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A Survey on Scenario Theory, Complexity, and
Compression-Based Learning and Generalization

Roberto Rocchetta , Alexander Mey , and Frans A. Oliehoek

Abstract— This work investigates formal generalization error
bounds that apply to support vector machines (SVMs) in real-
izable and agnostic learning problems. We focus on recently
observed parallels between probably approximately correct
(PAC)-learning bounds, such as compression and complexity-
based bounds, and novel error guarantees derived within
scenario theory. Scenario theory provides nonasymptotic and
distributional-free error bounds for models trained by solving
data-driven decision-making problems. Relevant theorems and
assumptions are reviewed and discussed. We propose a numerical
comparison of the tightness and effectiveness of theoretical
error bounds for support vector classifiers trained on several
randomized experiments from 13 real-life problems. This analysis
allows for a fair comparison of different approaches from both
conceptual and experimental standpoints. Based on the numerical
results, we argue that the error guarantees derived from scenario
theory are often tighter for realizable problems and always
yield informative results, i.e., probability bounds tighter than a
vacuous [0, 1] interval. This work promotes scenario theory as an
alternative tool for model selection, structural-risk minimization,
and generalization error analysis of SVMs. In this way, we hope
to bring the communities of scenario and statistical learning
theory closer, so that they can benefit from each other’s insights.

Index Terms— Agnostic learning, compression, generalization
theory, probably approximately correct (PAC), scenario optimiza-
tion, support vector classifiers.

NOMENCLATURE

Dm ⊆ 1m Dataset of size m.
δ = (x, y) ∈ Dm Sample (features and a label) in Dm .
f ∈ F Function/model in a set of models.
θ ∈ 2 Parameter vector in a set of

parameters.
f ⋆, θ ⋆ Optimized model/parameters.
A : Dm → F Data-driven learning algorithm.
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C : 1m
→ 1dcp Data compression rule.

y ∈ Y Label sample in an output set.
O(·),2(·),�(·) Big-O notation [1].
⌈r⌉ Smallest integer larger than r ∈ R.
⌊r⌋ Largest integer smaller than r ∈ R.
R(θ) = R( f (θ)) True risk for model f (θ).
R̂(θ) = R̂( f (θ)) Empirical risk estimate for f (θ).
V (θ) = V ( f (θ)) True margin violation probability for

f (θ).
V̂ (θ) = V̂ ( f (θ)) Empirical violation probability for

f (θ).
ϵ Threshold risk/robustness level.
ϵ, ϵ Lower and upper error bounds.
β Confidence level.
J (θ), l(θ) Cost and loss functions.
nθ Number of model parameters.
nx Number of input features.
ζ Slack variables.
(w, b) Separating hyperplane parameters.
Z Hilbert space.
ψ(x) Kernel function.
S⋆ ⊆ Dm Support set of minimum cardinality.
s⋆m = |S⋆| number of support constraints.
d Vapnik–Chervonenkis (VC) dimensions

(model complexity).
dcp Size of the compression.
γCX Tightness of complexity bounds.
γSB Tightness of scenario bounds.
γCP Tightness of compression bounds.

I. INTRODUCTION

THE generalization error, also known as risk or out-of-
sample error, quantifies the ability of models to predict

previously unseen data and plays a fundamental role in model
selection for machine learning (ML) [2]. In practice, ML mod-
els are often chosen by minimizing an empirical estimate
of their generalization error, for instance, applying K -fold
cross validation [3], [4], bootstrapping [5], jackknife [6], and
leave-one-out methods [7]. These empirical approaches are
well established among practitioners and applied in diverse
fields, including text classification [8] and categorization [9],
clustering [10], language processing [11], object [12] and fraud
detection [13], unbalanced learning [14], and pruning [10], and
in distributed, federated, multitask and active learning [15],
[16], [17], [18]. However, empirical model selection methods
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can be computationally expensive, especially for complex
models and large datasets, and the need to estimate the
generalization error inevitably reduces the data available to
train the models, which can be an issue under data scarcity.
If a severe lack of training examples affects the study, for
instance, when a dataset is highly imbalanced or small, cross
validation and bootstrapping methods may result in unsatis-
factory performance [19].

Unlike empirical model selection methods, formal gener-
alization error bounds are mathematically derived and do
not require test samples to estimate the generalization error.
Instead, the generalization error can be bounded without using
training data for empirical testing, speeding up the training
and model selection. Over the years, significant research has
focused on analyzing the theoretical properties of formal
generalization error bounds, and recently, Martin et al. [20]
proposed a data-free method for large-scale neural networks
that only uses spectral proprieties of the weights to ana-
lyze the model generalization. Yue et al. [21] introduced a
sharpness-aware learning rate scheduler to improve general-
ization by dynamically updating the learning rate of gradient-
based optimizers, and Wu et al. [22] studied stability and
convergence properties of generalization risk bounds for a
particular kind of regularized distributed learning algorithms.

In this context, the probably approximately correct (PAC)-
learning framework [23] is one of the most widely applied
to study the generalization error within the statistical learning
literature and prescribe formal generalization error bounds for
ML models. In the PAC-learning framework, a learner receives
samples and must select a function (called the hypothesis)
from a certain class of possible functions with good general-
ization properties. This framework has been used to compute
guarantees for many models, including support vector mod-
els [24], graph kernels [25], majority voting classifiers [26],
multiview learners [27], and on domain adaptation and [28]
multiclass domain adaptation problems [29], and on general
classes of Boolean functions [30]. Several types of statistical
learning bounds exist, and they can be based on the Bayes
theorem in the PAC-Bayes framework [23], on an indicator
of the model’s complexity [31], or on the model’s ability
to compress the data [32]. Similar to PAC-learning theory,
scenario theory studies formal generalization error bounds for
data-driven decision-making problems. Recently, error bounds
introduced by Campi and Garatti [33] have been applied to
anomaly detection [34], [35], interval regression [36], and
multiagent learning [37], to construct predictive belief func-
tions from data [38], to study majority voting classifiers [39],
and to robustly design controllers and other systems [40],
[41], [42]. Based on the reviewed literature, only a few works
used arguments from scenario theory to obtain generalization
bounds for ML models, such as support vector machine
(SVM), e.g., the works of Campi and Garatti [33], [43]
that recently introduced formal scenario bounds for various
models, including SVM.

While attempts have been made to connect scenario theory
and statistical learning theory [43], the literature is missing
a clear comparison of the tightness of the bounds, especially

from a pragmatic and quantitative/numerical standpoint. This
work tries to fill this gap by proposing a numerical comparison
of formal generalization error bounds from different theories.
We focus on data-realizable and agnostic learning problems1

and review and discuss underlying assumptions and theorems.
In Fig. 1, we summarize the main concepts we review in
this article. The comparison of the tightness of the bounds
is proposed on randomized experiments from 13 real-world
datasets. For synthesis and clarity’s sake, we focus our analysis
on binary SVM classifiers, both for soft-margin (agnostic)
and hard-margin (data-realizable) cases. Note that, while the
numerical analysis in this work focuses on SVM classifiers
only, the reviewed theories apply to other ML models and to
general classes of agnostic and realizable learning problems.
Hence, one of the main contributions of this work is a fair
comparison of different generalization theories and a numer-
ical evaluation of the tightness of formal generalization error
bounds.

The numerical results suggest that scenario bounds are often
tighter, particularly when the generalization error is small, and
better reflect the true risk for changing hyperparameters. With
this, we hope to bring scenario theory forward to the artificial
intelligence (AI) community and connect it to known results
from statistical learning theories, such as the one based on the
concepts of data compression and model complexity. Likewise,
we hope that we present work done in statistical learning
theory in an approachable manner for scientists working in
scenario theory, so that they may take some inspiration for
their work.

A. Related Literature
This survey is motivated by recent theoretical results on

the error of support vector models [33] and an expres-
sion of the research community on the need to investigate
equivalences between different generalization error theo-
ries [44], [45], [46]. Various researchers have investigated
error bounds from different theories to comprehend the rela-
tionship between the complexity of learning models and for-
mal generalization guarantees achievable under different data
availability scenarios. Blumer et al. [44] and David et al. [46]
demonstrated the equivalence between PAC learnability and
compressibility, while Chase and Freitag [47] established a
new connection between PAC learning and stability theory.
Bousquet and Elisseeff [48] focused on various online learn-
ing settings, while Yarullin and Obiedkov [45] investigated
an equivalence between PAC learning and query-learning
bounds. Margellos et al. [49] made the first attempt to connect
compression learning with scenario theory and focused on
bounding the out-of-sample error probability of realizable
data-driven decision-making problems. Their results show that
the issue of providing guarantees on the constraints violation
probability reduces to a learning problem for an appropriately
chosen algorithm that enjoys compression learning proper-
ties. Importantly, they show that ideas from scenario theory

1See Section II-C for a definition of realizable and agnostic learning
problems.
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Fig. 1. Scheme summarizing the reviewed generalization error bounds and theorems. Note that our paper focuses on formal error bounds that do not require
empirical estimation of the risk from a test set and primarily focused on scenario bounds both for agnostic and reliable settings.

can strengthen or relax the consistency assumption to ana-
lyze learnability properties [49]. Romao et al. [50] combined
results from scenario theory and compression learning to
derive tight error bounds for the solutions of realizable convex
algorithms with discarded samples.

None of the reviewed works compared scenario bounds
for agnostic learning with complexity-based and compression-
based error bounds. In addition, the literature lacks a numerical
comparison of the tightness of the formal error bounds
under different data availability conditions. Therefore, fur-
ther research is needed to link scenario, complexity, and
compression-learning theory for realizable and agnostic learn-
ing settings, to identify the strengths and weaknesses of dif-
ferent approaches, and to popularize theoretical error bounds
among practitioners. This overview demonstrates the need
for further research in the field and provides additional evi-
dence supporting the relevance of this work. The rest of
this article is organized as follows. Section II presents the
mathematical background, and Section III reviews theories
for prescribing generalization error bounds without a test set.
A numerical evaluation of the tightness of the bounds on
13 datasets is carried out in Section V. Section VI closes
this article with a discussion of the results, remarks, and
conclusions.

II. PRELIMINARIES

Let us consider a dataset Dm = {δi }
m
i=1 with m indepen-

dent and identical distributed (i.i.d.) samples drawn from an
unknown probability space (1,F,P), comprising an event
space 1, equipped with a σ -algebra F, and a fixed probability
measure P : F → [0, 1]. The probability P is assumed
unavailable, which is generally the case in practice.2 A sample
δ ∈ Dm will be also called a scenario.

2Here, albeit unavailable, the measure P is assumed stationary (fixed).

A. Supervised Learning

A scenario δ = (x, y) ∈ Dm contains a vector of explanatory
variables x ∈ X ⊆ Rnx and target variables y ∈ Y . Based on
the samples in Dm , we have to choose a function f ∈ F , with
f : X → Y , from a function class F with the goal that f is a
good predictor of y, given a newly seen sample x . The process
of learning a predictive model (a function) can be defined as
a generic data-driven decision-making problem

A : 1m
→ F , m = 0, 1, 2, . . . (1)

where A is a map from the samples space 1m
=

1 × 1 × · · · (m times) and the decision space F . Note that
the dataset Dm is a random realization from the event space
1m , and, without loss of generality, the map A can be seen as
a sophisticated optimization method or a simple heuristic to
select a function f ∈ F based on the available data Dm ∈ 1m .
For instance, the decision-making problem A for selecting
a predictive model is generally focused on the identification
of a function f ⋆ := A(Dm) = arg min f ∈F

∑
δ∈Dm

l f (δ) that
achieves a small probability of prediction error, i.e., that
minimizes the expectation of a loss function l f (δ).

B. Binary Classification

Binary classification is a special type of supervised learning
where new observations of explanatory variables x must be
categorized into one of two classes. For binary classification
problems, the dimension of δ is, therefore, nx + 1 as y ∈

{−1,+1} ⊂ Y , and an indicator function for the loss can be
considered as follows:

l f (x, y) =

{
1, if y ̸= f (x)
0, otherwise

where if y ̸= f (x), the loss function results in l f (x, y) = 1,
and the model f fails to classify the class of x correctly. The

Authorized licensed use limited to: TU Delft Library. Downloaded on December 19,2024 at 07:22:26 UTC from IEEE Xplore.  Restrictions apply. 
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expected value of this loss function is the misclassification
probability

R( f ) = P[δ ∈ 1 : l f (δ) = 1]

where R is also known as error probability or risk. As we
assume to not have direct access to P, we cannot evaluate
R( f ) for a given f precisely, and thus, we have to find other
means of choosing a suitable candidate model f . For instance,
minimizing an empirical (samples-based) estimate of the error
probability given by

R̂( f ) =
1
n

n∑
i=1

l f (δi ). (2)

Here, n is the number of available samples for the estimation
(test samples), and l f (δi ) is the indicator function for the
misclassification event f (xi ) ̸= yi .

C. Realizable and Agnostic Problems

Given a probability measure P and a hypothesis class
F , we call the learning problem realizable if and only if
there exists a function f ∗

∈ F , such that R( f ∗) = 0.
If such an f ∗ does not exist, we call the learning problem
agnostic. A further distinction can be made between learning
problems that are realizable for probability distributions of δ
and learning problems that are realizable for a specific dataset
Dm [44]. We will refer to the latter problems as data-realizable
problems. In contrast, a problem is called data-agnostic if it is
not data-realizable for Dm . For instance, consider the following
binary classification problem:

f ⋆ = arg min
f ∈F

J ( f )

s.t. l f (δi ) = 0 ∀δi ∈ Dm (3)

where J ( f ) is a cost function and the samples in Dm define
m constraints on the misclassification errors. This simple
learning problem is data-realizable for Dm if and only if
a function f ⋆ exists, such that l f ⋆(δi ) = 0 for all δi ∈

Dm . In other words, if the problem admits a nonempty
feasible set, at least one solution exists that satisfies all the
constraints on the loss function. However, feasibility does
not guarantee that the problem is realizable for all unob-
served realizations of δ ∈ 1 from the same distribution.
Our work will focus on both data-realizable and agnostic
problems.

D. Support Vector Machines

SVMs [51] have been historically developed as binary
nonprobabilistic classifiers and are nowadays one of the most
widely applied ML models in practice. An SVM classifier
is a binary classification function f : X → {−1,+1} that
maximizes the margin between the decision boundary of f and
the two classes defined by the labels in Dm . In the following
paragraphs, we introduce the standard notation and definitions
of SVMs.

1) Linear Hard-Margin SVM: A linear hard-margin SVM
program is defined as follows:

(w⋆, b⋆) = arg min
b∈R
w∈Rnx

∥w∥ (4)

s.t. yi (w · xi − b) ≥ 1, i = 1, . . . ,m (5)

where w ∈ Rnx is the normal vector to the hyperplane defining
the boundary of the two classes, b is the bias term, the
parameter (b/||w||) determines the offset of the hyperplane,
and ||·|| is the L2 norm operator. In view of the earlier notation,
our model class F is now given by Flin := {x → sign(w · x +

b) | w ∈ Rnx , b ∈ R}. Program (4) maximizes the width of a
hyperplane, proportional to (1/∥w∥), separating the space X in
two regions, one dedicated to each class. The term hard margin
means that the constraints yi (w · xi − b) ≥ 1, i = 1, . . . ,m,
must be satisfied. If the learning problem is realizable with
respect to a linear hypothesis class, the optimal hyperplane
defined by the parameters (w⋆, b⋆) always exists.

2) Nonlinear Soft-Margin SVM: Two standard extensions of
the linear hard-margin SVM are toward a nonlinear function
class and toward a program that relaxes the separability
constraints. The nonlinearity is achieved by introducing a
kernel function ψ(x) : X −→ Z , mapping the physical space
X to a Hilbert space Z ⊆ Rnz , while margin relaxation
is achieved introducing slack variables ζ in the constraints
of program (4). Note that the Hilbert space is generally of
higher dimension, and the function ψ(x) does not need to be
explicitly defined [33]. All relevant computations rely only on
the evaluation of a kernel K (xk, x j ) := ψ(xk) · ψ(x j ), i.e.,
the evaluation of inner products. The kernel K (·, ·) can be
used to operate in Z without the need for actually computing
the coordinates of the measurements in the Hilbert space in
an explicit way [43], [52]. The combination of kernel and
constraint relaxation gives rise to a nonlinear soft-margin SVM
program

(w⋆, b⋆, ζ ⋆) = arg min
b∈R,w∈Rnz

ζ∈Rm
+

∥w∥ + ρ

m∑
i=1

ζi :

s.t yi (w · ψ(xi )− b) ≥ 1 − ζi , i = 1, . . . ,m

(6)

where ζ is a vector of m nonnegative slack variables and ρ >
0 is a scalar regularization parameter weighting the cost of
margin violations. Program (6) seeks an optimal hyperplane
(w⋆, b⋆), which linearly separates the data in the space Z and
minimizes the cost of margin violations given by ζ ⋆. A linear
separator in the Hilbert space will map back to a nonlinear
separator in X . Hence, the hypothesis class F is now given
by Fnlin := {x → sign(w · ψ(x) − b) | w ∈ Rnz , b ∈ R}, and
the optimized hyperparameters θ ⋆ = (w⋆, b⋆) define a unique
classifier f ⋆ = f (x; θ ⋆) ∈ Fnlin. Note that although we use
the kernel function ψ explicitly for ease of notation, all those
computations may also be done using only evaluations of the
kernel K ; see, for example, [52, eq. (19)].

3) Margin Violation and Misclassification Error: Label
predictions can be assigned to new observations x by
ŷ = f (x; θ ⋆), and misclassification occurs if y ̸= ŷ or,
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equivalently, if y(w⋆ · ψ(x) − b⋆) < 0. The misclassification
probability (error/risk) for an SVM classifier is defined by

R(θ ⋆) := P[y(w⋆ · ψ(x)− b⋆) < 0]. (7)

The margin violation event occurs if a new sample pair
(x, y) violates the constraint in the training program, and the
probability of margin violation V (θ ⋆) is defined as follows:

V (θ ⋆) := P[y(w⋆ · ψ(x)− b⋆) < 1]. (8)

Note that, by definition, the margin violation probability
bounds from above the misclassification probability, i.e.,
V (θ ⋆) ≥ R(θ ⋆).

4) Other SVM Models: Many variants of the hard-margin
and soft-margin SVM models have been proposed in the
literature to tackle regression tasks [53], [54], fault and
anomaly detection [35] for prognostics of industrial assets,
and components [55], [56], [57]. For instance, support vector
data descriptor (SVDD) [58] and one-class SVM models [59]
are often used for anomaly detection, where SVDD identifies
abnormalities beyond an optimized spherical region in the ker-
nel space and one-class SVM beyond an optimized hyperplane.
Both models undergo training through convex optimization
constrained by random scenarios, making the formal bounds
discussed herein relevant. Similarly, twin SVMs (TWSVMs)
undergo convex optimization of nonparallel hyperplanes for
class separation, often yielding improved accuracy and gen-
eralization compared with standard SVMs. TWSVM was
originally introduced for pattern classification [60], [61] and
later extended to tackle active learning tasks [62], multiclass
learning, [63], and other applications [64], [65]. A com-
prehensive TWSVM survey [66] covered clustering [67],
semisupervised classification [68], and outlier detection [69].
Although the theoretical approaches reviewed in this work are
applicable to advanced SVM models and general classes of
learning problems, including neural network models [70], [71],
to ease the presentation, this work only focuses on formal
generalization for traditional binary SVM classifiers.

E. Generalization Error Bound
As we only have a finite amount of data available, the values

of R and V are unknown. Nonetheless, generalization error
bound analysis can be used to find upper and lower bounds on
these probabilities. Formally, given an algorithm A as defined
above, a generalization error bound is a function BA(β,m, I )
of a confidence parameter 0 < β < 1, the sample size m,
and other (potentially algorithm-dependent) parameters I , such
that, with probability of at least 1−β over the random sample,
it holds that

R(A(Dm)) ≤ B(m, β, I ). (9)

In Section III, we present an overview of some of the most
popular theories for those bounds, and we then focus more
in detail on complexity-based bounds, compression learning
bounds, and their link to new bounds obtained via scenario
theory. Then, in Section IV, specific results are presented and
later used as a basis for the numerical comparison.

III. GENERALIZATION ERROR BOUNDS: AN OVERVIEW

Several types of formal generalization error bounds can be
found in the scenario theory and statistical learning theory
literature and can be summarized as follows.

PAC-Bayes methods use, among other concepts, a prior
distribution over function class F to find generalization error
bounds. The PAC-Bayesian theory has been successfully used
in a variety of topics, including sequential learning, classi-
fication, and analysis of heavy-tailed data, e.g., [28], [72],
[73], for ranking and bounding probabilities of non-i.i.d. sam-
ples, [74], and for enhancing the generalization of regularized
neural networks [75]. The PAC-Bayes framework requires a
definition of a prior distribution over the different classifiers
(generally before observing the data), and the definition of a
suitable likelihood that is needed to approximate a posterior
distribution (once the data are collected).

Complexity-based methods quantify the generalization of
ML models based on a measure of the capacity (complexity,
expressive power, or richness) of the class of models F . If the
models in F are complex, the optimized f ⋆ is more likely
to overfit the data and generalize poorly. The VC dimension,
as originally introduced by Vapnik [31], is a complexity
measure, which helps to bound the difference of the empirical
risk and true risk uniformly over the model class. Given
a hypothesis class F , the VC dimension is the maximum
number of features x that can be labeled in all possible ways
with functions from F . Other examples of complexity-based
bounds include extensions based on the VC dimension [76],
FAT-shattering dimension, covering number, global and local
Rademacher complexity [77], union bound, and shell bound
methods [78]. In the case of learning a hyperplane, which is
the essence of an SVM, one can relate the VC dimension
to the margin between the hyperplane and the sample Dm .
Complexity-based bounds apply to deterministic classification
rules and algorithms but are not usable for learning algorithms
for which F is unknown or data-dependent.

Compression-based methods estimate algorithms’ general-
ization in terms of their ability to create a reduced-size
representation of the data, i.e., the algorithms’ ability to
compress samples [79]. If the data representation is small
(relative to the sample size), the compression rate will be high,
and the algorithm will likely generalize well. In contrast to
complexity-based bounds, which provide bounds based on a
capacity measure of F , compression-based error bounds are
data-dependent, as they depend on both the particular choice
of learning algorithms A and the random data in Dm . Refer
to [80] and [81] for other examples of data-dependent error
bounds. Littlestone and Warmuth [32] originally introduced
the concept of compression for zero/one loss functions, relat-
ing the bounds to early works on Kolmogorov complexity.
A compression function maps the data to a subset of the
original data (a compression set) that suffice to reconstruct the
resulting model f ⋆. The compression function then describes
how much we may compress the data while ensuring that A
provides the same f ⋆ under the uncompressed Dm . The main
limitation of compression methods is the huge compression
rates needed to obtain informative bounds and rates, which
are not always achievable in practice. A conceptually close
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approach is the core set learning theory [82], which relates to
the optimal subsampling literature and defines generalization
as a small weighted subset set of samples that approximates
this loss for every element in a query set. Compression bounds
are already available for complex models, including deep
neural networks [83], leading to orders of magnitude better
performance when compared with PAC-Bayes and complexity-
based bounds.

Scenario theory was, differently from previous approaches,
originally introduced to investigate the error probability
of convex optimization problems with randomized con-
straints [84], [85]. Those are learning problems where
samples of uncertain factors define deterministic convex con-
straints [86], and the hypothesis class defines a paramet-
ric family of convex functions. Scenario theory has been
extensively studied for hard-constrained (data-realizable) con-
vex programs [86], [87], [88], [89] and recently extended
to nonconvex cases [90] and more abstract classes of
decision-making algorithms [91]. Scenario bounds can be
derived before solving an optimization problem or can be
tailored to the optimized solutions. The former bounds are
known as a priori and, such as complexity-based bounds,
are derived independently of the data. For instance, one of
the most acclaimed results from scenario theory proved that
the error distributions of solutions to convex problems are
bounded by beta distributions whose parameters can be a
priori determined by the number of training samples and the
number of optimization parameters. This bound was proven
to be tight (exact) for a whole class of problems named fully
supported [86]. Differently, scenario bounds tailored to the
specific models are known as a posteriori bounds and are based
on a data-dependent hypothesis, such as compression-based
bounds. For instance, empirical error levels of the solution
of min–max problems have been shown to follow a Dirichlet
distribution, whose marginals are beta distribution [88]. Sce-
nario theory combines ideas from complexity-based methods
and compression-based methods. Similar to VC bounds, the
complexity of the class F defines data-independent (a pri-
ori) scenario bounds. Similar to compression-based methods,
a posteriori scenario bounds depend on a notion of how much
one may compress the given learning rule A for a given Dm .
A learning rule A having a higher degree of compression leads
to better generalization guarantees; thus, an interesting link is
established between the complexity of the candidate class F
and the joint complexity of a specific f ⋆ ∈ F and the observed
data Dm .

IV. GENERALIZATION ERROR BOUNDS:
SPECIFIC RESULTS

We now present specific generalization error results, first
from scenario theory and then from statistical learning theory.
Table I further below then lists the presented theorems and
indicates: If they are data dependent or independent. If they
are suitable for the realizable or agnostic case, and the needed
input to compute the generalization bound.

A. Scenario Theory

In scenario theory, a scenario program A(Dm) defines a
general class of data-driven decision-making problems, as in

(1). Without loss of generality and to ease the presentation,
we focus on a specific class of programs where a set of
deterministic constraints are defined by the random samples
in Dm , such as in SVM training programs. We now formally
introduce convex hard-constrained (data-realizable) and soft-
constrained (agnostic) scenario programs and establish their
link to SVM training programs (4) and (6).

1) Hard-Constrained Scenario Program: A hard-
constrained convex scenario optimization program is
defined as follows:

min
θ∈2

J (θ), s.t. f (θ, δi ) ≤ 0, δi ∈ Dm (10)

where θ ∈ 2 ⊆ Rnθ is a vector of design variables constrained
in a closed convex set 2, J : 2 7→ R is a convex cost function,
and f (θ, δ) : 2 × 1 → R is a convex function in θ defining
m hard constraints in (10). An optimal feasible design θ ⋆ must
satisfy f (θ ⋆, δi ) ≤ 0 for all i = 1, . . . ,m, with no exception,
and this often leads to a feasibility issue.

2) Soft-Constrained Scenario Program: A soft-constrained
reformulation of (10) is given by

min
θ∈2
ζ∈Rm

+

J (θ)+ ρ

m∑
i=1

ζi

s.t. f (θ, δi ) ≤ ζi , δi ∈ Dm (11)

where ζ is an m-dimensional vector of nonnegative slack
variables. A ζi = 0 means that the hard-constraint imposed
by the i th sample is satisfied, i.e., f (θ, δi ) ≤ 0. On the other
hand, a ζi > 0 implies a violation of the hard constraint. Note
that SVM programs are special classes of A(Dm) where the
cost and constraint functions are defined by

J (θ) = ||w||, f (θ, δ) = 1 − yi (w · ψ(xi )− b) (12)

with δ = (x, y) being a sample and θ = (w, b) the parameters
of the separating hyperplane. When a kernel operator is
applied, the number of design variables becomes nθ = nz +1,
i.e., the dimension of the Hilbert space plus one due to the
bias term.

3) Assumptions and Definitions: Scenario theory can be
used to assess how well an optimal design θ∗, so a solution
of the optimization programs (10) or (11), generalizes to
yet unseen situations δ ∈ 1. Definitions, assumptions, and
relevant theorems needed to compute generalization bounds
will be presented next.

Definition 1 (Violation Probability): The probability

V (θ ⋆) = P
[
δ ∈ 1 : f (θ ⋆, δ) > 0

]
(13)

is called violation probability. Given a reliability parameter
ϵ ∈ [0, 1], a design θ ⋆ is called ϵ-robust if V (θ ⋆) ≤ ϵ. Note
that for SVM programs, the violation probability coincides
with the “true” margin violation probability defined in eq. (8),
and thus, an ϵ-robust SVM θ ⋆ satisfies R(θ ⋆) ≤ V (θ ⋆) ≤ ϵ,
i.e., a bound on the worst-case classification error probability.

Definition 2 (Nonreducible Support Set): A support set
S ⊆ Dm is a k-tuple S = {δi1 , . . . , δik } for which the solutions
of the scenario program A(S) and program A(Dm) are
identical. A set S⋆ ⊆ S is nonreducible if for any δ ∈ S⋆,
the solution of A(S⋆ \ δ) differs from the one of A(Dm),
i.e., the support set is of minimal cardinality. A scenario
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program generally admits several support sets, and the set S⋆
with the smallest cardinality renders the best bounds. The
dimension of S⋆ will be denoted as s⋆m = |S⋆|, where |·| is
the cardinality operator.

Assumption 1 (Existence and Uniqueness): For every data
sequence Dm , the design solution θ ⋆ of A(Dm) exists and is
unique.

Assumption 2 (Nondegeneracy): For any positive integer
m ∈ N0 and scenario set Dm , the solution of the scenario
program A(Dm) coincides with probability 1 with the solution
of A(S⋆).

When program (10) is convex, nondegeneracy is a mild
assumption, since support constraints in S⋆ are always active,
and a (possibly reducible) support set can be easily identi-
fied [92]). In fact, the solution of convex learning programs
is generally unaffected by removing inactive scenarios for
which f (θ ⋆, δ) < 0 at the optimum. In the general noncon-
vex case, however, S⋆ might include nonactive constraints,
and the nondegeneracy assumption rarely holds. Hence, the
removal of a single nonactive constraint, i.e., the removal of
samples δ for which f (θ ⋆, δ) < 0, can yield a new optimum
having a smaller cost [92]. A recent extension of the theory
allows relaxing the nondegeneracy assumption [93] and allows
extending the scope of scenario theory to a broader domain of
learning problems where the sample constraints are nonconvex
functions of the model parameters and observations.

4) Bounds for Hard-Constrained Programs:
Theorem 1 [86, Th. 1]: Under Assumptions 1 and 2, sta-

tionary P, and i.i.d. samples in Dm , the distribution of V (θ ⋆),
for θ ⋆ being the solution of (10), is bounded by a beta
distribution

Pm
[V (θ ⋆) > ϵ] ≤

nθ−1∑
k=0

(
m
k

)
ϵk(1 − ϵ)m−k

= β (14)

where nθ is the number of design variables, β ∈ [0, 1] is a
confidence parameter, and Pm is a product probability due to
independence of the m samples.

Theorem 1 can be easily derived from Helly’s theorem,
showing that s⋆m ≤ nθ for convex programs under the given
assumptions. Note that the bound ϵ is data-independent, as it
can be a priori computed, i.e., it is obtained before solving
(10), and it only requires the number of design variables nθ ,
number of samples m, and a desired confidence β. If program
(10) is fully supported, that is, if s⋆m = nθ with probability 1,
(14) holds with the equality sign. An extension of Theorem 1
allows for k samples δ to be intentionally removed from the
dataset Dm , for instance, the ones making program (10) unfea-
sible. This approach makes (10) a data-realizable problem.
As a result, the optimized θ ⋆ enjoys an improved J (θ ⋆) for the
cost of a weaker certificate of generalization [86]. However,
many real-life problems are only partially supported (s⋆m < nθ ),
and Theorem 2 renders tighter bounds.

Theorem 2 [94, Th. 2]: Consider a convex scenario pro-
gram defined as in (10). Under Assumptions 1 and 2, stationary
P, and i.i.d. samples in Dm , the solution θ ⋆ of (10) satisfies

Pm[V (θ ⋆) > ϵ
(
s⋆m
)]

≤ β (15)

where the reliability ϵ(k) = 1 − t (k) is the unique solution
in [0, 1] of the following polynomial equation in t for any
k ∈ {0, . . . , nθ }:

β

m + 1

m∑
j=k

B j (t; k)−

(
m
k

)
tm−k

= 0. (16)

Here, B j (t; k) =
( j

k

)
t j−k is a binomial expansion.

Theorem 2 gives a generalization bound V (θ ⋆) ≤ ϵ(s⋆m)
at a confidence level 1 − β and reliability parameter ϵ(s⋆m)
determined from (16). In contrast to (14), ϵ(s⋆m) is a posteriori
computed by enumerating support scenarios s⋆m in correspon-
dence of θ ⋆.

5) Bounds for Soft-Constrained Programs: To extend
the scope of scenario-based generalization bounds to soft-
constrained problems, such as the one in (11), a technical
assumption of nonaccumulation is required. The assumption
states that, for every θ ∈ 2 and a ∈ R, the function f (θ, δ)
does not have concentrated mass, i.e., P[δ : f (θ, δ) = a] =

0. This assumption is generally satisfied when δ admits a
probability density function.

Theorem 3 [91, Th. 4]: Consider a convex scenario pro-
gram as in (11). Given the aforementioned assumptions,
stationary P, and i.i.d. samples in Dm , the probability V (θ ⋆)
is bounded by

Pm
[ϵ(s⋆m) ≤ V (θ ⋆) ≤ ϵ(s⋆m)] ≥ 1 − β (17)

where ϵ(k) = max{0, 1−t(k)}, ϵ(k) = 1−t(k), and {t(k), t(k)}
are the solutions of a polynomial equation in t

Bm(t; k) =
β

2m

m−1∑
j=k

B j (t; k)+
β

6m

4m∑
j=m+1

B j (t; k) (18)

where k ∈ {1, . . . ,m−1} is the number of support constraints.
For the special case k = m, the upper bound is set to ϵ(k) = 1,
and the lower bound is obtained solving

1 =
β

6m

4m∑
j=m+1

B j (t; k). (19)

For a soft-constrained SVM design, Theorem 3 gives high
probability upper and lower bounds on the probability of
margin violations. Here, s⋆m is the number of support vectors,
i.e., the number of samples for which 1− y(w⋆ψ(x)−b⋆) ≥ 0.
If w⋆ = 0, s⋆m is the number of data points whose label belongs
to the class with fewer elements [33].

We refer to the bounds introduced in this section as the
scenario bounds. We introduce generalization bounds from
the statistical learning literature, based on complexity and
compression, next. For our comparison, we use the most recent
results on generalization bounds for SVMs.

B. Complexity-Based Bounds for SVM

For realizable cases, [24] solved a longstanding problem
by showing that the error of an SVM drops as 2((d/m) +

log(1/β)), where d denotes the VC dimension. The specific
bound they provide is defined as follows.
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Theorem 4 [24, Th. 15]: Under the realizability assumption
from Section II-C, it holds that for all dataset sizes m > 2(d +

1), with probability of at least 1 − β

R(θ ⋆) ≤
2

m − 2(d)

(
(d) ln(4)+ ln

(
1
β

))
(20)

where θ ⋆ = (w⋆, b⋆) is the solution of (4) and d again denotes
the VC dimension of the SVM and is equal to d = nx + 1.

Next, we present two results in the agnostic case, taken
from [95]. The first theorem bounds the generalization error
in terms of the margin of the SVM. The second bound is
more general and not directly targeted at SVMs, as it uses
the VC dimension for general linear predictors d = nx + 1.
In view of our earlier discussions, the margin-based bound is
an a posteriori bound, as it needs to know the margin of the
resulting SVM. The VC-dimension-based bound is an a priori
bound, as the VC dimension is known before any learning.

Theorem 5 [95, Th. 15]: Let θ ⋆ = (w⋆, b⋆) be the solution
of the SVM program (6), and let l⋆SVM(x, y) = min{max{0, 1−

y(w⋆ · x + b⋆)}, 1} be the so-called ramp loss. If r =

max1≤i≤m ∥xi∥, then with probability of at least 1−β, it holds
that

R(θ ⋆) ≤
1
m

m∑
i=1

l⋆SVM(xi , yi )

+
1

√
m

(
4
√
(3+ 1)2 + 3

√
ln
(
π432

18β

))
(21)

where 3 = ⌈r⌉⌈∥w⋆∥⌉ ∈ N is the product of smallest integers
larger than r and ∥w⋆∥.

The second term on the right-hand side of (21) is derived
from Rademacher complexity theory, while the first term
provides a lower bound on the empirical risk estimated from
the slack variables in (6), i.e., (1/m)

∑m
i=1 l⋆SVM(xi , yi ) ≤

(1/m)
∑m

i=1 ζ
⋆
i = R̂(θ).

Theorem 6 [77, Corollary 3.19]: For all predictors f (θ) ∈

Flin, so also for the SVM solution f (θ ⋆), it holds that

R(θ) ≤ R̂(θ) (22)

+
1

√
2m

(√
4(d + 1) ln(

em
d
)+

√
ln
(

1
β

))
(23)

where d = nx +1 is the VC dimension of Flin and e is Euler’s
constant.

Note that (22) has, in comparison with (21), an additional
logarithmic term ln(m) in the number of samples, which can,
in principle, be removed.

C. Compression-Based Bounds for SVM

Similar to a posteriori scenario bounds, compression bounds
depend on the number of data points that are strictly neces-
sary to reconstruct the optimum. This quantity is known as
compression size in compression learning and is equivalent to
the support set size |S| in scenario theory. Note that S does
not have to be of minimal cardinality for the bounds to apply.
However, smaller values of the compression rates led to better
generalization error guarantees.

In order to formally introduce compression learning bounds,
we will make use of the mathematical framework presented
in [44] and [46]. We consider a learning algorithm A and a
compression rule, C, where we call A permutation invariant
if the mapping does not depend on the ordering of the input
dataset Dm . The rule C : 1m

→ 1dcp compresses the data
Dm to a smaller dataset Ddcp ⊂ Dm . A compression scheme
can be any rule that identifies a compression set Ddcp , such
that the SVM classifier obtained from the original set Dm is
exactly the same as the SVM obtained from the compressed
set Ddcp . Clearly, the compression set coincides with the set
of support scenarios S as defined in scenario theory, which
is equivalent to the number of support vectors in the case of
SVMs, showing a clear parallel between the two approaches.
As in the previous settings, we first present a result in the
realizable and then in the agnostic setting.

Theorem 7 [96, Th. 1]: Consider a realizable learning prob-
lem, and let A : 1m

→ F be a permutation invariant learning
rule with R̂[A] = 0. Let dcp(Dm) be the size of a compression
scheme for Dm , such that θ ⋆ = A(Dm) = A(Ddcp). For any
P, m ∈ N with probability at least 1 − β ∈ [0, 1] over the
sampling of Dm , it holds that

R(θ ⋆) ≤
1

m − dcp

(
ln
(

m
dcp

)
+ ln(m)+ ln

(
1
β

))
. (24)

Theorem 8 [96, Th. 2]: Consider an agnostic learning prob-
lem, and let A : 1m

→ F be a permutation invariant learning
rule. Let dcp(Dm) be the size of a compression scheme for
Dm , such that θ ⋆ = A(Dm) = A(Ddcp). For any P, m ∈ N,
training dataset Dm , and β ∈ [0, 1], with probability at least
1 − β, it holds

R(θ ⋆) ≤
m · R̂(θ ⋆)
m − dcp

+

 ln
( m

dcp

)
+ ln(m)+ ln

(
1
β

)
2(m − dcp)


1
2

. (25)

For additional readings and recent advancements on
compression-based bounds for both realizable and agnostic
problems, the interested reader is referred to [97], [98], and
[99]. Hanneke and Kontorovich [97] show that the optimal
rates of agnostic compression schemes with compression
rate k are often (k ln(m/k)/m)1/2, which is in contrast with
the known rate

√
d/m of convergence of complexity-based

agnostic problems, for a VC dimension d. Hanneke and
Kontorovich [99] studied stable compression schemes for a
family of supervised learning algorithms. A new and enhanced
margin bound for SVM is proposed and removing a log factor.
Cohen and Kontorovich [98] discuss agnostic learning with
unbounded metric losses and introduce a new technique called
semistable compression.

V. EXPERIMENTAL PROCEDURE AND RESULTS

A numerical procedure has been developed to compare the
effectiveness of the revised bounds. The procedure works as
follows.

1) Initialize: Choose the parameters for the bounds, includ-
ing the kernel type, scale parameter, confidence level,
number of experiments Nexp, and ρ.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 19,2024 at 07:22:26 UTC from IEEE Xplore.  Restrictions apply. 



ROCCHETTA et al.: SCENARIO, COMPLEXITY AND COMPRESSION THEORY 16993

TABLE I
COMPARISON BETWEEN THE REVIEWED THEOREMS, FUNCTIONAL DEPENDENCY OF THE BOUNDS, AND THEIR APPLICABILITY A PRIORI, E.G., EVEN

BEFORE SOLVING THE LEARNING PROBLEM, AND TO REALIZABLE LEARNING/AGNOSTIC PROBLEMS, I.E., OPTIMIZATION METHODS LEADING
TO NULL/NONNULL EMPIRICAL TRAINING ERROR

2) Sample Training Data: Randomly select one of the
13 datasets, a subset of features (between 50% and 100%
of nx ), and sample size (between 5% and 35% of the
original size, such that m ≤ 2000 for efficiency’s sake).

3) Train an SVM Model: Solve program (6), and compute
an unbiased estimator for the error probability R(θ ⋆).

4) Generalization Bounds: Compute the number of support
vectors s⋆m , VC dimension, the average of the ramp loss
r , and ||w||. Use s⋆m , β, and other statistics to compute
the agnostic learning bounds as previously described.
If any upper bound exceeds 1, set it to 1 (noninfor-
mative). If there are multiple bounds available, such as
agnostic complexity-based ones, choose the bound with
the smallest magnitude

5) Assess Tightness: Evaluate the tightness of the scenario
bounds in each experiment by estimating the differ-
ence γSB = ϵ(s⋆m) − R(θ ⋆), and similarly compute the
tightness of the complexity-based bounds (γCX) and the
compression-based bounds (γCP).

6) Statistical Analysis of Randomized Experiments: Repeat
steps 2)–5) a total of Nexp times. Compare the expecta-
tion and variance of the tightness metrics to assess the
relative performance of the different bounds.

Quantitative and qualitative analyzes of the tightness of
the error bounds and convergence are analyzed for varying
hyperparameters and on 13 real-world datasets obtained from
University of California, Irvine (UCI), open machine learning
(OpenML) repositories, and MNIST.

A. Thirteen Datasets

The 13 real-world datasets have been modified for binary
classification and randomly sampled to generate new synthetic
datasets. Here is a brief description of each classification
problem.

1) MNIST: A dataset of handwritten digits with 784 fea-
tures per image (pixels). We classify 14 000 samples of
digits 1 and 3.

2) League of Legends (LOL): The 9879 LOL game out-
comes characterized by 38 input features to be classified
as win or lose.

3) Winequality: It contains 4898 wine samples, nx =

11 features, to be classified as good (score exceeding
5) or bad wines.

4) Ionosphere: A collection of m = 351 radar samples to
be labeled as good or bad using nx = 38 features.

5) Abalone: The goal of predicting the age of abalones
from nx = 8 biological characteristics. Abalones with
over nine rings are labeled as old.

6) Ailerons: A binarized version with nx = 39 features and
m = 13 750 samples.

7) Spambase: 4601 labeled e-mails with nx = 57 features.
The goal is to classify future SPAM emails.

8) Data Eye: The goal is to predict when a person’s eyes
are open/closed given 14 780 continuous EEG measure-
ments with 14 features (missing data and outliers have
been removed).

9) Postures: The 13 600 samples with eight coordinates
from five hand postures (X0:2, Y0:2, and Z0:1). Postures
1 and 3 are used for the binary classification task.

10) Banknote Authentication: m = 1372 images with nx =

4 feature taken from genuine and forged banknote spec-
imens. The goal is to identify forged samples.

11) Dota: The goal is to classify the binary outcome of m =

10 2944 game plays from 116 features.
12) Monk Problem: m = 601 samples and nX = 6 features

usable to predict the outcome of a logical formula.
13) Gina Agnostic: A dataset for agnostic handwritten digit

recognition that contains m = 3468 samples of two
digits having nx = 970 features (pixels).

B. Qualitative Comparison

This section analyzes the behavior of the bounds when the
hyperparameters are varied, particularly the scaling parameter
of the kernel. One interesting observation is that when using a
Gaussian kernel and in an agnostic setting, the VC dimension
is infinite a priori. Hence, the margin bound in (21) must be
used. Fig. 2 illustrates the trend of the bounds on the LOL
dataset, and a similar trend has been observed in many other
datasets as well. It is worth noting that the complexity-based
bound, computed according to Theorem 5, failed to capture
the trend of the test error estimate. On the other hand, the
scenario bound followed the error much better. Fig. 2 depicts
this issue and shows a study of the underlying statistics used
to compute the bounds. The complexity-based bound incorpo-
rates the training loss

∑m
i=1 l⋆SVM(xi , yi ) and the norm ∥w⋆∥.

The training loss initially increases as we overfit the data,
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TABLE II
RESULTS FOR γCX , γSB , AND γCP FOR LINEAR AND GAUSSIAN KERNELS AND THREE VALUES OF THE REGULARIZATION PARAMETER ρ . RESULTS WERE

OBTAINED FOR AN OPTIMIZED KERNEL SCALE (MATLAB “AUTO” OPTION) AND 5000 RANDOM EXPERIMENTS

Fig. 2. Effect of the kernel scale on the test error, the formal generalization
error bounds, and support vectors. The curves have been rescaled for clearer
representation, as the focus is on observing the trends rather than the absolute
values.

while the norm ∥w⋆∥ closely tracks the test error. However,
changes in ∥w⋆∥ are much smaller than the changes in the
training loss. Consequently, the margin bound underestimates
the impact of having a smaller norm and fails to capture the
trend of the test error. In other experiments, we have observed
that both the scenario and complexity bounds follow the true
error; however, we have never encountered a failure with the
scenario bounds.

C. Quantitative Comparison
The experimental procedure described in Section V is

applied to train 5000 linear soft-margin SVM classifiers and
kernels scale and ρ set equal to one for reproducibility.
This procedure yields 5000 randomized training sets from
the 13 classification problems, containing between 18 and
2000 samples and nx ∈ [3, 970] features. The tightness scores
of the revised error bounds are then compared for a confidence
parameter β = 10−2. The Rademacher margin bound in (21)
exceeds one for most of the experiments (97.98%), while
this happened in 2068 (41.36%) cases for the VC-dimension-
based bounds in (22). Hence, for linear SVMs, the VC bounds
generally offer better results compared with the margin bound.
The compression-based bound also exceeded one for many
cases (87%). The scenario bounds resulted in better scores
(tighter bounds) in about 71% of the 5000 experiments. As a
figure of merit, Fig. 3 illustrates the comparison between the
generalization error bounds and the test errors, highlighting
the results for the 13 datasets with different colored markers.

A pairwise comparison of the VC and scenario bounds is
presented in the top-left panel, while the two panels on the
right-hand side display pairwise comparisons of the empirical
errors (x-axis) and the formal error bounds (y-axis). Note
that complexity-based bounds on the generalization error are
always noninformative for the Gina agnostic, MNIST, and
Monk problem datasets, i.e., a generalization error in [0, 1].
Differently, scenario bounds are often nonvacuous and always
informative, especially on the Modified National Institute
of Standards and Technology (MINST) dataset, where we
observed a much better performance.

1) Distribution of γ With Respect to the Individual Datasets:
We now report the tightness scores of the generalization
bounds for the individual datasets. Fig. 4 shows the results
of this analysis, where the distribution of the tightness scores
for each dataset is visualized using box and whisker plots.
Each box represents the 5th and 95th percentiles for the
distribution of γ, calculated from the randomized experiments.
The top, middle, and bottom panels correspond to scenario
bounds (γSB), complexity-based bounds (γCX), and compres-
sion bounds (γCP), respectively. The red regions indicate poor
performance, with a discrepancy score γ ≥ 0.4, and green
regions represent good performing bounds with γ < 0.4. The
analysis demonstrates that, for this experimental configuration,
scenario bounds are often the most effective, outperforming
the other bounds for many classification problems, i.e., for
eight datasets out of 13. On the other hand, complexity-based
bounds are effective only for three datasets (postures, data eye,
and abalone), while compression bounds show good outcomes
for two datasets (banknote and MNIST).

2) Bounds Behavior With Respect to the Test Error: Fig. 5
presents the formal error bounds and empirical error estimated
from a test sets. The test errors are sorted in an ascending order
on the x-axis. The pentagram green markers represent the
compression bounds, the blue markers denote the complexity-
based bounds, and the red cross markers represent the scenario
bounds. This analysis reveals that the scenario bounds have
the best performance when the SVM model achieves high
accuracy. However, when the accuracy of the SVM is low,
e.g., an error greater than 0.2 in Fig. 5 for the linear case, the
statistical learning bounds can provide tighter generalization
guarantees. It is also worth noting that for lower errors, the
compression bounds occasionally outperform the complexity
bounds but still do not perform as well as the scenario bounds.

3) Results for Different Values of ρ and Optimized Ker-
nel Scale: To analyze the effect of ρ and kernel type,
we chose three values for ρ 1, 100, and 5000, and used two
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Fig. 3. Scenario and complexity-based bounds compared with the error estimate for soft-margin linear SVM classifiers. On the right panels, the dashed
lines show the regions where the formal bound fails, while the left panels show experiments having scenario bounds tighter than the complexity bounds. The
markers indicate different datasets.

Fig. 4. Box and whisker plots of tightness scores on the individual datasets. Scenario, complexity, and compression bound are presented, respectively, in the
top, middle, and bottom panels. In green color, we highlight experiments with a relatively small discrepancy score, γ < 0.4, i.e., the tighter bounds. Clearly,
scenario bounds outperformed the reviewed bounds in many cases.

different kernel functions, linear and Gaussian. We trained
5000 classifiers for each of the six combinations of kernel type
and regularization parameter. Unlike our previous analysis,
we optimized the kernel scale using an empirical/heuristic
optimization method (the MATLAB auto option). Note that as
ρ approaches infinity, the soft-margin constraints in the SVM
training programs revert back to the original hard-constrained
formulation. This means that increasing ρ increases the cost

of violation, which force the optimizer to reduce the average
magnitude of margin violations. However, a reduction in the
number of support vectors is not guaranteed. Table II sum-
marizes the numerical results of our analysis. We present the
averages of γCX, γCP, and γSB, denoted by E[·], as well as their
standard deviations σ . We also report the minimum and max-
imum values for each metric, denoted by γ

SB
, γ

CX
, γ

CP
and

γSB, γCX, γCP, respectively, over the 5000 experiments. Our
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Fig. 5. Resulting scenario bounds (red markers), complexity bounds (blue markers), and compression-based bounds (green markers) are sorted by the values
of the empirical test error estimates (black markers and x-axis). Results for the linear and Gaussian kernels are presented in the top and bottom panels,
respectively. Scenario bounds generally outperform other statistical learning bonds, especially when the error estimate is small.

findings indicate that for ρ ≥ 100, scenario bounds provide
much superior results compared with other bounds. However,
for lower ρ values, complexity-based methods achieve better
bounds on average.

VI. DISCUSSION AND CONCLUSION

This work compared scenario theoretic, compression-
learning, and complexity-based approaches to derive formal
generalization error bounds for SVM classifiers. Despite this
restriction on the model class, the revised theories apply to
other models and, more generally, to data-driven agnostic
and data-realizable learning algorithms. The most significant
theorems and mathematical tools used for the proofs and
derivations have been reviewed and discussed. Scenario-based
bounds are often tailored to the specific learning problem
and can be data-dependent or data-independent. The number
of support scenarios, the support vectors for SVM models,
affects the width of data-dependent scenario bounds, which
are, thus, closely related to the concept of compression size
in compression-learning theory. Differently, data-independent
scenario bounds depend on the number of optimization param-
eters, which relates to the expressiveness of the learning model
and closely relates to model complexity and VC dimension.
We proposed a series of randomized training experiments to
study and compare the tightness of scenario bounds with
traditional statistical learning approaches, i.e., compression-
learning and complexity-based bounds. We found that the
scenario bounds are often tighter (especially for hard-margin
cases and for low empirical errors), and that the margin bound
can fail to capture the error trend for changing hyperparame-
ters, and we did not experience this with the bounds prescribed
by other theories. Future research on theoretical generalization
errors must focus on the following key issues.

1) Investigate the relationship between data-independent
and data-dependent error bounds for ML methods. For

instance, recent works prove the potential of scenario
bounds on game-theoretic models, echo-state networks,
and other ML tools for data description, regression, and
prediction [100], [101], [102].

2) There is a need to tackle a lack of theoretical under-
standing on how to provide tight and nonempirical error
bounds for agnostic and reliable problems for non-i.i.d.
samples and using nonstationary probability spaces and
data sequences, e.g., [103].

3) Recent works showed that it is possible to study the
generalization of deep learning models without the need
for training nor testing data [20], hence suggesting the
possibility of defining error guarantees from inherent
structural properties of the trained model f (θ ⋆). Future
research efforts are needed to understand the interplay
between the parameters and structure of a trained model
f (θ ⋆) and its capacity to compress the data and gener-
alize to new examples.

4) Finally, we wish to remark that, currently, it is a problem
to derive nonvacuous bounds for complex systems, such
as neural networks [104], where it remains problematic
to analyze them in classical frameworks [105]. Regard-
ing this, it could be of particular interest to look at
generalization bounds for nonconvex agnostic learning
problems [90].
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