER concept has been deemed to be the nine layer DeCNN-RDP-Contour
algorithm, with an average gate accuracy of 78.9%; this is a weighted average based on the accuracies retrieved from
Table 8.1 and the batch size of each benchmarked case.

8.5. Gate Dewarping

Gate dewarping is an essential technique, which allows RAIDER to estimate the relative position of the gate with
respect to the camera, and vice versa, to calculate the location of the corners on the camera image. This technique
would be used in both ways. To generate location of the corners on the image of a known gate. That would be used
for the benchmarking Section 8.4 to calculate the accuracy of the algorithms. And to find the location of the gate w.r.t
the RAIDER, based on detected corners.
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In order to calculate the position of the corners in 2D space, the 3D scene must be transformed to clip coordinates,
then, these clip coordinates are then transformed to the normalized device coordinates (NDC) by dividing by a com-
ponent of the clip coordinates. In other words, the real coordinates of the viewing frustum would be transformed
into the cube with vertices [-1,1], as shown in Figure 8.8b. The pyramid frustum is set by the 6 parameters, near
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(n) and far plane (f), left (1) and right (r) x-coordinates and top (t) and bottom (b) y-coordinates in the eye (camera)
coordinate system. If the object is present in the viewing volume it will be seen by the camera. The distance to the
near plane could be approximated by the camera focal length, which is typically around 23mm, the far plane 20m.
Right, left, top, bottom, coordinates might be calculated by using camera FOV and the Pythagorean theorem. From
this information, the transformation matrix from 3D to clipping coordinate system could be derived Equation (8.3),
it further simplifies due to the fact that the right and left, and the top and bottom coordinates are symmetric, thus
resulting in the terms with r + [ and ¢ + b being zero. Furthermore, the (x, y., z.) are divided by w, to get points in
NDC. Lastly, the x and y coordinates are scaled to pixel size and used to find corners in the image, as can be seen in
Figure 8.9.

Gate dewarping can be done by doing the opposite of what explained above and by using an inverse transformation
matrix Equation (8.3).
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Figure 8.9: Example of estimated
location of the gate corners

8.6. Software Verification & Validation

8.6.1. Verification

In order to assess the suitability of the simulation model for gate detection, the programming methods have been
verified using unit test throughout the process. The verification tests have been applied at each stage of the devel-
opment to check that each module was correctly coded. The image pre-processing unit was verified by controlling
the level of distortion introduced in the images and by visually controlling the labelling of the corners. Moreover
the corner detector, mainly composed of mathematical functions and array manipulation was verified by testing the
method with input variables of which the result was already known. An example of this test is the intersection func-
tion where the line that intersects are the input and the point where this happens is the output. Another example is
the corner detector that was verified to make sure it wasn’t biased by checking that it would not return any corners
in monochromatic images without any feature to be detected. Finally a system test was performed for each gate
detection algorithm making sure that the TPR and FPR was not below the minimum threshold of 50% accuracy.

The DeCNN algorithm-hardware compatibility has been checked based on literature. Many projects that use con-
volutional neural networks, such as YOLO, have been run on a Raspberry Pi 3*°. Even though the Raspberry Pi 3
has a quad-core processor it is comparable to the single ARM processor of the Raspberry Pi Zero W because most of
these projects have been implemented in Python which cannot run on multiple cores at the same time. Although,
in general, these projects run at a low frequency of less than 1 fps®, it is important to remember that the YOLO CNN
performs localization and classification of objects with 20 convolutional layers [45] , while the DeCNN developed for
the racing drone has only 3 of these. More information about the performance of de DeCNN on the Raspberry Pi
Zero W can be found in Chapter 11, where the frequency at which it can be run is approximated.

8.6.2. Validation

For validation, the software has to be tested with real images of gates, in order to ensure that the training set is a
reliable source of images. The aim of the validation is not only to ensure that the model response is correct but also
to demonstrate that synthetically generated images yield significantly better performance than using a limited set of

4https ://medium.com/nanonets/how-to-easily-detect-objects-with-deep-learning-on-raspberrypi-22529635c74
[Visited at 21 June 2018]

Shttps://github.com/DT42/BerryNet /blob/master/README . md [Visited at 21 June 2018]

6https ://nl.mathworks.com/help/gpucoder/examples/pedestrian—-detection.html?s_tid=gn_loc_drop&s_eid=
PSM_15028 [Visited at 21 June 2018]
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real images and apply different types of quality distortions on this ones [14]. Thus, in order to conduct a validation it
is needed to run another benchmark simulation, on a small set of images as this ones have to be manually labelled
by indicating the four corner position at every frame.

Furthermore, the complete validation process should be conducted on the real hardware,and if possible in later
validation stages, using a real-time input of the camera in order to test the throughput time and the accuracy in
standard operational conditions.

8.7. Time of Flight Camera: Algorithm Implementation

The software strategy for the ToF camera was not tested in an artificial racing environment due to the unavailability
of gates depth images during the early subsystem design development. However, even if the implementation was
only partially developed, the integration strategy has been established as this camera is an essential component for
the success of RAIDER.

The primary mission of the ToF camera is to detect objects in front of drone and to classify these as either a gate
or an obstacle. This distinction should be easy to make since obstacles are not normally hollow. The depth camera
ensures that the drone does not hit a column or a gate side, making the drone more reliable. The secondary mission
of the ToF camera is updating the gate waypoints and correcting drift values of IMU measurements.

The object detection with the ToF camera is achieved by threshold a depth map, in order to get a binary image, such
as the output of the DeCNN, where the color intensity represent how close is an object with respect to the camera.
Objects are detected with a resolution from 2 to 4 centimeters * and objects further than 4 meters cannot be detected
therefore will have a black background color instead. To distinguish gate from the obstacle, the average distance or
colour of the enclosed contour area is taken and compared with the background distance or colour respectively. If
the average value is close to the background one, then the object is hollow, thus it is a gate, otherwise an obstacle.
The same RDP-Contour algorithm executed on the DeCNN images is used to find the gate’s corners. Since the ToF
camera outputs the distance to the gate, the velocity of the drone can be calculated by numerically differentiating
the distance. Additionally, because the ToF camera can perform at a high frame rate, its images are expected to be
more reliable.

As for the implementation on the hardware, the ToF software will be executed on a thread with lower priority. More-
over, the algorithm to process the depth images is very light computationally as the resolution of the images (224 x
171px) is almost half of the RGB ones and they have only one information channel (depth) to be processed.

Finally the ToF algorithm will have two main modes, the first one outputs the relative position in all the axis, this
method consist on finding obstacles by applying a simple contrast based algorithm and extracting the position of
keypoints by looking at the depth values. The second one, returns the absolute position and is used once the gate is
detected. This method tracks the gate when is fully visible but also after 1.6 meters from it when only the gate bars
are in the field of view of the camera. Therefore, also when only a part of the gate will be visible, the update is done
without having to process the corner position with the gate dewarping. This second algorithm is executed when only
one corner is detected and it estimates the direction to be followed by examining the corner orientation. q

8.8. Strategy Overview and Conclusion

Figure 8.10 gives a complete overview of the main functions that are handled on the Raspberry Pi Zero W. All of the
different steps and their logic is explained in it. The in and output and their dimensions, are clearly indicated outside
of the main computer and marked in red. There are two different branches coming into the computer from the two
cameras that feed the input images. As explained for the ToF camera, the running priority of each camera’s output
on the processor is determined based on the frequency of each algorithm. Therefore a higher running priority is
assigned to the RGB image branch than to the depth image algorithm, since the DeCNN was selected as the main
gate detection algorithm. However, if the gate is in sight of the ToF camera, then priorities would be switched because
ToF will provide higher update rate of states than DeCNN. The throughput time and the amount of FLOPS that are
needed to generate the gray-scale image and to perform the gate detection have been calculated. Subsequently this
parameter has been translated into a frame rate based on the specific operations handled on board of the Raspberry
Pi Zero W. In order to calculate the FLOPS it is required to have information of each CNN layer, such as the filters
that were used, the size of the input, the kernel size, the strides, and the padding. With this parameters it is possible
to estimate the number of FLOPS per layer®. The current neural network configuration has a performance of 80
MFLOPS. In order to highlight the gate contour found by the DeCNN, the RPD-Contour algorithm is used to localize

7https ://pmdtec.com/picofamily/assets/datasheet/Data-sheet—-PMD_RD_Brief CB _pico_flexx_V0201.pdf [Vis-
ited at 22 June 2018]
8https://github.com/sagartesla/flops—-cnn [Visited at 26 June 2018]
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the point coordinates in the image. The complexity of contour is approximated to O(Nlog N)?, where N is the total
number of pixels (288x512), this leads to another 2.9 MFLOPS, together with the image processing, for a total of 82.9
MFLOPS that are needed to calculate the gate position.

Finally, the DeCNN-RDP-Contour algorithm was estimated to have a running frequency of 3 FPS while the depth
images processing is really fast. Therefore, the frequency depends on the video-feed itself which varies from 5 to 45
FPS depending on the distance from an object. This has been explained in more detail in Chapter 11.
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Figure 8.10: Gate detection strategy.

8.9. Future Development

Programming Language

The programming language that has been used to simulate this algorithms is Python because it’s widely supported
for machine learning, complex data analysis and visualization. The implementation is aided by multiple open source
application programming interfaces (APIs), in particular openCV'? which was used for all the standard computer
vision algorithms. Python is an interpreted language and is not compiled like C or C++ which significantly increases
the throughput time. The main difference is the fact that Python is a dynamic programming language, where the
type of variables do not need to be declared beforehand such as in static programming. Therefore, the variables
that are created are not optimized for memory usage. In future implementations the software should be rewritten
in a compilable language and optimized for efficient memory access. Finally, the programming language should be
changed, to allow for multi-threading in order to concurrently execute the algorithm in charge of handling the RGB
images and the one that uses the depth camera. In this way the overall accuracy will increase as both cameras will
be used to extract different information about the environment.

Ynttps://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html [Vis-
ited at 26 June 2018]
10https ://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html [Visited at 30 May 2018]
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Path Planning & Optimization

Path planning is crucial to RAIDER’s success in the IROS 2018 ADR and one of the most researched problems in the
field of robotics. The primary objective of the path planning and optimization system is to determine an optimal
and collision-free 3D path through a set of target nodes (gates) that respects the drone’s kinodynamic limits. In this
section, RAIDER’s path planning and optimization approach designed for the IROS 2018 competition is discussed.
Section 9.1 presents a brief overview of the related literature and most promising algorithms, motivating our choice
to modify the joint polynomial optimization first proposed by Mellinger and Kumar [32] to achieve a robust and
dynamically feasible path at minimal computational cost. Section 9.2 elaborates on our optimization approach and
the way in which we intend to apply it in the ADR is discussed in Section 9.3. In Section 9.4, the path planning routine
that was built will be stress tested to verify its robustness to problems posed under demanding constraints. Finally,
we consider the limits of the Control and Gate Detection subsystems to plan a nominal path for participating in the
race and validate it by means of an integrated simulation in Section 9.5.

9.1. Background & Present Work

Several general-purpose algorithms capable of generating trajectories for dynamical systems in space are available
and well documented in literature.

Generally, roboticists tend to focus on discrete or randomized search approaches for motion planning. Common
discrete approaches include using standard algorithms such as A* and Dijkstra’s to search over graphs of feasible ac-
tions in the state-space. While these algorithms are promising for systems of four to five states, such as automobiles,
their complexity increases dramatically with the dimensionality of the state-space [41]. Randomized approaches
such as RRT (Rapidly-exploring Random Trees) are resistant to the 'curse of dimensionality’ because the number of
nodes to be explored does not scale as poorly with the size of the state-space, rendering them suitable, in principle, to
search the 12 dimensional state-space of a quadcopter for an optimal sequence of actions. However, while these al-
gorithms have been shown to return 'reasonable’ trajectories, they are not designed to compute optimal trajectories
and are likely to lead to overly costly, lengthy or dynamically unfeasible paths. In a race environment, this is highly
impractical as the challenge does not lie in obtaining a reasonable’ trajectory. This is a relatively simple problem
given that the environment and most waypoints (gate positions) are known beforehand. Rather, the challenge lies
in adaptively determining optimal trajectories that minimize some combination of the required control effort and
time. Recently, RRT has been modified to guarantee global optimality for dynamical systems in the limit of infinite
samples [22]. However, Bry showed that RRT* is very expensive for multiple DOF dynamical systems; he reported a
runtime of 120s to optimize a path around 5 obstacles using a polynomial steering function on a 2GHz processor [5].

Instead, the control community has focused on treating path planning as a constrained non-linear optimization
problem. The issue with this formulation is that the limits imposed by the dynamics of the system, control inputs,
and obstacles all enter the problem as mathematical constraints. Respecting all constraints explicitly may be com-
putationally intensive and can result in slow and numerically unstable optimization routines, particularly so when a
large number of obstacles is present and the domain is represented as an occupancy-grid map with high resolution
(which is a natural and tractable way to represent environments and has long been the standard in robotics). For
instance, Barry and Majumdar report several minutes (3 to 5) of computational time to optimize a 4.5m trajectory
for a 12-state, 5-input airplane maneuvering between cylindrical obstacles by solving the problem in the optimal
control formulation using direct collocation[5][2]. In order to be competitive in the IROS competition, the path
planning routine is required to run online and continuously re-plan the path in a fraction of a second, so standard
optimization approaches are deemed unfeasible.

Mellinger and Kumar [32] bypass this problem by exploiting the property of differential flatness to ensure the dy-
namic feasibility of their trajectories. In their formulation, the dynamics of the drone did not enter the problem as
formal constraints but rather, the control effort required to follow the path was limited by minimizing snap (the sec-
ond derivative of the acceleration). From the algebraic mapping that exists between the differentially flat trajectory
parameters and the required control inputs it is then trivial to verify the dynamic feasibility of the path. Bry et al.
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successfully applied this method to a planning problem involving the flight of a quadcopter in a cluttered indoor en-
vironment [5]; due to their smoothness and tractability they choose polynomials as their basis functions and report
a runtime of merely 0.2ms in jointly optimizing a three-segment path on a 2GHz Intel Atom processor. This method
is extremely promising and the only one in literature that has been proven efficient enough to consider running it
online for high-frequency re-planning.

In this chapter, we propose a modified version of the joint polynomial optimization approach described above
geared to succeed in the IROS competition.

9.2. Method

The path planning approach described in this section is capable of efficiently determining the optimal path, which is
subject to constraints on both the path parameters and their derivatives, through a series of waypoints. We describe
aroutine based largely on the work of Mellinger and Bry [32] [5] that allows for high-frequency path re-planning and
is suitable to generating dynamically feasible paths through all gates and to avoid unexpected obstacles detected
at close range. Section 9.2.1 discusses the path parameters, whereas Section 9.2 and Section 9.2.3 elaborate on the
details of the optimization approach, focusing on the trajectory optimization and time segment allocation problems
respectively. Finally, Section 9.3 discusses how the optimization routines will be implemented dynamically in the
race.

9.2.1. Differential Flatness and Dynamic Feasibility

Given the multiplicity of reference frames involved in the path planning problem of a quadrotor, it is imperative to
define the coordinate systems that will be used in this work, an overview of which is shown in Figure 9.1. Firstly, the
track coordinate system x, y, z is fixed and centered in the origin O of the race track. The drone coordinate system,
instead, is centered in the drone’s center of mass and made up of the drone body axes xj, ¥, zp and is continuously
translating and rotating relative to x, y, z.
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Figure 9.1: An overview of the coordinate systems used in this section. x, y, z (black) is the track coordinate
system and xp, yp,, 2p, is the drone coordinate system (red).

Mellinger shows that the problem of quadrotor dynamics with four control inputs, namely the net thrust from all
propellers and the three control moments around the drone body axes, is differentially flat. This means that there
exists at least one set of parameters O for which the state of the system can be written in terms of ® and its derivatives
at any point in time. In this work, we select the following flat outputs:

0=I[xyzyl" 9.1)

Where the triplet R = [x, y,z]" represents the position of the drone’s center of mass in space relative to the track
coordinate system and the angle v is the yaw relative to the track system as shown in figure Figure 9.1. A trajectory
0O(1) is a smooth curve defined parametrically in the flat output space as follows:

Q1) : [to, 1] — R x SOQ2) 9.2)

For this particular set of flat outputs, Mellinger [33] shows that there exists some smooth map M such that Sec-
tion 9.2.1 holds.
(x,u) = M(©,0,0,0,0) 9.3)
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Where x = [x, y,2,$,0,%,%,7,2,p,q,r]" is the 12-dimensional state vector of the drone, including the position and
velocity of the center of mass and the orientation (Euler) angles and angular velocities. The vector u contains the
four control inputs u = [uy, Uy, us, u4]T, which represent the net thrust from the propellers and the control moments
about the x,y, and z axes respectively. A full demonstration that some M exists for which Section 9.2.1 holds is not

reported here but can be found in [33], itis sufficient for the reader to know that such a mapping exists and is smooth.

The magnitude of the net thrust u; is quite straightforward to express in terms of the differentially flat trajectory

parameters ©:
up =/ 2+ j*+ 2+ g)? 9.4

Given that the lifting capabilities of the drone hardware desired by the customer are significantly higher than those at
which we expect to operate in the race, the control input ©; is not deemed critical from a path planning perspective.
The control moments uy, uz and u4 are much less predictable and will effectively define the dynamic feasibility of
the trajectory. In M, the inputs u, and u3 appear as functions of the fourth derivative of the position R (known as
snap), whereas uy is related to the second derivative of the yaw angle 9. Therefore, we focus on ensuring minimal
control effort by minimizing R and v (as is commonly done in literature), and later verify that the net thrust profile
u1 (t) throughout the trajectory is suitable.

9.2.2. Trajectory Optimization

Position

Given that the states and inputs are dependent not only on the flat position variables R = [x, y, z]* but also on their
derivatives, it is convenient to choose a basis function for R that has well-defined and tractable derivatives at any
point in time. For this reason, we choose polynomials as our basis functions. Now consider the progression of a
flat position variable, for instance x, throughout the racetrack. The trajectory will need to meet a series of discrete
position constraints throughout the track, which we call waypoints; physically, these waypoints represent the spatial
coordinates of the center of the gate, through which the drone must pass in order to minimize the probability of
collision. The flat output variable will also need to meet constraints on its derivatives. For instance, we impose that
the velocity vector should be perpendicular to all gates to minimize the likelihood of drifting sideways while passing
through a gate.

A natural way to enforce all this is to define the position along the trajectory Ry () = [x7(£), yr(£), z7(£)]T as a series
of polynomial segments of order N that satisfy several continuity constraints at the waypoints.
Zg\iorTl,iti: h<x<hH
Zﬁ\iOI‘szitli hH<x<t
Rr()=4 . (9.5)
Zﬁ\iorTm,,-ti: tm-1<X<tpy

As explained in Section 9.2.1 we are looking for a trajectory that minimizes the snap as it is mapped into the control
inputs uy and us. Therefore, we minimize the square of the fourth derivative of the position. The resulting optimiza-
tion problem is the following:

2

tm d4RT

min —| dt
ftg Hrll g

s.t. R7(t;) =R; i=0,...m
d*x
— =0orfree j=0,....m; k=1,...,4
At 1=y, 9.6)
dk
—IJC/ =0orfree j=0,..m; k=1,...,4
dt I=t;
dkz
— =0orfree j=0,...m; k=1,...,4
dt I=Ij

Here, u, is a constant to make the integral non-dimensional, and R; = [x;, y;, z;] are explicit position constraints
at the waypoints (gates). It is possible to formulate the problem in Equation (9.6) as a standard quadratic program
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(QP) by grouping the coefficients of R into a vector r and the constraints into a vector b. As observed by Bry [5],
solving the problem for all polynomial segments at once yields lower cost trajectories than optimizing each segment
individually, so it was chosen to frame the problem in the joint optimization formulation and solve a single QP for
all time rather than multiple QPs for every polynomial segment. Since the components of R are decoupled in their
cost function (they are positions along orthogonal axes), it is possible to solve for x, y and z separately. 3 QPs were
therefore solved over the entire time span of the trajectory (one for each component of R); notwithstanding what is
done by Bry [5], we solve the problem directly in the constrained formulation:

min rTQr
r 9.7
st. Ar—-b=0
Where the matrix A maps the coefficients r to the appropriate polynomial derivatives to be constrained, and Q is a
Hessian cost matrix that maps each polynomial derivative to the appropriate penalty.

The constraint matrix A is relatively straightforward to construct given the analytical traceability of polynomial
derivatives. The kth derivative of R (or any of its components) at some time ¢ can be written as:

N (k-1
R =Y (]‘[ (n—m))rnt”k 9.8)

n=k \m=0
A single polynomial segment starting from time 0 at some waypoint and ending at time 7 at the next waypoint must
satisfy constraints on both its ends, which can be constructed as:

4o _[bo
A= A, b= [br] 9.9)
Ao = ncolk=my - k=n by, = R¥(0) 9.10)
kn = o: otherwise 0.k = )
(M m-m))e ks k= .
Avkn = { 0 :m otherwise b =RT(®) (3.11)

Where Ag x,, and A; k,, are the components of matrices Ay and A; respectively, which both have dimensions 5 x N
(one row per derivative k including the Oth derivative and one column per polynomial coefficient). Denoting R;.k) as

the value of the kth derivative of the trajectory at waypoint j, continuity of the k derivative follows from: —R;’?l +

Rs.k) =0. Let A{) be the constraint matrix for a trajectory starting at waypoint j and let A} be the constraint matrix

for a trajectory ending at waypoint j. Then we can write matrix A in such a way as to enforce specific values on the
derivatives R;k) while also imposing their continuity:

[(A) 0 0 0
-AY A 00
0 -Al A3 0

2 3

A=| 0O 0o -4 A

o o o O
o O o O

(9.12)

0 0 0 0 0 -A™b Anm

o 0o 0o 0 o0 0 A"

The Hessian matrix Q is obtained from the cost function in Equation (9.6), using standard mathematical formula-
tions. The square of a polynomial, R?, can be written using the convolution sum:

N
R =Y rirn-j (9.13)
j=0
Here, (R?),, is the nth coefficient of a polynomial of degree N. Bry shows that it is possible to rewrite the cost func-
tion using Equation (9.13) and Equation (9.8), where the 4th derivative of R is computed. In order to construct the
Hessian matrix, the rewritten cost function is derived two times with respect to each of the polynomial’s coefficient.
Equation (9.14) shows how to obtain all components for a particular segment, where 7 represents its time duration.
The full matrix Q is constructed assembling the different matrix segments as a block diagonal matrix. A complete
derivation can be found in [5].

3 . .L.i+l—8+1
Qi ZZ(nl;IO(l—m)(l—m))m (9.14)
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Yaw

Our approach to optimizing the yaw angle y differs from anything encountered in literature and is geared specifi-
cally towards navigation through sparse waypoints with characteristics that are useful to track. In order to increase
the chances of RAIDER winning the IROS 2018 ADR, the priority of the path planning should not only be to mini-
mize the control inputs required, but more importantly to increase the chances of the drone to orient itself in the
environment. For this reason, the planned path needs to maximize the probability of detecting a gate with one of
the techniques presented in Chapter 8. The yaw angle needs to be optimized such that the drone is always pointing
to the next gate. This formulation of the yaw angle is applicable to the full trajectory, except for the parts of the path
where the drone needs to adjust its orientation after passing a gate to start pointing to the next one. This situation
is clearly displayed in Figure 9.2, where the red dots represent the gates and the vertical bars represent the transition
zones. These changes in orientation constitute small discontinuities along the path, which are impossible to actuate
in reality. Equation (9.15) and Equation (9.16) show how the yaw function is defined.
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Figure 9.2: Schematic representation of the variation of the yaw function along the trajectory.
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Here, fjqin is the time required to pass a transition zone, and [#y, f1, &2 . .. fm—1, Il r represents the time of the different

m+1 waypoints, which include the initial, the final positions and the time at which a gate is crossed.
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yri(t) = { (9.16)

Equation (9.16) is applicable from i = 1 to m-1, the last segment (v 7,,(#)) has only v, (t) part, from the beginning
(1 + i ;i" ) until the end (¢,,). x(t), y(t) have been obtained as explained in Section 9.2.2.

v, (1) represents the intra-gate part, the yaw angle in the track reference system described in Section 9.2.1, can be
calculated from the [x, y]T trajectory and the position of the waypoints by means of a simple geometric relationship.
Due to the sparsity of the gates this portion of the yaw is easily controllable as the drone is typically required to
adjust the yaw slightly at every new position to keep looking at the same gate. The arctan has the characteristic that
are needed for the polynomial function described in section 9.2.2, it is easily differentiable and continuous at every
point in time.

v, (?) is the transition part, where a relevant change in yaw angle is required. The controllability of the drone in this
part depends on the duration of the maneuver, and as shown by Mellinger [33] the second derivative of the yaw. A
cost function is defined as shown in Equation (9.17) to optimize these parameters.

toitZjoin
min
Toi

Where #y; refers to the initial time of the transition segment, and fy; + £joi, refers to the final time of the transition
segment. The function used to fit the initial and final state is the cubic smoothing spline, which fits a sample of
points between each y,; and ¥,;,ensuring a smooth transition that minimizes the control inputs.

d*yy
de?

2
dat i=0,.,m-1 9.17)

9.2.3. Time Segment Allocation

In the IROS competition, the total time allowed for the trajectory is important but the arrival time at different way-
points is not (except perhaps for the dynamic obstacle but our solution to this particular challenge is explained in
Section 9.3). Intuitively, a good solution is one that also distributes the total allowed time optimally between each
trajectory segment. This can be done a-posteriori by first assuming a time distribution (for instance by assuming
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the quadrotor travels at constant velocity and spends the same amount of time in each segment), computing the
minimum-snap trajectory and then solving a second optimization problem to re-scale the coefficients in such a way
as to optimize the time allocated per segment [32]. Let T; be the time spent in the ith segment, then the optimization
problem to be solved is:

min f(T)
st. Y Ti=t, i=1..,m 9.18)
TiEO i=1,....m

where f(T) is the solution to the optimization problem in Equation (9.6) with segment times T = [T}, T», ..., Tiyl. As
done by Mellinger, we solve this via a constrained gradient descent method. We compute the directional derivatives
of f(T) along m directions g;:

Vg, f = w (9.19)

where £ is small and the vectors g; are constructed such that the ith element has a value of 1 and all other elements
have value m_—_ll This way, }_g; = 0 and different time distributions can be obtained by adding a small multiple of
g; to the vector of time segments T without changing the total time t,,, = }_ T;. For instance, in the case where m=3

(3-segment optimization problem), we have: g; = [1, 3}, 317, g, = [31,1, 321" and g3 = (3}, 51, 11" and the final
gradient is:
[ (T+hg)—f(T)
V Lo O J -
_ s/ | peengh— e
Vi=\Vef|=|—F5——— (9.20)
F(T+hgs)—f(T)
Ve, f &
9.3. Application

Figure 9.3 shows an overview of how this optimization approach will be applied in the IROS competition, which is
further explained below.

— — — — —
r Raspberry Pi Zero W R r Pocket Beagle

Add obstacle Set new waypoint
to map in free space

Relative position of
obstacle w.r.t. drone
and geometric
dimensions of object

Absolute position,
velocity, acceleration
and heading

Joint polynomial
optimization for
trajectory x,y,.z

Sensor
Fusion

Set new waypoint
with drone position

Get number of
gates passed

Time optimization

f

Required position,
velocity, acceleration,

System |
Monitoring |
Yaw optimization
heading
Flight .
l Controler [

Figure 9.3: The figure shows the flow chart for the path planning.

Path Planning and Replanning

Given the gate positions known a-priori, RAIDER will first plan an optimal path ® through all gates from start to finish
of the track and begin following it. Every time a new pose estimate is received and the path planning routine is not
running, RAIDER will re-plan a path through the remaining portion of the track taking its current position, velocity
and acceleration as the first waypoint constraints to correct for drift. The constraints are imposed in such a way that
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the drone flies through the center of every gate and with its velocity vector perpendicular to the face of the gate, in
order to minimize the probability of colliding with the gate or drifting towards its edges. We impose zero velocity,
acceleration, jerk and snap both at the start (takeoff) and at the end (landing) of the track. We use this application,
which is the most intensive, to verify our path planning routine in Section 9.4 and validate its compatibility with the
other subsystems in the context of the IROS competition in Section 9.5.

Obstacle Avoidance

In the event that an unexpected obstacle is detected by the depth camera, RAIDER will receive its relative position to
the obstacle and the width of the obstacle in the plane in which it is being viewed. RAIDER will then place waypoints
clear of the obstacle, at a minimum in-plane distance equivalent to twice the width of the drone. The new waypoints
will be used to plan a safe correction path from the last known position, velocity and acceleration to the next gate.
This application uses the routine described in Section 9.2 and verified in Section 9.4. We validate the feasibility of this
approach in relation to the other subsystems and in the context of the IROS competition in Section 9.5, by simulating
the avoidance of an unexpected obstacle detected at close range.

Dynamic Gate Avoidance

Figure 9.4: A schematic of RAIDER selecting the safest quadrant of the dynamic gate to pass through

It is also worthwhile to mention how we intend to pass through the dynamic gate, which contains a bar that rotates
about the center of the gate. We assume that the direction of rotation of the bar is known as it can be observed before
the race and otherwise tracked by the depth camera. The idea is to take advantage of RAIDER’s agility to treat the
dynamic gate as a static obstacle from a path planning perspective. We divide the dynamic gate into four quadrants
of equal dimensions, and impose that RAIDER shall pass through the center of the quadrant that is furthest from
the one in which the bar was last located. This approach will be validated in Section 9.5 by showing that under the
suggested nominal path RAIDER has more than enough time to 'beat’ the rotating bar to the center of the chosen
quadrant under the range of rotational speeds expected.

9.4. Prototype Testing and Verification

In order to verify the performance of the path planning approach described in Section 9.2, we built a working proto-
type in MATLAB and used it to plan optimal paths through different environments including the IROS racetrack. In
this section, we discuss the unit tests and system tests performed to ensure the robustness of our routine. We also
perform a full-scale system test on the most critical case expected in race operations, namely the task of planning
an extremely aggressive path from start to finish of the track. The quadratic programming problem described in
Section 9.2.2 is solved using the interior-point-convex version of MATLAB’s quadprog solver whereas the time seg-
ment allocation problem described in Section 9.2.3 is solved using the fmincon nonlinear solver. The optimization
problem described in Section 9.2.2 is solved using a cubic smoothing spline implemented through MATLAB’s csaps
solver.

9.4.1. Comparison with Analytical Solutions

The individual parts of code that make up the path planning routine were verified by means of several unit tests
that consisted of solving optimization problems with known analytical solutions or properties. The joint polynomial
optimization routine described in Section 9.2.2 was tested by determining the optimal path for analytically simple
waypoint problems. For instance, we verify that the minimum-snap solution to the problem with m =5and n =4
is the only fourth degree polynomial that passes through all 5 waypoints. The yaw optimization routine described
in Section 9.2.2 was also verified by solving problems with a known analytical solution. We optimize the yaw angle
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for a series of m = 4 waypoints all aligned along the y-axis and verify that the optimal solution is indeed the trivial
case in which the drone maintains its body axis y;, aligned with the y-axis (y = 0) for the entire path. We also solve a
problem with m = 4 in which the waypoints are equally spaced around a circle and the drone is taken to be travelling
at constant velocity; we verify that the resulting yaw distribution varies equally across all four segments. The same
circular waypoint setup is used to verify the time segment allocation unit described in Section 9.2.3 as well. We
impose that all waypoints should be traversed with the same velocity and with the velocity vector aligned with the
tangent to the circle at the location of each waypoint. After initializing the problem with varying time segments per
quarter of the circle, we verify that the final solution has allocated the same amount of time to every segment.

9.4.2. Full-Scale System Test: Critical Path through Entire Racetrack
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2 2 x [m]

(a) 3d view of the optimal path through the entire racetrack for t;;; =  (b) Top view of the global path shown in (a). The
6.7s arrows are aligned with the direction of the drone
body axis yj, throughout the trajectory.
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Figure 9.5: Results of full-scale system test

The task of determining an optimal path through the entire racetrack is, intuitively, the most intensive as it involves
jointly optimizing the largest amount of polynomial segments. It is a natural case on which to stress-test our path
planning routine. In its current formulation, our path planning algorithm is designed to be flexible and takes in
a user-specified total time allowed for the entire path without imposing it. This way, the user can easily control
the degree of 'safety’ desired and use the parameter ¢, to choose whether to generate safer (easily controllable)
or more aggressive trajectories. This flexibility is desirable in the context of high-frequency re-planning on-board
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RAIDER because, in practice, the total time allowed for the trajectory will depend on a large number of factors, such
as battery life, gate detection performance and the time left in the competition. For instance, on the final attempt in
the competition, with little time left on the clock, it may be required to choose a small ¢, to generate a very fast and
aggressive path, while in the first attempt it may be preferable to prioritize controllability and choose a larger t;,.

We test our algorithm on the most numerically demanding case that may, in principle, be encountered, namely
the fastest possible path that RAIDER can fly given its dynamic constraints. For the purpose of this system test,
we make a conservative estimate for such a path iteratively by comparing the thrust-to-weight ratio demanded by
the trajectory at every point in time to the maximum available thrust associated to the demanded airspeed at that
point in time, using the methods described in Section 6.3.1 (as explained in Section 6.3.1, the thrust available is a
function of airspeed since the propellers lose efficiency with increasing airspeed). Whenever the required thrust
exceeds the available thrust, a constraint is activated and the total time ¢, is decreased. The fastest possible path
that does not activate any of RAIDER’s dynamic constraints takes t,, = 6.7s to complete the entire track. It must be
noted that this path is not representative of the true dynamic capabilities of RAIDER, but it is determined by using
the simplified drag model described in Section 6.3.1, and assuming that the drone is navigating the path as a point
mass and neglects the changes in attitude required to accelerate along the trajectory. A nominal path through the
IROS racetrack that fully accounts for the rigid body dynamics of the drone, the performance of the flight controller
and the gate detection subsystem is also determined using the approach described in Section 9.2 and is presented in
Section 9.5.1. The intent here, instead, is to validate that our routine does not encounter numerical stability issues
under an extremely demanding total allowed time ¢, that purposely overestimates RAIDER’s dynamic capabilities.
Failed convergence of the path planning routine is a critical risk associated to this subsystem and it is imperative
to ensure that the algorithm is robust under conditions that are more demanding than the ones expected under
nominal race operations. For instance, Bry reports numerical stability issues in his implementation[5] for more than
5 segments under tight time constraints.

For the smallest possible t;,, = 6.7 s, we find that the polynomial order of R for which the minimum cost is achieved is
n=8. As can be seen in Figure 9.5a, the resulting trajectory smoothly meets all constraints and appears to be natural,
which serves as qualitative validation for the cost function used.Figure 9.5d shows the net velocity and acceleration
required along the path. Remarkably, our routine encountered none of the numerical issues described by Bry while
generating paths with polynomial segments of orders up to n=15 for t,,=6.7s; Figure 9.5c shows the convergence of
the polynomial trajectory solution Ry to the final one shown in Figure 9.5a. The optimal yaw attitude as determined
via the method described in Section 9.2.2 is also plotted in Figure 9.5b and shows smooth intra-gate transitions.

9.5. Integrated Race Strategy and Validation

In this section, we delve more into detail regarding the application and integration of the path planning routine in
the IROS race as described in Section 9.3. In Section 9.5.1 we determine a nominal path through the entire racetrack
that takes into account the limits of other subsystems and validate its feasibility by means of an integrated race sim-
ulation; in doing this, it was also validated that RAIDER will be able to safely avoid the dynamic gate. In Section 9.5.2
the proof of concept was provided for the obstacle avoidance routine described in Section 9.3 by simulating the case
in which the drone detects an unexpected obstacle at close range and must plan a dynamically feasible maneuver to
avoid it.

9.5.1. Nominal Path through Entire Racetrack

In section 9.4.2, it was showed that in principle the planning algorithm is able to cope with planning a path with
tm = 6.7 s. This is obviously far from the nominally optimal path for completing the track and winning the race.
Such a path needs to take into account the constraints of the computer vision, the thrust capabilities of RAIDER, the
maximum allowable drift and the flight controller.

In Chapter 8, a strategy based on an RGB and ToF cameras running simultaneously was defined. The ToF only works
if the gate is at a distance of 4 m, since it is required to have a detection before this moment the RGB camera has the
constraining performance. It runs a detection algorithm at 3.1 fps, and in a frame in which a gate is in view, it has
a detection accuracy of 65 % with the camera at an angle between 45 and -45 degrees with respect to the gate. In
order to propose a nominal path to be flown during the race, the probability of finishing the track has to plotted as
a function of the total time. This was done by assuming that every segment is an independent Bernoulli trial. Using
the path shown in Table 9.3, an approximation of the percentage of time that is spent in each segment can then be
calculated by normalizing these results. Multiplying this with the total track time, the amount of time spent in each
segment, together with the time the gate is in sight during the segment is calculated.

The probability of passing through the gate at the end of a segment is then calculated using the equation in Equa-
tion (9.21). Here, G is the even that no gates have been detected, N is the event that a gate was last detected n frames
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ago. P(Pass|n) is the probability that the drone flies through the gate on its IMU, given that the last detection was n
frames ago.

Nmax—1
P(Pass) = P(G) - P(Pass [)+ Z P(N =n)-P(Pass|N) 9.21)

n=0

Here, equations in Equation (9.22) were used to calculate each of the probabilities used in Equation (9.21).

P(G)=(1-cmB-nenn) ™

P(N=n)=(1-cvncnn)" - omB NenN 9.22)
- XDrift
P(Pass|G)=1-2-CNF(u=0,0 = T,x =-0.5)

In Equation (9.22), ncny is the accuracy of the CNN, as described in Chapter 8, p is the average drift value, which is 0
due to the random nature of drift. xp,; s, is the amount of drift that is calculated according to Section 7.1.1. This value
for xp;;f, is then divided by 3 to account for the fact that the manufacturer’s measurements can be slightly off. They
are however, expected to be very accurate, which is why the value of 3 was chosen. x sets the maximum amount of
allowable drift, which is 50cm. CNE in Equation (9.22), represents the cumulative normal distribution. The amount
of drift is modelled like a normal distribution because of its origins in noise, which can often be modelled by a
normal distribution. Finally, cvp, is used to model the effects of motion blur on the neural nets detection accuracy.
In literature, motion blur is often modeled as can be seen in Equation (9.23)[36], where g(x) is the image with motion
blur applied and f(x) is the original image. The L in Equation (9.23) is the distance that the object in the picture moves
during the exposure time. This distance can therefore be calculated by multiplying the drone’s speed by the shutter
speed. In order to be able use Equation (9.23), it had to be normalized, which was done by adding 1 to L, resulting in
1

L+1°

1
gx)= Zf(X) (9.23)

The result of this calculation can be seen in Figure 9.6. It should be noted, however, that the program has not been
validated. As can be seen here, finishing the track in 60 seconds has the highest probability of success. This is why a
total time of 60 seconds was chosen to be the nominal path. In the event of a competitor having finished the course
in a smaller amount of time or RAIDER having finished the track in 60 seconds already, the team recommends a total
track time of a little over 40 seconds. After this track times of 30 seconds and less would even be possible, although
the probability of finishing the track drops very quickly.
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Figure 9.6: The probability of finishing the track as a function of the total track time.
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Figure 9.7: The figures show the nominal path for t = 60 s. From left to right: the 3D trajectory, the top view, the
convergence of the planned path and total velocity, acceleration and T/W.

The minimum distance at which the drone will have a clear view of the gate can be easily calculated via the geometric
relation shown in Equation (9.25), where w is the smallest field of view of the camera and h the biggest geometric
dimension of a gate. Table 9.2 shows the results for all different gates and cameras. The maximum allowable time
before needing a positive gate detection computed in chapter 7 is 9.3 s. Furthermore, the nominal path needs to
be within the thrust limits of the propulsion systems, and it needs to be controllable, which means that it doesn’t
experience abrupt and excessive accelerations. The dynamic thrust limit for the given point in time is calculated
using the dynamic thrust equation of Chapter 6.

g: number of gates detected in n frames
X: successful detection of a gate in a frame

n
P(gzl)zz(’;

i=1

h/2

(9.24) —
tan(w/2)

range (9.25)

PX)-a-Px)™!
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Table 9.1: This table shows the Table 9.2: This table shows the
probability of detecting at least a minimum distance at which the
gate in a certain amount of cameras are able to have a clear
frames. view on the gate.
Frames Probability of detection Range RGB camera [m] ToF camera [m]
2 0.878 Normal gate 1.26 1.72
3 0.957 Jungle gate 1.88 2.57
4 0.985 Dynamic gate 1.88 2.57
5 0.995

In order to meet all these requirements an iterative approach was used with the intent of minimizing the total time
required to finish the race. An optimum is found at 60 s of race, and the results are shown in fig. 9.7, comparing
fig. 9.7c and fig. 9.5c¢, the convergence for 60 s is much smoother than for the fastest path. In Table 9.3, it is possible
to view the time of each polynomial segment shown in Figure 9.7b and the amount of time each gate is in view. In
this way, it is possible to validate that all segments comply with the before mentioned requirement of 1.15 s. T6 and
T7 are the segments corresponding to the dynamic gate and the jungle gate, even though the quadcopter spends a
relatively high amount of time in these segments, the amount the actual gate is in view is relatively low. The reason
is that these gates are much bigger than the normal ones and in order to reach these gates large maneuvers are re-
quired, as shown in Figure 9.7a.

Table 9.3: Optimal time allocation for total time #;,=60s.

Segment Time segment [s] Gate in view [s]
T1 6.88 3.24
T2 4.55 1.71
T3 5.66 2.69
T4 5.17 3.63
T5 3.49 2.43
T6 10.55 2.87
T7 12.39 2.02
T8 (landing) 11.31 2.57

From Table 9.3, it is also possible to validate that the expected drift won’t be above the allowed one, except for gate 7,
which requires some extra verification steps. From Figure 9.7d and the range calculated in Table 9.2, it is possible to
calculate that the time it takes to reach the gate from the minimum distance at which is possible to view the entire
gate is 2 s. From Table 9.3, the time, the gate is in view, is 2.02 s, which means that the drone doesn’'t have an update
on its current position for 9.24, 8.37s (gate not in view) added to 0.87s, the time it takes for 3 frames to have a mini-
mum reliability displayed in Table 9.1. Note that the time between the moment when the dynamic gate is last located
and RAIDER goes through it is 2 s, meaning that RAIDER will always beat the dynamic gate to the safest point in the
quadrant of Figure 9.4 for rotational speeds up to 3.93 rad/s. It is important to keep in mind that all computations
are performed on the worst case scenario.

In Chapter 6, it is presented the equation to compute the dynamic thrust, we used this equation as the upper limit for
the maximum T/W available, which is 5.5. The required thrust is well below the limit, since the maximum required
T/W is 2. In this way it is also verified that the path doesn’t require excessive accelerations. A full validation of the
controllability of this path follows in Chapter 10.

9.5.2. Close-Range Obstacle Avoidance

This test solves the path re-planning problem in which an unexpected column-shaped obstacle is encountered at
close range and shows proof of concept of the obstacle avoidance strategy suggested in Section 9.3. It is assumed
that the obstacle is detected at a distance of 2 meters, which corresponds to 50% of the range of our depth camera.
At the moment in which the obstacle is detected, the drone is taken to be travelling at 2 m/s in the direction of the
obstacle and with 0 acceleration along the same axis. A new waypoint is placed to the left of the obstacle at two
times the width of the drone and the path through the original waypoint is updated. After successfully avoiding the
obstacle, the simulation ends with the drone returning through the original initial velocity. The path planning routine
succeeds in generating a smooth and natural path around the obstacle. As shown in Figure 9.8b, the maneuvre
demands reasonable accelerations that are well below RAIDER’s capabilities as discussed in Chapter 6.
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Figure 9.8: The figures show the results of the nominal path. The 3D trajectory is displayed on the top left, and
the total velocity and acceleration on the right.

9.6. Runtime estimation

It is important to verify that the strategy can run on the processor available. In order to estimate the run-time on the
Pocket Beagle, we considered the value given by BRY in PAPER by applying a conversion for the number of segments.
He reported that his algorithm takes 0.18 ms on a 2GHz dual core Intel Atom processor for a 3 segment polynomial
optimization.

9.7. Future Development

The programming language that has been used to simulate this algorithms is Matlab because it is convenient to
make proof of concept in this language. For further development, we recommend to use C or C++ because they are
compiled languages, which means that the throughput time would be significantly lower. One of the main reasons
is that the variables created are not optimized for memory usage, which does not happen in compiled languages.
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Stability and control

In this chapter, RAIDER’s stability is determined and its control subsystem is designed. This allows it to attain stable
flight that accurately follows the planned path.

As quadcopter dynamics are highly non-linear, solutions have to be found that tackle this problem. This will be
done in Section 10.1, where non-linear and linear approaches are discussed in Section 10.1.1 and Section 10.1.2
respectively. Finally, the design of the control system itself will be discussed in Section 10.2. This includes modeling
the dynamics of the quadrotor in Section 10.2.1, designing the controller in Section 10.2.3, tuning the controller in
Section 10.2.4 and discussing the results in Section 10.2.5.

10.1. Control Solutions
As mentioned above, there are several techniques to create the control system for the quadcopter. These will be
discussed below. They are divided into non-linear and linear control solutions.

10.1.1. Non-Linear Control

Non-linear Dynamic Inversion

The first possible method is Non-linear Dynamic Inversion (NDI). It is a control method that does not linearize
around a fixed point, instead, it cancels plant dynamics non-linearities by inverting the model and predicting the
state. This method can be very accurate, but only if an accurate model of the quadrotor dynamics is available. [50]
As the model can never fully represent real life, inaccuracies are inevitable and robustness can be questionable. Then
there is the fact that developing an accurate model can be expensive or not possible at all.!*?[50]

Incremental Non-linear Dynamic Inversion

Another method of tackling the non-linearity problem is by means of Incremental Non-linear Dynamic Inversion
(INDI). This variation of NDI focuses on reducing the dependency on an accurate model. This is done by using
sensor measurements instead of a model for the largest part of state predicting[50] .

The challenges that are asociated with INDI are the fact that the sensor measurements are never 100% accurate and
the fact that an inverted actuator model is still necessary. As this method is not highly dependent on the dynamic
model, this control system is more robust and can take un-modeled dynamical disturbances, such as gusts, into
account([50] .

Backstepping
Backstepping control is a recursive stabilizing control solution working from inside out.[44] It breaks a non-linear
system up into smaller subsystems. To those systems the Lyapunov function is applied to obtain the control law.[63]

Sliding Mode

Sliding mode control is a way to design a control system that tackles the non-linearity by implementing a discontinu-
ous control function. The function features a specific feedback controller for the given input. [51] The discontinuous
function is time independent and consists of continuous feedback functions. Furthermore, a sliding function is used,
such that the appropriate control feedback function can be selected.

10.1.2. Linear Control

Proportional Integral Derivative Controller

As linear approach to the control problem, the proportional integral derivative (PID) controller is a possible solution.
As a PID controller is a linear controller, it will only perform properly when the drone operates close to an equilibrium
point where the dynamics of the drone remain approximately linear. The PID controller together with the plant form

Ihttps://www.tudelft.nl/technology-transfer/development-innovation/research-exhibition-projects/
dynamic-inversion-control/ [Visited at June 22 2018]
2http://Www. diva-portal.org/smash/get/diva2:18843/FULLTEXTO01.pdfDec [Visited at June 22 2018]

74


https://www.tudelft.nl/technology-transfer/development-innovation/research-exhibition-projects/dynamic-inversion-control/
https://www.tudelft.nl/technology-transfer/development-innovation/research-exhibition-projects/dynamic-inversion-control/
http://www.diva-portal.org/smash/get/diva2:18843/FULLTEXT01.pdfDec

10.2. Controller Design 75

a negative feedback loop. The input state is compared with the measured state and the error is fed into the PID
controller. The PID controller then tries to bring this error to zero by outputting proper control inputs to the plant. 3
The PID controller transforms the error to the control input by applying Equation (10.1). This equation consists
of three terms, the proportional term, the integration term and the derivative term. The controller can be tuned
to obtain a desired response by changing the Kp, K, or Kp values. Kp being the proportional gain, K; being the
integration gain and Kp being the derivative gain.

t
u=K,,e(t)+K1f e(t)dt+KD%e(t) (10.1)

fo
The proportional term corrects the input for the error at the current time, the integral for the past time and the
derivative for the rate of change of the error.* An example layout of a basic PID controller can be seen in Figure 10.2,
itis important to remind that the controller is positioned in front of the System which models all the dynamics of the
quadcopter.[31]

4@—> PID(s) » int Qutt »( 1)

‘ System

Figure 10.1: Basic PID Controller System Layout
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Figure 10.2: Basic PID Controller Block Layout

The advantage of a PID controller, is the fact that it is widely used, and can be implemented with basic mathematical
knowledge. As long as there is understanding of the proportional, integral and derivative terms. Also, the controller
can be tuned (changing the K values) with limited knowledge and engineering intuition.

Proportional Integral Derivative Gain Scheduling

As an extension to the PID controller, one can apply PID gain scheduling. For a PID controller there is only a cer-
tain range in which it performs well. In order to have a wide working range, one can design several PID controllers.
Those controllers are tuned, each for their own consecutive range. Then, according to the current state, a switch-
ing controller switches to the corresponding PID controller. This transition can be made smooth by for example
interpolating the gain values of the consecutive PID controllers.

10.2. Controller Design
After researching the different control solutions, it was decided to implement a PID controller. This was chosen
for its popularity in drone systems and its high performance. Additionally, since there is only a limited amount

Shttp://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID [Visited atJune 222018]
4http://wiki.theuavguide.com/wiki/PID_Controller [Visited at June 22 2018]


http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID
http://wiki.theuavguide.com/wiki/PID_Controller

10.2. Controller Design 76

of time and knowledge in this project, a PID controller was deemed to be the most feasible to design within the
constraints. In order to increase the versatility and full flight envelope performance of the controller, the possibility
of gain scheduling in further design will be discussed.

10.2.1. Flight Dynamics

In order to create a representative control system, it is useful to model the quadcopter’s flight dynamics first. The
reference frame used is the right-handed body reference frame, as can be seen in Figure 10.3. It is assumed that the
origin coincides with the center of gravity of the quadcopter, the x-axis goes through the front of the drone and the
z-axis points downwards, perpendicular to the drone. The rotors are labeled from 1 through 4 and given a rotating
direction. Furthermore, a and b are the location of each motor with respect to the center of gravity. As the path is
given in earth reference frame coordinates, the earth coordinate system can also be seen in Figure 10.3[50].

Figure 10.3: Earth Reference Frame (left), Body Reference Frame on Drone (right)

Now by applying basic dynamics, it is possible to find the total moment on the drone. This is illustrated in Equa-
tion (10.2)[50] , where I, is the moment of inertia, Q is the angular acceleration, and Q is the angular velocity of the
quadrotor[50].

M=I,Q+QxI,Q (10.2)

Itis assumed that there are three moments acting on the quadrotor: The control moment M¢, which is the moment
generated by the uneven lift of the rotors, the aerodynamic moment M4, and the moment induced on the drone
by the rotors due to the gyroscopic effect and accelerations of the rotors Mp. Substituting these moments for M in
Equation (10.2) results in Equation (10.3)[50].

Mc-Mp+Ms=1,-Q+QxI,Q (10.3)
In order to simplify our model, M, is considered negligible. Furthermore, M¢ is given by Equation (10.4)[50] . In this

equation, the torque, 7, is generated by a rotor due to its aerodynamic drag is modeled to be 7 = k, -w?. Similarly, the
thrust, T, generated by the rotors is modeled to be T = k; - w?.

a-ki- (-t +ws+ws - wi)
Mc=| b ki (0} + w5 -0} -wj) (10.4)
k- (02 — 05 + w3 - wF)
Furthermore, Mg, is given by Equation (10.5), which can be expanded into Equation (10.6). In order to simplify the
dynamic model, My, is also neglected. This is a reasonable assumption to make in this stage of the design.

4 4
Mr=) Mgi=) I+ &+wx L,on[50] (10.5)
i=1 i=1
00 0 07N [k -IeQy kQ -Ie9y) [0
Mgp=| 0 0 0 0 d)2 +|=Ip,Qy  I.Qr —Ig,Qp Ig . Qx w"" [50] (10.6)
3

Ir,, —Ir, IR, ~Ir. 0 0 0 0 °
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10.2.2. Actuator Model

In order to take the effects of the non-zero spin-up time of the rotors into account, a first order transfer function
given in Equation (10.7) is used to model the spin-up time of the rotors. In this equation, 7 is the time constant and
can be set to a value that approximates the response of a general motor applied in drones, in this control system
iteration T was set as 0.05.

H(s) =

= (10.7)
Ts+1

10.2.3. Controller

Now that the dynamics of the quad copter are defined and the controller type is chosen, the controller, or plant,
model can be made and tuned to simulate the response of the system. The control system consists of four feedback
loops. The inner most loop is a loop that controls the angular velocity of the drone. The loop around the inner loop
controls the attitude of the drone. The loop around that controls the translational velocity of the drone, and the outer
most loop controls the position of the drone in space. These different loops have been identified from most outer to
inner loop by Level 1, Level 2, Level 3, and Top Level respectively, which can be seen in Figures 10.4 to 10.7. Every
level will be discussed in detail below.

Level 3 consists of three main parts. Firstly, the PID controller transforms the error between the current angular
velocity and the reference angular velocity value to a desired angular acceleration output. This desired angular ac-
celeration output is then transformed to desired rotor speeds by a series of matrix multiplications. For determining
the rotor speeds the desired total thrust should also be determined. This desired thrust is determined in the outer
loops. The desired rotor speeds are then fed into the actuator model which models the response of the rotors spin-
ning up. This response is then fed into the dynamics of the drone which outputs the angular accelerations about
each axis. This is then integrated to obtain the angular velocity and fed back into the PID controller.

After tuning the PID controller in Level 3, the output will be kept close to the input reference angular velocity by the
negative feedback of the PID controller. Level 3’s block diagram can be seen in Figure 10.4.
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Figure 10.4: Level 3 of the PID controller

As Level 3 inputs and outputs the desired and simulated angular velocity, Level 3 can be seen as the angular velocity
controller. By placing a PID control loop around the angular velocity controller, these two loops together control the
angular position. This is the Level 2 control loop. It takes in the desired angular position and outputs the simulated
angular position response. The block diagram of Level 2 is depicted in Figure 10.5.
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Figure 10.5: Level 2 of the PID Controller

Level 1 is the translational velocity controller. Requires the desired translational velocity to be calculated. It calcu-
lates the error between the translational and desired velocity and feeds it to the PID controllers. The PID controllers
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transform this error in translational velocity to a desired attitude that is fed into the attitude controller (Level 2). This
transformation of the PID controller is based on the assumption that the pitch and roll angle are proportional to the
accelerations in the x and y direction in the earth frame respectively. This assumption is the result of linearizing the
drone dynamics about the hovering state. After the desired attitude is fed through the attitude controller and the
attitude response is simulated, the attitude of the drone together with the thrust of the drone can be converted to
accelerations in the x, y, z directions of the earth frame. These are then integrated and the velocities in %, y, and z
directions in the earth frame are obtained. These are then fed back into the PID controller. The acceleration in the z
direction is not regulated by the attitude of the drone but solely the thrust. The PID controller for the velocity in the
z direction thus directly outputs the desired thrust which is directly fed into Level 3.

Level 1, can be seen in fig. 10.6.
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Figure 10.6: Level 1 of the PID Controller

The Top Level requires the desired x, y, and z position and the desired yaw angle. The PID controllers need the error
in position as an input and transform this to a desired translational velocity, which is their output. This reference ve-
locity is then fed into the translational velocity controller (Level 2) which outputs the translational velocity response.
This is then integrated to obtain the position response in earth reference frame. The desired yaw angle is fed directly
into the attitude controller (Level 2). The top level can be seen in Figure 10.7.
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Figure 10.7: Top Level of the PID Controller
10.2.4. PID Tuning

After designing the PID controller, the PID loops have to be tuned. Tuning the PID loop means changing the K values
until a desired response is achieved. As no well defined approach to PID tuning exists, PID tuning highly relies on
experience and engineering intuition. Although some tricks exist in case the designer has neither of them, their
effectiveness is highly dependent on the system.

As a general approach in this design, the PID controllers were tuned from inside out. Meaning that the inner loop
PID was tuned first. If an appropriate response for the to be tuned loop is achieved, one advances to the next outer
loop. Continuing like this until all the PID modules are tuned and the response of the final system is as desired. The
result of the tuned PID values for this system can be seen in Table 10.1.
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Table 10.1: PID values for the PID controllers used.

X TopLevel Levell Level2 Level3
Kp | 1.71 0.7 15 30

Ki |0 0.001 0.1 0

Kp | 0O 0.09 0.4 1.4

y TopLevel Levell Level2 Level3
Kp | 1.71 0.7 20 30

Ky |0 0.001 0.1 0

Kp | 0 0.025 0.2 1.2

z TopLevel Levell Level2 Level3
Kp | 2.1 10 15 20

Kr |0 0.2 0.1 0

Kp | O 3.5 0.2 1.2

10.2.5. Results

After tuning the controller, it is possible to plot the response of the controller due to a given input. In order to
demonstrate the effectiveness of the controller, the controller was given a step input of 1m, to which the response
can be seen in fig. 10.8. Note that the spike in the beginning of the response in z-direction is due to gravity acting on

the quadcopter starting from time 0.
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Figure 10.8: Response to a step input of 1 in yaw angle [rad] and x, y, and z direction displacement [m]

After checking the controller with step inputs on every level, it is possible to feed the controller a path and check
its response. This has been done in Figure 10.9. It consists of a pre-planned path delivered by the path planning
subsystem, assuming the location of every gate, thus the complete path is known. As can be seen in the graph, both
the path and the flown path are very close to each other. This is due to the fact that the simulation of the drone
dynamics is very simplified and that the sampling rate of the values obtained from the polynomial of the given path
was about 0.001, corresponding to about 1000Hz. The controller has been tested to give as accurate results up to a
frequency of 300Hz. When the controller is implemented in the quadcopter, the sampling rate will depend on the
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controller board, sensors and power system. If a lower frequency is desired, the controller might have to be re-tuned,
or even PID gain scheduling might be needed in order to not exceed the bounds of the controller.
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Figure 10.9: Response of planned path in yaw angle [rad] and x,y and z direction displacement [m]

Verification

As a verification measure, each level of the controller has been subjected to unit tests, in order to check if the desired
output is given for a certain input. Also, each level independently has been given step inputs in order to verify its
effectiveness. If the response was unstable or not close enough to the input variable, re-tuning was performed.

Validation

The best way to validate this subsystem would be to implement it on a physical quadcopter and check whether the
response is as expected. Another possibility would be to feed it to a validated quadcopter model, and check whether
the response is as desired.

Gain Scheduling

The path that is planned by the path planning subsystem takes approximately 60 seconds. While flying this path,
the speeds and angles are kept relatively low. This way the inputs still stay within bounds of the controller, with-
out rendering its performance unacceptable. Therefore, gain scheduling is not deemed necessary in this iteration.
However, if the quadcopter has to attain higher speeds and perform more extreme manoeuvres, or fly paths at a fre-
quency, this controller’s performance will no longer be sufficient. The solution for this will be gain scheduling. This
implies having the controller linearized and tuned at several working points. Then, according to the current state of
the drone, switch between the gains the controller is tuned for, as was explained in Section 10.1.2.
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Data handling and Integration

In order for RAIDER to work correctly, all data has to be delivered to the right component at the right time. How this
will be done is explained in this chapter. First, in Section 11.1, the data flow will be explained. Then, in Section 11.2,
each hardware connection will be determined and explained. After which, in Section 11.3, the team will determine
whether or not processing boards can run the algorithms at sufficient speed. After that, in Section 11.4, the different
flight modes in which the drone can operate will be discussed. And finally, in Section 11.5, the Verification and
Validation procedures for all of the models that were used will be explained.

11.1. Data Handling

The general data flow for RAIDER can be seen in Figure 11.1, this is a combination of the data handling and the
communicational flow diagrams. Here the in- and outputs of each computer board can be seen. The Raspberry Pi
Zero W does all of the image processing and it uses its WiFi connection to send telemetry data to the ground station.
While the Raspberry Pi Zero W is calculating the drone’s position with respect to the gate, the Pocket Beagle uses IMU
and Ultrasound measurements to approximate it. Both the path planning and the fight controller algorithms are run
on the Pocket Beagle. This outputs the thrust commands to each of the ESCs. The Custom Power Distribution Board
(Custom PDB) that can be seen in Figure 11.1 is merely a way to increase the connectivity of the Pocket Beagle and
the Raspberry Pi Zero W. They will be connected with the GPIO headers and all the PDB does is pass the information
on to the relevant computer board.
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Figure 11.1: General Data Handling Diagram

As stated above, Figure 11.1 is very general. Figure 11.2 gives a more detailed overview of communication inside
of the drone. It shows which subsystems will be run on which processing units on top of what exactly is sent by
and to each.The incoming images go to the Raspberry Pi Zero W’s main processor, the ARM 11, which runs the

gate detection. This then calculates the the relative position of RAIDER with respect to the gate at a relatively low

81
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frequency. On the Pocket Beagle’s main processor, the ARM Cortex-A8, this will be fused with altitude and high-
frequency IMU measurements, using an Unscented Kalman Filter, as explained in Section 11.1. The result of thisis a
high-frequency estimate of the pose, velocity, and acceleration of the drone, which is then sent to the WiFi transceiver
on the Raspberry Pi Zero W, and the path planning and flight controller on the Pocket Beagle. In order to make the
most of the processing power on the Pocket Beagle, the flight controller was moved to the ARM Cortex-M3. This was
shown to be possible by [25], and [40]. As shown in, the sensor fusion algorithm only uses a small percentage of the
processing power of the Pocket Beagle. The rest of this will be used for path planning. There are 2 reasons for putting
the sensor fusion algorithm on the Pocket Beagle, together with the path planning: Firstly, it reduces the needed
capacity of the connection between the 2 computer boards. Secondly, the Pocket Beagle has more computational
power so it can handle the load of running both sensor fusion and path planning on the same processor much better.
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11.2. Hardware Connections

The reason a the team decided to use a Raspberry Pi Zero W instead of a second Pocket Beagle are the interfaces. As
can be seen in Figure 11.3, the RGB camera needs a CSI camera interface. This is not present on the Pocket Beagle.
The depth camera only needs a micro USB cable, which can also be directly connected to the Raspberry Pi Zero W.
The Pocket Beagle, only has a micro USB port and 2 2x18 pin GPIO headers for connectivity. These GPIO headers
are what will be used to connect it to everything. As stated above, the power distribution board will be connected to
both computer boards using this.
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Figure 11.3: Hardware Diagram

11.2.1. Connection Bandwidths

As shown in Figure 11.3, there are 4 connections between the PDB and the Pocket Beagle. These connections are
there because the PDB acts as an improved input and output interface for the Pocket Beagle. The 2 analog con-
nections provide a direct connection between the Ultrasound and Temperature Sensors, and the Pocket Beagle. The
first UART connection connects the IMU and the Pocket Beagle and the second one connects the 2 computer boards.
Since the computer boards are directly connected to their respective sensors and actuators (with only a slight exten-
sion through the PDB), no bandwidth issues are expected in these connections.

The UART connections between the two computer boards each have a maximum baud rate of 115.2 kilobits per
second in both up and download!'?. The messages that are sent that are used for UAV communication use the ASCII

Ihttps://github.com/beagleboard/pocketbeagle/wiki/System-Reference-Manual [Visited at 11 June 2018]

2https://www.argon40. com/resources/a-comprehensive—-guide-on-raspberry—-pi-gpio-pinout/ [Visited at 11 June
2018]
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format®. An example message format for each type of message can be found in Appendix A. The resulting baud rate
for each of the message types can be found Table 11.1.

Table 11.1: Baud Rate Needed for each Message Type

Message Size [Characters] Message Size [bits] Frequency [Hz] Baud Rate [Kbps]

Exact Pose Message 232 1856 10 18.6
Kill Message 124 992 10 9.9
Obstacle Avoidance 179 45 45 64.4
Telemetry Message 628 5024 10 50.2

The data in Table 11.1 results in a total needed capacity of 50.2 Kbps from the Pocket Beagle to the Raspberry Pi
Zero W. The needed bandwidth from the Raspberry Pi Zero W to the Pocket Beagle is 92.9 Kbps. Both of these are
significantly lower than the 115.2 Kbps limit. A such, no bandwidth issues are expected.

The Telemetry and Kill Messages also have to be sent to and from the ground station, respectively. This requires a
data rate of 60.1Kbps. On top of this, the video feed from the RGB camera will be be sent to the ground station. At 30
Hz, 720p video streaming takes up to 4.5 Mbps, adding up to a total needed bandwidth of 4.5Mbps. This is, however,
only a fraction of the data rate the WiFi module aboard the Raspberry Pi can handle, which is 72 Mbps*.

11.2.2. Cable Weight

Now that all of the interfaces are defined, the total cable weight can be calculated. The result of this can be seen
in Table 11.2. Note that the connection between the Pocket Beagle and the ESCs is not in here because the cables
for this are included in the ESCs’ weights. Also note that there are no cables between the Pocket Beagle and the
Raspberry Pi Zero W since all communication runs directly through the PDB.

Table 11.2: Cable Weights

From To Type Length [cm] Weight [g]
FPV Camera Raspberry Pi ZeroW  MIPI CSI-2 Cable 10 0.8
Depth Camera Raspberry PiZeroW  Micro USB Cable 20 7
IMU PDB GPIO Jumper Wires (UART) 10 0.8
Ultrasound Sensor PDB GPIO Jumper Wires (Analog) 10 0.4
Temperature Sensors PDB GPIO Jumper Wires (Analog) 10 0.4

The weight values for the GPIO Jumper Wires were calculated using the average weight per cm of a group of jumper
wires (0.019 %5) and the fact that a UART connection needs 4 cables and an analog one only needs 2. The weight
of the MIPI CSI-2 Cable was calculated using an average weight of 0.075 %6. The resulting total cable weight is 9.4
grams.

11.3. Hardware Capabilities

In order to make sure that all of the programs that were designed run at acceptable frame rates on the available
hardware, the computational power of each board was compared to that needed by the algorithms. First the Power
of the Raspberry Pi Zero W will be checked, after that the same will be done for the Pocket Beagle.

Raspberry Pi Zero W

According to [9], the Raspberry Pi Zero W has 0.319 GFLOP-s~! of computational power. Most of this computational
power will be taken up by the DeCNN and its RDP based corner detector, which need approximately 82.9 MFLOP
per iteration. For the RDP algorithm that will run to detect corners in the images from the ToF camera, this number
is only 732.5 KFLOP, because the number of pixels is much smaller. Since the maximum frame rate of the Pico
Flexx is 45 Hz, the RDP algorithm will also run at this speed. This results in a total of 56.25 MFLOP - s~ !, leaving 286
MFLOP-s~! for the CNN, which will then run at 3.4Hz. Although the 3.4Hz is constraining for the maximum speed at

3http ://www.barnardmicrosystems.com/media/presentations/IET_UAV_C2_Barnard DEC_2007.pdf [Visitedat 11 June
2018]

4https://www.pocketables.com/2017/03/raspberry-pi-zero—w-wifi-performance.html [Visited at 11 June 2018]

Shttps://www.amazon.co.uk/Assorted-Multicolored-Flexible-Solderless—Breadboard/dp/B0087ZRVES/ref=
pd_bxgy_ce_img_y/277-4324215-8292916 [Visited at 11 June 2018]

6ht)‘:ps ://www.adafruit.com/product /1647 [Visited at 11 June 2018]
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which the track can be traversed, it does not completely stop this method from being used, since the RDP algorithm
becomes more important when it gets within 4 meters. The number of FLOPS that is used for each algorithm is
explained in Chapter 8.

Pocket Beagle

The total computational power of the Pocket Beagle is approximately 20% higher than that of the Raspberry Pi Zero
W7, resulting in a total power of 0.383 GFLOP - s~. As stated in Section 11.1, the chosen Sensor Fusion algorithm is
expected to take 12.7% of the Pocket Beagle.

This leaves 87.3% of the Pocket Beagle’s power. As demonstrated in Section 9.6, the expected run time of the path
planning algorithm is 0.18 ms on a 2GHz dual core Intel Atom processor for a 3 segment polynomial optimization. We
converted this number to 11 segments by 0.18- %, so the run-time for 11 segments is 0.66 ms. Since this processor has
4 times as many threads and runs at twice the frequency as the Pocket Beagle’s Cortex-A8, this value is multiplied by
8 in order to roughly scale for the difference between the processors. This results in a computational time of 5.28ms
if the full power of the board was available. Since only 87% is left, the 5.28ms has to be divided by it. Resulting in
a total computational time of 6.07ms, or an update rate of 165Hz. Since the minimal frequency at which the path
planning has to run is determined by the obstacle avoidance, and the Pico Flexx only updates at 45Hz, this is more
than enough. The Pocket Beagle can thus run everything that is needed.

11.4. Flight Modes

In order to make sure that RAIDER is safe, 3 flight modes were implemented: Normal Flight, Safe Landing and Emer-
gency Shutdown. These are elaborated upon in Section 11.4.1, Section 11.4.2, and Section 11.4.3 respectively.

11.4.1. Normal Flight
Normal flight is, as is to be expected, the flight mode the drone will be in most of the time. The drone will be flying
through the race track, finding gates and determining its path between them.

11.4.2. Safe Landing

Safe landing is the mode that the drone will enter when an error, low battery voltage, a position outside of the track,
an obstacle is close to drone or an overheating computer board are detected. RAIDER will then autonomously land
in order to make sure that nothing is damaged in case the situations deteriorates. The drone will autonomously
decide to enter this mode.

11.4.3. Emergency Shutdown

Emergency Shutdown is only to be used in the event of an imminent collision. The drone can only enter this mode
when the command is given by the ground station. It shuts down the drone as quickly as possible while it is still in
flight. This makes the drone fall out of the air, possibly damaging it or its surroundings. This is accepted as a risk,
however, since it can no longer behave erratically and it immediately starts to slow down when this mode is activated.
Due to the shutdown, the imminent collision will occur at a lower speed, lowering the risk of injury.

11.5. Model Verification and Validation

Connection Capabilities

The best way to validate the model in Section 11.2.1 is by testing it out. After buying the 2 computer boards and the
PDB, the performance of the connection can be determined by seeing how much data can be moved through them.
The same can be done for the WiFi connection between the Raspberry Pi Zero W and the ground station.As a unit

test for verification, the excel sheet that was used to calculate everything in Section 11.2.1 was checked by manually
counting all of the characters in the Kill Message and comparing that to the result of the sheet. This also gave the
amount of characters in the header, allowing for part of the other messages to be verified using this.

"https://www.teachmemicro.com/raspberry-pi-zero—-vs-pocketbeagle/ [Visited at 7 June 2018]


https://www.teachmemicro.com/raspberry-pi-zero-vs-pocketbeagle/
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Final Design Overview

During the detailed design phase, the complete design has also been drawn in CAD-software. A benefit of a complete
CAD assembly is the amount of information it can provide.
Using accurate CAD sketches, the mass of custom components can be very precisely estimated. Furthermore the
mass of subcomponents such as bolts can better be taken into account, further improving the overall assessment of
the design. A detailed breakdown of the cost and mass budgets is done in Section 12.1.
After that, exploded views of the arm and PCB assembly will be presented. These will be incorporated in the final ex-
ploded view of the total drone. All of these views are accompanied by a bill of materials and are shown in Section 12.2.
A short summary of the most important parameters of the drone can be found in Figure 12.1.
Name RAIDER
Size(WxLxH) (291.70x289.20x82.91)
Number of Motors 4
Battery Capacity 1550mAh
Battery Configuration 6S

Hover Flight Time 15.6min
Full Thrust Flight Time 0.7min
Maximum Motor Power 549W

T/W 5.0
Safety Features - Propeller guards
- IMU Damper
- Carbon Frame

- crumple zones
Cameras - Connex ProSight RGB

- Pico Flexx Depth
Figure 12.1: Isometric view of RAIDER Sensors - VectorNav VN-100 IMU
- Ultrasonic height sensor

12.1. Final resources

The driving resources are: the mass, power, computational resources, cost, and the size. The mass, the power and the
cost are common parameters used for aerospace vehicles. The computational resources are particularly important
for this project because the objective is to have an autonomous vehicle. The size is an important resource because it
is directly linked to the amount of localization error the drone can sustain, while being able to make it through the
race.

12.1.1. Mass budget

The cost and mass budgets are split in different sub categories to make them more readable. The structures will
contain all the carbon components, their connections and all components needed for mitigating structural risks. The
second category contains all the components related to the sensor fusion, gate detection and other computational
components. The category also includes the dampers needed for the IMU. The last category contains all components
related to the power and propulsion of the drone, including their mounting necessities.

The final mass breakdown is shown in Table 12.1. For custom designed components the masses shown were taken
either directly from the CAD software. For the off the shelf components these were taken from data sheets obtained
from manufactures.

Table 12.1: Detailed mass breakdown

Category Component Material Mass[gram] Qt
Structures Center Frame T7000g 23.69 1
Arm Frame T7000g 5.56
Arm Insert 7075-T6 (SN) 0.12 8
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DIN 912 M2.5x 8 Steell2.9 054 14
DIN 934 - M2.5 Steel12.9 026 14
Proppeller Guard ABS 11.07 4
Motor Spacer ABS 1.77 4
Frame Insert 7075-T6 (SN) 0.09 8
Bottom Stand-Off 7075-T6 (SN) 1.54 6
Bottom Frame T7000g 19.27 1
Crumple Zone Polyurethane 0.01 4
Top Stand-Off 7075-T6 (SN) 1.21 2
Top Frame T7000g 4.66 1
Total 145.8
" Sensors and Computers ~ VectorNavVN-100 7 1500 1
IMU Damper Rubber 0.15 2
IMU Damper2 Rubber 0.08 2
Motherboard C-Glass Fiber 15.12 1
Raspberry Pi Zero W 9.00 1
Pocket Beagle 15.00 1
PCB Stand-Off ABS 0.17 4
Pico Flexx 8.00 1
DIN 934 - M2.5 Steel12.9 0.26 2
Additional Cables 10.00 1
XL-MaxSonar-EZ 6.10 1
RGB Camera 14.00 1
Total 93.88
" Power and Propulsion ~ DIN912M3x8 Steell29 087 16

XRotor Motor 31.00 4
Turnigy Multistar 30A Rev16 v3 ESC 15.80 4
Master Airscrew 5045 Propeller 5.90 4
Turnigy 1550mAh 6s 247.00 1
Total 474.92

Total 714.80

As stated before, all masses are taken from the CAD software or manufacturers’ data sheets. All components that will
be used are included in the table, even bolts and wires, in order to make the overall mass as accurate as possible.

All masses are final and will no longer change with the design. Small contingencies of 5% are still in place as it is not
always possible to precisely recreate a part in CAD software. This is due to limitations on manufacturing equipment
and is more thoroughly explained in Chapter 15.

The drone will weigh approximately 656 grams, which is roughly 145 grams lighter than the limit of 800 gram set
by the stakeholder. At this mass the drone will be able to fulfill the needs of the stakeholder and have excellence
endurance.

66% of the mass is taken up by the battery, motors and other propulsion elements. This is to be expected as these
are vital for the performance of the drone. The powerful motors together with the battery are needed to obtain the
thrust to weight ratio of 5 and the endurance of 10 minutes during normal flight.

A mere 15% of the mass is reserved the artificial intelligence aboard the drone. This allows for two cameras, a very
precise IMU and two computers to be carried.

The last 20% of the drone’s weight is taken up by the structural components that will keep the drone together while in
flight and while crashing. This category of components also includes some of the protective parts, such as propeller
guards and crumple zones.

The mass of 711 gram is almost the final mass and except for minor changes will not change much.

Mass development

For all projects in the field of aerospace engineering it is of utmost importance to keep track of the total mass at all
times. Design specific elements such as motors, batteries and propellers depend directly on the mass. If the frame
becomes heavier they will have to change too. When the mass management is not done properly this can cause a
negative spiral in which the drone becomes heavier and heavier.

To help in the design of the drone a detailed mass budget was made at the start of the detailed design phase. Fur-
thermore, as the design became more detailed, the contingency margins became smaller. The mass development is
drawn in Figure 12.2.

At the start of the detailed design phase the mass was estimated to be roughly 400 gram, Chapter 4. The upper design
margin was expected to be 480 gram.
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Mass development

Mass[gram]
Y
I3
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| === stakehelder maximum
—— Design minimum contigency
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100 1 mmm Power and Propulsion
N structures
04 Electronics

Midterm Day 1 DD Halfway DD End DD

Figure 12.2: Mass development during the detailed design phase

The team quickly realized that some of the risk mitigation strategies had to be implemented to lower risks in the
final design. These strategies include addition of propeller guards and crumple zones. Furthermore, after detailed
analysis the stress due to an impact was found to be higher than expected, this resulted in additional protections
being needed on the components. This is why, after the first day of the detailed design phase, the total mass had
grown by 150 grams, as can be seen in Figure 12.2.

During iterations of the design the outline of components became more precisely known and therefore their design
margins reduced. This resulted in a final design mass of 656 grams, with only very small design margins left.

12.1.2. Power budget

The amount power that is used by each subsystem is shown in Table 12.2. Compared to the power estimate in
Chapter 4, which was 110W, the power needed grew because it was found that more power is consumed by the
motors. A more accurate analysis for the different usage profiles was done. This is explained in Chapter 6.

Table 12.2: Power breakdown

Component Power Consumption [W] Qt
Pocket Beagle 6.0 1
Raspberry Pi Zero W 5.0 1
Pico Flexx 0.3 1
RGB Camera 1.0 1
XL-MaxSonar-EZ 0.5 1
Power Distribution Board 0.96 1
Turnigy Multistar 30A Rev16 v3 ESC 0.5 4
XRotor Motor 37 4
VectorNav VN-100 0.5 1
Total 164.3

One thing to note is that the power that is used by the motors was calculated assuming a speed of 1 m/s. During
the track, the drone will be accelerating and decelerating, but, on average, the throttle of the drone is expected to
remain very low, and thus a power draw of 37W per motor is likely to be a reasonable value. At full throttle, however,
the needed power of each motor was calculated to be around 550W in Section 6.3.3, an order of magnitude larger
than what is reported in Table 12.2. This has significant implications on the flight time. To meet the flying time
requirement, the battery capacity was sized according to the velocities expected during the race, which are much
lower than the capabilities of the hardware.

12.1.3. Computational Resources

RAIDER carries 2 computer boards. As shown in Chapter 11, the gate recognition runs on the Raspberry Pi Zero W,
whereas the path planning, sensor fusion, flight controller, and system monitoring are all integrated into the Pocket
Beagle.

Since the Raspberry Pi Zero W’s BCM2835 only has to do computations for the gate detection, this is allowed to take
up 100% of its power. On the Pocket Beagle, however, this is a little more complicated. As seen in Figure 11.2, only the
sensor fusion and path planning are run on the Pocket Beagle’s main processor, the ARM Cortex A8. Here, the sensor
fusion uses approximately 13% of the computational power. The path planning takes up the rest. On top of the A8,
the Pocket Beagle also has an ARM Cortex M3 and 2 Programmable Realtime Units (PRUs). The flight controller will
be run on the M3, allowing it take up all of its power. Finally, the system monitoring module will run on one of the
PRUs since it only needs a very small amount of power.
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12.1.4. Cost

Using the overall parts list a detailed cost breakdown can be made. This cost breakdown only includes all the com-
ponents and does not take into account any spare parts, which are listen in Table 17.8. The table containing all parts
can be found in Table 12.3.

Table 12.3: Cost breakdown

Category Component Cost[€] Qt
Structures Center Frame 15.00 1
Arm Frame 5.00 4
Additional Hardware 50.00
Propeller Guard 0.28 4
Motor Spacer 0.04 4
Bottom Frame 10.00 1
Crumple Zone 5.00 4
Top Frame 5.00 1
Total 71.27
" Sensors and Computers ~ VectorNavVN-100 450.00 1
IMU Damper 5.00 4
Power Distribution Board 50.00 1
Raspberry Pi Zero W 25.00 1
Pocket Beagle 25.00 1
PCB Stand-Off 0.04 4
Pico Flexx 300.00 1
Additional Cables 50.00 1
XL-MaxSonar-EZ 35.00 1
RGB Camera 76.50 1
Total 1031.67
" Powerand Propulsion ~ Additional Hardware 020 16
XRotor Motor 21.65 4
Turnigy Multistar 30A Rev16 v3 ESC 15.2 4
5045 Propeller 4.00 4
Turnigy 1550mAh 6s 28.46 1
Total 195.06
" Production ] Hours of skilled labour 3110 5
Total 155.5
Total 1454.-

The cost for the power and propulsion, and electronics subsystems is mostly set, the cost for the frame on the other
hand had to be estimated. The cost estimation for the carbon parts was made based on the surface cost of a single
carbon plate!. The costs for water cutting, the manufacturing technique as described in Chapter 15, are not included
in this. However, all costs were rounded up to account for this, since the cost of water cutting for such small order is
very hard to estimate.

For all parts considered to be 3D printed only the raw material cost were taken into consideration?. It is expected the
end user will have a 3D printer available to make spare parts. For all other parts, the cost was taken from HobbyKing?®.
The labour costs were estimated using the average labour cost in the Netherlands?. This amount was deemed rea-
sonable because the assembly and testing of the drone are simple enough for a relatively unskilled worker to perform
them.

The final cost of all components in the drone sums up to €1454,-. This is only slightly more than half of the budget
set by the stakeholder requirement and leaves enough for spare parts to be bought. A remark should be made to
the result of the preliminary design in Chapter 4. In fact, the total cost estimated was €1253, showing a very good
estimation of contingency in the early design stage and that the detail of the design was already quite high.

1https ://www.rockwestcomposites.com/plates—panels—angles/carbon-fiber-plate/carbon-fiber—fabric-plate/
404-410-group [Visited at June 20 2018]

2http://3dinsider.com/3d-printing-filament-cost / [Visited at June 20 2018]

3https ://hobbyking. com/ [Visited at 2 July 2018]

dhttps://www.chbs.nl/en-gb/news/2012/17/increase-labour-costs—in-the-netherlands-equals—-eu-average
[Visited at 2 July 2018]


https://www.rockwestcomposites.com/plates-panels-angles/carbon-fiber-plate/carbon-fiber-fabric-plate/404-410-group
https://www.rockwestcomposites.com/plates-panels-angles/carbon-fiber-plate/carbon-fiber-fabric-plate/404-410-group
http://3dinsider.com/3d-printing-filament-cost/
https://hobbyking.com/
https://www.cbs.nl/en-gb/news/2012/17/increase-labour-costs-in-the-netherlands-equals-eu-average
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12.1.5. Size

The final drone will have a width and length of 291.7mm and 289.2mm respectively. The center of the propellers are
placed 147mm apart resulting in a gap of 20mm between the tips of the propellers at all times. This was done to
ensure that they will not collide and to optimize the performance.

The total height of drone is 82.9mm. A front and top of the drone can be seen in Figure 12.4 and Figure 12.3 re-
spectively. At the beginning of the design phase the dimensions were 220 mm, 220 mm and 85 mm, respectively for
width, length and height. While the height stayed the same the other dimensions increased. After the reiteration of
the design the power and propulsion subsystem required an increased propeller in order to perform adequately. The
main reason is that less assumptions are made for the detailed design, and more accurate margins are considered as
explained in Chapter 6.

) 291.70 )
‘ ) 147 ‘
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289.20
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82.91

Figure 12.3: RAIDER top view Figure 12.4: RAIDER front view

12.2. Assembly overview
Using the CAD software exploded views can be made to further show how all components are mounted together.
Furthermore exploded views can be used to check on forehand for assembly errors.

12.2.1. PCB stack

In the center of the drone, in between two carbon frame plates, the main computer boards are located. They are sep-
arated by the custom designed power distribution board, which acts as a motherboard. Both computers are mounted
to the motherboard using their GPIO pins and other mounting hardware. The motherboard is then attached to the
carbon plates using PCB stands lifting all boards off the plate. An exploded view of all components can bee seen in
Figure 12.5.

# Name Qt
1 Motherboard 1
2 RaspberryPiZeroW 1
3 Pocket Beagle 1
4  PCB Stand-Off 4

Figure 12.5: Exploded view of the pcb assembly
Mounting the computers on a separate motherboard takes more effort since the motherboard has to be designed

just for this purpose. It has the massive advantage, however, of provided all of the connectivity that is needed in a
well organized manner. It also reduces the amount of cables that are needed, making debugging much easier and
faster. The team decided to integrate this functionality into the custom PDB since this was needed anyway to convert
the 22.2V of the battery to 5V for the computers.
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12.2.2, Arm

The most complex sub assembly of the drone is the arm. The drone will have four arms in total. They are all essen-
tially the same, apart from the fact that 2 are mirrored. They can, however, be built using the same components and
only the propeller guards will have to be rotated in order to fit them on the opposite positions. An exploded view of
just the arm and its components is shown in Figure 12.6.

Name

5045 Propeller
XRotor Motor 1750KV
DIN912 M2.5x8
Kiss ESC

Arm Inserts
DIN934 M2.5
Motor Spacer
DIN912 M3x8
Propeller Guard
Arm Frame

L
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Figure 12.6: Exploded arm view

The propeller is bolted to the rotor with a single bolt, to allow for easy maintenance. Since, during propeller impacts,
the motor shafts can also bend, the motors themselves are mounted to the arm frame using only four bolts. The
motor is lifted by a 3D printed spacer. The arm attaches the motor to the center frame and consists of a 2.9mm thick
carbon plate comprised of 4 layers of carbon. The bolt holes are reinforced using aluminum inserts. Although this
starts a galvanic reaction, the lifespan of the drone is short and therefore the low weight is deemed more important.
To optimize performance, the ESC was placed as close to the motor as possible directly on the arm. The cables to the
motor can be soldered and the placement should ensure good cooling. Lastly the propeller guards were implement
to ensure nothing gets caught in the propeller by accident. The propeller guards are designed to be printable and
have to be press fit over the bolts.

12.2.3. Complete Drone
The exploded view of the final frame can be seen and is explained in Figure 12.7.

I

Name Qt

IMU with Dampers 1
DIN912 m2.5x8 6
Top Stand-Offs 2
Top Frame 1
Connex Camera 1
Center Frame 1
Bottom Stand-Offs 6
1
1
6
4
1
1
1

Pico Flexx
PCB Assembly
DIN934 m2.5
Crumple Zones
Bottom Frame
XL-MaxSonar-EZ

14 Turnigy 1550mAh 6s
As can be seen in the exploded view a lot of components are placed between the two frame plates, for which there are
several reasons.Firstly, the small, compact size is beneficial during the race. Secondly, the frames protect vital and
expensive electronics from all sides, increasing the crashworthiness of the drone.The bottom plate houses the main
PCB assembly, the Pico Flexx depth camera and the ultrasound sensor. The PCB assembly is lifted off the bottom
plate using standoffs. These standoffs can be made of foam so they act as a shock absorber, which will further
increase the crashworthiness of the drone. The battery, RGB camera and damped IMU are mounted to the top plate.
The IMU is damped using four dampers, detailed in Section 5.3. Two of the dampers have thread ends for securing
the IMU, while the others are just rubber feet. An extra frame is mounted above the RGB camera to protect it from
an impact from above. The frame is designed such that it covers the camera and prevent the battery from sliding
forward in the camera. The frame sticks out to the front, just like the center frame, to protect the fragile lens of the
camera.
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Figure 12.7: Exploded view of the total assembly
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Sensitivity Analysis

As described by Loucks and van Beek [28], the goal of a sensitivity analysis is to quantitatively estimate the impact
that certain model inputs have on the outcome of the model. This data, together with an analysis of the uncertainties,
can support the decision process as well as determine how much weight should be placed in the results of a certain
model based on the reliability of the output. It can also help establish if it is worth allocating resources to reduce the
uncertainties: if the result of the model is not very sensitive to the magnitude of these uncertainties, said resources
can be more effectively allocated to other issues.

With regards to this project’s design, it can be useful to generate the information needed to state, with evidence,
that the configuration chosen is a feasible solution even when parameters change from their assumed value. It
also demonstrates that the hardware is not over-designed beyond reasonable margins pertinent to this stage of the
design. The sensitivity analysis was conducted on the approach used to define the final hardware configuration of
the drone, described in Section 6.3.3. This model outputs all viable configuration that can be achieved with a certain
combination of existing batteries and propellers. As such, a standard sensitivity analysis cannot be conducted due
to the discrete nature of this output. Instead, certain input parameters which had to be assumed were varied, until
the chosen configuration was no longer able to fulfill the driving requirements, or the performance demanded by
the configuration exceeded the physical limits of the hardware.

The first step was to identify the uncertain inputs and observe the impact caused by individually varying them.
The inputs considered were the assumed profile drag coefficients C,,, the percentage of the race spent turning as
opposed to flying level ¢, the nominal average speed during the race Vjom, the mass of the cables and structure
Myther, and the power required by components other than the motors Pye;. None of these parameters caused the
configuration to become unfeasible when decreased, as was to be expected, and as such no lower bound for the
different parameters was found. cy did not cause the configuration to be no longer feasible when varied within
its physical range (0 to 1), and Cg, for both turn drag and drag at 100 km/h required an increase of over 800%. The
model was thus found to not be sensitive to these two parameters, and they will therefore not be discussed further.
The upper limit of the increase allowed for the remaining parameters is reported in Table 13.1.

Parameter ValueIncrease Percentage Increase Comment

Beyond this speed flight time was below 10

Vhom 5.6m/s 560% minutes

Beyond this mass the RPM required exceeded
Mother 188 27%  motor's capabilities

B hi flight ti low 1
Pyter 47TW 293% eyond this power flight time was below 10

minutes

Table 13.1: Upper bound of parameters tested for the sensitivity analysis

Table 13.1 shows that the configuration is not sensitive to both the power of additional components and the average
track speed. In general, the power required by the four motors is much higher than that of the lightweight Raspberry
Pi, PocketBeagle and the other electronics on board, therefore it is reasonable to see a large increase in Pyer before
it becomes a significant problem. In terms of flying speed, racing at an average velocity of 6.6 m/s would result in
completing the track in 9.1 seconds, a value that does not take into account the physical constraints of the hardware.
In general, however, a 560% increase in the nominal racing speed is not unexpected, as the hardware is designed to
achieve a thrust to weight of 5. Also, the reason the configuration was not deemed feasible anymore at 6.6 m/s was
that the flight time fell below 10 minutes. Originally, this requirement was imposed such that the drone would have
the chance to complete many attempts before having to spend the precious allotted time to switch the battery, and at
this speed, the drone would be able to complete 9-10 attempts. Flying even faster would increase this number even
further, and thus the configuration could be still considered feasible even though the flying time would be below the
required amount.
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The configuration, however, showed to be more sensitive to changes in the mass of the drone. This follows from the
fact that the configuration was designed to achieve the driving requirements of the tight turn radius and high top
speed. Due to the discrete nature of the components, the motors and batteries were chosen to be slightly higher
than what was required, and thus there is still some room for the structure and cable mass to increase before the
required thrust to weight ratio can no longer be reached. The overall mass of the drone is, at this point in the design,
known to with a low margin of error. This is due to the fact that the majority of the components are bought, rather
than designed, and have a known weight. The mass of the structure was obtained from the CAD model, as explained
in Chapter 12, and is thus also not expected to increase by a percentage as high as 27% once manufactured. Of
course, another cause of a mass increase is if it is discovered during validation tests that the drone is incapable of
withstanding the ultimate load cases, which would result in a sturdier structure. If the carbon plates thickness was
increased by 1 mm everywhere, the resulting mass increase would be of around 21 g, which is still below the upper
increase allowed. Even then, most of the mass increase would likely occur only in the arms or as a result of additional
shock absorbers, and would not happen everywhere on the drone.

Of course, the sensitivity analysis can show that certain parameters are allowed to increase by a certain value, but
without understanding the uncertainty in the model output, this value is meaningless. An uncertainty analysis of the
model used is unfortunately hard to accurately conduct within the project’s resources. As stated in Section 6.3.4, the
model uncertainty was estimated to be close to what was claimed by ECalc (+15%), as the output of both programs
was similar for a number of configurations. Assuming a direct relationship between a change in the inputs and the
model output, the mass increase allowed in the worst case is 27% — 15%, or around 21 g, still leaving an acceptable
margin to the mass budget of the structure.



14

Compliance and Feasibility

Although the requirement compliance is checked in every subsystem’s chapter, it is summarized in this chapter.
First, in Section 14.1, the total table of technical requirements is shown. This also shows whether or not they have
been complied with. Then, in Section 14.2, the final compliance with the stakeholder requirements is shown. And
finally, in Section 14.3, the reasons for the non-compliance are explained.

14.1. Technical Requirement Compliance

Each technical requirement is shown in Table 14.1. The first 2 columns explain the requirement. The third shows
whether or not the requirement has been Verified and Validated. And finally, the fourth column shows where the
compliance was verified and validated. When the word Children is used in Table 14.1, it means that this requirement
is verified because all of its child requirements have been verified. If a requirement is verified but not validated, ~is
used. If a requirement is not verified or validate the x symbol is used. These reasons for this will be explained in
Section 14.3.

Table 14.1: Requirement Compliance Table

Resources

Sys-Co-1 The project shall stay within available resources. v" Children

Sys-Co-1-1 The project shall be completed within the set time. v/ Children

Sys-Co-1-1-1 The project shall be completed within 50 working days. v/ Inspection

Sys-Co-1-1-2 The project shall be completed with 9 full time members. v" Inspection

Sys-Co-1-2 A single unit shall cost no more than 2500 euros, excluding mainte- +* Table 17.6
nance, operations and repair costs.

Sys-Co-1-3 The drone shall be transportable to the race location. v' Chapter 16

Sys-Co-1-4 The drone shall be producible using facilities of the TU Delft. v' Chapter 15

Safety

Sys-Co-2 The drone shall not pose any safety hazards at any phase of its life v* Children
cycle.

Sys-Co-2-1 The drone shall not pose any safety hazards during production. v' Chapter 15

Sys-Co-2-2 The drone shall not pose any safety hazards during operation. v' Section 17.4

Sys-Co-2-2-2 Thrust unit debris shall not have an energy higher than 20J. v' Section 17.4

Sys-Co-2-2-3 The energy storage system shall not pose safety hazards during oper- +° Section 17.4
ation.

Sys-Co-2-3 The drone shall not pose any safety hazards at end of life. v" Section 19.3

Sustainable

Sys-Co-3 The drone shall adhere to the principles of sustainability to a level +* Children
that is at least equal to the one specified by the stakeholder.

Sys-Co-3-1 The drone shall consist of sustainable materials. v" Section 19.3

Sys-Co-3-1-1 All materials used shall be non hazardous. v" Section 19.3

Sys-Co-3-1-2 100% of materials shall be recyclable. v" Section 19.3

Sys-Co-3-2 The drone shall be manufactured in a sustainable manner. v" Section 19.3

Sys-Co-3-2-1 The manufacturing technique shall use no hazardous consumables.  v*  Section 19.3

Sys-Co-3-2-2 The manufacturing techniques shall use maximum power of 2kWh of +*  Section 19.3

energy.
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Sys-Co-3-2-3 The manufacturing techniques shall produce a maximum 1kg of Section 19.3
waste.

Sys-Co-3-3 The drone shall have a modular design at least on a subsystems level. Chapter 5

Sys-Co-3-4 The drone shall be operated in a sustainable manner. Children

Sys-Co-3-4-1 The drone shall require at most 200W of power, in nominal condi- Chapter 16
tions.

Sys-Co-3-5 The drone shall have a sustainable end of life. Section 19.3

Sys-Co-3-5-1 Components of the drone shall be reusable after winning the race. Chapter 15

Legal

Sys-Co-4 The drone shall comply with all relevant regulations at every stage of Children
its operational lifetime.

Sys-Co-4-1 The drone shall comply with all regulations imposed by the govern- Children
mental entities of the countries in which it is operated.

Sys-Co-4-1-1 The drone shall adhere to freely available bandwidths for communi- Section 11.2.1
cations.

Sys-Co-4-2 The drone shall comply with all regulations imposed by the IROS or- Section 3.2
ganization.

Sys-Co-4-2-1 Enrollment for the IROS 2018 ADR shall be done in time. Section 14.3

Sys-Co-4-2-2 The team shall be present at the IROS 2018 ADR. Section 20.3

Sys-Co-4-2-3 The drone shall be present at the IROS 2018 ADR. Chapter 16

Structures

Sys-Te-5 The drone shall have structural integrity. Chapter 5

Sys-Te-5-1 The structure shall be able to handle loads imposed whilst flying. Section 5.1

Sys-Te-5-1-1 The structure shall transfer a load in positive Z-direction of 20N from Section 5.1
a thrust unit to the other parts of the frame.

Sys-Te-5-2 The structure shall be able to handle vibrations introduced whilst fly- Section 5.3
ing.

Sys-Te-5-2-1 The structure shall have eigenfrequencies higher than 5kHz. Section 5.3

Sys-Te-5-3 The structure shall ensure structural integrity during a crash. Section 5.1,5.2

Sys-Te-5-3-1 The structure shall not be permanently deformed by a fall at 100km/h Section 5.2
on a solid floor from a height of 3m.

Sys-Te-5-3-2 The structure shall not be permanently deformed upon an impact in Section 5.1,5.2
X or Y direction at a speed of 100km/h.

Sys-Te-5-4 The structure shall have a drag coefficient of 0.7 or lower.

Sys-Te-5-5 The structure shall by smaller than 600mm in any direction. Section 5.1

Communications

Sys-Te-6 The drone shall be able to communicate with the ground segment. Children

Sys-Te-6-1 The communications subsystem shall handle the internal communi- Section 11.2.1
cation of the drone.

Sys-Te-6-2 The communications subsystem shall provide the capability to com- Section 11.2.1
municate with the drone externally.

Sys-Te-6-2-1 The communication subsystem shall be able to process input from Section 11.2.1
the ground segment.

Sys-Te-6-2-2 The communication subsystem shall be able to send a feed of the Section 11.2.1
drone’s sensors to the ground segment.

Sys-Te-6-2-3 The communication subsystem shall provide information on the Appendix A
drone’s system status.

Sys-Te-6-2-3-1 The communication subsystem shall provide information on the Appendix A

drone’s battery state of charge.
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Sys-Te-6-2-3-2 The communication subsystem shall provide information on the v AppendixA
drone’s software errors.

Sys-Te-6-2-3-3 The communication subsystem shall provide information on the ' AppendixA
drone’s power usage.

Sys-Te-6-2-3-4 The communication subsystem shall provide information on the v AppendixA
drone’s temperatures.

Power

Sys-Te-7 The power subsystem shall supply enough power to the drone fora ~  Children
flight of 10 minutes.

Sys-Te-7-1 The power subsystem shall store energy. ~  Children

Sys-Te-7-1-1 The power subsystem shall store at least 60k] of energy. v"  Section 6.4

Sys-Te-7-1-2 The power subsystem shall be rechargeable. v" Section 6.4

Sys-Te-7-1-3 The power storage unit shall be replaceable in 15s. ~  Section 14.3

Sys-Te-7-1-4 The power storage unit shall have a minimal C-rating of 35. v" Section 6.4

Sys-Te-7-2 The power subsystem shall provide each subsystem with power. v" Children

Sys-Te-7-2-1 The power subsystem shall provide a maximum power of at least +° Section 6.4
250W to the ESCs.

Sys-Te-7-2-2 The power subsystem shall provide 6W to the flight computer. v" Chapter 12

Guidance

Sys-Te-8 The drone shall plan the flight on board. v/ Children

Sys-Te-8-1 The guidance subsystem shall plan the path through the gates. v/ Children

Sys-Te-8-1-1 The path shall be updated at at least 10Hz. v' Section 11.3

Sys-Te-8-1-2 The path shall be calculated in 3 dimensional space. v" Section 9.2

Sys-Te-8-1-3 The path shall be calculated at least 1 gate in advance. v"  Section 9.2

Sys-Te-8-1-4 The path shall not violate any manoeuvrability constrains. v" Section 10.2.3

Sys-Te-8-2 The guidance subsystem shall only use on board computation whilst ' Section 11.1
flying.

Sys-Te-8-3 The guidance subsystem shall command the flight computer. v" Children

Sys-Te-8-3-1 The guidance subsystem shall send the position command at 10Hz. v Section 11.1

Sys-Te-8-3-2 The guidance subsystem shall send the heading command at 10Hz. v" Section 11.1

Sys-Te-8-4 The guidance subsystem shall have a safe mode. v/ Children

Sys-Te-8-4-1 The guidance safe mode shall land the drone on the ground. v"  Section 11.4

Sys-Te-8-5 The guidance computer shall land the drone at the end of the track. v" Section 9.5.1

Localization

Sys-Te-9 The localization subsystem shall determine the drone’s location on- v* Section 11.1
board.

Sys-Te-9-1 The localization subsystem shall determine the drone’s location in v*  Children
space.

Sys-Te-9-1-1 The localization subsystem shall update the location at at least ' Section7.2.2
500Hz.

Sys-Te-9-1-2 The localization subsystem shall calculate its accuracy. v" Section 7.1.1

Sys-Te-9-2 The localization subsystem shall detect gates. v' Section 8.4

Sys-Te-9-2-1 The localization subsystem shall determine the gate’s position with ' Section 8.7
an accuracy of 10cm.

Sys-Te-9-2-2 The localization subsystem shall determine the gate’s orientation v Section 8.5
with an accuracy of 0.15 rad.

Sys-Te-9-3 The gate localization can be performed at a rate of 30 FPS v" Section 8.8

Control
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Sys-Te-10 The drone shall be controllable. v/ Children
Sys-Te-10-1 The control subsystem shall determine the attitude of the drone. v" Children
Sys-Te-10-1-1 The control subsystem shall determine the attitude around the 3axes. v° Section 7.1.1
Sys-Te-10-1-2 The control subsystem shall determine the attitude with an accuracy v° Section 7.1.1

of 0.1rad.
Sys-Te-10-1-3 The control subsystem shall update the attitude measurement at at v~ Section 7.1.1
least 500Hz.
Sys-Te-10-1-4 The control subsystem shall determine the rotational rates with an +v* Section 7.1.1
accuracy of 0.03rad/s.
Sys-Te-10-1-5 The control subsystem shall acquire the rotational rate measurement v Section 7.1.1
at at least 500Hz.
Sys-Te-10-2 The control subsystem shall control the attitude of the drone. v" Section 10.2.5
Sys-Te-10-4 The control subsystem shall control the velocity of the drone. v" Section 10.2.3
Sys-Te-10-4-1 The control subsystem shall provide a velocity increment of 10m/s +
5% within 1s.
Sys-Te-10-5 The control subsystem shall communicate with the propulsion sub- ' Section 11.1
system.
Maneuverability
Sys-Te-11 The drone shall meet the maneuverability demands of the customer. ~  Children
Sys-Te-11-1 The drone shall accelerate with 3g in any direction. ~  Section 14.3
Sys-Te-11-2 The drone shall reach a speed of 28m/s in the XY-plane'. ~  Section 14.3
Sys-Te-11-3 The drone shall be able to make a turn with a radius of 3m at 12m/s.  ~  Section 14.3
Propulsion
Sys-Te-12 The drone shall be able to fly.
Sys-Te-12-1 The propulsion subsystem shall provide thrust. v/ Children
Sys-Te-12-1-1 Each thrust unit shall provide a thrust of 4N continuously. v" Section 6.3.3
Sys-Te-12-1-2 Each thrust unit shall provide a thrust of 5N for at least 2s. v'  Section 6.3.4
Sys-Te-12-2 The propulsion subsystem shall control the thrust.
Sys-Te-12-2-1 The propulsion subsystem shall be able to control the thrust level
with an accuracy of 0.5N.
Sys-Te-12-2-2 The propulsion subsystem shall take control commands at a fre-
quency of 400Hz.
Sys-Te-12-4 A single entire thrust unit shall be replaceable in 60s. ~  Section 14.3
Sys-Te-12-4-1 The propeller shall be replaceable in 15s. ~  Section 14.3
Sys-Te-12-4-2 The motor and ESC shall be replaceable in 60s. ~  Section 14.3

14.2. Stakeholder Requirements
Similarly to Table 14.1, the first two columns of Tables 14.2 to 14.4 have each requirement’s identifier and explanation
in them. The third column shows which requirements have been complied with and the final column links to where
this compliance has be validated. The symbols that were explained in Section 14.1 are used here as well.

1The XY-plane is orthogonal to axis of rotation of the propellers
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Table 14.2: List of Tier 1 Customer Requirements

Tier 1
SH-P-2r The drone shall be able to autonomously fly a full lap of the IROS 2018 track, ~  Section 14.3
without crashing and in at most 10 minutes.
SH-SR-8r Only parts that cost less than 10% of the unit cost and can be replaced in ~  Section 14.3
under 1 minute shall require replacement upon impact with concrete when
free-falling from a height of 3m with zero initial velocity.
SH-SR-9r  Only parts that cost less than 10% of the unit cost and can be replaced in ~  Section 14.3
under 1 minute shall require replacement upon crashing into a gate at 100
km/h.
SH-EB-13 The drone shall comply with all requirements given by the 2018 autonomous v*  Section 3.2
drone race website if available.
SH-0-16  The drone shall use onboard computation only. v' Chapter 11
SH-O-18 The drone shall be able to detect IROS 2018 autonomous drone race gates. v' Chapter 8
Table 14.3: List of Tier 2 Customer Requirements
Tier 2
SH-P-1 The drone shall be able to automatically take off and land. v" Section 9.5.1
SH-P-6 The drone shall be able to fly for at least 10 minutes. ~  Section 14.3
SH-P-7 The onboard computer vision shall be able to track gates at 30 frames per ' Section 11.3
second.
SH-S-11 The motors, frame, electronics and cameras shall be replaceable. v" Chapter 5
SH-EB-12r No dimension of the drone shall exceed 60 cm. v' Chapter 12
SH-O-17r The drone shall use, but is not restricted to, at least one camera for indoor v~ Chapter 12
navigation.
SH-0-19r  The aggregate time required to replace all replaceable components of the v AppendixB
drone shall not exceed 7 min.
Table 14.4: List of Tier 3 Customer Requirements
Tier 3
SH-P-3r The drone shall possess the hardware characteristics to fly at a maximum ~  Section 14.3
speed of 100 km/h in horizontal straight flight.
SH-P-4 The drone shall be able to linearly accelerate 3g. ~  Section 14.3
SH-P-5 The drone shall be able to make 3m radius arcs at 12 m/s. ~  Section 14.3
SH-S-10r  The drone shall be made for 100% of recyclable materials. v' Section 19.3
SH-EB-14 The total mass shall be less than 800 gram. v' Chapter 12
SH-C-15r The aggregate hardware cost of the drone shall not exceed 2500 Euro, ex- v~ Section 17.2

cluding maintenance, repair and operational costs.

14.3. Incomplete Requirement Explanations
All of the requirements that have not been verified or validated yet are listed in Table 14.5.
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Requirement ID

Reason of Non-Compliance

Sys-Co-4-2-1
Sys-Co-4-2-2
Sys-Co-4-2-3
Sys-Te-7-1-3

Sys-Te-11-1

Sys-Te-11-2

Sys-Te-11-3
Sys-Te-12-4-1
Sys-Te-12-4-2

SH-P-2r

SH-SR-8r

SH-SR-9r
SH-P-6

SH-P-3r
SH-P-4
SH-P-5

Since RAIDER was designed as an exercise, the intent was never to actually compete in the
competition. Therefore the team did not register with the organizers.

Since the IROS is, as of writing this, still 3 months away, it is impossible to validate that all
of the team and the drone will be present. This has been planned in Chapter 16.

See Sys-Co-4-2-2

Without building the drone, it is impossible to get exact times for the replacement of dif-
ferent parts. However, the drone was designed to be quickly repairable, as explained in
Chapter 5.

Without building the drone and actually testing it, it is impossible to know the exact value
of the thrust. However, the expected thrust-to-weight ratio is over 5. An acceleration of 3g
should not pose any problem with this.

Without building the drone and actually testing it, it is impossible to know the exact value
of the thrust. However, the top speed of the drone is expected to be 160km/h, 44m/s. Since
this is much higher than the 28m/s the requirement states, it is expected to be complied
with.

Without building the drone and actually testing it, it is impossible to know the exact value
of the thrust. However, since the drone was designed for this requirement, it is expected
to be complied with.

See Sys-Te-7-1-3

See Sys-Te-7-1-3

Without having the drone physically fly through the track, this cannot be fully validated.
However, the simulations that is explained in Chapter 9, shows that it should be possible.
Without crash testing the drone, it is impossible to calculate the exact probabilities of each
component breaking. However, as explained in Chapter 5, RAIDER was designed to with-
stand crashes and expensive components were placed in shielded locations in order to
maximize the chance of complying with this requirement.

See SH-SR-9r

Although the battery was sized to comply with this requirement in Section 6.3.2, it cannot
be fully validated without physically trying it.

See Sys-Te-11-2

See Sys-Te-11-1

See Sys-Te-11-3

Table 14.5: Requirements that have not been complied with and the reasons for this.
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Production Plan

Before the drone can be tested it needs to be built. During the final phases of the design the team had to take the
manufacturability of all components into account. In this chapter a detailed overview is given for the production of
the frame as can be seen in Section 15.1), and the electronics in Section 15.2).

15.1. Frame

The carbon frame has been designed for it to easily be manufactured and produced. The carbon plates are off the
shelf components and can be bought cheaply. All components for a single drone can be cut from one plate! and
cutting template has been made. A scaled drawing of template is shown in Figure 15.1.

304

152

é

Figure 15.1: Cutting templates for a plate of 152x304mm

Detailed manufacturing instruction are separated between the main assembly and the arm assembly. The arm as-
sembly will come together with the final assembly last.

Arm
1. Have the carbon arm frame water cut. Water cutting is preferred over
milling as during the milling process the fibres can easily be damaged or
the plate can delaminate.
2. Glue the arm inserts into the pre-cut holes.
3D print the motor spacer.
Mount the motor and motor spacer to the end of the arm frame using 4
DIN912 M3 bolts.
Mount the ESC using zip ties on the top of the arm.
Cut and strip the wires of the motor to the appropriate length.
Solder the wires from the motor to the ESC.
3D print the propeller guard.
Mount the propeller guard using a press fit over the M3 bolt heads.

- w

© e N

1https ://www.rockwestcomposites.com/plates—panels—angles/carbon-fiber-plate/carbon-fiber—fabric-plate/
404-410-group [Visited at June 20 2018]
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Center Frame

1.
2.

w

11.

12.
13.
14.

. Mount the PCD assembly onto the PCD stand-offs after the glue

Have the center, bottom, and top frames water cut.

Glue the frame inserts at the locations of the arm bolts. These
holes are pre-cut bigger than the holes for the frame stand-offs.
Start with the bottom frame and mount the Pico Flexx camera.
Directly behind the Pico Flexx camera, the PCB stand-offs can
be glued to the carbon plate. The placement should be done
with care to avoid hole alignment issues.

has fully cured.

At the rear of the bottom frame the ultra sound depth sensor can
be mounted through the hole.

Mount the bottom stand-offs through the pre-cut holes in the
bottom plate and secure them using the six nuts.

Mount the IMU dampers to the lower side of the center frame. Careful alignment is needed to ensure the holes
match the bolts.

. Mount the IMU on top of the dampers and secure it using the nuts.
10.

Now place the center frame on top of the bottom standoffs. The rear four stand-offs can be secured using M2.5
bolts. Leave the front standoffs unsecured for now for ease of assembly.

Mount the Connex ProSight camera to the front of the frame and ensure it does not stick in front of the protec-
tive covers.

Mount the top stand-offs to the front to holes. By doing so the bottom standoffs are secured.

Mount the top frame on top off the standoffs and secure it using the remaining bolts.

Slide on the legs and crumble zones.

15.2. Electronics

Two types of electronics should be distinguished: off the shelf components and the home built motherboard. The
former should be bought well in advance of the race to make sure delivery time does not become a problem. The
latter should be designed in more detail. As described in Part II, the board will convert the voltages to the right level
for the cameras and other electronics. Furthermore it will provide the Pocket Beagle and Raspberry Pi Zero W with a
data bus. The board first needs to be designed in Eagle or Altium, after which the PCB can be developed. To do so an
electrical engineer should be acquired.

After the PCB has been developed is should be populated with all the components. A specific order is suggested to
minimize the chance of failures and to allow for debugging to take place.

1.
2.

8.
9.

Solder together the power stage.

Test the power stage for voltage levels, first at low currents, then
at higher currents.

While testing ensure the board does not get too warm and there
is no excessive power loss.

Solder the headers for the Pocket Beagle, IMU, and ultrasound
sensor together.

Test communication between the Pocket Beagle, IMU, and ul-
trasound sensor.

Solder ESC wires to the PDU.

Connect the ESC and check whether the control algorithms
work together with the ESC and the drone can be kept stable.
Solder the headers for the Raspberry Pi Zero W.

Check the communication between Raspberry Pi Zero W and
the Pocket Beagle.

Using this stepwise approach with intermediate testing, the risk on excessive damaged due to errors is reduced. The
testing allows for critical errors to be found, such as voltage spikes and bad communication before the drone is fully
assembled. If such errors occur during flight, both the drone and its surroundings could be damaged.
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Operation and Logistics

In this chapter the operations and logistics of the drone will be discussed. It will provide guidance for how to handle
the drone in all the different phases of the lifetime of the drone. This will include the user interfaces of the drone,
maintenance instructions, transport instructions and set-up instructions. This section will be divided into the three
parts that can be seen in Figure 16.1.

‘. Performduring . ' Maintenance and
Transport _"’ Competiton /7 Repairs

t

Figure 16.1: Operation & Logistics Sections

Section 16.1 will address the transport phase. After that, the competition phase will be explained.

16.1. Transport
To participate in the IROS 2018 Autonomous Drone Race, the drone will need to be transported to the race, how this
will be organized can be found in Figure 16.2.

Transport by
Train

Prepare ~ i "\ Perform during .
Transport > Packagng Package Drone —»{OR}—» Transport by Car —Iu e 4
Transport by

Plane

Figure 16.2: Transport Flow Diagram

The drone consists of fragile and expensive components, which should be taken into account for during transport.
The race will be held in Madrid, so there are three viable options of transportation, either by plane, by car, or by
train. Which of these methods of transportation is used doesn’t matter as long as cautious handling of the drone
is ensured. During transport, the drone should be fixed and unable to move. A special box with a foam or shock
absorbing material will be provided for transporting the drone, in order to damp any vibrations and shocks induced
during transportation.

16.2. Perform during Competition
When the drone arrives at the competition a number of different actions need to be performed for successful opera-
tion. These are outlined in Figure 16.3.

System Status Crash "\ Maintenance and

Competition —r Drone Assembly —»| Pre-Flight Check —» Take-off —» Monitoring Repairs

Figure 16.3: Competition Flow Diagram
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First, the drone has to be set up for the race. This consists of assembling the drone and going through the pre-flight
checklist. During the race itself, the drone’s performance has to be monitored and maintenance and repairs have
to be conducted in case the drone gets damaged. The assembly, pre-flight checks, and drone monitoring will be
discussed in detail in this section. The maintenance and repairs are discussed in the next section.

16.2.1. Drone Assembly
The assembly of the drone was made as easy as possible. The connections between the separate parts will be made
of simple connectors such as nuts and bolts. This is explained in detail in Chapter 15.

16.2.2. Pre-Flight Checks

After the drone is assembled, the system needs to be set-up and the pre-flight checks have to be performed. For
the set-up of the system, the drone has to establish a wireless connection with the base station computer used for
performance monitoring. After that the pre-flight checks shall be performed. The pre-flight checks include: booting
up the software, monitoring system status, calibrating sensors, and placing the drone at the starting position. After
these checks, the drone will wait on the starting position until the start input is given by the user. The software boot
consists of four steps: turning on the on board computers, turning on the communications system, turning on the
sensors, and turning on the propulsion system. The sensor calibration should guarantee that the sensors are well
aligned and provide a correct output for a given input. The system status monitoring should make sure that all of the
systems are running nominally. The monitoring of the system status should not only be done at the pre-flight checks,
but continuously throughout the race. This system monitoring will be discussed in more detail in Section 16.2.3.

16.2.3. System Status Monitoring

The system status monitoring consists of checking the status of the individual subsystems and transmitting this to
the base station. These two functions are executed continuously throughout the race. The subsystem monitoring is
divided into checking the battery voltage, checking the motors, checking the temperatures, and checking the soft-
ware. Battery monitoring is important so that the drone doesn’t crash when the battery dies. Motor monitoring
is important for identifying motor malfunction. Temperature monitoring is important in order to ensure the tem-
perature of the critical subsystems stay within the operating temperature and to prevent overheating or fire. Lastly,
checking the software is important for managing any unexpected bugs that might come up during the race and
minimizing their impact on the performance. When an error in one of the subsystems is found, the drone ends its
operations. Using the base station computer, the status of the individual subsystems can be monitored by the user.
In an emergency, it is possible for the user to take control of the drone by means of the base station computer.

16.3. Maintenance and Repairs
As can be seen in Figure 16.4, the first thing to do when maintenance is to be performed, is to inspect the drone.

*, Maintenance and *

\ ] ) Do a Full-System Recalibrate "\ Perform during
Repairs —b Inspection  —» Periorm Repairs —» Check —

Software g ETEES _l.-' Competition

Figure 16.4: Maintenance and Repairs Flow Diagram

During inspection the propellers, motors, sensors, structure and electronics have to be thoroughly checked for dam-
age or any other anomalies. This is followed by possibly disassembling parts in order to increase accessibility. After
inspecting the drone rigorously, the eventual broken or worn components have to be replaced. When the repair is
finished, a system check is performed, in order to make sure that all of the replaced components perform accord-
ing to specifications. Finally, before taking the drone back into operation, the drone will be updated with the latest
software version and the pre-flight checklist will be performed.
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Reliability, Availability, Maintainability, and
Safety Analysis

Reliability, Availability, Maintainability, and Safety Analysis (RAMS Analysis) is an integral part of any design. The
combination of the four aspects of RAMS determine for a large part the success of the project. First Reliability will be
calculated in Section 17.1. Then, the drone’s availability will be discussed in Section 17.2, after which the maintain-
ability will be discussed. Finally, the safety of the drone will be discussed in Section 17.4.

17.1. Reliability

The first part of RAMS is reliability. It is defined as the probability that the system performs as specified by the
customer. This probability can be analyzed by finding all of the different failure modes of the drone and using prob-
abilistic theory to sum them. Finding these failure modes can be done using a failure diagram, which is depicted
in Figure 17.1. This failure diagram is an OR tree, except for the lowest level. Here, there is a clearly indicated AND
connection, where the failure of any 1 sensor does not immediately cause a full system failure.

Reliability for RAIDER can be subdivided into 2 parts: Reliability during Flight and reliability due to crashing, which
will be discussed in Section 17.1.1 and Section 17.1.2 respectively. For most projects, reliability during flight is the
main component of this. For RAIDER, however, this is different, the reason being the above normal high probability
of crashing.

17.1.1. Reliability during Flight
First the reliability in flight will be assessed.

Electronics Failure

The probability of sensor and computer board failure is very difficult to determine since failures normally do not
occur for years. Since the drone only has to function for about 20 minutes, these failure rates are assumed to be
negligible. All components that are used in RAIDER are off the shelf products, so on top of the fact that the odds of
them failing during flight are negligible, they are also relatively easy to replace.

Power & Propulsion Failure

The probability of battery failure is much higher than that of PDB or ESC, provided that the propellers have guards
around them. The average number of charge-discharge cycles for failure is approximately 732 [61]. Assuming that a
charge lasts 10 minutes, this results in a failure rate of 0.0082 failures per hour.

M Ao

Y =(19-80000 " T.15. 105
Equation (17.1) shows a relationship between motor failure rate and the ratio between the expected lifecycle and its
actual lifecycle. A temperature of 40 degrees was chosen because the IROS2018 competition will be organized at the
end of the summer in Madrid. An actual lifecycle of 100 hours was chosen. This accommodates for both the testing
of the drone and flying the race. The result of this assumption is 1; = 1, = 0.13, resulting in a motor failure rate of
1.1-107 failures per hour.
Finally, the Mean Time Between Failures was calculated to 500 hours for propellers [35]. This corresponds to a failure
rate of 0.002 failures per hour.

(17.1)

The total failure rate for Power & Propulsion Failures is then 0.0102 failures per hour.

Structural Failure

The probability of a structural failure during nominal flight is assumed to be negligible. The arms, for instance,
are design to withstand around 150N that they will be subjected to during a crash, but during normal operating
conditions, they only have to withstand 20N.
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Software Failure

It is almost impossible to put a failure rate on the software. Although at every update, the reliability instantly de-
creases due to the possibility of unknown bugs being introduced, the overall trend is towards a higher reliability
since any bug that is found and dealt with will not show up again. This, together with the amount of situations that
the software can get into, is what makes it so difficult to estimate its reliability without programming it and testing in
the real world.

In-Flight Reliability Summary

Although software reliability is near impossible to determine, the hardware failure rate is approximately 0.01 failures
per hour. When assuming a negative exponential reliability distribution and a service life of 20 minutes, this results
in a hardware reliability of 66.7%. This can be mitigated by putting a battery that has only been tested a few times on
the drone before the race, since according to [61]’s data, battery failures are normally distributed. It also warrants to
at least 1 extra battery being brought to the race.

17.1.2. Reliability due to Crashing

The drone’s reliability due to crashing is impossible to quantify without actually testing it. Therefore, it will be as-
sessed very similarly to the general risk in Chapter 18. Each identified risk will be graded on both its probability of
occurrence and its severity. Severity will be rated on a scale of 1 to 5 where the numbers represent Negligible, Mod-
erate, Significant, Critical and Catastrophic respectively. Probability of occurrence will similarly be rated from very
low to very high on a scale of 1 to 5. It should be noted, however, that the scale relating the probability of occurrence
score and values can be seen in Table 17.1.

Table 17.1: Probability Score to Approximate Probability Conversion

Score Probability

5 90% <P <100%
4 50% <P <90%
3 20% <P < 50%
2
1

5% <P <20%
0% <P <5%

Electronics Failure
During crashes, the main risk related to electronics failure is that of the sensors or PCBs breaking due to shock loads
generated by the impact. The result of analyzing these risks with regards to the electronics can be found in Table 17.2.

Table 17.2: Electronics Risks

Severity Probability

Pocket Beagle Breaking 5 1
Raspberry Pi Zero Breaking 4 1
Depth Camera Breaking 3 2
RGB Camera Breaking 3 3
Altimeter Breaking 3 2
IMU Breaking 5 1
Connection Failure 3 4

Since the Pocket Beagle runs all of the algorithms that keep the drone up in the air, breaking this would be catas-
trophic. Although the Raspberry Pi Zero is a critical component for the functioning of the drone, it can still work
without it as RAIDER would just be flying blind. Therefore breaking the Raspberry Pi Zero has been given a severity
of 4. Breaking the IMU, on the other hand, would be catastrophic because the rate at which the gate detection up-
dates the drone’s pose is much too low to keep a drone in the air. All of the other risks have been given a severity of
3 because they are redundant. If 1 of them occurs, the others can take over the functionality. The reliability of the
drone would just go down if this were to happen. The computer boards and IMU are well protected by the structure

and damped by their connections, resulting in a probability of 1. Although the Altimeter is mostly well protected,
a part of it sticks out of the structure, resulting in a probability of 2. The cables that connect the different sensors
and computer boards aren'’t very prone to breaking, but they can be pulled out of their sockets. Therefore, during
assembly and maintenance, the team has to make sure that all of these cables are fully inserted into their respective
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sockets and that no cables are pulling on each other. Last, but not least, is the RGB camera, it is quite well protected
by the motors from the top and the structure from the bottom, top and sides. Because the lens is relatively fragile,
this resulted in a probability of 3.

Power & Propulsion Failure

A synonym for the Power and Propulsion system is the power train. It encompasses all elements of the drone that
provide and distribute the electrical energy and those convert it into thrust. The results of the reliability analysis of
the power train can be seen in Table 17.3

Table 17.3: Power and Propulsion Risks

Severity Probability

Battery Failure 5 3
PDB Breaking 5 1
ESC Failure 5 3
Motor Failure 5 2
Propeller Breaking 5 4
Connection Failure 4 2

Losing any part of the power train is catastrophic for the drone, resulting in 5’s all across the board.

The probability of a propeller breaking when it hits anything is very high. However, due to the fact that propeller
guards have been implemented into the design, the drone can take small collisions, reducing the probability to 4.
Often, when a propeller hits something, the ESC burns through. This happens a little bit less often than a propeller
hitting something, resulting in a 3. The PDB is just a circuit board that will be sandwiched in between the 2 computer
boards, this results in it having the same probability of breaking as the 2 computer boards. The odds of any of
the connections failing is rather low. The reason for this is that all connectors in the power train have a locking
mechanism in them, making it impossible to unplug them by pulling on the wires.

Structural Failure

Some parts of the structure were designed to break. They are designed to take up as much impact energy as possible
and then break, without it having any impact on the functioning of the drone. These parts are the propeller guards
and the crumple zones. The risks associated with the structure are in Table 17.4.

Table 17.4: Structural Risks

Severity Probability

Arm Breaking 5
Connection Breaking

Stand-Off Screw Breaking
Propeller Guard Breaking
Shock Absorber Breaking

— - W
=Y WWw

There are 2 ways in which an arm can break off: Firstly, the arm itself can break, and secondly, the arm’s connection
to the rest of the frame can break. These are the first 2 risks and they were given a severity of 5 since a quadcopter
cannot fly properly with just 3 of its rotors functional. The different platforms and computer boards are connected
using stand-off screws. Since 1 will be placed at each corner, losing 1 will not have a catastrophic or critical effect,
resulting in a score of 3. As stated above, the propeller guards and shock absorbers are made to break. Therefore the
severity of this happening was minimized, resultingin a 1.

The probability of breaking one of the propeller guards is very high since they encompass the entire outside of the
drone. If it bumps into anything while in flight, these will be hit it first. The team therefore decided this would have
a probability of 5. The odds of the crumple zones breaking are slightly lower because they are only on the bottom
of the drone, resulting in a score of 4. If the drone were to fly into anything at top speed, most of the impact would
be absorbed by the arms, even after the propeller guards break. For this reason, the probability of the arm breaking
was rated to be a 3. Although the connections were designed to be stronger than the arms themselves, the difference
is not high enough to warrant a full point of lower probability, resulting in a score of 3. Finally, the stand-off screws
have a low probability of breaking because they are designed for this, seeing as they are quite difficult to replace.
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Software Failure
As long as all of the hardware stays intact, the software is not at risk of breaking. Therefore no further analysis was
done on the reliability of the software during a crash.

Crash Reliability Summary

In summary, the largest risks are listed in order of probability in Table 17.5. Especially these should be taken into
account when planning for availability, maintenance, safety, and logistics. The risks that were detailed here will be
expanded upon in Chapter 18.

Table 17.5: Most Prominent Crash Reliability Risks

Severity Probability

Propeller Breaking 5
Arm Breaking

Pocket Beagle Breaking

Battery Failure

PDB Breaking

ESC Failure

Structural Connection Breaking

SRS NS S S ey
W W W w W

17.2. Availability

Although RAIDER only has to be ready to fly for 20 minutes during the IROS2018 competition, it should still have
an availability as high as possible. There will, however, only be 1 production unit of the drone. The result being
that anything that might break has to be ready to be placed during the race. These replacements have to be done as
quickly as possible in order to allow RAIDER to continue trying to finish the course. The components from which
the drone is made are all off the shelf products, allowing the team to easily get replacement parts whenever they are
needed.

In order to assess the availability and maintainability of the drone, a time per run of 1 minute was chosen. This
means that if no maintenance or repairs have to be performed, the time between subsequent take offs is 1 minute.
At first, the total flight time of 20 minutes is assumed, after which the total flight time is divided by he run time to
calculate the number of tries the drone has to finish the track.

Then, taking into account the probabilities of each failure happening and which repairs have to be performed after
each attempt, the total maintenance time is calculated. However, this maintenance time has to be added on top of
the the total flight time, since the clock is not stopped during repairs. Which results in a total time of over 20 minutes.
Therefore, the process has to iterate, taking the allotted time of 20 minutes and subtracting the previous iteration’s
maintenance time for the total flight time. This can be seen in Equation (17.2) for iteration k.

(Total Flight Time) ;. = Total Allotted Time — (Maintenance Time)_; (17.2)

This flight time is then again divided into runs, making the process iterative. The final iteration of this script can be
seen in Appendix B. The resulting values can be found in Table 17.6. And the probabilities of each failure, together
with the total number of replacement parts will be explained in Section 17.3. Note that the total flight time is not a
multiple of 1. This is the case because an optimum was found at 12 runs, or 12 minutes. The extra time allows for
inaccuracies in the estimation methods for both flight and repair time.

Table 17.6: Results of Availability and Maintenance Analysis

Variable Value Unit

Total Time 19:36  [Minutes : Seconds]
Total Maintenance Time 6:54 [Minutes : Seconds]
Number of Runs 12 []

Availability 64.8 [%]

Unit Cost 1220 [€]

Replacement Parts Cost 775 [€]

Total Cost 1995 [€]
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17.3. Maintainability

Because RAIDER only has 20 minutes to win the race, it has to be as maintainable as possible. Since making sure that
all components can be replaced as quickly as possible allows the drone to be in the air quickly after a crash, this was
one of the main priorities during the structures subsystem design. Since the drone will not function for a long time,
it does not have to be maintained.

The estimated probabilities for each failure in Section 17.1 are shown in Table 17.7. These were used to calculated
the amount of replacement parts that have to be brought to the IROS2018 competition.

Table 17.7: Assumed Probability of each Failure

Failure Type Probability Rating Probability
Propeller Guard Breaking 5 95%
Electronic Connection Failure 4 80%
Propeller Breaking 4 80%
Shock Absorber Breaking 4 80%
Arm Breaking 3 40%
ESC Breaking 3 40%
RGB Camera Breaking 3 20%
Battery Failure 3 20%
Structural Connection Breaking 3 20%
Depth Camera Breaking 2 5%
Altimeter Breaking 2 5%
Power Connection Breaking 2 5%
Stand-Off Screw Breaking 2 5%
Motor Failure 2 5%
Pocket Beagle Breaking 1 1%
Raspberry Pi Zero Breaking 1 1%
PDB Breaking 1 1%
IMU Breaking 1 1%

The amount of replacement parts was calculated using the script that was described in Section 17.2 and the results
can be found in Table 17.8. These parts sum to a total cost of €774.31. In order to get to these numbers, a few things
were changed from the raw probabilities.

Firstly, due to the fact that there are 4 propellers on the drone, the amount of replacements was multiplied by 2. The
value of 2 was chosen because the drone would hit 2 propellers if it were to fly into a wall. Secondly, it is assumed
that in the event of an arm breaking off, half of the motors and ESCs can be dismounted and reused. Finally, the
parts that will not have any replacements are not listed in Table 17.8.

Table 17.8: Total Amount of Replacement Parts

Part Amount Approximate Unit Price [€] Total Parts Price [€]
Propeller Guard 22 0.18 3.96
Propeller 20 0.25 5.00
Shock Absorber 10 0.10 1.00
Arm 7 3.00 21.00
Motor 4 15.00 60.00
ESC 8 15.00 120.00
RGB Camera 2 76.50 153.00
Battery 3 30.00 90.00
Nuts & Bolts 2 0.10 0.20
Depth Camera 1 300.00 300.00
Altimeter 1 35.00 35.00
Stand-Off Screw 1 0.15 0.15

17.4. Safety
Safety analysis can be done by looking at the Failure Diagram, Figure 17.1, and determining which failures could
compromise RAIDER’s safety. After this is done, countermeasures can be taken to reduce the probability and impact
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of the hazards.

The failure modes that are grouped into electronics failure could all cause the drone to become uncontrollable and
crash. While the drone is uncontrollable, it could easily fly into spectators, competitors or any of the surroundings,
possibly injuring or damaging them on impact. These injuries and damage can be caused by both the impact itself
or by the propellers.

Although many of the power and propulsion failure modes would also cause the drone to become uncontrollable or
fall out of the air, a short circuit is also possible. Furthermore, LiPo batteries are know to start a fire when they are
punctured. Both battery punctures and short circuits can cause fires, resulting in the second group of safety hazards.
The structural failure modes would all make the drone uncontrollable, so these will be discussed in the Impact Haz-
ard section.

Due to a bug in the software, the drone could start to behave erratically, adding to the impact hazard.

17.4.1. Impact Hazard

There are a few ways in which the impact of the drone can cause injuries or damage. Firstly, the impact itself is
dangerous. Secondly, a propeller can cut through many things, which causes injuries. Thirdly, upon impact, it is
possible for parts of the drone to break off and cause harm by impacting something that way.

Direct Impact

How dangerous an object is upon impact can be determined in multiple ways. One of the main ways in which this
can be done is by calculating the Head Injury Criterion (HIC). The HIC34 can be calculated using Equation (17.3) [7],
where V44 is calculated using the maximum linear momentum of the drone.

2.5
VHead }

(17.3)
0.0036

HICs6 = 0.0036{

RAIDER’s maximum linear momentum is 30 kgT'm at its top speed of 160 km/h. Assuming that a head weighs 5kg
and that all of the linear momentum is transferred to the head, results in a value for the HIC35 of 2295. Converting
this to the probability of AIS 2, 3, and 4 injuries was done using [26]. During the IROS2018 competition, however, the
expected maximum speed will not exceed 2 m/s. Taking a safety margin of 100% of this, results in a speed of 4 m/s
or 14.4 km/h. At this speed, the same calculations can be done, with a resulting HIC3¢ of 1. The probabilities of each
type of injury for both 165 km/h and the 14.4 km/h flight can be found in Table 17.9.

Table 17.9: Probability of Injury Type

AISRating Type of Injury Probability at 165 km/h  Probability at 14.4 km/h
2 Recoverable 82.0% 0%
3 Possibly Recoverable 65.1% 0%
4 Not Fully Recoverable without 55.4% 0%
Care

The team chose HIC3g over the more strict HIC;5 because the first point of a collision will most likely be one of the
drone’s arms, which are designed to soften the impact. This would reduce the drone’s linear momentum significantly.

Propeller Impact

Propeller tips are often very sharp. Combining this with the fact that they can reach speeds in the order of mach 0.6,
shows just how dangerous propellers can be. The IAS rating of the lacerations that are caused by drone propellers is
a function of for instance how sharp the tip is and the tip velocity. Such a relation can be seen in Figure 17.2 [1].
Looking at Figure 17.2, it quickly becomes evident that Carbon Fiber Flat Tip propellers consistently cause the low-
est amount of damage. Plastic Sharp Tip propellers, on the other hand, on average do the highest amount of dam-
age.RAIDER’s 5 inch propellers can reach speeds of up to 33000 RPM. At this speed, the propeller tips reach velocities

of 220 m/s or 720 ft/s. This, according to Figure 17.2, results in injuries of about IAS 2 for carbon fiber reinforced
plastic flat tipped propellers. These are very similar to the Glass Fiber Reinforced Plastic (GFRP) propellers that will
be on RAIDER, which is why this material was chosen in Chapter 6.

Drone Debris

Although the drone itself can cause significant harm when it directly impacts anything, if a propeller were to shatter,
the debris would have a much higher velocity and could therefore cause a lot of damage as well. At the moment a
propeller shatters, the blade that is moving forward can have a speed of up to the sum of its tip speed and the drone’s



17.4. Safety 112

(notional) AlS vs Tip Velocity

4 ] |
S 3 ® o Molded Plastic (Fla
5 25 bl
[ CFRP (Flat Tip
- 2 m m
s * i . eCarbon Fber (Fat Tp
~ 15 L ] - L
_% 1 o me - - -EM: ded Plastic (Sharp
- P

0.5 I W Carbon Fiber (Sharp

n L= p

Figure 17.2: IAS Rating as a Function of Tip Velocity [1]

speed. This results in a total velocity of approximately 265 m/s. However, due to the large drag at such a high velocity,
it will slow down very quickly. Especially the smallest pieces will decelerate very quickly since they have a tiny mass.

The Puncture Fracture Toughness of human skin is approximately 24 kJ/m?[23]. If a piece of the propeller containing
more energy per area hits the skin, it will pierce it. The safe range from the drone is calculated using this. It is assumed
that the propeller breaks in chord wise direction. The break can be at any distance from the center hub. The propeller
was modelled as a flat plate with a thickness and chord length of 1 and 10 mm respectively. Each piece has a length
from the fracture to the propeller tip and starts with the average velocity between both of its ends. The simulation
then takes a drag constant of 1.2 and runs until the specific kinetic energy drops below 24 kj/m?. The distance at
which each piece becomes safe was recorded and can be seen in Figure 17.3.

Distance from which each piece is safe
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Figure 17.3: Range at which Propeller Pieces can pierce Human Skin

The mass of each piece was approximated using the density of a 50 volume percent glass fiber, 50 volume percent
polypropylene GFRP. The resulting density is 1.7265 g/cm®[16]. The end result of this model is almost exactly 1.7
meters. This means that up to 1.7 meters from the place where the propeller shattered, the pieces could pierce skin
and cause lacerations.

17.4.2. Fire Hazard

There are 2 potential sources of fire aboard RAIDER: The battery and the electronics. Lithium Polymer batteries are
known to burst into flames when they are discharged too quickly or pierced. The electronics can cause fires when
too high a current is ran through them, this could be due to a short circuit, but also during normal operation. The
fact that it is commonplace to have solder on FPV race drones melt slightly during races clearly shows this fact.

17.4.3. Countermeasures
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Impact Hazard

According to FAA regulations, the highest allowable chance of an AIS 3 rated injury occurring during the operation of
adrone over people is 30% [1]. This shows just how dangerous fast flying drones are and that clear safety precautions
have to be taken. These precautions are the kill switch that one of the operators will be in charge of controlling. If this
switch is flicked, the drone will immediately power down and drop out of the air. Because this is not ideal since it can
still cause damage to the surroundings, the drone will also have a safe mode. This safe mode will be activated when
an error in the software, low battery voltage or an overheated component are detected. Safe mode will immediately
land the drone autonomously.

In order to reduce the impact energy upon collision, propeller guards were implemented on the drone. These, to-
gether with the arms that were designed to soften the impact in case of a collision should spread out impact as much
as possible, making the drone much safer. The propeller guards also reduce the risk of lacerations due to the pro-
peller blades hitting a person. Although they do not help much at high speeds, at the expected typical race speed of
14 km/h they will hold up and make the drone bounce harmlessly off any obstacles.

The propeller guards also increase the drone’s safety when a propeller shatters. If the drone crashes into anything
at a high enough speed to break off the propeller guard, very shortly after that, the propeller will break as well. This
means that the propeller guard is still almost in the same place, allowing it to slow down any debris that hits it. The
kill switch also increases the safety with respect to this hazard because the 1.7 meters of maximum dispersion is at a
motor speed of 33000 RPM. By hitting the switch, the propellers will slow down quickly, quickly reducing the distance
at which the propellers could be dangerous.

Fire Hazard

The probability of the battery getting punctured can be massively decreased by putting it in a place where it is well
protected by the structure. The top of the drone, where the battery on RAIDER is, is one of these places. From the
bottom, the battery is protected by the structure and from the top , the motors keep it off the ground. The drone’s
safe mode protects it from getting too hot. If the drone measures too high a temperature near the battery, it will land
as quickly as possible, giving it time to cool down again.

In the event of the drone starting to smoke and the safe mode not working, the operator can also kill the drone. This
stops the drone from becoming an uncontrollable fireball. When the structure was designed, the team also took into
account that the electronics should have enough airflow over them to cool them. This, together with over current
protection on the ESCs, massively reduces the probability of the electronics catching fire due to over currents.
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Risk Assessment and Mitigation

While the application of experimental technology offers the potential of significantly enhanced capabilities, it can
also lead to excessive delays and cost blow-outs. This chapter mainly focuses on the potential hazards of each spe-
cific subsystem in order to identify the Achilles’ heel of the design. A risk analysis of the overall design will follow,
mainly considering the integration of each subsystem. Finally all the risks will be analyzed in terms of their cause and
effect followed by a mitigation strategy.The risks have been evaluated with regard to their probability of occurrence

and the severity of their consequences. To do so, a standardized method has been used where both categories have
been divided in five levels [57]. After the evaluation, the risks have been depicted in a risk map to effectively visualize
the different hazards as risk is the combination of the likelihood of occurrence and the severity of the consequences.
The closer a risk is to the top right corner of Table 18.1, the more resources have to be put into mitigating this risk.

Table 18.1: Risk quantification parameters

Level Probability Level Severity Description
5 Very High 5 Catastrophic  Mission failure
4 High 4 Critical Mission success questionable
3 Medium 3 Significant  Decrease in performance
2 Low 2 Marginal Secondary mission compromised
1 Very Low 1 Negligible Small reduction in performance

The severity of the risk has been selected based on the consequences of this risk on the Project Objective Statement.
The secondary mission is intended as racing as fast as possible, exceed the expectations regarding autonomous
races. Although this is still an important aspects of the design, it does not need to be met in order to win the race.
The probability has been discretized in five different levels which do not have specific quantifiable ranges due to the
uncertainties that are difficult to model or predict [65]. Due to the lack of data the probability levels give an indication
of the plausibility of an event occurring, based on the engineering knowledge of the experts and stakeholders, and the
insight that the designers have developed. These estimations are aided by specific analysis conducted in Chapter 17
and Chapter 3, which give a top-down approach to analyze the mission in general, and the subsystems designs in
Part II to investigate the details of each component that were sized for specific extreme cases.

The different risks have been grouped by subsystem, in order to identify the most critical design aspects and divide
the mitigation approaches that have been undertaken by each department, all of the risks concerning the design
have been implemented after mitigation while the ones that cannot be integrated due to their natural cause rep-
resent an inherent risk of the drone which are mitigated with specific suggestion to undertake when the drone is
operated. The abbreviation STR is used for the structural subsystems, EL for the electrical subsystems including the
different sensors, NAV indicates the navigation subsystem which comprises the path planning and the control sub-
system. Moreover, CV stands for computer vision, PP for power and propulsion, SYS for system integration and OL
for operations and logistics. The risks identified for each subsystem can be found in Table 18.2.

A quantitative evaluation of the potential weaknesses of the design has been reported in the same tables and was
be visualized in Figure 18.1, based on the probability of occurrence and the impact it may have on the performance,
schedule and cost [18]. These three parameters have been weighted equally when quantifying the risks. The risks
listed on the table were derived mainly from the functional analysis and breakdown of the different tasks the drone
was to perform. By analyzing the different stages of the operational life of the drone it was possible to get an overview
of the drone’s functions to identify which of these were more vulnerable. Moreover, the subsystem interface anal-
ysis was used to display the interconnections which highlighted the most important elements in the software and
the payload. The quantification of the risk, has been done based on experimental data from similar projects, and
interviews with experts and stakeholders. Additionally the judgment of the designers of each specific subsystem
provided valuable insight into different areas for the evaluation of risks. Risk analysis is an iterative process where
the risk mitigation or abatement, if possible, is continuously performed, to achieve the minimum risk level. Due to
the application of risk mitigation strategies, elements of the risk map shift towards the bottom left corner, as indi-
cated by the arrow in Figure 18.2. Most of these risks are inherent to their process and cannot be completely removed,
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Figure 18.1: Risk Map before Mitigation Figure 18.2: Mitigated Risk Map

but their consequences can be alleviated by proper planning and communication between the design departments.
Most of the mitigation strategies were formulated by evaluating other options within the same branch of the design
tree that the risk event belonged to, and combining feasible solutions. The analysis performed in this chapter delin-
eates the risks that represent a major weakness in the design. These risks can be identified in the risk map posterior
to the mitigation. The risks are STR2, CV1, SYS2, PP1, and EL1 as highlighted with the red circles in Figure 18.2. A
detailed description of all the other risks and their mitigation strategies can be found in the tables at the end of the
chapter.

The risk STR2 states that propeller failure is possible during the use of the drone. The propellers can break under
the centripetal forces it experiences during flight and, in case of a crash, it is likely that the propeller will break due
to the impact. This can be regarded as favourable and unfavourable at the same time. If the propeller breaks, most
of the impact energy is taken up by the breaking of the propeller and is not transferred to the frame or the motors,
which prevents structural or motor damage. On the other hand, it is not favourable if the propellers need to be
replaced whenever the drone experiences a minor crash. To lower the likelihood of this risk, propeller guards have
been added. Moreover, the risk identified as PP1 highlights the possibility of breaking a motor due to excessive use
at maximum power which would lead to burning the motor itself and a complete loss of stability, which results in
the drone losing the capability of flying. To mitigate this risks popular FPV motors have been used, these allow the
drone go much faster than the maximum speed as required by the customer, reducing the average throttle that is
used. The software risks concerning the computer vision (CV1) was determined to be in a critical region. If the
gate is not detected, the path cannot be corrected, and the drone will constantly be looking for a gate or will move
without having a correct pose estimate. To be more specific, this risk is about the chance of not identifying the gate
in an image taken by the cameras and estimating the distance at which the gate is located from the drone. This risk
can be mitigated by adding an additional sensor to provide the drone with depth information and introduce an extra
degree of freedom in favour of the drone that can rely on different strategies for the same purpose of detecting a gate.
The IMU drift integration error (SYS2) is very important, as has been mentioned previously in Chapter 7, because
the consequence in the navigation strategy would be fatal. Therefore, to mitigate this risk the best IMU was chosen
from the market which is portrayed in the price of the sensor that exceeds the cost of normal IMU by over 100 times.
Apart from the kalman filter that the IMU has integrated on-board, an unscented kalman filter has been included in
the data-handling section for sensor and software integration to increase propagation accuracy of the pose.

Finally, the EL1 risk states that an electronic speed controller (ESC) might fail. This can be the case when the drone
is flying at high performance. Breakdown can be prevented by appropriately sizing the ESCs with the proper rating.
Also, by ordering high quality ESCs from reliable manufacturers, and by having the ESCs properly positioned for
maximum cooling, the risk of ESC failure is reduced. This risk has been identified thanks to the contribution of
multiple drone amateur’s that reported it in different occasions.



Computer vision subsystem

Table 18.2: Risk analysis per subsystem

ID Risk Cause Effect LH SV Mitigation NLH NSV
CV1l  Gateis not detected Lighting condition or too Path cannot be corrected 4 3  Use two cameras with two
much noise in the back- different algorithms during
ground the race: CNN and Depth
images analysis
CV2  Gate detection processing Too much information to Detection is not useful 2 2 Set maximum processing
takes too long process time and fly slower
CV3  Not all corners are identi- View on the gate is not op- True negative detections is 4 2 If three corners are de-
fied timal observed tected in the shape of a gate
keep searching in same re-
gion
CV4  Object width is not esti- Time of flight camera cali- The drone might fly too 2 3 If object is not hollow (pos-
mated correctly bration close to the object and col- sible collision) choose a
lide random point with a signif-
icance radius from obstacle
CV5  Gate contour is only par- Background has too many Algorithm detects corners 3 2 Optimal layered structures
tially detected by the algo- features where there are none with sufficient filters and
rithm features extraction for gate
recognition
CV6 Drone images are too Camera FPS is too low or Impossible to extract cor- 3 3 Flyslower and use both ToF
blurry drone is flying too fast rect features from image and RGB camera
CV7  Synthetic images do notre- Background is smooth and Algorithm is not tuned for 2 3  Distortimages, usereal, de-
flect reality gate is not properly ren- real race environment tail rich background im-
dered ages
CV8  False positive detection Algorithm identifies shape Drone flies in wrong direc- 3 3 Use virtual ToF to ensure
of a gate using background tion gate is close and gate way-
waypoints points to verify direction
CV9  Gatecolorischangedbyor- Late agreements to facili- Algorithm need to be re- 3 3 Develop easily tunable,
ganizers tate participants tuned and re-trained modular algorithms
Structure subsystem
ID Risk Cause Effect LH SV Mitigation NLH NSV
STR1 Arm damage due to impact Hitting an obstacle or gate Destabilization and impact 3 3  Detachable arms that snap
side with the ground off upon impact
STR2 Propeller damage Impact due to collision Impossible to generate lift 4 3 Add apropeller casing
STR3  Deformation of the frame Impact due to collision Load transmission to frag- 3 4  Insert shock absorbers as

ile components

the legs
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STR4  Bolt shear-out Bending moment created Significant deformation in 2 3 Add carbon inserts at criti- 1 3
by the motors carbon fibre arm and re- cal bolt connections
placement is needed
STR5 Structural damage Eigenfrequency of struc- Sensorreadings areinaccu- 2 4  Structure was made more 1 3
ture is similar to frequency rate and destabilization rigid and carbon fibres lay-
induced by motors up chosen to be as isotropic
as possible
STR6  Assembly failure Component loss and com- Frame does not provide 2 4  Safetyfactor of 1.5 was used 1 3
promised stability sufficient support to all for a number of connec-
subsystems tions during sizing
Navigation subsystem(incl. Path planning and Control)
ID Risk Cause Effect LH SV Mitigation NLH NSV
NAV1 Stabilization is too hard to Assumptions for drone Drone is unstable 3 3  Validate results with real 2 3
achieve dynamics don’t reproduce simulators (eg. Ecalc)
real model
NAV2 Path plannedisnotdynam- Too much thrust required Path cannot be followed 3 3 Dynamic constraints of the 2 3
ically feasible drone (maximum thrust as
a function of V) incorpo-
rated
NAV3 Path is not controllable Required maneuvers too Path cannot be followed 2 3  Minimum snap optimiza- 1 3
aggressive tion for controllability
- generated trajectory
minimizes control effort
NAV4  Path planning optimization ~Numerical issues encoun- No path planned 2 4  Optimization method was 1 4
routine does not converge  tered in optimization rou- validated to be numerically
tine (near-singular matri- stable for 15 path segments
ces, etc.) and small trajectory times
Electronic subsystem
ID Risk Cause Effect LH SV Mitigation NLH NSV
EL1 ESC failure Overheating due to over- Motor shuts off, not 3 5 Rated current of the ESC 2 5
powering enough power followed is chosen based on critical
by crash magnitude of current
EL2  Flight time is less than 10 Battery discharges quicker Significant delays on the 2 3  Large contingency for bat- 1 3
minutes than expected orisnotfully race or not finishing the tery selection and monitor
charged track battery charge
EL3  IMU failure Sensor damage or Timing Impossibility to orient 2 4  Use IMU protective casing 1 4
or calibration error drone
EL4  Ultrasound sensor failure Damaged sensor Impossibility to retrieve 2 2 Protect sensor and ensure 1 2
Drone Altitude sensor quality

L1T



EL5  Failure of the camera Impact due to collision Camera should be replaced 3 3  Encase camera in protec- 1 3
tive structure
EL6  Camera failure Connection/Component Failure to recognize gate 2 4  Protect camera and use 1 2
failure second visual sensor
EL7  Battery catches fire Overheating of the system Safety of the drone and 2 4  Voltage and temperature 1 4
or short circuit spectators is compromised monitoring
EL8  Computer overheats Excessive computer use Failure to control the drone 2 3 Use temperature sensors to 1 3
without sufficient cooling and possible impact enter safe mode
EL9 Receiver and transmitter Defective connection or Impossible to monitor 2 2 Test connections and po- 1 2
failure signal interference drone status sition Tx/Rx in zones with
sufficient coverage and en-
ter in safe landing mode at
error
EL10 Camera signal is not re- Connection failure or in- Noview ofgateandthusno 2 4 Use a tried-and-tested 1 4
ceived correct format path camera and use second
one
Power and Propulsion subsystem
ID Risk Cause Effect LH SV Mitigation NLH NSV
PP1  One motor fails Motor burns out Drone loses stability and 3 4 Limit period of time at 2 4
suffers major damage which motor max power
is used and testing before
competition
PP2  Propeller debris hits a per- Impact due to collision Safety of spectator is com- 2 4  Add propeller guard and 1 3
son promised sent kill command to re-
duce motor rpm
PP3  Propeller guard interfere Guardis bent or detached Propeller damage 3 2 Easily detachable propeller 1 2
with blade motion guards
PP4  Enterinvortex-ring statein High propeller pitch Stall of the blade 2 3  Test severity lift loss and 1 3
vertical flight use three blade prop if
severity is extreme
System integration
ID Risk Cause Effect LH SV Mitigation NLH NSV
SYS1  On board computer is not Clock speed is too low and Throughput time is too 3 3 Implement two computers 1 3

able to process all the data
for the three main pro-
grams

processor overflows

long, drone is not able to
detect a gate effectively.
Plan the path and control
at the same time

one for gate detection and
one for path planning and
control
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SYS2  Excessive IMU noise Vibrations of the structure ~ Imprecise measurements. 4 3 Mechanically filter noise by 2 3
using a damper between
the IMU and the chassis
SYS3  Excessive IMU drift Integration error due to Drone pose estimates are 4 4  Choose accurate IMU and 2 4
lack of gate detection for incorrect implement UKF to increase
absolute pose propagation accuracy of
pose
SYS4 Motor performs subopti- Data provided by the man- Maximum speed is not 1 3 Use redundancy when 1 2
mally ufacturer is not accurate reached choosing a motor to meet
performance requirement
Operations and Logistics
ID Risk Cause Effect LH SV Mitigation NLH NSV
OLl Damage during transport Insufficient transport pro- Drone damaged may not 2 4  Include measures of safe 1 4
tection participate in the race transportation the design
phase of the drone
OL2 Drone gets stolen during Thief takes the drone Impossible to participatein 2 4  Ensure safe transportation, 1 4
transport the race with the drone secured
against theft
OL3 Drone batteries are not Bad maintenance during Batteries discharged too 3 3 Install a low voltage moni- 1 3
swapped in time race much and quality degrades tor/alarm in the drone
OL4 Drone replacement parts More partsofthesametype Expensive to repair the 3 3  Taking into account cheap 1 3
are not enough break multiple times in the drone and stop racing replacement parts during
race design phase
OL5 Drone is damaged during Collision while experi- Drone isdamaged 3 4  Add crumple zones in the 2 3
testing menting novel software drone and test in low dam-
techniques age environment (foam
covered ground)
OL6 The test environment Drone design and train- Software is not optimal 3 2 Use CAD of the IROS circuit 2 2
does not simulate the race ing is done with different during competition to reproduce race environ-
closely gates and different configu- ment
rations
OL7 Drone crashes into a per- Bad safety measures in Personisinjured and drone 3 4  Enter safe mode in case of 1 3
son drone design is damaged emergency
OL8  Propeller debris hits a per- Improper safety measures Person is injured 2 4 Implement safety mea- 1 3

son close-by

integrated in the design

sures in the drone (pro-
peller guards) and to the
environment in which the
drone is racing (nets)
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Sustainable Development Strategy

In this chapter the strategy to sustainable development is defined. A sustainability objective statement is introduced
to make the group’s intention on this matter explicit: Win the IROS 2018 competition by designing an autonomous
race drone with 9FTE, who strive to adhere with the ideals of sustainability. In Section 19.1 the approach to sustain-
able development is analyzed. Section 19.2 describes how to assess the sustainability of a design using the Life cycle
Design Strategies (LiDS) wheel and how it was applied to the final design.

19.1. Approach to Sustainable Development

An analysis of what sustainability development entails is proposed. In this way the strategy taken to assess the sus-
tainability of a product can be understood better. In this section different aspects of sustainability will be discussed
further.

¢ Holistic Approach: Holistic approach means balanc-
ing social, environmental, and economic aspects into
the project. It is clearly summarized in Figure 19.1. An
active participation of stakeholders is fundamental to
balance the different parts.

Social

\\ Bearable Equitable

Environment Viable Economic

¢ Institutional Scale: Many institutions provide guide-
lines such as ISO 26000, ISO 14001 and the "Sustain-
ability Reporting Guidelines" for organizations. In this
way they can assess their level of sustainability. For
this project the Eco-Management and Audit Scheme
(EMAS) is used, because it focuses more on the envi-
ronmental aspects, which are considered more criti-

Figure 19.1: The

. . . interrelations of social,
cal. These guidelines were released in August 2017 by environmental, and

the European Union and are based on the ISO 14001. economic aspects[49].

¢ Long-Term Orientation: It means that the decisions that are made need to take into account the needs of
future generations. The evolution of the product over time needs to be considered. This translates to a higher
complexity in the design process because of the increased number of uncertainties [17].

¢ Risk Reduction: A precautionary principle needs to be examined because of the complexity, uncertainties,
irreversibility and non-linearity of the project [17]. Concerning the impact of the project on the environment
and society, prevention is more efficient than correction. For instance, the use of natural resources needs to be
sustainable, in the sense that it should not exceed the rate at which they are renewed. Another example is that
the waste production should not exceed the absorptive capacity of the environment [49].

¢ Ethical Values: Sustainable development also translates to ethical values to which stakeholders and engineers
should adhere. These key values are equity, respect for the people’s life that are changed by the use of the
product, and environmental sustainability.

¢ Participation: In order to advance in sustainable development, all members of the project, from stakeholders
to engineers, should be involved. They need to define the problems, design possible solutions, collaborate to
implement them, and monitor and evaluate the outcome [17].

19.2. Sustainable Design

Sustainability is an aspect of the design that should be considered from the beginning of the process. In fact, it is
proven that considering this aspect only at a later stage causes a steep increase in cost. One of the reasons might
be the need to comply with a certain unforeseen regulation, which causes the design to change considerably!. This

1http://www. solidworks.com/sustainability/ [Visited at May 5 2018]
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section will be used during the design process as a guideline to assess the sustainability. For this purpose a LiDS
wheel is used. This tool was developed as a part of the United Nations Environment Programme by Hans Brezet
and Carolien van Hemel Brezet®>. Considerations on sustainability regard the full lifetime of the drone , which is
divided into: selection of materials, manufacturing, optimization of lifetime, operational phase, and end-of-life.
Each element is given a level of sustainability from 0 to 4. The meaning of each level is described in this section and
the sustainability of all top-level concepts is analyzed.

Selection of Materials

Material selection has a high relevance in the sustainability strategy.

Level 0: Materials used are hazardous, exhaustible or non recyclable.

Level 1: Materials used are non-hazardous, exhaustible and non recyclable, which means that the materials are safe
to work with and their use does not harm the environment.

Level 2: The drone is made of non-hazardous, exhaustible and recyclable materials.

Level 3: The drone is made of non-hazardous, mainly non-exhaustible and recyclable materials. In this case the
material is renewable, which means that it will be available for future generations. The production of the material
does not require an elevated amount of energy.

Level 4: The drone is made of recycled, non-hazardous and non-exhaustible materials. The production of the mate-
rial does not require an elevated amount of energy.

Given that one of the stakeholder requirements focuses on the recyclability of the drone, it means that the design
should aim to be at least of Level 2.

Manufacturing

The way in which the drone is manufactured is a fundamental aspect that needs to be taken into account in the
life-cycle of the drone.

Level 0: The manufacturing technique used is highly harmful to the environment. It uses a high amount of energy
and hazardous consumables. In addition, it produces an elevated quantity of waste.

Level 1: The manufacturing technique used is harmful to the environment. It uses a high amount of energy and few
hazardous consumables. In addition, it produces an elevated quantity of waste.

Level 2: The manufacturing technique used does little harm to the environment. It uses a moderate amount of
energy and no hazardous consumables. In addition, it generates a limited amount of waste.

Level 3: The manufacturing technique used is not fully optimized, and it still uses many production steps. It uses a
minimal amount of energy, possibly coming from a renewable power source, and it uses no hazardous consumables.
In addition, it generates a limited amount of waste.

Level 4: The manufacturing technique used is optimized to minimize the production steps. It uses a minimal
amount of energy coming from a renewable power source, and it uses no hazardous consumables. In addition, it
generates a limited amount of waste, which can be recycled and reused.

There are no specific requirements imposed by the stakeholder for this lifecycle phase. For this reason the acceptable
level is set to Level 2. In this case the manufacturing technique is not optimal, but it does not lead to excessive harm
for the environment and it is safe for the workers.

Optimization of lifetime

The optimization of lifetime refers to the fact that the lifespan of the object should be maximized. Therefore re-
pairability, durability and reliability should be maximized.

Level 0: The drone is not able to perform the task for which it is designed.

Level 1: The drone is able to perform its task, with high success rate. Reliability of the race drone plays a crucial role,
as it should not fail during the race. In addition, the lower the need for repairs, the lower the use of materials and
consumption of resources.

Level 2: The drone is able to perform its task, with high success rate, and it is repairable. Repairability leads to lower
operational costs. In fact, if the drone was not repairable, it would mean that if it breaks, another one needs to be
built with obvious consequences on the sustainability.

Level 3: The drone is able to perform its task, with high success rate. In addition, it is repairable, built with a modular
design and built with standard components. The main consequence of modular design is an increased ease in the
repairability of the drone. This characteristic is very useful for a race drone because in case of a malfunctioning part,
it can be quickly replaced. In addition a modular design also leads to the possibility of upgrading the drone. It is

2https://www.matbase.com/design-for—-sustainability-quidelines/ [Visited at May 5 2018]
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also easier to transport the drone because it is possible to divide it in smaller pieces. This has a high impact on the
logistics costs.

Level 4: The drone is able to perform its task, with high success rate, and it has a long operational lifetime, which
means that money can be saved. In fact, it will take longer before a new drone needs to be built. In addition, it is
repairable, built with a modular design and built with standard components.

The stakeholder clearly states "The motors, frame, electronics and cameras shall be replaceable.", which means that
a modular structure is required. For this reason the design should be at least of Level 3.

Operational phase

One of the main goals of sustainability is to reduce the amount of emissions and pollution during the operational
phase.

Level 0: The drone requires a high amount of energy and a high number of consumables in order to be used.

Level 1: The drone requires a low amount of energy and a moderate quantity of consumables.

Level 2: The drone requires a low amount of energy and few consumables. Lowering the energy consumption is
beneficial because a large portion of the worldwide supply of electrical energy originates from power plants that
create unwanted emission gases.

Level 3: The drone requires a low amount of energy and few or no consumables. Usage of the drone does not
disturb people in its proximity. In this case the noise is considered the most relevant aspect because it could have
a harmful impact on living beings, as it might damage psychological and physiological health. Each country has
slightly different noise regulations, however, all of them state that during a full-working-day a person should not be
exposed to noise levels exceeding 80-85 dB. Therefore, the noise level should be below 80 dB. The propulsion system
will be the main source of noise, and it needs to be studied in detail to minimize it.

Level 4: The drone is powered by clean energy and it uses green consumables. The cleaner the energy source is, the
less impact drone has on the environment. The noise produced by the drone during usage is below 80 dB.

There are no specific stakeholder requirements for the operational phase. For this reason the minimum requirement
for this life cycle phase is Level 2.

End-of-life

The behaviour of the product at the end-of-life needs to be considered as well. The term end-of-life refers to the
moment at which it can not fulfill its requirements anymore.

Level 0: At the end of its life the product becomes waste, which cannot be reused, recycled or refurbished. Further-
more, incineration of this waste will create high harmful emissions.

Level 1: The drone has a second life after winning the race, it can be reused, or refurbished, for other purposes, which
require lower performance. Incineration might create some harmful emissions.

Level 2: Incineration of the drone will create low emissions, or even no emission.

Level 3: The drone has a second life after winning the race, it can be reused, or refurbished, for other purposes,
which require lower performance. The drone is partially recyclable, and incineration of the other parts might create
low emissions, or even no emissions.

Level 4: The drone is fully recyclable.

One of the the stakeholder requirements focuses on the recyclability of the drone, it means that the End-of-life should
be at least of Level 4.

19.3. Sustainability of the Final Design

The sustainability of the final design is assessed via the LiDS wheel. It is carefully checked that the design complies
with the minimum requirements described above.

Selection of Materials

All materials in chapter 5 have been carefully selected in order to meet the sustainability requirements. Carbon-
fiber is selected as the main material for the frame design since there are two frames they would be connected by
the aluminum rods, ABS plastic for the propeller guards and foam for protecting frame from the impact. Besides
material for the drone frame, there are electrical components, such as ESCs, microcontrollers, motors, batteries, and
Sensors.

All materials for the structure are non-hazardous, non-exhaustible and they are recyclable. Nowadays, recyclability
of the carbon fiber is in further development, but multiple solutions are already available®. Due to the fact that the

Sht tps://www.compositesworld.com/columns/recycled-carbon-fiber-its—time-has-come- [Visited at May 20 2018]
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ABS is thermoplastic, it is 100% recyclable* and later might be used to re-create propeller guards or any other 3D
printed part.

Recycling any electronic part is a more complicated process, as they usually contain heavy metals such as gold, silver,
platinum and base metal like aluminum, copper and iron which needs to be extracted first. Commonly shredding or
dismantling methods are used to get valuable components or pieces of metals, however, the efficiency is rather low.
Therefore it is advised to reuse electronics components for further projects. It has been shown that it is possible to
recycle batteries. Although this process is still quite expensive, but there are many researcher working on it.
Selected: Level 3.

Manufacturing

The analysis of the sustainability of the manufacturing phase follows from the strategy developed in chapter 15. Only
the structure of the drone needs to be manufactured. Working with carbon fibers is critical because carbon fibres
easily break if stretched, which release small fibres particles into the surrounding atmosphere®. Extra caution must
be taken, such as personal protective equipment to protect from the inhaling of fibers, and the contact with the skin
or eyes. Additionally, machining of carbon fibre must be conducted in special facilities.

For 3D printing, it is only required to have access to a 3D printer, for instance the ones in the D:DREAM Hall or
in some of the faculties. The assembling of the drone can be done at any place. Mounting and testing electronic
components and batteries is deemed to be not dangerous, as they all operate at low current. A more detailed analysis
follow in Table 19.1.

Selected: Level 3.

Optimization of Lifetime

At the current stage, it is assumed that the failure rate of the final design is low, because the ToF camera should
provide a feedback to the drone about nearby obstacles, thus the drone has a high chance of avoiding direct impacts.
However, this drone operates at high speeds, which can lead to many crashes, especially during the testing phase.
Although the drone should be able to withstand hard impacts, as specified by the customer requirement, some small
parts, such as legs, propellers, and motors are expected to be damaged more than any other components. All these
parts are cheap, accessible and easily replaceable.

Selected: Level 3.

Operational Phase

The final design consumes little power. In fact, the main idea behind the drone is to minimize its size, which leads to
a low mass and low power consumption. LiPo batteries are used as power source. Batteries have a certain life cycle
after which they need to be replaced with a new one. Although batteries are not a green source of energy, they could
be recharged up to 100 times, thus it is not expected to replace them often. Moreover, broken or degraded batteries
will be collected and recycled.

Furthermore, the final propeller size is similar to that of commercially available drones. The measured noise level
that is produced by different drones of the same category is 70 dB®, which is below the requirement of 80 dB.

From the perspective of social sustainability, the drone does not break any laws and regulations *, as it would only fly
in specified areas, like an IROS 2018 race track, TU Delft Cyber Zoo and never outdoors. The drone would not violate
any privacy law, since none of the photos that are made during the operations are shared with the public.

Selected: Level 3.

End-of-Life

At the end of the project, all the software would be publicly available and might be used by other developers of the
drones, which is very important from a social sustainability prospective.

Structural components could be reused or recycled. All electronics parts, such as sensors, ESCs and microcontrollers
might be used for other drones or any project which requires them, or recycled. These electrical components are
generic and not limited to aerospace-related applications.

Selected: Level 4.

Conclusion

Based on this analysis, the following LiDS wheel can be constructed. Figure 19.2 clearly shows that the final design
meets well the requirements, and the design can be considered sustainable. However, this analysis should be redone
every month.

4https://web.archive.org/web/20140306033349/http://www.heathland.nl/abs-recycling.html [Visited at June 19
2018]
shttps://www.monash. edu/ohs/info-docs/safety—-topics/chemical-management/carbon-fibre-composites—ohs—information:
[Visited at May 24 2018]
Shttps://www.bu.edu/ufmal/files/2016/07/aiaa-2016-2873.pdf [Visited at 10 June 2018]
"https://www.tomstechtime.com/netherlands [Visited at June 19 2018]
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Figure 19.2: Wheel diagram of the final design

19.3.1. Advanced Sustainable Design

After the LiDS wheel analysis, a software is used to estimate how much natural resource the drone consumes in his
whole lifecycle. SolidWorks released a plug-in for its famous CAD software that enables designers to estimate the
sustainability, "SolidWorks Sustainability" 8, based on the data collected from GaBi °.

The results of the analysis are shown in Table 19.1, to give a feeling of what these values mean it is possible to explore
10, For instance, the carbon footprint equals the one of a car driving for 75 km, and the overall energy used equals
the amount used for watching TV for 5 hours.

Table 19.1: This table shows the result of the sustainability analysis using Solidworks Sustainability.

Carbon Footprint  Energy Consumption Air Acidification Water Eutrophication
(kg CO2) (0%9) (mol H* equivalent) (kg Nitrogen equivalent)
Material 16.4055 239.526 6.3135 0.00372749
Manufacturing 0.216275 3.14191 0.0684549 2.2367e-005
End Of Life 1.68854 1.25654 0.0668368 0.000429328
Transportation 0.165795 2.43577 0.0682267 6.43294e-005
Total 18.4761 246.36 6.51702 0.00424352

8http://www. solidworks.com/sustainability/ [Visited at5 may 2018]

9http://www. gabi-software.com/ [Visited at 5 may 2018]

1Ohttps ://www.solidworks.com/sustainability/products/calculator/index.htm??LANG=en&BSLca=0.000&
BSLai=0.000&BSLwa=0.000&BSLen=0.000&CURca=18.476&CURai=18.476&CURwa=18.476&CURen=18.476&BSLname=
&§CURname=Final&CML=yes&Month=Jun&Day=22&Year=2018&Time=14%3A00&VID=PR [Visited at 20 June 2018]
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20
Post-DSE to IROS

If this was a real project, the next step would be to produce the drone and to test it. The purpose of this chapter
is to plan for the next steps that needs to be taken. First, a way to create an integrated simulation is proposed
in section 20.1. In Section 20.2, a work flow diagram is created. More in depth information are provided in the
Gantt Chart in Section 20.3. Finally, a cost breakdown of all costs up until the IROS 2018 competition is provided in
Section 20.4.

20.1. Integrated Simulation

In the chapters below, only parts of the system were integrated and simulated together to demonstrate the function-
ality of the design. In order to achieve full integration, ROS (Robot Operating System) might be used as a tool, which
combines software packages with the hardware implementation. The drone would be put to a virtual environment,
where performance and reliability of the drone could be studied on multiple sample tests cases or full track.

Throttle: 0.2
Path Motor

planner controller

e
—

Gate
Detection

N X
o 4

Figure 20.1: Example of ROS Node map

ROS is the robotics software platform that works as publisher subscribed network. It means that a hardware abstrac-
tion and software solutions are linked to each other. Sensors, devices or motors could be completely described in
packages. Another benefit of the package, that the sensors that are not available to developer might be still used in
simulation as far as they are correctly described. For instance, it allows using ToF camera, even though if it is un-
available. Moreover, Nodes are used to control the robot, like motor controller, path planned, gate detection. The
communication between nodes is achieved through topics (command or state), an example of node map is shown
in Figure 20.1. The environment could be built in Gazebo. A Gazebo is a real-world physics simulator tool, which
defines the map, obstacles and realistic interaction between drone and space. The race track could be loaded to
Gazebo, thus the entire model could be validated, and actual lap time could be estimated as well. The end result
would have all information about the drone such as state variables, camera view, discovered gates and updated
planned path.

Due to ROS modularity, subsystems might be optimized and validated. It is recommended to build ROS simulation
model before actual drone, in order to prove design integrity. Afterwards, ROS could be used as a visualization and
drone control tool, so that during testing and developing it would be easy for the user to see the processes and deci-
sions done by the drone.

20.2. Work Flow Diagram

In order to start planning, a work flow diagram was made. This can be seen in Figure 20.2 and Figure 20.3. This
shows the tasks that have to be performed in a sequential order. An additional benefit of a work flow diagram is that
it clearly shows which tasks depend on each other. The letters that were used to label the entries allow for a more
intuitive way of labeling each of the tasks. They also allow for easy restructuring. This is the first part of the Project
Design and Development Logic diagram. The continuation of this part is included in Section 21.1.
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20.2. Work Flow Diagram
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Figure 20.2: Work Flow Diagram part 1
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Figure 20.3: Work Flow Diagram part 2
20.3. Gantt Chart

The work flow diagram that is shown in Figure 20.2 and Figure 20.3 was then processed into a Gantt chart by adding
estimates of the time needed to do each of the tasks. This, together with the sequential representation of the tasks in
the work flow diagram, allows the Gantt chart to be used for the planning of the project. The Gantt chart for the time
between the end of the DSE and the IROS 2018 competition is shown in Figure 20.4. A part of software validation is
Simulating the drone in software, this could be done using ROS, which has been explained in Section 20.1.

The software verification that will be done before the testing phase consists of using computer generated data and
images. All validation will be done as can be seen in Figure 20.4.
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20.4. Cost Breakdown Structure

Between the end of the DSE and the IROS 2018 competition, many costs will be incurred. These can be split up into
2 main categories: Organizational and Production costs, described in Section 20.4.1 and Section 20.4.2 respectively.
The complete breakdown can be found in Figure 20.5.

Total Cost

! !

Organizational Manufacturing
Cost Cost
Team Salaries <——» Travel Cost Material Cost €—5—» Techm_clan
Salaries
Office Rental " ]TestingFaciIity Component " ) Transportation
Cost Cost Cost Cost
Participation Testing

e Equipment Cost Equipment Cost «——» Storage Cost

Figure 20.5: Cost Breakdown Structure from the end of the DSE to the IROS 2018 competition

20.4.1. Organizational Cost

This part deals with all of the costs that are associated with the design team. The design team is the team that will
be doing all of the validation and improvement of the drone. They will also be the operating crew who will go to and
participate in the IROS competition. All of these things add to the total cost of the project. They are further explained
below.

Team Salaries

After the DSE it is assumed that the team does not consist out of students. Since any employee needs a salary to live,
these will have to be payed for by the project.

Office Rental Cost

The team will also need a place to work, which has to be paid for as well. Although it is possible that the TU will
provide this, it is not certain at this point in time.

Participation Fees

No information on a participation fee was found. There should, however, be some budget left over for unforeseen
circumstances, which include a participation fee.

Travel Cost

The team has to travel to Madrid to participate, which will cost money.

Testing Facility Cost

Both the model and for instance the controller can be improved by updating the physical constants of the drone
to be closer to their actual value. In order to calculate these improved values, the drone has to be tested in certain
facilities. It is possible that the TU will provide these, but it is by no means ensured.

Testing Equipment Cost

Any consumable that is being us during the tests has to be bought by the team. This includes things like fillings for
smoke generators in wind tunnels, etc.

20.4.2. Manufacturing Cost

The manufacturing cost was divided up into 6 categories: material cost, technician salaries, component cost, trans-
portation cost, equipment cost, and storage cost. The production methods are worked out in more detail in Chap-
ter 15.
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Long Term Vision

In this section, the long term vision for the project is explained. The short vision until the IROS 2018 competition is
explained in Chapter 20, so this chapter deals with the vision after this race. Firstly, a the continued project design
and development logic is shown in Section 21.1. Secondly, a more detailed inspection of the markets that were
identified in Chapter 2 is done. Finally, in Section 21.3, the Return on Investment (Rol) is investigated for one of the
markets in Section 21.2.

21.1. Project Design and Development Logic

The first part of the Project Design and Development Logic diagram is Figure 20.2 and Figure 20.3. These show the
development until the IROS 2018 competition. The continuation of this, which talks about the development after
the race, can be seen in Figure 21.1.
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Figure 21.1: Continuation of Project Design and Development Logic Diagram
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21.2. Future Market

Competitions like the IROS and IMAYV are a great way for a drone company to show off its product. These will obvi-
ously be used for exactly this reason, even if the drone that is shown has to be tweaked slightly to ensure maximum
performance in the controlled environment of a race. The market that the team will strive to get into is the bird con-
trol market. This was deemed the most profitable for an adaptation of RAIDER because it values the performance
specifications as races do. In order to effectively follow and scare off birds, a drone has to be fast and agile. Adding
the ability to autonomously follow and guide birds away from e.g. airports would allow one operator to manage a
swarm of drones, making airports a lot safer. As explained in Section 2.1.3, a cost to benefit ratio of over 70 can be
achieved, clearly showing the profitability.

A few changes can to be made to RAIDER to improve its performance in the bird control market: Firstly, the ToF
camera will not be of much use. With its limited range of only 4 meters, it will not help finding or chasing birds.
Since places like airports and farm fields are normally very open, there will be little risk of running into trees or
buildings, it also isn’t needed for collision avoidance. Secondly, the IMU can be replaced with a cheaper alternative
that uses GPS. Although the IROS competition is indoor, with little GPS coverage, the large open spaces in which
the drone will function should have no such problems. Using GPS to localize the drone allows for a cheaper IMU
to be used since it will get an updated location once every second, where there are no large periods of time without
updates. The ultrasound altimeter can also be removed, further decreasing the price of the drone.

An additional advantage of entering the bird control market is the fact that a bird control drone can be relatively
easily converted into a drone that counters malicious drones invading an operator’s airspace. In order to become a
stand-alone system for both bird and drone control, a ground station that monitors the airspace has to be designed.
This ground station would then send a drone to investigate the area where a bird or malicious drone was detected.
The drone can then scare them off or bring a drone down when it finds it.

21.3. Return on Investment

Since RAIDER has no marketable value as it is, it will have to be modified to break into any market. The market
chosen for this is the bird control market, which was explained in Section 21.2. On top of modifying the drone, a
base station would also have to be designed to send the drones to where they are needed. Since no calculations have
been done on this base station, it is impossible to calculate its upfront or maintenance cost.

As explained in Section 21.2, the most expensive parts of the drone can be removed when it is being redesigned to
fit into the bird control market. This would drastically reduce the price since the IMU and the ToF camera together
make up approximately 60% of the price of the drone. Although the IMU price cannot completely be eliminated, a
normal IMU and GPS combination costs less than €100, reducing the total unit price to approximately €600. This
can be reduced even further by doing away with the ultrasound altimeter, which lowers the cost by another €35. In
order to allow the drone to scare away birds, a speaker should be placed on it, which would add a little bit of cost and
weight. However, the increase to cost due to this modification are not expected to exceed €100. This results in a total
unit cost of the drone of €700. This cost reduction would present a significant increase in the Rol of this project.

Calculating the actual Rol for the new drone is a problem because the operational costs have to be considered. The
current cost of bird control on Eindhoven Airport is approximately €800 000 [43]. This allows for a maintenance cost
of over €2100 per day, which is easily achievable by a fully autonomous drone based system.

Rol is a very important aspect of any commercial product and should therefore be done as early as possible, which
is why it was represented in Figure 21.1. It is to be done concurrently with the redesign of the drone. After both the
redesign and the Rol analysis are done, more investors can be attracted.
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Conclusion

The aim of this project is to design an autonomous racing drone that will win the IROS 2018 Autonomous Drone
Race. The result of the past 10 weeks is a drone where every single component has been chosen and analyzed in
order to match a specific strategy that has been developed in order to maximize the drone’s performance. The Micro
Air Vehicle (MAV) is called RAIDER which is an acronym that suits the design and describes best its main features:
Rapid and Agile Intelligent Drone for Extreme Racing.

The structural configuration of the drone is a quadcopter which has been designed around the payload and elec-
tronics that are required for the system. The structure has been designed based on the most critical load case: an
impact with a gate at a speed of 100 km/h. The propulsion system has been sized with the objective of maximiz-
ing performance and endurance. Each of the four arms carries an XRotor Motor which gives the drone a maximum
thrust-to-weight ratio of 5.4 and a maximum power consumption of 950 W, which allows the drone to a have a nom-
inal flight time of 10 minutes. The price of one unit is €2047. This includes all replacement parts such as extra
batteries, propellers and cameras.

The most relevant sensors that have been selected are the inertial measurement unit, an RGB camera which com-
monly seen on FPV racing drones, and a ToF camera which is used to create a depth map of the environment. This
last element has been introduced in order to greatly increase the reliability of the drone when estimating the dis-
tance from an object and to avoid obstacles. The other camera which outputs normal images is used to detect gates
based on a 9 layer Convolutional-Deconvolutional Neural Network that performs background removal. On top of
the processed images a simple contrast based algorithms is executed to find the four corners of the gate. These are
then used to estimate the relative position of the drone using simple mathematical principles and perspective.

The positioning is mainly driven by the IMU which outputs sufficiently accurate measurements during 9.3 seconds
before the integration error starts to become too big. This problem has been tackled by using a sensor fusion algo-
rithm which combines the IMU measurements with the relative position estimates from the gate detection. This can
be used for absolute positioning using the a-priori knowledge of the gates location. The measurements, which are
sampled at a different frequency, 800Hz and 30Hz respectively, are fed to an Unscented Kalman Filter (UKF) which
outputs the best pose estimation. The drone is capable of high-frequency online path planning, due to a joint poly-
nomial optimization routine designed to generate minimum snap trajectories through the gates. The initial optimal
path is generated before the race according to a desired completion time for the entire track, which allows for either
safe or aggressive initial trajectories to be generated based on the amount of time left in the competition. The output
of the path planning are the required dynamic state variables. A proportional integral-derivative (PID) controller
has been designed for RAIDER since this type of controller is widely used for MAVs for its high performance. The
controller takes the output variables from the path planning together with the pose estimate from the sensor fusion
algorithm to calculate the required amount of thrust for the desired trajectory.

The software is executed on two different computer boards, the gate detection algorithm is run by the Raspberry
Pi Zero W, while the path planning, flight controller, sensor fusion algorithm and the system monitoring are placed
on the Pocket Beagle. The integrated navigation strategy is able to finish the race track in 60 seconds which is an
astonishing result considering that no one ever finish the track and that the winners of IROS 2017 were timed 3
minutes at least passing only nine out of the ten gates.

The overall design has been developed concurrently, taking a unique focus shaped by the goals, resources, and sched-
ule into account. To this extent the reliability, availability, maintainability, and safety of the design have been ana-
lyzed. The risks of every subsystem have been identified and with the purpose of mitigating them, specific strategies
have been adopted. These mitigation strategies include components such as an IMU damper, propeller guards and
shock absorbs. Moreover, the sustainability of the design has been considered from environmental to social aspects.
For instance, the carbon footprint is equivalent to the one of a car driving for 75 km. Finally, the team has con-
ceived a plan for future steps to be taken in order to achieve more ambitious objectives after winning the IROS 2018
competition, to drive the technology that will allow drones to autonomously complete a wide variety of tasks.
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Message Formats

Example messages for inter computer board communication'.

Listing A.1: Exact Listing A.2: Kill Listing A.3:
Pose Message Message Ob-
ta-
BEGIN HEADER BEGIN HEADER e
time 99:99:99.999 time 99:99:99.999 Avoid-
date 99999999 date 99999999 ance
ua_id Zz-999_77 ua_id 7ZZ-999_77 Mes-
sage
msg num 999 msg num 999
msg_version 9.99 msg_version 9.99 BEGIN HEADER
END HEADER END HEADER time 99:99:99.999
date 99999999
BEGIN POSE BEGIN MESSAGE ua_id ZZ-999_77Z
cl_x 9.999 kill 9 msg num 999
cl_y 9.999 END MESSAGE msg_version 9.99
cl_z 9.999 END HEADER
c2_x 9.999
c2_y 9.999 BEGIN OBSTACLE
c2_z 9.999 obs 9
c3_x 9.999 obs_x 9.999
c3_y 9.999 obs_y 9.999
3 7 9.999 obs_z 9.999
c4_x 9.999 width 9.99
c4_y 9.999 height 9.99
cd_z 9.999 END OBSTACLE
END POSE

Lhe tp://www.barnardmicrosystems.com/media/presentations/IET_UAV_C2_Barnard DEC_2007.pdf [Visited at 11 June
2018]
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BEGIN HEADER
time 99:99:99.999
date 99999999
ua_id ZZ-999_77Z
msg num 999
msg_version 9.99
END HEADER

BEGIN POSE
X_pos 99.999
y_pos 99.999
z_pos 99.999
pitch 999,99
roll 999,99
yaw 999,99
x_vel 99.999
y_vel 99.999
z_vel 99.999

END POSE

BEGIN MOIOR
id 1
set_speed 99999
actual_speed 99999
END MOTOR

BEGIN MOIOR

id 2

set_speed 99999
actual_speed 99999
END MOIOR

BEGIN MOIOR
id 3
set_speed 99999
actual_speed 99999
END MOIOR

BEGIN MOIOR
id 4
set_speed 99999
actual_speed 99999
END MOIOR

BEGIN BATTERY
voltage 99.999
charge 99.9
power_use 999.9
temp 999.9

END BATTERY

BEGIN STATUS
mode 9
connection 99.9
sw_error 999
beagle_temp 999.9
pi_temp 999.9
pdb_temp 999.9
gate_num 9

END STATUS

Listing A.4: Telemetry Message



Result of Availability Anaysis

%08'F9 EN
#5°90°0 LETEBL 3 3dueusjulely |elol
S€.00-0 €5 ¥9 3 uny Jed sBessay awL 33d
N 000zT L = 8uo.( jo aduUd |ejoL
$5.90-0 LE¥LLS :sjuswade|day Joj 3oL
00:00-0 0002 0 00100 00°05¥ 3 Nl %L L Bupjeaug NIl
00:00-0 0003 0 00°1L0:0 00'0L 3 80d %Lt Bunfe=ig 904
00:00-0 0002 0 00100 006z 0197 Id Ausqdsey %L ‘L Bunjeaig 0127 1 Auasqdsey
00:00:0 00032 0 00°1L0°0 o0'szz ajfieag 193004 %Lk Bupjeaig s|6eag 1304
0€:00-:0 0051 = I 0€:00:0 005k 3 Joop %S 'Z 2Injie4 Jojopy
01000 SL03 L 01000 5L03 M313G JO-puBlS %5 T Bupieaig maiag Jo-puers
§1-00-0 000E 3 L §1:00:0 o0ooe 3 (1210 J0) Kianeg %5 ¢ Bunealg uonoauUD) Jamog
0£:00:0 006€ = L 02:00:0 00'GE 2 Ipelny %5 ‘T Bunieaig Jalawniy
0€:00-0 00002 3 L 0000 00°00€ 3 eiawe) ydag %S 2 Bupeaig eiawe) ydaq
01000 €93z 4 G0:00:0 0L'e3 LIy + S)0g + SINN %0¢ '€ Bunjesig uonoauuog |enpPngs
01000 00092 4 S0°00°0 000e Aizpeg %0Z '€ ainjied Aayeg
0€:00-:0 00 €5k 3 4 0L-00:0 059, 3 EJSWED 59Y %0E '€ Bunteaig elaweD §oy
SZ:00°0 0063 S S0°00°0 00°sL 3 053 %0F '€ Buryeaig 053
05:00-0 00062 S 0L:000 00’8l 3 0S3 + 1010 + Wiy %0F '€ Bunjeaig uuy
0Z:00-0 0012 ol 20:0010 [IAES 12qiosqy »20Us %08 ‘¥ Bupiealg J2qiosay ¥o0Us
0FL00 00532 0z S0°00°0 5203 Iajjadoid %08 ‘¥ Bunyeaig Jajjadolg
0€:00-:0 000z ol €0:00:0 0003 E'N %08 ¥  2dNjiE4 LUORI2ULCD DILOHIZT
¥¥00:0 9BE> zz 20°00°0 8103 pieng Jajjadoid %56 'S Bureaig pieng sajjadoid
auil] juswade|day [e10L 99l [EI0L SIusSwede|dey Jo Jequiny Med Jed swi juswade|dey led Jed aoLg sued papsan  Aljiqeqo.d 3SIy
ZL [-] suny Jo Jequiny
00:1L0:0 [s] uny Jad awi
[AZARY SwiL ybIS 1oL

9e6L0

3w [ejoL

f the Availability and Maintainability Script

inal Iteration o

F

Figure B.1

138



	Nomenclature
	Acronyms
	Introduction
	1ptI The Mission
	Market Analysis
	External Markets
	Race Drone Market
	Market Entry and Growth Strategy

	Mission Analysis
	Project Mission and Objective
	IROS 2018 Regulations
	Stakeholder Requirements
	Functional Flow Block Diagram
	Functional Breakdown Structure

	Preliminary Design
	Design Philosophy
	Subsystem Interface Definition
	Hardware Preliminary Design


	1ptII Detailed Design
	Structural design
	Arms Design
	Crumple Zones
	IMU Damper
	Propeller Guards

	Propulsion and Power
	Overview of Approach
	Rotor Aerodynamics
	Sizing Method
	Components Breakdown and Remarks

	Electronics and Sensor Fusion
	Electronics
	Sensor Fusion
	Sensor Fusion Conclusion
	Verification and Validation

	Gate Detection
	Approach Overview
	Image Pre-processing
	Gate Detection Algorithms
	Results: Benchmark
	Gate Dewarping
	Software Verification & Validation
	Time of Flight Camera: Algorithm Implementation
	Strategy Overview and Conclusion
	Future Development

	Path Planning & Optimization
	Background & Present Work
	Method
	Application
	Prototype Testing and Verification
	Integrated Race Strategy and Validation
	Runtime estimation
	Future Development

	Stability and control
	Control Solutions
	Controller Design

	Data handling and Integration
	Data Handling
	Hardware Connections
	Hardware Capabilities
	Flight Modes
	Model Verification and Validation


	1ptIII Further Development
	Final Design Overview
	Final resources
	Assembly overview

	Sensitivity Analysis
	Compliance and Feasibility
	Technical Requirement Compliance
	Stakeholder Requirements
	Incomplete Requirement Explanations

	Production Plan
	Frame
	Electronics

	Operation and Logistics
	Transport
	Perform during Competition
	Maintenance and Repairs

	Reliability, Availability, Maintainability, and Safety Analysis
	Reliability
	Availability
	Maintainability
	Safety

	Risk Assessment and Mitigation
	Sustainable Development Strategy
	Approach to Sustainable Development
	Sustainable Design
	Sustainability of the Final Design

	Post-DSE to IROS
	Integrated Simulation
	Work Flow Diagram
	Gantt Chart
	Cost Breakdown Structure

	Long Term Vision
	Project Design and Development Logic
	Future Market
	Return on Investment


	Conclusion
	Reference List
	Message Formats
	Result of Availability Anaysis

