

A Survey on Scenario Theory, Complexity, and Compression-Based Learning and Generalization

Rocchetta, Roberto ; Mey, Alexander; Oliehoek, Frans

DOI

10.1109/TNNLS.2023.3308828

Publication date

Document Version Final published version

Published in

IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)

Rocchetta, R., Mey, A., & Oliehoek, F. (2023). A Survey on Scenario Theory, Complexity, and Compression-Based Learning and Generalization. *IEEE Transactions on Neural Networks and Learning Systems*, *35*(12), 16985-16999. https://doi.org/10.1109/TNNLS.2023.3308828

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

A Survey on Scenario Theory, Complexity, and Compression-Based Learning and Generalization

Roberto Rocchetta[®], Alexander Mey[®], and Frans A. Oliehoek[®]

Abstract—This work investigates formal generalization error bounds that apply to support vector machines (SVMs) in realizable and agnostic learning problems. We focus on recently observed parallels between probably approximately correct (PAC)-learning bounds, such as compression and complexitybased bounds, and novel error guarantees derived within scenario theory. Scenario theory provides nonasymptotic and distributional-free error bounds for models trained by solving data-driven decision-making problems. Relevant theorems and assumptions are reviewed and discussed. We propose a numerical comparison of the tightness and effectiveness of theoretical error bounds for support vector classifiers trained on several randomized experiments from 13 real-life problems. This analysis allows for a fair comparison of different approaches from both conceptual and experimental standpoints. Based on the numerical results, we argue that the error guarantees derived from scenario theory are often tighter for realizable problems and always yield informative results, i.e., probability bounds tighter than a vacuous [0, 1] interval. This work promotes scenario theory as an alternative tool for model selection, structural-risk minimization, and generalization error analysis of SVMs. In this way, we hope to bring the communities of scenario and statistical learning theory closer, so that they can benefit from each other's insights.

Index Terms—Agnostic learning, compression, generalization theory, probably approximately correct (PAC), scenario optimization, support vector classifiers.

NOMENCLATURE

$\mathcal{D}_m\subseteq \Delta^m$	Dataset of size m .
$\delta = (x, y) \in \mathcal{D}_m$	Sample (features and a label) in \mathcal{D}_m .
$f \in \mathcal{F}$	Function/model in a set of models.
$\theta \in \Theta$	Parameter vector in a set of
	parameters.
$f^{\star}, \theta^{\star}$	Optimized model/parameters.
$\mathcal{A}:\mathcal{D}_m o\mathcal{F}$	Data-driven learning algorithm.

Manuscript received 9 March 2022; revised 17 May 2023 and 16 August 2023; accepted 19 August 2023. Date of publication 13 September 2023; date of current version 3 December 2024. This work was supported in part by the H2020-ECSEL under Project 101007319 AI-TWILIGHT and Project NWA.1160.18.238 PrimaVera and in part by the European Research Council (ERC) under Project 758824 INFLUENCE. (Corresponding author: Roberto Rocchetta.)

Roberto Rocchetta is with the Intelligent Energy Systems Team, Dipartimento ambiente costruzioni e design (DACD)-Istituto sostenibilità applicata all'ambiente costruito (ISAAC), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland (e-mail: roberto.rocchetta@supsi.ch; roberto.rocchetta8@gmail.com).

Alexander Mey is with the Department of Mathematics and Computer Science, Technical University of Eindhoven, 5612 Eindhoven, The Netherlands. Frans A. Oliehoek is with the Department of Intelligent Systems, Delft University of Technology, 2628 Delft, The Netherlands.

Digital Object Identifier 10.1109/TNNLS.2023.3308828

$\mathfrak{C}:\Delta^m o\Delta^{d_{\operatorname{cp}}}$	Data compression rule.
$y \in \mathcal{Y}$	Label sample in an output set.
$\mathcal{O}(\cdot), \Theta(\cdot), \Omega(\cdot)$	Big-O notation [1].
$\lceil r \rceil$	Smallest integer larger than $r \in \mathbb{R}$.
$\lfloor r \rfloor$	Largest integer smaller than $r \in \mathbb{R}$.
$R(\theta) = R(f(\theta))$	True risk for model $f(\theta)$.
$\hat{R}(\theta) = \hat{R}(f(\theta))$	Empirical risk estimate for $f(\theta)$.
$V(\theta) = V(f(\theta))$	True margin violation probability for
	$f(\theta)$.
$\hat{V}(\theta) = \hat{V}(f(\theta))$	Empirical violation probability for
	$f(\theta)$.
ϵ	Threshold risk/robustness level.
$\underline{\epsilon},\overline{\epsilon}$	Lower and upper error bounds.
β	Confidence level.
$J(\theta), l(\theta)$	Cost and loss functions.
$n_{ heta}$	Number of model parameters.
n_x	Number of input features.
ζ	Slack variables.
(w,b)	Separating hyperplane parameters.
${\mathcal Z}$	Hilbert space.
$\psi(x)$	Kernel function.
$\mathcal{S}^{\star} \subseteq \mathcal{D}_m$	Support set of minimum cardinality.
$s_m^{\star} = \mathcal{S}^{\star} $	number of support constraints.
d	Vapnik–Chervonenkis (VC) dimensions
	(model complexity).
$d_{ m cp}$	Size of the compression.
$\gamma_{ m CX}$	Tightness of complexity bounds.
$\gamma_{ ext{SB}}$	Tightness of scenario bounds.
$\gamma_{ ext{CP}}$	Tightness of compression bounds.

I. INTRODUCTION

THE generalization error, also known as risk or out-of-sample error, quantifies the ability of models to predict previously unseen data and plays a fundamental role in model selection for machine learning (ML) [2]. In practice, ML models are often chosen by minimizing an empirical estimate of their generalization error, for instance, applying K-fold cross validation [3], [4], bootstrapping [5], jackknife [6], and leave-one-out methods [7]. These empirical approaches are well established among practitioners and applied in diverse fields, including text classification [8] and categorization [9], clustering [10], language processing [11], object [12] and fraud detection [13], unbalanced learning [14], and pruning [10], and in distributed, federated, multitask and active learning [15], [16], [17], [18]. However, empirical model selection methods

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

can be computationally expensive, especially for complex models and large datasets, and the need to estimate the generalization error inevitably reduces the data available to train the models, which can be an issue under data scarcity. If a severe lack of training examples affects the study, for instance, when a dataset is highly imbalanced or small, cross validation and bootstrapping methods may result in unsatisfactory performance [19].

Unlike empirical model selection methods, formal generalization error bounds are mathematically derived and do not require test samples to estimate the generalization error. Instead, the generalization error can be bounded without using training data for empirical testing, speeding up the training and model selection. Over the years, significant research has focused on analyzing the theoretical properties of formal generalization error bounds, and recently, Martin et al. [20] proposed a data-free method for large-scale neural networks that only uses spectral proprieties of the weights to analyze the model generalization. Yue et al. [21] introduced a sharpness-aware learning rate scheduler to improve generalization by dynamically updating the learning rate of gradientbased optimizers, and Wu et al. [22] studied stability and convergence properties of generalization risk bounds for a particular kind of regularized distributed learning algorithms.

In this context, the probably approximately correct (PAC)learning framework [23] is one of the most widely applied to study the generalization error within the statistical learning literature and prescribe formal generalization error bounds for ML models. In the PAC-learning framework, a learner receives samples and must select a function (called the hypothesis) from a certain class of possible functions with good generalization properties. This framework has been used to compute guarantees for many models, including support vector models [24], graph kernels [25], majority voting classifiers [26], multiview learners [27], and on domain adaptation and [28] multiclass domain adaptation problems [29], and on general classes of Boolean functions [30]. Several types of statistical learning bounds exist, and they can be based on the Bayes theorem in the PAC-Bayes framework [23], on an indicator of the model's complexity [31], or on the model's ability to compress the data [32]. Similar to PAC-learning theory, scenario theory studies formal generalization error bounds for data-driven decision-making problems. Recently, error bounds introduced by Campi and Garatti [33] have been applied to anomaly detection [34], [35], interval regression [36], and multiagent learning [37], to construct predictive belief functions from data [38], to study majority voting classifiers [39], and to robustly design controllers and other systems [40], [41], [42]. Based on the reviewed literature, only a few works used arguments from scenario theory to obtain generalization bounds for ML models, such as support vector machine (SVM), e.g., the works of Campi and Garatti [33], [43] that recently introduced formal scenario bounds for various models, including SVM.

While attempts have been made to connect scenario theory and statistical learning theory [43], the literature is missing a clear comparison of the tightness of the bounds, especially from a pragmatic and quantitative/numerical standpoint. This work tries to fill this gap by proposing a numerical comparison of formal generalization error bounds from different theories. We focus on data-realizable and agnostic learning problems¹ and review and discuss underlying assumptions and theorems. In Fig. 1, we summarize the main concepts we review in this article. The comparison of the tightness of the bounds is proposed on randomized experiments from 13 real-world datasets. For synthesis and clarity's sake, we focus our analysis on binary SVM classifiers, both for soft-margin (agnostic) and hard-margin (data-realizable) cases. Note that, while the numerical analysis in this work focuses on SVM classifiers only, the reviewed theories apply to other ML models and to general classes of agnostic and realizable learning problems. Hence, one of the main contributions of this work is a fair comparison of different generalization theories and a numerical evaluation of the tightness of formal generalization error

The numerical results suggest that scenario bounds are often tighter, particularly when the generalization error is small, and better reflect the true risk for changing hyperparameters. With this, we hope to bring scenario theory forward to the artificial intelligence (AI) community and connect it to known results from statistical learning theories, such as the one based on the concepts of data compression and model complexity. Likewise, we hope that we present work done in statistical learning theory in an approachable manner for scientists working in scenario theory, so that they may take some inspiration for their work.

A. Related Literature

This survey is motivated by recent theoretical results on the error of support vector models [33] and an expression of the research community on the need to investigate equivalences between different generalization error theories [44], [45], [46]. Various researchers have investigated error bounds from different theories to comprehend the relationship between the complexity of learning models and formal generalization guarantees achievable under different data availability scenarios. Blumer et al. [44] and David et al. [46] demonstrated the equivalence between PAC learnability and compressibility, while Chase and Freitag [47] established a new connection between PAC learning and stability theory. Bousquet and Elisseeff [48] focused on various online learning settings, while Yarullin and Objection [45] investigated an equivalence between PAC learning and query-learning bounds. Margellos et al. [49] made the first attempt to connect compression learning with scenario theory and focused on bounding the out-of-sample error probability of realizable data-driven decision-making problems. Their results show that the issue of providing guarantees on the constraints violation probability reduces to a learning problem for an appropriately chosen algorithm that enjoys compression learning properties. Importantly, they show that ideas from scenario theory

¹See Section II-C for a definition of realizable and agnostic learning problems.

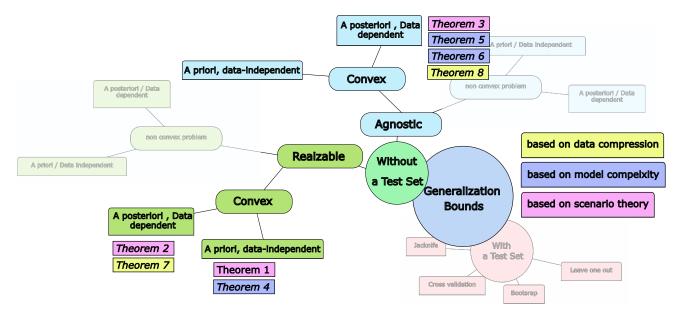


Fig. 1. Scheme summarizing the reviewed generalization error bounds and theorems. Note that our paper focuses on formal error bounds that do not require empirical estimation of the risk from a test set and primarily focused on scenario bounds both for agnostic and reliable settings.

can strengthen or relax the consistency assumption to analyze learnability properties [49]. Romao et al. [50] combined results from scenario theory and compression learning to derive tight error bounds for the solutions of realizable convex algorithms with discarded samples.

None of the reviewed works compared scenario bounds for agnostic learning with complexity-based and compressionbased error bounds. In addition, the literature lacks a numerical comparison of the tightness of the formal error bounds under different data availability conditions. Therefore, further research is needed to link scenario, complexity, and compression-learning theory for realizable and agnostic learning settings, to identify the strengths and weaknesses of different approaches, and to popularize theoretical error bounds among practitioners. This overview demonstrates the need for further research in the field and provides additional evidence supporting the relevance of this work. The rest of this article is organized as follows. Section II presents the mathematical background, and Section III reviews theories for prescribing generalization error bounds without a test set. A numerical evaluation of the tightness of the bounds on 13 datasets is carried out in Section V. Section VI closes this article with a discussion of the results, remarks, and conclusions.

II. PRELIMINARIES

Let us consider a dataset $\mathcal{D}_m = \{\delta_i\}_{i=1}^m$ with m independent and identical distributed (i.i.d.) samples drawn from an unknown probability space $(\Delta, \mathfrak{F}, \mathbb{P})$, comprising an event space Δ , equipped with a σ -algebra \mathfrak{F} , and a fixed probability measure $\mathbb{P}: \mathfrak{F} \to [0,1]$. The probability \mathbb{P} is assumed unavailable, which is generally the case in practice. A sample $\delta \in \mathcal{D}_m$ will be also called a *scenario*.

A. Supervised Learning

A scenario $\delta = (x, y) \in \mathcal{D}_m$ contains a vector of explanatory variables $x \in \mathcal{X} \subseteq \mathbb{R}^{n_x}$ and target variables $y \in \mathcal{Y}$. Based on the samples in \mathcal{D}_m , we have to choose a function $f \in \mathcal{F}$, with $f : \mathcal{X} \to \mathcal{Y}$, from a function class \mathcal{F} with the goal that f is a good predictor of y, given a newly seen sample x. The process of learning a predictive model (a function) can be defined as a generic data-driven decision-making problem

$$A: \Delta^m \to \mathcal{F}, \quad m = 0, 1, 2, \dots$$
 (1)

where \mathcal{A} is a map from the samples space $\Delta^m = \Delta \times \Delta \times \cdots$ (m times) and the decision space \mathcal{F} . Note that the dataset \mathcal{D}_m is a random realization from the event space Δ^m , and, without loss of generality, the map \mathcal{A} can be seen as a sophisticated optimization method or a simple heuristic to select a function $f \in \mathcal{F}$ based on the available data $\mathcal{D}_m \in \Delta^m$. For instance, the decision-making problem \mathcal{A} for selecting a predictive model is generally focused on the identification of a function $f^* := \mathcal{A}(\mathcal{D}_m) = \arg\min_{f \in \mathcal{F}} \sum_{\delta \in \mathcal{D}_m} l_f(\delta)$ that achieves a small probability of prediction error, i.e., that minimizes the expectation of a loss function $l_f(\delta)$.

B. Binary Classification

Binary classification is a special type of supervised learning where new observations of explanatory variables x must be categorized into one of two classes. For binary classification problems, the dimension of δ is, therefore, $n_x + 1$ as $y \in \{-1, +1\} \subset \mathcal{Y}$, and an indicator function for the loss can be considered as follows:

$$l_f(x, y) = \begin{cases} 1, & \text{if } y \neq f(x) \\ 0, & \text{otherwise} \end{cases}$$

where if $y \neq f(x)$, the loss function results in $l_f(x, y) = 1$, and the model f fails to classify the class of x correctly. The

²Here, albeit unavailable, the measure \mathbb{P} is assumed stationary (fixed).

expected value of this loss function is the misclassification probability

$$R(f) = \mathbb{P}[\delta \in \Delta : l_f(\delta) = 1]$$

where R is also known as error probability or risk. As we assume to not have direct access to \mathbb{P} , we cannot evaluate R(f) for a given f precisely, and thus, we have to find other means of choosing a suitable candidate model f. For instance, minimizing an empirical (samples-based) estimate of the error probability given by

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} l_f(\delta_i).$$
 (2)

Here, n is the number of available samples for the estimation (test samples), and $l_f(\delta_i)$ is the indicator function for the misclassification event $f(x_i) \neq y_i$.

C. Realizable and Agnostic Problems

Given a probability measure \mathbb{P} and a hypothesis class \mathcal{F} , we call the learning problem realizable if and only if there exists a function $f^* \in \mathcal{F}$, such that $R(f^*) = 0$. If such an f^* does not exist, we call the learning problem agnostic. A further distinction can be made between learning problems that are realizable for probability distributions of δ and learning problems that are realizable for a specific dataset \mathcal{D}_m [44]. We will refer to the latter problems as data-realizable problems. In contrast, a problem is called data-agnostic if it is not data-realizable for \mathcal{D}_m . For instance, consider the following binary classification problem:

$$f^* = \arg\min_{f \in \mathcal{F}} J(f)$$
s.t. $l_f(\delta_i) = 0 \quad \forall \delta_i \in \mathcal{D}_m$ (3)

where J(f) is a cost function and the samples in \mathcal{D}_m define m constraints on the misclassification errors. This simple learning problem is data-realizable for \mathcal{D}_m if and only if a function f^* exists, such that $l_{f^*}(\delta_i) = 0$ for all $\delta_i \in \mathcal{D}_m$. In other words, if the problem admits a nonempty feasible set, at least one solution exists that satisfies all the constraints on the loss function. However, feasibility does not guarantee that the problem is realizable for all unobserved realizations of $\delta \in \Delta$ from the same distribution. Our work will focus on both data-realizable and agnostic problems.

D. Support Vector Machines

SVMs [51] have been historically developed as binary nonprobabilistic classifiers and are nowadays one of the most widely applied ML models in practice. An SVM classifier is a binary classification function $f: \mathcal{X} \to \{-1, +1\}$ that maximizes the margin between the decision boundary of f and the two classes defined by the labels in \mathcal{D}_m . In the following paragraphs, we introduce the standard notation and definitions of SVMs.

1) Linear Hard-Margin SVM: A linear hard-margin SVM program is defined as follows:

$$(w^{\star}, b^{\star}) = \arg \min_{\substack{b \in \mathbb{R} \\ w \in \mathbb{R}^{n_x}}} \|w\| \tag{4}$$

s.t.
$$y_i(w \cdot x_i - b) \ge 1, \quad i = 1, ..., m$$
 (5)

where $w \in \mathbb{R}^{n_x}$ is the normal vector to the hyperplane defining the boundary of the two classes, b is the bias term, the parameter (b/||w||) determines the offset of the hyperplane, and $||\cdot||$ is the L_2 norm operator. In view of the earlier notation, our model class \mathcal{F} is now given by $\mathcal{F}_{\text{lin}} := \{x \to \text{sign}(w \cdot x + b) \mid w \in \mathbb{R}^{n_x}, b \in \mathbb{R}\}$. Program (4) maximizes the width of a hyperplane, proportional to (1/||w||), separating the space \mathcal{X} in two regions, one dedicated to each class. The term hard margin means that the constraints $y_i(w \cdot x_i - b) \geq 1, i = 1, \dots, m$, must be satisfied. If the learning problem is realizable with respect to a linear hypothesis class, the optimal hyperplane defined by the parameters (w^*, b^*) always exists.

2) Nonlinear Soft-Margin SVM: Two standard extensions of the linear hard-margin SVM are toward a nonlinear function class and toward a program that relaxes the separability constraints. The nonlinearity is achieved by introducing a kernel function $\psi(x): \mathcal{X} \to \mathcal{Z}$, mapping the physical space \mathcal{X} to a Hilbert space $\mathcal{Z} \subseteq \mathbb{R}^{n_z}$, while margin relaxation is achieved introducing slack variables ζ in the constraints of program (4). Note that the Hilbert space is generally of higher dimension, and the function $\psi(x)$ does not need to be explicitly defined [33]. All relevant computations rely only on the evaluation of a kernel $K(x_k, x_i) := \psi(x_k) \cdot \psi(x_i)$, i.e., the evaluation of inner products. The kernel $K(\cdot, \cdot)$ can be used to operate in Z without the need for actually computing the coordinates of the measurements in the Hilbert space in an explicit way [43], [52]. The combination of kernel and constraint relaxation gives rise to a nonlinear soft-margin SVM program

$$(w^{\star}, b^{\star}, \zeta^{\star}) = \arg \min_{\substack{b \in \mathbb{R}, w \in \mathbb{R}^{n_z} \\ \zeta \in \mathbb{R}^m_+}} ||w|| + \rho \sum_{i=1}^m \zeta_i :$$
s.t $y_i(w \cdot \psi(x_i) - b) \ge 1 - \zeta_i, \quad i = 1, \dots, m$

$$(6)$$

where ζ is a vector of m nonnegative slack variables and $\rho > 0$ is a scalar regularization parameter weighting the cost of margin violations. Program (6) seeks an optimal hyperplane (w^*, b^*) , which linearly separates the data in the space \mathcal{Z} and minimizes the cost of margin violations given by ζ^* . A linear separator in the Hilbert space will map back to a nonlinear separator in \mathcal{X} . Hence, the hypothesis class \mathcal{F} is now given by $\mathcal{F}_{n \text{lin}} := \{x \to \text{sign}(w \cdot \psi(x) - b) \mid w \in \mathbb{R}^{n_z}, b \in \mathbb{R}\}$, and the optimized hyperparameters $\theta^* = (w^*, b^*)$ define a unique classifier $f^* = f(x; \theta^*) \in \mathcal{F}_{n \text{lin}}$. Note that although we use the kernel function ψ explicitly for ease of notation, all those computations may also be done using only evaluations of the kernel K; see, for example, [52, eq. (19)].

3) Margin Violation and Misclassification Error: Label predictions can be assigned to new observations x by $\hat{y} = f(x; \theta^*)$, and misclassification occurs if $y \neq \hat{y}$ or,

equivalently, if $y(w^* \cdot \psi(x) - b^*) < 0$. The misclassification probability (error/risk) for an SVM classifier is defined by

$$R(\theta^*) := \mathbb{P}[y(w^* \cdot \psi(x) - b^*) < 0]. \tag{7}$$

The margin violation event occurs if a new sample pair (x, y) violates the constraint in the training program, and the probability of margin violation $V(\theta^*)$ is defined as follows:

$$V(\theta^{\star}) := \mathbb{P}[y(w^{\star} \cdot \psi(x) - b^{\star}) < 1]. \tag{8}$$

Note that, by definition, the margin violation probability bounds from above the misclassification probability, i.e., $V(\theta^*) \geq R(\theta^*)$.

4) Other SVM Models: Many variants of the hard-margin and soft-margin SVM models have been proposed in the literature to tackle regression tasks [53], [54], fault and anomaly detection [35] for prognostics of industrial assets, and components [55], [56], [57]. For instance, support vector data descriptor (SVDD) [58] and one-class SVM models [59] are often used for anomaly detection, where SVDD identifies abnormalities beyond an optimized spherical region in the kernel space and one-class SVM beyond an optimized hyperplane. Both models undergo training through convex optimization constrained by random scenarios, making the formal bounds discussed herein relevant. Similarly, twin SVMs (TWSVMs) undergo convex optimization of nonparallel hyperplanes for class separation, often yielding improved accuracy and generalization compared with standard SVMs. TWSVM was originally introduced for pattern classification [60], [61] and later extended to tackle active learning tasks [62], multiclass learning, [63], and other applications [64], [65]. A comprehensive TWSVM survey [66] covered clustering [67], semisupervised classification [68], and outlier detection [69]. Although the theoretical approaches reviewed in this work are applicable to advanced SVM models and general classes of learning problems, including neural network models [70], [71], to ease the presentation, this work only focuses on formal generalization for traditional binary SVM classifiers.

E. Generalization Error Bound

As we only have a finite amount of data available, the values of R and V are unknown. Nonetheless, generalization error bound analysis can be used to find upper and lower bounds on these probabilities. Formally, given an algorithm \mathcal{A} as defined above, a generalization error bound is a function $B_{\mathcal{A}}(\beta, m, I)$ of a confidence parameter $0 < \beta < 1$, the sample size m, and other (potentially algorithm-dependent) parameters I, such that, with probability of at least $1-\beta$ over the random sample, it holds that

$$R(\mathcal{A}(\mathcal{D}_m)) \le B(m, \beta, I).$$
 (9)

In Section III, we present an overview of some of the most popular theories for those bounds, and we then focus more in detail on complexity-based bounds, compression learning bounds, and their link to new bounds obtained via scenario theory. Then, in Section IV, specific results are presented and later used as a basis for the numerical comparison.

III. GENERALIZATION ERROR BOUNDS: AN OVERVIEW

Several types of formal generalization error bounds can be found in the scenario theory and statistical learning theory literature and can be summarized as follows.

PAC-Bayes methods use, among other concepts, a prior distribution over function class \mathcal{F} to find generalization error bounds. The PAC-Bayesian theory has been successfully used in a variety of topics, including sequential learning, classification, and analysis of heavy-tailed data, e.g., [28], [72], [73], for ranking and bounding probabilities of non-i.i.d. samples, [74], and for enhancing the generalization of regularized neural networks [75]. The PAC-Bayes framework requires a definition of a prior distribution over the different classifiers (generally before observing the data), and the definition of a suitable likelihood that is needed to approximate a posterior distribution (once the data are collected).

Complexity-based methods quantify the generalization of ML models based on a measure of the capacity (complexity, expressive power, or richness) of the class of models \mathcal{F} . If the models in \mathcal{F} are complex, the optimized f^* is more likely to overfit the data and generalize poorly. The VC dimension, as originally introduced by Vapnik [31], is a complexity measure, which helps to bound the difference of the empirical risk and true risk uniformly over the model class. Given a hypothesis class \mathcal{F} , the VC dimension is the maximum number of features x that can be labeled in all possible ways with functions from \mathcal{F} . Other examples of complexity-based bounds include extensions based on the VC dimension [76], FAT-shattering dimension, covering number, global and local Rademacher complexity [77], union bound, and shell bound methods [78]. In the case of learning a hyperplane, which is the essence of an SVM, one can relate the VC dimension to the margin between the hyperplane and the sample \mathcal{D}_m . Complexity-based bounds apply to deterministic classification rules and algorithms but are not usable for learning algorithms for which \mathcal{F} is unknown or data-dependent.

Compression-based methods estimate algorithms' generalization in terms of their ability to create a reduced-size representation of the data, i.e., the algorithms' ability to compress samples [79]. If the data representation is small (relative to the sample size), the compression rate will be high, and the algorithm will likely generalize well. In contrast to complexity-based bounds, which provide bounds based on a capacity measure of \mathcal{F} , compression-based error bounds are data-dependent, as they depend on both the particular choice of learning algorithms \mathcal{A} and the random data in \mathcal{D}_m . Refer to [80] and [81] for other examples of data-dependent error bounds. Littlestone and Warmuth [32] originally introduced the concept of compression for zero/one loss functions, relating the bounds to early works on Kolmogorov complexity. A compression function maps the data to a subset of the original data (a compression set) that suffice to reconstruct the resulting model f^* . The compression function then describes how much we may compress the data while ensuring that Aprovides the same f^* under the uncompressed \mathcal{D}_m . The main limitation of compression methods is the huge compression rates needed to obtain informative bounds and rates, which are not always achievable in practice. A conceptually close

approach is the core set learning theory [82], which relates to the optimal subsampling literature and defines generalization as a small weighted subset set of samples that approximates this loss for every element in a query set. Compression bounds are already available for complex models, including deep neural networks [83], leading to orders of magnitude better performance when compared with PAC-Bayes and complexity-based bounds.

Scenario theory was, differently from previous approaches, originally introduced to investigate the error probability of convex optimization problems with randomized constraints [84], [85]. Those are learning problems where samples of uncertain factors define deterministic convex constraints [86], and the hypothesis class defines a parametric family of convex functions. Scenario theory has been extensively studied for hard-constrained (data-realizable) convex programs [86], [87], [88], [89] and recently extended to nonconvex cases [90] and more abstract classes of decision-making algorithms [91]. Scenario bounds can be derived before solving an optimization problem or can be tailored to the optimized solutions. The former bounds are known as a priori and, such as complexity-based bounds, are derived independently of the data. For instance, one of the most acclaimed results from scenario theory proved that the error distributions of solutions to convex problems are bounded by beta distributions whose parameters can be a priori determined by the number of training samples and the number of optimization parameters. This bound was proven to be tight (exact) for a whole class of problems named fully supported [86]. Differently, scenario bounds tailored to the specific models are known as a posteriori bounds and are based on a data-dependent hypothesis, such as compression-based bounds. For instance, empirical error levels of the solution of min-max problems have been shown to follow a Dirichlet distribution, whose marginals are beta distribution [88]. Scenario theory combines ideas from complexity-based methods and compression-based methods. Similar to VC bounds, the complexity of the class \mathcal{F} defines data-independent (a priori) scenario bounds. Similar to compression-based methods, a posteriori scenario bounds depend on a notion of how much one may compress the given learning rule A for a given \mathcal{D}_m . A learning rule A having a higher degree of compression leads to better generalization guarantees; thus, an interesting link is established between the complexity of the candidate class \mathcal{F} and the joint complexity of a specific $f^* \in \mathcal{F}$ and the observed data \mathcal{D}_m .

IV. GENERALIZATION ERROR BOUNDS: SPECIFIC RESULTS

We now present specific generalization error results, first from scenario theory and then from statistical learning theory. Table I further below then lists the presented theorems and indicates: If they are data dependent or independent. If they are suitable for the realizable or agnostic case, and the needed input to compute the generalization bound.

A. Scenario Theory

In scenario theory, a scenario program $\mathcal{A}(\mathcal{D}_m)$ defines a the solution of $\mathcal{A}(\mathcal{S}^* \setminus \delta)$ differs from the one of general class of data-driven decision-making problems, as in i.e., the support set is of minimal cardinality. A Authorized licensed use limited to: TU Delft Library. Downloaded on December 19,2024 at 07:22:26 UTC from IEEE Xplore. Restrictions apply.

(1). Without loss of generality and to ease the presentation, we focus on a specific class of programs where a set of deterministic constraints are defined by the random samples in \mathcal{D}_m , such as in SVM training programs. We now formally introduce convex hard-constrained (data-realizable) and soft-constrained (agnostic) scenario programs and establish their link to SVM training programs (4) and (6).

1) Hard-Constrained Scenario Program: A hard-constrained convex scenario optimization program is defined as follows:

$$\min_{\theta \in \Theta} J(\theta), \quad \text{s.t. } f(\theta, \delta_i) \le 0, \quad \delta_i \in \mathcal{D}_m$$
 (10)

where $\theta \in \Theta \subseteq \mathbb{R}^{n_{\theta}}$ is a vector of design variables constrained in a closed convex set $\Theta, J: \Theta \mapsto \mathbb{R}$ is a convex cost function, and $f(\theta, \delta): \Theta \times \Delta \to \mathbb{R}$ is a convex function in θ defining m hard constraints in (10). An optimal feasible design θ^* must satisfy $f(\theta^*, \delta_i) \leq 0$ for all $i = 1, \ldots, m$, with no exception, and this often leads to a feasibility issue.

2) Soft-Constrained Scenario Program: A soft-constrained reformulation of (10) is given by

$$\min_{\begin{subarray}{l} \theta \in \Theta \\ \zeta \in \mathbb{R}^m_+ \end{subarray}} J(\theta) + \rho \sum_{i=1}^m \zeta_i \\ \text{s.t. } f(\theta, \delta_i) \le \zeta_i, \quad \delta_i \in \mathcal{D}_m \end{subarray}$$
(11)

where ζ is an m-dimensional vector of nonnegative slack variables. A $\zeta_i = 0$ means that the hard-constraint imposed by the ith sample is satisfied, i.e., $f(\theta, \delta_i) \leq 0$. On the other hand, a $\zeta_i > 0$ implies a violation of the hard constraint. Note that SVM programs are special classes of $\mathcal{A}(\mathcal{D}_m)$ where the cost and constraint functions are defined by

$$J(\theta) = ||w||, \quad f(\theta, \delta) = 1 - y_i(w \cdot \psi(x_i) - b) \quad (12)$$

with $\delta = (x, y)$ being a sample and $\theta = (w, b)$ the parameters of the separating hyperplane. When a kernel operator is applied, the number of design variables becomes $n_{\theta} = n_z + 1$, i.e., the dimension of the Hilbert space plus one due to the bias term.

3) Assumptions and Definitions: Scenario theory can be used to assess how well an optimal design θ^* , so a solution of the optimization programs (10) or (11), generalizes to yet unseen situations $\delta \in \Delta$. Definitions, assumptions, and relevant theorems needed to compute generalization bounds will be presented next.

Definition 1 (Violation Probability): The probability

$$V(\theta^{\star}) = \mathbb{P}[\delta \in \Delta : f(\theta^{\star}, \delta) > 0]$$
 (13)

is called violation probability. Given a reliability parameter $\epsilon \in [0, 1]$, a design θ^* is called ϵ -robust if $V(\theta^*) \le \epsilon$. Note that for SVM programs, the violation probability coincides with the "true" margin violation probability defined in eq. (8), and thus, an ϵ -robust SVM θ^* satisfies $R(\theta^*) \le V(\theta^*) \le \epsilon$, i.e., a bound on the worst-case classification error probability.

Definition 2 (Nonreducible Support Set): A support set $S \subseteq \mathcal{D}_m$ is a k-tuple $S = \{\delta_{i_1}, \ldots, \delta_{i_k}\}$ for which the solutions of the scenario program $\mathcal{A}(S)$ and program $\mathcal{A}(\mathcal{D}_m)$ are identical. A set $S^* \subseteq S$ is nonreducible if for any $\delta \in S^*$, the solution of $\mathcal{A}(S^* \setminus \delta)$ differs from the one of $\mathcal{A}(\mathcal{D}_m)$, i.e., the support set is of minimal cardinality. A scenario

program generally admits several support sets, and the set S^* with the smallest cardinality renders the best bounds. The dimension of S^* will be denoted as $s_m^* = |S^*|$, where $|\cdot|$ is the cardinality operator.

Assumption 1 (Existence and Uniqueness): For every data sequence \mathcal{D}_m , the design solution θ^* of $\mathcal{A}(\mathcal{D}_m)$ exists and is unique.

Assumption 2 (Nondegeneracy): For any positive integer $m \in \mathbb{N}_0$ and scenario set \mathcal{D}_m , the solution of the scenario program $\mathcal{A}(\mathcal{D}_m)$ coincides with probability 1 with the solution of $\mathcal{A}(\mathcal{S}^*)$.

When program (10) is convex, nondegeneracy is a mild assumption, since support constraints in \mathcal{S}^{\star} are always active, and a (possibly reducible) support set can be easily identified [92]). In fact, the solution of convex learning programs is generally unaffected by removing inactive scenarios for which $f(\theta^{\star}, \delta) < 0$ at the optimum. In the general nonconvex case, however, \mathcal{S}^{\star} might include nonactive constraints, and the nondegeneracy assumption rarely holds. Hence, the removal of a single nonactive constraint, i.e., the removal of samples δ for which $f(\theta^{\star}, \delta) < 0$, can yield a new optimum having a smaller cost [92]. A recent extension of the theory allows relaxing the nondegeneracy assumption [93] and allows extending the scope of scenario theory to a broader domain of learning problems where the sample constraints are nonconvex functions of the model parameters and observations.

4) Bounds for Hard-Constrained Programs:

Theorem 1 [86, Th. 1]: Under Assumptions 1 and 2, stationary \mathbb{P} , and i.i.d. samples in \mathcal{D}_m , the distribution of $V(\theta^*)$, for θ^* being the solution of (10), is bounded by a beta distribution

$$\mathbb{P}^m[V(\theta^*) > \epsilon] \le \sum_{k=0}^{n_\theta - 1} \binom{m}{k} \epsilon^k (1 - \epsilon)^{m-k} = \beta \tag{14}$$

where n_{θ} is the number of design variables, $\beta \in [0, 1]$ is a confidence parameter, and \mathbb{P}^m is a product probability due to independence of the m samples.

Theorem 1 can be easily derived from Helly's theorem, showing that $s_m^\star \leq n_\theta$ for convex programs under the given assumptions. Note that the bound ϵ is data-independent, as it can be a priori computed, i.e., it is obtained before solving (10), and it only requires the number of design variables n_θ , number of samples m, and a desired confidence β . If program (10) is fully supported, that is, if $s_m^\star = n_\theta$ with probability 1, (14) holds with the equality sign. An extension of Theorem 1 allows for k samples δ to be intentionally removed from the dataset \mathcal{D}_m , for instance, the ones making program (10) unfeasible. This approach makes (10) a data-realizable problem. As a result, the optimized θ^\star enjoys an improved $J(\theta^\star)$ for the cost of a weaker certificate of generalization [86]. However, many real-life problems are only partially supported $(s_m^\star < n_\theta)$, and Theorem 2 renders tighter bounds.

Theorem 2 [94, Th. 2]: Consider a convex scenario program defined as in (10). Under Assumptions 1 and 2, stationary \mathbb{P} , and i.i.d. samples in \mathcal{D}_m , the solution θ^* of (10) satisfies

$$\mathbb{P}^{m}[V(\theta^{\star}) > \epsilon(s_{m}^{\star})] \le \beta \tag{15}$$

where the reliability $\epsilon(k) = 1 - t(k)$ is the unique solution in [0, 1] of the following polynomial equation in t for any $k \in \{0, ..., n_{\theta}\}$:

$$\frac{\beta}{m+1} \sum_{j=k}^{m} \mathfrak{B}_{j}(t;k) - \binom{m}{k} t^{m-k} = 0.$$
 (16)

Here, $\mathfrak{B}_{j}(t;k) = \binom{j}{k} t^{j-k}$ is a binomial expansion.

Theorem 2 gives a generalization bound $V(\theta^*) \leq \epsilon(s_m^*)$ at a confidence level $1 - \beta$ and reliability parameter $\epsilon(s_m^*)$ determined from (16). In contrast to (14), $\epsilon(s_m^*)$ is a posteriori computed by enumerating support scenarios s_m^* in correspondence of θ^* .

5) Bounds for Soft-Constrained Programs: To extend the scope of scenario-based generalization bounds to soft-constrained problems, such as the one in (11), a technical assumption of nonaccumulation is required. The assumption states that, for every $\theta \in \Theta$ and $a \in \mathcal{R}$, the function $f(\theta, \delta)$ does not have concentrated mass, i.e., $\mathbb{P}[\delta: f(\theta, \delta) = a] = 0$. This assumption is generally satisfied when δ admits a probability density function.

Theorem 3 [91, Th. 4]: Consider a convex scenario program as in (11). Given the aforementioned assumptions, stationary \mathbb{P} , and i.i.d. samples in \mathcal{D}_m , the probability $V(\theta^*)$ is bounded by

$$\mathbb{P}^{m}[\underline{\epsilon}(s_{m}^{\star}) \leq V(\theta^{\star}) \leq \overline{\epsilon}(s_{m}^{\star})] \geq 1 - \beta \tag{17}$$

where $\underline{\epsilon}(k) = \max\{0, 1 - \overline{t}(k)\}, \overline{\epsilon}(k) = 1 - \underline{t}(k), \text{ and } \{\underline{t}(k), \overline{t}(k)\}$ are the solutions of a polynomial equation in t

$$\mathfrak{B}_{m}(t;k) = \frac{\beta}{2m} \sum_{j=k}^{m-1} \mathfrak{B}_{j}(t;k) + \frac{\beta}{6m} \sum_{j=m+1}^{4m} \mathfrak{B}_{j}(t;k) \quad (18)$$

where $k \in \{1, ..., m-1\}$ is the number of support constraints. For the special case k = m, the upper bound is set to $\overline{\epsilon}(k) = 1$, and the lower bound is obtained solving

$$1 = \frac{\beta}{6m} \sum_{j=m+1}^{4m} \mathcal{B}_j(t;k).$$
 (19)

For a soft-constrained SVM design, Theorem 3 gives high probability upper and lower bounds on the probability of margin violations. Here, s_m^* is the number of support vectors, i.e., the number of samples for which $1 - y(w^*\psi(x) - b^*) \ge 0$. If $w^* = 0$, s_m^* is the number of data points whose label belongs to the class with fewer elements [33].

We refer to the bounds introduced in this section as the *scenario bounds*. We introduce generalization bounds from the statistical learning literature, based on complexity and compression, next. For our comparison, we use the most recent results on generalization bounds for SVMs.

B. Complexity-Based Bounds for SVM

For realizable cases, [24] solved a longstanding problem by showing that the error of an SVM drops as $\Theta((d/m) + \log(1/\beta))$, where d denotes the VC dimension. The specific bound they provide is defined as follows.

Theorem 4 [24, Th. 15]: Under the realizability assumption from Section II-C, it holds that for all dataset sizes m > 2(d + 1), with probability of at least $1 - \beta$

$$R(\theta^*) \le \frac{2}{m - 2(d)} \left((d) \ln(4) + \ln\left(\frac{1}{\beta}\right) \right) \tag{20}$$

where $\theta^* = (w^*, b^*)$ is the solution of (4) and d again denotes the VC dimension of the SVM and is equal to $d = n_x + 1$.

Next, we present two results in the agnostic case, taken from [95]. The first theorem bounds the generalization error in terms of the margin of the SVM. The second bound is more general and not directly targeted at SVMs, as it uses the VC dimension for general linear predictors $d = n_x + 1$. In view of our earlier discussions, the margin-based bound is an a posteriori bound, as it needs to know the margin of the resulting SVM. The VC-dimension-based bound is an a priori bound, as the VC dimension is known before any learning.

Theorem 5 [95, Th. 15]: Let $\theta^* = (w^*, b^*)$ be the solution of the SVM program (6), and let $l_{\text{SVM}}^*(x, y) = \min\{\max\{0, 1 - y(w^* \cdot x + b^*)\}, 1\}$ be the so-called ramp loss. If $r = \max_{1 \le i \le m} \|x_i\|$, then with probability of at least $1 - \beta$, it holds that

$$R(\theta^{\star}) \leq \frac{1}{m} \sum_{i=1}^{m} l_{\text{SVM}}^{\star}(x_i, y_i) + \frac{1}{\sqrt{m}} \left(4\sqrt{(\Lambda+1)^2} + 3\sqrt{\ln\left(\frac{\pi^4 \Lambda^2}{18\beta}\right)} \right)$$
(21)

where $\Lambda = \lceil r \rceil \lceil \|w^*\| \rceil \in \mathbb{N}$ is the product of smallest integers larger than r and $\|w^*\|$.

The second term on the right-hand side of (21) is derived from Rademacher complexity theory, while the first term provides a lower bound on the empirical risk estimated from the slack variables in (6), i.e., $(1/m) \sum_{i=1}^m l_{\text{SVM}}^\star(x_i, y_i) \leq (1/m) \sum_{i=1}^m \zeta_i^\star = \hat{R}(\theta)$.

Theorem 6 [77, Corollary 3.19]: For all predictors $f(\theta) \in \mathcal{F}_{lin}$, so also for the SVM solution $f(\theta^*)$, it holds that

$$R(\theta) \le \hat{R}(\theta) \tag{22}$$

$$+\frac{1}{\sqrt{2m}}\left(\sqrt{4(d+1)\ln(\frac{em}{d})}+\sqrt{\ln\left(\frac{1}{\beta}\right)}\right) \quad (23)$$

where $d = n_x + 1$ is the VC dimension of \mathcal{F}_{lin} and e is Euler's constant.

Note that (22) has, in comparison with (21), an additional logarithmic term ln(m) in the number of samples, which can, in principle, be removed.

C. Compression-Based Bounds for SVM

Similar to a posteriori scenario bounds, compression bounds depend on the number of data points that are strictly necessary to reconstruct the optimum. This quantity is known as compression size in compression learning and is equivalent to the support set size $|\mathcal{S}|$ in scenario theory. Note that \mathcal{S} does not have to be of minimal cardinality for the bounds to apply. However, smaller values of the compression rates led to better generalization error guarantees.

In order to formally introduce compression learning bounds, we will make use of the mathematical framework presented in [44] and [46]. We consider a learning algorithm A and a compression rule, \mathfrak{C} , where we call \mathcal{A} permutation invariant if the mapping does not depend on the ordering of the input dataset \mathcal{D}_m . The rule $\mathfrak{C}:\Delta^m\to\Delta^{d_{\mathrm{cp}}}$ compresses the data \mathcal{D}_m to a smaller dataset $\mathcal{D}_{d_{cp}} \subset \mathcal{D}_m$. A compression scheme can be any rule that identifies a compression set $\mathcal{D}_{d_{cn}}$, such that the SVM classifier obtained from the original set \mathcal{D}_m is exactly the same as the SVM obtained from the compressed set $\mathcal{D}_{d_{cn}}$. Clearly, the compression set coincides with the set of support scenarios S as defined in scenario theory, which is equivalent to the number of support vectors in the case of SVMs, showing a clear parallel between the two approaches. As in the previous settings, we first present a result in the realizable and then in the agnostic setting.

Theorem 7 [96, Th. 1]: Consider a realizable learning problem, and let $\mathcal{A}: \Delta^m \to \mathcal{F}$ be a permutation invariant learning rule with $\hat{R}[\mathcal{A}] = 0$. Let $d_{cp}(\mathcal{D}_m)$ be the size of a compression scheme for \mathcal{D}_m , such that $\theta^* = \mathcal{A}(\mathcal{D}_m) = \mathcal{A}(\mathcal{D}_{d_{cp}})$. For any \mathbb{P} , $m \in \mathbb{N}$ with probability at least $1 - \beta \in [0, 1]$ over the sampling of \mathcal{D}_m , it holds that

$$R(\theta^{\star}) \le \frac{1}{m - d_{\rm cp}} \left(\ln \binom{m}{d_{\rm cp}} + \ln(m) + \ln \left(\frac{1}{\beta} \right) \right).$$
 (24)

Theorem 8 [96, Th. 2]: Consider an agnostic learning problem, and let $\mathcal{A}: \Delta^m \to \mathcal{F}$ be a permutation invariant learning rule. Let $d_{\rm cp}(\mathcal{D}_m)$ be the size of a compression scheme for \mathcal{D}_m , such that $\theta^* = \mathcal{A}(\mathcal{D}_m) = \mathcal{A}(\mathcal{D}_{d_{\rm cp}})$. For any \mathbb{P} , $m \in \mathbb{N}$, training dataset \mathcal{D}_m , and $\beta \in [0, 1]$, with probability at least $1 - \beta$, it holds

$$R(\theta^{\star}) \leq \frac{m \cdot \hat{R}(\theta^{\star})}{m - d_{\rm cp}} + \left(\frac{\ln \binom{m}{d_{\rm cp}} + \ln(m) + \ln \left(\frac{1}{\beta}\right)}{2(m - d_{\rm cp})}\right)^{\frac{1}{2}}.$$
 (25)

For additional readings and recent advancements on compression-based bounds for both realizable and agnostic problems, the interested reader is referred to [97], [98], and [99]. Hanneke and Kontorovich [97] show that the optimal rates of agnostic compression schemes with compression rate k are often $(k \ln(m/k)/m)^{1/2}$, which is in contrast with the known rate $\sqrt{d/m}$ of convergence of complexity-based agnostic problems, for a VC dimension d. Hanneke and Kontorovich [99] studied stable compression schemes for a family of supervised learning algorithms. A new and enhanced margin bound for SVM is proposed and removing a log factor. Cohen and Kontorovich [98] discuss agnostic learning with unbounded metric losses and introduce a new technique called semistable compression.

V. EXPERIMENTAL PROCEDURE AND RESULTS

A numerical procedure has been developed to compare the effectiveness of the revised bounds. The procedure works as follows.

1) *Initialize:* Choose the parameters for the bounds, including the kernel type, scale parameter, confidence level, number of experiments $N_{\rm exp}$, and ρ .

TABLE I

COMPARISON BETWEEN THE REVIEWED THEOREMS, FUNCTIONAL DEPENDENCY OF THE BOUNDS, AND THEIR APPLICABILITY A PRIORI, E.G., EVEN BEFORE SOLVING THE LEARNING PROBLEM, AND TO REALIZABLE LEARNING/AGNOSTIC PROBLEMS, I.E., OPTIMIZATION METHODS LEADING TO NULL/NONNULL EMPIRICAL TRAINING ERROR

Theorem	Learning theory	Data-indep.	Data-depen.	Data-realizable	Data-agnostic	Error bound	
		a-priori	a-posteriori	hard-constr.	soft-constr.	dependence on	
1	Scenario	✓	Х	✓	Х	$\epsilon(m, n_{\theta}, \beta)$	
2	Scenario	X	✓	✓	X	$\epsilon(m, s_m^{\star}, \beta)$	
3	Scenario	X	✓	✓	✓	$\epsilon(m, s_m^{\star}, \beta)$	
4	VC-Complexity	✓	X	✓	X	$\epsilon(m,d,eta)$	
5	Rademacher-Complex.	×	✓	×	1	$\epsilon(m,r, w ,\hat{R},\beta)$	
6	VC-Complexity	X	✓	X	✓	$\epsilon(m,d,\hat{R},eta)$	
7	Compression	✓	X	✓	X	$\epsilon(m, d_{cp}, \beta)$	
8	Compression	×	1	×	✓	$\epsilon(m, d_{cp}, \hat{R}, \beta)$	

- 2) Sample Training Data: Randomly select one of the 13 datasets, a subset of features (between 50% and 100% of n_x), and sample size (between 5% and 35% of the original size, such that $m \le 2000$ for efficiency's sake).
- 3) Train an SVM Model: Solve program (6), and compute an unbiased estimator for the error probability $R(\theta^*)$.
- 4) Generalization Bounds: Compute the number of support vectors s_m^* , VC dimension, the average of the ramp loss r, and ||w||. Use s_m^* , β , and other statistics to compute the agnostic learning bounds as previously described. If any upper bound exceeds 1, set it to 1 (noninformative). If there are multiple bounds available, such as agnostic complexity-based ones, choose the bound with the smallest magnitude
- 5) Assess Tightness: Evaluate the tightness of the scenario bounds in each experiment by estimating the difference $\gamma_{\rm SB} = \epsilon(s_m^{\star}) R(\theta^{\star})$, and similarly compute the tightness of the complexity-based bounds ($\gamma_{\rm CX}$) and the compression-based bounds ($\gamma_{\rm CP}$).
- 6) Statistical Analysis of Randomized Experiments: Repeat steps 2)–5) a total of $N_{\rm exp}$ times. Compare the expectation and variance of the tightness metrics to assess the relative performance of the different bounds.

Quantitative and qualitative analyzes of the tightness of the error bounds and convergence are analyzed for varying hyperparameters and on 13 real-world datasets obtained from University of California, Irvine (UCI), open machine learning (OpenML) repositories, and MNIST.

A. Thirteen Datasets

The 13 real-world datasets have been modified for binary classification and randomly sampled to generate new synthetic datasets. Here is a brief description of each classification problem.

- MNIST: A dataset of handwritten digits with 784 features per image (pixels). We classify 14 000 samples of digits 1 and 3.
- 2) League of Legends (LOL): The 9879 LOL game outcomes characterized by 38 input features to be classified as win or lose.
- 3) Winequality: It contains 4898 wine samples, $n_x = 11$ features, to be classified as good (score exceeding 5) or bad wines.

- 4) *Ionosphere*: A collection of m = 351 radar samples to be labeled as good or bad using $n_x = 38$ features.
- 5) Abalone: The goal of predicting the age of abalones from $n_x = 8$ biological characteristics. Abalones with over nine rings are labeled as old.
- 6) Ailerons: A binarized version with $n_x = 39$ features and m = 13750 samples.
- 7) *Spambase:* 4601 labeled e-mails with $n_x = 57$ features. The goal is to classify future SPAM emails.
- Data Eye: The goal is to predict when a person's eyes are open/closed given 14780 continuous EEG measurements with 14 features (missing data and outliers have been removed).
- 9) *Postures:* The 13 600 samples with eight coordinates from five hand postures ($X_{0:2}$, $Y_{0:2}$, and $Z_{0:1}$). Postures 1 and 3 are used for the binary classification task.
- 10) Banknote Authentication: m = 1372 images with $n_x = 4$ feature taken from genuine and forged banknote specimens. The goal is to identify forged samples.
- 11) *Dota:* The goal is to classify the binary outcome of m = 102944 game plays from 116 features.
- 12) Monk Problem: m = 601 samples and $n_X = 6$ features usable to predict the outcome of a logical formula.
- 13) Gina Agnostic: A dataset for agnostic handwritten digit recognition that contains m = 3468 samples of two digits having $n_x = 970$ features (pixels).

B. Qualitative Comparison

This section analyzes the behavior of the bounds when the hyperparameters are varied, particularly the scaling parameter of the kernel. One interesting observation is that when using a Gaussian kernel and in an agnostic setting, the VC dimension is infinite a priori. Hence, the margin bound in (21) must be used. Fig. 2 illustrates the trend of the bounds on the LOL dataset, and a similar trend has been observed in many other datasets as well. It is worth noting that the complexity-based bound, computed according to Theorem 5, failed to capture the trend of the test error estimate. On the other hand, the scenario bound followed the error much better. Fig. 2 depicts this issue and shows a study of the underlying statistics used to compute the bounds. The complexity-based bound incorporates the training loss $\sum_{i=1}^{m} l_{\text{SVM}}^{t}(x_{i}, y_{i})$ and the norm $\|w^{\star}\|$. The training loss initially increases as we overfit the data,

TABLE II

RESULTS FOR $\gamma_{\rm CX}, \gamma_{\rm SB}$, and $\gamma_{\rm CP}$ for Linear and Gaussian Kernels and Three Values of the Regularization Parameter ρ . Results Were Obtained for an Optimized Kernel Scale (MATLAB "Auto" Option) and 5000 Random Experiments

	$\rho = 1$			$\rho = 100$			$\rho = 5000$		
Kernel	$\mathbb{E}[\gamma_{CX}] \pm \sigma$	$\mathbb{E}[\gamma_{SB}] \pm \sigma$	$\mathbb{E}[\gamma_{CP}] \pm \sigma$	$\mathbb{E}[\gamma_{CX}] \pm \sigma$	$\mathbb{E}[\gamma_{SB}] \pm \sigma$	$\mathbb{E}[\gamma_{CP}] \pm \sigma$	$\mathbb{E}[\gamma_{CX}] \pm \sigma$	$\mathbb{E}[\gamma_{SB}] \pm \sigma$	$\mathbb{E}[\gamma_{CP}] \pm \sigma$
Linear	0.46 ± 0.12	0.54 ± 0.10	0.61 ± 0.13	0.56 ± 0.18	0.45 ± 0.13	0.74 ± 0.13	0.57 ± 0.19	0.35 ± 0.14	0.64 ± 0.16
Gaussian	0.40 ± 0.10	0.49 ± 0.04	0.50 ± 0.06	0.67 ± 0.15	0.59 ± 0.13	0.70 ± 0.15	0.72 ± 0.13	0.49 ± 0.17	0.72 ± 0.16
	$[\underline{\gamma}_{CX}, \overline{\gamma}_{CX}]$	$[\underline{\gamma}_{SB}, \overline{\gamma}_{SB}]$	$[\underline{\gamma}_{CP}, \overline{\gamma}_{CP}]$	$[\underline{\gamma}_{CX}, \overline{\gamma}_{CX}]$	$[\underline{\gamma}_{SB}, \overline{\gamma}_{SB}]$	$[\underline{\gamma}_{CP}, \overline{\gamma}_{CP}]$	$[\underline{\gamma}_{CX}, \overline{\gamma}_{CX}]$	$[\underline{\gamma}_{SB}, \overline{\gamma}_{SB}]$	$[\underline{\gamma}_{CP}, \overline{\gamma}_{CP}]$
Linear	[0.11,0.87]	[0.29,0.86]	[0.43,0.91]	[0.15,0.98]	[0.15,0.80]	[0.42,0.98]	[0.05,0.74]	[0.07,0.99]	[0.14,0.93]
Gaussian	[0.25,0.99]	[0.34,0.99]	[0.43,0.99]	[0.48,0.99]	[0.28, 0.92]	[0.45, 0.98]	[0.46, 1.0]	[0.10, 0.92]	[0.40,0.99]

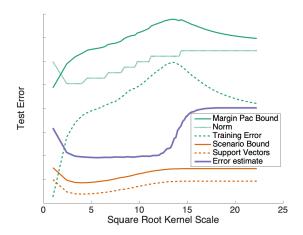


Fig. 2. Effect of the kernel scale on the test error, the formal generalization error bounds, and support vectors. The curves have been rescaled for clearer representation, as the focus is on observing the trends rather than the absolute values.

while the norm $\|w^*\|$ closely tracks the test error. However, changes in $\|w^*\|$ are much smaller than the changes in the training loss. Consequently, the margin bound underestimates the impact of having a smaller norm and fails to capture the trend of the test error. In other experiments, we have observed that both the scenario and complexity bounds follow the true error; however, we have never encountered a failure with the scenario bounds.

C. Quantitative Comparison

The experimental procedure described in Section V is applied to train 5000 linear soft-margin SVM classifiers and kernels scale and ρ set equal to one for reproducibility. This procedure yields 5000 randomized training sets from the 13 classification problems, containing between 18 and 2000 samples and $n_x \in [3, 970]$ features. The tightness scores of the revised error bounds are then compared for a confidence parameter $\beta = 10^{-2}$. The Rademacher margin bound in (21) exceeds one for most of the experiments (97.98%), while this happened in 2068 (41.36%) cases for the VC-dimensionbased bounds in (22). Hence, for linear SVMs, the VC bounds generally offer better results compared with the margin bound. The compression-based bound also exceeded one for many cases (87%). The scenario bounds resulted in better scores (tighter bounds) in about 71% of the 5000 experiments. As a figure of merit, Fig. 3 illustrates the comparison between the generalization error bounds and the test errors, highlighting the results for the 13 datasets with different colored markers. A pairwise comparison of the VC and scenario bounds is presented in the top-left panel, while the two panels on the right-hand side display pairwise comparisons of the empirical errors (*x*-axis) and the formal error bounds (*y*-axis). Note that complexity-based bounds on the generalization error are always noninformative for the Gina agnostic, MNIST, and Monk problem datasets, i.e., a generalization error in [0, 1]. Differently, scenario bounds are often nonvacuous and always informative, especially on the Modified National Institute of Standards and Technology (MINST) dataset, where we observed a much better performance.

- 1) Distribution of γ With Respect to the Individual Datasets: We now report the tightness scores of the generalization bounds for the individual datasets. Fig. 4 shows the results of this analysis, where the distribution of the tightness scores for each dataset is visualized using box and whisker plots. Each box represents the 5th and 95th percentiles for the distribution of γ , calculated from the randomized experiments. The top, middle, and bottom panels correspond to scenario bounds (γ_{SB}), complexity-based bounds (γ_{CX}), and compression bounds (γ_{CP}), respectively. The red regions indicate poor performance, with a discrepancy score $\gamma \geq 0.4$, and green regions represent good performing bounds with γ < 0.4. The analysis demonstrates that, for this experimental configuration, scenario bounds are often the most effective, outperforming the other bounds for many classification problems, i.e., for eight datasets out of 13. On the other hand, complexity-based bounds are effective only for three datasets (postures, data eye, and abalone), while compression bounds show good outcomes for two datasets (banknote and MNIST).
- 2) Bounds Behavior With Respect to the Test Error: Fig. 5 presents the formal error bounds and empirical error estimated from a test sets. The test errors are sorted in an ascending order on the x-axis. The pentagram green markers represent the compression bounds, the blue markers denote the complexity-based bounds, and the red cross markers represent the scenario bounds. This analysis reveals that the scenario bounds have the best performance when the SVM model achieves high accuracy. However, when the accuracy of the SVM is low, e.g., an error greater than 0.2 in Fig. 5 for the linear case, the statistical learning bounds can provide tighter generalization guarantees. It is also worth noting that for lower errors, the compression bounds occasionally outperform the complexity bounds but still do not perform as well as the scenario bounds.
- 3) Results for Different Values of ρ and Optimized Kernel Scale: To analyze the effect of ρ and kernel type, we chose three values for ρ 1, 100, and 5000, and used two

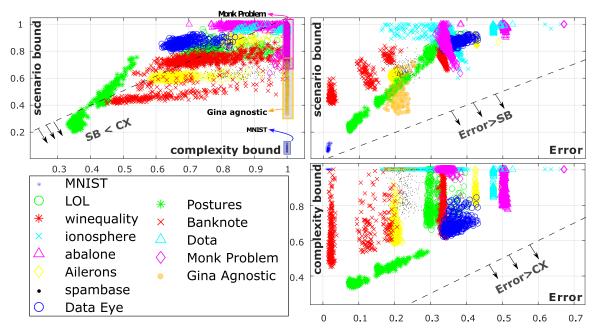


Fig. 3. Scenario and complexity-based bounds compared with the error estimate for soft-margin linear SVM classifiers. On the right panels, the dashed lines show the regions where the formal bound fails, while the left panels show experiments having scenario bounds tighter than the complexity bounds. The markers indicate different datasets.

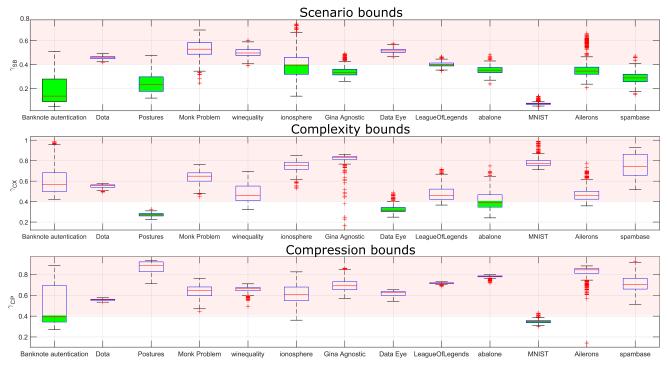


Fig. 4. Box and whisker plots of tightness scores on the individual datasets. Scenario, complexity, and compression bound are presented, respectively, in the top, middle, and bottom panels. In green color, we highlight experiments with a relatively small discrepancy score, $\gamma < 0.4$, i.e., the tighter bounds. Clearly, scenario bounds outperformed the reviewed bounds in many cases.

different kernel functions, linear and Gaussian. We trained 5000 classifiers for each of the six combinations of kernel type and regularization parameter. Unlike our previous analysis, we optimized the kernel scale using an empirical/heuristic optimization method (the MATLAB *auto* option). Note that as ρ approaches infinity, the soft-margin constraints in the SVM training programs revert back to the original hard-constrained formulation. This means that increasing ρ increases the cost

of violation, which force the optimizer to reduce the average magnitude of margin violations. However, a reduction in the number of support vectors is not guaranteed. Table II summarizes the numerical results of our analysis. We present the averages of $\gamma_{\rm CX}$, $\gamma_{\rm CP}$, and $\gamma_{\rm SB}$, denoted by $\mathbb{E}[\cdot]$, as well as their standard deviations σ . We also report the minimum and maximum values for each metric, denoted by $\underline{\gamma}_{\rm SB}$, $\underline{\gamma}_{\rm CX}$, $\underline{\gamma}_{\rm CP}$, respectively, over the 5000 experiments. Our

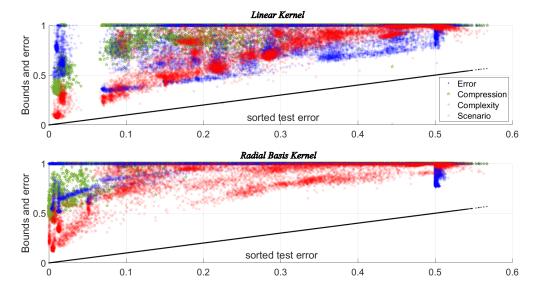


Fig. 5. Resulting scenario bounds (red markers), complexity bounds (blue markers), and compression-based bounds (green markers) are sorted by the values of the empirical test error estimates (black markers and x-axis). Results for the linear and Gaussian kernels are presented in the top and bottom panels, respectively. Scenario bounds generally outperform other statistical learning bonds, especially when the error estimate is small.

findings indicate that for $\rho \geq 100$, scenario bounds provide much superior results compared with other bounds. However, for lower ρ values, complexity-based methods achieve better bounds on average.

VI. DISCUSSION AND CONCLUSION

This work compared scenario theoretic, compressionlearning, and complexity-based approaches to derive formal generalization error bounds for SVM classifiers. Despite this restriction on the model class, the revised theories apply to other models and, more generally, to data-driven agnostic and data-realizable learning algorithms. The most significant theorems and mathematical tools used for the proofs and derivations have been reviewed and discussed. Scenario-based bounds are often tailored to the specific learning problem and can be data-dependent or data-independent. The number of support scenarios, the support vectors for SVM models, affects the width of data-dependent scenario bounds, which are, thus, closely related to the concept of compression size in compression-learning theory. Differently, data-independent scenario bounds depend on the number of optimization parameters, which relates to the expressiveness of the learning model and closely relates to model complexity and VC dimension. We proposed a series of randomized training experiments to study and compare the tightness of scenario bounds with traditional statistical learning approaches, i.e., compressionlearning and complexity-based bounds. We found that the scenario bounds are often tighter (especially for hard-margin cases and for low empirical errors), and that the margin bound can fail to capture the error trend for changing hyperparameters, and we did not experience this with the bounds prescribed by other theories. Future research on theoretical generalization errors must focus on the following key issues.

1) Investigate the relationship between data-independent and data-dependent error bounds for ML methods. For

- instance, recent works prove the potential of scenario bounds on game-theoretic models, echo-state networks, and other ML tools for data description, regression, and prediction [100], [101], [102].
- 2) There is a need to tackle a lack of theoretical understanding on how to provide tight and nonempirical error bounds for agnostic and reliable problems for non-i.i.d. samples and using nonstationary probability spaces and data sequences, e.g., [103].
- 3) Recent works showed that it is possible to study the generalization of deep learning models without the need for training nor testing data [20], hence suggesting the possibility of defining error guarantees from inherent structural properties of the trained model $f(\theta^*)$. Future research efforts are needed to understand the interplay between the parameters and structure of a trained model $f(\theta^*)$ and its capacity to compress the data and generalize to new examples.
- 4) Finally, we wish to remark that, currently, it is a problem to derive nonvacuous bounds for complex systems, such as neural networks [104], where it remains problematic to analyze them in classical frameworks [105]. Regarding this, it could be of particular interest to look at generalization bounds for nonconvex agnostic learning problems [90].

REFERENCES

- [1] D. E. Knuth, "Big omicron and big omega and big theta," *ACM SIGACT News*, vol. 8, no. 2, pp. 18–24, Apr. 1976.
- [2] T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning: Data Mining, Inference, and Prediction* (Springer Series in Statistics). New York, NY, USA: Springer, 2009.
- [3] P. A. Lachenbruch and M. R. Mickey, "Estimation of error rates in discriminant analysis," *Technometrics*, vol. 10, no. 1, pp. 1–11, Feb. 1968.
- [4] M. Stone, "Cross-validatory choice and assessment of statistical predictions," J. Roy. Stat. Soc. B, Methodol., vol. 36, no. 2, pp. 111–133, Jan. 1974.

- [5] A. Isaksson, M. Wallman, H. Göransson, and M. G. Gustafsson, "Cross-validation and bootstrapping are unreliable in small sample classification," *Pattern Recognit. Lett.*, vol. 29, no. 14, pp. 1960–1965, Oct. 2008.
- [6] B. Efron and C. Stein, "The jackknife estimate of variance," Ann. Statist., vol. 9, no. 3, pp. 586–596, May 1981.
- [7] Z. Shao and M. J. Er, "Efficient Leave-One-Out Cross-Validation-based regularized extreme learning machine," *Neurocomputing*, vol. 194, pp. 260–270, Jun. 2016.
- [8] A. Onan, S. Korukoğlu, and H. Bulut, "Ensemble of keyword extraction methods and classifiers in text classification," *Expert Syst. Appl.*, vol. 57, pp. 232–247, Sep. 2016.
- [9] A. Onan, "Biomedical text categorization based on ensemble pruning and optimized topic modelling," *Comput. Math. Methods Med.*, vol. 2018, Jul. 2018, Art. no. 2497471.
- [10] A. Onan, S. Korukoğlu, and H. Bulut, "A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification," *Inf. Process. Manage.*, vol. 53, no. 4, pp. 814–833, Jul. 2017.
- [11] A. Onan and M. A. Toçoglu, "A term weighted neural language model and stacked bidirectional LSTM based framework for sarcasm identification," *IEEE Access*, vol. 9, pp. 7701–7722, 2021.
- [12] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, "Object detection with deep learning: A review," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 30, no. 11, pp. 3212–3232, Nov. 2019.
- [13] A. D. Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi, "Credit card fraud detection: A realistic modeling and a novel learning strategy," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 8, pp. 3784–3797, Aug. 2018.
- [14] D. Zhang, J. Ma, J. Yi, X. Niu, and X. Xu, "An ensemble method for unbalanced sentiment classification," in *Proc. 11th Int. Conf. Natural Comput. (ICNC)*, Aug. 2015, pp. 440–445.
- [15] Z. Wang, M. Liu, Y. Cheng, and R. Wang, "Robustly fitting and forecasting dynamical data with electromagnetically coupled artificial neural network: A data compression method," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 6, pp. 1397–1410, Jun. 2017.
- [16] J. Xu, W. Du, Y. Jin, W. He, and R. Cheng, "Ternary compression for communication-efficient federated learning," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 33, no. 3, pp. 1162–1176, Mar. 2022.
- [17] C. Zhang, D. Tao, T. Hu, and B. Liu, "Generalization bounds of multitask learning from perspective of vector-valued function learning," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 32, no. 5, pp. 1906–1919, May 2021.
- [18] S. Liu et al., "Online active learning for drifting data streams," IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 1, pp. 186–200, Jan. 2023.
- [19] L. Gautheron, A. Habrard, E. Morvant, and M. Sebban, "Metric learning from imbalanced data with generalization guarantees," *Pattern Recognit. Lett.*, vol. 133, pp. 298–304, May 2020.
- [20] C. H. Martin, T. Peng, and M. W. Mahoney, "Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data," *Nature Commun.*, vol. 12, no. 1, p. 4122, Jul. 2021.
- [21] X. Yue, M. Nouiehed, and R. A. Kontar, "SALR: Sharpness-aware learning rate scheduler for improved generalization," *IEEE Trans. Neural Netw. Learn. Syst.*, early access, Apr. 7, 2023, doi: 10.1109/TNNLS.2023.3263393.
- [22] X. Wu, J. Zhang, and F.-Y. Wang, "Stability-based generalization analysis of distributed learning algorithms for big data," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 31, no. 3, pp. 801–812, Mar. 2020.
- [23] L. G. Valiant, "A theory of the learnable," Commun. ACM, vol. 27, no. 11, pp. 1134–1142, Nov. 1984.
- [24] O. Bousquet, S. Hanneke, S. Moran, and N. Zhivotovskiy, "Proper learning, Helly number, and an optimal SVM bound," in *Proc. 33rd Annu. Conf. Comput. Learn. Theory* (Proceedings of Machine Learning Research), vol. 125, 2020, pp. 582–609.
- [25] L. Oneto, N. Navarin, M. Donini, A. Sperduti, F. Aiolli, and D. Anguita, "Measuring the expressivity of graph kernels through statistical learning theory," *Neurocomputing*, vol. 268, pp. 4–16, Dec. 2017.
- [26] L. Oneto, D. Anguita, and S. Ridella, "PAC-Bayesian analysis of distribution dependent priors: Tighter risk bounds and stability analysis," *Pattern Recognit. Lett.*, vol. 80, pp. 200–207, Sep. 2016.
- [27] S. Sun, J. Shawe-Taylor, and L. Mao, "PAC-Bayes analysis of multiview learning," *Inf. Fusion*, vol. 35, pp. 117–131, May 2017.

- [28] P. Germain, A. Habrard, F. Laviolette, and E. Morvant, "PAC-Bayes and domain adaptation," *Neurocomputing*, vol. 379, pp. 379–397, Feb. 2020.
- [29] W. Lee, H. Kim, and J. Lee, "Compact class-conditional domain invariant learning for multi-class domain adaptation," *Pattern Recognit.*, vol. 112, Apr. 2021, Art. no. 107763.
- [30] L. Hellerstein and R. A. Servedio, "On PAC learning algorithms for rich Boolean function classes," *Theor. Comput. Sci.*, vol. 384, no. 1, pp. 66–76, Sep. 2007.
- [31] V. N. Vapnik, Statistical Learning Theory. Hoboken, NJ, USA: Wiley, 1998.
- [32] N. Littlestone and M. K. Warmuth, "Relating data compression and learnability," Univ. California, Santa Cruz, CA, USA, 1986.
- [33] M. C. Campi and S. Garatti, "Scenario optimization with relaxation: A new tool for design and application to machine learning problems," in *Proc. 59th IEEE Conf. Decis. Control (CDC)*, Dec. 2020, pp. 2463–2468.
- [34] R. Rocchetta, Q. Gao, and M. Petkovic, "Scenario-based generalization bound for anomaly detection support vector machine ensembles," in Proc. 30th ESREL Conf., 15th PSAM Conf., Nov. 2020, pp. 1069–1076.
- [35] R. Rocchetta, Q. Gao, D. Mavroeidis, and M. Petkovic, "A robust model selection framework for fault detection and system health monitoring with limited failure examples: Heterogeneous data fusion and formal sensitivity bounds," *Eng. Appl. Artif. Intell.*, vol. 114, Sep. 2022, Art. no. 105140.
- [36] R. Rocchetta, Q. Gao, and M. Petkovic, "Soft-constrained interval predictor models and epistemic reliability intervals: A new tool for uncertainty quantification with limited experimental data," *Mech. Syst. Signal Process.*, vol. 161, Dec. 2021, Art. no. 107973.
- [37] F. Fabiani, K. Margellos, and P. J. Goulart, "On the robustness of equilibria in generalized aggregative games," in *Proc. 59th IEEE Conf. Decis. Control (CDC)*, Dec. 2020, pp. 3725–3730.
- [38] M. De Angelis, R. Rocchetta, A. Gray, and S. Ferson, "Constructing consonant predictive beliefs from data with scenario theory," in *Proc. Int. Symp. Imprecise Probability, Theories Appl. (PMLR)*, Jul. 2021, pp. 357–360.
- [39] A. Carè, M. C. Campi, F. A. Ramponi, S. Garatti, and A. T. J. R. Cobbenhagen, "A study on majority-voting classifiers with guarantees on the probability of error," *IFAC-PapersOnLine*, vol. 53, no. 2, pp. 1013–1018, 2020.
- [40] R. Rocchetta, L. Crespo, and S. Kenny, "Solution of the benchmark control problem by scenario optimization," in *Proc. ASME Dyn. Syst. Control Conf. (DSCC)*, Oct. 2019, Paper no. V002T24A001.
- [41] R. Rocchetta and L. G. Crespo, "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," *Rel. Eng. Syst. Saf.*, vol. 216, Dec. 2021, Art. no. 107900.
- [42] A. Gray et al., "From inference to design: A comprehensive framework for uncertainty quantification in engineering with limited information," *Mech. Syst. Signal Process.*, vol. 165, Feb. 2022, Art. no. 108210.
- [43] M. C. Campi and S. Garatti, "Compression, generalization and learning," 2023, arXiv:2301.12767.
- [44] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, "Learn-ability and the Vapnik-Chervonenkis dimension," *J. ACM*, vol. 36, no. 4, pp. 929–965, Oct. 1989.
- [45] R. Yarullin and S. Obiedkov, "From equivalence queries to PAC learning: The case of implication theories," *Int. J. Approx. Reasoning*, vol. 127, pp. 1–16, Dec. 2020.
- [46] O. David, S. Moran, and A. Yehudayoff, "Supervised learning through the lens of compression," in *Advances in Neural Information Process*ing Systems, vol. 29, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2016.
- [47] H. Chase and J. Freitag, "Model theory and machine learning," Bull. Symbolic Log., vol. 25, no. 3, pp. 319–332, 2019.
- [48] O. Bousquet and A. Elisseeff, "Stability and generalization," J. Mach. Learn. Res., vol. 2, pp. 499–526, Mar. 2002.
- [49] K. Margellos, M. Prandini, and J. Lygeros, "On the connection between compression learning and scenario based single-stage and cascading optimization problems," *IEEE Trans. Autom. Control*, vol. 60, no. 10, pp. 2716–2721, Oct. 2015.
- [50] L. Romao, A. Papachristodoulou, and K. Margellos, "On the exact feasibility of convex scenario programs with discarded constraints," *IEEE Trans. Autom. Control*, vol. 68, no. 4, pp. 1986–2001, Apr. 2023.
- [51] C. Cortes and V. Vapnik, "Support-vector networks," *Mach. Learn.*, vol. 20, no. 3, pp. 273–297, 1995.

- [52] A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Statist. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004.
- [53] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, "Support vector regression machines," in *Proc. Adv. Neural Inf. Process. Syst.*, vol. 9, Nov. 2003, pp. 1–7.
- [54] C. Suryanarayana, C. Sudheer, V. Mahammood, and B. K. Panigrahi, "An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India," *Neurocomputing*, vol. 145, pp. 324–335, Dec. 2014.
- [55] A. Widodo and B.-S. Yang, "Support vector machine in machine condition monitoring and fault diagnosis," *Mech. Syst. Signal Process.*, vol. 21, no. 6, pp. 2560–2574, Aug. 2007.
- [56] S. Tian, J. Yu, and C. Yin, "Anomaly detection using support vector machines," in *Advances in Neural Networks—ISNN 2004*. Berlin, Germany: Springer, 2004, pp. 592–597.
- [57] A. Widodo and B.-S. Yang, "Machine health prognostics using survival probability and support vector machine," *Expert Syst. Appl.*, vol. 38, no. 7, pp. 8430–8437, Jul. 2011.
- [58] D. M. J. Tax and R. P. W. Duin, "Support vector data description," Mach. Learn., vol. 54, no. 1, pp. 45–66, Jan. 2004.
- [59] Y.-P. Zhao, G. Huang, Q.-K. Hu, and B. Li, "An improved weighted one class support vector machine for turboshaft engine fault detection," *Eng. Appl. Artif. Intell.*, vol. 94, Sep. 2020, Art. no. 103796.
- [60] Jayadeva, R. Khemchandani, and S. Chandra, "Twin support vector machines for pattern classification," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 29, no. 5, pp. 905–910, May 2007.
- [61] Q. Ye, C. Zhao, N. Ye, and X. Chen, "Localized twin SVM via convex minimization," *Neurocomputing*, vol. 74, no. 4, pp. 580–587, Jan. 2011.
- [62] S. Sharma, R. Rastogi, and S. Chandra, "Large-scale twin parametric support vector machine using pinball loss function," *IEEE Trans. Syst.*, *Man, Cybern., Syst.*, vol. 51, no. 2, pp. 987–1003, Feb. 2021.
- [63] M. Tanveer, A. Sharma, and P. N. Suganthan, "Least squares KNN-based weighted multiclass twin SVM," *Neurocomputing*, vol. 459, pp. 454–464. Oct. 2021.
- [64] X. Pan, Z. Yang, Y. Xu, and L. Wang, "Safe screening rules for accelerating twin support vector machine classification," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 5, pp. 1876–1887, May 2018.
- [65] L. V. Utkin, "An imprecise extension of SVM-based machine learning models," *Neurocomputing*, vol. 331, pp. 18–32, Feb. 2019.
- [66] M. Tanveer, T. Rajani, R. Rastogi, Y. H. Shao, and M. A. Ganaie, "Comprehensive review on twin support vector machines," *Ann. Oper. Res.*, pp. 1–46, Mar. 2022.
- [67] Z. Wang, Y.-H. Shao, L. Bai, and N.-Y. Deng, "Twin support vector machine for clustering," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 26, no. 10, pp. 2583–2588, Oct. 2015.
- [68] Z. Qi, Y. Tian, and Y. Shi, "Laplacian twin support vector machine for semi-supervised classification," *Neural Netw.*, vol. 35, no. 11, pp. 46–53, Nov. 2012.
- [69] Y. Xu, Z. Yang, and X. Pan, "A novel twin support-vector machine with pinball loss," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 2, pp. 359–370, Feb. 2017.
- [70] H. Yu, X. Yang, S. Zheng, and C. Sun, "Active learning from imbalanced data: A solution of online weighted extreme learning machine," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 30, no. 4, pp. 1088–1103, Apr. 2019.
- [71] J. Lou, Y. Jiang, Q. Shen, R. Wang, and Z. Li, "Probabilistic regularized extreme learning for robust modeling of traffic flow forecasting," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 34, no. 4, pp. 1732–1741, Apr. 2023.
- [72] P. Germain, F. Bach, A. Lacoste, and S. Lacoste-Julien, "PAC-Bayesian theory meets Bayesian inference," in *Proc. 30th Conf. Neural Inf. Process. Syst.*, 2017, pp. 1–9.
- [73] Y. Seldin, F. Laviolette, N. Cesa-Bianchi, J. Shawe-Taylor, and P. Auer, "PAC-Bayesian inequalities for martingales," *IEEE Trans. Inf. Theory*, vol. 58, no. 12, pp. 7086–7093, Dec. 2012.
- [74] L. Ralaivola, M. Szafranski, and G. Stempfel, "Chromatic PAC-Bayes bounds for non-IID data: Applications to ranking and stationary β-mixing processes," J. Mach. Learn. Res., vol. 11, pp. 1927–1956, Jul. 2010.
- [75] J. Chen, Z. Guo, H. Li, and C. L. P. Chen, "Regularizing scale-adaptive central moment sharpness for neural networks," *IEEE Trans. Neural Netw. Learn. Syst.*, early access, Oct. 10, 2022, doi: 10.1109/TNNLS.2022.3210045.

- [76] V. N. Vapnik and A. Y. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities," in *Measures of Complexity*. Cham, Switzerland: Springer, 2015, pp. 11–30.
- [77] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning (Adaptive Computation and Machine Learning), 2nd ed. Cambridge, MA, USA: MIT Press, 2012.
- [78] L. Oneto, A. Ghio, S. Ridella, and D. Anguita, "Local Rademacher Complexity: Sharper risk bounds with and without unlabeled samples," *Neural Netw.*, vol. 65, pp. 115–125, May 2015.
- [79] S. Floyd and M. Warmuth, "Sample compression, learnability, and the Vapnik–Chervonenkis dimension," *Mach. Learn.*, vol. 21, no. 3, pp. 269–304, Dec. 1995.
- [80] Y. Lei, Ü. Dogan, D.-X. Zhou, and M. Kloft, "Data-dependent generalization bounds for multi-class classification," *IEEE Trans. Inf. Theory*, vol. 65, no. 5, pp. 2995–3021, May 2019.
- [81] A. Cannon, J. M. Ettinger, D. Hush, and C. Scovel, "Machine learning with data dependent hypothesis classes," *J. Mach. Learn. Res.*, vol. 2, pp. 335–358, Mar. 2002.
- [82] A. Maalouf, G. Eini, B. Mussay, D. Feldman, and M. Osadchy, "A unified approach to coreset learning," *IEEE Trans. Neural Netw. Learn. Syst.*, early access, Nov. 7, 2022, doi: 10.1109/TNNLS.2022.3213169.
- [83] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, "Stronger generalization bounds for deep nets via a compression approach," in *Proc. 35th Int. Conf. Mach. Learn.* (Proceedings of Machine Learning Research), vol. 80, 2018, pp. 254–263.
- [84] G. C. Calafiore and M. C. Campi, "The scenario approach to robust control design," *IEEE Trans. Autom. Control*, vol. 51, no. 5, pp. 742–753, May 2006.
- [85] G. Calafiore and M. C. Campi, "Uncertain convex programs: Randomized solutions and confidence levels," *Math. Program.*, vol. 102, no. 1, pp. 25–46, Jan. 2005.
- [86] M. C. Campi and S. Garatti, "The exact feasibility of randomized solutions of uncertain convex programs," SIAM J. Optim., vol. 19, no. 3, pp. 1211–1230, Jan. 2008.
- [87] M. C. Campi and S. Garatti, "A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality," *J. Optim. Theory Appl.*, vol. 148, no. 2, pp. 257–280, Feb. 2011.
- [88] A. Carè, S. Garatti, and M. C. Campi, "Scenario min-max optimization and the risk of empirical costs," SIAM J. Optim., vol. 25, no. 4, pp. 2061–2080, Jan. 2015.
- [89] P. M. Esfahani, T. Sutter, and J. Lygeros, "Performance bounds for the scenario approach and an extension to a class of non-convex programs," *IEEE Trans. Autom. Control*, vol. 60, no. 1, pp. 46–58, Jan. 2015.
- [90] M. C. Campi, S. Garatti, and F. A. Ramponi, "A general scenario theory for nonconvex optimization and decision making," *IEEE Trans. Autom. Control*, vol. 63, no. 12, pp. 4067–4078, Dec. 2018.
- [91] S. Garatti and M. C. Campi, "Risk and complexity in scenario optimization," *Math. Program.*, vol. 191, no. 1, pp. 243–279, Nov. 2019.
- [92] R. Rocchetta, L. G. Crespo, and S. P. Kenny, "A scenario optimization approach to reliability-based design," *Rel. Eng. Syst. Saf.*, vol. 196, Apr. 2020, Art. no. 106755.
- [93] S. Garatti and M. C. Campi, "The risk of making decisions from data through the lens of the scenario approach," *IFAC-PapersOnLine*, vol. 54, no. 7, pp. 607–612, 2021.
- [94] M. C. Campi and S. Garatti, "Wait-and-judge scenario optimization," Math. Program., vol. 167, no. 1, pp. 155–189, Jan. 2018.
- [95] S. Hanneke and A. Kontorovich, "Optimality of SVM: Novel proofs and tighter bounds," *Theor. Comput. Sci.*, vol. 796, pp. 99–113, Dec. 2019.
- [96] T. Graepel, R. Herbrich, and J. Shawe-Taylor, "PAC-Bayesian compression bounds on the prediction error of learning algorithms for classification," *Mach. Learn.*, vol. 59, nos. 1–2, pp. 55–76, May 2005.
- [97] S. Hanneke and A. Kontorovich, "A sharp lower bound for agnostic learning with sample compression schemes," in *Proc. 30th Int. Conf. Algorithmic Learn. Theory* (Proceedings of Machine Learning Research), vol. 98, Mar. 2019, pp. 489–505.
- [98] D. T. Cohen and A. Kontorovich, "Learning with metric losses," in Proc. 35th Conf. Learn. Theory (Proceedings of Machine Learning Research), vol. 178, Jul. 2022, pp. 662–700.
- [99] S. Hanneke and A. Kontorovich, "Stable sample compression schemes: New applications and an optimal SVM margin bound," in *Proc. 32nd Int. Conf. Algorithmic Learn. Theory (PMLR)*, 2021, pp. 697–721.
- [100] F. Fele and K. Margellos, "Probably approximately correct Nash equilibrium learning," *IEEE Trans. Autom. Control*, vol. 66, no. 9, pp. 4238–4245, Sep. 2021.

- [101] L. B. Armenio, L. Fagiano, E. Terzi, M. Farina, and R. Scattolini, "Optimal training of echo state networks via scenario optimization," IFAC-PapersOnLine, vol. 53, no. 2, pp. 5183–5188, 2020.
- [102] L. G. Crespo, B. K. Colbert, S. P. Kenny, and D. P. Giesy, "On the quantification of aleatory and epistemic uncertainty using sliced-normal distributions," *Syst. Control Lett.*, vol. 134, Dec. 2019, Art. no. 104560.
- [103] S. Hanneke, "Learning whenever learning is possible: Universal learning under general stochastic processes," in *Proc. Inf. Theory Appl. Workshop (ITA)*, Feb. 2020, pp. 1–95.
- [104] R. Yang, R. Jia, X. Zhang, and M. Jin, "Certifiably robust neural ODE with learning-based barrier function," *IEEE Control Syst. Lett.*, vol. 7, pp. 1634–1639, 2023.
- [105] V. Nagarajan and J. Z. Kolter, "Uniform convergence may be unable to explain generalization in deep learning," in *Proc. Adv. Neural Inf. Process. Syst.*, vol. 32, 2019, pp. 11615–11626.

Roberto Rocchetta received the Ph.D. degree in energy and reliability engineering from the University of Liverpool, Liverpool, U.K., in 2019.

He is currently a Research Associate with the University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland, affiliated with the Dipartimento ambiente costruzioni e design (DACD)-Istituto sostenibilità applicata all'ambiente costruito (ISAAC) Intelligent Energy System Group and a member of the NCCR Automation Group. Since 2019, he has been working at

the National Institute of Aerospace, Hampton, VA, USA, and the Technical University of Eindhoven, Eindhoven, The Netherlands. His research interests include decision-making under risk and uncertainty, artificial intelligence, and machine learning for energy system optimization and reliability engineering.

Alexander Mey received the Ph.D. degree from the Delft University of Technology, Delft, The Netherlands, in 2019 with a focus on data science and machine learning.

He is currently a Post-Doctoral researcher with the Department of Mathematics and Computer Science, Technical University of Eindhoven (TU/e), Eindhoven, The Netherlands. His research interests include reinforcement learning, decision-making, and probabilistic causality.

Frans A. Oliehoek received the Ph.D. degree in computer science from the University of Amsterdam (UvA), Amsterdam, The Netherlands, in 2010.

He is currently an Associate Professor with the Delft University of Technology, Delft, The Netherlands, where he leads a group on interactive learning and decision-making, is one of the scientific directors of the Mercury Machine Learning Laboratory, and is the Director and Co-Founder of the ELLIS Unit. He held positions at various universities including the Massachusetts

Institute of Technology (MIT), Cambridge, MA, USA; Maastricht University, Maastricht, The Netherlands; and the University of Liverpool, Liverpool, U.K. His research interests include intelligent systems that learn about their environment via interaction, building on techniques from machine learning, artificial intelligence (AI), and game theory.

Dr. Oliehoek is a Senior Member of Association for the Advancement of Artificial Intelligence (AAAI). He has served as a Programme Committee (PC)/Senior Programme Committee (SPC)/Area Chair (AC) at top-tier venues in AI and machine learning. He serves as an Associate Editor for *Journal of Artificial Intelligence Research* (JAIR), *Artificial Intelligence Journal* (AIJ). He was awarded a number of personal research grants, including a prestigious ERC Starting Grant.