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1
INTRODUCTION

1.1 POLYMER FLOODING

While the exploration and development of new oil reserves continues, the

implementation of enhanced oil recovery (EOR) techniques has become more and

more popular. The implementation of the EOR provides an opportunity to extract

more of the original oil reserves that could not be extracted through conventional

methods. Typical EOR mechanisms include chemical flooding, gas injection and

thermal recovery. The displacement methods include the addition of the displacing

substance into the reservoir through the injection well to displace the remaining oil.

Chemical flooding includes the addition of water with some chemicals (polymers) to

enhance the oil displacement ability. Polymer flooding has been used in the last

decades to effectively recover the remaining oil from the reservoir, up to 30% of the

original oil in place (Green and Willhite, 2018). Due to decreased water production

and enhanced oil production, the total cost of using the polymer flooding technique is

less than that of water flooding (Wang et al., 2003). During a polymer waterflood, a

high-molecular-weight and viscosity-enhancing polymer is added to the water of the

waterflood to decrease the mobility of the flood water and, as a consequence,

improve the sweep efficiency of the waterflood. The primary purpose of adding

polymer to most polymer waterfloods is to increase the viscosity of the flood water;

however, polymer addition to the water in many instances also imparts a secondary

permeability-reduction component. Polymer waterflooding is normally applied when

1



2 1. INTRODUCTION

the waterflood mobility ratio is high or the heterogeneity of the reservoir is great. Fig.

1.1 is a schematic of the polymer waterflooding process (Lake et al., 2014).
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1.2 UNCERTAINTY IN RESERVOIR MODELING

Uncertainty is present in many aspects of scientific work and engineering as well as everyday

life. Each field of study uses different terminologies and ways to describe, quantify and

assess uncertainty. Uncertainty in reservoir modeling is in large part due to incomplete and

imprecise knowledge of the underground, as a result of limited sampling of the subsurface

heterogeneities (Ma, 2019). Well data and seismic data have incomplete coverage and finite

resolution and thus the interpretations are uncertain. Geo-modeling is the process of

populating a reservoir model with properties such as permeabilities, porosities etc., which is

a highly uncertain procedure. The uncertainty arises from a lack of knowledge about the

reservoir and more importantly from interpretations of uncertain data sources such as

seismic, well logs, core data, etc. Interpretation of any data source is always subject to

uncertainty. Building a model of uncertainty that includes all possible aspects of what is

uncertain is too difficult and often not needed in the first place (Scheidt et al., 2018).

Reservoirs are heterogeneous and difficult to predict away from wells. Ignoring uncertainty

and locking-in important model parameters and choices amounts to an assumption of

perfect knowledge and is generally an unacceptable approach. Uncertainty must be explicitly

modeled. Understanding the (1) sources of uncertainty, (2) methods to represent

uncertainty, (3) the formalisms of uncertainty, and (4) uncertainty modeling methods and

workflows are essential steps for the integration of all reservoir information sources and

providing good models for decision making in the presence of uncertainty (Pyrcz and

Deutsch, 2014). Reservoir simulation is routinely employed in the prediction of reservoir

performance under different depletion and operating scenarios. Usually, a single

history-matched model, conditioned to production data, is obtained. The model is then used

to forecast future production profiles. Because the history-match is non-unique, the forecast

production profiles are therefore uncertain (Subbey et al., 2004).

1.3 EOR PROCESS UNCERTAINTY

Any enhanced-oil-recovery (EOR) field trial can produce unexpected results arising

from a misunderstanding of either the geology of the reservoir or of the EOR process.

Separate evaluation of the impacts of geological and process uncertainties on the

performance of an EOR is important because a process that did not achieve the
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desired objectives in one formation might be successful in another field if it

demonstrates that it achieved its technical objectives.

Researchers have studied uncertainty in EOR process performance and uncertainty

in the geological description, but not the two together. Previous research has

examined uncertainty in chemical flooding, CO2-EOR and thermal-EOR

process-performance parameters (Brown and Smith, 1984; Nasr-El-Din et al., 1992;

Flaaten et al., 2009; Denney, 2011; Elraies, 2012; Stanley, 2014; Alkhatib and King,

2015; Aguiar and Mansur, 2016; Levitt and Bourrel, 2016; Adepoju et al., 2017;

Esposito et al., 2017; Lyon and Popov, 2017; Hocine et al., 2018; Khan and Khan,

2018; Phukan et al., 2019; Hazarika and Gogoi, 2019; Wang et al., 2020). Reservoir

heterogeneity also plays an important role on the success of chemical enhanced oil

recovery. Experimental data from Craig (1993) and Gharbi et al. (1997), field data

from Sorbie and Clifford (1988) and Khataniar and Peters (1992) and simulation

studies from Al-Honi et al. (2002), Akkutlu and Yorisos (2005) and Jia (2018) are

examples of studies that have demonstrated the detrimental effects of reservoir

heterogeneity on the performance of oil-displacement processes. Heterogeneity and

geological factors have different impacts on the various EOR processes, including

polymer and alkaline-surfactant-polymer, thermal and gas-injection (miscible and

immiscible) EOR. There are a lot of examples of research that study the effects of

geological heterogeneity and uncertainty on EOR performance (Ballin et al., 1992;

Damsleth and Omre, 1997; Chen et al., 2008; Odell and Lindsey, 2010; Popov et al.,

2010; Rashid et al., 2010; Soleimani et al., 2011; Fedutenko et al., 2012; Al-Mudhafar

and Rao, 2016; Nguyen et al., 2016; Chiotoroiu et al., 2017; Kumar et al., 2017;

Koneshloo et al., 2018; Pollack and Mukerji, 2019; Torrealba et al., 2019; Sacconi

and Mahgerefteh, 2020). In this dissertation we investigate the impact of both

sources of uncertainty together.

1.4 SCOPE OF THE DISSERTATION

This dissertation focuses on polymer flooding, as an example of an EOR process.

Chemical floods such as polymer floods are EOR techniques intended to increase

sweep and/or displacement efficiency. Even though the compatibility and the

efficiency of the injected chemicals are thoroughly tested and validated in the
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laboratory, uncertainty still remains regarding their actual performance in the

reservoir. These uncertainties can result from the differences in the scale of

investigation (core scale to field scale), lack of adequate understanding of geological,

mineralogical and petrophysical properties of the formation, and the long-term

performance of the chemical slug in the reservoir. Therefore, in addition to thorough

laboratory tests, practitioners should compare the uncertainty surrounding the

performance of the EOR agent in-situ to that arising from geological uncertainty,

because, as noted, a process that did succeed in one formation might succeed in

another field if achieves its technical objectives. In this dissertation, the effects of

polymer rheology, mixing with different brines in-situ, temperature, pressure,

adsorption, permeability reduction, inaccessible pore volume and non-Newtonian

behavior on chemical-flood effectiveness is represented here indirectly as a simple

loss of polymer viscosity in situ from that projected for the process. To discern the

performance of the EOR agent in-situ in the midst of geological uncertainty, we

propose a general workflow and present three case studies for this challenge. This

workflow could be extended to another EOR process by including mechanisms or

manifestations of technical failure corresponding to that process.

1.5 THESIS OUTLINE

This dissertation contains several articles which are either published or have been submitted

for publication in peer-reviewed journals. Below is an executive summary of the chapters

included in this dissertation.

1.5.1 CHAPTER 2: DISCERNING IN-SITU PERFORMANCE OF AN EOR AGENT IN THE

MIDST OF GEOLOGICAL UNCERTAINTY I: LAYER CAKE RESERVOIR MODEL

In the first case study, we propose a polymer EOR process in a 2D layer-cake

reservoir where the polymer is designed to have a viscosity of 60 cp in-situ. Then, we

allow that the polymer process might fail in-situ and viscosity could be only 20% of

that intended. This failure could be the result of mechanical degradation in surface

facilities or on entering the perforations, faulty translation from laboratory-measured

properties to properties in-situ, or faulty characterization of resident reservoir brine.

Several of these adverse events would give different polymer properties in different

regions of the reservoir. For simplicity, in this initial study, we assume that throughout
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the reservoir polymer viscosity is everywhere a fixed fraction of that intended. We test

whether the signals of this failure at the injection and production wells would be

statistically significant in the midst of the geological uncertainty in the reservoir

description. The five-layer 2D rectangular reservoir and the layer-permeability

ordering is illustrated in Fig. 1.2. We assume three spatial distributions of

permeability: specifically, from top to bottom, high-permeability to low-permeability,

low-permeability to high-permeability, and a distribution with the lowest permeability

in the middle.

Figure 1.2: A five-layer rectangular reservoir with one producer and one injector. Schematic of spatial

ordering of layer permeabilities in the three cases examined.

For a population of 9 reservoirs representing geological uncertainty, we compare the

deviation caused by loss of polymer viscosity to the scatter caused by the geological

uncertainty using the 95%-confidence-interval statistical approach. Various signals

are monitored to see which are the most reliable indications of whether a polymer

viscosity was maintained in-situ. We further investigate the statistical significance of

each signal.

In addition to the application in this cases study, this chapter describes a workflow for

such an evaluation that could be extended to any EOR process.

1.5.2 CHAPTER 3: DISCERNING IN-SITU PERFORMANCE OF AN EOR AGENT IN THE

MIDST OF GEOLOGICAL UNCERTAINTY II: FLUIVIAL-DEPOSIT RESERVOIR

For the second case study, we apply the workflow to a case with a

more-sophisticated geological model. This chapter presents a case study based on

the “modified Egg Model” (Jansen et al., 2014): a polymer EOR process designed for

a 3D fluvial-deposit water-oil reservoir. The polymer is designed to have a viscosity of
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20 cp in situ. We start with 100 realizations of this 3D reservoir to reflect the range of

possible geological structures honoring the statistics of the initial geological

uncertainties. The well locations and absolute-permeability field of one realization of

the set are depicted in Fig. 1.3.
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Figure 1.3: Permeability field and well locations in one realization of the ‘Egg Model’ (Jansen et al.,

2014; after Van Essen et al., 2009).

Next we group the realizations on the basis of a measure of similarity that reflects the

interaction between heterogeneity and the reservoir flow mechanisms (Mantilla and

Srinivasan, 2011). After five years of waterflooding, we rank the reservoir models into

different groups of 10 realizations, out of the initial 100 equi-probable realizations,

with similar water breakthrough dates at the four production wells. Each group of

realizations thus represents reservoirs with roughly similar waterflood histories. As a

group they represent the reduced geological uncertainty remaining after this period of

waterflooding. To represent EOR process failure, we allow that the polymer process

might fail in situ and viscosity could be 30% of that intended. We then simulate five

years of polymer injection. We assume that throughout the reservoir polymer

viscosity is less than the design value. We test whether the signals of this difference

at injection and production wells would be statistically significant in the midst of the
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geological uncertainty: in other words, whether the process failure would be clearly

visible in the midst of reservoir uncertainty.

1.5.3 CHAPTER 4: DISCERNING IN-SITU PERFORMANCE OF AN EOR AGENT IN THE

MIDST OF GEOLOGICAL UNCERTAINTY III: NORNE FIELD

For the third case study, we apply the workflow to a case with a more-realistic

geological model, based on a real reservoir, and a level of uncertainty more

representative of a field after a period of waterflood: the “Norne Field” case study

(Møyner and Lie, 2016). Fig. 1.4 shows the permeability field and top view of the

Norne field model.

Figure 1.4: Horizontal permeability field (in md) of realization number 1 after Norne Field case study

and the top view of the well locations. Black circles show the injectors and red triangles show the

producers.

In addition, we test the ability to distinguish between two different modes of process

failure. We start with 50 realizations of this reservoir model to show the variety of
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possible fluvial-deposit scenarios for the geological description. We then use the

Ensemble Kalman Filter (EnKF) to update the initial reservoir ensemble, integrating

30 years of waterflood production data. We use the updated reservoir models to

simulate a polymer EOR process with an in-situ viscosity of 18 cp. To represent EOR

process failure, we allow that the polymer process might fail in situ through either or

both of two different mechanisms. The first is a global viscosity loss, where we

stipulate that viscosity could be half of that intended, everywhere in the reservoir. The

second is a progressive viscosity loss upon injection, where polymer decays and

loses its viscosifying power over time (and therefore distance from the injection

well). This second mechanism represents process where polymer viscosity is

maintained near the injection well but not far away. These processes would reflect

chemical degradation of polymer in situ or, more broadly, polymer absorption. We test

whether the signals of these differences at injection and production wells would be

statistically significant in the midst of the updated geological uncertainty, and whether

the signals can distinguish which mechanism of failure has occurred.

The workflow presented here could be applied to other EOR processes by defining

possible mechanism of failure for those processes. For example, the technical criteria

for success for an EOR agent in-situ could be ultralow interfacial tension (IFT) or low

residual oil saturation for a surfactant process, a given mobility or injectivity for a

foam process, minimum miscibility pressure, degree of swelling, or absence of

asphaltene deposition for a CO2-EOR process, etc.

1.5.4 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

The dissertation concludes with a brief summary of results of the all three chapters,

conclusions and recommendations for future work.

Note from the author: This text includes published papers in reviewed journals and

scientific conferences. Consequently, the reader may find similar texts and sentences

in some parts of the thesis.





2
DISCERNING IN-SITU PERFORMANCE OF

AN EOR AGENT IN THE MIDST OF

GEOLOGICAL UNCERTAINTY I: LAYER CAKE

RESERVOIR MODEL

An enhanced-oil-recovery (EOR) pilot test has multiple goals, among them to demonstrate oil

recovery, verify the properties of the EOR agent in-situ, and provide the information needed

for scale-up to an economic process. Given the complexity of EOR processes and the

inherent uncertainty in the reservoir description, it is a challenge to discern the properties of

the EOR agent in-situ in the midst of geological uncertainty. We propose a general workflow

and present a case study to illustrate this challenge: a polymer EOR process in a 2D layer-cake

reservoir. The polymer is designed to have a viscosity of 60 cp in-situ. There is uncertainty in

the reservoir description, represented here by a range of values of Dykstra Parsons

coefficient and different spatial arrangements of layers. We allow that the polymer process

might fail in-situ and viscosity could be 20% of that intended. We test whether the signals of

this difference at injection and production wells would be statistically significant in the midst

of the geological uncertainty. Specifically, we compare the deviation caused by loss of

This chapter is from the published article: S.A. Fatemi, J.D. Jansen, W.R. Rossen, 2017. Discerning in-situ performance of an
EOR agent in the midst of geological uncertainty I: Layer cake reservoir model. Journal of Petroleum Science and Engineering
(158): 56-65.

11
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polymer viscosity to the scatter caused by the geological uncertainty using the statistical 95%

confidence interval. Among the signals considered, the ‘rate of rise in injection pressure with

polymer injection’ and ‘maximum injection pressure in the injector’ give the most reliable

indications of whether a polymer viscosity was maintained in-situ. If unintended and

uncontrolled fracturing of the injection well is considered likely during polymer injection,

however, injection pressure may be an unreliable indicator of in-situ polymer viscosity. In

that case a diagnostic fracture-injection / falloff test could produce the needed indication of

polymer viscosity in-situ. ‘Polymer breakthrough time’ and ‘cumulative oil production at the

end of process’ give indications of polymer in-situ loss in some of the cases. With a more

severe viscosity loss, e.g. 90% or worse, these signals give a statistically significant indication

of loss of polymer viscosity in all of the cases.

2.1 INTRODUCTION

An EOR pilot test has multiple goals: to demonstrate oil recovery, verify the properties of the

EOR agent in-situ, and provide the information needed for scale-up to an economic process.

The first goal concerns whether the process achieves its overall objectives (oil recovery) in

the given formation. Whether or not the first goal is reached, it is important to assess the

process by the second criterion. This is important because a process that did not achieve the

desired objectives in the given formation might be successful in another field if it

demonstrates that it achieves its technical objectives. For example, the technical criteria for

success for an EOR agent in-situ could be low interfacial tension (IFT) or low residual oil

saturation for a surfactant process, a given mobility for a polymer process, etc. In a field pilot,

one must determine the technical success of an EOR agent in the midst of geological

uncertainty in the reservoir description while the EOR process is in progress.

Previous research has examined uncertainty in EOR process performance or uncertainty in

the geological description, but not the two together. Studies on uncertainty in EOR process

performance include Alkhatib and King (2015), Brown and Smith (1984), and Adepoju et al.

(2017), examining surfactant-flood and polymer-flood processes. There have also been

studies on the effect of geological heterogeneities and their uncertainty on how an EOR

process performs. Heterogeneity and geological factors have different impacts on the various
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EOR processes, including polymer and alkaline-surfactant-polymer, thermal and gas-injection

(miscible and immiscible) EOR. Studies of the effects of geological heterogeneity and

uncertainty on EOR performance include Kumar et al. (2006), Chen et al. (2008), Popov et al.

(2010), Rashid et al. (2010), Soleimani et al. (2011), Chiotoroiu et al. (2017), and Kumar et al.

(2017).

In this paper, we propose a workflow to discern the performance of the EOR agent in-situ in

the midst of geological uncertainty. We further show how to implement the workflow in a

case study to investigate the impact of both sources of uncertainty together in a statistical

approach. We present a simple model to illustrate the issues involved: a polymer EOR

process implemented in a 2D layer-cake reservoir. The polymer is intended to have a viscosity

of 60 cp in-situ. Then, we allow that the polymer process might fail in-situ and viscosity could

be 20% of that intended. This failure could be the result of mechanical degradation in surface

facilities or on entering the perforations, faulty translation from laboratory-measured

properties to properties in-situ, or faulty characterization of resident reservoir brine. Several

of these adverse events would give different polymer properties in different regions of the

reservoir. For simplicity, in this initial study we assume that throughout the reservoir polymer

viscosity is less than that intended. We test whether the signals of this failure at the injection

and production wells would be statistically significant in the midst of the geological

uncertainty in the reservoir description. For a population of reservoirs representing

geological uncertainty, we compare the deviation caused by loss of polymer viscosity to the

scatter caused by the geological uncertainty using the 95% confidence interval statistical

approach. Various signals are monitored to see which are the most reliable indications of

whether a polymer viscosity was maintained in-situ. We further investigate the statistical

significance of each signal. For this initial case study, the separate effects of adsorption,

mixing with different brines in-situ, residual resistance factor, polymer degradation,

shear-rate dependence (non-Newtonian behavior), permeability reduction and temperature

have been ignored, except as they are represented indirectly in the loss of polymer viscosity.
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2.2 PROPOSED WORKFLOW

Fig. 2.1 displays the key steps in discerning in-situ performance of an EOR process in the

midst of geological uncertainty in a more organized structure. The left of the workflow shows

two sources of uncertainty:

-uncertainty in the performance of the EOR process itself, where we identify a key EOR

performance parameter and its value for a successful EOR process and in a failure: for

example, the intended, or design, value of polymer viscosity in-situ and its value if the

process fails.

-uncertainty in our knowledge of the subsurface, with the range of geological uncertainties

represented by an ensemble of reservoir realizations.

The next step is to define and simulate the base case. A design EOR process is defined and

simulated in the ensemble of geological representations. This design EOR process represents

the successful intended EOR process. While an EOR process is in progress, there are a

number of injection- or production-well data (signals) that reflect its performance in-situ.

From the simulation results of the base case, we calculate the well signals of the design

process. For each signal in the design process, based on the ensemble of reservoirs, we

determine the 95% confidence interval (criteria for identifying an outlier). We then simulate

what could represent a failed EOR process in the same ensemble of reservoirs (in this case

study by dropping the design viscosity value to 20% of that intended). For each computed

signal, we compare its value for the failed process to the confidence interval from the design

process. When a given signal falls in the rejection-zone we label it as an outlier. If a signal

reflects the process failure by being an outlier for all the reservoirs in the ensemble, it is a

reliable indicator of process failure in the midst of geological uncertainty.
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Figure 2.1: Workflow to determine criteria to distinguish EOR process performance in-situ in the midst of

geological uncertainties.

2.3 CASE STUDY

Table 2.1 presents the model dimensions and properties of the case study. The five-layer

rectangular reservoir is shown in Fig. 2.2. Polymer-flood simulations were run with one

injector and one producer, each penetrating the center of the first or last grid block in each

layer. The producer bottom-hole pressure (BHP) is kept at 70 bars while the injector’s BHP

can go as high as 170 bars. The OOIP of the reservoir is 1382 m3. A polymer solution of 1200

ppm, which gives the viscosity of 60 cp in-situ at 150°F (based on the polymer-rheology

algorithm in the simulator), is injected at a rate of 0.5 m3/day. Polymer viscosity reduces

injectivity, but unintended fracturing near the wellbore during polymer injection can increase

injectivity. The extent of this unintended fracturing may not be known (Seright et al., 2009).

Therefore, for simplicity, we account for an uncertain extent of injectivity improvement due

to fracturing by allowing the injector BHP in the simulation to be greater than what one

would expect to be applied in a polymer EOR process.
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Table 2.1: Reservoir dimensions

Description Quantities Units

Number of Grid Blocks
(NX, NY, NZ)

25 × 1 × 5 -

Grid Block Size (∆x, ∆y,
∆z)

6.4 × 1 × 6.4 m

Total Dimensions 160 × 1 × 32 m

Porosity (φ) 0.3

Figure 2.2: The case study: a five-layer rectangular reservoir with one producer and one injector.

Table 2.2 presents the reservoir and injected fluid properties. Water, oil and polymer-slug

viscosity are constants in the simulations. Our case study fits the criteria for a polymer EOR

candidate based on the screening benchmarks suggested in the literature (Alvarado and

Manrique, 2010; Dickson et al., 2010;  Saleh et al., 2014) as shown in Table 2.3.

Table 2.2: Case-study reservoir and injection fluid properties.

Description Quantities Units

Water density 1000 kg/m3

Oil density 900 kg/m3

Water viscosity 1.00 × 10-3 Pa.s

Oil viscosity 60.00 × 10-3 Pa.s

Water compressibility 1.00 × 10-10 bar-1

Oil compressibility 1.00 × 10-10 bar-1

Initial Reservoir Pressure 85 bar
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Table 2.3: Suggested ranges of values for a reservoir candidate for a  polymer flooding (Dickson et al.,

2010 and Saleh et al., 2014).

Suggested in Literature Case Study
In-situ oil viscosity (cp) 10-1000 60

Average permeability, mD >100 if (10<μ<100cp)
>1000 if (100<μ<1000cp)

1000

Oil Saturation (%) > 30% 90%

2.3.1 REPRESENTATION OF UNCERTAINTY IN POLYMER-FLOOD PERFORMANCE

We represent uncertainty in process performance using two different values of polymer

viscosity in-situ: 12 cp and 60 cp. As mentioned above, for simplicity in this initial study,

various detailed influential mechanisms on the polymer viscosity in-situ are excluded. In our

simulations, we represent the failure to attain the design viscosity in-situ by injecting the

polymer concentration corresponding to 12 cp (400 ppm) instead of that corresponding to 60

cp (1200 ppm). Since we exclude adsorption from our study, this change in polymer

concentration in the simulation does not retard the advance of the polymer bank.

Appendix 2.A applies fractional-flow theory (Lake et al., 2014) to this polymer EOR process.

It shows the incremental oil expected from a successful EOR process in 1D after 2 PV

injection and loss in performance for the failed process. Fingering is not represented in this

model, but the increase in mobility ratio at the shock suggests that the effects of

heterogeneity would be worse in the failed process.
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2.3.2 REPRESENTATION OF GEOLOGICAL UNCERTAINTY

Petroleum engineers usually consider permeability heterogeneity the most important source

of uncertainty in reservoir performance (Craig, 1993). Modeling of permeability

heterogeneities is usually based on a stochastic description, and realizations of such models

are input parameters to reservoir simulators (Langtangen, 1991). We therefore represent

geological uncertainty with a number of realizations reflecting a range of reservoir

properties.

In this layer-cake model, each layer has a different permeability. The distribution of

permeability values follows a log-normal distribution. The log-normal distribution has often

been used to describe the permeability distribution of heterogeneous reservoirs (Dykstra

and Parsons, 1956; Jensen et al., 2000; Lake et al., 2014). The degree of heterogeneity of a

reservoir is often characterized by the dimensionless Dykstra-Parsons coefficient of

permeability variation (Vdp). A homogeneous reservoir has a Vdp approaching zero, while an

extremely heterogeneous reservoir would have a Vdp approaching one. A log-normal

permeability distribution can be characterized by this coefficient and an average

permeability (Craig, 1993; Hirasaki, 1984). To generate the permeability values for the five

layers we use the inverse cumulative distribution function (CDF) of the log-normal

distribution. Specifically, the permeability values are drawn from the 10%, 30%, 50%, 70%

and 90% percentiles of the CDF. We adjust the magnitudes of the values so that all three

distributions have the same arithmetic average permeability (Kavg). Therefore, in

single-phase flow, injectivity would be the same for all the nine cases. Table 2.4 shows the

permeability values generated for Vdp = 0.6, 0.75 and 0.9.
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Table 2.4: Layer permeability values for Vdp = 0.6, 0.75 and 0.9; kavg = 1000 md in all cases.

Permeability Values (md)

Percentile Vdp = 0.6 Vdp = 0.75 Vdp = 0.9

0.1 218 84 9

0.3 444 244 53

0.5 726 511 189

0.7 1189 1067 664

0.9 2423 3093 4086

We assume three spatial distributions of permeability: specifically, from top to bottom,

high-permeability to low-permeability, low-permeability to high-permeability, and a

distribution with the lowest permeability in the middle. Fig. 2.3 shows schematically how

layer permeabilities are ordered. Three Dykstra Parsons coefficients and three spatial

arrangements of layers give nine different geological representations, to be used in

simulations with two different polymer-flood in-situ viscosities.

This initial study illustrates the interplay between geological and process uncertainty using an

extreme extent of geological uncertainty at the wellbore. A single successful well log could

resolve much of this uncertainty. In the context of a layer-cake model, the range of layer

permeabilities in our model represents the much larger uncertainty in reservoir properties

between wells.

Appendix 2.B compares the competing effects of heterogeneity, gravity and arrangement of

layers for the waterflood. Gravity reduces sweep efficiency in this case if the

high-permeability layers are on the bottom, but is not as important as heterogeneity.

Figure 2.3: Schematic of spatial ordering of layer permeabilities.
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2.4 DEVELOPMENT SCENARIO AND PROCEDURE

We run the polymer-flood simulations using Shell’s in-house simulator MoReS (Van Doren et

al., 2011). In each simulation, ten years of water injection is followed by twenty years of

polymer-slug injection. A production/injection profile for one case is shown in Fig. 2.4.

Figure 2.4: Production/injection profile for the geological description corresponding to Vdp = 0.9 and layer

ordering of schematic A.

As shown in Fig. 2.4, water is injected for 10 years, and it breaks through early in the

waterflood. A polymer slug is then injected and causes a rise in injection pressure and, later,

incremental oil recovery, reflected in the rise in oil production shown in the red line. There

are a number of signals that reflect the effectiveness of polymer:

- Polymer breakthrough time, years (Polymer BT)

- Rate of rise in Pinj upon polymer injection in six months, bars (Rise in Pinj)

- Minimum oil cut (Min. oil cut)

- Time of initial increase in oil production rate, years (Oil Bank Arrival Time)

- Max injection pressure, bars (Max Pinj)
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- Cumulative oil production at end of process, m3 (End Cumoil)

2.5 RESULTS

We allow that the polymer process might fail in-situ and viscosity could be 20% that

intended. Fig. 2.5 shows a plot of the signal values of nine reservoir descriptions for a

polymer viscosity in-situ of 60 cp and those for a viscosity of 12 cp. Fig. 2.5 shows that it is

hardest to distinguish EOR process failure if the reservoir is relatively homogeneous (case 3,

6 and 9) and easiest if it lies toward the heterogeneous end of the spectrum of possibilities

(cases 1, 4 and 7). Increasing reservoir heterogeneity produces results similar to EOR process

failure in-situ: earlier polymer breakthrough and reduced cumulative oil recovery.

Figure 2.5: Comparing signals of the process with 60 cp polymer viscosity (design) with the 12 cp polymer

viscosity (failure)
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Comparing the signals listed above we test whether the signals of this viscosity difference

would be statistically significant (using the 95% confidence interval) in the midst of the

geological uncertainty, represented by the nine reservoir descriptions. Specifically, we

calculate the 95% confidence interval for each signal for the nine geological cases with 60 cp

polymer viscosity. Refer to Appendix 2.C for more details on how to calculate the

t-distribution 95% confidence interval. The results are shown in Table 2.5.

Table 2.5: Signal values calculated for the nine geological cases with 60 cp polymer viscosity, with upper and

lower bounds of the 95% confidence interval (CI+, CI-) for each signal.

For each reservoir description we then ask if the given signal with 12 cp polymer viscosity lies

in the rejection zone of the 95% confidence interval. If the answer is yes, then the signal is an

outlier and failure of polymer in-situ is discernible in the midst of geological uncertainty.

Table 2.6 shows the signal values for the cases with an in-situ viscosity of 12 cp. Next to each

column with this signal value, a second column checks if the individual value falls in the

rejection zone of results with 60 cp viscosity from Table 2.5. If the signal value falls in the

rejection, it is labelled as an “Outlier” in the adjacent column (meaning the signal can be

distinguished in the midst of geological uncertainty). Otherwise the entry is left as blank in

the adjacent column, meaning the signal cannot be distinguished from geological

uncertainty.
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Table 2.6: Discerning the process with 12 cp polymer viscosity from the case with 60 cp polymer viscosity.

Of the signals considered, there are two columns labelled entirely as outliers. One could

discern the effect of viscosity with confidence in every case based on the ‘rate of rise in Pinj

in six months’ and ‘max injection pressure’. These two signals could discern the failure of the

polymer in-situ in the midst of geological uncertainty. In both cases, the rise in pressure is

less than with the greater polymer viscosity, as expected. ‘Polymer breakthrough time’ could

discern the effect of viscosity in majority of the cases excluding the next homogeneous case.

For ‘cumulative oil production at end of simulation’, failure can be discerned only in the most

heterogeneous cases.

In this case study, we deal with an extreme reservoir heterogeneity description. Only when

there is a severe in-situ viscosity loss is the difference in signals between the two populations

statistically significant. Refer to Appendix 2.D for more results for different extent of in-situ

viscosity loss. When there is a 10% viscosity loss, only the ‘max Pinj’ signal can discern the

more heterogeneous cases. As the extent of viscosity loss increases, this effect is more

statistically significant among the signals. In the very extreme in-situ viscosity loss of 90%,

‘rate of rise in Pinj in six months’, ‘polymer breakthrough time’ and ‘max injection pressure’

could discern the failure of the polymer in-situ in the midst of geological uncertainty in all of

the cases and ‘cumulative oil production at end of simulation’ discerns the effect in the more

heterogeneous cases.

2.6 CONCLUSIONS AND DISCUSSION

● We offer a workflow and a simple initial study of a polymer flood to illustrate the issues

involved in attempting to distinguish EOR process performance from well data in the
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midst of geological uncertainty.

● Among the signals considered here, the rate of rise in injection pressure upon polymer

injection and maximum pressure in the injection well give the most reliable indications of

whether polymer viscosity was maintained in-situ. Given the chances of fracturing of the

injection well (Seright et al., 2009), especially if the extent of this fracturing is unknown,

injection pressure could be an unreliable indicator of in-situ polymer viscosity injection. In

that case a diagnostic fracture-injection / falloff test could substitute for the well pressure

data (Craig and Jackson, 2017).

● Among the other signals considered, it was hardest to distinguish failure of the EOR

process in reservoirs that, among the ensemble of equi-probable reservoirs, were

relatively homogeneous. For these cases waterflood by itself performed relatively well;

the failure of the EOR process was hard to distinguish from the possibility of greater

reservoir heterogeneity. Failure was easiest to identify if the actual reservoir was among

the more heterogeneous cases considered possible. In that case the additional loss in

performance from failure of the EOR process produced a result outside the confidence

interval.

● Previous studies that considered the effect of geological uncertainty on EOR process

performance, establish the range of outcomes for a process that performs in-situ as

designed. In effect, they establish the confidence interval beyond which a failed EOR

process could be identified.

● The range of geological uncertainty in this initial case study could be viewed as extreme.

We assume that injectivity is known but that very little is known about the extent of

reservoir heterogeneity, even at the wells. On the other hand, the extent of failure of the

polymer in-situ, i.e. a loss of viscosity by a factor of 5, could be considered extreme as

well. Moreover, we consider a two-well situation whereas in a multi-well setting the effect

of viscosity changes may result in different signals in the various wells. Further study

should include more realistic geological descriptions and polymer mechanisms and the

effect of including more wells.
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APPENDIX 2.A: FRACTIONAL-FLOW THEORY IN POLYMER FLOODING

It is useful to perform a 1D fractional-flow analysis of a reservoir to identify whether is

suitable for a particular recovery process before undertaking a detailed reservoir simulation

study. One of the simplest and most widely used methods of estimating the displacement

efficiency in an immiscible displacement process is the Buckley-Leverett method (Fanchi,

2005; Craft et al., 1991; Dake, 2001; Lake et al., 2014). Our purpose here is to compare the

displacement efficiency in 1D for the design polymer flood versus the reduced-viscosity

polymer flood. The polymer-oil fractional flow curve is constructed and shown in Fig. 2.A.1

and Fig. 2.A.2 for two cases, one with the polymer design viscosity of 60 cp and the other

with reduced polymer viscosity of 12 cp. Polymer injection reduces the mobility ratio, causing

the fw(Sw) curves to shift to the right. The greater the polymer viscosity the more the

polymer-flood curve shifts to the right. The recovery of the 1D polymer flood at polymer

breakthrough, mobility ratio at shock front and recovery at 2 PV injection can be extracted

from the fractional-flow diagram, as shown in Table 2.A.1. Although the case shown in Fig.

2.A.1 and Fig. 2.A.2 is a secondary polymer flood, the mobility ratio at the shock front and

recovery after 2 PV injection would be identical for polymer floods in secondary and tertiary

modes.

Table 2.A.1: Recoveries after polymer breakthrough for the design viscosity case versus reduced viscosity.

Waterflood Design viscosity, 60 cp Reduced viscosity, 12 cp

Oil recovery at

breakthrough, %
28% 0.55 0.46

Mobility ratio at shock

fronta
1.47 0.12 0.76

Fraction of movable oil

recovered at 2 PV

injectionb

0.97 0.92

a Mobility behind the front divided by mobility ahead of the front

b (Swavg – Swc) / (1 – Swc – Sor)

Table 2.A.1 shows that even in a homogenous 1D reservoir without gravity segregation there

is less oil recovered at polymer breakthrough and after 2 PV injection with the lower

viscosity. The mobility ratio at the shock front is smaller for the design viscosity than the
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reduced viscosity, which suggests a better mobility control and more uniform sweep in a 2D

heterogeneous reservoir for the design viscosity case.

Figure 2.A.1: Graphical construction of water and polymer fractional flow in secondary mode for the

design polymer in-situ viscosity of 60 cp.

Figure 2.A.2: Graphical construction of water and polymer fractional flow in secondary mode for the reduced

polymer in-situ viscosity of 12 cp.
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APPENDIX 2.B: EFFECT OF GRAVITY

Gravitational force affects crossflow in communicating layers. These forces tend to increase

the water saturation on the bottom layers (Craig, 1993). Fig. 2.4 shows the oil recovery

during the waterflood phase of our case study for different levels of heterogeneity and layer

ordering. As this figure shows, arrangement of the layers plays a less-important role than the

effect of heterogeneity. This suggests gravity is not dominant on our case-study results. With

the high-permeable layer on the top and the permeability decreasing with depth (schematic

A in Fig. 2.3), gravity tends to increase oil recovery. Gravity reduces oil recovery for the

permeability arrangement in which permeability increases with depth (schematic C in Fig.

2.3). If gravity was not relevant at all, permeability arrangements in schematics A and C

would behave identically, but, as Fig. 2.4 shows, oil recovery is not the same for the two

permeability arrangements; hence the arrangement of layers matters in this case study.

Figure 2.B.1: Effect of gravity on Cumulative Oil Production (after 10 years of waterflood) in different

permeability arrangements.
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APPENDIX 2.C: CONFIDENCE INTERVALS BASED ON THE
t-DISTRIBUTION

The confidence interval is an estimate of the range in which a given percentage of a statistical

population lies. If a datum lies outside the 95% confidence interval, there is less than 5%

chance that a randomly selected member of that population would be so far from the

population mean. Though imperfect, this is a standard test for the likelihood that a new case

is derived from the same statistical population as the original sample Hawkins (1980).

The confidence interval (CI) is inferred from the mean, Xavg, and standard deviation, σ, of a

sample from the population using the t statistic:

CI = Xavg ± t* σ ……………………………………………………………………………….

(2.C.1)

The value of t* for the 95% confidence interval for a set of 9 data samples (8 degrees of

freedom) is 2.306.
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APPENDIX 2.D: DIFFERENT SCENARIOS OF POLYMER IN-SITU
VISCOSITY LOSS

Here we present different scenarios of polymer in-situ viscosity loss (10%, 20%, 50%, 60%,

70% and 90%) and the associated effect on different well signals.

Table 2.D.1: Discerning the process with 54 cp polymer viscosity from the case with 60 cp polymer

viscosity.

Table 2.D.2: Discerning the process with 48 cp polymer viscosity from the case with 60 cp polymer

viscosity.
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Table 2.D.3: Discerning the process with 30 cp polymer viscosity from the case with 60 cp polymer

viscosity.
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Table 2.D.4: Discerning the process with 24 cp polymer viscosity from the case with 60 cp polymer

viscosity.

Table 2.D.5: Discerning the process with 18 cp polymer viscosity from the case with 60 cp polymer

viscosity.

Table 2.D.6: Discerning the process with 9 cp polymer viscosity from the case with 60 cp polymer

viscosity.
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Table 2.D.7: Discerning the process with 6 cp polymer viscosity from the case with 60 cp polymer

viscosity.



3
DISCERNING IN-SITU PERFORMANCE OF

AN EOR AGENT IN THE MIDST OF

GEOLOGICAL UNCERTAINTY: II.

FLUVIAL-DEPOSIT RESERVOIR

An enhanced-oil-recovery (EOR) pilot test has multiple goals, among them to make money (if

possible), demonstrate oil recovery, verify the properties of the EOR agent in-situ, and

provide the information needed for scale-up to an economic process. Given the complexity

of EOR processes and the inherent uncertainty in the reservoir description, it is a challenge

to discern the properties of the EOR agent in-situ in the midst of geological uncertainty. We

propose a numerical case study to illustrate this challenge: a polymer EOR process designed

for a 3D fluvial-deposit water-oil reservoir. The polymer is designed to have a viscosity of 20

cp in-situ. We start with 100 realizations of the 3D reservoir to reflect the range of possible

geological structures honoring the statistics of the initial geological uncertainties. For a

population of reservoirs representing reduced geological uncertainty after five years of

waterflooding, we select three groups of 10 realizations out of the initial 100 with similar

This chapter is from the published article: S. A. Fatemi; J. D. Jansen; W. R. Rossen, 2019. Discerning In-Situ

Performance of an Enhanced-Oil-Recovery Agent in the Midst of Geological Uncertainty: II. Fluvial-Deposit

Reservoir. SPE J. 24 (03): 1076–1091.
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water breakthrough dates at the four production wells. We then simulate five years of

polymer injection. We allow that the polymer process might fail in-situ and viscosity could be

30% that intended. We test whether the signals of this difference at injection and production

wells would be statistically significant in the midst of the geological uncertainty. Specifically,

we compare the deviation caused by loss of polymer viscosity to the scatter caused by the

geological uncertainty using a 95% confidence interval. Among the signals considered,

polymer breakthrough time, minimum oil cut and rate of rise in injection pressure with

polymer injection give the most reliable indications of whether a polymer viscosity was

maintained in-situ. Unfortunately, given the likelihood of an unknown extent of fracturing of

the injection well, injection pressure may be an unreliable indicator of in situ polymer

viscosity.

3.1 INTRODUCTION

Chemical EOR processes represent a small fraction of commercially successful EOR projects.

This is mainly due to uncertainty in predictions of processes (Sheng, 2011; Lake et al., 2014).

For polymer flooding, the integrity of polymer viscosity is essential for the effectiveness of

the process and its behavior can be uncertain (Weiss and Baldwin, 1985). Evaluation of the

impact of uncertainties in the performance of an EOR process to increase the possibility of

success and predict possible failure is of prime importance because a process that did not

achieve the desired objectives in one formation might be successful in another field if it

demonstrates that it achieves its technical objectives.

Researchers have studied uncertainty in EOR process performance and uncertainty in the

geological description, but not the two together. Previous research has examined uncertainty

in performance parameters of surfactant-flooding (interfacial tension) and CO2-EOR

(asphaltene deposition or minimum miscibility pressure) performance parameters including

Brown and Smith (1984), Denney (2011) and Stanley (2014). There have also been studies on

the effect of geological heterogeneities and their uncertainty on how an EOR process

performs. Heterogeneity and geological factors have different impacts on the various EOR

processes, including polymer and alkaline-surfactant-polymer, thermal and gas-injection

(miscible and immiscible) EOR. Studies of the effects of geological heterogeneity and
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uncertainty on EOR performance include Kumar et al. (2008), Chen et al. (2008), Soleimani et

al. (2011) and Popov et al. (2010).

In this paper we investigate the impact of both sources of uncertainty together in a statistical

approach based on the workflow described in Fatemi et al. (2017). The workflow displays the

key steps in discerning in-situ performance of an EOR process in the midst of geological

uncertainty in an organized structure where two sources of uncertainty are defined,

uncertainty in the performance of the EOR process itself and uncertainty in our knowledge of

the subsurface. In the earlier work we used for illustration a layer-cake model with an

extreme level of geological uncertainty; here we apply the workflow to a case with a more

sophisticated geological model and a level of uncertainty more representative of a field after

a period of waterflood. I n the earlier work we used for illustration a layer-cake model with

an extreme level of geological uncertainty; here we apply the workflow to a case with a more

realistic geological model and a level of uncertainty more representative of a field after a

period of waterflood. We present a case study based on the “modified Egg Model” (Jansen et

al., 2014) to illustrate this challenge: a polymer EOR process designed for a 3D fluvial-deposit

water-oil reservoir. The polymer is designed to have a viscosity of 20 cp in situ. We start with

100 realizations of this 3D reservoir to reflect the range of possible geological structures

honoring the statistics of the initial geological uncertainties. Next we group the realizations

on the basis of a measure of similarity that reflects the interaction between heterogeneity

and the reservoir flow mechanisms (Mantilla and Srinivasan, 2011). After five years of

waterflooding, we rank the reservoir models in different groups of 10 realizations, out of the

initial 100 equiprobable realizations, with similar water breakthrough dates at the four

production wells. We form three sets of 10-member realizations and apply the methodology

accordingly.

For a polymer flood to meet its technical success, we want the polymer in situ viscosity (as

one of the more important properties of the polymer process design) to meet its technical

design value. Then, to represent EOR process failure, we allow that the polymer process

might fail in situ and viscosity could be 30% of that intended. This failure could be the result

of mechanical degradation in surface facilities or on entering the perforations, faulty

translation from laboratory-measured properties to properties in situ, faulty characterization
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of resident reservoir brine, or chemical or biological degradation of polymer. We then

simulate five years of polymer injection. We assume that throughout the reservoir polymer

viscosity is less than that the design value. We test whether the signals of this difference at

injection and production wells would be statistically significant in the midst of the geological

uncertainty. Specifically, we compare the deviation caused by loss of polymer viscosity to the

scatter caused by the geological uncertainty using a 95% confidence interval. Various signals

are monitored to see which are the most reliable indications of whether a polymer viscosity

was maintained in situ. We further investigate the statistical significance of each signal.

Any EOR field trial can produce unexpected results arising from a misunderstanding of either

the geology of the reservoir or of the EOR process. The workflow presented here could be

applied to other EOR processes by defining possible mechanism of failure for those

processes. Interpolation of field pilot results requires the ability to distinguish the effects of

geological and process-performance uncertainty.

3.2 CASE STUDY DESCRIPTION

We consider a modified version of the standard “Egg Model”, which is a fluvial-deposit

water-oil reservoir model containing eight injection wells and four production wells (Jansen

et al., 2014 based on earlier work by Van Essen et al., 2009). The model has seven layers and

contains 18,553 grid blocks, 8×8×4 m in size. Production from the reservoir is simulated over

a time horizon of five years of waterflood followed by five years of polymer flood. The

average reservoir pressure is set at 400 bar, and the initial water saturation is taken to be

uniform over the reservoir at a value of 0.1. The remaining geological and fluid properties

used in this case study are presented in Table 3.1. The reservoir is located in a fluvial

depositional environment with known main flow direction. A set of 100 geological

realizations of the reservoir was generated by van Essen based on geological insight rather

than a geostatistical method. The number of 100 realizations is assumed to be large enough

to be a good representation of this range (Van Essen et al., 2009). We have modified the oil

viscosity in this model to make the reservoir a candidate to undergo polymer flood (Dickson

et al., 2010). The well locations and absolute-permeability field of the first realization of the

set are depicted in Fig. 3.1. Fig. 3.2 displays the absolute-permeability field of six realizations

randomly selected from the set, without the wells.
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Table 3.1: Reservoir and fluid properties of the modified Egg Model.

Property Value SI Units

Water density 1000 kg/m3

Oil density 900 kg/m3

Water viscosity 10-3 Pa.s

Oil viscosity 20×10-3 Pa.s

Water
compressibility

10-10 1/bar

Oil
compressibility

10-10 1/bar

Initial Reservoir
Pressure

400 bar

Porosity 0.2 -

Figure 3.1: Permeability field and well locations (Jansen et al., 2014; after Van

Essen et al., 2009).

Figure 3.2: Permeability field of six randomly chosen realizations out of a set of 100, showing

alternative fluvial structures (Jansen et al., 2014; after Van Essen et al., 2009).
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Our case study fits the criteria for a polymer EOR candidate based on the screening

benchmarks suggested by Saleh et al. (2014), as shown in Table 3.2.

Table 3. 2: Suggested values for a reservoir candidate to go through a polymer flood process Saleh et

al., 2014.

Property Suggested in Literature Case Study

In situ oil viscosity (cp) 10–1000 20

Initial oil saturation (%) > 30% 90%

3.2.1 REPRESENTATION OF UNCERTAINTY IN POLYMER PERFORMANCE

We represent uncertainty in process performance using two different values of polymer

viscosity in situ: 6 cp and 20 cp. For simplicity in this study, various detailed influential

mechanisms of potential polymer viscosity loss in situ are excluded. In our simulations, we

represent the failure to attain the design viscosity in situ by injecting polymer with a

concentration corresponding to a viscosity of 6 cp (250 ppm) instead of 20 cp (600 ppm)

based on the input polymer rheology table. Since we exclude adsorption from our study, this

change in polymer concentration in the simulation does not retard the advance of the

polymer bank. For a different EOR process, the possible mode of failure might be loss of

miscibility (miscible flooding), failure to achieve ultra-low interfacial tension (surfactant

flooding), etc.

3.2.1.1 FRACTIONAL-FLOW THEORY IN POLYMER FLOODING

It is useful to perform a 1D fractional-flow analysis of any reservoir system to identify

whether it is suitable for a particular recovery process before undertaking a detailed reservoir

simulation study. One of the simplest and most widely used methods of estimating the

displacement efficiency in an immiscible displacement process is the Buckley-Leverett

method (Fanchi, 2005; Craft et al., 1991; Dake, 2001; Lake et al., 2014). Our purpose here is

to compare the displacement efficiency in 1D for the design polymer flood versus the

reduced-viscosity polymer flood. The recovery of the 1D polymer flood at polymer

breakthrough, mobility ratio at shock front and recovery at 2 PV injection can be extracted

from the fractional flow diagram, as shown in Table 3.3.

Table 3.3: Recoveries after polymer breakthrough for the design viscosity case versus reduced

viscosity in 1D secondary polymer flood.
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Design viscosity, 20 cp Reduced viscosity, 6 cp

Oil recovery at polymer
breakthrough, %

47% 40%

Mobility ratio at shock front* 0.26 0.38

Fraction of movable oil
recovered at 2 PV injection**

0.97 0.9

* Mobility behind the front divided by mobility ahead of the front

** (Swavg – Swc) / (1 – Swc – Sor), where Swavg is average water saturation behind the shock front, Swc is connate water

saturation, and Sor is residual oil saturation.

Table 3.3 shows that even in a homogenous 1D reservoir without gravity segregation the

viscosity reduction results in a lower recovery at polymer breakthrough and after 2 PV

injection. The mobility ratio at the shock front is smaller for the design viscosity than for the

reduced viscosity, which suggests a better mobility control and a more uniform sweep in a 3D

heterogeneous reservoir for the design viscosity case.

3.2.2 REPRESENTATION OF GEOLOGICAL UNCERTAINTY

As described above, we start with 100 realizations of this reservoir model to reflect the range

of possible geological structures reflecting the initial geological uncertainty. Before

production begins, all reservoir models are equally probable because they all honor the static

conditioning data and the prior geologic interpretations. After 5 years of waterflood data are

collected, however, many of these geological realizations are no longer plausible. To

represent the reduced range of possibilities consistent with waterflood data, we choose from

the original set groups of reservoirs with relatively similar waterflood performance;

specifically, similar waterflood breakthrough times in the four production wells. Arpat and

Caers, 2004) introduced the term distance between reservoir models, referring to a measure

of similarity between different geological model realizations. We define a parameter to

represent the relative difference in water breakthrough times of the realizations at the four

production wells and call it the root-mean-square break-through time difference (RMSBTD)

Dij between realizations i and j. It is calculated as:

(3.1)

where t is the water break-through time and k is a counter over the production wells.
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We rank and group realizations according to this parameter. For example, Fig. 3.3 shows

water production in one of the realizations where water breakthrough happens early in the

simulation, and Table 3.4 shows water breakthrough time of four production wells for two of

the realizations and the RMSBTD of the two.

Figure 3.3: Water production in four producers in one realization. Water breakthrough happens early in the

simulation.

Table 3.4: Water breakthrough time of four producers in two different realizations (1, 2) and their typical

distance value.

Realization
Number

Prod 1 (days) Prod 2 (days) Prod 3 (days) Prod 4 (days) Root-mean- square
break-through time

difference (days)
1 285 123 356 341
2 510 122 185 442 75

Then we build a symmetrical 100×100 matrix of RMSBTD for each realization against all other

realizations. From this we form 10-member cases with similar behavior, i.e., sets with the

smallest RMSBTD among all other sets in the matrix. We then rank these 10-member sets in

an ascending order according to the RMSBTD value and further characterize them according

to their average water breakthrough time in each producer. We pick three sets of realizations

to represent the reduced geological uncertainty at the start of the polymer flood, i.e. after 5

years of waterflood. The first set has the smallest RMSBTD value (least variability in water

arrival times at all wells) among the three sets, 22 days. The earliest waterflood

breakthrough in this set occurs in producer P2 in almost all of its members, with an average

of 175 days. There is a high-permeability channel directly to injectors I2 and I4 in all cases.

The members of the second set, with a larger RMSBTD (more-variable water breakthrough
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times) of 28 days, do not overlap with members of the first set. The earliest waterflood

breakthrough time also occurs mainly in producer P2 (average time 177 days). There is a

high-permeability channel to injectors I2, I4 and I5 in most members of this set. An

exceptionally slow breakthrough to producer P1 (474 days) also characterizes this set. The

third set, with a somewhat larger RMSBTD, 29 days, has no members in common with the

second set and eight out of ten of its members are distinct from the first set. For most

members, waterflood breakthrough time is earliest in producer P3 (average 185 days). In this

case there is a high-permeability channel to injectors I4, I6 and I7 in all cases. Refer to

appendix 3.A for details of waterflood breakthrough time of the three sets.

On these three 10-member groups of realizations representing reduced geological

uncertainty, we run our polymer flood simulations and implement our uncertainty analysis

approach.

3.3 DEVELOPMENT SCENARIO AND PROCEDURE

We run the polymer-flood simulations using a proprietary fully-implicit reservoir simulator

(Van Doren et al., 2011). In each simulation run, five years of water injection is followed by

five years of polymer-slug injection. Figs. 3.4 to 3.6 show results of the simulation for four

producers and eight injectors for one of the realizations.

Polymer-injection wells are liable to an unknown extent of fracturing during polymer

injection (Seright et al., 2009). Rather than represent this fracturing and the increase in

injectivity explicitly, we represent the resulting increased ability to inject polymer indirectly

by allowing a very large maximum value of injection-well pressure (545 bar) during polymer

injection. This is not the actual injection pressure of these wells, but allows indirectly for

increased polymer injection in these wells without representing the fracturing process

explicitly.



4.6 RESULTS 43

Figure 3.4: Injection BHP of eight injectors.

Figure 3.5: Polymer slug production rate in four producers and total polymer production rate.
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Figure 3.6: Oil production rate in the four producers and total oil production rate.

As shown in Fig. 3.3, water is injected for 5 years, and it breaks through early in the

waterflood phase in four production wells. A polymer slug is then injected and causes a rise

in injection pressure as shown in Fig. 3.4. Breakthrough of polymer happens sometime after

injection as shown in Fig. 3.5. Fig. 3.6 shows the oil production profile in four producers;

there is an incremental amount of oil produced due to the polymer flood. We identify five

polymer-flood signals to study Fatemi et al. (2015):

Polymer breakthrough time, years (Polymer BT)

Change in injection pressure upon polymer injection in one year, bars (Rise in Pinj)

Minimum oil cut (Min. Oil Cut)

Time of initial increase in oil production rate, years (Oil Bank Arrival Time)

Cumulative oil production at end of process, m3 (End Cumoil)

3.4 VERTICAL SWEEP

Fig. 3.7 shows the permeability map of the first realization in the Egg Model where we can

visually see the high permeability streaks. In order to analyse the effectiveness of the
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polymer injection to sweep the non-channel pay, we can compare the snapshots of three

different times during the simulation run.
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Figure 3.7: Slice of the permeability map of layer 4 of realization no.1.

Figure 3.8: Oil saturation in realization no. 1 at (A): water breakthrough time, (B): end of waterflood

period, (C): end of polymer flood for 20 cp case and (D):  end of polymer flood for 6 cp case.
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Fig. 3.8 shows the oil saturation map of the reservoir in three different times: Around the

water breakthrough time, end of waterflood period and end of the polymer flood period for

both the 20cp and 6cp in-situ viscosities.

As Fig. 3.8 shows, the polymer flood causes better sweep in the channel pay as well as the

non-channel pay. The less viscous polymer slug gives worse sweep, especially of non-channel

pay, as shown in Fig. 3.8 C and D.

We allow that the polymer process might fail in situ and viscosity could be 30% that

intended. Comparing the signals listed above for a polymer viscosity in situ of 20 cp to those

for a viscosity of 6 cp, we test whether the signals of this difference at injection and

production wells would be statistically significant at a 95% confidence interval in the midst of

the geological uncertainty, represented by the 10-member cluster of reservoir descriptions.

More specifically, ‘Polymer BT’ and ‘Oil Bank Arrival’ for the first (earliest) producer of the

four for the 6 cp simulation run are compared against the population of values for the first

producer of the 20 cp viscosity case. For the rest of the signals, average values of the four

producers (as in ‘Min. Oil Cut’, and ‘End Cumoil’) or eight injectors (as in Rise in Pinj) are

compared against the average signal values of the 20 cp viscosity representation. As

mentioned before, we consider three different sets of realizations. For each reservoir

description we then ask if the given signal with 6 cp polymer viscosity lies in the rejection

zone of the confidence interval. If the answer is yes, it is labelled as an “outlier” in the

adjacent column (meaning the signal can be distinguished in the midst of geological

uncertainty) and otherwise labelled as “not outlier” and left as blank in the adjacent column

(meaning the signal cannot be distinguished from geological uncertainty). Table 3.5 shows

the summary of signal analysis of the case with 20cp in situ viscosity for all the production

and injections wells of the first set (representing the least RMSBTD) against the 6cp case for

the first set of realizations. Readers can refer to Appendix 3.B for detailed statistical

calculations of signals for each case.
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Table 3. 5: Summary of the results of discerning the process with 6 cp polymer viscosity from the case

with 20 cp polymer viscosity for the first 10-member set of geological realizations.

Global viscosity 20cp  Vs. Global viscosity 6cp for the first set

Confidence
Interval

Rise in Pinj, 1
Year

1st Polymer
BTTime,

(Year)

1st Oil Bank
Arrival Time

(Year)

Average Min
Oil Cut

End CumOil,
m3

Upper Limit 0.3312 6.47 5.30 0.083 564

Lower Limit 0.2232 5.25 4.84 0.053 514

Outliers
Detected (out
of 10)

10 8 9 5 6

Of the signals considered, there is one column with only outliers. For this set of realizations,

one could discern the effect of viscosity with confidence based on the ‘rise in Pinj upon

polymer injection in one year’. This signal could discern the failure of the polymer in situ in

the midst of geological uncertainty. If unintended and uncontrolled fracturing of the injection

well is considered likely during polymer injection, however, injection pressure may be a

reliable indicator of in situ polymer viscosity if determined from a diagnostic

fracture-injection / falloff test (Craig and Jackson, 2017). The signals ‘polymer breakthrough

time’ and ‘time of initial increase in oil production rate’ also discern the effect of viscosity

with confidence in almost all of the cases. A combination of ‘minimum oil cut’ and

‘cumulative oil production at end of simulation’ could enable one to tell the difference in all

the cases.

Tables 3.6 and 3.7 show the summarized results for the second and third 10-member sets of

geological realizations, we perform the same statistical analysis as described for the first set.
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Table 3. 6: Summary of the results of discerning the process with 6 cp polymer viscosity from the case

with 20 cp polymer viscosity for the second 10-member set of geological realizations.

Global viscosity 20cp  Vs. Global viscosity 6cp  for the second set

Confidence
Interval

Rise in Pinj, 1
Year

1st Polymer
BTTime,

(Year)

1st Oil Bank
Arrival Time

(Year)

Average Min
Oil Cut

End CumOil,
m3

Upper Limit 0.352 6.39 5.48 0.089 552

Lower Limit 0.195 5.26 4.69 0.050 518

Outliers
Detected (out
of 10)

10 8 7 3 8

Table 3.7: Summary of the results of discerning the process with 6 cp polymer viscosity from the case

with 20 cp polymer viscosity for the third 10-member set of geological realizations.

Global viscosity 20cp  Vs. Global viscosity 6cp  for the third set

Confidence
Interval

Rise in Pinj, 1
Year

1st Polymer
BTTime,

(Year)

1st Oil Bank
Arrival Time

(Year)

Average Min
Oil Cut

End CumOil,
m3

Upper Limit 0.331 6.47 5.3 0.083 564

Lower Limit 0.223 5.25 4.84 0.053 514

Outliers
Detected (out
of 10)

9 10 6 6 8

In these sets, as in the first set, ‘rate of rise in Pinj’ and ‘polymer breakthrough time’ could

discern the failure of the polymer in situ in the midst of geological uncertainty at almost all of

the cases. Also combining the signals of ‘time of initial increase in oil production rate’,

‘minimum oil cut’ and ‘cumulative oil production at end of simulation’ could enable one to

tell the difference in all of the cases. In all cases, outlier status was indicated in at least three
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of the five signals. Specifically, a combination of ‘minimum oil cut’ and ‘cumulative oil

production at end of simulation’ identified outliers in all cases.

3.5 SUMMARY AND DISCUSSION

We present the modified ‘Egg Model’ as a case study illustrating the challenges in discerning

the properties of an EOR agent in situ from well data in the midst of geological uncertainty.

This study extends earlier work Fatemi et al. (2017) by including a more realistic geological

description and more injection and production wells. In this case study, signals are more

responsive than in the first case study, mainly due to a more realistic geological description.

Results of this study verify the conclusions of the previous work. Changes in polymer

breakthrough time are a reliable indicator of failure of polymer viscosity in situ in this case

study. Rate of rise of injection-well pressure during polymer injection is also a reliable

indicator, though a diagnostic fracture-injection / falloff test may be necessary to verify

reliability of the injection pressure data (Craig and Jackson, 2017). Moreover, in this case

study, other signals such as a combination of ‘time of initial increase in oil production rate’,

‘minimum oil cut before the oil bank’ and ‘final cumulative oil recovery’ give a statistically

significant indication of loss of polymer viscosity in situ in majority of the cases.
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APPENDIX 3.A

Table 3.A.1: Water breakthrough time of the four producers in members of the three sets.

No. Realization Prod 1 Prod 2 Prod 3 Prod 4

1 3 252 151 318 344

2 81 224 139 315 377

3 1 285 123 356 341

4 52 258 184 354 376

5 42 279 185 368 368

6 60 226 142 263 281

7 64 237 213 248 350

8 97 258 159 240 416

9 48 196 247 260 303

10 25 308 202 286 233

 Avg 252.3 174.5 300.8 338.9

No. Realization Prod 1 Prod 2 Prod 3 Prod 4

1 51 480 134 209 259

2 86 475 140 156 236

3 40 474 155 155 217

4 47 527 210 187 237

5 63 399 104 246 278

6 20 432 175 251 357

7 31 504 221 286 308

8 67 541 215 144 334

9 39 487 165 363 252

10 18 419 251 294 217

 Avg 473.8 177 229.1 269.5

No. Realization Prod 1 Prod 2 Prod 3 Prod 4

1 80 290 292 170 304

2 77 281 253 194 235

3 24 290 359 103 313

4 54 285 313 217 220

5 82 385 321 135 311

6 90 311 193 110 270

7 30 288 408 145 252

8 64 237 213 248 350

9 26 327 379 263 316

10 48 196 247 260 303

 Avg 289 297.8 184.5 287.4
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APPENDIX 3.B

Table 3.B.1: Signal values of the first 10-member set of geological cases calculated for the case with

20 cp polymer viscosity, with upper and lower bounds of the 95% confidence interval (CI+, CI-) for

each signal.
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Table 3.B.2: Discerning the process with 6 cp polymer viscosity from the case with 20 cp polymer

viscosity for the first 10-member set of geological realizations.
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Table 3.B.3: Summary of signal values of the second set of geological realizations with 20 cp polymer

viscosity, with upper and lower bounds of the 95% confidence interval (CI+, CI-) for each signal.
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Table 3.B.4: Discerning the process with 6 cp polymer viscosity from the case with 20 cp polymer

viscosity for the second set of geological realizations.

Table 3.B.5: Summary of signal values of the third set of geological realizations with 20 cp polymer

viscosity, with upper and lower bounds of the 95% confidence interval (CI+, CI-) for each signal.
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Table 3.B.6: Discerning the process with 6 cp polymer viscosity from the case with 20 cp polymer

viscosity for the third set of geological realizations.



4
DISCERNING IN-SITU PERFORMANCE OF

AN EOR AGENT IN THE MIDST OF

GEOLOGICAL UNCERTAINTY III: NORNE

FIELD

Considering the complexity of EOR processes and the inherent uncertainty in the reservoir

description, it is a challenge to discern the properties of the EOR agent in situ in the midst of

geological uncertainty. We propose a case study to illustrate this challenge: a polymer EOR

process designed for a synthetic complex reservoir model, the modified “Norne Field”.

Specifically, we statistically analyze a number of injection and production-well signals for

their ability to detect a failure of the EOR process in the midst of an uncertain geological

description of the reservoir. Our study includes both uncertainty in the EOR process itself and

in the reservoir description.

We consider two possible modes of failure of the EOR process. First, a mistake in the

screening and design phase of the polymer flood process causes a global reduction in

This chapter is from the submitted article: S. A. Fatemi, W. R. Rossen, 2021. Discerning In-Situ Performance of

an Enhanced-Oil-Recovery Agent in the Midst of Geological Uncertainty: III. Norne Field. SPE Reservoir

Evaluation & Engineering.
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polymer-slug viscosity throughout the reservoir. Second, subsurface thermal or chemical

instabilities cause polymer to progressively lose its in situ viscosity near the injectors. We

study different scenarios in which a polymer fails and by one or two modes try to discern this

failure by analyzing several signals at injection and production wells. We start with an

ensemble of reservoir models to reflect the range of possible geological structures honoring

the statistics of the initial geological uncertainties. We then use the Ensemble Kalman Filter

(EnKF) to update the initial reservoir ensemble by integrating the waterflood production data

over a period of 30 years. The updated reservoir models are used to simulate 30 years of

polymer injection. We allow that the polymer process might fail in situ (through the two

failure scenarios) and test whether the signals of this difference at injection and production

wells would be statistically significant in the midst of the geological uncertainty. Specifically,

we compare the deviation caused by loss of polymer viscosity to the scatter caused by the

geological uncertainty at the 95% confidence interval. In addition, we also try to distinguish

between the failure scenarios. Among the signals considered, rate of rise in the injection

pressure and incremental oil arrival time give reliable indications of whether the polymer

viscosity was maintained in situ, and if not, which mechanism caused the failure.

4.1 INTRODUCTION

Chemical EOR processes represent a relatively small fraction of commercially successful EOR

projects. This is in part due to uncertainty in predictions of processes (Sheng, 2011; Lake et

al., 2014). For polymer flooding, the long-term chemical performance and the integrity of

polymer viscosity is essential for the effectiveness of the process. The actual performance of

polymer in the reservoir can be uncertain in spite of thorough laboratory tests (Weiss and

Baldwin, 1985). Separate evaluation of the impacts of geological and process uncertainties

on the performance of an EOR process is important, because a process that did not achieve

the desired objectives in one formation might be successful in another field if it

demonstrates that it achieved its technical objectives.

Researchers have studied uncertainty in EOR process performance, and uncertainty in the

geological description, but not the two together. Previous research has examined uncertainty

in chemical flooding and CO2-EOR process performance parameters (Brown and Smith, 1984;

Denney ,2011; Stanley, 2014; Adepoju et al., 2017). Reservoir heterogeneity also plays an
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important role on the success of chemical enhanced oil recovery. Experimental data from

Craig (1993) and field data from Sorbie and Clifford (1988) are examples of studies that have

demonstrated the detrimental effects of reservoir heterogeneity on the performance of

oil-displacement processes. In this paper we investigate the impact of both sources of

uncertainty together in a statistical approach based on the workflow described in chapter 3

(Fatemi et al., 2017). In earlier studies, we used for illustration a layer-cake model with an

extreme level of geological uncertainty and then a fluvial-reservoir model. In that case study,

we started with an initial ensemble of 100 realizations and used a measure of similarity to

make groups of 10-member clusters with similar waterflood performance, to reflect reservoir

uncertainty at the start of the EOR process (Fatemi et al., 2019). Here we apply the workflow

to a case with a more-realistic geological model and a level of uncertainty more

representative of a field after a period of waterflood. We present the “Norne Field” case

study for this challenge (Lie et al., 2012). We start with 50 realizations of this reservoir model

to reflect the range of possible geological structures honoring the statistics of the initial

geological uncertainties. We then use the Ensemble Kalman Filter (EnKF) to update the initial

reservoir ensemble, integrating 30 years of waterflood production data. We use the updated

reservoir models to simulate polymer EOR process with an in situ viscosity of 18 cp.

For a polymer flood to meet its technical objectives, the polymer viscosity in situ (as one of

the more important properties of the polymer process design) must meet its technical design

value. To represent EOR process failure, we allow that the polymer process might fail in situ

through either or both of two different mechanisms. The first is a global viscosity loss, where

we stipulate that viscosity could be half of that intended, everywhere in the reservoir. The

second is a progressive viscosity loss upon injection, where polymer decays and loses its

viscosifying power over residence time in the reservoir. We allow that throughout the

reservoir polymer viscosity could be lost by either mechanism or a combination of both. We

test whether the signals of these differences at injection and production wells would be

statistically significant in the midst of the updated geological uncertainty, and whether the

signals can tell which mechanism of failure has occurred. Specifically, for a population of

reservoirs representing geological uncertainty, we compare the deviation caused by loss of

polymer viscosity to the scatter caused by the geological uncertainty using the statistical
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confidence-interval approach. Various signals are monitored to see which are the most

reliable indications of polymer viscosity loss and which can differentiate between different

polymer-viscosity-loss mechanisms.

4.2 NORNE FIELD

The Norne Field is located 200 km from the Norwegian coast in the Norwegian Sea. The

structure is approximately 3×9 km and sea depth in the area is 380 m; reservoir depth is

2500 - 2700 m. It was discovered in 1991 and is operated by Equinor. The Norne pilot project

is a benchmark case established for different studies supported by the IO Center at

Norwegian University of Science and Technology (NTNU) in the area of Integrated

Operations, i.e. Smart Fields, Fields of the Future, Digital Oil Fields, and e-Fields (Luo et al.,

2017). The relative location to the neighboring fields and the structure of Norne are shown in

Fig. 4.1.

Figure 4.1: The location and structure of the Norne Field (Adlam, 1995).

4.3 CASE-STUDY DESCRIPTION

We consider a modified version of the Norne Field benchmark case which is a two-phase

water and oil reservoir. It contains 46 grid blocks in the X-direction, 112 grid blocks in the

Y-direction and 22 layers with variable grid block-sizes of 80-100 m in X and Y-directions.

There are 9 vertical injectors and 5 vertical producers perforated in all layers of the model.

The horizontal log-permeability and porosity fields are generated for each layer based on a

Gaussian distribution. The porosity field has a mean of 0.25 and a standard deviation of 0.05.
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The mean value of the horizontal log-permeability field increases monotonically with depth

in each layer and has a Dykstra-Parson’s coefficient of 0.78. Vertical permeability is calculated

using a fixed ratio, kv / kh = 0.1. Fig. 4.2 shows the permeability field of the first realization of

the set and the well locations and Fig. 4.3 shows the permeability map of different layers of

the first realization. All producers operate at a bottom-hole pressure of 335 bar and the

injectors operate at a maximum injection rate of 6000 m3/day as the primary constraint and

a maximum bottom-hole pressure of 900 bar as a secondary constraint. We allow such a

large bottomhole pressure to account indirectly for increased injectivity resulting from

fracturing during polymer injection, which we do not represent explicitly in the simulations.

Production from the reservoir is simulated over a time horizon of thirty years of waterflood

followed by thirty years of polymer flood. The average reservoir pressure is initially set at 350

bar, and the initial water saturation is taken to be uniform over the reservoir at a value of 0.2.

We modified the oil viscosity in this case study to represent a candidate reservoir for a

polymer flood process (Dickson et al., 2010). The geological and fluid properties used in this

case study are presented in Table 4.1. The PVT properties and relative-permeability curves

are kept fixed while generating the data as well as running the Ensemble Kalman Filter.

Table 4. 1: Reservoir and fluid properties of the modified Norne Field

Property Value SI Units

Water density 1000 kg/m3

Oil density 900 kg/m3

Water viscosity 10-3 Pa.s

Oil viscosity 20×10-3 Pa.s

Water compressibility 10-5 1/bar

Oil compressibility 10-5 1/bar

Corey parameters

krwo 0.3

nw 2

kro 1

no 3

Swr 0.2

Sor 0.2
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Figure 4.2: Horizontal permeability field (in md) of realization number 1 and the top view of the well

locations. Black circles show the injectors and red triangles show the producers.

Figure 4.3: Horizontal permeability field (in md) for layers 1, 5, 12 and 22 of realization 1.
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4.3.1 REPRESENTATION OF UNCERTAINTY IN POLYMER-FLOOD PERFORMANCE

In this study, among the various mechanisms of polymer mobility in-situ we focus on two of

the more-important mechanisms that cause polymer failure in field applications and

represent this uncertainty in process performance as follows:

●A global viscosity loss, where polymer in-situ viscosity is a fraction of that intended

everywhere in the reservoir. This failure could be the result of mechanical degradation in

surface facilities or upon entering the perforations or a faulty translation from

laboratory-measured properties to properties in situ. In our simulations, we represent this

type of failure by injecting the polymer concentration corresponding to 9 cp (50% viscosity

loss) instead of that corresponding to 18 cp (based on the polymer-rheology algorithm in

the simulator). Since we exclude adsorption from our study, this change in polymer

concentration in the simulation does not retard the advance of the polymer bank.

● A progressive viscosity loss, where polymer viscosity in situ declines over time due to

decay of polymer molecules. Upon polymer injection, certain types of polymers will change

their molecular structure over time, e.g. increased degree of hydrolysis or chemical or

thermal degradation. This causes a change in polymer-slug viscosity over time (Sorbie and

Clifford, 1988). The viscosity loss is quantified as a function of time of polymer exposure to

the reservoir. The rate of viscosity decay is expressed using Eq. 4.1. At zero exposure time

the viscosity is the initial design polymer viscosity, while at very large exposure time the

viscosity tends to the water viscosity:

(4.1)
µ
𝑝

µ
𝑝
° = 𝑒

− 𝑡
τ +

µ
𝑤

µ
𝑝
° 1 − 𝑒

− 𝑡
τ( )

The left hand side of this equation is the ratio of polymer viscosity over time to the initial

injected polymer viscosity. The decay constant τ can be derived from experimental data. The

exposure time t can be tracked by introduction of a passive tracer in the injected fluid, with a

specific injection time. As the injected fluid moves through the reservoir the tracer carries

the value of its injection time. Specifically, the simulator calculates the average injection time

of polymer in each grid block from a material balance on polymer, accounting for injection

times of polymer flowing in from adjacent grid blocks and that resident in the grid block. The
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difference between the actual time and the average injected time is the exposure time for

polymer in the given grid block. Fig. 4.4 shows the map of the decay factor (for decay

constants of 10 years and 2 years) at the end of the polymer-flood simulation for one of the

realizations. In Fig. 4.4b, the greater exposure time of the injected polymer in the reservoir

(i.e., further from the injectors) causes more polymer decay and loss of viscosity. In selecting

this second mechanism of polymer viscosity loss, we distinguish between processes that

reduce polymer viscosity everywhere and those that effect in situ viscosity differently near

and far from the injection well. The latter group would include polymer adsorption. Our goal

is to determine whether the two types of process failure can be distinguished from their

effects on process performance.

Figure 4.4: Decay factor map in layer 22 of realization number 50: (a) τ = 10 year, (b) τ = 2 year. Deep

red corresponds to initial viscosity, and light blue to complete loss of viscosity.

4.4 REPRESENTING GEOLOGICAL UNCERTAINTY USING ENSEMBLE
KALMAN FILTER (ENKF)

After a period of waterflooding, the geological uncertainty is reduced. We carried out a

computer-assisted history match (Emerick and Reynolds, 2011) by means of the widely used
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Ensemble Kalman Filter (EnKF) to estimate the uncertainty in future performance. The

method has become a popular approach in the reservoir-simulation community for

history-matching, and many applications to field cases have been published (Lorentzen et al.,

2003; Evensen, 2009; Aanonsen et al., 2009; Chen and Oliver, 2010; Emerick and Reynolds,

2013; Zhang et al., 2017).

There are two main steps in the EnKF algorithm: the forecast step and the assimilation step.

We start with 50 realizations of this reservoir model to reflect the initial geological

uncertainty. There is no guarantee that an ensemble size of 50 is adequate to avoid problems

with spurious correlations (Emerick and Reynolds, 2011). Therefore we chose to implement

the EnKF with a distance-based covariance localization using the methodologies suggested by

Cohn (1999). EnKF with covariance localization yields better data matches and predictions

and avoids propagation of spurious correlations than with EnKF without localization (Pointe

and Ma, 2011).

The state vector includes a static-model parameter, horizontal log-permeability, along with

dynamic parameters, i.e. pressure and water saturation in every grid block. The simulated

data are generated synthetically by running the simulator with the reference model from a

stochastic realization of the field and adding noise to the values obtained to generate

measurements. The measurement errors are assumed Gaussian with zero mean, and

standard deviation was set as 15%. The measurements considered are:

-Producers: pressures, oil and water rates, water cut.

-Injectors: pressures, water-injection rates.

The EnKF was used to match the well data (5 producers and 9 injectors) every 2.5 years

during the waterflood period.
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4.4.1 HISTORY-MATCH RESULTS

The final history-match results are reported in Figs. 4.5 and 4.6. The grey lines represent the

simulation results of the prior ensemble (before the assimilation). The blue line indicates the

posterior ensemble mean and the red line is the synthetic truth. Fig. 4.7 compares the

permeability maps of the prior and posterior realizations for several layers of one of the

randomly selected realizations of the ensemble.

Figure 4.5: Water cut for the producers; grey is the prior ensemble waterflood, blue is the posterior

ensemble mean and red is the synthetic truth.

Figure 4. 6: Injection bottom-hole pressure for the injectors; grey is the prior ensemble waterflood,

blue is the posterior ensemble mean and red is the synthetic truth.
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Figure 4.7: Permeability maps of the prior and posterior estimates for several layers of realization 10.



4. DISCERNING IN-SITU PERFORMANCE OF AN EOR AGENT IN THE MIDST OF GEOLOGICAL
UNCERTAINTY III: NORNE FIELD 70

4.5 DEVELOPMENT SCENARIO AND PROCEDURE

We run the polymer-flood simulations using a proprietary fully implicit reservoir simulator

(Van Doren et al., 2011). In each simulation run, 30 years of water injection is followed by 30

years of polymer-slug injection. We identify five polymer-flood signals to study:

● Earliest polymer breakthrough time at any well, days (Polymer BT)

● Earliest oil-bank arrival time at any well after polymer injection, days (1st Oil Bank Arrival)

● Average rise in injection pressure six months after polymer flood starts, bar (Rise in Pinj)

● Average minimum oil cut (Min. Oil Cut)

● Cumulative oil production at the end of the polymer flood, m3 (Cum. Oil Prod.)

We allow that the polymer process might fail in-situ by either of the two mechanisms

described previously and study different scenarios of polymer process failure including cases

where either or both of the failure mechanisms are involved:

1. Polymer in situ viscosity 18 cp: decay constant either 10 Year or 2 Year

2. Decay constant 10 Year: polymer in situ viscosity either 18 cp or 9 cp

3. Polymer in situ viscosity 9 cp: decay constant either 10 Year or 2 Year

4. Polymer in situ viscosity 18 cp and decay constant 10 Year, vs. polymer in situ viscosity 9

cp and decay constant 2 Year

Scenarios 1 and 3 consider only a progressive viscosity loss while scenario 2 considers only a

global polymer viscosity loss. Scenario 4 is a combination of both polymer failure

mechanisms. We test whether the signals of the difference for each scenario at injection and

production wells would be statistically significant (using the 95% confidence interval) in the

midst of the geological uncertainty represented by the updated ensemble (after EnKF).

Specifically, ‘Polymer BT’ and ‘Oil Bank Arrival’ for the first of the five producers when it

occurs for the failure simulation run is compared against the population of signal values of

the first producer where it occurs for the design-viscosity case. For ‘Min. Oil Cut’, an average

value of the five producers is compared against the average signal values of the

design-viscosity representation. For ‘Cum. Oil Prod.’, the value is compared against the signal

value of the design-viscosity representation. During a field trial, best practice is to run 50
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simulations for 60 years of waterflood and utilize a decline-curve analysis to calculate an

expected value of cumulative oil. Here, we assume the variance is the same for the

cumulative oil production and the incremental oil during the polymer flood and consider a

cumulative oil production at the end of the polymer flood.

4.6 RESULTS

Figs. 4.8 through 4.11 show the plot of the signal analysis of the four scenarios, and Tables

4.2 through 4.5 show the upper and lower limits of each signal for that scenario and the

number of outliers detected in comparing the design and failure simulation runs.

Figure 4.8: Signal analysis of scenario #1: values of five signals for the design and failure cases. Blue

squares are the design signal values and red triangles are the failure signal values.
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Table 4. 2: Results of signal analysis of scenario #1.

Scenario#1: Global viscosity 18cp decay constant either 10 Year or 2 Year

Confidence
Interval

1st Polymer
BTTime (Year)

1st Oil Bank
Arrival Time

(Year)

Average Min
Oil Cut

Rise in Pinj, 6
Months

Cum. Oil Prod.
(m3)

Upper Limit 32.2462 31.2363 0.11066 0.817110686 81818165.07

Lower Limit 31.7617 30.2382 0.1009 0.676999931 72061754.93

Outliers
Detected (out
of 50)

12 50 49 50 50

Figure 4.9: Signal analysis of scenario #2: values of five signals for the design and failure cases. Blue

squares are the design signal values and red triangles are the failure signal values.
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Table 4. 3: Result of signal analysis of scenario #2.

Scenario#2: Decay constant: 10 Year, global viscosity either 18 cp or 9 cp

Confidence
Interval

1st Polymer
BTTime (year)

1st Oil Bank
Arrival Time

(year)

Average Min
Oil Cut

Rise in Pinj, 6
Months

Cum. Oil Prod.
(m3)

Upper Limit 32.2462 31.2363 0.11066 0.817110686 81818165.07

Lower Limit 31.7617 30.2382 0.1009 0.676999931 72061754.93

Outliers
Detected (out
of 50)

20 44 5 50 26

Figure 4.10: Signal analysis of scenario #3: values of five signals for the design and failure cases.

Blue squares are the design signal values and red triangles are the failure signal values.
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Table 4. 4: Result of signal analysis of scenario #3.

Scenario#3: Global viscosity 9cp, decay constant either 10 Year or 2 Year

Confidence
Interval

1st Polymer
BTTime (year)

1st Oil Bank
Arrival Time

(year)

Average Min
Oil Cut

Rise in Pinj, 6
Months

Cum. Oil Prod.
(m3)

Upper Limit 32.454 31.7384 0.10902 0.393582562 76187748.48

Lower Limit 31.943 31.038 0.09943 0.325993487 67515211.52

Outliers
Detected (out
of 50)

13 50 49 50 50

Figure 4.11: Signal analysis of scenario #4: values of five signals for the design and failure cases.

Blue squares are the design signal values and red triangles are the failure signal values.
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Table 4. 5: Result of signal analysis of scenario #4.

Scenario #4: Global viscosity: 18 cp and decay constant: 10 Year vs. Global viscosity: 9 cp and decay
constant: 2 Year

Confidence
Interval

1st Polymer
BTTime (year)

1st Oil Bank
Arrival Time

(year)

Average Min
Oil Cut

Rise in Pinj, 6
Months

Cum. Oil Prod.
(m3)

Upper Limit 32.2462 31.2363 0.11066 0.817110686
81818165.07

Lower Limit 31.7617 30.2382 0.1009 0.676999931
72061754.93

Outliers
Detected (out
of 50)

7 50 50 50 50

In all scenarios, ‘1st Oil Bank Arrival Time’ and ‘Rise in Pinj
’ are reliable indicators of a failed

polymer flood process (irrespective of the mechanism involved) in almost all of the cases. In

scenarios 1 and 3 where only one decay mechanism is involved, loss of viscosity can be

discerned by the two mechanism mentioned above as well as the ‘Min. Oil Cut’ signal and

‘Cum. Oil Prod’. This suggests we can tell what mechanism caused the in situ viscosity loss

between the two. ‘1st polymer breakthrough time’ was not a reliable indicator of in situ

polymer loss in this case study.

4.7 SUMMARY AND CONCLUSIONS

In this case study, we consider a realistic reservoir geological description and start with an

initial ensemble of realizations that could be a candidate to undergo polymer-flood process.

We then perform a history-match using EnKF to assimilate the 30 years of waterflood data to

update the prior ensemble. We then simulate 30 years of polymer flood on the updated

ensemble for different scenarios with two mechanisms of polymer in situ viscosity loss. We

study five signals to discern in situ polymer viscosity loss in the midst of geological

uncertainty. In the event of a progressive decay of polymer viscosity we can discern a

polymer flood failure in the midst of geological uncertainties using the ‘min. oil cut’ signal.

‘1st oil bank arrival time’ and ‘rise in Pinj
’ are reliable signals of viscosity loss analysis for both

mechanisms. ‘Cum. oil prod.’ is a reliable signal for scenarios 1, 3 and 4 but not scenario 2

where there is only a global polymer viscosity loss.
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5
CONCLUSIONS AND RECOMMENDATIONS

In this chapter we first provide general conclusions and observations from this research and follow

with specific conclusions of each chapter of the thesis. Finally, we present a few recommendations

to continue this research.

5.1 CONCLUSIONS

An enhanced-oil-recovery (EOR) pilot test has multiple goals, among them to demonstrate oil

recovery, verify the properties of the EOR agent in-situ, and provide the information needed for

scale-up to an economic process. Uncertainty remains a matter of concern regarding the actual

performance of an EOR agent in the reservoir despite extensive laboratory and field scale tests for

the compatibility and the efficiency of the injected chemical, such as in-situ viscosity of a polymer

agent. It is necessary to evaluate the impacts of geological as well as EOR process uncertainties on

the performance of an EOR process to better examine if the process achieved its technical

objectives. Given the complexity of EOR processes and the inherent uncertainty in the reservoir

description, it is a challenge to discern the properties of the EOR agent in-situ in the midst of

geological uncertainty. This project aims to determine whether one can discern the technical

success of a polymer EOR process from available reservoir pressure and rate signals, given the

inherent uncertainty in the reservoir geological description. We analyze three case studies of

increasing complexity to illustrate this challenge and identify the responsive signals to discern

in-situ performance of a polymer agent amid the geological uncertainty.

78
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5.1.1 LAYER-CAKE MODEL

Chapter 2 presents a workflow and a simple initial study of a polymer flood to illustrate the issues

involved in attempting to distinguish EOR process performance from well data in the midst of

geological uncertainty. This initial test case involves an especially simple reservoir description: a

two-dimensional layer-cake reservoir with injection from one side and production from the other.

Different spatial arrangements of high- and low-permeability layers are assumed. EOR process

failure is represented by a fivefold reduction in polymer-solution viscosity from the expected value.

Among the signals considered here, the rate of rise in injection pressure upon polymer injection

and maximum pressure in the injection well give the most reliable indications of whether polymer

viscosity was maintained in-situ. Given the chances of fracturing of the injection well (Seright et al.,

2009), injection pressure could be an unreliable indicator of in-situ polymer viscosity injection,

especially if the extent of this fracturing is unknown. In that case a diagnostic

fracture-injection/falloff test might substitute for the well pressure data (Craig and Jackson, 2017).

Among the other signals considered, it was hardest to distinguish failure of the EOR process in

reservoirs that, among the ensemble of equi-probable reservoirs, were relatively homogeneous.

For these cases the waterflood by itself performed relatively well; the failure of the EOR process

was hard to distinguish from the possibility of greater reservoir heterogeneity. Failure was easiest

to identify if the actual reservoir was among the more heterogeneous cases considered possible. In

those cases, the additional loss in performance from failure of the EOR process produced a result

outside the confidence interval.

Previous studies that considered the effect of geological uncertainty alone on EOR process

performance, but not the possibility of technical failure of the process itself, establish the range of

outcomes for a process that performs in-situ as designed. In effect, they establish the confidence

interval beyond which a failed EOR process could be identified.

The range of geological uncertainty in this initial case study could be viewed as extreme. We

assume that injectivity is known but that very little is known about the extent of reservoir

heterogeneity, even at the wells. On the other hand, the extent of failure of the polymer in-situ,

i.e. a loss of viscosity by a factor of 5, could be considered extreme as well. Moreover, we consider

a two-well situation, whereas in a multi-well setting the effect of viscosity changes may result in

different signals in the different wells.
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5.1.2 FLUVIAL RESERVOIR (EGG MODEL)

Chapter 3 extends the work of Chapter 2 by including a more-realistic geological description and

more injection and production wells. In addition, the initial range of geological uncertainty is

conditioned to 10 years of waterflood, in that only reservoirs with roughly similar breakthrough

times in the production wells are carried forward in the analysis. We assume that polymer viscosity

in situ could be 30% of that expected.

In this case study, signals are more responsive than in the first case study, mainly due to a more

realistic (less extreme) geological variability. Results of this study verify the conclusions of the

previous chapter. Changes in polymer breakthrough time are a reliable indicator of failure of

polymer viscosity in situ in this case. The rate of rise of injection-well pressure during polymer

injection is also a reliable indicator, though a diagnostic fracture-injection/falloff test may be

necessary to verify the reliability of the injection-pressure data (Craig and Jackson 2017).

Moreover, in this case study, other signals, such as a combination of ‘time of initial increase in oil

production rate’, ‘minimum oil cut before the oil bank’ and ‘final cumulative oil recovery,’ give a

statistically significant indication of loss of polymer viscosity in situ in the majority of the cases.

5.1.3 NORNE FIELD MODEL

Chapter 4 extends the work of the previous chapters by including a realistic reservoir geological

description and two distinct mechanisms of EOR process failure. Specifically, the first mechanism

results in a global loss of viscosity, and the second in a progressive loss of viscosity with increasing

distance from the injection well. The second class of failure could reflect chemical degradation of

polymer, the process we modeled explicitly, or, roughly, an unexpectedly high level of adsorption

slowing or preventing propagation of polymer far from the injection well. The Ensemble Kalman

Filter is applied to 30 years of waterflood history to update the initial ensemble of geological

realizations. We then allow that the polymer process might fail in-situ by either of the two failure

mechanisms and examine scenarios where either or both of the failure mechanisms are involved.

Specifically, polymer viscosity everywhere could be 50% of that intended, and/or polymer viscosity

could degrade faster than expected, with a time constant of 2 years instead of the expected time

constant of 10 years.

In all scenarios, ‘1st oil bank arrival time’ and ‘rise in Pinj
’ are reliable indicators of a failed polymer

flood process (by either mechanism) in almost all of the cases. Faster decay of polymer viscosity,

without the global loss of viscosity, results in statistically significant deviation from the expected
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values of the two signals mentioned above as well as in ‘min. oil cut’ and ‘cum. oil prod.’ A case of

global viscosity loss but not accelerated decay shows deviation in the first two signals but not in

‘min. oil cut’ and ‘cum. oil prod.’ This suggests one can tell which failure mechanism failed in situ

by comparing these four signals. ‘1st polymer breakthrough time’ was not a reliable indicator of in

situ polymer loss by either mechanism in this case study.

5.2 RECOMMENDATIONS

We recommend extension of our analysis to different EOR methods, such as surfactant flooding,

foam processes or CO2-EOR, and ways these processes might fail. The challenge would be to

distinguish a successful EOR process from the various types of failure for that process by analyzing

the well-pressure and rate data to test whether the measurements send a signal that is statistically

significant as an indication of failure. Ultralow interfacial tension (IFT) or low residual oil saturation

for the surfactant process, a given mobility or injectivity for a foam process and minimum

miscibility pressure, degree of swelling, or absence of asphaltene deposition for a CO2-EOR process

could be technical criteria for success of the EOR agent in-situ. EOR process description often

involves a large number of parameters, so we would recommend an approach to other EOR

processes like that used here for polymer flooding: a limited number of parameters representing

process performance as simply as possible.

The approach should also be extended to additional methods of reservoir monitoring, which are

under continual development and improvement, such as cross-well electromagnetic readings,

cross-well seismic, well temperature readings, etc.

Reservoir description is optimized using techniques such as ensemble Kalman filter as in Chapter 4

(Aanonsen et al., 2009). A more-direct, but much more complicated, approach to determining EOR

process parameters simultaneously with reservoir description would involve optimizing both EOR

process parameters and reservoir description simultaneously, to obtain the best fit to EOR

field-trial results. Production data from before the field trial should be included as well, since they

also reflect reservoir description. A somewhat simpler approach would find optimal EOR process

parameters from a fit to field-trial data using a population of reservoirs representing the range of

descriptions based on production data before the field trial. This would exclude insights from the

trial itself, which might modify the reservoir description.
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SUMMARY

Chemical floods such as polymer floods are enhanced oil recovery (EOR) techniques that have been

proven at both laboratory and field scale to increase sweep and/or displacement efficiency. Even

though the compatibility and the efficiency of the injected chemicals are thoroughly tested and

validated in the laboratory, uncertainty still remains regarding their actual performance in the

reservoir. These uncertainties can result from the differences in the scale of investigation (core scale

to field scale), lack of adequate understanding of geological, mineralogical and petrophysical

properties of the formation, and the long-term performance of the chemical slug in the reservoir.

Therefore, any EOR field trial can produce unexpected results due to a misunderstanding of either

the geological description of the reservoir or of the EOR process. Separate evaluation of the impacts

of geological and process uncertainties on the performance of an EOR process is important to better

demonstrate if the process achieved its technical objectives. Previous research has examined

uncertainty in chemical flooding performance parameters as well as effects of geological

heterogeneity and uncertainty on EOR process performance, but not the two together. In this thesis,

to discern the performance of the EOR agent in-situ in the midst of geological uncertainty, we

propose a general workflow and present three case studies for the challenge. The workflow could be

extended to different EOR processes by including mechanisms of technical failure specific to that

process, e.g. losing in-situ viscosifying power of the polymer agent during a polymer flood process.

In this dissertation, we first study a polymer EOR process in a 2D layer-cake reservoir

where the polymer is designed to have a viscosity of 60 cp in-situ. In the first study, using a

simplified representation of geological uncertainty, we allow that the polymer process

might fail in-situ and viscosity could be only 20% of that intended. This failure could be the

result of mechanical degradation in surface facilities or on entering the perforations, faulty

translation from laboratory-measured properties to properties in-situ, or faulty

characterization of resident reservoir brine. Several of these adverse events would give

different polymer properties in different regions of the reservoir. In the initial study, we

assume that throughout the reservoir polymer viscosity is everywhere a fixed fraction of

that intended. We test whether the signals of this failure at the injection and production

wells would be statistically significant in the midst of the geological uncertainty in the

reservoir description. For a population of reservoirs representing a range of geological
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uncertainty, we compare the deviation caused by loss of polymer viscosity to the scatter

caused by the geological uncertainty using the confidence interval statistical approach.

Various signals are then monitored to see which are the most reliable indications of

whether a polymer viscosity was maintained in-situ. We further investigate the statistical

significance of each signal. We also propose a workflow for such an evaluation that could

be extended to any EOR process [chapter 2].

For a more realistic case study, we apply the workflow to a case with a more-sophisticated

geological model (based on the “modified Egg Model”) for a polymer EOR process

designed for a 3D fluvial-deposit water-oil reservoir. The polymer is designed to have a

viscosity of 20 cp in situ. We start with 100 realizations of this 3D reservoir to reflect the

range of possible geological structures honoring the statistics of the initial geological

uncertainties. Next we group the realizations on the basis of a measure of similarity that

reflects the interaction between heterogeneity and the reservoir flow mechanisms. After

five years of waterflooding, we rank the reservoir models into different groups of 10

realizations, out of the initial 100 equi-probable realizations, with similar water

breakthrough dates at the four production wells. Each group of realizations thus

represents reservoirs with roughly similar waterflood histories. As a group they represent

the reduced geological uncertainty remaining after this period of waterflooding. To

represent EOR process failure, we allow that the polymer process might fail in situ and

viscosity could be 30% of that intended. We then simulate five years of polymer injection.

We assume that throughout the reservoir polymer viscosity is less than the design value.

We test whether the signals of this difference at injection and production wells would be

statistically significant in the midst of the geological uncertainty: in other words, whether

the process failure would be clearly visible in the midst of reservoir uncertainty [chapter 3].

Based on a real reservoir and a level of uncertainty more representative of a field after a

period of waterflood, we apply the workflow to the the “Norne Field”. We expand on

previous studies by also testing the ability to distinguish between two different modes of

process failure. We start with 50 realizations of this reservoir model to show the variety of

possible fluvial-deposit scenarios for the geological description. We then use the

Ensemble Kalman Filter (EnKF) to update the initial reservoir ensemble, integrating 30

years of waterflood production data. We use the updated reservoir models to simulate a

polymer EOR process with an in-situ viscosity of 18 cp. To represent EOR process failure,
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we allow that the polymer process might fail in situ through either or both of two different

mechanisms. The first is a global viscosity loss, where we stipulate that viscosity could be

half of that intended, everywhere in the reservoir. The second is a progressive viscosity

loss upon injection, where polymer decays and loses its viscosifying power over time (and

therefore distance from the injection well). This second mechanism represents process

where polymer viscosity is maintained near the injection well but not far away. These

processes would reflect chemical degradation of polymer in situ or, more broadly, polymer

absorption. We test whether the signals of these differences at injection and production

wells would be statistically significant in the midst of the updated geological uncertainty,

and whether the signals can distinguish which mechanism of failure has occurred [chapter

4].
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Chemische verdringingstechnieken zoals polymeer-verdringingstechnieken zijn methodes voor

verbeterde oliewinning (“enhanced oil recovery”, EOR) die op laboratorium- en veldschaal zijn

bewezen om de verdringing op veldschaal (“sweep”) en / of op porieschaal te verhogen. Hoewel de

compatibiliteit en de efficiëntie van de geïnjecteerde chemicaliën grondig worden getest en

gevalideerd in het laboratorium, blijft er nog steeds onzekerheid over hun werkelijke prestaties in

het reservoir. Deze onzekerheden kunnen het gevolg zijn van de verschillen in de onderzoeksschaal

(kernschaal tot veldschaal), gebrek aan voldoende kennis van de geologische, mineralogische en

petrofysische eigenschappen van de formatie, en de langetermijnprestaties van de geïnjecteerde

chemicaliën in het reservoir. Daarom kan elke EOR-veldproef onverwachte resultaten opleveren als

gevolg van een verkeerd begrip van de geologische beschrijving van het reservoir of van het

EOR-proces. Afzonderlijke evaluatie van de effecten van geologische en procesonzekerheden op de

prestaties van een EOR-proces is belangrijk om beter aan te tonen of het proces zijn technische

doelstellingen heeft bereikt. Eerder onderzoek heeft de onzekerheid in de prestatieparameters van

chemische verdringingstechnieken onderzocht, evenals de effecten van geologische heterogeniteit

en onzekerheid op de EOR-procesprestaties, maar niet de twee samen. In dit proefschrift stellen we

een algemene werkwijze voor en presenteren we drie case studies om de prestatie van de

EOR-agent in-situ te kwantificeren onder aanwezigheid van geologische onzekerheid. De workflow

zou kunnen worden uitgebreid tot verschillende EOR-processen door mechanismen voor technische

storingen op te nemen die specifiek zijn voor dat proces, bijv. verlies van in-situ viscosificerend

vermogen van het polymeermiddel tijdens een polymeervloeistofproces.

In dit proefschrift bestuderen we eerst een polymeer EOR-proces in een 2D-l gelaagd reservoir

waarbij het polymeer is ontworpen om een   viscositeit te hebben van 60 cp in-situ. In de eerste

studie, met behulp van een vereenvoudigde weergave van geologische onzekerheid, laten we toe dat

het polymeerproces in-situ kan mislukken en dat de viscositeit slechts 20% van de beoogde

viscositeit kan zijn. Dit falen kan het gevolg zijn van mechanische fouten in procesinstallaties aan

het oppervlak of bij het binnendringen van de perforaties, foutieve vertaling van in het laboratorium

gemeten eigenschappen naar eigenschappen in-situ, of foutieve karakterisering van het zoute water

(pekel) in het reservoir. Deze nadelige effecten zullen mogelijkerwijs verschillende

polymeereigenschappen geven in verschillende gebieden van het reservoir. In de eerste studie gaan

we ervan uit dat de viscositeit van het polymeer overal in het reservoir een vaste fractie is van de

beoogde fractie. We testen of de signalen van dit falen bij de injectie- en productieputten statistisch

97



98 SAMENVATTING

significant zouden zijn temidden van de geologische onzekerheid in de reservoirbeschrijving. Voor

een populatie van reservoirs die een reeks geologische onzekerheden vertegenwoordigen,

vergelijken we de afwijking veroorzaakt door verlies van polymeerviscositeit met de verstrooiing

veroorzaakt door de geologische onzekerheid met behulp van de statistische benadering van het

betrouwbaarheidsinterval. Verschillende signalen worden vervolgens gevolgd om te zien welke de

meest betrouwbare indicaties zijn of een polymeerviscositeit in-situ werd gehandhaafd. We

onderzoeken verder de statistische significantie van elk signaal. We stellen ook een werkwijze voor

een dergelijke evaluatie voor die kan worden uitgebreid tot elk EOR-proces [hoofdstuk 2].

Voor een meer realistische casestudy passen we de workflow toe op een casus met een meer

geavanceerd geologisch model (gebaseerd op het “gemodificeerde eiermodel”) voor een polymeer

EOR-proces ontworpen voor een 3D-water-oliereservoir in een sterk heterogeen (fluviatiel)

reservoir. Het polymeer is ontworpen om in-situ een viscositeit van 20 cp te hebben. We beginnen

met 100 realisaties van dit 3D-reservoir om de reeks mogelijke geologische structuren weer te

geven die voldoen aan de statistiek van de aanvankelijke geologische onzekerheden. Vervolgens

groeperen we de realisaties op basis van een maatstaf van gelijkenis die de interactie tussen

heterogeniteit en de reservoirstromingsmechanismen weerspiegelt. Na vijf jaar waterinjectie

rangschikken we de reservoirmodellen in verschillende groepen van 10 realisaties, van de eerste

100 redelijk waarschijnlijke realisaties, met vergelijkbare waterdoorbraakdata bij de vier

productieputten. Elke groep realisaties vertegenwoordigt dus reservoirs met ongeveer dezelfde

waterinjectiegeschiedenis. Als groep vertegenwoordigen ze de verminderde geologische

onzekerheid die overblijft na deze periode van waterinjectie. Om het mislukken van het

EOR-proces weer te geven, staan   we toe dat het polymeerproces in-situ kan mislukken en dat de

viscositeit 30% van de beoogde viscositeit kan zijn. Vervolgens simuleren we vijf jaar

polymeerinjectie. We nemen aan dat de viscositeit van het polymeer in het hele reservoir lager is

dan de ontwerpwaarde. We testen of de signalen van dit verschil bij injectie- en productieputten

statistisch significant zouden zijn temidden van de geologische onzekerheid: met andere woorden,

of het procesfalen duidelijk zichtbaar zou zijn temidden van reservoironzekerheid [hoofdstuk 3].

Op basis van een echt reservoir en een niveau van onzekerheid dat representatiever is voor een veld

na een periode van verdringing, passen we de workflow toe op het “Norne Field”. Bovendien testen

we het vermogen om onderscheid te maken tussen twee verschillende vormen van procesfalen. We

beginnen met 50 realisaties van dit reservoirmodel om de verscheidenheid aan mogelijke

’fluviatiele scenario's voor de geologische beschrijving te laten zien. Vervolgens gebruiken we het

Ensemble Kalman-filter (EnKF) om het oorspronkelijke reservoirensemble bij te werken, waarbij

we 30 jaar aan productiegegevens over waterinjectie integreren. We gebruiken de bijgewerkte
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reservoirmodellen om een   polymeer EOR-proces te simuleren met een in-situ viscositeit van 18 cp.

Om het mislukken van het EOR-proces weer te geven, staan   we toe dat het polymeerproces in-situ

kan mislukken via een of beide van twee verschillende mechanismen. De eerste is een globaal

viscositeitsverlies, waarbij we bepalen dat de viscositeit de helft van de beoogde viscositeit kan zijn,

overal in het reservoir. De tweede is een progressief viscositeitsverlies bij injectie, waarbij polymeer

vervalt en zijn viscositeitsvermogen verliest na verloop van tijd (en dus afstand van de injectieput).

Dit tweede mechanisme vertegenwoordigt een proces waarbij de viscositeit van het polymeer wordt

gehandhaafd nabij de injectieput maar niet op grotere afstand van die put. Deze processen zouden

chemische afbraak van polymeer in situ weerspiegelen of, breder, adsorptie van oppervlakteactieve

stoffen. We testen of de signalen van deze verschillen bij injectie- en productieputten statistisch

significant zouden zijn temidden van de geactualiseerde geologische onzekerheid, en of de signalen

kunnen onderscheiden welk faalmechanisme is opgetreden [hoofdstuk 4].
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