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Abstract  

While image processing is concerned with the msformation of images into 
images, image analysis is primarily concerned with the transformation of 
images into dara. In many applications this ability to extract quantitative data 
from two-dimensional signals is the primary goal. These data may then be 
used lo charactcrizc the signals or lo aid in a decision-making process. 

To achieve this end a number of significant techniques have been developed 
in the past decade. These include filters which transform either binary or grey- 
level images into othcr “images” where the numerical values in the output 
matrix represent measures. In classical signal analysis the Fourier transfon 
would be such an example. In the newer techniques the values may represcnt 
topological, size, texture. or distance mcasures applied to the original image. 

The issue of measurement accuracy, itself, has begun to receive considerable 
attention. Traditional concepts such as Nyquist frequency have been shown lo 
bc inadequate when the goal of processing is measurement rather than 
filtering. The relationship between measurement accuracy, the sampling 
frequency, and the formulas for parameter estimation have been studied. The 
levels of accuracy required in industrial inspection, for example, frequently 
require sampling frequencies far in excess of the Nyquist frequency. 

Introduction 

In 1989 we celebrate the 150th anniversary of the technical (as opposed to 
artistic) recording of images by L.I.M. Daguerrc [ I ] .  Image processing - that 
is, the processing of images with the aid of digital computers - is just thirty 
years old [2.3] and yet in that time there has been an impressive series of 
developments. 

Thirty years ago digital image processing was in ils infancy. Computers were 
located in inaccessible computation centers. Frame grabbers did not exist. 
Computer languages were limited lo assembly language. The first laboratory- 
oriented computer was introduced in the early 1960’s with the PDP-1 and the 
first collection of languages appeared at about the same time. As of this 
writing (1989) the computational power, memory, and storage capacity 
available 30 years ago in cornputation centers has been substantially 
surpassed by the power available in a desk-top personal computer that is 
priced at a level that makes it affordable to individual researchers and rheir 
families. The software sophistication available on all fronts - operating 
systems, user interfaces, languages, and image processing algorithms - has 
witnessed a Comparable impmvement [4-81. 

Image analysis - the extraction of data from images - is approximately 25 
years old. Some of the first work in this field was the attempt to classify 
automatically the 46 chromosomes in the human cell [9]. This work and the 
many effons that have followed it have led us to a situation in 1989 where 
we now understand what are the proper questions LO ask in the Context of 
image analysis and how to apply the answers where they are known. Some of 
these questions are: 

- How can the verbal description of some property in an “analog” 
image be translated into a quantitative measure? 

- What is the proper representation of the digital image in order to 
Compute efficiently the desired measure? 

- What is the proper formula for estimating the analog measure given 
the digital data? 

- What is the sampling density required to obtain an arbitrary accuracy 
and precision in the analog measure given the digitaJ data? 

How can the desired measure be tested as to efficacy in a controlled 
Way? 

* Can image transformations be used in such a way as to implement 
the measurement process or aid in the implementation of the measurement 
PmceSS? 

I will return to specific examples to illustrate the implications of these 
questions but first it is important to understand the central distinction that 
exists between image processing and image analysis. (This distinction will 
play an important role when I discuss the issue of sampling frequency.) 

In image processing one is concerned with “image in + image out” and the 
theory surrounding this model is consuucted accordingly. In image analysis 
one is concerned with “image in + data out”. The output is not an image but 
rather data derived from the image. Finally there is the modcl “data in + 
image out” and this represents the increasingly important field of image 
graphics. The first two of these quite distinct fields of study are illustrated in 
Figure 1. 

While I have painted a very black/white picture of the split between 
processing and analysis the delineation is not quik as swrk. Many measures 
can, in fact, be derived through a series of image transformations or filters. 
Later in this manuscript I will present several such examples. 

Figure 1: Illusualion of l e  dislinction between image processing and image 
analysis. 

Analysis Through Measurement 

The basic questions raised in the previous section arc best explained through 
an example. Consider the digital image shown in Figure 2. The problem is 
U) estimate the area of the original analog object that gave rise IO this set of 
digital values. 

It is straightforward to justify at least three different formulas lor estimating 
the area of the original objecL Let us assume that the distance between the 
Centers of the pixels is 1 mm. Then: 

Estimate # I  -The area is simply the number of pixels belonging to 
the object. Thus A = 10 mm2. 

1699 
CH2673-2/89/000&169!J $1.00 0 1989 lEEE 



0 0 0 0 0 0  
0 0 0 0 . 0  
000..0 
00B.RO 

0 0 0 0 0 0  
Figure 2 Pixels belonging to the object are dark. Pixels belonging to the 
object are white. 

Estimate X2 - The collection of pixels form a triangle. The base of 
the than le and the height of the aiangle are both 3 mm. Thus A = 3-3/2 = 
4.5 mm 4r . 

Estimate #3 -The collection of pixels form a triangle. The base of 
the triangle and the height of the triangle are both 4 mm. Thus A = 8 mm2. 

Each of these arguments - by itself - is quite reasonable. Taken together they 
represent lhree very different estimates for what should be a simple problem. 
It has been shown U01 that in fact the first formula is the correct one for 
achieving an unbiased, consistent estimate of the ~IU of the original analog 
object. 

This same, fundamental question -what is the proper formula - can be posed 
for every property that one wishes Lo measure from a digital image. Dorst and 
Smeulders [ l l ]  have studied this problem extensively in the context of the 
measurement of the length of smight lines and - to a more limited extent - 
in the estimate of the perimeter length of closed curves. They fmd that three 
factors determine the accuracy and precision of any given length estimator: 

1 .  The representation of the digitized line; 
2. The formula used to estimate the length given the representation, 

and; 
3. The sampling density. 

As an example. given a Freeman chain code representation of a svaight line 
[12], there are several possible formulas in the literature for estimating the 
line length: 

L s =  Ne+ No [Ref. 131 
Lp = I.OO.Ne + ‘IT.No [Ref. 121 
L c  = 1.059.Ne + 1.183-N0 [Ref. 141 
Lp = 0.984-N, + 1.34O.N,, [Ref. 151 
L e  = 0.980.N, + 1.406-N0 - 0.091.Nc [Ref. 161 

where Ne is the number of even chain codes, No the number of odd codes, 
and Nc the number of corners (see [161). 

Each of these formulas leads to a different accuracy in the estimation of the 
Line length given a certain sampling density. This is illusmted in Figure 3. 

Length 
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Figure 3: Percentage error associated with five differem formulas for 
estimating the length of a’ straight line given the Freeman chain code 
representation. 

The asymptotic behavior of these formulas varies considerably. Only the 
estimator from [16] is capable of obtaining accuracies of 1%. And this 
occurs only when the sampling density exceeds about 50 samples per Unit 
line length. As shown in [ l l ] ,  this sample result holds for the perimeter 
length of circular contours as well. If one wishes to measure length, 
perimeter, distance and sa forth to accuracies better than 1% - as can easily 
occur in the inspection of industrial componenu - then the Freeman code 
representation is not appropriate. Fortunately, other techniques are available 
[Ill that offer essentially unlimited accuracy at the cost of sampling density 
and computational complexity. 

Sampling Density and  Measurement 

A perhaps surprising aspect of this result is the role played by the sampling 
density. One might imagine - based upon classical signal analysis - that 
given a bandlimited analog image the sampling frequency would only play an 
imponant role up to the Nyquist frequency. Such is not the case. Sampling 
densities significantly higher than what one one expect from the sampling 
theorem are needed for accurate measurement in images [171. The reasons for 
this are two-fold: 

1. The assumption that the collection of numbers in a computer 
memory faithfully represent the samples of a bandlimited, two-dimensional 
signal cannot he m, and; 

2. There is such a profound difference between image filtering and 
image analysis that the sampling theorem is not the proper reference point 
for choosing a sampling density. At best the sampling theorem can be said to 
offer a starting point for the discussion. 

The first point is easy to see in that we can only store a finite number of 
samples of an image (e.g. 512 x 512). This means that the e r h a p s )  
bandlimited analog signal is being multiplied by a twc-dimensional window 
function and thus the final result cannot be bandlimited. One could argue that 
perhaps the effect of the window was negligible and that the values stored in 
the computer contained “almost all” of the information necessary to 
reconsmct the original analog image. The key here is the word “reconseuct”. 
Once again the goal is not reproducing images (image processing) but 
acquiring measurements (image analysis). This goal requires access to all of 

the image values and the reconstruction (or as it is more commonly known 
interpolation) formula says: 

A formula for exnacting an exact measure from an image quires  dl of the 
samples and thus an infinite number of terms. Funher. if that formula also 
requires interpolated values of f(x). that is values of f(x # nxo). then an 
infmite number of sinco functions must be evaluated to provide the correct 
value. Neither step can be performed in a finite number of computations. 

We must therefore conclude that it is not possible to write a computer 
program that executes in a finite number of steps (or amount of time) that 
can extract an exact measure (e.g. area, perimeter) from a sampled image. And 
this would be true even ifthe inregrity ofthe dara had not been compromised 
by limiting the dara to afinite number of samples. 

The end result is compromise. We cannot have an exxt measure and fmite 
computation time. The central problem of digital image measurement then 
becomes one of choosing the method that offers the maximum accuracy with 
the minimum amount of computation. 

The Area of n Circle 

To illustrate this point let us consider the accurate measurement of the area of 
ideal circles of known diameter. The circles are digitized using a sampling 
density that yields S samples per diameter. For each image we assign a pixel 
as belonging to a circle if (x - ex)* + (y -e,)* < D2/4. For each circle 
generated the values of e, and e,, are allowed to vary so as to represent 
random placement of the circles on the digitizing grid. For each value of the 
sampling density S we generate 16 circles each circle differing by the choice 
of the random center coordinates (ex, 5). The distribution of the independent 
random variables e, and ey is uniform Over the interval (0.1). The percentage 
error of the area estimate - based upon counting the number of pixels 
assigned to the circle - is given by: 
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E(%) = 

If we then plot E(%)  as a function of the sampling density S. expressed in 
samples per diameter. we have the result shown in Figure 4. 
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Figure 4 An ideal circle is digitized at various sampling densities. The area 
is computed by counting the number of pixels assigned to the circle. The 
average percentage absolute error is graphed. The error brackeu indicate the 
standard deviation spread of the average percentage ermr (the standard error of 
the estimate). 

We see from Figure 4 that a minimum of 10 samples per diameter is needed 
before an accuracy of 1% can be reached in the measurement of the area. In 
this model, of course, there are no lenses, cameras. amplifiers, etc. The 
image can be generated entirely within the computer. While the image and 
object arc both of finite extent and thus not bandlimited. this does not d e m t  
from the correctness of the observation that the only way to achieve an 
arbitrarily high accuracy (low percentage error) is to increase the sampling 
density. 

If we were to s m  with samples of a me. bandlimited image, then the act of 
saying which pixels belong to the object and which to the backpound would 
be equivalent to this simulation. If we were to attempt to use the information 
contained in the transition grey values between the object and background, 

then we would be led inevitably back to the (impossible) evaluation of 
equation (1). 

Analysis Through Transformations 

The image analysis techniques described above are - in an important sense - 
based upon the concepts of parameter estimation. An alternative approach is 
based upon the concept of performing transformations upon an image; 
transformations whose very nature lead to analysis. A simple example can 
help to illustrate this idea. 

Nuts and Bolts 

We wish to analyze the image shown in Figure 5 in such a way as to identify 
and separate the nuts from the bolts. 

Figure 5: Image of a combination of nuts and bolts 

There are several propenies of these objects that we can list that suggest how 
this analysis can be implemented: 

Nuts: small objects that may contain a hole; 
Bolts: larger objects that do not contain a hole. 

The size of an object can be estimated by the techniques described earlier or 
another approach can be used. We form a binary image of these high-contrast 
objects and then apply the binary neighborhood (Minkowski) operators. The 
erosion operation offers us an image transformation that is linked to the size 

of the individual binary objects in the image. One erosion iteration removes 
from an object the single layer of pixels connected to the background. Any 
pixels that remain in the image after N iterations of the erosion operation are 
derived from objects whose original “diameters” were greate.1 than 2N. By 
“propagating” these surviving pixels back into the original image, it is easy 
to isolate the large objecls. By “exclusiveoring” the result with the original, 
the small objects can be isolated. 

The topological propeny -the object contains a hole - can be ascertained by 
use of the skeleton operation [18.191. An object containing a hole will lead 
to a skeleton that is a closed contour. Otherwise the skeleton will not be 
closed. The closure, itself, can be detected by repeated application of the 
skeleton operation to the skeleton itself until either a single isolated pixel 
remains or a closed contour. Detection of this final state is simple. 

The conclusion that we can draw is that a series of image transformations can 
lead to the analysis of an image. In this example the analysis is based upon 
size and topological properties. The basic concept, however, can be extended 
to other propenies [20,21]. 

The Distance Transform 

An important development of the past few years is the distance transform. 
This transform applied to binary images has proven to be an important tool 
in a variety of image analysis tasks. We can see this by examining the 
erosion operation defined in the previous section. 

Each iteration of an erosion “peels away“ a collection of pixels that have the 
common property that they are distance “1” from the background. The pixels 
that vanish in a third iteration are thus those pixels that were originally a 
distance of “3” from the background. This is illustrated in Figure 6. 

H =Distance 2 = Distance 4 

Figure 6 A binary object with the points labeled as to distance. The distance 
pssociated with a pixel may be interpreted as the number of iterations required 
to cause that pixel to vanish under the erosion operation. 

In two passes through an image - the first from topleft  to bottom-right and 
the second in the reverse direction - it is possible to transform a binary 
image into a distance image. Erosion may then be viewed as a simple 
thresholding operation on the distancetxansformed image. (Note that since 
distances are non-negative the transform image may be viewed as a grey-value 
image.) Thus the distance transform provides a domain where the ordinarily 
neighborhood operation erosion can be implemented as a point operation - 
thresholding. 

Funher. the skeleton operation can be implemented on the distance transform 
image in an additional two passes. This is an important result in that 
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skeletonizing is usually O(N3) where the image is N x N. Through lhe 

The distance transform illusbated in Figure 6 is based on spefific delinition 
of the connectivity of a point to its ncighbomood: 4annected. Had we 
chosen 8 a ~ ~ r C d  instead the result would have been quite dilfwenl An 
alternative way to view this result is to specify the distance melric that is 
being used. The. such metries are illusoated in Figure 7. 

distance lIansfm this bccom ow). 

4.connefted 8COnnected 
metric meuic 

5.7 metric 

Figure 7 Three mptrics for assigning distance to points from a center 
poinL 

The (5.7) metric illuswted above has the advantage Chat it offers a better 
approximation IO the Euclidean distance m&c where the contour of COnstant 
distance is a circle, lhat is, rotation invariant. A binary image transformed 
th ugh the (5.7) meeic will thus have 7/5 = 1.400 as an approximation to x- 1.414. Funher, the final result -whether the goal is erosion or 
skeletonization - will be considerably more rotation invariant as if the 
suucturing element beuer appmximated a true circle [22]. The net msult will 

be Chat analyses - such as the Nuts and Bolts example above - will be more 
accurafe when based upon the (5.7) meuic. 

In an earlier publication Young et. al. 1231 showed that even at very low 
SNRs (approaching 0 dB). it is possible using the (5,7) distance meuic to 
make accurate size measurements of the size of objects in an image. This is 
not possible, however, when the more common 4-COnnecled (1.2) or 8- 
conneCted(1,1)meDiCSarells?d. 

Summary  

In this review of modern image analysis I have tried to show how image 
analysis differs substantially from image m e s s i n g .  Image analysis may be 
viewed as a direct measurement or parameter estimation problem or as a 
problem in image transformation. If the former is the case then great care 
must be laken in choosing the: 

* Image representation 
* Estimation formula - Sampling density 

If the hUa is the case then care must be Iaken to understand and adapt the 
transformation for the quantization effects inherent in the digital 
qawentation of an image. 

While a greal many queslbns have now been properly fcmnulated - and some 
properly answered - the challenges offered by two- and three-dimensional 
image analysis will continue for many years. 
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