
Incrementalizing Statix

A Modular and Incremental Approach for Type Checking and

Name Binding using Scope Graphs

Taico Aerts

Incrementalizing Statix

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Taico Aerts
born in Drachten, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2019 Taico Aerts.

Cover picture: The first published picture of the Mandelbrot set.
Brooks, Robert, and J. Peter Matelski (1978). “The dynamics of 2-generator subgroups of PSL (2, C).”
In: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New
York, Stony Brook, NY, 1978). Vol. 97, pp. 65-71.

Incrementalizing Statix

Author: Taico Aerts
Student id: 4345797
Email: T.V.Aerts@student.tudelft.nl

Abstract

Statix is a language which generates a type checker from a declarative specification.
However, Statix is not fast enough for quick feedback in IDEs because it always has to
reanalyze all files. In this thesis, we improve the analysis time of Statix by applying the
ideas of separate compilation to create a model for incremental analysis. Statix uses a
scope graph for representing the scoping and declarations of a project. We split the scope
graph over multiple smaller modules which can be analyzed in isolation. Our model au-
tomatically detects dependencies between modules and supports creating scope graph
diffs to determine modules affected by changes with high precision. The modules from
our model can be solved in parallel, already yielding performance improvements of up to
40% compared to the original implementation. Finally, we implement an optimistic strat-
egy with our model and show that it is effective whenever changes are small, reducing
analysis time by up to 5 times for large projects.

Thesis Committee:

Chair: Prof. dr. E. Visser, Faculty EEMCS, TU Delft
Committee Member: Dr. R. J. Krebbers, Faculty EEMCS, TU Delft
Committee Member: Dr. N. Yorke-Smith, Faculty EEMCS, TU Delft
Daily Supervisor: Ir. H. van Antwerpen, Faculty EEMCS, TU Delft

T.V.Aerts@student.tudelft.nl

Preface

Taico Aerts
Delft, the Netherlands

September 25, 2019

I would like to thank many people for their time and help during this process. I could not
have completed this thesis without their sharp minds, valuable feedback and undying sup-
port.

First and foremost, I would like to thank Eelco for his supervision and especially for the
late evening meetings with me even when he had no time to spare. I thank Hendrik for the
helpful ideas, many sparring sessions and the collegial way he approached me.

I would also like to thank many friends for their feedback and honest criticism, in partic-
ular Bram, Luka, Chiel, Kevin, Rens, Caro and Marieke. Thank you for going through many
versions of my thesis and always having useful observations.

I would like to thank my family, especially my parents and my sister Lody, for having pa-
tience with me and for their continued interest in my progress. In addition, I would like to
give special thanks to my pake and beppe for their compassion and encouragement.

In the same manner I would like to thank my roommates and good friends Kevin and Rens,
for their support throughout this process and all the little ways they’ve helped me, both in
an academic way and otherwise. Without their help, this thesis would not have been there.

I would like to thank Marieke for her help with the planning of my thesis, all the good ad-
vice that she gave on the structure of my thesis, but most of all for her continuous faith that
I would succeed.

And lastly, I would like to thank Caro for her unrelenting support, her faith in me and being
there when I did not have much faith myself.

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Contributions . 3
1.2 Overview . 3

2 Spoofax and Statix 5
2.1 The Spoofax Workbench . 5
2.2 Statix . 5
2.3 An Introduction to Scope Graphs . 6
2.4 Defining Type Systems with Statix . 8
2.5 Constraint Solving . 11
2.6 Architecture of Statix . 13

3 Background and Related Work 15
3.1 Attribute Grammars . 15
3.2 Separate Compliation . 18
3.3 Incremental Build Systems and Incremental Pipelines 22
3.4 Incremental Type Checkers from the Ground Up 23
3.5 Conclusion . 23

4 Modules and Separation 25
4.1 Splitting a Project into Modules . 25
4.2 Libraries . 30
4.3 Splitting the Solving Process . 31
4.4 Formal Semantics of Modular Statix-core . 34

5 Incremental Analysis 45
5.1 Incremental model . 45
5.2 Dependencies between Modules . 46
5.3 Determining the Impact of a Change . 54
5.4 Concurrent Solving of Modules . 59
5.5 Conclusion . 62

v

Contents

6 Strategies 65
6.1 Optimistic Strategies . 65
6.2 Optimistic Name-based Strategy . 69

7 Evaluation 73
7.1 Setup . 73
7.2 Baseline Performance . 74
7.3 Incremental Performance . 77

8 Conclusion and Future Work 85
8.1 Future Work . 87

Bibliography 89

Glossary 93

A Mathematic Symbols 95
A.1 Scope Graphs . 95
A.2 Modules . 96
A.3 Dependencies . 96

B Statix Specification 97

C Benchmark Results 121

vi

List of Figures

2.1 An example scope graph . 7
2.2 Overview of the notation used for scope graphs. 7
2.3 Syntax of Scope Graphs . 8
2.4 The resolution calculus of Statix, as presented by Antwerpen et al. [3] 9
2.5 Syntax of Statix . 13

3.1 Example of an atribute grammar . 16
3.2 Example of an tree annotated with attributes . 16

4.1 Example of a modularized scope graph . 26
4.2 Formal definition of modules and their scope graphs. 29
4.3 Syntax of Statix-core . 35
4.4 Declarative semantics of Statix-core . 36
4.5 Constraint satisfiability for the module creation constraint 36
4.6 Operational semantics of Statix-core . 37
4.7 Small step semantics of performing a step in a single module 38
4.8 Small step semantics of the module creation constraint 38
4.9 Updated operational semantics for scopes with owners 39
4.10 Operational semantics for rules with global substitutions 39
4.11 Operational semantics of queries . 40
4.12 Operational semantics of modular Statix-core for simple rules 41
4.13 Well-formedness rule for the module creation constraint 42
4.14 Syntax directed edge support predicate for the module creation constraint 42
4.15 A transformation of modular constraint sets into a single set 43

5.1 Simple query resolution with modules . 48
5.2 A scope graph showing that not all dependencies are relevant. 50
5.3 Scope graphs showing the problem with simple dependencies 50
5.4 Naive dependency relation . 52
5.5 Formal definition of the considers relations . 53
5.6 Refined dependency relation with added details 54
5.7 Definition of solution changes . 56
5.8 Formal description of the external interface of a module scope graph 58

6.1 Example of cyclic interface dependencies between modules 66
6.2 Example of cyclic interface dependencies between modules 67

7.1 Comparison of analysis time for clean runs . 75
7.2 Performance of the incremental solver for clean runs relative to the original solver 76

vii

List of Figures

7.4 Change categories . 78
7.6 Average analysis time per change category for a small project 80
7.7 Average analysis time per change category for a large project 80
7.8 Average number of reanalyzed modules per change category for a small project . 81
7.9 Average number of reanalyzed modules per change category for a large project . 81
7.10 Comparison of clean and incremental analysis time for a small project 82
7.11 Comparison of clean and incremental analysis time for a large project 83

C.1 Comparison of analysis times after removing a statement (small) 121
C.2 Comparison of analysis times after duplicating a statement (small) 122
C.3 Comparison of analysis times after removing a method (small) 122
C.4 Comparison of analysis times after adding a method (small) 123
C.5 Comparison of analysis times after removing a file (small) 123
C.6 Comparison of analysis times after removing a statement (large) 124
C.7 Comparison of analysis times after duplicating a statements (large) 124
C.8 Comparison of analysis times after removing a method (large) 125
C.9 Comparison of analysis times after adding a method (large) 125
C.10 Comparison of analysis times after removing a file (large) 126

viii

List of Tables

6.3 Scenarios where optimistic strategies get incorrect incremental results 67

7.3 Storage costs for storing analysis results . 77
7.5 Projects for incremental analysis and their sizes . 78

ix

Chapter 1

Introduction

Type checking is a technique used in many programming languages as a way of guaranteeing
a certain level of correctness of code. Type checkers can be integrated with Integrated Devel-
opment Environments (IDEs) to offer real time feedback to developers. Having feedback on
the correctness of the code from a type checker has been shown to reduce the amount of bugs
in the code [19]. However, domain specific languages (DSLs), in contrast to general purpose
languages, are lacking in this area. For DSLs, it would be beneficial to have some form of
type checking and IDE support. Unfortunately, creating a type checker for a programming
language is complex and conventionally requires a lot of work. In addition, this effort often
needs to be specialized to the target language in order to be fast enough for real time analysis,
which means that reusing existing type checkers is more difficult.

Meta-languages address this problem by offering ways to create static analysis tools from
declarative rules such as parsing, type checking, name binding, static analysis and compila-
tion. A meta-language is a language which describes some aspect of another language. For
example, a meta-language for syntax can create a parser from the description of a grammar.
A language designer can then spend effort on describing the syntax of their language in-
stead of spending effort on creating a parser. Some meta-languages also integrate with IDEs
to offer the IDE functionalities that conventional languages enjoy.

Statix is such a meta-language in which users can express the typing and name bind-
ing rules of a language in a declarative way [3]. Statix then automatically generates a type
checker from those rules. With Statix, language developers can create a type checker for
their language without having to do a lot of engineering. Statix differentiates itself from
other type checking approaches by using scope graphs to represent the scoping of programs.
Scope graphs are a novel way to represent scoping and name binding. As such, it has not
been used a lot in type checkers so far. More research is necessary to determine how existing
optimization techniques can be applied to Statix.

While analyzing single files is possible in real time, i.e. in the order of seconds, with scope
graph based type checkers like Statix, analyzing a project consisting of multiple files quickly
becomes a problem. When programming projects grow to the size of tens to hundreds of
files, we have found that analysis of projects with Statix becomes too slow, in the order of
tens of seconds to minutes. While techniques like concurrency and code optimizations which
cause linear speedups certainly help, they do not solve the underlying problem. Analyses of
entire programs do not scale because the runtime of these analyses is linear in the size of the
program [43]. If the project grows too large, type checking the entire code base will take too
long for real time feedback. Instead, type checkers and compilers usually apply techniques
such as incrementality to reduce the amount of work [4].

Incremental computation is the practice of only recomputing the information that de-
pends on the changed data [8]. It reduces the amount of work by only analyzing the parts of
the project that are affected by a change. The effects of the changes to these parts, if any, are

1

1. Introduction

then propagated throughout the project until we end up with the same solution as when we
would have done a complete analysis. By keeping analysis up to date as changes are made,
changes are kept small and the overall impact is limited [21]. This makes incrementality an
effective technique to make type checkers fast enough to run in real time. The trade-off with
incrementality is that initial analysis will take more time than if incrementality is not used.
This is due to the additional bookkeeping that is required to be able to perform incremental
analyses.

This thesis investigates different ways to improve analysis time of type checkers that use
scope graphs, focussing on incrementality in particular. It is our aim to find a general solu-
tion to achieve incrementality out-of-the-box, i.e. without having to rely on large conceptual
changes to the original type checker. We apply the idea of separate compilation to Statix in or-
der to create a proof-of-concept implementation of an incremental type checker using scope
graphs. Finally, we use this implementation to evaluate the effectiveness and applicability
of these techniques in different scenarios.

As such, the central research topic of this thesis is “How can we improve analysis time of
scope graph based type checkers such as Statix?”. While the focus will be on the Statix language,
the techniques used are also applicable to other type checkers based on scope graphs. The
main research topic is split up into four research questions as follows.

• Research Question 1: What are existing techniques to improve analysis time as found
in the literature?
We look at literature for existing techniques used by type checkers and compilers to
improve analysis time. We investigate if and how we could apply these techniques for
incremental analysis in scope graph based type checkers (Section 3.5).

• Research Question 2: Based on the conclusions drawn from the literature, how can
we create a model for incremental analysis for Statix?
Our goal is to create a model for Statix which supports different types of incremental
analysis, called strategies. First, we try to apply the concept of modularization to Statix,
to create modules which are mapped to the modules of the language we are analyzing.
Then, we use these modules as the unit for incrementality by identifying dependencies
and by adding features to our model to determine the impact of changes (Section 5.5).

• Research Question 3: How can we apply concurrency to Statix?
With concurrency, we can directly improve analysis time, as long as our task is paral-
lelizable. We try to show that we can apply concurrency to our model in the form of
parallel execution of multiple modules (Section 7.2.5).

For our model, we identify two families of strategys. We choose to implement an optimistic
strategy, which is based on the assumption that changes will have a small impact. We call
this strategy the optimistic name-based strategy. This leads to Research Question 4.

• Research Question 4: How well is our optimistic name-based strategy suited for in-
cremental analysis?
We analyze the incremental effectiveness of our optimistic name-based strategy in dif-
ferent scenarios. With different scenarios we mean we apply changes which are com-
mon when editing a project in an IDE. We identify those scenarios that work well or
poorly and identify the reasons for this behavior. Finally, we will compare the incre-
mental analysis time to the non-incremental analysis time for differently sized Java
projects (Section 7.3.4).

2

1.1. Contributions

1.1 Contributions
The contributions of this thesis are the following:

• We introduce a model for incremental analysis for Statix based on the ideas of separate
compilation (Chapter 4 and Chapter 5).

• We extend the semantics of Statix-core to support modules and split scope graphs and
show that our approach retains the soundness that Statix-core enjoys (Section 4.4).

• We extend the implementation of Statix with our incremental model (Section 4.3).
• We extend our model and its implementation with support for concurrency in the form

of solving multiple modules in parallel (Section 5.4).
• We design an implement an optimistic name-based incremental strategy for our model

(Chapter 6).
• We evaluate the effectiveness of our optimistic name-based strategy on differently sized

Java projects (Chapter 7).

1.2 Overview
This thesis is structured as follows. First, Chapter 2 explains what Spoofax and Statix are in
more detail and introduces the core concepts of Statix relevant for the other chapters. Then,
Chapter 3 discusses different approaches found in literature to achieve improved analysis
time and how these approaches can be applied to scope graph based type checkers. Next,
Chapter 4 explains how projects can be split into multiple modules and how Statix can be
adapted to analyze multi-module projects. Chapter 5 describes our model for incremental
analysis in Statix and the different features we support which allow for a range of different
incremental strategies. This is followed by Chapter 6 which explains how the features of our
model can be combined into strategies. We present two strategies for incremental analysis
and explain why certain types of strategies are better suited to our approach. Chapter 7
follows by evaluating the effectiveness of our optimistic name-based strategy on different
incremental changes. Finally, Chapter 8 concludes this thesis and describes future research
opportunities opened by our work.

3

Chapter 2

Spoofax and Statix

This chapter explains Statix in detail and introduces the concepts that are relevant for this
thesis. It also describes the formal syntax and semantics of Statix. A first time reader might
consider skipping the formal specifications and revisit them when they become relevant in
other chapters. This chapter is built up as follows. First, Section 2.1 describes what Spoofax
is and how Spoofax supports meta-languages. Then, Section 2.2 introduces Statix itself. Sec-
tion 2.3 explains the concept of scope graphs and how we can do name resolution with them.
Section 2.5 discusses how Statix uses constraint solving and unification to do type analysis.
Then, Section 2.4 explains how the type system of a language can be described in Statix spec-
ifications and how they are built up. Finally, Section 2.6 describes the current architecture of
Statix.

2.1 The Spoofax Workbench
Spoofax is a language workbench for creating domain specific languages and meta-languages
[25]. Spoofax aims at creating an IDE for a language from declarative specifications of its syn-
tax and semantics. From these specifications, Spoofax can generate parsers, type-checkers,
interpreters and compilers for a language. In addition, Spoofax integrates with Eclipse to
offer IDE functionalities such as syntax highlighting, formatting, auto completion and static
analysis feedback from these same declarative specifications.

Spoofax offers these functionalities through multiple different meta-languages. A meta-
language is a language which describes some aspect of a language. For example, the meta-
language SDF3 offers the parsing, coloring, formatting and auto completion functionalities of
Spoofax. Statix is a meta-language for Spoofax which offers type checking and name binding
functionalities.

2.2 Statix
Statix is a meta-language for the specification of static semantics in Spoofax [3]. With Statix,
language designers can specify the type system and the name binding rules of their language
in a declarative way. From the specification and the AST of a program, Statix constructs a
scope graph to represent the name binding structure of the program while at the same time
checking types in the program with this scope graph. In addition to giving feedback to the
user, the scope graph and type checking information is also made available to other meta-
languages in Spoofax. This means it can be used by, for example, a compiler or an interpreter
to make their lives easier. We explain scope graphs in more detail in Section 2.3.

The rules of a language are expressed in a Statix specification (Section 2.4). These rules are
defined in terms of constraints. Statix takes as input the AST of a program and a specification
for a language, and combines those to create a set of constraints. These constraints are then

5

2. Spoofax and Statix

solved by the Statix solver, constructing scope graphs for the input program and performing
type checking at the same time. We explain the constraint solving of Statix in more detail in
Section 2.5.

2.3 An Introduction to Scope Graphs
Scope graphs were introduced by Néron et al. [34] and further refined by Antwerpen et al.
[2]. Scope graphs offer a language independent way of representing the naming structure of
programs. A scope graph represents the lexical scoping of a program. A node in the scope
graph is either a scope or a declaration. Scope graphs are essentially a mapping from the
structure of a program to a graph. The different components of a scope graph are as follows.

• A scope is a node in the scope graph. It is an abstraction of a program region or set
of AST nodes that behaves uniformly with respect to name resolution. In diagrams,
scopes are represented with circles with a number in them, which represents the iden-
tity of the scope.

• A declaration is an occurrence of an identifier which introduces a name. We write decla-
rations as xi where x is the name being introduced and where i denotes the position of
the identifier in the program. In diagrams, declarations are represented as boxes with
their identifier in them.

• An edge is a connection of two scopes in the scope graph. An edge is directed and
labelled. Language designers can use labels to distinguish between different types of
edges. For example, the label I could be used to describe an import edge. In diagrams,
edges are represented as arrows with a label. In text, edges are represented as s l s1,
i.e. scope s has an edge to scope s1 with label l.

• A data edge is a connection of a scope to a declaration. A data edge has a direction and
a label just like other edges. In diagrams, data edges are represented as a labelled line
with a box instead of an arrow. In text, data edges are represented as s r t, i.e. scope
s has an edge to a term t with relation label r.

An example of a scope graph is given in Figure 2.1. On the left, a Java program is shown,
while on the right the corresponding scope graph is shown. The scope labeled with a 0 is the
global scope, i.e. the scope in which globally available information is stored. The notation
used in figures is shown in Figure 2.2.

2.3.1 Name Resolution with Scope Graphs

Name resolution is the process of finding the declaration to which a name application in a
program refers [21]. Name resolution in scope graphs happens in the form of queries. A
query is a question to retrieve certain declarations from the scope graph. For example, a
query can search for the declaration of a class A whenever it encounters a reference to A.
Queries in Statix can specify which declarations should be retrieved, which paths can be
followed and the order in which paths should be considered. A query always starts in a
specific scope, and then attempts to find paths in the scope graph to a matching declaration.
In the scope graph, we show queries in the form of references. If relevant, the path followed
by the reference is highlighted.

The paths that can be followed are represented in the form of a regular expression. Each
edge in the scope graph has a label that can be matched by this regular expression. For
example, in Figure 2.1 there is a reference for x and a reference for y. The paths that may be
followed by those queries can be described as P?:. This means that the query is optionally

6

2.3. An Introduction to Scope Graphs

class A {
int x;

int add(int x, int y) {
return x + y;

}
}

A

x : Int ()

add : FunT([Int(), Int ()], Int())

x : Int ()

y : Int ()

0

1

2

x y

:

:

:

:

:

P

P

Figure 2.1: A simple Java program (left) and its corresponding scope graph (right)

0Scope

1 0lLabeled edge

0 DrDeclaration

D 0Associated scope

0 RReference

Figure 2.2: Overview of the notation used for scope graphs.

allowed to follow a single P edge and then a : edge. In this example this would give two
matching paths, i.e. to the x parameter in the method with the path : and to the field x in
the class with the path P :. As such, the query also needs a ordering to determine which
reference is the correct one. For java, local declarations shadow outer declarations, so the
ordering is described as : ă P, i.e. prefer : edges before P edges.

2.3.2 Formal Specification

A first time reader might want to skip the formal semantics and only revist them when they become
relevant later in the thesis.

The formal syntax for scope graphs is given in Figure 2.3. The syntax and resolution
calculus of Statix presented here are as defined in Antwerpen et al. [3], with minor changes
to notation. This section is a summary of the relevant formal semantics from section 2.1 of
the paper.

Resolution Calculus The resolution calculus of Statix is presented in Figure 2.4. There are
three different judgements relevant to the formation of paths. The judgement G $ p : s1 ↠ s2
states that scope s2 can be reached from scope s1 via path p, if there is a sequence of edges

7

2. Spoofax and Statix

Syntax Parameters
data terms d P D a set of data terms

labels l P L a set of edge labels
relations r P R a set of relation names

Syntax Definitions
scopes s P S := some finite set
edges e P E ::= s l s

data d P D ::= s r d

scope graphs G P Graphs ::= xSG , EG , DGy

paths p P P ::= s | s ¨ l ¨ p

extended labels l̂ P L̂ := LY t$uwhere $ indicates the end of a path

Figure 2.3: The syntax of scope graphs as used throughout this thesis. The syntax of scope
graphs was originally presented by Antwerpen et al. [3]. This version includes minor modi-
fications in notation.

starting at s1 and leading to s2. The path p records the scopes and edge labels that it passes
through. Cyclic paths are not allowed.

The judgement WFD,WFL,G $ s
r
d states that the data term d can be reached with

path p from scope s via relation r. The label well-formedness predicate WFL restricts which
paths are valid. The data well-formedness predicate WFD ensures that the data term matches
what we are looking for. For example, to specify that we are looking for a class with a specific
name rather than for all classes.

The last judgement, WFD,WFL,ďd,ăl,G $ p : s r d expresses the visibility of data terms.
It states that data term d is visible from scope s under relation r via path p. In addition to
label well-formedness and data well-formedness, an ordering on data and on labels is spec-
ified. The label ordering specifies whenever a path p should be chosen over a path p1. Only
the smallest paths according to the label ordering are reported. The data ordering specifies
which declarations shadow each other whenever there are multiple declarations reachable
via equally small paths.

2.4 Defining Type Systems with Statix

The type system of a language can be described in Statix by giving a Statix specification of
that language. A Statix specification consists of three aspects. First, it contains a description
of the signature of the AST of the object language (Section 2.4.1). Second, it has a description
of name resolution rules for the language (Section 2.4.2). Finally, there are rules which map
the different elements of the AST to constraints (Section 2.4.3).

2.4.1 Signature of the AST

The first aspect of a Statix specification is the signature of the AST of the object language. It
describes the different sorts and constructors of the AST elements of the language. We give
an example of a signature for a small language with classes and fields, with a very basic type
system in Listing 2.1. A corresponding syntax definition is given in the comments.

8

2.4. Defining Type Systems with Statix

Visibility Parameters
data term well-formedness WFD ⊆ D

label well-formedness WFL ⊆ L∗
defined as a regular expression

data order ≤d ⊆ D × D partial order

label order <l ⊆ ˆL × ˆL strict partial order

Path Well-formedness WFL ⊢ p ok

(l1 . . . ln) ∈ WFL

WFL ⊢ (s1·l1· . . . · sn ·ln ·sn+1) ok
Visibility Order <l ⊢ p <p p

<l ⊢ p1 <p p2

<l ⊢ s ·l ·p1 <p s ·l ·p2

$ <l l

<l ⊢ s <p s ·l ·p

l <l $

<l ⊢ s ·l ·p <p s

l1 <l l2

<l ⊢ s ·l1·p1 <p s ·l2·p2

Paths G ⊢ p : s ↠ s

(NR-Refl)

s ∈ scopes(G)

G ⊢ s : s ↠ s
(NR-Cons)

s1
l s2 ∈ edges(G) G ⊢ p : s2 ↠ s3 s1 < scopes(p)

G ⊢ s1·l ·p : s1 ↠ s3

Reachability WFD,WFL,G ⊢ p : s r d

(NR-Rel)

G ⊢ p : s ↠ s ′ s ′ r d ∈ data(G) WFL ⊢ p ok d ∈ WFD

WFD,WFL,G ⊢ p : s r d

Visibility WFD,WFL, ≤d , <l ,G ⊢ p : s r d

(NR-Vis)

WFD,WFL,G ⊢ p : s r d

∄ p ′d ′.
((
WFD,WFL,G ⊢ p ′ : s r d ′

)
∧
(
<l ⊢ p

′ <p p
)
∧ (d ′ ≤d d)

)
WFD,WFL, ≤d , <l ,G ⊢ p : s r d

Figure 2.4: The resolution calculus of Statix, as presented by Antwerpen et al. [3]

2.4.2 Description of Name Resolution

The second part of a Statix specification is a specification of name resolution rules. It intro-
duces the labels that can occur on edges in the scope graph, the different types of declarations
that we want to store in the scope graph and the paths that queries for these declarations
should follow. We give an example of name resolution rules in Listing 2.2. On line 3 and 4,
the edge labels are defined. We define two different edge labels, one for parent edges and
one for import edges. These are the labels that can occur in the scope graph. Then, on lines
5-8, we define how the resolution of classes works. Whenever we perform a query for a class,
the query is allowed to follow any number of P edges, but no other edges. On line 6, the
ordering is defined to prefer declarations, indicated with $ over following P edges. Similarly,
the resolution for methods is defined on line 7 and 8. The regular expression for paths is now
P˚I˚ :, with a preference of declarations over following P and I edges, and following P edges
before I edges. On lines 10-12, the namespaces are defined. Here we define the declarations
that can appear in the scope graph. In the example, the declarations that appear are classes
and methods, both identified with a single string which corresponds to the name of the class
or method. Finally, lines 14 and 15 define the type relation. It specifies that occurrences in
the scope graph can have an associated type.

2.4.3 Rules from AST Elements to Constraints

The final part of a Statix specification contains the rules. Rules are recursive predicates that
match on fragments of the AST of the object language program. These rules contain the con-
straints that need to be solved whenever the rule is called. An example of a Statix rule is

9

2. Spoofax and Statix

1 signature
2 sorts id = string // <id> is a string
3

4 sorts Program constructors // Program ::=
5 Program : list(Class) -> Program // <Class*>
6

7 sorts Class constructors // Class ::=
8 Class : id * list(Field) -> Class // class <id> { <Field*> }
9

10 sorts Field constructors // Field ::=
11 Field : id * Type -> Field // <Type> <id>;
12

13 sorts Type constructors // Type ::=
14 IntT : Type // int
15 BoolT : Type // | bool
16 ClassT : id -> Type // | class(<id>)

Listing 2.1: Example of a Statix signature for a simple language with classes and fields. In
comments, a corresponding syntax definition is given

1 signature
2 name-resolution
3 labels P // parent
4 I // import
5 resolve Class filter P*
6 min $ < P
7 resolve Field filter P*I*
8 min $ < P, $ < I, P < I
9

10 namespaces
11 Class : string
12 Field : string
13

14 relations
15 type : occurrence -> Type

Listing 2.2: Example of name-resolution, namespaces and relations definitions in Statix

10

2.5. Constraint Solving

1 rules
2 programOk : Program
3 programOk(Program(classes)) :-
4 {programScope}
5 new programScope,
6 classesOk(programScope, classes).
7

8 classesOk maps classOk(*, list(*))
9 classOk : scope * Class

10 classOk(programScope, Class(name, fields)) :-
11 programScope -> Class{name@name} with type ClassT(name),
12 //...

Listing 2.3: Example of a Statix rule

given in Listing 2.3. Note that we use the signature definition from our previous example.
On the second line, the type of the rule is defined. The rule matches on sorts with the type
Program. On the third line, an instantiation of the rule is shown. The rule pattern matches on
the Program constructor, which has a list of classes. The list of classes is unified with the vari-
able classes through pattern matching. In essence, this introduce a equality constraint of the
form classes == ..., where the dots are filled with the actual list from the AST. On the fourth
line, the variables of the rule are declared. We declare a single variable called programScope.
On line 5, the constraints of the rule start. First, a new scope is created and unified with the
programScope variable. Then, on line 6, the rule classesOk is called with the programScope
and the classes. The solver will expand this rule call into the corresponding set of constraints
based on the description of the rule and the pattern matching. Line 8 through 11 show the
handling of classes, specifying how a class declaration can be added to the scope graph and
how its type can be associated.

2.5 Constraint Solving

As mentioned, Statix contains a constraint solver. A constraint solver attempts to satisfy a set
of constraints. For example, for the constraints a = b+ c and a = 5, the solution b = 4^ c = 1
would satisfy the constraints. Statix takes as input a Statix specification and the encoding of
an input program e. The input program, represented as one or multiple ASTs, is converted
to a set of constraints with the specification. The Statix solver then attempts to satisfy these
constraints by constructing a scope graph G and a substitution φ in the form of a unifier. It
either finds a solution Gφ which satisfies the constraint set, or, if the constraint set is not
satisfiable, produces an error.

2.5.1 Constraints

We distinguish four types of constraints: (1) constraints which assert the structure of the
scope graph, (2) constraints which retrieve information from the scope graph, (3) constraints
which assert values of variables and (4) all the remaining constraints. The first category
consists of constraints which ‘build’ the scope graph, i.e. the creation of scopes, edges and
data edges. We call these constraints scope graph building constraints. The second category
consists of the query constraint, which expresses name resolution in the scope graph. The
third category consists of the equality constraint, which attempts to find a substitution to make
the equality true, and the existential constraint, which introduces a fresh variable. The final

11

2. Spoofax and Statix

category consists of constraints that do not do anything previously mentioned. It contains
constraints for true, false, conjunction, guarded disjunction and predicates.

2.5.2 Unification

Statix uses unification to assign values to variables. Unification is the process of trying to
find a substitution such that two terms are equal [5]. Unification can occur whenever Statix
reduces an equality constraint. Equality constraints have the form t = t1, where t and t1 are
terms.

Equality constraints are satisfied by Statix by unifying variables with terms. A unifier is
a substitution of variables in such a way that no equalities are false. For example, for the
constraints a = IntT () and a = b, a possible unifier would be ta = IntT (), b = IntT ()u. We
write a unifier as a mapping from variables to values. In the given example, both the variable
a and the variable b are mapped to the term IntT (). If we substitute the variables from the
unifier in the constraints, we should end up with simple equalities, e.g. IntT () = IntT ().

Let us look at a more complex example. For the constraints a = FunT (b, c) and b = c,
a possible unifier would be ta = FunT (IntT (), IntT ()), b = IntT (), c = IntT ()u. How-
ever, this unifier assumes additional information on the free variables b and c. The function
represented by the first equality constraint is a function from any type to any type, but we
instantiate it as a function from integers to integers. To avoid this scenario, Statix always cre-
ates a most general unifier. A most general unifier is a unifier that makes the least amount of
assumptions, i.e. the least amount of substitutions. A most general unifier for our example
would be ta = FunT (c, c), b = cu. All the constraints are still satisfied, but no unnecessary
assumptions are made. We simply leave the value of c open.

2.5.3 Answer Stability

Since constraints are represented as a set, there is no explicit ordering to them. However, the
satisfaction of some constraints depends on the order in which they are executed. Queries
are the only constraint in Statix that can retrieve values from the scope graph. As such, the
answer to the query depends on the current state of the scope graph. Our intention is that
a query is only answered when its answer is stable. That is, if there are no other constraints
which, when executed first, would affect the result of the query.

To address this, Rouvoet et al. [38] introduce the concept of critical edges. A critical edge is
an extension to the scope graph that will be added by a constraint which is yet to be evaluated.
Critical edges ensure a form of staging in Statix. The critical edges are the extensions to
the scope graph that would invalidate the answer of a query. However, determining the
absence of critical edges is a notion too strong for a solver to verify. As such, Statix uses a
slightly weaker notion for critical edges, namely weakly critical edges. Weakly critical edges
are extensions to the scope graph that might be added by the constraints that are yet to be
solved. Before a query is executed, weakly critical edges are determined from the constraints
that are left. If there exists a weakly critical edge that would be traversed by the query, the
query cannot be answered yet.

In addition, Statix asserts a static property on the specification to limit the places where
scope extensions can occur, called permission to extend. A predicate with permission to extend
a scope s is allowed to introduce new edges and data edges in s. A predicate has permission
to extend a scope s if it was created in that predicate, or if it was passed to it by a predicate
with permission to extend s. This notion prevents predicates from extending scopes that
have been obtained through queries. This simplifies the determining of weakly critical edges
significantly.

12

2.6. Architecture of Statix

2.5.4 Valid Solutions

With constraint solving problems, there are often multiple possible solutions. With Statix
however, we want to find a specific solution. We are not interested in a solution which adds
arbitrary scopes and edges to the scope graph to satisfy the constraints, since that no longer
corresponds to the input program. In addition, Statix should make as few assumptions as
possible on the instatiations of variables, to avoid ‘inventing’ program sections or types that
are not specified. To achieve this, the solutions (G, φ) provided by Statix adhere to the fol-
lowing three properties.

1. The fully substituted scope graph Gφ satisfies the input constraint set
2. The unifier φ is most general
3. The scope graph G contains no scopes, edges or data edges that are not asserted by a

constraint in the constraint set.
In the case that a constraint set is unsatisfiable, Statix reports an error. In the case that

Statix cannot find a valid solution that satisfies the constraint set (but cannot determine that
no such solution exists), it reports that it is stuck.

2.5.5 Formal Specification

The formal syntax for Statix is given in Figure 2.5, as presented by Antwerpen et al. [3].

Signature
function symbols f ,д ∈ F with arity(f) ∈ N

predicates symbols c,d ∈ C with arity(c) ∈ N
Definitions
term variables x ∈ V := some countable set

terms t,u ∈ T ::= x | f (t̄) | s | p | l | [] | [t |t] | (t, t)

guards G ∈ Guards ::= ⊤ | G ∧G | t = t | ∃x .G

constraints C ∈ C ::= ⊤ | ⊥ | t = t | C ∧C | c(t̄) | ∃x .C | G ? C : C | ∇t | t l t

| t r t | query (c(t̄), c(t̄), c(t̄), c(t̄)) in t r t | t ∽P re

predicates pred ∈ Preds ::= c(ȳ) ← C

program P ∈ Progs ::= let pred∗ in C

Figure 2.5: The syntax of Statix, as presented in Antwerpen et al. [3]

2.6 Architecture of Statix
The main part of Statix is the Statix solver. It is implemented as step reductions of individual
constraints, which progress the state. The solver has a constraint store, a completeness and
a state. It has a single solve function which takes as input a set of constraints and outputs a
solver result (solution or failure). First the solver adds all constraints to the constraint store.
Then it keeps requesting constraints from the store, reducing them one by one, until the
store reports that there are no constraints left. Finally, the solver creates a solver result and
returns it. Note that in contrast to what is specified in the formal specification of Statix,
the implementation does continue reducing remaining constraints whenever a constraint is
found to be unsatisfiable. This is required to give meaningful feedback to the user whenever
parts of the program contain errors.

Constraint Each constraint has a solve function which contains the implementation of solv-
ing that constraint. This is equivalent to a single step in the state of the solver. The solve

13

2. Spoofax and Statix

function can return in one of three ways. First, it can solve correctly. The constraint returns
the new state and, optionally, a set of new constraints that it reduces to. For example, a predi-
cate constraint is expanded into the constraints of said predicate. Second, a constraint can be
delayed on a critical edge or on the instantiation of a variable. For example, an edge cannot
be asserted until the scopes it connects are created. In the case of a delay, the constraint will
not be considered again until the delay is resolved, which is handled by the constraint store.
Third, a constraint can fail, in which case it reports a failure. Failed constraints are effectively
removed from the constraint set, and an error is recorded at the location of the corresponding
or closest AST element.

Constraint Store The constraint store keeps track of the constraints that still need to be
solved and the constraints that have been delayed. Whenever a delayed constraint can be
reactivated, the store is informed and adds the constraint back to the set of constraints to
solve. The solver requests constraints from the store one by one, adds new constraints to the
store and reports delayed constraints to the store.

Completeness The completeness keeps track of critical edges, based on the constraints that
are yet to be solved. Whenever a query constraint is being solved, it checks the completeness
to see if there are critical edges along its paths. If there is a critical edge along its path, the
constraint is delayed on that edge. Whenever the critical edge gets resolved, the query con-
straint is reactivated and can be attempted again. The solver keeps the completeness up to
date by informing it whenever constraints are solved and added.

State The solver progresses the state step by step by reducing constraints. The state con-
tains the unifier and the scope graph. Each constraint that is reduced influences either the
unifier, the scope graph or neither.

Solver Result The solver result is either a Success or a Fail. It contains the state, all the
constraints that failed and all the constraints that are stuck. A success indicates that the state
has a scope graph and unifier which satisfy the input constraints. A fail indicates that the
solver was not able to satisfy the constraint set, but still includes a state with a solution which
satisfies the input constraint set excluding failed and delayed constraints.

14

Chapter 3

Background and Related Work

We look at literature to find existing techniques used by type checkers, compilers and build
systems to improve analysis time. For each of the techniques we find, we explain if and how
they could be applied to Statix.

One of the main topics we find in literature is incremental analysis/compilation. Incre-
mental analysis is based on the idea of determining the differences of the current version of
the code base compared to the previous version of the code base. These differences can be de-
scribed in the form of, for example, files that have changed or the specific lines in the files that
have changed. From the analysis result of the previous version of the code base, we try to in-
fer what the analysis result of the current version of the code would be based on the changes
that were made. The idea is that the impact of the change on the rest of the program can
be estimated, from which the correct analysis result can be determined without redoing ev-
erything from scratch.There are different granularities of incremental analysis, ranging from
redoing all dependencies of a file when it changes, to precisely determining which amount
of work needs to be redone as a result of a particular change.

Definition 3.0.1. Incremental analysis: the analysis of a program which potentially uses informa-
tion from a previous analysis to determine its result. An incremental analysis might skip reanalyzing
certain modules if their reanalysis is not necessary to compute the new result

Definition 3.0.2. Clean run: a single analysis of a project which analyzes all modules in the project
without using information from previous analyses.

Definition 3.0.3. Incremental run: a single analysis of a project which has access to information
from previous analyses, possibly allowing incremental computation of the new analysis result.

3.1 Attribute Grammars
Attribute grammars are a technique for attributing syntax trees with attributes. These at-
tributes can carry different values, and can be used to do different forms static analyses. At-
tribute grammars have been studied extensively, and there are different solutions for incre-
mental recomputation of attributes when changes are made to the tree. In addition, attribute
grammars have been extended in many different ways to support all kinds of static semantics
such as type checking and name binding. In the following sections, we discuss the different
kinds of attribute grammars in more detail, focussing on the techniques for incremental re-
analysis of attributes. Finally, we evaluate if we can apply these incremental techniques as
well.

Canonical Attribute Grammars Attribute grammars were introduced by Knuth [30]. At-
tribute grammars define equations to associate the values of attributes with abstract syntax

15

3. Background and Related Work

tree nodes. The attribute values of each node are computed by combining the values of the
parent and/or the children of the node. The basic form as introduced by Knuth was later
renamed to canonical attribute grammars. Canonical attribute grammars are described with
context free grammars. These context free grammars are extended with attributes for all non-
terminals and semantic rules for productions. Attributes either transmit information upward
or downward in the AST. An example of an attribute grammar is given in Figure 3.1. This
attribute grammar describes the computation of the value of a binary number represented
as a tree. The attributes are shown in Figure 3.2. Both figures are due to [30].

Figure 3.1: An example of an attribute grammar for computing the value of a binary number
represented as a tree. From Knuth [30], Figure 1.3.

Figure 3.2: A tree representing a binary value, attributed with the values as determined by
the attribute grammar in Figure 3.1. From Knuth [30], Figure 1.4.

Through the semantic rules, it is possible to describe analyses like type analysis. How-
ever, they are less suited to describing problems with non-local dependencies such as name
analysis [22]. This is because the use site and the declaration site can be arbitrarily far away
from each other in the tree. To describe name binding with canonical attribute grammars, it
would be necessary to propagate information between all the nodes between use and decla-
ration sites [22].

There are many different approaches to develop incremental analyzers for canonical at-
tribute grammars. It is even possible to generate incremental static-semantic analyzers auto-
matically from these grammars [37, 36, 23, 31]. These approaches mainly focus on being able

16

3.1. Attribute Grammars

to identify which attributes are derived from which attributes. Changes can then be propa-
gated along the AST until all nodes have been updated. These techniques all use the fact that
dependencies follow from the tree structure of the AST, and that an evaluation order can be
statically computed.

Door Attribute Grammars Hedin [21] presents Door Attribute Grammars, a technique which
can be used for incremental semantic analysis in languages with objects and references. They
extend standard attribute grammars by allowing objects and references as attributions of a
syntax tree. With this technique, incremental updates to the syntax tree can be processed
efficiently. However, incremental attribute evaluators cannot be generated automatically, as
different languages require different handling [21].

An interesting notion Hedin [21] use, is a distinction between access dependencies and ac-
tual dependencies. An access dependency is created whenever the computation of an attribute
accesses the value of another attribute. However, these access dependencies usually give rise
to a very pessimistic recomputation strategy. Instead, they determine actual dependencies.
These are the dependencies that would actually be affected by a particular change. This is
useful whenever a larger amount of information has to be requested when searching for one
particular value. We can use a similar distinction for dependencies in Statix, to make them
more precise.

Reference Attribute Grammars Reference attribute grammars (RAGs) are a simplification
of Door Attribute Grammars. They extend canonical attribute grammars with reference at-
tributes. A reference attribute references a node in the AST, i.e. a block or the body of a
class declaration. The referenced node acts as an environment, in which declarations can
be looked up. In addition, they define parameterized attributes, which are functions which
take a name as a parameter and return a reference to the appropriate declaration. These pa-
rameterized attributes allow defining the name resolution rules in a programmatic way [22].
The JastAdd attribute grammar system [11, 12] uses these reference attribute grammars to
generate compilers from declarative specifications. The approach is similar to the approach
taken by Statix, with both approaches effectively constructing a graph to represent scoping
and name resolution [3]. Because of these similarities, we also run into similar problems for
incrementality, as we will explain in the next paragraph.

Söderberg and Hedin [39] present a technique for incremental evaluation of reference
attribute grammars. The dynamic dependencies introduced by RAGs cannot be accounted
for by the incremental attribution algorithms for attribute grammars. Earlier incremental al-
gorithms for AGs work under the assumption that all attributes are known before-hand and
that dependencies between them can be (mostly) statically determined [39]. However, in the
case of RAGs, neither holds: the set of evaluated attributes depends on the tree and the de-
pendencies are dynamic. As such, Söderberg and Hedin [39] construct a dependency graph
during evaluation and restore consistency after edits using these dependencies. They tran-
sitively clear all the values that are dependent on the changed AST nodes. All the attribute
values that remain are now consistent. Then, the new values can be computed by evaluating
their corresponding equations.

They note that this does also clear values even if the values of changed attributes would
not change. However, this is required to maintain consistency in the case of circular depen-
dencies. Whenever there is a circular dependency, they cannot determine if the value of an
attribute is affected by a change using outdated information. This is because the value that
is determined might depend on another value which also depends on the original value in
some way. Instead, all the values need to be recomputed from scratch. A similar problem
applies to Statix, which we will discuss below.

17

3. Background and Related Work

3.1.1 Applicability to Statix

Statix, just like RAGs, has both dynamic dependencies and does not know the set of attributes
to evaluate before hand. The ideas of the techniques used for RAGs can also be applied to
Statix, if dependencies can be tracked well enough. To apply this to Statix, we would need
to track the flow of information, which occurs both through the scope graph in the form as
queries, as through the unifier in the form of changed values. In Section 5.3.2 we show that
changes to the unifier can be represented as changes to the scope graph instead, removing
the need to track dependencies through the unifier.

In addition, we also use a notion similar to actual dependencies to improve incremental
performance. Whenever a query is looking for a specific name, i.e. Class x, we store that
information in the dependencies created by it. Those dependencies are then only considered
for reanalysis if that particular name is added or removed. This is explained in more detail
in Section 6.2.

In Statix, the structure of the scope graph does not necessarily follow the AST. This is in-
tentional to allow for virtual scopes, scopes which are not represented by any representative
in the program. Examples of this are sequenced statements and selective imports. Sequenced
statements cannot refer to all the declarations in their surrounding block, but only those dec-
larations that appear before the statement in which the reference appears. Likewise, selective
imports represent some subsection of the scope being imported rather than the entire scope
[38]. However, this freedom does mean that we can not map changes in the AST to changes in
the scope graph in a straightforward way. A scope can be created freely by typing rules, not
necessarily following from any AST element. In fact, the interface of a module can depend di-
rectly on the interface of another module, and does not necessarily even have to use its AST
to determine its interface. Because of these problems, we decided not to use an approach
where we map changes in the AST to changes in the scope graph directly.

Circular Dependencies Whenever there are circular dependencies between modules, one
would assume we cannot safely use information from old analyses. This is because the infor-
mation that we base our value on might have an effect on the interface of the other module.
However, in Statix, a scenario where two values are circularly dependent on each other al-
ways results in the solver getting stuck, because it is not able to find an appropriate ordering.
If an ordering is found, then the circular dependency between the modules is only circular
on a module level, not on a constraint level. So either, the original solver cannot solve such a
scenario, or the circular dependency is not truly circular, and values from each scope graph
can safely be used.

3.2 Separate Compliation

Separate compilation is the technique of typechecking and compiling separate program frag-
ments. These program fragments cannot be compiled in isolation, but can be compiled in an
environment with type information about the missing fragments [7]. We investigate the field
of separate compilation since compilers deal with type checking and name binding problems
just like Statix. Separate compilation and related techniques allow for incremental solutions,
where only parts of the program need to be recompiled, achieving faster compilation times.
We will conclude by discussing the applicability of these techniques to Statix.

The notion of separate compilation was made precise by Cardelli [7]. Separate compi-
lation of a program fragment a can be seen as determining the type of the fragment in the
context of some typing environment. The typing environment needs to contain the specifica-
tion of sufficient type information of all the variables mentioned in a to be able to determine
its type. Because the actual values of the items in the typing environment are not available,

18

3.2. Separate Compliation

compilation is incomplete, but can still be carried out separately, i.e. without the missing
values [7].

A linker then takes these separately compiled units and combines them into a larger unit,
not necessarily complete. An incomplete linking produces a library, while a complete link-
ing produces a program. Libraries can be linked again into larger libraries or into complete
programs, completing the process Cardelli [7].

Modularization The process of separate compilation and linking requires that the program
is split up into smaller fragments. Modularization is the concept of breaking a program
into such fragments, which are then called modules. Modularization became necessary for
compilation as the size of programs grew. With the increasing size of system libraries, these
libraries had to be compiled separately from the user programs using them. As such, libraries
acquired interfaces that minimized compilation dependencies, allowing them to be linked
together later or even be linked dynamically at runtime Cardelli [7].

Besides their aforementioned use in allowing separate compilations for libraries, mod-
ularization also has great advantages in terms of large-grain program structuring [35]. All
of these advantages combined gave rise to many modularization concepts in programming
languages, such as classes in Java and C++, packages in Ada, and structures and functors in
ML, in turn allowing for some form of separate or incremental compilation [7, 32].

Languages like Pascal, Ada, Modula, C and C++ distinguish between interface modules
and implementation modules. This distinction allows compilers to compile implementation
modules separately from other implementation modules, in the context of all the interfaces
they import. Implementation modules and interface modules do not have to be in separate
files, as long as the interface can be determined from the implementation in some way [4]. ‘

C The C programming language was created with separate compilation as a key feature.
As mentioned, the increasing size of programs and libraries necessitated the need for better
modularization and separated linking. Functions are the unit of modularization for C. C
allows for separate compilation of source files. These separately compiled source files can
then be combined together with previously compiled libraries of functions. A linker com-
bines these separately compiled functions by either creating jumps (in assembly) between
functions, or by directly inlining functions at the call sites [27].

Separate compilation of C is arguably the simplest. Each file can contain includes of some
header files, which specify functions and structs that are in its interface. The compiler first
checks if all called functions are made available through some header file and that they type-
check. It then compiles each function with what are effectively annotations at the places
where the function calls another function. A linker can then combine these separately com-
piled functions by either creating jumps between functions, or by directly inlining functions
at the call sites.

Ada Following the example of C, other languages also wanted to enjoy the benefits of sepa-
rate compilation. Some of the earliest separate compilers were created for the Ada program-
ming language [10, 6, 26]. They are mainly based on giving a description of an elementary
program library. The system works by identifying the dependencies of a compilation unit
and recompiling a unit whenever its dependencies have changed. These solutions mainly
focus on how to identify and limit the dependencies that are created, to avoid unnecessary
recompilation. A main challenge to limit dependencies in separate compilation in Ada is the
ability to export imported declarations. Consider the example in pseudo-code in Listing 3.1.

While unit B depends on A, the removal of x in A will not change the interface of B.
However, this change to A might affect C, so C needs to be invalidated. These dependencies
need to be noted in order to achieve sound incremental compilation.

19

3. Background and Related Work

1 unit A:
2 export x
3

4 unit B:
5 import A
6 export A as C
7

8 unit D:
9 import B

10 use B.C.x

Listing 3.1: An example of exporting imports. The dependency of D on A is hidden by
the reexport of A under a different name by B

Standard ML Appel and MacQueen [4] introduce a system for incremental recompilation
for Standard ML. Incremental recompilation is a restricted form of separate compilation.
Whenever a changed module is recompiled and its export interface does not change, de-
pendent modules are not recompiled. The absence of circular dependencies in Standard ML
makes this approach sound. The reason they cannot achieve full separate compilation is be-
cause Standard ML has a very powerful module system which allows for inter-implementation
dependencies, i.e. a dependency on a specific implementation rather than an interface. This
means that for Standard ML, it is not always possible to compile an implementation with only
the interfaces of imported modules, and inspection of the implementation modules might be
necessary to even determine the interface in the first place.

Haskell Haskell has many of the same challenges to separate and incremental compilation
as Standard ML due to the support of similar functionalities like functors. A key difference
however is that in Haskell, one cannot specify interfaces, which means that modules always
depend on implementations and have to be processed in dependency order. There have been
implementations to extend Haskell with interfaces to allow for better incremental compila-
tion [28], but these require either a separate build system or restrict the language.

Fourtounis and Papaspyrou [15] suggest a different approach of using defunctionaliza-
tion, which transforms higher-order programs to first-order programs. The key technique to
their approach is moving part of the code generation to link time. By storing additional in-
formation in the separately generated code, the code required for closures constructors and
dispatching functions can be generated at link time.

In addition, incremental compilation is further obstructed by the fact that the most used
Haskell compiler, GHC, is non-deterministic. This means that even with the same input, it
can produce different outputs [17]. This is quite problematic to incremental compilation,
as even when nothing changes, the compiled file can change, triggering recompilation of
dependencies as well. There are efforts to identify the sources of non-determinism and make
them deterministic.

Java The (Oracle) Java compiler supports separate compilation, i.e. compilation of com-
pilation units in the presence of the interfaces of all used modules. However, there is also
work to extend this to true independent compilation of files, where the linker then checks
the integrity of the binaries to be combined. Modular linking in object-oriented languages is
problematic because of some complex languages features regarding classes and objects. The
separation between components depends on what can be hidden, or abstracted, between
components. In Java, inheritance makes this abstraction more complicated. A subclass can

20

3.2. Separate Compliation

introduce a method that would be fine in isolation, but which is invalid if it conflicts with a
method provided by a superclass. Other operations such as checking for cyclic inheritance
also requires knowledge of the superclasses [33].

Ancona, Lagorio, and Zucca [1] give an approach for separate compilation in Java which
addresses this problem. In their approach, each file can be analyzed in isolation. Each ana-
lyzed file supplies a set of type requirements, expressing the information that must be present
for it to be correct. For example, a type requirement can be that a particular class X needs to
be available, and must have a method with a particular signature. These type requirements
can be checked later when classes are combined by a linker.

For Statix, each module effectively expresses requirements on other modules in the form
of queries on the scope graph. If the result of a query causes a constraint to be unsatisfiable,
that means that the requirement was not met. If we link the creation of dependencies to these
requirements, then we could determine dependencies automatically.

3.2.1 Application to Statix

Defining Modules and their Interfaces Given the high availability of module concepts in
programming languages, we can use these to define our modules in Statix. We add the ability
to express modules in Statix specifications to allow language designers to map them to the
module concepts of the language they are specifying. We will use these modules as a basis
for our incrementality, as explained in Section 4.1.

Then, we need to define what the interface of our module is. In essence, the scope graph
for a module has to contain at least all the declarations that a module exports and possibly also
declarations which it does not. These unexported declarations however, must not be visible
to other modules. As such, we can define the interface of a module to be the subgraph of
its scope graph with only those scopes, edges and declarations that can be reached from the
global scope (see Section 5.3.4). With this definition, Statix is very suitable for an approach
similar to separate compilation.

Do note however that just like in ML, we cannot build the scope graphs of modules in
complete isolation. Determining the interface of a module requires analysis of the complete
module. This is because the declarations that a particular module exports in its interface can
depend on the declarations exported by other modules. In Statix, it is perfectly possible to
write a specification such that the scope graph of module A is empty if module B exports a
declaration x in its scopes graph, and consists of a declaration y if module B does not export
a declaration x.

However, Statix has very different specifics. In order to use what would be considered
implementation details for ML in another module, Statix requires that this information is
available in the interface. While this means that no information can be hidden, it also means
that determining the interface is more difficult, requiring us to record such implementation
details as well. In fact, there is no separation between implementation modules and interface
modules in our model (besides the fact that we exclude parts of the scope graph that are
unreachable anyways for efficiency reasons). It is their usage, and specifically how this is
expressed in the Statix specification that determines the incrementality that we can achieve.
Because these implementation details need to be present in the interface, we expect the scope
graphs of these modules to be larger and expect that there are more dependencies. However,
we also counter this problem with the fact that we can do very precise determine if a module
is affected by changes.

Interfaces of ML files can only be determined by executing them, due to the interactions
between higher order functions and run-time constructed data. This is similar to how the
determination of an interface in Statix requires the satisfaction/execution of its correspond-
ing constraints, which can depend on values and can create function closures in the form of
scopes. In contrast to ML however, it is possible to describe some types of cyclic dependen-

21

3. Background and Related Work

cies in Statix. This complicates our quest for incremental analysis, since there might be no
safe order in which modules can be analyzed. Luckily, the cyclic dependencies that would
actually matter for our incremental compilation cannot be solved by the Statix solver. In
particular, the overapproximation of critical edges (Section 2.5.3) to achieve query answer
stability causes the solver to get stuck in the scenarios where no static ordering can be de-
termined. In those scenarios, our incremental solution either gives a possible answer which
would satisfy the constraints (i.e. a ‘more valid’ answer), or diverges. This is explained in
more detail in Section 6.1.

Exporting Imports We address the problem of exporting imported declarations through
the way we construct dependencies. A dependency is recorded whenever a query in module
a reaches a scope owned by a module b. Even if a scope of module b is exported by some
other module c, if we reach b in our query we record a direct dependency of a on b. This
means that no intermediate module can ‘hide’ the dependency through exports. In addition,
if the intermediate module c does not request any information in the scope of b that it exports,
it will not get a dependency on b merely for exporting the scope. This means that, in such a
case, changes to the declarations in the exported scope will not cause reanalysis of c, but still
trigger reanalysis of a when necessary.

The interfaces and dependencies that we determine for a module a record all the informa-
tion that is used by a from any other module, even if this information is accessed transitively
through other modules. The advantage is that we can easily handle scenarios of reexports
and can restore consistency even without having to reanalyze the intermediary modules. Our
dependencies are very precise, giving rise to very effective incrementality. The disadvantage
is that the set of dependencies that we store is quite large. Luckily, the cost of tracking is low,
since the implementation of queries in Statix already visits exclusively those scopes on which
we can depend.

3.3 Incremental Build Systems and Incremental Pipelines

We also evaluate the techniques used by build systems to achieve incrementality. While
there are more build systems available, many of the techniques they use are already covered
under separate compilation. Instead, we focus on some build systems with slightly other
incremental approaches.

Simple Build Systems Make, MSBuild and Ant are tools for developing build systems
based on declarative rules. While these tools do support incrementality, this is limited to
static dependencies between files, which also have to be specified up front in the build rules.
This means that dependencies often need to be overapproximated to retain soundness. In
addition, it must be possible to separately compile files, using only the specification of inter-
faces, or dependencies need to be overapproximated [13].

Dependencies in Statix are always dynamic, since they are not specified in the specifica-
tion. We do not want the user to have to define dependencies themselves, since this would
be a major limitation to our system.

Build Systems with better Granularity Erdweg, Lichter, and Weiel [13] define pluto, a
sound incremental build system. Builders in pluto notify the build system of all files they
dynamically require and provide, as well as other builders whose results are required. To
support dynamic dependencies, they interleave dependency analysis and builder execution
and enforce invariants on the dependency graph through a dynamic analysis. The enforced
invariants are statements like builder A must trigger builder B before it may read files gen-
erated by B. Pluto makes dependencies more fine-grained by allowing builders to specify

22

3.4. Incremental Type Checkers from the Ground Up

which parts of a file they depend on in a programmatic way, instead of relying on simple
dependencies of the form builder A depends on file F.

We can use a similar notion of making our dependencies more fine grained by including
the information that we actually depend on, rather than just recording dependencies of the
form module A depends on module B. In fact, these dependencies are already stated in the
form of queries to other modules. It would also be possible to add a way for Statix specifica-
tions to explicitly state whenever dependencies are introduced. However, such a technique
would be error-prone and dependencies can easily be missed. As such, we do not apply such
a technique to Statix.

3.4 Incremental Type Checkers from the Ground Up
We also look into two techniques which achieve incremental type checking from their design.
For each technique, we discuss if it can be applied to Statix.

Co-contextual Type Checking Erdweg et al. [14] presents a method for constructing so-
called co-contextual type systems. Their typing rules are essentially functions from expres-
sions to a type, the typing constraints and context requirements. The constraints and require-
ments are merged with a bottom-up approach. The fact that no context coordination has to
be done makes dependency tracking much simpler and enables incremental type checking.
Because typing rules introduce context requirements instead of depending on any context,
they are very suited for incrementality. They can be reanalyzed without any context and as
such, changes can easily be propagated from the changed expression up to the root.

In Statix, a bottom-up approach such as the one taken by Erdweg et al. [14] might be
possible. However, the incrementality for the co-contextual model relies on being able to
solve constraints locally, which is not possible for queries. In addition, Statix predicates are
much more free in that they do not have to correspond to AST elements at all, which means
that determining the items affected by a particular change is much more complex. We cannot
apply these techniques without making significant changes to the design of Statix.

Task Engine Wachsmuth et al. [43] describe a task engine for incremental name and type
analysis. Their analysis proceeds in two phases, a collection phase and an evaluation phase.
The collection phase is incremental per file while the evaluation phase is incremental per
task. In the collection phase an index is built which presents the declarations added by a
partition and the resolutions that the partition does. Tasks are created for resolutions, which
are executed in the next phase. Dependencies are tracked based on an index from the reso-
lutions that are requested and the items that are supplied to the index. Whenever changes
are made, the changes to the index are determined in the form of a delta. Based on the delta
and the dependencies the tasks that are be affected are identified and are recomputed.

Statix uses a scope graph, for which the delta of the changes cannot be computed as
easily, since it requires a full reanalysis of the changed unit to construct the changed scope
graph. However, this reanalysis already requires using possibly outdated information from
other files. In addition, queries in Statix are much more expressive and powerful than the
resolutions in their paper, which gives rise to a much larger sets of dependencies that would
need to be recomputed. Finally, mapping predicates or constraints to tasks would require a
completely different architecture for Statix, which we want to avoid.

3.5 Conclusion
Research Question 1: What are existing techniques to improve analysis time as found in
the literature?

23

3. Background and Related Work

From the type checkers, compilers, IDEs and build systems, we see that the main focus is
on incrementality. Our answer to “Research Question 1: What are existing techniques to
improve analysis time as found in the literature?” is as follows:

• Separate compilation is a technique of compiling program fragments separate from
each other, using only limited information about other available program fragments
[7]. It has been applied to compilers for many different languages to achieve incre-
mental compilation [10, 6, 26, 4, 28]. We found that the techniques used for separate
compilation can be applied to Statix. The separate program fragments of the source
language can be mapped to modules in Statix. We can then analyze these modules
separately from each other in the context of the interfaces of other modules, with the
scope graph as a representation of the interface of a module.

• Incremental rebuilding of attribute grammar trees is another example where incremen-
tality is used. Attribute grammars associate attributes to nodes in the abstract syntax
tree of a program, allowing the definition of some static analyses. Whenever parts of
the tree change, it is possible to invalidate only some of the attributes and recompute
them, without having to recompute them for the entire tree [37, 36, 23, 31]. However,
extending this to Statix would be difficult, since the ordering of constraints is compli-
cated and not as clearly defined as for attributes.

• Hedin et al. [22, 39, 21] extend attribute grammars with support for objects and refer-
ences. They effectively build a graph on top of the syntax tree, describing the scoping
and name resolution. These reference attribute grammars require a different incremen-
tal approach, because dependencies are dynamic and are not known before hand. They
present a technique for recording these dynamic dependencies automatically as their
graph is built. The graph they build on the syntax tree bears a lot of similarities to the
scope graphs used by Statix. Their way of tracking dynamic dependencies can be used
in Statix as well, given that queries are similar to their name resolution rules.

• There are type checkers which take a completely different approach, gaining incremen-
tality directly from their design [14]. These techniques cannot be applied to Statix with-
out significantly changing the architecture, which we want to avoid.

24

Chapter 4

Modules and Separation

This chapter describes how the concept of modularization can be applied to Statix. This mod-
ularization forms the basis of our model for incremental analysis. First, Section 4.1 explains
how we create modules for Statix. Next, Section 4.2 introduces collections of modules in
the form of libraries. Then, Section 4.3 describes how we split the solving process in Statix
over multiple, separate modules. Finally, Section 4.4 formally shows how Statix-core can be
extended with the semantics of modules and provides a proof that these changes retain the
soundness of Statix-core.

4.1 Splitting a Project into Modules

The first step towards achieving separate compilation-like incrementality is to define the
modules of our system. In this section, we give a definition of modules and their interfaces
(Section 4.1.1). We extend the syntax of Statix with module boundaries to allow the creation
of so-called child modules (Section 4.1.2) and provide a formal specification of modules and
their scope graphs (Section 4.1.3).

4.1.1 What should be a module?

The first question that need to be answered is what a module in Statix should be. Each pro-
gramming language has different language constructs to represent modules. For example,
Java has classes and C has functions. A module represents some part of the program, that
is in some way logically separate from other parts of the program. Some examples of mod-
ules are namespaces/packages, classes, structs, and methods/functions. Files can also be
modules, if they are treated separately by the programming language (or by the IDE). The
given list of examples is by no means exhaustive. Depending on the language, there might
be modules which are even smaller.

The idea is to use the already existing modules from languages and map them to mod-
ules in Statix. That is, the module fragments of the source language of a Statix specification
are mapped to modules in Statix. These modules will become the granularity of the incre-
mentality of our model for incremental analysis for Statix.

Generally speaking, modules in Statix should map to all the modules of a language. How-
ever, there is also some overhead in the bookkeeping required for the separation into mod-
ules. Thus, there is a trade-off between more, smaller modules with better incremental gran-
ularity and the additional cost for maintaining precise dependencies between them. Since
this is highly dependent on the source language,

The Module Tree Modules are laid out as a regular tree. At the root, there is the project
module. Each program fragment which contributes to the project will have an associated

25

4. Modules and Separation

0Class(A)

1

Class(B)

3Method(m)

2

BA

Project

Am

Figure 4.1: An example of a modularized scope graph. The colored boxes indicate the bound-
aries of the individual module scope graphs. Edges are colored to the module they belong
to.

module that is a child of the project module. For example, in a language where files are
the units of separate compilation, each file would get a module in the tree. If, in turn, these
files are made up of other program constructs that are also modules, they are a child of their
enclosing file module.

Children of a module are special in that they can view parts of the interface of a module
which are not visible from completely unrelated modules. Modules can specify information
which is visible only to them and their children to share information with children.

Definition 4.1.1. Child module: a module m is a child module of module m1 if it was created by
m1.

The Interface of a Module Statix represents the scoping and interface of a program with
a scope graph. As such, it would be only logical for a module to also have an interface rep-
resented by a scope graph. Effectively, we want to split the scope graph into multiple parts
where each part represents the contributions of a particular module.

However, this split is not very clear cut. A module can contribute edges in the scope
graph to scopes that are not in the scope graph of the module. This occurs for example for
top level declarations. Top level declarations such as packages are defined in the global scope,
which is owned by the project. However, the contribution of a package to the global scope is
caused by a particular module, not by the project module itself.

Instead, it must be possible for module scope graphs to contain edges to scopes that are
not their own. This gives us the following definition for a module scope graph.

Definition 4.1.2. Module scope graph: A subsection of a scope graph containing all the contribu-
tions made by a particular module. A module scope graph can contain outgoing edges to and incoming
data edges from scopes which are not part of its graph.

We will denote the scope graphs of individual modules by drawing boxes around them.
Outgoing edges to scopes outside of the module scope graph are part of the module, while
incoming edges are not. An example of a modularized scope graph is shown in Figure 4.1.

26

4.1. Splitting a Project into Modules

1 rules
2 classOk : scope * Class
3 modbound classOk(s, Class(name, content)) :-
4 ...

Listing 4.1: Example of a simple module boundary in a Statix specification. Whenever the
classOk rule is called, a new module will be created as a child of the calling module.

1 rules
2 classOk : scope * Class
3 modbound classOk(s, Class(name, content)) | $[class [name]] :-
4 ...

Listing 4.2: Example of a module boundary with an associated name in a Statix
specification. Whenever the classOk rule is called, a module with the name class [name]
is created, where name is replaced with the name of the class.

4.1.2 Expressing Modules in Statix

In a Statix specification, rules are the predicates that match on parts of the AST. Since our
modules correspond to program fragments in the source language, these fragments can al-
ready be matched by rules. It makes sense to be able to specify special rules which create a
module. We achieve this by defining module boundaries. A module boundary is a specially
annotated rule, which when called, will create a new module as a child of the calling module.
We specify these module boundaries by introducing a new keyword modbound. Any rule can
be prefixed with modbound to turn that rule into a module boundary. An example of a module
boundary is shown in Listing 4.1.

We add some restrictions to the module boundaries to avoid the possibility of complex
parent-child dependencies caused by variables. We say that all the values passed to a mod-
ule boundary must be ground, i.e. must contain no free variables. This restriction simplifies
the detection of dependencies later (see Section 4.3.4). If parent modules need to share in-
formation with children that is possibly not ground, they can still do so via the scope graph
instead. As such, we deem this a sensible limitation.

Unique and Consistent Names Because we want to be able to refer to modules and store
them in a logical way, it is important that we can refer to modules uniquely. To ensure that
modules have unique names, we use a notation similar to file systems: paths. The fully
qualified identifier of a module consists of the fully qualified identifier of its parent module
followed by the name of the module. This moves the uniqueness problem to the children of
a module. Given one parent, all its children need to have a unique name.

In many cases, the programming language we are specifying already requires unique
names to some degree. For example, classes in java must be unique in their package. How-
ever, some cases are not necessarily unique by name, but rather by some other property. An
example of this is method overloading in java. Methods in a class can have the same name,
as long as they have different signatures.

Preferably, we would like modules to be referable by other meta-languages in Spoofax. To
accommodate for this, we let the user specify the name of a module. We extend the syntax for
module boundaries with a format string which defines the name of the module. The format
string can contain variables from the signature of the module boundary, as long as they can
have some textual representation (i.e. not scopes). An example is shown in Listing 4.2.

27

4. Modules and Separation

We require that the name of a module is known whenever it is created, i.e. before any of
its constraints are solved. As such, only variables from the signature of the rule can be used
in its name. This means that all information that is required for the name of a module must
be provided by its parent or must be available in the AST directly. Care should be taken to
ensure that module names are unique. An attempt to create multiple modules with the same
name and parent will result in an error.

For proper incrementality it is important that the name is consistent. Consistent means
that if the way one refers to the module from other parts of the program does not change, its
name should also not change. Consider an extreme example where the name of our module
is the textual representation of its corresponding AST. If any element in its AST changes, it
will get a different name. It will then be considered to be a completely different module. Such
a change would mean the deletion of one module and the creation of a new module, which
can cause unnecessary reanalysis of its dependencies.

In some cases, the user will not be able to specify a unique name for a module boundary.
In these cases, it would be useful to be able to assign a unique module name automatically.
However, given that the order in which constraints are evaluated is not fixed, a simple counter
for assigning names does not suffice. While we have not encountered scenarios which would
require this, such scenarios might exist. Our current implementation does not yet support
this scenario, but we do have a solution for it. Unique names can be assigned to modules
based on a stack trace of rules. The trace of rules which were called and reached the module
creation constraint is both unique and consistent, and can thus be used to assign names.

Module Extensions Some programming languages allow extensions to a module at a dif-
ferent location. Essentially, the module in the programming language is defined by multiple,
separate locations in the program, i.e. in multiple files. We might want to specify that these
different locations together create a single module. However, this makes it more difficult
to determine what needs to be reanalyzed incrementally. In many cases, these different lo-
cations actually do not contribute to the same module, but rather one location extends the
module specified in another location. Because it is already possible to encode such an exten-
sion model in Statix, we do not provide additional support through our module system.

4.1.3 Formally Specifying Modules

Figure 4.2 formally specifies modules and their corresponding scope graphs. We define func-
tions to describe the module tree, i.e parent and children, as well as transitive variants of
these functions, parents and descendants.

The owner function asserts the ownership of items in the scope graph and is overloaded
to scopes, edges and data edges. A module scope graph is defined through the scopes, edges
and data edges contributed (i.e. owned) by a module.

Finally, we also define an extends relation which relates scopes to all the modules which
have permission to extend them.

Ownership of Edges Edges can only be added by the owner of the scope and its children,
as described in Lemma 4.1.3. This follows from the fact that in order to add an edge to a scope,
that scope needs to be passed directly to the rule. Since rules can be module boundaries, it
is possible to pass a scope to a child module. Together, this means that only scopes passed
by the parent of a module are extensible by that module.

28

4.1. Splitting a Project into Modules

Syntax
modules m PM := some finite set

module graph Gm ::= xSm, Em, Dmy

module scopes s P Sm ::= ts | s P scopes(G), owner(s) = mu

module edges e P Em ::= te | e P edges(G), owner(e) = mu

module data d P Dm ::= td | d P data(G), owner(d) = mu

Formulae
parent M ÛM

children M ÑM

parents(m) M ÑM ::= ttm1u Y parents(m1) | m1 = parent(m)u

descendants(m) M ÑM ::= ttm1u Y descendants(m1) | m1 P children(m)u

owner S ÑM

owner E ÑM

owner D ÑM

extends S ÑM

Figure 4.2: Formal definition of modules and their scope graphs.

Lemma 4.1.3. Each edge that appears in the scope graph of a module m must have as source a scope
owned by m or owned by a parent of m.

@(s s1) P Em . owner(s) = m_ owner(s) P parents(m)

@(s d) P Dm . owner(s) = m_ owner(s) P parents(m)

Reconstructing the Scope Graph We can obtain the complete scope graph by taking the
disjoint union of all module scope graphs. In other words, there is no overlap between the
scope graphs of modules. This is shown in Lemma 4.1.4.

Lemma 4.1.4. The disjunct union of all module scope graphs yields the original scope graph.

G =
ě

mPM

Gm

Proof. For each scope, edge and data edge in Gm, it is defined that its owner is m. As such,
there cannot be overlap between the different scope graphs of modules. Given that each
scope, edge and data edge is given exactly one owning module and that M contains all mod-
ules, the union of the scope graphs of these modules must be our original scope graph, i.e.
Ť

mPM Gm.

The fact that this holds means that no information is lost in splitting the scope graph into
modules. We will need this property later for our proofs that modules retain the soundness
of Statix (see Section 4.4.4).

While reconstructed scope graphs are useful for formal specifications, they are not effi-
cient for implementation. Section 4.3.3 specifies how our implementation provides the view
of a complete scope graph without actually reconstructing it, which is necessary to be able
to query information from other modules.

29

4. Modules and Separation

4.2 Libraries

Many programming languages have some support for librarys. A library is some package of
implementations that can be used in a program, which has a well-defined interface for these
implementations. Our incremental model adds support for libraries in the form of collections
of modules as described below.

Definition 4.2.1. Library: a collection of implementations which has a well-defined interface. A
library consists of multiple smaller modules and presents some interface to use the implementations
of those modules in other libraries or programs.

4.2.1 Libraries in Statix

The main reason why library support is important for Statix is because many languages in-
clude a so-called standard library. A standard library is available to be used by any program
in the language. It often includes common algorithms, collections, I/O operations and other
utility functions. Analyzing programs in a particular language without the standard library
is difficult. It either needs to be encoded in the Statix specification directly or, if it is written
in the analyzed language itself, needs to be included and analyzed with the program every
time. A much better approach would be if a library could be included in any project as is,
without requiring either work from the language designer or additional analysis time.

Adding Libraries to Statix Our model adds support for libraries to Statix. A library in
Statix is a collection of modules with a single scope graph. Adding a library to a project
adds the modules of the library as so-called library modules. Library modules are treated
in a special way in the solving process. They will never be reanalyzed and cannot contain
errors. Essentially, they are fixed, unmodifiable modules which can be queried but cannot
be changed.

Libraries can be created by exporting an analyzed project as a library. Libraries can only
be created if the analysis of the library completes without errors. This is due to the special
treatment of libraries, which would otherwise cause these errors to be lost.

Definition 4.2.2. Library module: a special module that can be queried, but which will not partici-
pate in the solving process otherwise. Library modules have no constraints and their scope graphs and
unifiers cannot be modified.

4.2.2 Libraries in the Module Tree

Each project in Statix has a root node in its scope graph, called the global scope. If a library
is added as is, it would introduce multiple root nodes to the scope graph. Recall that the
semantics of querying a scope are to request the edges in said scope from its owner. The
owner of the scope propagates this request to all children that have permission to extend
said scope and collects the edges. Since libraries are not descendant from the same root, it
would not be possible for a query to reach them.

Instead, the global scopes of the library and the project need to be represented as one
scope. We considered two different approaches to this problem. The first approach is to
change the semantics of queries to request edges from all global scopes. The second ap-
proach is to place the root modules of the libraries as children of the project module. The
first approach has the advantage that the library and the project stay separated completely,
but requires extensive modifications to the semantics. The second approach has the advan-
tage that the semantics do not need to be changed, but does introduce libraries as if they are
children of the project. We chose the second approach because of its simplicity and because
a library is more a child of the project than a separate module.

30

4.3. Splitting the Solving Process

With this definition, no additional changes need to be made. The modules of the library
are simply added into the scope graph as is. Only the solving process needs to treat these
library modules as different, to prevent them from being considered for reanalysis.

4.3 Splitting the Solving Process
This section focuses on the challenges created by splitting the solving process of Statix over
multiple separate solvers. We change Statix from a monolithic global approach to a coop-
erative solving process. In addition, we reuse as much of the existing implementation as
possible. First, Section 4.3.1 explains why the solving process needs to be split in the first
place. Then, Section 4.3.2 shows how the split solving process is coordinated. Section 4.3.3
follows by describing how split scope graphs are implemented. Then, Section 4.3.4 explains
how unification can be split across modules and the issues that arise from this separation.
Finally, Section 4.3.5 addresses the changes that were made to the completeness mechanism
of Statix to retain query answer stability.

4.3.1 Why Split the Solving Process?

The Statix Solver is a step based constraint solver. There is one global set of active constraints,
and these constraints are solved one by one (one step at a time). Each constraint that is solved
can introduce new constraints that will be added to the set. While it would be possible to
keep this architecture even for modular solving, we want to achieve a stricter separation of
modules and also accommodate for parallel solving of modules. This requires that there is a
separate solver for each module, which also allows us to completely separate the interactions
between modules in a logical way. This makes it easier to determine what is contributed by
which module and to observe the interactions that occur between modules.

To achieve this, we need to modify all the monolithic components that comprise the Statix
solver and turn them into components which collaborate to get to a solution. We mainly
apply a technique of redirecting, i.e. a request for information which resides in some module
m is redirected to that module regardless of where the request initially arrived.

The Module Solver Each module gets a solver that is responsible for satisfying the con-
straints of this module. This solver is for a large part identical to the original monolithic
step solver that Statix had. The main difference is that it has an owning module, and all
the different components it interacts with are modified versions which allow for cooperative
solving.

4.3.2 Coordinating Multiple Solvers

With multiple solvers, the solving process needs to be coordinated. For this purpose, we
introduce the Solver Coordinator. The solver coordinator is responsible for creating solvers for
each module and to cooperatively reach a solution. It ensures that each solver that is able
to make progress is allocated some time to actually make that progress. Whenever there
are no solvers that can make progress, the coordinator gathers the results of each solver
and combines them into a result. The coordinator can determine that solvers have finished
successfully, that solving failed or that some solvers have become stuck.

We provide two implementations of the solver coordinator: a sequential, single-threaded
version and a concurrent version. The sequential coordinator is described below and the
concurrent coordinator is described in more detail in Section 5.4.

The sequential coordinator solves modules in a greedily. It makes as much progress as
possible in a single module before moving on to the next module. This is achieved by hav-
ing the step solver of the module do as many constraint reduction steps as possible until it

31

4. Modules and Separation

cannot progress its state any further. Whenever a solver is done, the coordinator collects and
stores the result of the solver and removes it from the queue of solvers to make progress in.
After attempting to make progress in all solvers that are left in the queue, the coordinator
checks if any progress was made. If no progress was made, solving is complete and the co-
ordinator combines the results. If progress was made, the coordinator starts a new round
in which it goes over the different solvers again to check if they have any work to do. If the
queue of solvers ever becomes empty, the coordinator concludes that solving has finished
and combines the results.

4.3.3 Split Scope Graphs

As explained in Section 4.1.1, we split the scope graph across the different modules. We want
each scope and edge in the scope graph to have a single owner, so there can be no question
about who introduces what. In addition, we still need to be able to reconstruct the complete
scope graph to be able to do name resolution.

We change the identity of scopes from a single name to a pair, where the first part de-
scribes the module which created the scope and the second part describes its name. As such,
any request for the edges of a particular scope can be redirected to its owner. By redirecting
requests regardless of where they arrive, we effectively provide an interface for the complete
scope graph, without having to reconstruct it.

However, all the descendants of a module can also contribute to its scopes if they have
permission to extend them. As such, edges for a particular scope must be collected from
some of the descending modules as well. We define a depth first collection operation, where
each child module that has permission to extend the scope in question is asked to add its
corresponding edges to the answer.

By using an interface like this, no changes need to be made to the implementations of
each individual constraint. From the view of the constraint, the entire scope graph is acces-
sible, but behind the scenes the queries are delegated and distributed. This model is called a
distributed scope graph. Instead of a single module determining the answer to a question, the
answer is collected by distributing the question among different modules.

4.3.4 Splitting Unification

A large part of Statix is unification. Unification of two terms is the process of finding a substi-
tution which makes those terms equal. Rather than substituting variables eagerly, a mecha-
nism of unification is used to associate values with variables. When a variable is encountered,
its corresponding value can be obtained from the unifier. A variable is considered free if there
is no value associated with it (yet). If a term contains free variables, it is called non-ground. In
a monolithic approach, unification is simple as it can occur at any place and the place where
values should be requested is singular. However, because we split the unifier over different
modules, this becomes more complex.

We apply the same concept to the unifier as we did to the scope graph. Just like scopes,
we add the information of which module created a variable in their identity. Whenever a
unifier gets a request for the value of a variable from another module, we simply redirect
the request there. In contrast to the redirections in the scope graph, the unifier needs to be
modified in additional ways.

Variables can occur in arbitrarily complex terms. In fact, the values associated with vari-
ables can again contain variables. As such, a single level of redirection does not suffice. In-
stead, we need to recursively redirect to the correct unifier if we want to fully instantiate a
term or if we want to determine if it is ground.

32

4.3. Splitting the Solving Process

Cross-module Unification In Statix, it is possible to add free variables to the scope graph.
This can occur because variables need not be instantiated when they are added as data in
the scope graph. Either the variable will be instantiated later, or possibly it will never get
any value. While this is not a problem by itself, assigning values to variables created in other
modules is. Let us show how assigning values to variables from other modules is problematic
for assigning blame (which module is responsible) and consistency.

Consider the following scenario. There is a module m with a single constraint x = Int()
and a module m1 with a constraint x = Bool(). If m is evaluated first, then Int() will be
associated with x. Now, when module m1 is evaluated, it will fail because Bool() and Int()
are not unifiable. However, if m1 would be evaluated first, the opposite would happen and
modulemwould fail for the same reason. In addition, the actual value assigned to x depends
on the order in which modules are evaluated. So, we now have a scenario in which the type
of something in the program is dependent on the order in which we evaluate our modules.
In addition, the module(s) which fail also depend on the order.

Instead, we would like a consistent result (x is always Int(), always Bool(), or always
stays unbound) and consistent failure. To address this, we restrict the unification of vari-
ables. We restrict unification in such a way that a module can only assign values to variables
created by it. The intuition behind this idea is that the creator of a variable should have full
ownership of it and should be able to decide what it substitutes the variable with. Any other
module however, should be able to request the value, but should not be able to influence
it. This way, we avoid the described inconsistencies and get the same outcome regardless
of module evaluation order. In addition, it means we do not have to consider the unifier for
dependencies, which greatly simplifies how we determine dependencies between modules.

However, we do lose a bit of expressiveness. This is in line with our idea for modular-
ization, i.e. each module is separate in some way from other modules. Having variables in
one module which are given values in another module goes against the idea of this separa-
tion, and could indicate that incorrect module boundaries are used. Be aware that it is still
possible to, for example, create a declaration in one module and assign its type in another.
One module can create the declaration in the scope graph, and the other can query for it and
create a relation which relates the type to that declaration. As long as one module does not
preemptively create a variable which should be filled by the other module, we do not run
into cross-module unification.

Delaying Constraints on Variables from other Modules It is possible for a constraint to be
delayed on non-ground variables. For example, if the scope in which a query is performed is
a free variable, we cannot perform the query yet until the variable is instantiated. Similarly,
some of the pattern matching in rules can only be done if the terms are instantiated.

Originally, these constraints were tracked by the solver and reactivated whenever the
variable was instantiated. However, in our split approach it is possible for constraints in one
module to be delayed on variables of another module. Informing all solvers of each variable
that is instantiated would incur quite a bit of messaging. Instead, we use an approach based
on the observer pattern [18].

Whenever a constraint is delayed on a variable, a registration is made with the unifier of
the module owning the variable. Whenever the variable is instantiated, the corresponding
unifier notifies us to reactivate the constraint. In a single threaded fashion, such a mecha-
nism is quite simple. However, in a concurrent fashion, extra care needs to be taken that
the variable is not instantiated between the moment where it is determined that a constraint
is delayed and the moment where the registration is made. Otherwise, the event would be
missed. This is explained in further detail in Section 5.4.

33

4. Modules and Separation

4.3.5 Tracking Completeness over Multiple Modules

To guarantee answer stability, Statix uses the notion of critical edges (see Section 2.5.3). The
(in)completeness of edges is tracked by the completeness component of the solver. The com-
pleteness is essentially a counter. Whenever the solver is instantiated, it determines critical
edges from its initial constraints and the specification. Each (scope, label) combination where
an edge could be added by a constraint later is identified and tracked.

As constraints get simplified, the completeness is updated. The critical edges appearing
in the original constraint are deducted from the completeness, and the critical edges appear-
ing in the constraints it reduced to are added to the completeness. In other words, whenever
an edge creation constraint s l s1 is reduced, the counter for (s, l) is lowered by one. An
edge is considered complete if its counter is zero. However, determining this accross multi-
ple solvers is slightly more difficult.

First, note that each scope can only be extended by a limited set of modules, i.e. mod-
ules which were passed that scope directly from their parents. These are the modules with
permission to extend a scope. As such, only the modules with permission to extend a scope
can affect the completeness of said scope. Furthermore, modules too are created from a re-
duction of a constraint. Whenever a module boundary is executed, the original solver of the
constraint reduces it to no new constraints for itself, but does instantiate a new solver with
the new constraints. This instantiation of the new solver will update the completeness.

We can apply our mechanism of redirections again, where updates to the completeness
as a result of constraint reductions are sent to the completeness of the module owning the
scope.

Delaying Constraints on Critical Edges Just like with variables, it is possible for constraints
to be delayed on critical edges. We can apply a similar observer mechanism to solve the prob-
lem of delaying on critical edges from other modules. Whenever the counter of a particular
edge hits zero, we activate all the observers of that edge.

To prevent accidentally lowering the counter to zero and then increasing it again, we
ensure that all increments of the counter happen before the decrements to the counter. For
each reduction of a constraint c to a set of constraints C, we first add the critical edges of
the constraints in C to the completeness, and then remove the critical edges of c from the
completeness. In addition, we ensure that whenever a new module is created, it adds the
critical edges from its initial constraints to the completeness, before the critical edges of the
constraint reduction are removed by its parent. This way, we achieve atomic completeness
tracking which also works out of the box with concurrency.

4.4 Formal Semantics of Modular Statix-core

In this section we provide the formal specification of an extension of Statix-core with mod-
ules. First, Section 4.4.1 provides the motivation for describing the semantics of Statix-core
rather than Statix. Then, Section 4.4.2 specifies the syntax and updated declarative seman-
tics in terms of constraint satisfiability. Section 4.4.3 follows by explaining the changes to the
operational semantics that we make. Finally, Section 4.4.4 shows that modular Statix-core
retains the soundness that Statix-core enjoys.

4.4.1 Motivation

Antwerpen et al. [3] presents an implementation that makes Statix rules executable. However,
they do not prove that the operational semantics and name resolution algorithm of Statix are
sound. This is mainly due to difficulty of characterizing the conditions under which it is
safe to answer a query when guaranteeing query answer stability. Instead, Rouvoet et al.

34

4.4. Formal Semantics of Modular Statix-core

Figure 4.3: The syntax of Statix-core, as presented in figure 5 by Rouvoet et al. [38]

[38] introduce Statix-core which refines the concepts of Statix into a smaller core language
which guarantees query stability. They also provide a proof that the operational semantics
of Statix-core are correct with regards to the declarative semantics of Statix-core.

There are a few differences between Statix and Statix-core. First of all, queries in Statix-
core do not have an order on paths. Second, queries bind their answer directly in the con-
straints they reduce to. Third, query results are represented as sets. In addition, they leave
out predicates and guarded disjunction. However, they conjecture that their soundness and
confluence results extend to full Statix as long as there are no overlapping guards.

We provide updated declarative and operational semantics for a modular version of
Statix-core and provide proof sketches to show that it is still sound. We conjecture that this
extends to the declarative semantics of modular full Statix as well.

4.4.2 Declarative Semantics

The syntax of Statix-core, as presented by Rouvoet et al. [38], is shown in Figure 4.3. We
extend the syntax of Statix-core with a module creation constraint: mod C, where C is the
initial constraint of the newly created child module.

Figure 4.4 shows the declarative semantics of Statix-core in terms of constraint satisfaction
rules, as presented by Rouvoet et al. [38]. We do not need to redefine constraint satisfaction to
include modules or modular graphs. Instead, only the operational semantics actually need
to change to support modules. As such, we only need to make a small addition to the original
declarative semantics of Statix-core. We add the constraint satisfiability rule for the module
creation constraint in Figure 4.5. Because the declarative semantics do not consider modules,
module creation constraints essentially become predicates, for which the unfolding is trivial.

35

4. Modules and Separation

Figure 4.4: The declarative semantics of Statix-core in terms of constraint satisfaction, as
presented in figure 6 by Rouvoet et al. [38]

Module-Fresh
G (σ C

G (σ mod C

Figure 4.5: Constraint satisfiability for the module creation constraint

4.4.3 Operational Semantics

We present the operational semantics of modular Statix-core as small step reductions on state
tuples. For completeness, we first provide all the rules for the original operational semantics
of Statix-core in Figure 4.6. To avoid confusion between the original rules and the new rules,
we will use the prefix Op-M-* to refer to the rules for modular Statix-core. Whenever a rule
shown is not the final version of that rule, we suffix its name with a version number, i.e.
Op-Node-Fresh-1.

36

4.4. Formal Semantics of Modular Statix-core

Figure 4.6: The original operational semantics of Statix-core as presented in Rouvoet et al.
[38]

37

4. Modules and Separation

States To support the split scope graphs used by modules, some modifications to the op-
erational semantics need to be made. Rouvoet et al. [38] give the operational semantics in
small step semantics defined on state tuples xG | Cy, where G is the scope graph and C is
a set of constraints that is repeatedly simplified. To stay close to the paper, we will do the
same with a modified state.

Because we have split the scope graph into multiple modules, we also have to alter the
state. Instead of one graph, we have partial graphs which together form the scope graph. In
addition, modules form a tree hierarchy which needs to be available for query solving. We
redefine the state as xM : má m1 | G : má G | (m,C)y. M is a partial function from module
identifiers to module identifiers which denotes the parent of a module. G is a partial function
from module identifiers to graphs and (m,C) is a set of tuples (m,C)with a module identifier
and the corresponding constraint set. We also define new accepting, rejecting and stuck
states. The semantics accepts a final state xM | G | (m,C)y where @(m,C) P (m,C), C =H

and rejects a final state xM | G | (m,C)y where Dm P dom(M). (m, tfalseu) P (m,C). States
in which no steps can be taken to reduce are said to be stuck.

To make the notation more readable, we define a rule which picks an arbitrary module
and makes progress in that module, Op-M-SingleModule. We can then define rules using the
simplified relation if these rules do not need information from other modules. This means
that we can almost reuse most of the operational semantics from the original small step se-
mantics given in Figure 7 in the paper.

Op-M-SingleModule
G(m) = Gm xm | Gm | Cy Ñ xm | G1

m | C
1
y

xM | G | (m,C); (m,C)y Ñ xM | G1[mÑ G1
m] | (m,C

1
); (m,C)y

Figure 4.7: Small step semantics of performing a step in a single module.

Introducing Module Creation Constraints First of all, we introduce a new constraint mod C.
This constraint creates a child module with the constraint C as initial constraint. The small
step semantics for the module constraint are shown in Figure 4.8. This is the only rule that
is able to create other modules.

Op-M-Module-Fresh
fv(C) =H m1 is fresh

xM | G | (m, (mod C);C); (m,C)y Ñ xM [m1 Ñ m] | G[m1 Ñ ϵ] | (m,C); (m1, tCu); (m,C)y

Figure 4.8: Small step semantics of the module creation constraint

Redefining Scopes To access scope graphs of other modules, we need to know the module
owning a particular scope to redirect queries and dataOf requests to. To accommodate for
this, we add the owner of a scope to its identity. This means that a scope becomes a tuple (m, i)
with the module owning the scope m and the original identity of the scope i. This affects the
rule for creating a scope slightly. In addition, the rule for requesting data of a scope needs to
be modified to request correct scope graph. These rules are shown in Figure 4.9.

Non-local Substitutions Most rules can only have a local effect. However, variables can
‘leak’ from one module into another module if they are exposed as data. This data can then

38

4.4. Formal Semantics of Modular Statix-core

Op-M-Node-Fresh-1
s = (m, i) s R S

xm | xS,E, ρy | (∇xÑ t);Cy Ñ xm | xs;S,E, ρ[sÑ t][s/x]y | C[s/x]y

Op-M-Data
s = (m1, i) G(m1) = xSm1 , Em1 , ρm1y ρm1(s) = t2

xM | G | (m,dataOf(s, t1);C); (m,C)y Ñ xM | G | (m, (t1 = t2);C); (m,C)y

Figure 4.9: The updated rules for creating scopes and retrieving data when using the new
scope notation

be queried by other modules and can end up in other constraints and other scope graphs.
As such, substitution of variables has to happen globally rather than locally. To this end, we
define the rules Op-M-Eq-True and Op-M-Node-Fresh to apply their substitutions globally in
Figure 4.10. We do not need to consider the rule for min, as set variables cannot be added to
the scope graph since they are not terms. As such, min only needs local substitution.

Op-M-Eq-True
t1φ = t2φ φ is most general

xM | G | (m, (t1 = t2);C); (m,C)y Ñ xM | Gφ | (m,Cφ); (m,C)φy

Op-M-Node-Fresh
G(m) = xS,E, ρy s = (m, i) s R S

xM | G | (m, (∇xÑ t);C); (m,C)y Ñ

xm | G[mÑ xs;S,E, ρ[sÑ t]y][s/x] | (m,C[s/x]); (m,C)[s/x]y

Figure 4.10: Operational semantics for rules that need to apply global substitutions, i.e.
Op-M-Eq-True and Op-M-Node-Fresh.

Queries The rule for queries is arguably the most interesting one. Queries need to be al-
lowed to find paths throughout the scope graph. However, queries are guarded by (C;C) ãÑ (s2, l).
Because the constraint set is split over multiple modules, this does no longer guarantee query
answer stability. Instead, this fact needs to be asserted for all the constraint sets to adhere to
the original rule. Note that unlike full Statix, Statix-core does not have the notion of permission
to extend, since it does not support predicates.

We first define a helper function join which joins all the partial graphs together into one
scope graph as follows.

Join
xS,E, ρy =

ě

mPdom(G)

G(m) G = xS,E, ρy[@(m1, s) P S. s/(m1, s)]

join(G) = G

Considering all of this, we end up with the rule as presented in Figure 4.11.

Simple Rules All the remaining rules can use the simplified relation for stepping in a single
module. These simple rules are mostly equivalent to their definition in Statix-core (besides
the altered state tuples). These rules are presented in Figure 4.12.

39

4. Modules and Separation

Op-M-Query-Guarded
G = join(G) C 1 = tCm1 | (m1, Cm1) P (m,C)^m1 ‰ mu

@s2, l. (G $ p : s1
w
ÝÑ s2 and L(δwlr) ‰ ∅ implies (C;C Y C 1) ãÑ (s2, l))

xM | G | (m, (query s1 r D as z. C;C); (m,C)y Ñ

xm | G | (m,C[Ans(G, s1 r D)/z];C); (m,C)y

Figure 4.11: Operational semantics of queries for modular Statix-core

40

4.4. Formal Semantics of Modular Statix-core

Op-M-Emp

xm | G | emp;Cy Ñ xm | G | Cy

Op-M-False

xm | G | false;Cy Ñ xm | G | tfalseuy

Op-M-Conj

xm | G | (C1 ˚ C2);Cy Ñ xm | G | C1;C2;Cy

Op-M-Eq-False
␣Dφ.t1φ = t2φ

xm | G | (t1 = t2);Cy Ñ xm | G | tfalseuy

Op-M-Exists
y is fresh for G and C

xm | G | (Dx.C);Cy Ñ xm | G | C[y/x];Cy

Op-M-Singleton-True

xm | G | single(t, tt1u);Cy Ñ xm | G | (t = t1);Cy

Op-M-Singleton-False
␣Dt1.t = tt1u

xm | G | single(t, tt1u);Cy Ñ xm | G | tfalseuy

Op-M-Min
ζ 1 = min(ζ,R)

xm | G | min(ζ,R, z);Cy Ñ xm | G | C[ζ 1/z]y

Op-M-Forall

xm | G | (@x in ζ.C);Cy Ñ xm | G | tC[t/x] | t P ζu Y Cy

Op-M-Node-Stale
t2 is not a variable

xm | G | (∇t2 Ñ t1);Cy Ñ xm | G | tfalseuy

Op-M-Edge

xm | xS,E, ρy | (s1
l s2);Cy Ñ xm | xS, (s1, l, s2);E, ρy | Cy

Figure 4.12: The operational semantics of modular Statix-core that do not need information
from other modules. These rules use the simplified modular state, but are otherwise equiv-
alent to their original specification in Rouvoet et al. [38].

41

4. Modules and Separation

Maintaining Well-formedness In terms of well-formedness, we do not need to modify any
of the original well-formedness rules. We only need to add a rule for our new module cre-
ation constraint, which is shown in Figure 4.13. Likewise, we only need to add one rule
to the syntactical extends predicate, as shown in Figure 4.14. Both of these rules are quite
straightforward, since the module creation constraint does not actually impose any interest-
ing behavior.

Wf-Module-Fresh
△↓,△↑$ C

△↓,△↑$ mod C

Figure 4.13: Well-formedness rule for the module creation constraint. A module creation
constraint is well-formed if the constraint it reduces to is.

Ext-Module-Fresh
C ãÑ (s, l)

(mod C) ãÑ (s, l)

Figure 4.14: Syntax directed edge support predicate for the module creation constraint. The
critical edges of a module creation constraint are equal to the critical edges of the constraint
it reduces to.

4.4.4 Proving Correctness

The intuition for our approach is that the changes that we make only move constraints from
one set to multiple sets. The non-deterministic nature of the operational semantics does not
change, since the module to make progress in is also non-deterministically selected. Con-
straints with global effect (i.e. substitution) are still applied to all constraints and queries
still execute on the complete graph. Thus, constraints are only being divided over multiple
(disjoint) sets while scopes and edges are divided over multiple (disjoint) graphs. Any state
of modular Statix-core can be converted to a state for Statix-core by taking the union of all
the module scope graphs and by taking the union of all constraint sets (removing module
creation constraints) and by converting variables and scopes to their original, non-modular
forms. As such, nothing in the behavior actually changes as a result of modules.

To describe that any state for modular Statix-core can be converted to a state for Statix-
core, we define the helper function original. original constructs an original constraint set
from modular constraint sets as shown in Figure 4.15.

State transitions of modular Statix-core can now be expressed in terms of state transitions
in Statix-core, as shown in Theorem 4.4.1.

42

4.4. Formal Semantics of Modular Statix-core

Original-False
Dm. (m, tfalseu) P (m,C)

original((m,C)) = tfalseu

Original-True
Em. (m, tfalseu) P (m,C) C =

ď

(m,Cm)P(m,C)

Cm C
1
= C[@(mod C) P C.C/(mod C)]

original((m,C)) = C
1

Figure 4.15: Definition of the original helper function which transforms multiple modular
constraint sets into the equivalent original constraint set.

Theorem 4.4.1. Any state transition in modular Statix-core can be expressed in terms of state tran-
sitions in Statix-core.

A

M | G | (m,C)
E

Ñ

A

M
1
| G1

| (m,C)
1E

implies(
there exists a step

A

join(G) | original
(
(m,C)

)E

Ñ

A

join(G1
) | original

(
(m,C)

1)E)
_

(A

join(G) | original
(
(m,C)

)E

=
A

join(G1
) | original

(
(m,C)

1)E)

Proof Sketch. The proof is by induction on the possible reductions. The case where the origi-
nal states are equal occurs only whenever a module creation constraint is reduced. The reduc-
tion for query constraints already operate on the joined scope graph and all the remaining
constraints, which makes it quite trivial. For all the constraints that can be reduced with
the Op-M-SingleModule relation (i.e. Figure 4.12), the equivalence follows trivially because
the reductions are the same and the effects are local, except for Op-M-False. In Statix-core, all
constraints are immediately reduced to false whenever false is encountered. However, in the
modular version, other modules are immediately reduced to false in such a case. The equiv-
alence follows from the definition of original, which reflects that a failure in any module re-
duces to a rejecting state. The rules for Op-M-Eq-True and Op-M-Node-Fresh apply substitutions
on all scope graphs and all constraints, which is equivalent to the original reductions.

As such, we can conclude that the operational semantics of modular Statix-core is sound
with regards to the declarative semantics of Statix-core. Given that the module creation con-
straint functions as a simple predicate for constraint satisfaction, constraint well-formedness
and the syntax directed edge support mechanism, it is trivial to extend the existing proofs
by Rouvoet et al. [38] to support them. We conclude that modular Statix-core is sound with
respect to its declarative semantics and enjoys the same soundness as Statix-core.

43

Chapter 5

Incremental Analysis

Building on the separation into modules introduced by Chapter 4, this chapter describes our
model for incremental analysis for Statix. First, Section 5.1 introduces our model and neces-
sary concepts for the rest of the chapter. Then, Section 5.2 describes how precise dependen-
cies between modules can automatically be identified from queries. Section 5.3 follows by
explaining how a change to the project can be mapped to all the modules which are affected
by that change. Then, Section 5.4 describes how we add concurrency to our model in the
form of parallel execution of the solvers of multiple modules. Finally, Section 5.5 concludes
with the answer to our second research question.

5.1 Incremental model
In this section we introduce our model for incremental analysis. First we introduce the termi-
nology for incremental analysis and clean and incremental runs. Then, we will discuss the
multi-phase solving approach and how control over module interactions allows for differ-
ent incremental strategies. Finally, we give an overview of the functionalities of our model,
which will be

5.1.1 Incremental Analysis with Strategies

We define an incremental model for executing incremental analyses. The incremental model
essentially describes the required coordination and organization of the analysis process, as
well as the features that need to be available to solve incrementally. Our model is set up in
a flexible way to allow for different incremental strategys. Incremental strategies are algo-
rithms which use the features of our model to determine the result of an analysis from the
results of the previous analysis and some changeset. These strategies can sometimes avoid
reanalyzing modules whenever their reanalysis is not necessary.

Definition 5.1.1. Incremental analysis: the analysis of a program which potentially uses informa-
tion from a previous analysis to determine its result.

Definition 5.1.2. Clean run: an analysis run which analyzes all modules without using information
from previous analyses.

Definition 5.1.3. Incremental run: an analysis run which has access to information from a previous
analysis.

Definition 5.1.4. Incremental strategy: an algorithm for incremental analysis which takes a change-
set and the previous analysis result as input and produces the result of the new analysis as output.

Our model is strategy directed, that is, the strategy completely directs the solving process
by using functionality of the model.

45

5. Incremental Analysis

5.1.2 Multi-phase Solving

Our model is designed with multi-phase solving in mind. Multi-phase solving means the
strategy can decide to separate the solving process into multiple different phases. For exam-
ple, a strategy might reanalyze some set of modules in one phase and then conclude it needs
another phase to reanalyze other modules. In addition, our model offers extensive control
over the solving process, and allows for partial solving of individual modules.

Partial Solving and Control over Module Interactions Partial solving is the concept of
solving only a subset of all constraints of one or more modules. Sometimes it makes sense
for a strategy to limit the constraints that are solved. For example, a pessimistic strategy
might not allow using potentially outdated information from other modules. Such a strategy
can define that every time a module requests information from another module, that request
must be denied. All denied requests cause the constraint making the request to get delayed.
Delays

It is also possible to use partial solving to determine all the statically available information
in scope graphs. If module interactions are completely disallowed, the only constraints which
will be solved are those that are satisfiable in isolation. While our optimistic name-based
strategy does not use this functionality, it can be used for other strategies as they see fit.

5.1.3 Features of our Model

In addition to the support for multi-phase solving, our model offers the following features.

• Dependencies: Automatic detection of dependencies between modules from queries.
Detailed information is added to dependencies to allow for precise incremental strate-
gies which only reanalyze a module if it could be affected by a change, rather than just
because a module it depends on changed in some way (Section 5.2).

• Scope Graph Comparisons: Scope graphs can be compared with our model to obtain
a so-called scope graph diff, consisting of added and removed edges. Strategies can
extend these diffs with additional information as well (Section 5.3).

• Affected Modules: Affected modules can be determined by combining a diff with
recorded dependencies. The detailed information in the dependencies is used for pre-
cise detection if a module is affected or not. For removals of edges, the affected modules
are determined with maximum precision. Only if the removed edge is traversed, will
the module be redone. For additions of edges, all additions which could affect a query
cause reanalysis (Section 5.3).

5.2 Dependencies between Modules

For incremental analysis, it is important to know which modules can be affected by a change.
We want to know the answer to the question ‘If one module is changes, what are the modules that
could be affected by this change?’ One part of the answer to this question is the dependencies that
modules have on each other. The challenge is to determine dependencies between modules
with as much details as possible, but in an efficient way. With more detailed dependencies,
we can determine more precisely whenever modules are affected and whenever they are not,
improving our incremental analysis.

First, Section 5.2.1 describes how modules can depend on each other and introduces the
syntax we will use for dependencies. Then, Section 5.2.2 define sa naive dependency rela-
tion which is sound but not precise. Section 5.2.3 follows by refining this definition to be

46

5.2. Dependencies between Modules

more precise by removing overapproximated dependencies. Finally, Section 5.2.4 improves
precision again by adding additional detailed information to the dependencies.

5.2.1 How are Dependencies introduced?

A module can only depend on another module if it requests or uses some kind of information
from modules. There is thus an obvious dependency relation of a child module on its parent
module. If the parent module changes, the child module might not even exist any more. We
do not need to do any tracking of these dependencies, since they are already present in the
module tree.

Then, there are two other ways in which information can be obtained from other modules.
First of all there are queries which request information from the scope graph. Queries request
edges and data edges from scopes in the scope graph, and can reach other modules.

Second, it is possible to determine the value of a variable from the unifier of another
module. However, we do not actually need to consider these unifier dependencies. The only
way to obtain a variable from another module is if that module exposes it in its scope graph.
We can obtain such a variable by querying the module in question, in which case we already
introduce a dependency. It is also possible for another module to obtain this variable via a
query, and to put it in its scope graph. If we obtain a variable this way, there will still be a
transitive dependency on the module creating the variable.

In addition, it is not possible to assign values to variables from other modules, as ex-
plained in Section 4.3.4. This means that there cannot be a reverse dependency of the mod-
ule owning the variable on the value that another module assigns to it. Since queries are
the only constraint able to obtain information from other modules, only queries need to be
considered for the introduction of dependencies.

Syntax for Dependencies We write m1 ãÑ m2 when module m1 depends on module m2.
We define the transitive closure of dependencies as m1 ãÑ˚ m2, i.e. m1 transitively depends
on m2. We distinguish two specific kinds of dependencies, incorrect and irrelevant dependen-
cies. An incorrect dependency is a dependency that cannot be relevant for incrementality. A
dependency m1 ãÑ m2 is irrelevant for a specific change c to m2 whenever m1 is not affected
by c.

Definition 5.2.1. Dependency: a dependency of module m1 on module m2, written m1 ãÑ m2,
means that m1 directly uses information from m2 or made available by m2.

m1 ãÑ˚ m2 ùñ m1 ãÑ m2 _ Dm3. (m1 ãÑ m3 ^m3 ãÑ˚ m2) (5.1)

Definition 5.2.2. Incorrect dependency: whenever there is a dependency m1 ãÑ m2, but there does
not exist a change to m2 such that m1 is affected.

Definition 5.2.3. Irrelevant dependency: a dependency m1 ãÑ m2 is irrelevant for a change c to
module m2, whenever m1 is not affected by the change c.

5.2.2 Naive Dependencies

Multiple mechanisms for determining dependencies are possible. For example, one could
identify dependencies from the queries directly. All the paths that could be matched by the
query which are available in the scope graph could be classified as the dependency paths.
The dependencies would then be the owners of the scopes and declarations encountered on
the path. Figure 5.1 shows an example of such a naive dependency relation. The query is
represented by the B in the bottom left corner. The query follows paths of the form P˚ and

47

5. Incremental Analysis

looks for a declaration with the name B. The resolution path is SAM
¨ P ¨ SA ¨ P ¨ SP ¨ P ¨ SG ¨

decl(B). This would mean that AM depends on all other modules, which is correct.

G

P

A

Am

B
P

A
P

P
B

B

Figure 5.1: A scope graph showing query resolution with modules. In the bottom left a
query for a name B, which resolves to the declaration of B in the top right, traversing all
other modules in the process.

Precision The naive dependency relation is not very precise. A lot of dependencies are
introduced that are not actually relevant. This is due to the fact that the naive dependency
relation is using reachability and not visibility. In essence, the naive dependency relation
also shows potential dependencies. Usually, declarations are shadowed by other declarations.
Whenever a query resolves to a declaration via a path p, we do not need to consider any
path p1 that is less specific. That is, we do not need to add dependencies for declarations and
paths that are not reached because they are shadowed by other declarations. We make this
refinement in Section 5.2.3.

Definition 5.2.4. A path p is more specific than a path p1 for some query q, if q will chose p1 over p
if it is available. Formally, if ăl $ p ăp p

1.

Definition 5.2.5. Precision: the precision of a dependency relation depends on the number of incor-
rect and irrelevant dependencies that it finds. A dependency relation becomes more precise as it finds
less incorrect dependencies and as it provides more information with which irrelevant dependencies
can be avoided.

Soundness The naive dependency relation ensures that all the current dependencies are dis-
covered. However, care needs to be taken when considering child modules. A child module
m has permission to extend all the scopes that are passed to it from its parent. That is, m can

48

5.2. Dependencies between Modules

have permission to extend a scope s where owner(s) = mp and m ‰ mp,mp P parents(m).
This means that a change to m can affect mp. With the naive dependencies, this dependency
is not captured explicitly.

We can address this in a few different ways. First, it is possible to say that a module m
depends on all its children. However, this would introduce a lot of additional dependencies
that are often not necessary. Another option is to add a dependency on the owners of the
traversed edges in addition to the owners of the scopes. While this would make the depen-
dency on child modules explicit, it is not enough by itself. It is possible for a modulemwhich
previously contributed no edges nor scopes, to introduce a new child edge in a scope of one
of its parents. Because it previously did not contribute anything to the scope graph, there
cannot have been a direct dependency on this module. However, the newly added edge can
influence the resolution of existing queries. This would imply that we missed a dependency.

Definition 5.2.6. Child edge: an edge s l s1 or s r d where the module m introducing the edge
is not the owner of s, but rather a descendant of the owner of s, i.e. m P descendants(owner(s)).

Instead, it is possible to consider a change to m which modifies the edges in a scope s
owned by a parent module mp as a change to mp and not to m. Intuitively, it makes sense
that a change to a scope s owned by module m is a change to m. By moving the change
to a module to the module which it affects, we essentially hide the details of child modules
from the dependencies. Assuming that we can determine the changes to the scope graph of a
module in terms of added and removed edges in particular scopes, this is quite easy to apply.
As such, we will use this definition of changes for all incremental strategies that can do so
(see Chapter 6). It follows that a dependency relation can only be considered ‘correct’ in the
context of how changes are handled. This gives us the following definition of soundness for
dependency relations.

Definition 5.2.7. Effective change: an effective change c to module m is a change c1 to module m1

with m1 = m_m1 P descendants(m) which modifies the edges of a scope owned by m.

Definition 5.2.8. Soundness: A dependency relation is considered sound whenever an effective
change c to module m which affects the result of a query in m1, implies that there is a dependency
m1 ãÑ˚ m.

5.2.3 Refined Dependencies

While the naive dependency relation is sound when using effective changes, it is not very pre-
cise. Usually, queries resolve to something in the scope graph and then do not visit the
remainder of the scope graph. For the most part, only queries that do not have any results
actually depend on all the paths that they can reach. Figure 5.2 shows an example of this. The
query is represented as the x in the bottom left. The query is defined to look for declarations
with the name x with the path regex P˚ (query s P˚: decl(xj) asxk).

With the naive dependency relation as defined above, we would end up with the depen-
dency of AM on A, P and G. In reality it only depends on A. We refine the dependencies to
be the owners of the scopes and declarations that appear on the paths of the query results.
If the query does not resolve to anything, we use our definition for the naive algorithm. We
call this the Refined Dependency Relation.

However, using only the path of the result to determine dependencies is not always cor-
rect. Consider the scope graphs in Figure 5.3. In the left scope graph there is a dependency
of A on B because the query resolves to the x declared in B. Now, C is modified and also
gets a declaration x, resulting in the scope graph on the right. The query in A would now
resolve to the x in C instead. However, since we did not record a dependency of A on C, the
incorrect previous result would be used. Clearly a dependency of A on C was missed here.

49

5. Incremental Analysis

G

P

A

Am

X
P

A
P

P

X

Figure 5.2: A scope graph showing that not all dependencies are relevant.

G

A
X I

P P C

X
B

(a) Original scope graph

G

A
X I

P P C

X
B

X

(b) Changed scope graph

Figure 5.3: Scope graphs showing the problem with the simple dependencies.

To counter this problem, we refine our dependency relation as follows. If a query does
not resolve to a declaration, we depend on the owners of the scopes on all the paths that
can be reached by the query. If a query resolves to some declaration d via some path p, we
depend on all the owners of the scopes on the path p as well as on all the owners of scopes
on any path p1 that is more specific than p.

The added part describes that we need to consider all the scopes where a declaration or
an edge could be added which would potentially shadow our current resolution. If such a
declaration or edge is added, the answer to our query can change. With this definition, we
are now both sound and precise. The dependencies we consider for a query are based on all
the scopes and only those scopes where the introduction of new edges or declarations could

50

5.2. Dependencies between Modules

alter the result of our query.
We cannot obtain a higher precision in terms of simple dependencies of the form m de-

pends on m1 without losing soundness. However, it is possible to add more details to our
dependencies to make them more useful in determining when these dependencies are actu-
ally relevant, which we will discuss next.

5.2.4 Adding Details

While the refined dependency relation cannot be made more precise, we would still like
to reduce the number of dependencies that need to be considered for a particular change.
To achieve this, we add additional information to the dependencies which can be used to
determine if a particular change can affect a particular dependency (Section 5.3).

Since our dependencies are created on the basis of all the scopes and edges that could
affect the result of the query, it makes sense to add this information to the dependency. We
record the scope and the edge label of each path considered for the dependency. For example,
if module A performs a query and requests edges with the label I in a scope of module B, i.e.
there is a path segment ... ¨ SB ¨ I ¨ ..., then there is a dependency A ãÑ B | xSB, Iy. In other
words, A depends on B because A requested I edges in scope SB , a scope owned by B. If
we record this information with all the paths of our refined dependency relation, we know
exactly why we have dependencies on each module. In fact, we already have to determine
these scopes and edges to determine the dependencies in the first place, which means that
adding such information does not incur a significant extra cost.

In addition, we add the information of all the paths that were resolved to the query. This
is also information we already have. With these paths, we can determine if the removal of
an edge in the scope graph affects the result of the query more precisely than with just the
considered paths. If a removed edge is not on the resolved paths, we know for sure that
it cannot affect the result of our query. Finally, instead of recording each scope and label
combination individually, we write A ãÑ B | xVe, Vd, Ry, where Ve is the set of visited edges,
Vd is the set of visited data edges and R is the set of edges on the paths to the resolutions.
We specify this further in Section 5.2.5.

The Cost of Tracking Precise Dependencies in Statix Recording such precise dependen-
cies might seem quite expensive, but with the way the name resolution algorithm is imple-
mented in Statix, it is actually quite trivial. The name resolution algorithm requests paths in
the order of increasing specificality and stops as soon as it finds a most specific target. As
such, it will only and exclusively visit those paths that are relevant for our dependency track-
ing. All the edges that could potentially influence the answer to the query are exactly those
edges requested by the name resolution algorithm. We only add a small tracking method
through which the name resolution algorithm requests edges and data edges. These accesses
are then stored in a map, incurring only a very small cost.

5.2.5 Formally Specifying Dependencies

In this section we provide the formal specification of our dependency relation as a judgement.
First, we specify the naive dependency relation to show the basis of our approach. Then, we
will extend this specification to the refined dependency relation with added details. We do
not separate this into a relation with details and one without details, since the introduction
of the dependency happens in the same way.

Notation of Queries and Name Resolution The rules for name resolution in the scope
graph are shown in Figure 2.4 and explained in Section 2.3.2. We will use a different nota-
tion for queries in the form of query WFD,WFL,ďd,ăl in s r (p, d), where each pair (p, d)

51

5. Incremental Analysis

describes a path p and a data term d that was found by the query. For brevity, we will some-
times omit the well-formedness predicates and the orderings when they are not relevant. We
use the letter q to refer to queries. We project out the WFD, WFL, ďd and ăl from a query q
by denoting them as WFDq, WFLq, ďdq and ălq respectively.

Dep-Naive
(G $ p : s s1)_ (Dd. (WFDq,WFLq,G $ p : s

r
d))

s2 P scopes(p) WFLq $ p ok m1 = owner(q) m2 = owner(s2) m1 ‰ m2

G, q :=
(

query in s r (p, d)
)
$ m1 ãÑ m2

Figure 5.4: Naive dependency relation which creates dependencies on all scopes and decla-
rations that can be reached by a query.

Naive Dependency Relation The first part of the relation, G $ p : s s1, states that there
is a path p from our source scope s to some other scope s1. This part represents all the paths
that can be made in the scope graph, but is restricted by WFLq $ p ok to only paths accepted
by the query.

The second part, Dd. (WFDq,WFLq,G $ p : s
r
d), states that there is some declaration

that can be reached from s via the path p under relation r. This part represents the full
resolution paths.

WFLq $ p ok specifies that we only consider valid paths for our relation. This restricts
the resolution to only paths that are accepted by the query. Finally, we consider all the scopes
that appear in our path with s2 P scopes(p) and specify that m1 is the owner of the query,
m2 is the owner of a scope on the path and that m1 ‰ m2.

Considered Scopes and Reached Scopes To be able define the refined dependency relation,
we need to first describe how we determine the scopes we consider and the scopes that we
reach. We add an auxilary relation, considers which specifies that a query query in s r (p, d)
considers an edge s1 l s2 or data edge s1 r1

d1. This means that either a path using the
aforementioned edges could be more specific than resolution paths found by the query, or
that the query did not find any resolution path and that paths using the aforementioned
edges would be valid resolution paths.

For ease of reading and notation, we define the considers relation on a pair (s, r) rather
than specifying the full query query in s r (p, d). Furthermore, we make a distinction be-
tween considerse and considersd to distinguish between normal edges and data edges re-
spectively.

The rules for the considers relation are shown in Figure 5.5. We explain these rules in
more detail.

For resolutions that succeed, i.e. WFD,WFL,ďd,ăl,G $ p : s r d, we are interested in
all the paths that satisfy the query which are more specific than the path p, but which cur-
rently do not yield a resolution. With more specific we mean paths p1 where ăl $ p1 ăp p.
On a scope graph G1 where G Ă G1, i.e. G1 has additional edges, the result of the query
could be one of these paths p1 instead of the current resolution. In essence, we want to
know the edges s l s1 and data edges s r d that could be added to G which can af-
fect the result of our query. To this end, we define the relations considerse and considersd.
The relation WFD,WFL,ďd,ăl,G $ (s, r) considerse (s1, l) holds for all (s1, l) which can af-
fect the result of the visibility query WFD,WFL,ďd,ăl,G $ p : s r d. Likewise, the relation
WFD,WFL,ďd,ăl,G $ (s, r) considersd (s1, r) holds for all (s1, r) which can affect the result.

52

5.2. Dependencies between Modules

The rules for edges need to find not only the paths that do match, but also those that
could be matched. First, it selects a path in the graph to a scope s1 reachable from s. Such a
path is relevant if it is more specific (in the case a resolution exists) and could be extended to
some well-formed path. This is achieved by taking a label l and some suffix x and checking
if adding the suffix l x to a path would be valid. The labels on the path are determined with
w = word(p1). Only if (w l x) is in the regular language which the query accepts, we know
that the query could be affected by additions for label l in scope s1.

The rules for data are much the same, but are simpler, since they only need to check if
the path to s1 is well-formed. This is because declarations are requested only on well-formed
paths. This property is denoted by WFL $ p1 ok.

NR-ConsidersEdge-Result
Dpd. (WFD,WFL,ďd,ăl,G $ p : s r d)

G $ p1 : s ↠ s1 ăl $ p1 ăl p w = word(p1) l P L x P L˚ (w l x) P WFL
WFD,WFL,ďd,ăl,G $ (s, r) considerse (s1, l)

NR-ConsidersEdge-NoResult
Epd. (WFD,WFL,ďd,ăl,G $ p : s r d)

G $ p1 : s ↠ s1 w = word(p1) l P L x P L˚ (w l x) P WFL
WFD,WFL,ďd,ăl,G $ (s, r) considerse (s1, l)

NR-ConsidersData-Result
Dpd. (WFD,WFL,ďd,ăl,G $ p : s r d)

G $ p1 : s ↠ s1 ăl $ p1 ăl p WFL $ p1 ok
WFD,WFL,ďd,ăl,G $ (s, r) considersd (s1, r)

NR-ConsidersData-NoResult
Epd. (WFD,WFL,ďd,ăl,G $ p : s r d) G $ p1 : s ↠ s1 WFL $ p1 ok

WFD,WFL,ďd,ăl,G $ (s, r) considersd (s1, r)

Figure 5.5: Formal definition of the considers relations, i.e. all the (scope, label) and (scope,
relation) combinations that are considered by a query.

Stuck Queries Require Dependencies In addition, dependencies also need to be recorded
if a query is stuck. However, stuckness of queries is not captured by the declarative semantics.
Name resolution either finds a path or doesn’t find a path. However, it is possible for a query
to get stuck. In those cases, our model should still provide the necessary dependencies to
recover from such a scenario. For a stuck query, all the edges which can be considered up to
the point where the query is stuck need to be recorded. That is, all the scopes and edges the
query would consider if it would, instead of getting stuck at location (s, l) or (s, r), conclude
that there is a matching declaration at some path following (s, l) or of the form (s, r). The
query then follows the rules for NR-ConsidersEdge-Result and NR-ConsidersData-Result up
to the point where it is stuck.

Added Details For the added details, we introduce a few new sets. First, we define Ve and
Vd to be the sets of all the scope label combinations (s, l) and the scope relation combinations
(s, r) that were considered by a query respectively. We defineR to be a set of all the paths that
were resolved by a query. We extend our dependency relation with details, which we write
as m1 ãÑ m2 | xVe, Vd, Ry to denote that module m1 depends on module m2 with detailed
information xVe, Vd, Ry.

53

5. Incremental Analysis

Refined Dependency Relation with Details We then define our dependency relation in
terms of the considers relations. Figure 5.6 shows the dependency relation. This relation
works as follows. We assert that we depend on all m2 for which Ve or Vd is not empty. Ve and
Vd are computed as the union of all the (scope, label) and (scope, relation) combinations that
are considered by the query, for which the owner of the scope is m2. Finally, R contains all
the paths to declarations that can be resolved by the query.

Dep-Refined-Detailed
m1 = owner(q) Dm2 PM.m1 ‰ m2

Ve =

 ď

s1Pscopes(G),owner(s1)=m2,lPL
WFD,WFL,ďd,ăl,G $ (s, r) considerse (s1, l)

Vd =

 ď

s1Pscopes(G),owner(s1)=m2

WFD,WFL,ďd,ăl,G $ (s, r) considersd (s1, r)

Ve ‰ ∅_ Vd ‰ ∅ R =

!

p | WFDq,WFLq,ďdq ,ălq$ p : s
r
d

)

G, q :=
(

query in s r (p, d)
)
$ m1 ãÑ m2 | xVe, Vd, Ry

Figure 5.6: Refined dependency relation with added details

5.3 Determining the Impact of a Change
One of the key parts of incrementality is to determine the impact of a change. Whenever a
change is made, we need to determine which modules need to be recomputed and which
modules are unaffected based on the dependencies recorded. This section describes how
edits to files can ultimately be mapped to affected modules. First, Section 5.3.1 describes
how edits to files are mapped to modules. Then, Section 5.3.2 shows how changes to modules
can be represented as changes to their scope graphs after reanalysis. Section 5.3.3 explains
how scope graphs can be compared to create a diff of added and removed edges, followed
by Section 5.3.4 which shows how irrelevant information in the scope graph can be ignored
for these diffs. Finally, Section 5.3.5 combines dependencies and diffs to determine affected
modules.

5.3.1 Mapping Edits to Modules

A changeset maps the edits that have occurred to files in the project to the modules they
occur in. The granularity of changesets can range from file level to the level of individual
Statix modules, depending on the granularity that is used by the IDE. In addition, change-
sets can have different levels of details, but they contain at least sets for added modules,
removed modules, modules for which the AST changed and modules for which the AST did
not change.

Definition 5.3.1. Changeset: a tuple which maps the edits that were made to the project to modules.
The tuple has to contain at least sets for

• modules which were added
• modules which were removed
• modules for which the AST changed
• modules for which the AST did not change

54

5.3. Determining the Impact of a Change

An incremental run has as input the output of some previous run and the changes that
were made to the project since that run. From these, we first build a changeset. An example
of building a changeset from changed files is shown in Listing 5.1. Note that while we are
using files in this example, Statix only needs some unit which has a unique name for the
project and has a corresponding AST. For Spoofax, these units are files, but it is possible to
offer different units instead if necessary or wanted.

The map from files to modules in this example is extracted from the output of the previ-
ous run. It is created on the initial run by the createModule instructions executed.
1 procedure changeSet(Fa, Fr, Fc: Files, M: Map(File, Module)):
2 Ma := tcreateModule(m, f) | f P Fau

3 Mr := tm | f P Fr,m = M(f)u
4 Mc := tm | f P Fc,m = M(f)u
5 Mu := codomain(M) \ Mr \ Mc

6 return (Ma,Mr,Mc,Mu)

Listing 5.1: An example implementation for building a changeset from changed files

5.3.2 From Changed Modules to Changed Scope Graphs

In true separate compilation, we would be able to determine the new interface of a module
from its definition. In Statix however, the construction of the scope graph is intertwined
with the full analysis of the module. The scope graph follows as a solution of our constraint
set, but determining this solution often requires information from other scope graphs in the
project. It depends on the source language and the Statix specification if the interface of a
module can be determined in isolation or not. To support as many different specifications
and languages as possible, we do not assume that this is the case.

Instead, we introduce optimistic strategies in Section 6.1 which reanalyze a module in the
context of the previous analysis, and then determine the changes to its interface. We then
restore consistency by also reanalyzing modules that are dependant on those changes, until
a fixpoint is reached.

Changes to the Input and Output First, let us see what changes in the input. The input of
a module is everything that is passed to its module boundary. For top level modules, this
consists of the global scope and the AST corresponding to the module. The AST is effectively
converted to some set of constraints via the Statix specification. So, it is this set of constraints,
which include the AST in some way, that changes as a result of an edit to a part of the project.
The effect of these changes is then some possibly modified scope graph, unifier, set of failed
constraints and set of stuck constraints.

It is possible for the constraint set to be unsatisfiable or for the solver to get stuck. Formally
speaking, the semantics of Statix do not require that the solver gives any solution in the case
of failure. In practice however, the solver will do a best effort attempt to construct a partial
solution. Because we would like the incremental analysis to work in an IDE while the user
is typing, it is likely that some of the analyses fail. It is thus important to consider how these
non-accepting states are treated.

We can map all of these changes to changes in the scope graph. Any constraint that fails
or gets stuck, is effectively ignored and does not have its effect, which will express itself as
changes to the scope graph and/or changes to the unifier. The changes to the unifier are only
relevant to other modules if they affect the values of variables that are in the scope graph. We
can thus express these changes to the unifier as changes in the scope graph by using fully
substituted scope graphs, or by using the new and old unifiers when comparing terms in the
scope graph.

55

5. Incremental Analysis

This leaves us with only changes to the scope graph which we need to consider. We can
express the transformation of one scope graph Ga into another scope graph Gb as a sequence
of one or more individual solution changes, expressed as changes to the state. The different
possible solution changes are shown in Figure 5.7.

Solution changes
m creates a child module m1 xM | Gy Ñ xM [m1 Ñ m] | G[mÑ ϵ]y

m deletes a child module m1
(
xM | Gywhere G(m1) = ϵ

)
Ñ xM [/m1] | G[/m1]y

m creates a scope s xSm, Em, Dmy Ñ xs;Sm, Em, Dmy

m deletes a scope s xs;Sm, Em, Dmy Ñ xSm, Em, Dmy

m introduces an edge s l s1 xSm, Em, Dmy Ñ xSm, (s l s1);Em, Dmy

m deletes an edge s l s1 xSm, (s l s1);Em, Dmy Ñ xSm, Em, Dmy

m introduces a data edge s r d xSm, Em, Dmy Ñ xSm, Em, (s r d);Dmy

m deletes a data edge s r d xSm, Em, (s r d);Dmy Ñ xSm, Em, Dmy

Figure 5.7: The definition of the different solution changes.

The removal of a module can be represented as the consecutive removal of all of its scopes,
edges and data edges: xSm, Em, Dmy Ñ

˚ xϵy.
In this way, we can translate a change to the AST of a module to a sequence of solution

changes to its scope graph. However, there are some technical details that need to be solved
to actually create this comparison between scope graphs and make it useful.

5.3.3 Comparing Scope Graphs

In our model, it is possible to determine the difference between two scope graphs. By compar-
ing the scope graph of a module in the previous analysis with its scope graph in the current
analysis, we can determine from the dependencies which other modules are affected by these
changes. Optimistic strategies can use these so-called diffs in a multi-phase approach to only
reanalyze modules whenever they are affected by the changes. We use the term scope graph
diff to refer to the difference between two scope graphs.

Definition 5.3.2. Scope graph diff: the difference between two scopes graphs in terms of added and
removed scopes, added and removed edges, and added and removed data. Depending on the strategy,
additional information can be present in a diff.

There are some challenges in creating these scope graph diffs. In general, computing
the difference between two graphs is an NP-complete problem (computing the maximum
common subgraph) [24]. However, scope graphs have a very structured shape and have
some properties that make it possible to compute the difference. A few different techniques
can be applied to constrain the graph enough to be able to compute the difference between
graphs. It is not necessary to determine the maximum common subgraph. In fact, we only
want to know two things. First, we want to know if a scope is still the same scope. Second,
we want to know if the results of queries have changed, which is split into the paths that are
followed and the data in the results of queries. These questions are answered in the following
subsections.

Scope Identity: Keeping Scopes the Same The original implementation of Statix uses a
simple counter for scope identity. Whenever a scope is created, it gets the value of the counter
as its name and the counter is incremented. However, combined with the fact that evaluation

56

5.3. Determining the Impact of a Change

order of constraints does not have to be the same, we cannot tell if the scope with identity 1
is the same scope when we see it in different analyses.

We address the problem of ‘is a scope still the same scope’ with scope identity. We want to
have some kind of identity that uniquely identifies a scope. This identity has to be consistent
between multiple analyses and must not be bound to the edges or data in the scope graph.
The semantics of Statix specify that when a scope is created, the variable describing the scope
is fresh, but does not guarantee that scope identity is the same across runs. As such, we had
to change this for our incremental model. We create scope identities based on a stack trace
of the predicates that have been visited by the solver. Because each module uses a separate
solver, this means that the stack trace consists of all the predicates since the last module
boundary. A scope is considered to be the same scope if it has the same owner, the same
name and has the same predicate trace.

Because the scope identity fixes the scopes, we can compare the edges and the data in
scopes directly. This is a relatively easy operation, since edges and data are stored per scope
already. We can then directly compare this information to determine added and removed
edges and data.

Converting Changes into Effective Changes Recall that for our dependencies it was rele-
vant that a change to a scope owned bym is expressed as a change to that module, even if that
change occurs in a descendant of m. We call this an effective change. As such, we also need to
create an effective diff. By simply using the owner of each scope that is changed as the module
in which the change occurs, we can create effective diffs. If our comparison encounters an
edge s l s1 in the scope graph of module m, then it records that edge with the owner of
s rather than m. As such, all contributions of child modules to scopes of their parents are
moved to their parents easily.

Adding more Details: Names Because data can be any term in Statix, it becomes more dif-
ficult to track this information. If we look at the queries that occur in Statix, then we see that
most queries only request a single name. With name we refer to some name in the source
code of a program. Names are represented as a combination of a namespace and some num-
ber of terms in Statix. In most cases, the latter is just a single string. For example, a variable
x could have the name Var{"x"} and a class MyClass could have the name Class{"MyClass"}.
In a language where one can refer to the nth method with a particular name, it might make
sense to use names of the form Method{1}. We can identify these names in the scope graph
and compute the difference in terms of names.

Definition 5.3.3. Name: an occurrence of some name in the source code of a program, represented
in Statix by a namespace and some number of terms.

Queries that only match declarations with one specific name are identified. The corre-
sponding name is then stored with any dependencies created as a result of that query. This
name can be used by the strategy to treat it separately. When making comparisons of scope
graphs, all data edges which are associated with a specific name are identified. Changes to
these names are then stored in the diff. If the data corresponding to the name changes, e.g.
the type of some declaration has changed, it will show up in the diff with its corresponding
name. As such, we can determine which queries are affected by the changes more precisely.

5.3.4 Sufficient Information for a Diff

From the perspective of a module itself, it is important that all information in the scope graph
is available. However, from the perspective of a different module, certain parts of the scope
graph are effectively inaccessible. As such, we define two interfaces, the internal interface
and the external interface.

57

5. Incremental Analysis

The internal interface contains all the information in the scope graph of the module. Any
descendant of a module is able to access the internal interface of that module. Because descen-
dants can be passed any scope in the internal interface of a module, they could potentially
access any part of the module and even introduce edges to it.

The external interface contains only those scopes, edges and declarations that are visible
to other modules. Isolated parts of the scope graph, a subsection of the scope graph that
has no incoming edges from other subsections, are not in the interface unless they are ex-
posed via a declaration. A scenario in which this occurs is exposing scopes through types.
To model object oriented languages in Statix, classes are usually modeled as having a type
that contains the scope of the class. The class declaration exposes its scope through its type.
Whenever fields or methods are requested on an object of the corresponding class, its scope
is determined from its type and the corresponding field or method can be looked up.

Methods are an example of a declaration with a scope that is not exposed to the outside.
While the signature of a method needs to be known, the contents of a method are irrelevant
for callers. As such, the scope of a method is not accessible to anyone but the method itself,
and forms an isolated part of the scope graph. As such, method scopes will not be part of
the external interface of a module.

For our scope graph diffs, we only need to consider the external interface of a module,
since the other parts cannot be reached by other modules, and can thus not affect them.
Of note however are child modules, which have access to the internal interface of a mod-
ule. However, if a module is reanalyzed, all its child modules are also reanalyzed. As such,
changes to the internal interface will have already been propagated to child modules, and
need not be considered by our diffs.

External Interface The external scope graph is a graph that contains all scopes that are
reachable from other modules. If a scope is referenced by a declaration or edge that resides
in a different module (which is not a descendant of said module), it needs to be in the external
interface. If any such scopes exist, then all reachable scopes (via edges or data with associated
scopes) also need to be included in the set. We formally define the external interface in
Figure 5.8 and provide an algorithm to compute it in Listing 5.2.

Our formal definition is as follows. Pm contains all the scopes from parents that m can ex-
tend. Any scope not reachable from a parent scope is not in the interface. Then, Rm describes
the reachable scopes, which are all the parent scopes and all the scopes that are exposed via
declarations, e.g. through types. Note that these declarations are also dependent on Rm. As
more scopes are ‘discovered’, more declarations are reachable. Finally, we define Ŝm, Êm

and D̂m in terms of Rm. Only reachable scopes are in Ŝm, only edges from reachable scopes
are in Êm and only data edges from reachable scopes are in D̂m, filtered to only scopes and
edges owned by m (in the scope graph of m.

External interface Ĝm = xŜm, Êm, D̂mywith

Pm := ts P Scopes | (m has permission to extend s)^ owner(s) ‰ mu

Rm := Pm Y ts P scopes(d) | d P Decls^ Ds1, r.(s1 r d) P D̂mu

Ŝm := ts P Rm | owner(s) = mu

Êm := ts l s1 | s P Rm ^ l P Labels^ s1 P Scopes.(s l s1) P Emu

D̂m := ts r d | s P Rm ^ r P Rels^ d P Decls.(s r d) P Dmu

Figure 5.8: Description of the external interface of a module scope graph . Only the subgraph
of Gm that is reachable from parents is in the external interface.

58

5.4. Concurrent Solving of Modules

1 procedure ExternalInterface(m):
2 Q := ParentScopes
3 while (Q != H):
4 s := pop(Q)
5 if (owner(s) = m):
6 Ŝm += s
7

8 @(s l s2) P Em:
9 Êm += s l s2

10

11 @(s r d) P Dm:
12 D̂m += s r d

13 Q += (scopes(d)zŜm)

Listing 5.2: Algorithm for computing the external interface of a module.

5.3.5 Combining Dependencies with Diffs

The last step in the process is to combine the dependencies with the scope graph diffs to con-
clude a set of modules which could be affected and need to be reconsidered. We provide an
algorithm in pseudocode which determines exactly that in Listing 5.3. Recall that each de-
pendency is represented as m1 ãÑ m2 | xVe, Vd, Ry, with Ve and Vd sets of visited edges and R
the set of reached edges (see Section 5.2.4). Dependencies are stored as an index from scopes
and labels to dependencies. Each edge that appears in Ve and Vd is in the index and maps
to the corresponding dependency. Our algorithm then works as follows. First, it retrieves
the dependency index from the context. It determines which dependencies are relevant for
additions, which is any dependency where (s, l) appears in Ve or (s, r) in Vd, i.e. any depen-
dency in the index at (s, l) or (s, r). For removals, this is much the same, but we additionally
check if the edge appears in the R set of the dependency. This improves our precision for
removals to the maximum possible. If the removed edge is not followed by a query, it cannot
be affected. If it is followed, it will be affected. For each dependency found to be relevant, the
module depending on the change is added to a set of affected modules, which is returned by
the algorithm.

5.4 Concurrent Solving of Modules

Besides the goal of achieving incremental solving, we would like to make the solving process
concurrent. Because the solving process is already split up into one solver per module, par-
allel execution of these solvers seems like a good fit to enable concurrency. In this section we
discuss the main techniques and challenges to achieving safe parallel execution of multiple
solvers.

5.4.1 Coordinating Solvers

As mentioned in Section 4.3.2, all the solvers are managed by the coordinator. To achieve
parallel execution of solvers we introduce a concurrent version of the coordinator as well. The
concurrent coordinator is slightly more complex than the non-concurrent version. Instead
of a loop where solvers are executed sequentially, the concurrent coordinator has a pool of
worker threads available for scheduling solvers. All solvers that have pending work and are
waiting to get scheduled are in a queue. Whenever a worker is not already executing a solver,

59

5. Incremental Analysis

1 procedure determineAffectedNames(D: Diff, Ctx: Context):
2 Deps := getDependencies(Ctx)
3 (Ea, Er, Da, Dr) := D
4

5 M := ∅
6 // Compute dependencies affected by edge additions
7 for each (s, l) P Ea:
8 for each dependency d P Deps(s, l):
9 M += dependant(d)

10 for each (s, r) P Da:
11 for each dependency d P Deps(s, r):
12 M += dependant(d)
13

14 // Compute dependencies affected by edge removals
15 for each (s, l) P Er:
16 for each dependency d P Deps(s, l):
17 if (s, l) P d.R:
18 M += dependant(d)
19 for each (s, r) P Dr:
20 for each dependency d P Deps(s, r):
21 if (s, r) P d.R:
22 M += dependant(d)
23

24 return M

Listing 5.3: The definition of the algorithm for determining affected modules from a diff
and dependencies

it removes a solver from the queue and starts executing it, making as much progress in the
solver as possible. Then there are two possibilities.

First, it is possible for a solver to be finished, in which case the worker collects the results
for the solver and stores them in the context. The worker is then free to move on to the next
solver. Second, it is possible for a solver to be delayed on other solvers. In this case the
solver is not put back in the queue. Recall that our model uses an observer pattern for delays
on critical edges and variables. As soon as a delay is resolved, all solvers waiting on that
delay are notified. Upon receiving such a notification, the delayed constraint is reactivated
and, if the solver is not already active or in the queue, is put back into the queue. With this
mechanism, waiting solvers do not end up in the queue at all, reducing resources required
for scheduling. The workers are expected to be working on solving almost all of their time,
and no time is actually spent in waiting or blocking on other solvers.

However, it has to be ensured that solvers are not put into the queue whenever they are
still being executed. In addition, having the same solver in the queue multiple times should
also not be possible, as this could cause multiple workers to try and work on the same solver.
We achieve this by using a lightweight compare-and-swap (CAS) mechanism provided by
the JVM through volatile variables and atomic classes [20]. An example of a CAS operation
is shown in Listing 5.4. We use these operations to ensure that a notification is never missed
but is also never ignored whenever it is relevant, without introducing significant locking
overhead.

60

5.4. Concurrent Solving of Modules

1 x := fetch value from memory
2 if x = expectedValue then:
3 store newValue in memory
4 return newValue
5 else:
6 return x

Listing 5.4: A simple example of a compare-and-swap operation. The entire operation
shown in this listing is executed as one atomic operation by the Java Virtual Machine. In
other words, no other operations can interleave it.

5.4.2 Safety of Parallel Execution of Solvers

In order to execute multiple solvers in parallel, it must be ensured that the actions of the dif-
ferent constraints cannot interfere with each other. We achieve this by leveraging a property
of Statix. Statix constraints can be solved non-deterministically. Regardless of the order-
ing in which they executed, the solution that we find will be the same. This is achieved by
guaranteeing query answer stability through the critical edge mechanism of Statix. A query
constraint can only be reduced whenever it is ensured that no edges will be added which can
change the result of the query. This mechanism is further explained in Section 2.5.3. As long
as it is guaranteed that a change to the scope graph happens before the removal of its critical
edge, a query trying to access that edge will either be delayed, or will see the added edge.
In other words, either the constraint adding the edge happens before the query, or happens
after the query. Queries are then atomic with respect to the scope graph extensions which
could change their answer.

Effectively, this means that a query does not need to use locking to access information
from other modules. It can use any combination of versions of the scope graphs of other
modules as long as the above property is ensured. Every time a query requests the edges with
a particular label in a particular scope, it either gets all the edges with that label that will ever
exist, or it will be delayed. As such, queries can use any version or even multiple versions of
the scope graphs of other modules, while query answer stability is still guaranteed, without
requiring any locking.

Unification Variables Unification is another point where care must be taken to ensure cor-
rectness. In addition to critical edges, it is also possible to delay on variables of other mod-
ules. For example, when the variable of a different module is used in an equality constraint,
its value must be known in order to determine if terms are equal. Here, we achieve safety
through the observer registration. The changes to variables are already atomic, since there
is no separate completeness that needs to be updated as well. The request for the value of a
variable either happens before a constraint which assigns that value or after such a constraint.
We only need to ensure that whenever a module registers itself as observer of a particular
variable, that it is immediately notified if the variable was assigned a value already.

For all the other constraints, their effects are local to their own module. These cannot be
observed by other modules and can thus be safely executed in parallel to other modules.

5.4.3 Detecting Stuckness

One of the problems for parallel execution of solvers, is that solving in Statix can get stuck.
With a sequential coordinator, detecting stuckness is just a matter of concluding that no
progress can be made any more. However, in a concurrent setting this becomes a lot less
clear. Let us first define the notion of stuckness.

61

5. Incremental Analysis

Definition 5.4.1. Stuckness An analysis is stuck if there are solvers which only have delayed con-
straints left, which are waiting on critical edges or unification variables that will never be resolved.

Since the waiting on critical edges and variables occurs between modules, we have a
problem similar to deadlock detection. In our case, stuckness can be detected with a simple
counter. Whenever a module is notified of work and is not already working, the counter
is incremented. Once the module goes back into waiting, finishes or fails, the counter is
decremented. Note that the counter is incremented by a notified module before the notifying
module decrements the counter. If the counter hits zero, that means that all modules are
either done or waiting. We can then collect results and determine if we are stuck or done.

5.5 Conclusion

We now answer Research Question 2: Based on the conclusions drawn from the literature,
how can we create a model for incremental analysis for Statix?

From literature we have concluded that the techniques of separate compilation and dy-
namic dependency detection can be used to achieve incrementality for Statix. We contribute
an incremental model for Statix based on these techniques. The goal of our model is to facili-
tate different strategies for incremental analysis, to fit the needs of different source languages.
We achieve this goal through the following features of our model.

• Modules: We add support for modules, which correspond to modules in the language
we are analyzing. Rather than constructing a complete scope graph for the project,
we split the scope graph over the different modules. The interface of each module is
its part of the scope graph, which contains all information that can be used by other
modules. A main challenge in the implementation of our model was the splitting of
the solving process over these modules, an approach very different from the original
monolithic architecture of Statix. We stayed close to the original architecture by having
each component redirect requests to the module which can answer that request. As
such, we still provide a view of the system as a whole, without incurring a significant
extra cost.

• Dependencies: Dependencies between modules are automatically identified from queries.
Queries are the only constraints that can retrieve information from other modules. As
such, queries are responsible for introducing dependencies. Our incremental Statix
solver automatically determines dependencies from queries by tracking the parts of
the scope graph they visit. These locations are exactly the locations where something
could be added which would affect the result of the query. This detailed location infor-
mation is stored with the dependency, and can be used to prevent reanalysis whenever
a dependency cannot actually be affected by a change.

• Scope Graphs Comparisons: We provide a technique for comparing the scope graphs
of modules, which is necessary to determine the impact of a change. A big challenge
was to do this efficiently, given that comparing graphs is generally an NP-complete
problem [24]. However, the strict structure of scope graphs allows us to compare them
in a much better way. The key point is that we need to know if a scope is still the same
scope. We achieve this by using the trace of all the rules that led up to the creation of the
scope in its identity. If the trace of a scope is the same between in two analyses, we know
it is still the same scope. With scope identity, nodes in our graph are effectively fixed,
and we can easily determine all the scopes, edges and data edges that are different. By
combining these diffs with our dependencies, it is possible to determine all modules
which are affected by a change.

62

5.5. Conclusion

• Control over Solving: We give extensive control over the solving process to the strat-
egy. The strategy can limit interactions between modules to prevent usage of out-
dated information if necessary. In addition, solving can be split over multiple different
phases, which is used by our optimistic name-based strategy.

Our model facilitates high-precision incremental analysis for Statix. We show its effec-
tiveness with our optimistic name-based strategy implemented in our model, which is able
to reduce analysis time significantly (Chapter 7).

63

Chapter 6

Strategies

Our model for incremental Statix gives us all the tools that we need to be able to do incre-
mental analysis. A strategy then, is an algorithm which uses the different features of our
incremental model to actually do incremental analysis. In this chapter we describe differ-
ent families of strategies and show the advantages and disadvantages of each family. We
describe our optimistic name-based incremental strategy which we have implemented with
our model and provide proof sketches why it is sound.

Definition 6.0.1. A strategy is an algorithm which uses the features of our incremental model to
perform incremental analysis. That is, given the previous analysis result and a changeset of changed
files in the project, a strategy has to determine the new analysis result.

6.1 Optimistic Strategies
We distinguish two families of strategies, optimistic strategies and pessimistic strategies. The
main difference is in the expected impact of changes. Optimistic strategies expect a small
impact, while pessimistic strategies expect a large impact.

Definition 6.1.1. Optimistic strategy: an optimistic strategy uses information from the previous
analysis, even if that information is potentially outdated. It is based on the assumption that the changes
made will not have a large impact on modules other than the changed modules.

Definition 6.1.2. Pessimistic strategy: a pessimistic strategy only uses information from a previ-
ous analysis which is known to be up to date. It is based on the assumption that the changes made will
have a large impact on modules other than the changed modules.

Optimistic strategies assume that the changes that were made are small and have a small
impact, i.e. only a subsection of all modules needs to be recomputed. Optimistic strategies
reanalyze all changed modules completely, even if such an analysis requires information
from other modules which is potentially outdated. The effect of the changes can then be
determined, and affected modules are reanalyzed. This cycle is repeated until no modules
are affected.

The advantage of optimistic strategies is that they are less complex than pessimistic strate-
gies. Pessimistic strategies have to determine which old information can safely be used and
which information can not. They then have to try to work around the missing information
to determine the new analysis result. If a new result cannot be reached from this limited set
of information, they either need to resort to reanalysis of all involved modules, an optimistic
fallback or a more complex strategy of doing slightly more work to make progress towards
being able to determine this result (a finer granularity than module level).

The disadvantage of an optimistic strategy is that it is possible for an incremental analysis
to be slower than a clean run. In particular, there are certain Statix specifications that lend

65

6. Strategies

themselves better towards optimistic strategies than others. Depending on the specification,
an optimistic strategy might have to reanalyze the same module multiple times. This can
occur if there are cyclic dependencies between modules, specifically dependencies between
the external interfaces of modules.

6.1.1 Relevant Cyclic Dependencies

However, not all cyclic dependencies will actually cause a module to be reanalyzed multiple
times. The external interfaces of the modules involved in the cycle must change depending on
the items available in the other modules. An example of this is a language with conditional
definitions. I.e. if module A defines some field x, then B defines some field y. If there are
cycles in these conditions, A and B might need to be recomputed multiple times.

While these conditional declarations can be specified in Statix, the solver cannot always
find a solution whenever there are cycles. Consider the example in Figure 6.1. In this case,
there exists a valid solution consisting of tA.x,A.y,B.e,B.fu. However, the Statix solver
instead gets stuck because of the overapproximation of critical edges.

1 class A {
2 if (B.e is defined) then define x
3 define y
4 }
5

6 class B {
7 if (A.y is defined) then define e
8 if (A.x is defined) then define f
9 }

B.eÑ A.x
A.y
A.y Ñ B.e
A.xÑ B.f

Figure 6.1: On the left an example of a program with field definitions that depend on the
existence of other fields. On the right the corresponding logic formulae.

Whenever such a scenario does not initially exist, but one is created through some change,
an optimistic strategy does not necessarily give the same result as a clean run. Consider the
code in Figure 6.2, consisting of two separate modules A and B. First, the program on the
left is analyzed in a clean run. The conclusion is that x, y, e and f are all defined. Now, a
change is made to A as shown on the right side. An optimistic strategy would now first
reanalyze A using the existing information. This analysis would conclude that still, x, y, e
and f are defined. A clean run on the new program however, would get stuck. In this case,
the optimistic strategy actually finds a solution where the solver with all the information
does not.

However, less fortunate examples are also possible. Consider Table 6.3. It shows logic for-
mulae corresponding to the definitions of fields in A and B. It shows the differences between
the results of an incremental run compared to a clean run. In the first example, the optimistic
strategy finds a solution for the cyclic definition. Depending on the language, this might be
an unwanted solution, but it is nonetheless a valid solution for the constraint problem. In
the second example however, the optimistic strategy diverges as it keeps reanalyzing first A
and then B. This is because it determines that B is affected by the changes to the interface in
A and vice versa.

As such, whenever specifications allow such conditional definitions, optimistic strategies
can get into an infinite loop. It is possible to detect the scenarios in which this happens by
linking the relevant queries to the changes they cause in the scope graph. From this we
could detect that a cycle can occur, and analyze modules in the cycle together instead. In
addition, it is possible to statically analyze the Statix specification to determine if there is

66

6.1. Optimistic Strategies

1 class A {
2 define x
3 define y
4 }
5

6 class B {
7 if (A.y is defined) then define e
8 if (A.x is defined) then define f
9 }

1 class A {
2 if (B.e is defined) define x
3 define y
4 }
5

6 class B {
7 if (A.y is defined) then define e
8 if (A.x is defined) then define f
9 }

Figure 6.2: The program on the left is changed into the program on the right. If the program
on the right is analyzed with a clean run, the solver gets stuck, while an incremental run with
an optimistic strategy would instead find the correct result.

Table 6.3: Difference in results between incremental and clean runs for optimistic strategies,
written as logic formulae.

version module A module B incremental result clean result
original A.x A.xÑ B.y tA.x, B.yu tA.x, B.yu
changed B.y Ñ A.x A.xÑ B.y tA.x, B.yu stuck
original A.x ␣A.xÑ B.y tA.xu tA.xu
changed B.y Ñ A.x ␣A.xÑ B.y diverges stuck

even a possibility of cyclic definitions. We do not implement such a detection mechanism in
our solution, and instead cut off reanalysis if the same modules are repeatedly analyzed for
a set number of times.

Examples in Actual Languages In C, C# and C++ it is possible to create scenarios similar to
the one presented in Figure 6.1 with preprocessor directives [16, 9]. With the preprocessor
it is possible to include or exclude certain lines of code based on (global) meta variables.
This is often used for including different definitions based on environment variables like the
operating system or to include additional functionality if some optional library is also present.
We estimate that the cyclic examples like in Figure 6.1 do not happen a lot in practice, due
to the confusion that this can cause for programmers. In a language where this does occur a
lot, switching to a pessimistic strategy might provide better results.

While Rust supports a technique called conditional compilation [29] which is similar to
preprocessor directives, it is not possible to control the values used in the condition from the
code directly. These can only be controlled from the configuration files or through environ-
ment variables passed to the compiler. As such, creating a scenario as in Figure 6.1 is not
possible in Rust.

6.1.2 The Algorithm of Optimistic Strategies

All optimistic strategies follow the same general structure, which can be described with the
sequence below. We give the corresponding algorithm in pseudocode in Listing 6.1.

1. Remove all the removed modules from the context
2. Compute an effective diff of the removed modules
3. Determine modules affected by the removal
4. Take the union of all changed modules and the modules affected by removal
5. If this set is empty, collect the result and return it. Otherwise, reanalyze all modules in

the set together

67

6. Strategies

6. Compute an effective diff of the reanalyzed modules
7. Determine affected modules from the diff and dependencies. Go to step 5

1 procedure OptimisticAnalyze(Mr, Mc, C):
2 // Remove all the removed modules from the context, determine affected

modules
3 C 1 := removeModules(Mr, C)
4 D := computeDiff(C, C 1, Mr)
5 Ma := determineAffected(D, C 1)
6

7 // As long as modules are affected, continue to do analysis phases
8 M 1 := Mc YMa

9 while (M 1 ‰ ∅) do:
10 (C 1,M 1) := AnalysisPhase(C 1, M 1)
11

12 return gatherResult(C2)
13

14 procedure AnalysisPhase(C: Context, M: Modules):
15 // Reanalyze the modules
16 C 1 := analyze(C, M)
17

18 // Compute a diff of the reanalyzed modules
19 D := computeDiff(C, C 1, M)
20

21 // Determine affected modules
22 Ma := determineAffected(D, C)
23

24 return (C 1, Ma)

Listing 6.1: Algorithm for incremental analysis with optimistic strategies

6.1.3 Correctness of Optimistic Strategies

We can only show the correctness of an optimistic strategy under the following assumptions:

1. Whenever the answer of a query in m1 would be affected by the addition or removal of
some edge e from scope s owned by module m, then there is a dependency of m1 on m.

2. The diff that is created of the scope graph records all added and removed edges

3. All added and removed edges as determined by the diff are correctly combined with
the dependencies to determine affected modules.

These assumptions will need to be proven separately for each strategy to make it sound.
In addition, if there are relevant cyclic dependencies, an optimistic strategy need not give
the same result as a clean run. Instead, it will either give a solution which is a possible valid
answer to the constraint set, or it will diverge.

The Statix solver is tasked with finding an ordering in which to evaluate constraints. Be-
fore certain query constraints can be answered, constraints which make contributions to the
scope graph relevant to the query need to be answered first. Whenever there are no relevant
cyclic dependencies between modules, we know that an ordering exists and that it can be
found by the Statix solver. The idea of our proof is to show that a new valid ordering will
eventually be found by an optimistic strategy.

68

6.2. Optimistic Name-based Strategy

Proof Sketch. Let us consider a set of constraints C1 with answer G1 and stuck constraints
Cs. We now remove some subset of constraints Cr from C, and introduce some set of new
constraints Ca. G2 is G1 with all contributions made in Cr removed. We try to satisfy the
constraints Ca in the context of G2. We will find some answer G3 with some set of failed
constraints C 1

f and some set of stuck constraints C 1
s.

All the stuck and failed constraints will not make their contributions to the scope graph,
but dependencies will be recorded. We compare G1 with G3 and note all the added edges Ea

and removed edgesEr. Any constraint inC orCs which is affected by these changes will have
some dependency m1 ãÑ m2 | xV,Rywhere D(s, l) P EaYEr. ((s, l) P V) (by our assumptions
on dependencies and diffs). As such, we will identify all modules m1 as affected.

The strategy will now reanalyze all the affected modules. This process repeats itself, con-
tinuously altering the ordering of constraints until some valid ordering is found. Because of
the absence of cyclic dependencies, we will eventually find some solution which is identical
to the solution of the whole new constraint set.

Pessimistic Strategies Pessimistic strategies are based on the assumption that the changes
made will have a large impact on the project as a whole. Pessimistic strategies try to de-
termine which information is still consistent and which information is not. They reanalyze
modules partially, using only information that is known to be consistent and restore consis-
tency by also analyzing other modules.

The main problem of pessimistic strategies is that it is quite difficult to determine which
information is inconsistent without overapproximating. If we overapproximate however, we
will possibly have to reanalyze a much larger set of modules than would be necessary. Es-
sentially, this is because our modules do not offer enough granularity to reanalyze smaller
chunks.

One technique to obtain this information would be to split each module in a static part
and a dynamic part. Given that (at least large parts) of the interfaces of modules in many
languages are static, it would be possible to quickly determine if modules need to be recom-
puted. We leave this to future work.

6.2 Optimistic Name-based Strategy

We have defined and implemented one strategy in our model: the Optimistic Name-based
Strategy. As its name suggests, it is an optimistic strategy which uses names to refine de-
pendencies. Examples of names are ‘class String‘ or ‘variable x‘, represented in Statix as
‘Class{”String”}‘ and ‘Var{”x”}‘.

The strategy works as follows. Whenever a query queries for a specific name, i.e. ‘Class{”String”}‘
or ‘Var{”x”}‘, we record it with the dependencies it creates. Whenever we compute a diff of
our program, we also determine when names are added to or removed from the scope graph.
A dependency will only be considered if the name it looks for is introduced or removed. It is
also possible for the information associated with a name to change, in which case the query
is only considered if it requests that specific information and matches the name.

This technique significantly limits the dependencies that need to be considered. A strat-
egy which does not use names would recompute a module A depending on a field x in B
even if another field y is added in B, because all fields are added with the same relation. Our
strategy avoids reanalysis in these scenarios.

However, Statix allows queries to use an arbitrary predicate to determine if a declaration
in the scope graph matches. Whenever this predicate is more complex than a specific, indi-
vidual name, our strategy does not associate any name with the query. These more complex
queries will be considered every time an edge they query is changed.

69

6. Strategies

1 procedure computeDiffWithNames(C: Context, C 1: Context, M: Modules):
2 (Ea, Er, Da, Dr) := computeDiff(C, C 1, M)
3 Na := ∅
4 Nr := ∅
5 for each data edge s r d P Da:
6 if d describes a name:
7 Na += (s, r, name(d))
8

9 for each data edge s r d P Dr:
10 if d describes a name:
11 Nr += (s, r, name(d))
12

13 return (Ea, Er, Da, Dr, Na, Nr)

Listing 6.2: The definition of the diff algorithm for the Optimistic Name-based Strategy

6.2.1 Algorithm

The main procedure for the Optimistic Name-based Strategy is the same as the algorithm for
any optimistic strategy. The difference is that it uses different functions for computing the
diff and for determining affected modules from dependencies, which are described in List-
ing 6.2 and Listing 6.3. In addition, the mechanism for recording dependencies from queries
is extended to also include a name if the predicate matching data of the query describes a
name. We detect such predicates by checking if the predicate consists of a single equality
constraint containing an occurrence of the form X{y} where y is a bound variable.

The diff mechanism is extended to include information about names, as presented in
Listing 6.2. Whenever a data edge appears in the added data regards a particular name, it is
stored in a separate set.

Listing 6.3 shows the algorithm for determining affected names from diffs extended with
names. The algorithm is very similar to Listing 5.3, but with one small change and one addi-
tion. First, dependencies which have additional name information are ignored for additions
of data edges, since these will be handled by our mechanism for names instead. However,
for edge removals, our algorithm already determines if a query is affected with optimal pre-
cision, as only edges actually traversed by the query to reach its answer are in R. As such,
names only need to be checked for additions.

Possible Improvements Our strategy could be further improved if the meaning of more
complex predicates can also be determined. For example, a query for all classes only needs
to be considered if a class changes. However, the predicates describing this are much more
complex, and multiple ways to write such a predicate exist. Instead, it would be useful if
predicates are normalized to simpler forms to ease the static detection of such predicates. In
addition, there are cases in languages where a query needs to look for two names at once. For
example, in Java, a reference to a variable in a method can refer to either a field or a variable.
Currently, we address this problem by recording fields and variables in the same namespace,
but it would be nice if queries requesting multiple specific names could also be identified.

6.2.2 Correctness

Our approach for modularization and incrementality guarantees that if any information used
for these checks changes, that the checks are reevaluated. Our collection of dependencies for
queries guarantees that we record all the places where information could be added which

70

6.2. Optimistic Name-based Strategy

1 procedure determineAffectedNames(D: NameDiff, C: Context):
2 Deps := getDependencies(C)
3 (Ea, Er, Da, Dr, Na, Nr) := D
4

5 M := ∅
6 // Compute dependencies affected by edge additions, ignoring names for data

edges
7 for each (s, l) P Ea:
8 for each dependency d P Deps(s, l):
9 M += dependant(d)

10 for each (s, r) P Da:
11 for each dependency d P Deps(s, r):
12 if d does not describe a name:
13 M += dependant(d)
14

15 // Compute dependencies affected by edge removals
16 for each (s, l) P Er:
17 for each dependency d P Deps(s, l):
18 if (s, l) P d.R:
19 M += dependant(d)
20 for each (s, l) P Dr:
21 for each dependency d P Deps(s, r):
22 if (s, r) P d.R:
23 M += dependant(d)
24

25 // Compute dependencies for data edge additions regarding names
26 for each (s, r, n) P Na:
27 for each dependency d P Deps(s, r):
28 if d describes a name n1 and n = n1:
29 M += dependant(d)
30

31 return M

Listing 6.3: The definition of the algorithm for determining affected modules from a diff
and dependencies for the Optimistic Name-based Strategy

would affect our result. If any new information is added which could affect the result, the
module encompassing the query is reanalyzed. If the original query gets stuck (there is
not enough information to answer it), we still record the paths that would be more specific,
which would prevent it from getting stuck. In addition, we also consider the edge on which
the query is stuck, since that could also affect the dependencies.

The proof sketch that we give in Section 6.1.3 also applies to our name based strategy. The
modifications we make to the diff and the dependency detection only apply if a particular
name is included in the query, and only for additions of data edges. Additions of data edges
which do not mention names are treated as normal, additions which do mention a name are
only considered if that name matches the name of the dependency. It is trivial to see that a
query for some name n will not be affected by a change to some name n1 where n ‰ n1. As
such, we conclude that our optimistic name-based strategy is sound.

71

Chapter 7

Evaluation

In this chapter we evaluate the performance of our optimistic name-based strategy. First, we
evaluate the baseline performance by comparing clean runs in the original solver with clean
runs with our incremental solver. Then, we compare incremental performance with clean
run performance on a variety of randomly applied changes.

7.1 Setup

All benchmarks are run on Ubuntu 19.04 with an Intel Core i7-4700MQ CPU @ 2.40GHz (4
cores, 8 threads) and 16 GB of RAM, with Spoofax 2.5.6 on OpenJDK Java 1.8.0_212, 64-bit.
We allocate 13.5 GB of RAM to Java for the baseline performance measurements, and 8 GB
of RAM for the tests for incremental performance.

We evaluate the performance on differently sized Java projects. We selected Java for mul-
tiple different reasons. First of all, the syntax specification for Java is already fully available
in Spoofax. While there are syntax specifications for other languages in Spoofax, these are
either not complete, or are for toy languages for which no substantial code bases exist. Sec-
ond, Java has interesting name resolution in the form of type-dependent name resolution
(see Listing 7.1), giving rise to a lot of dependencies between classes. Finally, there are many
open-source projects available for Java which we can use to evaluate our performance, allow-
ing us to evaluate the impact of the size of a project on incremental performance.

Statix Specification for Java We use a simplified Statix specification for Java which focusses
only on type-dependent name resolution. Examples of what we mean by type-dependent
name resolution are shown in Listing 7.1. Our specification does not do type checking, but
does use types to do name resolutions. Type checking itself is not interesting for our incre-
mental performance, since all relevant accesses to the interfaces of other files happen through
name resolution.

At the file level, the specification includes support for packages, imports and all class-
like structures (classes, interfaces and enums). Inside of classes and interfaces, we support
methods and fields. At the statement level, we support blocks, declarations and expression
statements.

We use a desugaring on our parsed Java files to remove the functionality from statements,
only retaining blocks, declarations and expression statements. We retain the scoping struc-
ture inside of methods by converting all block-like statements, e.g. if, for, while, switch
and try, to corresponding blocks, variable declarations and expression statements. Addi-
tionally, we retain expression statements only it they do some form of type-dependent name
resolution. This leaves us with an AST with only blocks, declarations and expressions which
are interesting for incrementality.

We include the entire specification in Appendix B.

73

7. Evaluation

1 public class A {
2 public static class B {
3 public static B b;
4 public static int x;
5 }
6

7 public B m() {
8 Class c;
9 int x;

10 c = A.class;
11 c = A.B.class;
12 x = 10;
13 x = A.B.x;
14 x = B.x;
15 x = B.b.b.x;
16 x = new A().m().b.x;
17 }
18 }

Listing 7.1: An example showing different type-dependent name resolutions in Java of
various complexity. All of these examples in the method m are supported by our Statix
specification for Java.

Reproducability of Benchmarks All the scripts and code required to repeat these bench-
marks are available at https://github.com/MetaBorgCube/statix-incremental-artifact. While
the changes we apply to projects are random, they are seeded random, which makes the re-
sults reproducible. For these benchmarks, we always use a seed of 1.

7.2 Baseline Performance

We evaluate the baseline performance of our approach by comparing clean runs in the orig-
inal solver with clean runs when using our Optimistic Name-based Strategy. We evaluate
this performance on an analysis of a reduced, stripped version of the source code for the Java
Development Kit (JDK), version 8. We can only run an effective comparison with the original
Statix solver for the JDK itself, since it does not support libraries. Fully analyzing a project
in combination to the JDK is too large a task for (either version of) Statix to handle, requiring
more RAM than we have available on our system. However, we believe that given the size
of the JDK, it still offers a good comparison.

Reduced JDK First, we create a stripped and reduced version of the source code of the
JDK. We remove the bodies of all methods since we are only interested in the interfaces of
the files. Then, we remove all the classes except for those in java.io, java.lang, java.math,
java.net, java.nio and java.util, which are the most used parts of the JDK. We follow by
running our reduction script, to replace all references to the removed files with Object or
Serializable for classes and interfaces respectively. Both of these reside in the java.lang
package, and are always available. This way, we prevent errors in the signatures of methods
as a result of the missing parts of the JDK. The reduced JDK still contains 879 classes, which
we can only barely handle with our simplified Statix specification for Java.

We use the aforementioned system and Java version, and allocate 13.5 GB of RAM to
Java. Any lower amount of RAM either causes significantly increase analysis times because

74

https://github.com/MetaBorgCube/statix-incremental-artifact

7.2. Baseline Performance

of aggressive garbage collection, or analysis does not complete due to insufficient memory.

7.2.1 Single Threaded Performance

Figure 7.1 shows the absolute clean analysis times of the original solver and our incremental
solver for different concurrency levels. We show two modules granularities, class and file
level. In Figure 7.2, we show the relative analysis time of our incremental solver compared
to the original solver. Positive values indicate a slower analysis time than the original solver,
while negative values indicate a faster analysis time. Both figures use the average analysis
time as measured over 10 different runs.

From Figure 7.2, we see that the incremental solver performs about 5 to 10% worse than
the original solver, depending on the module granularity. This is in line with what we would
expect given that the incremental solver needs to keep track of dependencies. In addition,
there is some overhead in the split solving and the continuous redirections in our compo-
nents.

Class File

20

40

60

80

100

120

140

Clean analysis times for JDK8 reduced

Original

Incremental

Concurrent (2)

Concurrent (3)

Concurrent (4)

Concurrent (5)

Concurrent (6)

Concurrent (7)

Concurrent (8)

Module Boundary Level

A
na

ly
si

s
T

im
e

(s
)

Figure 7.1: The performance of the incremental solver for clean runs compared to the original
solver. Total analysis time for a reduced and stripped version of the source code for the Java
Development Kit 8. On the y-axis, the absolute analysis time is plotted in seconds. On the
x-axis, the module boundary level. We see that while the incremental solver is slower than
the original solver, running it concurrently negates this completely, even achieving marginal
speedup.

7.2.2 Concurrency

In Figure 7.2, we show the relative analysis time of our incremental solver compared to the
original solver. Positive values indicate a slower analysis time than the original solver, while
negative values indicate a faster analysis time. In terms of concurrency, we see that we
achieve quite significant speedup, even when there are only two cores available. With two
threads, we already achieve a 10 to 15 percent reduction in analysis time, improving further
to a 30 percent reduction with three threads and a 40 percent reduction with four threads.
With eight threads, we almost halve the solving time compared to the original solver. In fact,

75

7. Evaluation

Class File
-50%

-40%

-30%

-20%

-10%

0%

10%

20%

Clean analysis times relative to the original solver for JDK8 reduced

Incremental

Concurrent (2)

Concurrent (3)

Concurrent (4)

Concurrent (5)

Concurrent (6)

Concurrent (7)

Concurrent (8)

Module Boundary Level

R
el

at
iv

e
A

na
ly

si
s

T
im

e
(%

)

Figure 7.2: The performance of the incremental solver for clean runs relative to the original
solver. Each bar represents the relative time increase (positive) or decrease (negative) com-
pared to the original solver. For example, the positive value of 5% for the incremental solver
at class level means that it is 5% slower than the original solver at that granularity. We see
that the non-concurrent version is 5-10% slower than the original solver. The concurrent
version achieves significant speedups compared to the original version, depending on the
amount of threads.

we halve the solving time of our single threaded incremental analysis when running with
eight threads.

We also see that the module granularity does not influence the impact of concurrency
much, with performance gains about equal. However, we see some interesting results when
going from file granularity to class granularity, with analysis time actually reducing when
we split classes from files. This is due to the improved constraint ordering that occurs as a
result.

We do see that we get diminishing returns from increasing the amount of threads, es-
pecially after four threads. This can be attributed to Amdahls Law, which states that any
parallel process which cannot be fully parallelized will have diminishing returns from an
increased amount of cores. If we enter our results into the formula for Amdahls Law, we see
that our system has about 40% single threaded execution [44]. We clearly see these dimin-
ishing returns across all of our steps, where we see that the benefit of each additional thread
is smaller than the previous addition.

7.2.3 Impact of Module Granularity

We evaluated the JDK on two module granularities, classes and files. We were unable to
evaluate the impact of smaller module granularities, i.e. methods, because we did not have
not enough RAM to complete this analysis. The additional overhead of all the extra modules
that method boundaries create on a large project like the JDK is too much for our system to
handle.

Interestingly, we see that class boundaries actually perform slightly better than file bound-
aries. We believe that this is due to an improved ordering in which constraints are evalu-

76

7.3. Incremental Performance

ated caused by separating classes from the packages, which reduces the amount of delays
required. The way that packages are modelled in our Statix specification means that each
file contributing to the package must first contribute their package scope before anyone can
do type resolution. By splitting class modules from file modules, the solver will first com-
plete all the packages from the file modules and will only then start evaluating all the class
modules. This means that type resolutions are not as likely to be delayed, improving the
performance.

7.2.4 Storage Costs

In terms of storage costs, we see a significant increase compared to the original solver as
presented in Table 7.3. Almost all of this additional storage cost is attributed to the depen-
dencies, which we can see when we convert a context into a library. The library removes
the ASTs and the dependencies from the context and uses the external scope graph of each
module, explaining the reduction in size compared to the original solver.

Table 7.3: The storage costs for storing the analysis result of the reduced JDK8 for the dif-
ferent solvers. On the left the original solver, in the middle the incremental solver with the
optimistic name-based strategy and on the right when stored as a library.

Project Original Incremental Library
JDK 8 Reduced 241 MiB 1320 MiB 178 MiB

7.2.5 Conclusion

We answer Research Question 3: How can we apply concurrency to Statix? We support con-
currency in our model for incremental analysis by solving modules in parallel. We provide
this functionality with minimal changes to the design by leveraging existing safety guaran-
tees of Statix. Our concurrent implementation achieves significant speedups of over 40%
compared to the original solver, almost cutting analysis times in half.

7.3 Incremental Performance
We evaluate the incremental performance of our strategy by applying different types of
changes to differently sized project. For each change, we do both an incremental run and
a clean run on the changed project. We compare the performance between the incremental
and non incremental runs and evaluate how much of the project is actually reanalyzed.

We cannot compare the incremental performance to the performance of the original solver
directly, since it does not offer support for libraries. Analyzing projects without the JDK as
a library would not be a fair comparison, since a lot of the constraints would fail and pre-
vent others from being evaluated. Analyzing the JDK in combination with differently sized
projects would not allow us to measure how the size of a project influences the incremental
performance. As such, we compare the performance of clean runs to the performance of
incremental runs both with our optimistic name-based strategy.

If one does want to estimate how to compare this with the original solver, it is possible to
get a rough estimate from the fact that the incremental solver is about 5 to 10 percent slower,
as shown in the baseline performance.

7.3.1 Types of Changes

For benchmarking the incremental changes, we follow a similar procedure to Szabó et al.
[40]. We randomly introduce small changes into the files to emulate a user of an IDE making

77

7. Evaluation

changes to the project. We look at small changes because analysis can run in the background
every time the file becomes parseable while the user is typing, keeping the changes between
versions small. The changes we consider are listed in Figure 7.4. We have chosen these
changes specifically based on the granularity of the analysis and because they have impact
on different scopings. The changes that affect classes are common changes to the global struc-
ture of the project. The changes that affect methods will have a limited impact on the class
itself and some impact on extending/calling classes. Then, the changes to statements repre-
sent the common scenario where a programmer is changing statements inside a method, the
effect of which is rarely visible outside the method.

• Remove a class
• Remove a method
• Add a method
• Remove a statement
• Duplicate a statement

Figure 7.4: The different categories of changes that we evaluate.

We apply changes as follows. First, a file is selected randomly from all the available files.
We then try to apply our change to that file. For the removal of a file and the addition of a
method, this always succeeds. For the removal of a method, this will only succeed if there
is a method in the file. If such an application fails, we remove the file from the options and
randomly select a new file until we find one where the change can be applied.

For the removal and duplication of statements, we randomly select a method from all the
methods that have at least one statement. We then randomly select a statement from the body
and remove it or duplicate it. If the application of our removal or duplication somehow still
fails (i.e. the statement in the method is an empty statement), we try again in the same file
15 more times. If that fails, we move on to a different file in the project, until an application
succeeds.

For each category, we measure the analysis time of 100 changes, each starting from a
clean context. The changes that are applied are randomly determined, but are seeded. This
means that with a given seed, the same set of changes will be evaluated. In our evaluation,
we always use a starting seed of 1.

Projects For our evaluation, we use differently sized open source projects written in Java.
We show the projects we use for evaluation and the number of classes in Table 7.5. We eval-
uate these projects with the reduced version of JDK8 loaded as a library.

Table 7.5: The different projects used for our incremental analysis with their number of files.
Both projects are open source and are available for download at their respective sites [41, 42]

Project Files
Apache Commons CSV 13
Apache Commons IO 119

Setup We use the same setup as before, but we can now reduce the amount of memory allo-
cated to Java to 8 GB. We note that it is possible to analyze these projects with any amount of
RAM larger than 6 GB, but that the aggressive additional garbage collecting that sometimes
has to happen as a result can significantly lengthen the analysis time.

78

7.3. Incremental Performance

7.3.2 Reduced Analysis Time and Reanalyzed Files

Figure 7.6 and Figure 7.7 show a comparison of the average analysis time between clean
and incremental runs for different changes. First of all, we see that bigger changes such
as removing entire files, have a significantly larger impact on reanalysis time than smaller
changes. This is in line with what we would expect from a larger change.

However, we also see that there is little difference in analysis time between removing
methods and duplicating/removing statements. We would expect that the removal of a
method has more impact than changing statements inside a method. If we look at the num-
ber of files that are redone per change, as presented in Figure 7.8 and Figure 7.9, we see
that the number of reanalyzed files for removing methods is on average slightly above one.
Through further investigation, we have found why this is the case.

For Commons IO, the low number of reanalyzed modules due to the removal of methods
is mainly because it is a library where almost all classes implement some interface. All the
other implementation then is against the interfaces, not the concrete implementations. This
means that there are little to no dependencies on the methods of concrete classes. Given
that there is a significantly higher number of classes than interfaces, the methods removed
are skewed towards removals in classes rather than in the interfaces. In addition, the classes
with an actual concrete implementation often have private helper methods which can only
be used within the file. The removal of such methods will thus never cause reanalysis of
other files.

For Commons CSV, there are only 13 files in the first place, only 10 of which actual contain
methods. Each method is usually only used by one or two classes. Since Commons CSV is
also a library, there are quite a few methods that are never used, i.e. a large part of the
public API. This explains the low number of reanalyzed files that we see when methods are
removed.

In addition, we notice that sometimes, the removal or addition of a statement triggers
reanalysis of additional files. If a change introduces errors, there can be cascading failures
in Statix. Especially constraints that get stuck can cause a lot of variables to remain free,
in turn making other constraints get stuck as well. The duplication and removal of some
statements can cause this effect as well. Because of the stuck constraints, larger parts of the
scope graph disappear or change to contain variables instead of values. This in turn leads to
our incremental solution having to reanalyze more files. However, we see that this happens
in a minority of cases.

In conclusion, we see that our strategy skips reanalysis of unaffected modules as we
would expect. There are cases where the number of reanalyzed modules is higher due to
constraints getting stuck. However, we see that the average number of reanalyzed modules
is still very low whenever the impact of changes is small. As such, we believe our incremental
approach is effective.

79

7. Evaluation

Clean Inc. Clean Inc. Clean Inc. Clean Inc. Clean Inc.
Remove File Add Method Remove Method Duplicate Statement Remove Statement

1

2

3

4

5

6

7

8

Average Analysis Times for different Change Categories

Commons CSV

Change category

A
na

ly
si

s
tim

e
(s

)

Figure 7.6: A comparison of the average analysis time per change category for the Commons
CSV project (small). Each bar represents the average analysis time of 100 changes of the
corresponding category. The error bars show the minimum and the maximum analysis time.

Clean Inc. Clean Inc. Clean Inc. Clean Inc. Clean Inc.
Remove File Add Method Remove Method Duplicate Statement Remove Statement

5

10

15

20

25

30

35

40

45

50

Average Analysis Times for different Change Categories

Commons IO

Change category

A
na

ly
si

s
tim

e
(s

)

Figure 7.7: A comparison of the average analysis time per change category for the Commons
IO project (large). Each bar represents the average analysis time of 100 changes of the corre-
sponding category. The error bars show the minimum and the maximum analysis time.

80

7.3. Incremental Performance

Remove File Add Method Remove Method Duplicate Statement Remove Statement
0

1

2

3

4

5

6

Number of Reanalyzed Modules per Change Category

Commons CSV

Change Category

M
od

ul
es

Figure 7.8: The average number of reanalyzed modules per change category for the Com-
mons CSV project (small). Each bar shows the average as measured over 100 changes in
the corresponding category. The error bars show the minimum and maximum reanalysis
counts.

Remove File Add Method Remove Method Duplicate Statement Remove Statement
0

5

10

15

20

25

30

Number of Reanalyzed Modules per Change Category

Commons IO

Change Category

M
od

ul
es

Figure 7.9: The average number of reanalyzed modules per change category for the Com-
mons IO project (large). Each bar shows the average as measured over 100 changes in the cor-
responding category. The error bars show the minimum and maximum reanalysis counts.

81

7. Evaluation

7.3.3 Worst Case Performance

From Figure 7.6 and Figure 7.7 we also see that on a smaller project, the incremental perfor-
mance is much closer to the clean analysis time than for a large project. This is also what we
would expect, given that even if only a single file needs to be redone is already quite signifi-
cant for the project. In addition, files in Commons CSV are much more coupled than files in
Commons IO, leading to larger effects from changes such as the removal of files as well.

One of the properties that we want to achieve is that the incremental analysis is never
significantly slower than a clean analysis would be. From Figure 7.6 and Figure 7.7 we see
that for both our small and our large project, the maximum analysis time of incremental runs
is always smaller than the average analysis time of clean runs. However, we should also look
at each individual change to see how times compare there.

Figure 7.10 shows a comparison of analysis time grouped by file size after a file has been
removed. First of all, it is clear that there is one file in the project which contains a majority of
the code, i.e. the largest file. We also see that the incremental analysis time is at worst about
equal to the clean analysis time.

In Figure 7.11 we show a comparison of the analysis time for the duplication of statements.
We see more instances where incremental analysis time is a bit longer than clean analysis time.
At worst, incremental performance is within 10% of the clean run performance, which occurs
for about 10% of our measurements. We find these numbers to be relatively high given that
we only make a very small change. Unfortunately, we were unable to identify exactly why
these cases perform badly. From the figure we can see that these cases still only reanalyze
a single file, i.e. the changed file, as expected. The time spent on computing scope graph
differences and on dependency checking is only a few milliseconds for all cases and it is not
different here. Instead, something in the solving process itself seems to just be quite a bit
slower for these cases.

83
89

9

25
49

6

17
05

3

13
28

0

94
18

61
25

50
70

36
89

22
50

22
19

15
72

13
58

Size of modified file (byte)

0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

Commons CSV

Clean analysis time
Incremental analysis time

Analysis Times compared to File Size after removing a File

Figure 7.10: Comparison of clean analysis time (orange) and incremental analysis time (blue)
for 100 file removals for Commons CSV (small). On the x-axis the size of the removed file
and on the y-axis the analysis time.

82

7.3. Incremental Performance

2 1

No. of reanalyzed files
0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)
Commons CSV

Clean analysis time
Incremental analysis time

Analysis Times after duplicating a Statement

Figure 7.11: Comparison of clean analysis time (orange) and incremental analysis time (blue)
for 100 statement duplications for Commons CSV (small). On the x-axis the number of rean-
alyzed files and on the y-axis the analysis time.

Of course, the small changes that we evaluated are not the worst case for our strategy.
Java does not have conditional declarations (Section 6.1.1), i.e. declarations which are only
there whenever other modules have some declarations. The worst-case we can achieve with
our Statix specification for Java consists of only two analysis phases, where in the first phase
one module is reanalyzed and in the second phase all remaining modules are reanalyzed.
There is no way for changes to propagate transitively further than one step because Java is
strictly typed. If we look at the number of phases for each type of change, we see exactly this
behavior. All analyses consist of at most 2 phase, i.e. first analyzing the changed module and
then optionally doing one additional phase.

So, on average, our incremental strategy is noticeably faster for small projects (up to two
times) and significantly faster for large projects (up to five times). We see that the number
of reanalyzed files is small when changes are small. However, on small projects there are
cases where our strategy is slower than a clean run, even when changes have a small impact.
Given that the worst-case scenario for our strategy cannot occur in Java, we expect that there
are languages where this effect will be worse. An analysis on languages other than Java
is required to determine if this impact is indeed larger for languages with more complex
module systems.

Impact of Failures Stuck constraints can affect the number of files that need to be reana-
lyzed. If there are many constraints that get stuck, our model sometimes has to overapprox-
imate the impact of changes and reanalyze additional modules for safety. This is also what
we see for some duplications and removals of statements. The failures these introduce cause
an overapproximation of the impact of changes, triggering reanalysis of more modules than
necessary. However, this is a side effect of Statix and the way our Statix specification for
Java is written. We believe that our specification could be adjusted to avoid these cascading
failures to achieve better incremental results.

7.3.4 Conclusion

We have manually checked the equivalence of our incremental runs with clean runs and
found no cases where they do not align. This, combined with our proof sketch for the cor-
rectness of optimistic strategies as provided in Section 6.1.3 lets us believe that our optimistic
name-based strategy is correct.

83

7. Evaluation

We now answer Research Question 4: How well is our optimistic name-based strategy
suited for incremental analysis? Our optimistic name-based strategy is both correct (Sec-
tion 6.1.3) and effective. Our results show that it achieves significant speedups whenever
small changes are made to a project. Even on small projects and with changes with a large
impact, our strategy does not perform significantly worse than a clean analysis, with analysis
times staying within 10% of the clean analysis times.

84

Chapter 8

Conclusion and Future Work

IDEs support developers by giving real-time feedback on their code. This feedback is gener-
ated from static analyses such as type checking, name binding and flow analysis. However,
creating such static analyses for domain specific languages and integrating them into IDEs is
a challenging and time consuming task. Statix addresses this problem by generating a type
checker from a declarative specification of typing and name binding rules. This generated
type checker is integrated into an IDE directly, to allow for fast language development. How-
ever, Statix is not fast enough to give such feedback in real-time. If a project grows to a size
of more than a couple of files, even small changes can require a lengthy reanalysis. In this
thesis, we aim to address this problem by answering the question “How we can improve the
analysis time of scope graph based type checkers such as Statix?”

Existing Techniques in Literature First, we looked at literature to find existing techniques
used by type checkers, compilers, IDEs and build systems to improve analysis time, to de-
termine if and how we could apply them to Statix. A common trend throughout many of
these techniques is the use of incrementality. An incremental analysis uses the result of the
previous analysis and a set of changes, to reanalyze only the changed units and those units
depending on them. If the effect of the changes is small, the amount of work required is also
small. From the literature, we have come to the following conclusions:

• Separate compilation is a technique of compiling program fragments separate from
each other, using only limited information about other available program fragments
[7]. It has been applied to compilers for many different languages to achieve incre-
mental compilation [10, 6, 26, 4, 28]. We found that the techniques used for separate
compilation can be applied to Statix. The separate program fragments of the source
language can be mapped to modules in Statix. We can then analyze these modules
separately from each other in the context of the interfaces of other modules, with the
scope graph as a representation of the interface of a module.

• Incremental rebuilding of attribute grammar trees is another example where incremen-
tality is used. Attribute grammars associate attributes to nodes in the abstract syntax
tree of a program, allowing the definition of various static analyses. Whenever parts of
the tree change, it is possible to invalidate only some of the attributes and recompute
them, without having to recompute them for the entire tree [37, 36, 23, 31]. However,
extending this to Statix would be difficult, since the ordering of constraints is compli-
cated and not as clearly defined as for attributes.

• Hedin et al. [22, 39, 21] extend attribute grammars with support for objects and refer-
ences. They effectively build a graph on top of the syntax tree, describing the scoping
and name resolution. These reference attribute grammars require a different incremen-
tal approach, because dependencies are dynamic and are not known before hand. They

85

8. Conclusion and Future Work

present a technique for recording these dynamic dependencies automatically as their
graph is built. The graph they build on the syntax tree bears a lot of similarities to the
scope graphs used by Statix. Their way of tracking dynamic dependencies can be used
in Statix as well, given that queries are similar to their name resolution rules.

• There are type checkers which take a completely different approach, gaining incremen-
tality directly from their design [14]. These techniques cannot be applied to Statix with-
out significantly changing the architecture, which we want to avoid.

We use separate compilation as the basis of our incremental model, and use the ideas of
Hedin et al. for detailed tracking of dynamic dependencies between modules. With these
techniques, we can reanalyze individual modules and propagate the changes to only those
modules that depend on the changes. Because modules which are unaffected are skipped,
this leads to a reduction of analysis time.

Building an Incremental Model for Statix From literature we have concluded that the tech-
niques of separate compilation and dynamic dependency detection can be used to achieve
incrementality for Statix. We contribute an incremental model for Statix based on these tech-
niques. The goal of our model is to facilitate different strategies for incremental analysis,
to fit the needs of different source languages. We achieve this goal through the following
features of our model.

• Modules: We add support for modules, which correspond to modules in the language
we are analyzing. Rather than constructing a complete scope graph for the project,
we split the scope graph over the different modules. The interface of each module is
its part of the scope graph, which contains all information that can be used by other
modules. A main challenge in the implementation of our model was the splitting of
the solving process over these modules, an approach very different from the original
monolithic architecture of Statix. We stayed close to the original architecture by having
each component redirect requests to the module which can answer that request. As
such, we still provide a view of the system as a whole, without incurring a significant
extra cost.

• Dependencies: Dependencies between modules are automatically identified from queries.
Queries are the only constraints that can retrieve information from other modules. As
such, queries are responsible for introducing dependencies. Our incremental Statix
solver automatically determines dependencies from queries by tracking the parts of
the scope graph they visit. These locations are exactly the locations where something
could be added which would affect the result of the query. This detailed location infor-
mation is stored with the dependency, and can be used to prevent reanalysis whenever
a dependency cannot actually be affected by a change.

• Scope Graphs Comparisons: We provide a technique for comparing the scope graphs
of modules, which is necessary to determine the impact of a change. A big challenge
was to do this efficiently, given that comparing graphs is generally an NP-complete
problem [24]. However, the strict structure of scope graphs allows us to compare them
in a much better way. The key point is that we need to know if a scope is still the same
scope. We achieve this by using the trace of all the rules that led up to the creation of the
scope in its identity. If the trace of a scope is the same between in two analyses, we know
it is still the same scope. With scope identity, nodes in our graph are effectively fixed,
and we can easily determine all the scopes, edges and data edges that are different. By
combining these diffs with our dependencies, it is possible to determine all modules
which are affected by a change.

86

8.1. Future Work

• Control over Solving: We give extensive control over the solving process to the strat-
egy. The strategy can limit interactions between modules to prevent usage of out-
dated information if necessary. In addition, solving can be split over multiple different
phases, which is used by our optimistic name-based strategy.

Our model facilitates high-precision incremental analysis for Statix. We show its effec-
tiveness with our optimistic name-based strategy implemented in our model, which is able
to reduce analysis time significantly.

Adding Concurrency to our Model The incremental model we created facilitates incremen-
tal analysis based on modules. We split the solving process over the different modules and
added support for solving these modules in parallel. We provide this functionality with min-
imal changes to the design by leveraging existing safety guarantees of Statix. Our concurrent
implementation achieves significant speedups of over 40% compared to the original solver,
almost cutting analysis times in half.

The Effectiveness of our Model With support for concurrency in our model, we finished
by implementing our optimistic name-based strategy with our model. Our results show that
it is effective and achieves significant speedups whenever small changes are made to a project.
Even on small projects and with changes with a large impact, our strategy does not perform
significantly worse than a clean analysis.

Improving Analysis Time Our model for incremental analysis is based on separate compi-
lation and automatic detection of dynamic dependencies. Our optimistic name-based strat-
egy uses our model to achieve parallel and incremental analysis for Statix. We show that it
is correct and effective, significantly reducing analysis time in good cases and not increas-
ing analysis time in bad cases. We believe that our model is also suited for other kinds of
strategies, through the various functionalities it offers. With the extensive control our model
offers over the solving process, we believe that pessimistic strategies, which only use up-
to-date information to determine affected modules, can also be expressed effectively in our
model.

Our optimistic name-based strategy is effective on small and on large projects. While
we only analyzed its effectiveness for Java, we predict it is also effective for other languages
with different modules. We predict this holds even when the module system of the language
does not support full separate compilation, such as the module systems of Standard ML and
Haskell.

8.1 Future Work

IDE Integration Our approach yields significant speedups, especially when the impact of
changes is small. We believe it to be a good fit for an IDE, where the analysis can be kept up
to date by continuously running in the background. However, even with our changes, Statix
still needs to be made faster to achieve sub-second analysis times. One of the main limiting
factors is the fact that we always reanalyze the entire file in which the change occurs. While
it is already possible to use chunks smaller than files in our model, there needs to be better
integration between Statix and the IDE to achieve this.

Splitting Modules In many languages, most, if not all, parts of the interface of a module
are not actually dependent on other modules. We believe it would be possible to split each
module into two parts. One part which represents everything of the module that is fixed, and
one part which represents everything of the module which depends on other modules. This

87

8. Conclusion and Future Work

would achieve multiple benefits. First, this would directly give incremental analysis time
reductions. The fixed part of a module only has to be reanalyzed if the module is directly
changed. For all other modules, only the dynamic part possibly needs to be reanalyzed.
Second, it would pave the way for pessimistic strategies. Currently, pessimistic strategies
have to avoid all information from other modules until they know that it is still up to date.
With certain parts of the scope graph fixed and known to be up-to-date, this would become
easier.

Some of the challenges we encountered is the fact that cross-module unification occurs
between the fixed module and the dynamic part of the module. If we put all variables in the
dynamic part, then no constraints actually end up in the fixed part of the module.

Interesting Module Systems Our approach should be evaluated on other languages with
interesting module systems. Especially interesting would be a language such as Haskell,
where true separate compilation is already quite a challenge for the official compiler. In
addition, there are large implementations written in Haskell which could be used for evalu-
ation.

Cross-module Unification We do not support cross-module unification. However, we do
believe it would be possible to support it. Whenever there is unification between two vari-
ables from different modules, a cyclic dependency could be recorded with the variables as
detailed information. Likewise, whenever a module unifies a non-local variable with a value,
we can also track this and introduce a dependency in the same way. The incremental strate-
gies would need to be adjusted to also handle unification variables. The impact of these
unification dependencies whenever there is cross-module unification would need to be in-
vestigated. As such, we believe this to be a good opportunity for future work.

Updating Module Names Updating the names of modules is currently not supported by
our model. Whenever a file is renamed to a different file, this is currently considered to be the
removal of the old file and the addition of the new file. This means that valuable information
from the previous analysis is lost. A change to the name of any module changes the identity
of all its scopes, triggering reanalysis of all dependencies. Tools like Git utilize techniques
such as file similarity to determine when it is likely that a file has been renamed. Of course,
these techniques are not limited to files alone, and can also be applied to changes within the
file, e.g. renaming a method.

From Modules to Constraints Given the precision with which we can record which changes
would affect the result of a query, the next step would be to use this information for some-
thing smaller than the modules. We believe it is possible to reanalyze individual constraints
instead of entire modules. To achieve this, it would be necessary to track where the infor-
mation from queries is used. Changes to the result of a query could then be mapped to the
affected constraints, propagating changes in a similar way as we do for modules.

88

Bibliography

[1] Davide Ancona, Giovanni Lagorio, and Elena Zucca. “True separate compilation of
Java classes”. In: Proceedings of the 4th international ACM SIGPLAN conference on Princi-
ples and practice of declarative programming, October 6-8, 2002, Pittsburgh, PA, USA (Affili-
ated with PLI 2002). ACM, 2002, pp. 189–200. doi: 10.1145/571157.571177.

[2] Hendrik van Antwerpen et al. “A constraint language for static semantic analysis based
on scope graphs”. In: Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evalua-
tion and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016.
Ed. by Martin Erwig and Tiark Rompf. ACM, 2016, pp. 49–60. isbn: 978-1-4503-4097-7.
doi: 10.1145/2847538.2847543.

[3] Hendrik van Antwerpen et al. “Scopes as types”. In: Proceedings of the ACM on Program-
ming Languages 2.OOPSLA (2018). doi: 10.1145/3276484.

[4] Andrew W. Appel and David B. MacQueen. “Separate Compilation for Standard ML”.
In: PLDI. 1994, pp. 13–23.

[5] Franz Baader and Wayne Snyder. “Unification Theory”. In: Handbook of Automated Rea-
soning (in 2 volumes). Ed. by John Alan Robinson and Andrei Voronkov. Elsevier and
MIT Press, 2001, pp. 445–532. isbn: 0-444-50813-9.

[6] James S. Briggs. “Separate compilation and the ADA programming language”. British
Library, EThOS. PhD thesis. University of York, UK, 1984.

[7] Luca Cardelli. “Program Fragments, Linking, and Modularization”. In: POPL. 1997,
pp. 266–277. doi: 10.1145/263699.263735.

[8] Magnus Carlsson. “Monads for incremental computing”. In: Proceedings of the seventh
ACM SIGPLAN international conference on Functional Programming (ICFP 2002). 2002,
pp. 26–35. doi: 10.1145/581478.581482.

[9] Microsoft Corporation. C# preprocessor directives. 2015. url: https://docs.microsoft.
com/en-us/dotnet/csharp/language-reference/preprocessor-directives/ (visited on
08/28/2019).

[10] Manfred Dausmann et al. “A Separate Compilation System for Ada”. In: Werkzeuge
der Programmiertechnik, GI-Arbeitstagung, Karlsruhe, 16.-17. März 1981, Proceedings. Ed.
by Gerhard Goos. Vol. 43. Informatik-Fachberichte. Springer, 1981, pp. 197–213. isbn:
3-540-10725-8.

[11] Torbjörn Ekman and Görel Hedin. “Modular Name Analysis for Java Using JastAdd”.
In: Generative and Transformational Techniques in Software Engineering, International Sum-
mer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers. Ed. by Ralf Läm-
mel, João Saraiva, and Joost Visser. Vol. 4143. Lecture Notes in Computer Science.
Springer, 2006, pp. 422–436. isbn: 3-540-45778-X. doi: 10.1007/11877028_18.

89

https://doi.org/10.1145/571157.571177
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.1145/263699.263735
https://doi.org/10.1145/581478.581482
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://doi.org/10.1007/11877028_18

Bibliography

[12] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java compiler”. In: Proceed-
ings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada. Ed. by Richard P. Gabriel et al. ACM, 2007, pp. 1–18. isbn: 978-1-59593-786-5.
doi: 10.1145/1297027.1297029.

[13] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. “A sound and optimal incre-
mental build system with dynamic dependencies”. In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-
30, 2015. Ed. by Jonathan Aldrich and Patrick Eugster. ACM, 2015, pp. 89–106. isbn:
978-1-4503-3689-5. doi: 10.1145/2814270.2814316.

[14] Sebastian Erdweg et al. “A co-contextual formulation of type rules and its applica-
tion to incremental type checking”. In: Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. Ed. by
Jonathan Aldrich and Patrick Eugster. ACM, 2015, pp. 880–897. isbn: 978-1-4503-3689-
5. doi: 10.1145/2814270.2814277.

[15] Georgios Fourtounis and Nikolaos S. Papaspyrou. “Supporting Separate Compilation
in a Defunctionalizing Compiler”. In: 2nd Symposium on Languages, Applications and
Technologies, SLATE 2013, June 20-21, 2013 - Porto, Portugal. Ed. by José Paulo Leal, Ri-
cardo Rocha, and Alberto Simões. Vol. 29. OASICS. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2013, pp. 39–49. isbn: 978-3-939897-52-1. doi: 10.4230/OASIcs.SLATE.
2013.39.

[16] Free Software Foundation, Inc. The C Preprocessor. 1987. url: https://gcc.gnu.org/
onlinedocs/cpp/ (visited on 08/28/2019).

[17] Ben Gamari. Deterministic builds. url: https://gitlab.haskell.org/ghc/ghc/wikis/
deterministic-builds (visited on 09/14/2019).

[18] E. Gamma et al. Design patterns: elements of reusable object-oriented software. Addison-
Wesley Professional, 1995.

[19] Zheng Gao, Christian Bird, and Earl T. Barr. “To type or not to type: quantifying de-
tectable bugs in JavaScript”. In: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. Ed. by Sebastián Uchi-
tel, Alessandro Orso, and Martin P. Robillard. IEEE / ACM, 2017, pp. 758–769. isbn:
978-1-5386-3868-2. doi: http://dl.acm.org/citation.cfm?id=3097459.

[20] Brian Goetz. Java Theory and Practice: Going Atomic. url: https://www.ibm.com/developerworks/
library/j-jtp11234/index.html (visited on 08/28/2019).

[21] Görel Hedin. “Incremental Semantic Analysis”. PhD thesis. 1992.
[22] Görel Hedin. “Reference Attributed Grammars”. In: Informatica (Slovenia) 24.3 (2000).
[23] Martin Jourdan et al. “Design, Implementation and Evaluation of the FNC-2 Attribute

Grammar System”. In: PLDI. 1990, pp. 209–222.
[24] Viggo Kann. “On the Approximability of the Maximum Common Subgraph Problem”.

In: STACS 92, 9th Annual Symposium on Theoretical Aspects of Computer Science, Cachan,
France, February 13-15, 1992, Proceedings. Ed. by Alain Finkel and Matthias Jantzen.
Vol. 577. Lecture Notes in Computer Science. Springer, 1992, pp. 377–388. isbn: 3-540-
55210-3.

90

https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/2814270.2814316
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.4230/OASIcs.SLATE.2013.39
https://doi.org/10.4230/OASIcs.SLATE.2013.39
https://gcc.gnu.org/onlinedocs/cpp/
https://gcc.gnu.org/onlinedocs/cpp/
https://gitlab.haskell.org/ghc/ghc/wikis/deterministic-builds
https://gitlab.haskell.org/ghc/ghc/wikis/deterministic-builds
https://doi.org/http://dl.acm.org/citation.cfm?id=3097459
https://www.ibm.com/developerworks/library/j-jtp11234/index.html
https://www.ibm.com/developerworks/library/j-jtp11234/index.html

Bibliography

[25] Lennart C. L. Kats and Eelco Visser. “The Spoofax language workbench: rules for declar-
ative specification of languages and IDEs”. In: Proceedings of the 25th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard. Reno/-
Tahoe, Nevada: ACM, 2010, pp. 444–463. isbn: 978-1-4503-0203-6. doi: 10.1145/1869459.
1869497.

[26] Jan van Katwijk. “The Ada - compiler: On the design and implementation of an Ada
compiler”. PhD thesis. Delft University of Technology, 1987.

[27] Brian W. Kernighan and Dennis Ritchie. The C Programming Language. Prentice-Hall,
1978. isbn: 0-13-110163-3.

[28] Scott Kilpatrick et al. “Backpack: retrofitting Haskell with interfaces”. In: The 41st An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014. Ed. by Suresh Jagannathan and Peter
Sewell. ACM, 2014, pp. 19–32. isbn: 978-1-4503-2544-8. doi: 10.1145/2535838.2535884.

[29] Steve Klabnik and Carol Nichols. The Rust Programming Language. No Starch Press,
2018. url: https://doc.rust-lang.org/1.30.0/book/first-edition/conditional-
compilation.html.

[30] Donald E. Knuth. “Semantics of Context-Free Languages”. In: Theory Comput. Syst. 2.2
(1968), pp. 127–145.

[31] Matthijs F. Kuiper and João Saraiva. “Lrc - A Generator for Incremental Language-
Oriented Tools”. In: Compiler Construction, 7th International Conference, CC 98, Held as
Part of the European Joint Conferences on the Theory and Practice of Software, ETAPS 98,
Lisbon, Portugal, March 28 - April 4, 1998, Proceedings. Ed. by Kai Koskimies. Vol. 1383.
Lecture Notes in Computer Science. Springer, 1998, pp. 298–301. isbn: 3-540-64304-4.

[32] Xavier Leroy. “A modular module system”. In: Journal of Functional Programming 10.3
(2000), pp. 269–303.

[33] Sean McDirmid, Wilson C. Hsieh, and Matthew Flatt. “A Framework for Modular Link-
ing in OO Languages”. In: Modular Programming Languages, 7th Joint Modular Languages
Conference, JMLC 2006, Oxford, UK, September 13-15, 2006, Proceedings. Ed. by David E.
Lightfoot and Clemens A. Szyperski. Vol. 4228. Lecture Notes in Computer Science.
Springer, 2006, pp. 116–135. isbn: 3-540-40927-0. doi: 10.1007/11860990_9.

[34] Pierre Néron et al. “A Theory of Name Resolution”. In: Programming Languages and Sys-
tems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015. Proceedings. Ed. by Jan Vitek. Vol. 9032. Lecture Notes in Computer Science.
Springer, 2015, pp. 205–231. isbn: 978-3-662-46668-1. doi: 10.1007/978-3-662-46669-
8_9.

[35] David Lorge Parnas. “On the Criteria To Be Used in Decomposing Systems into Mod-
ules”. In: Communications of the ACM 15.12 (1972), pp. 1053–1058.

[36] Thomas W. Reps. Generating language-based environments. Cambridge, MA, USA: Mas-
sachusetts Institute of Technology, 1984. isbn: 0-262-18115-0.

[37] Thomas W. Reps. “Optimal-Time Incremental Semantic Analysis for Syntax-Directed
Editors”. In: POPL. 1982, pp. 169–176. doi: 10.1145/582153.582172.

[38] Arjen J. Rouvoet et al. “Knowing when to Ask”. unpublished. N.D.
[39] Emma Söderberg and Görel Hedin. Incremental Evaluation of Reference Attribute Gram-

mars using Dynamic Dependency Tracking. Tech. rep. 98. Department of Computer Sci-
ence, Lund University, 2012.

91

https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/2535838.2535884
https://doc.rust-lang.org/1.30.0/book/first-edition/conditional-compilation.html
https://doc.rust-lang.org/1.30.0/book/first-edition/conditional-compilation.html
https://doi.org/10.1007/11860990_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/582153.582172

Bibliography

[40] Tamás Szabó et al. “Incrementalizing lattice-based program analyses in Datalog”. In:
Proceedings of the ACM on Programming Languages 2.OOPSLA (2018). doi: 10 . 1145 /
3276509.

[41] The Apache Software Foundation. Apache Commons CSV. url: https://commons.apache.
org/proper/commons-csv/ (visited on 09/10/2019).

[42] The Apache Software Foundation. Apache Commons IO. url: https://commons.apache.
org/proper/commons-io/ (visited on 09/10/2019).

[43] Guido Wachsmuth et al. “A Language Independent Task Engine for Incremental Name
and Type Analysis”. In: Software Language Engineering - 6th International Conference,
SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings. Ed. by Martin Erwig,
Richard F. Paige, and Eric Van Wyk. Vol. 8225. Lecture Notes in Computer Science.
Springer, 2013, pp. 260–280. isbn: 978-3-319-02653-4. doi: 10.1007/978-3-319-02654-
1_15.

[44] Leonid Yavits, Amir Morad, and Ran Ginosar. “The effect of communication and syn-
chronization on Amdahl’s law in multicore systems”. In: Parallel Computing 40.1 (2014),
pp. 1–16. doi: 10.1016/j.parco.2013.11.001.

92

https://doi.org/10.1145/3276509
https://doi.org/10.1145/3276509
https://commons.apache.org/proper/commons-csv/
https://commons.apache.org/proper/commons-csv/
https://commons.apache.org/proper/commons-io/
https://commons.apache.org/proper/commons-io/
https://doi.org/10.1007/978-3-319-02654-1_15
https://doi.org/10.1007/978-3-319-02654-1_15
https://doi.org/10.1016/j.parco.2013.11.001

Glossary

AST Abstract Syntax Tree. 5

clean run A single analysis of a project which analyzes all modules without using informa-
tion from previous analyses. 45, 66, 68

critical edge An extension to the scope graph that will be added by a constraint which is yet
to be evaluated. 12

free A variable is free if it does not have an associated value (yet). 32

global scope The scope where globally visible declarations are stored. There is a single
global scope, owned by the root module. 26, 30

ground A term is considered ground if it contains no free variables. 32

incorrect dependency Whenever a dependency of m1 on m2 is recorded, but there is no
change possible to m2 such that m1 is affected. 47

incremental run A single analysis of a project which has access to information from previ-
ous analyses, possibly allowing incremental computation of the new analysis result.
45, 66

incremental strategy An algorithm which uses the features of our incremental model to per-
form incremental analysis. That is, given the previous analysis result and a changeset
of changed files in the project, a strategy has to determine the new analysis result. 45,
94

incremental analysis The analysis of a program which potentially uses information from a
previous analysis to determine its result. An incremental analysis might skip reanalyz-
ing certain modules if their reanalysis is not necessary to compute the new result. 15,
45

irrelevant dependency A dependency of m1 on m2 is irrelevant for a specific change if ap-
plying that change to m2 does not affect m1. 47

library A collection of implementations which has a well-defined interface. A library con-
sists of multiple smaller modules and presents some interface to use the implementa-
tions of those modules in other libraries or programs. 29

93

Glossary

library module A special module that can be queried, but which will not participate in the
solving process otherwise. Library modules have no constraints and their scope graphs
and unifiers cannot be modified.. 30

modularization The concept of breaking a program into smaller fragments called modules.
19, 25, 33

module A program fragment which represents some logically separate section of a program.
15, 30, 93

module A mapping of a module in the source language to a corresponding module in Statix.
25

module boundary A rule in a Statix specification can be marked as a module boundary. If
this rule is called, a new module will be created as a child of the calling module. 26

non-ground A term is considered non-ground if it contains free variables. Likewise, a term
is ground if it has a value without free variables. 32

permission to extend A predicate with permission to extend a scope s is allowed to introduce
new edges and data edges in s. A predicate has permission to extend a scope s if it
was created in that predicate, or if it was passed to it by a predicate with permission to
extend s. 12

query answer stability Queries in Statix are only executed whenever it is known that their
answer will not change as a result of edges which will be added to the scope graph
after the query was executed. 31

scope graph A directed graph representing the lexical scoping of a program. Scope graphs
consist of scopes, edges, declarations and data edges. 5, 6

separate compilation The technique of typechecking and compiling separate program frag-
ments. These program fragments cannot be compiled in isolation, but can be compiled
in an environment with type information about the missing fragments. 2, 18, 19

source language A Statix specification describes the name binding and typing rules of a
particular language, which is called the source language of the specification. 25, 26, 94

standard library A library which is available to be used by any program, included by default
in a particular programming language. 30

Statix specification A specification of the typing and name binding rules for a particular
source language for Statix. 5

strategy See incremental strategy. 2

94

Appendix A

Mathematic Symbols

This appendix list all the mathematic symbols used throughout this thesis and their meaning.

A.1 Scope Graphs

d P Decls := terms denoting declarations
s P Scopes := terms denoting scopes

l P L := strings denoting label names
r P R := strings denoting relation names
p P P := paths describing a sequence of scopes connected by labels

A.1.1 Scope Graph Elements

s P S := set of scopes
(s l s1) P E := set of edges
(s r d) P D := set of data edges

G := scope graph of the form xS,E,Dy

scopes(xS,E,Dy) := S

edges(xS,E,Dy) := E

data(xS,E,Dy) := D

A.1.2 Terms

x P V := variables
t P T := x | d | s | p | [] | [t | t] | (t, ..., t)

95

A. Mathematic Symbols

A.1.3 Name Resolution

WFD := predicate describing well-formedness of data
WFL := predicate describing well-formedness of data
ďd := ordering on data
ăl := ordering on labels

query WFD,WFL,ďd,ăl in s r (p, d) := A query in s for relation r, resolving to paths and declarations (p, d)
q P Q := Set of queries

A.2 Modules
Syntax

modules m PM := some finite set
module graph Gm ::= xSm, Em, Dmy

module scopes s P Sm ::= ts | s P scopes(G), owner(s) = mu
module edges e P Em ::= te | e P edges(G), owner(e) = mu

module data d P Dm ::= td | d P data(G), owner(d) = mu
Formulae

parent M ÛM

children M ÑM

parents(m) M ÑM ::= ttm1u Y parents(m1) | m1 = parent(m)u

descendants(m) M ÑM ::= ttm1u Y descendants(m1) | m1 P children(m)u
owner S ÑM
owner E ÑM
owner D ÑM

extends S ÑM

A.3 Dependencies

m ãÑ m1 := m depends on m1

m ãÑ m1 | xVe, Vd, Ry := m depends on m1 with detailed dependency information Ve, Vd, R

(s, l) P Ve := set of scope, label combinations representing edges visited by a query
(s, r) P Vd := set of scope, relation combinations representing edges visited by a query
(s, l) P R := set of scope, label combinations representing edges traversed by a query

96

Appendix B

Statix Specification

The Statix specification for Java is presented in Appendix B. The specification can also be
found at https://github.com/MetaBorgCube/statix-incremental-artifact/blob/master/specifications/
statics.stx.

1 module statics
2

3 signature
4

5 //
6 // 3.8. Identifiers
7 //
8

9 sorts Id constructors
10 Id : string -> Id
11

12 //
13 // 4.3. Reference Types and Values
14 //
15

16 sorts Type constructors
17 PT2T : PrimitiveType -> Type
18 RT2T : ReferenceType -> Type
19 Void : Type
20 ArrayType : Type * list(Annotation) -> Type
21

22 sorts PrimitiveType constructors
23 NumericType : string -> PrimitiveType
24 BooleanType : PrimitiveType
25

26 sorts ReferenceType constructors
27 CT2RT : ClassType -> ReferenceType
28 AT2RT : ArrayType -> ReferenceType
29

30 sorts ArrayType constructors
31 ArrayTypePrimitive : PrimitiveType * list(Annotation) -> ArrayType
32 ArrayTypeClassType : ClassType * list(Annotation) -> ArrayType
33

34 // UCT2URT : ClassType -> ReferenceType
35

97

https://github.com/MetaBorgCube/statix-incremental-artifact/blob/master/specifications/statics.stx
https://github.com/MetaBorgCube/statix-incremental-artifact/blob/master/specifications/statics.stx

B. Statix Specification

36 sorts ClassType constructors
37 ClassType : list(Annotation) * Id * MaybeTypeArguments -> ClassType
38 ClassOrInterfaceTypeMember : ClassType * list(Annotation) * Id *

MaybeTypeArguments -> ClassType
39

40 //
41 // 4.5. Parameterized Types
42 //
43

44 sorts MaybeTypeArguments = list(TypeArguments)
45 sorts TypeArguments constructors
46 TypeArguments : list(TypeArgument) -> TypeArguments
47

48 sorts TypeArgument = ReferenceType
49 // = Wildcard
50

51 //
52 // 6.5. Determining the Meaning of a Name
53 //
54

55 sorts PackageName constructors
56 PackageName : Id -> PackageName
57 PackageName : PackageName * Id -> PackageName
58

59 sorts TypeName constructors
60 TypeName : Id -> TypeName
61 TypeName : PackageOrTypeName * Id -> TypeName
62

63 sorts PackageOrTypeName constructors
64 PackageOrTypeName : Id -> PackageOrTypeName
65 PackageOrTypeName : PackageOrTypeName * Id -> PackageOrTypeName
66

67 sorts ExpressionName constructors
68 ExpressionName : Id -> ExpressionName
69 ExpressionName : AmbiguousName * Id -> ExpressionName
70

71 sorts MethodName constructors
72 MethodName : Id -> MethodName
73

74 sorts AmbiguousName constructors
75 AmbiguousName : Id -> AmbiguousName
76 AmbiguousName : AmbiguousName * Id -> AmbiguousName
77

78 //
79 // 7.3. Compilation Units
80 //
81

82 sorts CompilationUnit constructors
83 CompilationUnit : MaybePackageDeclaration * list(ImportDeclaration) *

list(TypeDeclaration) -> CompilationUnit
84

85 sorts TypeDeclaration constructors

98

86 CD2TD : ClassDeclaration -> TypeDeclaration
87 ID2TD : InterfaceDeclaration -> TypeDeclaration
88

89 //
90 // 7.4. Package Declarations
91 //
92

93 sorts MaybePackageDeclaration = list(PackageDeclaration)
94 sorts PackageDeclaration constructors
95 PackageDeclaration : list(Annotation) * list(Id) -> PackageDeclaration
96

97 //
98 // 7.5. Import Declarations
99 //

100

101 sorts ImportDeclaration constructors
102 SingleTypeImport : TypeName -> ImportDeclaration
103 TypeImportOnDemand : PackageOrTypeName -> ImportDeclaration
104

105 //
106 // 8.1. Class Declarations
107 //
108

109 sorts ClassDeclaration constructors
110 NCD2CD : NormalClassDeclaration -> ClassDeclaration
111 ED2CD : EnumDeclaration -> ClassDeclaration
112

113 sorts NormalClassDeclaration constructors
114 ClassDeclaration : list(ClassModifier) * Id * MaybeTypeParameters *

MaybeSuperClass * MaybeSuperInterfaces * MaybeClassBodyDeclaration ->
NormalClassDeclaration

115

116 sorts ClassModifier
117

118 sorts MaybeTypeParameters = list(TypeParameters)
119 sorts TypeParameters
120

121 sorts MaybeSuperClass = list(SuperClass)
122 sorts SuperClass constructors
123 SuperClass : ClassType -> SuperClass
124

125 sorts MaybeSuperInterfaces = list(SuperInterfaces)
126 sorts SuperInterfaces constructors
127 SuperInterface : list(ClassType) -> SuperInterfaces
128

129 sorts MaybeClassBodyDeclaration = list(ClassBodyDeclaration)
130 sorts ClassBodyDeclaration constructors
131 CMD2CBD : ClassMemberDeclaration -> ClassBodyDeclaration
132

133 sorts ClassMemberDeclaration constructors
134 FD2CMD : list(FieldDeclaration) -> ClassMemberDeclaration
135 MD2CMD : MethodDeclaration -> ClassMemberDeclaration

99

B. Statix Specification

136 CD2CMD : ClassDeclaration -> ClassMemberDeclaration
137 ID2CMD : InterfaceDeclaration -> ClassMemberDeclaration
138 //Semicolon : ClassMemberDeclaration
139

140 sorts FieldDeclaration constructors
141 TFieldDecl : list(FieldModifier) * Type * Id -> FieldDeclaration
142 TFieldDeclArray : list(FieldModifier) * Type * Id * int -> FieldDeclaration
143

144 sorts MethodDeclaration constructors
145 MethodDecl : list(MethodModifier) * string * MethodHeader * Statement ->

MethodDeclaration
146

147 //Fields
148 sorts FieldModifier
149 sorts VarDecl
150

151 //Methods
152 sorts MethodModifier
153 sorts MethodHeader constructors
154 MethodHeader : Type * Id * MethodParams * AnnotatedDimsEmpty * MaybeThrows

-> MethodHeader
155 MethodHeaderTypeParameters : TypeParameters * list(Annotation) * Type * Id

* MethodParams * MaybeThrows -> MethodHeader
156

157 sorts MethodParams = list(FormalParam)
158 sorts FormalParam constructors
159 FormalParam : list(VariableModifier) * Type * VarDeclId -> FormalParam
160 ReceiverParamQual : list(Annotation) * Type * Id -> FormalParam
161 ReceiverParam : list(Annotation) * Type -> FormalParam
162

163 sorts VariableModifier
164

165 sorts VarDeclId constructors
166 VariableDecl : Id -> VarDeclId
167 VariableDeclArray : Id * AnnotatedDims -> VarDeclId
168

169

170 sorts AnnotatedDimsEmpty
171 sorts AnnotatedDims = list(AnnotatedDim)
172 sorts AnnotatedDim
173 sorts MaybeThrows
174

175 //
176 // 8.9. Enum Types
177 //
178

179 sorts EnumDeclaration constructors
180 EnumDeclComma : list(ClassModifier) * Id * MaybeSuperInterfaces *

list(EnumConstant) * MaybeEnumBodyDeclarations -> EnumDeclaration
181 EnumDecl : list(ClassModifier) * Id * MaybeSuperInterfaces *

list(EnumConstant) * MaybeEnumBodyDeclarations -> EnumDeclaration
182

100

183 sorts EnumConstant
184

185 sorts MaybeEnumBodyDeclarations = list(EnumBodyDeclarations)
186 sorts EnumBodyDeclarations
187

188 //
189 // 9.1. Interface Declarations
190 //
191

192 sorts InterfaceDeclaration constructors
193 NormalInterface : list(InterfaceModifier) * Id * MaybeTypeParameters *

MaybeExtendsInterfaces * list(InterfaceMemberDeclaration) ->
InterfaceDeclaration

194 ATD2ID : AnnotationTypeDeclaration -> InterfaceDeclaration
195

196 sorts InterfaceModifier
197

198 sorts MaybeExtendsInterfaces = list(ExtendsInterfaces)
199 sorts ExtendsInterfaces constructors
200 ExtendsInterfaces : list(ClassType) -> ExtendsInterfaces
201

202 sorts InterfaceMemberDeclaration constructors
203 CD2IMD : ClassDeclaration -> InterfaceMemberDeclaration
204 ConstD2IMD : list(FieldDeclaration) -> InterfaceMemberDeclaration
205 IMD2IMD : InterfaceMethodDeclaration -> InterfaceMemberDeclaration
206 ID2IMD : InterfaceDeclaration -> InterfaceMemberDeclaration
207 //Semicolon : InterfaceMemberDeclaration
208

209 sorts InterfaceMethodDeclaration constructors
210 AbstractMethodDec : list(InterfaceMethodModifier) * string * MethodHeader *

Statement -> InterfaceMethodDeclaration
211

212 sorts InterfaceMethodModifier
213

214 //
215 // 9.6. Annotation Types
216 //
217

218 sorts AnnotationTypeDeclaration constructors
219 AnnoDec : list(InterfaceModifier) * Id *

list(AnnotationTypeMemberDeclaration) -> AnnotationTypeDeclaration
220

221 sorts AnnotationTypeMemberDeclaration
222

223 //
224 // 9.7. Annotations
225 //
226

227 sorts Annotation
228

229 //
230 // 14 Statements

101

B. Statix Specification

231 //
232 sorts Statement constructors
233 Block : list(Statement) -> Statement
234 ExpressionStatement : Expression -> Statement
235 ExpressionsStatement : list(Expression) -> Statement
236 VarDeclStatement : Type * Id -> Statement
237 ArrayVarDeclStatement : Type * Id * int -> Statement
238

239 //
240 // Expressions
241 //
242

243 sorts Expression constructors
244 //References to names
245 EN2E : ExpressionName -> Expression
246

247 //Primary
248 L2E : Literal -> Expression
249 CL2E : ClassLiteral -> Expression
250 This : Expression
251 QThis : TypeName -> Expression
252

253 //Fields
254 FA2E : FieldAccess -> Expression
255

256 //Methods
257 Invoke : MethodName * list(Expression) -> Expression
258 InvokeQExp : Expression * MaybeTypeArguments * Id * list(Expression) ->

Expression
259 InvokeSuper : MaybeTypeArguments * Id * list(Expression) -> Expression
260 InvokeQSuper : TypeName * MaybeTypeArguments * Id * list(Expression) ->

Expression
261

262 //ArrayAccess + Array creation
263 AA2E : ArrayAccess -> Expression
264 ACE2E : ArrayCreationExpression -> Expression
265

266 //Assignments
267 Assign : Expression * Expression -> Expression
268

269 //Eq and Add are flattened to primitives
270 InstanceOf : Expression * Type -> Expression
271 Cond : Expression * Expression * Expression -> Expression
272

273 //Creating new instances
274 UI2E : UnqualifiedInstance -> Expression
275 QualifiedInstance : Expression * UnqualifiedInstance -> Expression
276

277 //Casts
278 CastPrimitive : Type * Expression -> Expression
279 CastReference : Type * Other * Expression -> Expression
280

102

281 sorts ArrayAccess constructors
282 ArrayAccess : Expression * Expression -> ArrayAccess
283

284 sorts ArrayCreationExpression constructors
285 NewArray : Type * Other * Other -> ArrayCreationExpression
286 NewArrayInit : Type * Other * Other -> ArrayCreationExpression
287

288 sorts Other
289

290 //Second is actually type arguments or diamond
291 sorts UnqualifiedInstance constructors
292 NewInstance : MaybeTypeArguments * list(Annotation) * Id *

list(QualifiedId) * MaybeTypeArguments * list(Expression) ->
UnqualifiedInstance

293 NewInstance : MaybeTypeArguments * list(Annotation) * Id *
list(QualifiedId) * MaybeTypeArguments * list(Expression) *
list(ClassBodyDeclaration) -> UnqualifiedInstance

294

295 sorts QualifiedId constructors
296 QualifiedId : list(Annotation) * Id -> QualifiedId
297

298 sorts FieldAccess constructors
299 Field : Expression * Id -> FieldAccess
300 SuperField : Id -> FieldAccess
301 QSuperField : TypeName * Id -> FieldAccess
302

303 sorts Literal constructors
304 Literal : Type -> Literal
305 Null : Literal
306

307 sorts ClassLiteral constructors
308 TypeNameClassLiteral : TypeName * int -> ClassLiteral
309 NumericTypeClassLiteral : PrimitiveType * int -> ClassLiteral
310 BooleanClassLiteral : int -> ClassLiteral
311 VoidClassLiteral : ClassLiteral
312

313 signature
314

315 sorts PKG = (path * (occurrence * scope))
316

317 sorts TYPE constructors
318 ANNO : scope -> TYPE
319 CLASS : scope -> TYPE
320 INTF : scope -> TYPE
321 ENUM : scope -> TYPE
322 PRIMITIVE : TYPE
323 ARRAY : TYPE -> TYPE
324 FUNCTION : list(TYPE) * TYPE -> TYPE
325 VOID : TYPE
326

327 name-resolution
328 labels LEX // lexical parent

103

B. Statix Specification

329 PKG // package composition
330 IMP // import
331 EXT // extends
332 IMPL // implements
333 resolve Pkg filter LEX*
334 min $ < LEX
335 resolve Type filter LEX*(e|PKG|IMP)
336 min $ < LEX, $ < PKG, $ < IMP, IMP < PKG, PKG < LEX
337 resolve Method filter LEX*EXT*IMPL*
338 min $ < LEX, $ < EXT, $ < IMPL, EXT < LEX, IMPL < LEX,

EXT < IMPL
339 resolve Var filter LEX*EXT*
340 min $ < LEX, $ < EXT, EXT < LEX
341 resolve Builtin filter LEX*
342 min $ < LEX
343

344 namespaces
345 Type : Id
346 Pkg : list(Id)
347 Method : Id
348 Var : Id
349 Builtin : string
350

351 relations
352 types : occurrence -> TYPE
353 packages : occurrence -> scope
354 scopes : occurrence -> scope
355 supers : occurrence -> list(occurrence)
356

357 rules
358

359 projectOk : scope
360

361 projectOk(s) :- {s_object s_array tLength}
362 //Extend object in the program scope
363 CLASS(s_object) == classTypeOkNoId(s,

ClassOrInterfaceTypeMember(ClassOrInterfaceTypeMember(ClassType([],
Id("java"), []), [], Id("lang"), []), [], Id("Object"), [])),

364 s -EXT-> s_object,
365

366 //Array with length field
367 new s_array, s_array -LEX-> s_object,
368 !scopes[Builtin{"array"@-}, s_array] in s,
369 tLength == Id("length"),
370 !types[Var{tLength@-}, PRIMITIVE()] in s_array.
371

372

373 rules
374

375 fileOk : scope * CompilationUnit
376

104

377 fileOk(s, CompilationUnit(maybePackageDeclaration, importDeclarations,
typeDeclarations)) :-

378 {s_cu}
379 new s_cu, s_cu -LEX-> s,
380 maybePackageDeclarationOk(s, maybePackageDeclaration, s_cu),
381 importDeclarationsOk(s, importDeclarations, s_cu),
382 typeDeclarationsOk(s_cu, typeDeclarations).
383

384

385 rules
386

387 maybePackageDeclarationOk maps packageDeclarationOk(*, list(*), *)
388

389 packageDeclarationOk : scope * PackageDeclaration * scope
390

391 packageDeclarationOk(s, p@PackageDeclaration(annotations, ids), s_pkg) :-
392 {pkgs}
393 !packages[Pkg{ids@p}, s_pkg] in s,
394 packages of Pkg{ids@-} in s |-> pkgs,
395 composePackages(s_pkg, pkgs).
396

397

398 composePackages maps composePackage(*, list(*))
399

400 composePackage : scope * PKG
401

402 composePackage(s, (_, (_, s'))) :-
403 s -PKG-> s'.
404

405

406 rules
407

408 importDeclarationsOk maps importDeclarationOk(*, list(*), *)
409

410 importDeclarationOk : scope * ImportDeclaration * scope
411

412 importDeclarationOk(s, SingleTypeImport(typeName), s_cu) :-
413 {s_imp l}
414 new s_imp, s_cu -IMP-> s_imp,
415 resolveTypeNameAsList(s, typeName) == l,
416 addImportIfFound(s, s_imp, typeName, l).
417

418 importDeclarationOk(s, TypeImportOnDemand(packageOrTypeName), s_cu) :-
419 {pkgs}
420 resolvePackageOrTypeName(s, packageOrTypeName) == pkgs,
421 importPackages(s_cu, pkgs).
422

423 //Add the first import that we find (if there are multiple classes with the
same full name, we pick the first one).

424 //Otherwise, invent the imported type and associate it a class.
425 addImportIfFound : scope * scope * TypeName * list((path * (occurrence *

TYPE)))

105

B. Statix Specification

426 addImportIfFound(s, s_imp, _, [(_, (occ, type))]) :-
427 !types[occ, type] in s_imp.
428 addImportIfFound(s, s_imp, _, [(_, (occ, type)) | _]) :-
429 !types[occ, type] in s_imp,
430 false.
431 addImportIfFound(s, s_imp, TypeName(id), []) :- {s_notfound}
432 new s_notfound, s_notfound -LEX-> s,
433 !types[Type{id@-}, CLASS(s_notfound)] in s_imp,
434 false.
435 addImportIfFound(s, s_imp, TypeName(_, id), []) :- {s_notfound}
436 new s_notfound, s_notfound -LEX-> s,
437 !types[Type{id@-}, CLASS(s_notfound)] in s_imp,
438 false.
439

440

441 resolveTypeNameAsList : scope * TypeName -> list((path * (occurrence * TYPE)))
442

443 resolveTypeNameAsList(s, TypeName(id)) = l :-
444 types of Type{id@-} in s |-> l.
445

446 resolveTypeNameAsList(s, TypeName(packageOrTypeName, id)) = l :-
447 {s_imp pkgs}
448 new s_imp,
449 resolvePackageOrTypeName(s, packageOrTypeName) == pkgs,
450 importPackages(s_imp, pkgs),
451 resolveTypeNameAsList(s_imp, TypeName(id)) == l.
452

453 resolveTypeName : scope * TypeName -> (occurrence * TYPE)
454

455 resolveTypeName(s, TypeName(id)) = type :-
456 types of Type{id@-} in s |-> [(_, type)]. // FIXME Is `s` correct here, or

should that be the package scope?
457

458 resolveTypeName(s, TypeName(packageOrTypeName, id)) = type :-
459 {s_imp pkgs}
460 new s_imp,
461 resolvePackageOrTypeName(s, packageOrTypeName) == pkgs,
462 importPackages(s_imp, pkgs),
463 resolveTypeName(s_imp, TypeName(id)) == type.
464

465 resolveTypeName2 : scope * TypeName -> (occurrence * TYPE)
466

467 resolveTypeName2(s, TypeName(id)) = type :-
468 types of Type{id@-} in s |-> [(_, type)]. // FIXME Is `s` correct here, or

should that be the package scope?
469

470 resolveTypeName2(s, TypeName(packageOrTypeName, id)) = type :-
471 {s_imp pkgs}
472 new s_imp,
473 resolvePackageOrTypeName(s, packageOrTypeName) == pkgs,
474 importPackages(s_imp, pkgs),
475 resolveTypeName2(s_imp, TypeName(id)) == type.

106

476

477

478 resolvePackageOrTypeName : scope * PackageOrTypeName -> list(PKG)
479

480 resolvePackageOrTypeName(s, packageOrTypeName) = pkgs :-
481 {x i}
482 packageOrTypeName2Pkg(packageOrTypeName, []) == Pkg{x@i},
483 packages of Pkg{x@i} in s |-> pkgs.
484

485

486 packageOrTypeName2Pkg : PackageOrTypeName * list(Id) -> occurrence
487

488 packageOrTypeName2Pkg(PackageOrTypeName(id), ids) = Pkg{[id|ids]@-}.
489

490 packageOrTypeName2Pkg(PackageOrTypeName(packageOrTypeName, id), ids) =
491 packageOrTypeName2Pkg(packageOrTypeName, [id|ids]).
492

493

494 importPackages maps importPackage(*, list(*))
495

496 importPackage : scope * PKG
497

498 importPackage(s, (_, (_, s'))) :-
499 s -IMP-> s'.
500

501

502 rules
503

504 typeDeclarationsOk maps typeDeclarationOk(*, list(*))
505

506 typeDeclarationOk : scope * TypeDeclaration
507

508 typeDeclarationOk(s, CD2TD(cd)) :-
509 classDeclarationOk(s, cd).
510

511 typeDeclarationOk(s, ID2TD(id)) :-
512 interfaceDeclarationOk(s, id).
513

514

515 rules
516

517 classDeclarationsOk maps classDeclarationOk(*, list(*))
518

519 classDeclarationOk : scope * ClassDeclaration
520

521 classDeclarationOk(s, NCD2CD(ncd)) :-
522 normalClassDeclarationOk(s, ncd).
523

524 classDeclarationOk(s, ED2CD(ed)) :-
525 enumDeclarationOk(s, ed).
526

527

107

B. Statix Specification

528 rules
529

530 normalClassDeclarationsOk maps normalClassDeclarationOk(*, list(*))
531

532 normalClassDeclarationOk : scope * NormalClassDeclaration
533

534 normalClassDeclarationOk(s, ClassDeclaration(normalClassModifiers, id,
maybeTypeParameters, maybeSuperClass, maybeSuperInterfaces,
normalClassBodyDeclarations)) :-

535 // modbound normalClassDeclarationOk(s, ClassDeclaration(normalClassModifiers,
id@Id(name), maybeTypeParameters, maybeSuperClass, maybeSuperInterfaces,
normalClassBodyDeclarations))

536 // | $[[name]] :-
537 {s_cls tThis}
538 new s_cls, s_cls -LEX-> s,
539 !types[Type{id@id}, CLASS(s_cls)] in s,
540 tThis == Id("this"), !types[Var{tThis@-}, CLASS(s_cls)] in s_cls,
541 maybeSuperClassOk(s, maybeSuperClass, s_cls),
542 maybeSuperInterfacesOk(s, maybeSuperInterfaces, s_cls),
543 maybeClassBodyDeclarationsOk(s, normalClassBodyDeclarations, s_cls).
544

545 flatten : list(list(occurrence)) -> list(occurrence)
546 flatten([]) = [].
547 flatten([[]]) = [].
548 flatten([l]) = l.
549 flatten([[h | t1] | t2]) = [h | join(t1, flatten(t))].
550

551 join: list(occurrence) * list(occurrence) -> list(occurrence)
552 join([], l) = l.
553 join([h | t], l) = [h | join(t, l)].
554

555 rules
556

557 enumDeclarationsOk maps enumDeclarationOk(*, list(*))
558

559 enumDeclarationOk : scope * EnumDeclaration
560

561 enumDeclarationOk(s, EnumDeclComma(classModifiers, id, maybeSuperInterfaces,
enumConstants, maybeEnumBodyDeclarations)) :-

562 // modbound enumDeclarationOk(s, EnumDeclComma(classModifiers, id@Id(name),
maybeSuperInterfaces, enumConstants, maybeEnumBodyDeclarations))

563 // | $[[name]] :-
564 {s_enum tThis}
565 new s_enum, s_enum -LEX-> s,
566 !types[Type{id@id}, ENUM(s_enum)] in s,
567 tThis == Id("this"), !types[Var{tThis@-}, ENUM(s_enum)] in s_enum,
568 maybeSuperInterfacesOk(s, maybeSuperInterfaces, s_enum).
569

570 enumDeclarationOk(s, EnumDecl(classModifiers, id, maybeSuperInterfaces,
enumConstants, maybeEnumBodyDeclarations)) :-

571 // modbound enumDeclarationOk(s, EnumDecl(classModifiers, id@Id(name),
maybeSuperInterfaces, enumConstants, maybeEnumBodyDeclarations))

108

572 // | $[[name]] :-
573 {s_enum tThis}
574 new s_enum, s_enum -LEX-> s,
575 !types[Type{id@id}, ENUM(s_enum)] in s,
576 tThis == Id("this"), !types[Var{tThis@-}, ENUM(s_enum)] in s_enum,
577 maybeSuperInterfacesOk(s, maybeSuperInterfaces, s_enum).
578

579 rules
580

581 interfaceDeclarationsOk maps interfaceDeclarationOk(*, list(*))
582

583 interfaceDeclarationOk : scope * InterfaceDeclaration
584

585 interfaceDeclarationOk(s, NormalInterface(interfaceModifiers, id,
maybeTypeParameters, maybeExtendsInterfaces, interfaceMemberDeclarations))
:-

586 // modbound interfaceDeclarationOk(s, NormalInterface(interfaceModifiers,
id@Id(name), maybeTypeParameters, maybeExtendsInterfaces,
interfaceMemberDeclarations))

587 // | $[[name]] :-
588 {s_intf tThis}
589 new s_intf, s_intf -LEX-> s,
590 !types[Type{id@id}, INTF(s_intf)] in s,
591 tThis == Id("this"), !types[Var{tThis@-}, INTF(s_intf)] in s_intf,
592 maybeExtendsInterfacesOk(s, maybeExtendsInterfaces),
593 maybeInterfaceMemberDeclarationsOk(s, interfaceMemberDeclarations, s_intf).
594

595 interfaceDeclarationOk(s, ATD2ID(atd)) :-
596 annotationTypeDeclarationOk(s, atd).
597

598 rules
599

600 annotationTypeDeclarationsOk maps annotationTypeDeclarationOk(*, list(*))
601

602 annotationTypeDeclarationOk : scope * AnnotationTypeDeclaration
603

604 annotationTypeDeclarationOk(s, AnnoDec(interfaceModifiers, id,
annotationTypeMemberDeclarations)) :-

605 {s_anno}
606 new s_anno, s_anno -LEX-> s,
607 !types[Type{id@id}, ANNO(s_anno)] in s.
608

609

610 rules
611

612 maybeSuperClassOk maps superClassOk(*, list(*), *)
613 superClassOk : scope * SuperClass * scope
614 superClassOk(s, SuperClass(classType), s_this) :-
615 {s_super}
616 classTypeOk(s_this, classType) == CLASS(s_super), //was lookup in s
617 s_this -EXT-> s_super.
618

109

B. Statix Specification

619

620 rules
621

622 maybeSuperInterfacesOk maps superInterfacesOk(*, list(*), *)
623 superInterfacesOk : scope * SuperInterfaces * scope
624 superInterfacesOk(s, SuperInterface(classTypes), s_this) :-
625 {types}
626 classTypesOk(s_this, classTypes) == types, //was lookup in s
627 implementInterfaces(types, s).
628

629 implementInterfaces maps implementInterface(list(*), *)
630 implementInterface : TYPE * scope
631 implementInterface(INTF(s_intf), s_this) :-
632 s_this -IMPL-> s_intf.
633

634

635 rules
636

637 maybeExtendsInterfacesOk maps extendsInterfacesOk(*, list(*))
638 extendsInterfacesOk : scope * ExtendsInterfaces
639 extendsInterfacesOk(s, ExtendsInterfaces(classTypes)) :-
640 classTypesOk(s, classTypes) == _.
641

642

643 rules
644

645 classTypesOk maps classTypeOk(*, list(*)) = list(*)
646 classTypeOk : scope * ClassType -> TYPE
647 classTypeOk(s, ClassType(annotations, id, maybeTypeArguments)) = ty :-
648 types of Type{id@-} in s |-> [(_, (_, ty))].
649

650 classTypeOk(s, ClassOrInterfaceTypeMember(classType, annotations, id,
maybeTypeArguments)) = ty :-

651 {x i pkgs s_imp}
652 classType2Pkg(classType, []) == Pkg{x@i},
653 packages of Pkg{x@i} in s |-> pkgs,
654 new s_imp,
655 importPackages(s_imp, pkgs),
656 classTypeOk(s_imp, ClassType(annotations, id, maybeTypeArguments)) == ty.
657

658 //Does not add a termId
659 classTypeOkNoId : scope * ClassType -> TYPE
660 classTypeOkNoId(s, ClassType(annotations, id, maybeTypeArguments)) = T :-
661 types of Type{id@-} in s |-> [(_, (_, T))].
662

663 classTypeOkNoId(s, ClassOrInterfaceTypeMember(classType, annotations, id,
maybeTypeArguments)) = T :-

664 {x i pkgs s_imp}
665 classType2Pkg(classType, []) == Pkg{x@i},
666 packages of Pkg{x@i} in s |-> pkgs,
667 new s_imp,
668 importPackages(s_imp, pkgs),

110

669 classTypeOkNoId(s_imp, ClassType(annotations, id, maybeTypeArguments)) == T.
670

671

672 classType2Pkg : ClassType * list(Id) -> occurrence
673 classType2Pkg(ClassType(_, id, _), ids) = Pkg{[id|ids]@-}.
674

675 classType2Pkg(ClassOrInterfaceTypeMember(classType, _, id, _), ids) =
676 classType2Pkg(classType, [id|ids]).
677

678 //---
679 //Bodies
680 //---
681 rules
682 maybeClassBodyDeclarationsOk maps maybeClassBodyDeclarationOk(*, list(*), *)
683 maybeClassBodyDeclarationOk: scope * ClassBodyDeclaration * scope
684

685 maybeClassBodyDeclarationOk(s, CMD2CBD(FD2CMD(fields)), s_cls) :-
686 maybeFieldDeclsOk(s, fields, s_cls).
687 // modbound maybeClassBodyDeclarationOk(s, CMD2CBD(MD2CMD(MethodDecl(mods,

uid, header, Block(stmts)))), s_cls) | $[[uid]] :- {s_mtd}
688 maybeClassBodyDeclarationOk(s, CMD2CBD(MD2CMD(MethodDecl(mods, uid, header,

Block(stmts)))), s_cls) :- {s_mtd}
689 new s_mtd, s_mtd -LEX-> s_cls,
690 methodHeaderOk(s, header, s_cls, s_mtd),
691 statementsOk(s, stmts, s_mtd).
692

693 //Inner class
694 maybeClassBodyDeclarationOk(s, CMD2CBD(CD2CMD(cd)), s_cls) :-
695 classDeclarationOk(s_cls, cd).
696

697 //Inner interface
698 maybeClassBodyDeclarationOk(s, CMD2CBD(ID2CMD(id)), s_cls) :-
699 interfaceDeclarationOk(s_cls, id).
700

701 //Initializer / Constructor
702 maybeClassBodyDeclarationOk(_, _, _).
703

704 //Interfaces
705 maybeInterfaceMemberDeclarationsOk maps interfaceMemberDeclarationOk(*,

list(*), *)
706 interfaceMemberDeclarationOk : scope * InterfaceMemberDeclaration * scope
707 interfaceMemberDeclarationOk(s, IMD2IMD(AbstractMethodDec(mods, _, header,

Block([]))), s_intf) :-
708 {s_mtd}
709 new s_mtd, s_mtd -LEX-> s_intf,
710 methodHeaderOk(s, header, s_intf, s_mtd).
711 // modbound interfaceMemberDeclarationOk(s, IMD2IMD(AbstractMethodDec(mods,

uid, header, Block(stmts@[_ | _]))), s_intf) | $[[uid]] :-
712 interfaceMemberDeclarationOk(s, IMD2IMD(AbstractMethodDec(mods, uid, header,

Block(stmts@[_ | _]))), s_intf) :-
713 {s_mtd}
714 new s_mtd, s_mtd -LEX-> s_intf,

111

B. Statix Specification

715 methodHeaderOk(s, header, s_intf, s_mtd),
716 statementsOk(s, stmts, s_mtd).
717

718 interfaceMemberDeclarationOk(s, CD2IMD(cd), s_intf) :-
719 classDeclarationOk(s_intf, cd).
720

721 interfaceMemberDeclarationOk(s, ID2IMD(id), s_intf) :-
722 interfaceDeclarationOk(s_intf, id).
723

724 interfaceMemberDeclarationOk(s, ConstD2IMD(fields), s_intf) :-
725 maybeFieldDeclsOk(s, fields, s_intf).
726

727 //Semicolon
728 interfaceMemberDeclarationOk(_, _, _).
729

730

731 //---
732 //Fields
733 //---
734 rules
735 maybeFieldDeclsOk maps maybeFieldDeclOk(*, list(*), *)
736 maybeFieldDeclOk : scope * FieldDeclaration * scope
737 maybeFieldDeclOk(s, TFieldDecl(mods, ty, name), s_cls) :-
738 !types[Var{name@name}, typeOk(s_cls, ty)] in s_cls.
739 maybeFieldDeclOk(s, TFieldDeclArray(mods, ty, name, count), s_cls) :-
740 !types[Var{name@name}, ARRAY(typeOk(s_cls, ty))] in s_cls.
741

742 //---
743 //Methods
744 //---
745 rules
746 methodHeaderOk : scope * MethodHeader * scope * scope
747 methodHeaderOk(s, MethodHeader(ty, name, params, _, throws), s_cls, s_mtd) :-

{rty ptys}
748 !types[Method{name@name}, FUNCTION(ptys, rty)] in s_cls,
749 rty == typeOk(s_cls, ty),
750 ptys == paramTypesOk(s_cls, params, s_mtd).
751 methodHeaderOk(s, MethodHeaderTypeParameters(typs, annots, ty, name, params,

throws), s_cls, s_mtd) :- {rty ptys}
752 !types[Method{name@name}, FUNCTION(ptys, rty)] in s_cls,
753 rty == typeOk(s_cls, ty),
754 ptys == paramTypesOk(s_cls, params, s_mtd).
755

756 paramTypesOk maps paramTypeOk(*, list(*), *) = list(*)
757 paramTypeOk : scope * FormalParam * scope -> TYPE
758 paramTypeOk(s, FormalParam(mods, ty, VariableDecl(id)), s_mtd) = T :-
759 T == typeOk(s, ty),
760 !types[Var{id@id}, T] in s_mtd.
761 paramTypeOk(s, FormalParam(mods, ty, VariableDeclArray(id, dims)), s_mtd) = T

:-
762 T == typeOk(s, ty),
763 !types[Var{id@id}, ARRAY(T)] in s_mtd.

112

764

765 paramTypeOk(s, ReceiverParam(annots, ty), s_mtd) = typeOk(s, ty).
766 paramTypeOk(s, ReceiverParamQual(annots, ty, id), s_mtd) = typeOk(s, ty).
767

768 //---
769 //Statements
770 //---
771 rules
772 statementsOk maps statementOk(*, list(*), *)
773 statementOk: scope * Statement * scope
774 statementOk(s, Block(stmts), s_method) :- {s_block}
775 new s_block,
776 s_block -LEX-> s_method,
777 statementsOk(s, stmts, s_block).
778

779 statementOk(s, ExpressionStatement(exp), s_mtd) :- {T}
780 expressionOk(s, exp, s_mtd) == T.
781

782 statementOk(s, ExpressionsStatement(exps), s_mtd) :- {Ts}
783 expressionsOk(s, exps, s_mtd) == Ts.
784

785 statementOk(s, VarDeclStatement(ty, name), s_mtd) :-
786 !types[Var{name@name}, typeOk(s_mtd, ty)] in s_mtd.
787

788 statementOk(s, ArrayVarDeclStatement(ty, name, dim), s_mtd) :-
789 !types[Var{name@name}, ARRAY(typeOk(s_mtd, ty))] in s_mtd.
790

791 //---
792 //Expressions
793 //---
794 rules
795 expressionsOk maps expressionOk(*, list(*), *) = list(*)
796 expressionOk : scope * Expression * scope -> TYPE
797

798 expressionOk(s, EN2E(ExpressionName(id)), s_mtd) = T :-
799 types of Var{id@-} in s_mtd |-> [(_, (_, T))].
800 expressionOk(s, EN2E(ExpressionName(ambName, id)), s_mtd) = T :-
801 {tyAmb sTyAmb}
802 handleAmbiguous(s_mtd, ambName) == [(_, (_, tyAmb))],
803 scopeOf(s, tyAmb) == sTyAmb,
804 types of Var{id@-} in sTyAmb |-> [(_, (_, T))].
805

806 //Fields
807 expressionOk(s, FA2E(Field(exp, id)), s_mtd) = T :-
808 {Texp s_ty}
809 Texp == expressionOk(s, exp, s_mtd),
810 s_ty == scopeOf(s, Texp),
811 types of Var{id@-} in s_ty |-> [(_, (_, T))].
812

813 expressionOk(s, FA2E(SuperField(id)), s_mtd) = T :-
814 query types filter LEX* EXT EXT* and { Var{id@-} }
815 min $ < EXT, EXT < LEX, $ < LEX and true

113

B. Statix Specification

816 in s_mtd |-> [(_, (_, T))].
817

818 expressionOk(s, FA2E(QSuperField(typeName, id)), s_mtd) = T :- {tyTN sTN}
819 resolveTypeName(s_mtd, typeName) == (_, tyTN),
820 scopeOf(s, tyTN) == sTN,
821 types of Var{id@-} in sTN |-> [(_, (_, T))].
822

823 //Methods
824 expressionOk(s, Invoke(MethodName(id), args), s_mtd) = T :- {methods}
825 types of Method{id@-} in s_mtd |-> methods,
826 (_, FUNCTION(_, T)) == findMethod(s, expressionsOk(s, args, s_mtd),

methods, s_mtd).
827

828 expressionOk(s, InvokeQExp(exp, tyargs, id, args), s_mtd) = T :- {Texp sExp
methods}

829 expressionOk(s, exp, s_mtd) == Texp,
830 scopeOf(s, Texp) == sExp,
831 types of Method{id@-} in sExp |-> methods,
832 (_, FUNCTION(_, T)) == findMethod(s, expressionsOk(s, args, s_mtd),

methods, s_mtd).
833

834 expressionOk(s, InvokeSuper(tyargs, id, args), s_mtd) = T :- {methods}
835 query types filter LEX* EXT EXT* and { Method{id@-} }
836 min $ < EXT, EXT < LEX, $ < LEX and true
837 in s_mtd |-> methods,
838 (_, FUNCTION(_, T)) == findMethod(s, expressionsOk(s, args, s_mtd),

methods, s_mtd).
839

840 expressionOk(s, InvokeQSuper(typeName, tyArgs, id, args), s_mtd) = T :- {tyTN
sTN methods}

841 resolveTypeName(s_mtd, typeName) == (_, tyTN),
842 scopeOf(s, tyTN) == sTN,
843 types of Method{id@-} in sTN |-> methods,
844 (_, FUNCTION(_, T)) == findMethod(s, expressionsOk(s, args, s_mtd),

methods, s_mtd).
845

846 /*
847 * Tries to find a matching method. If not successful, returns the first

match.
848 */
849 findMethod : scope * list(TYPE) * list((path * (occurrence * TYPE))) * scope

-> (occurrence * TYPE)
850 findMethod(s, argTys, [(_, p@(_, FUNCTION(argTys, _))) | _], s_mtd) = p.
851 findMethod(s, argTys, [(_, p) | tail], s_mtd) = findMethodOrGuess(argTys,

tail, p).
852

853 findMethodOrGuess : list(TYPE) * list((path * (occurrence * TYPE))) *
(occurrence * TYPE) -> (occurrence * TYPE)

854 findMethodOrGuess(argTys, [], p) = p.
855 findMethodOrGuess(argTys, [(_, p@(_, FUNCTION(argTys, _))) | _], _) = p.
856 findMethodOrGuess(argTys, [_ | tail], p) = findMethodOrGuess(argTys, tail, p).
857

114

858

859

860 //Literals
861 expressionOk(s, L2E(Literal(ty)), s_mtd) = typeOk(s, ty).
862 expressionOk(s, L2E(Null()), s_mtd) = CLASS(s).
863 expressionOk(s, This(), s_mtd) = T :- {tThis}
864 tThis == Id("this"), types of Var{tThis@-} in s_mtd |-> [(_, (_, T))].
865 expressionOk(s, QThis(tyName), s_mtd) = T :-
866 resolveTypeName(s_mtd, tyName) == (_, T).
867 expressionOk(s, CL2E(_), s_mtd) = T :-
868 resolveTypeName2(s_mtd,

TypeName(PackageOrTypeName(PackageOrTypeName(Id("lang")), Id("java")),
Id("Class"))) == (_, T).

869

870 //InstanceCreation
871 expressionOk(s, UI2E(NewInstance(typeArgs, annots, id, qids, typeArgs2,

args)), s_mtd) = T :-
872 {tyArgs}
873 expressionsOk(s, args, s_mtd) == tyArgs,
874 resolveTypeName(s_mtd, toTypeName([id | qidsToIds(qids)])) == (_, T).
875 expressionOk(s, UI2E(NewInstance(typeArgs, annots, id, qids, typeArgs2, args,

cbds)), s_mtd) = T :-
876 {tyArgs}
877 expressionsOk(s, args, s_mtd) == tyArgs,
878 resolveTypeName(s_mtd, toTypeName([id | qidsToIds(qids)])) == (_, T).
879 expressionOk(s, QualifiedInstance(exp, ui), s_mtd) = T :-
880 {s_exp}
881 scopeOf(s, expressionOk(s, exp, s_mtd)) == s_exp,
882 expressionOk(s, UI2E(ui), s_exp) == T.
883

884 expressionOk(s, AA2E(ArrayAccess(e1, e2)), s_mtd) = T :-
885 expressionOk(s, e1, s_mtd) == ARRAY(T),
886 expressionOk(s, e2, s_mtd) == _.
887 expressionOk(s, ACE2E(NewArray(ty, _, _)), s_mtd) = typeOk(s_mtd, ty).
888 expressionOk(s, ACE2E(NewArrayInit(ty, _, _)), s_mtd) = typeOk(s_mtd, ty).
889

890 expressionOk(s, Assign(e1, e2), s_mtd) = T :-
891 expressionOk(s, e1, s_mtd) == T,
892 expressionOk(s, e2, s_mtd) == _.
893

894 expressionOk(s, Cond(e1, e2, e3), s_mtd) = T :-
895 expressionOk(s, e1, s_mtd) == _,
896 expressionOk(s, e3, s_mtd) == _,
897 expressionOk(s, e2, s_mtd) == T.
898

899 expressionOk(s, InstanceOf(e1, ty), s_mtd) = PRIMITIVE() :-
900 expressionOk(s, e1, s_mtd) == _,
901 typeOk(s_mtd, ty) == _.
902

903 expressionOk(s, CastPrimitive(ty, exp), s_mtd) = typeOk(s_mtd, ty) :-
904 expressionOk(s, exp, s_mtd) == _.
905 expressionOk(s, CastReference(ty, _, exp), s_mtd) = typeOk(s_mtd, ty) :-

115

B. Statix Specification

906 expressionOk(s, exp, s_mtd) == _.
907

908 //Eq, Add are flattened to primitives
909

910 expressionOk(s, e, s_mtd) = PRIMITIVE().
911

912 qidsToIds maps qidToId(list(*)) = list(*)
913 qidToId : QualifiedId -> Id
914 qidToId(QualifiedId(annots, id)) = id.
915 toTypeName : list(Id) -> TypeName
916 toTypeName([id]) = TypeName(id).
917 toTypeName([id | tail]) = TypeName(toPackageOrTypeName(tail), id).
918

919 toPackageOrTypeName : list(Id) -> PackageOrTypeName
920 toPackageOrTypeName([id]) = PackageOrTypeName(id).
921 toPackageOrTypeName([id | tail]) =

PackageOrTypeName(toPackageOrTypeName(tail), id).
922

923 //---
924 //Types
925 //---
926 rules
927 typesOk maps typeOk(*, list(*)) = list(*)
928 typeOk: scope * Type -> TYPE
929 typeOk(s, RT2T(CT2RT(ct))) = classTypeOk(s, ct).
930 typeOk(s, RT2T(AT2RT(at))) = arrayTypeOk(s, at).
931 typeOk(s, PT2T(pt)) = PRIMITIVE().
932 typeOk(s, Void()) = VOID().
933 typeOk(s, ArrayType(ty, _)) = ARRAY(typeOk(s, ty)).
934

935 arrayTypeOk: scope * ArrayType -> TYPE
936 arrayTypeOk(s, ArrayTypePrimitive(_, _)) = ARRAY(PRIMITIVE()).
937 arrayTypeOk(s, ArrayTypeClassType(ct, _)) = ARRAY(classTypeOk(s, ct)).
938

939 scopeOf : scope * TYPE -> scope
940 scopeOf(sg, CLASS(s)) = s.
941 scopeOf(sg, ANNO(s)) = s.
942 scopeOf(sg, INTF(s)) = s.
943 scopeOf(sg, ENUM(s)) = s.
944 scopeOf(sg, ARRAY(_)) = s :-
945 scopes of Builtin{"array"@-} in sg |-> [(_, (_, s))].
946

947 maybeScopeOf : scope * TYPE -> list(scope)
948 maybeScopeOf(_, CLASS(s)) = [s].
949 maybeScopeOf(_, ANNO(s)) = [s].
950 maybeScopeOf(_, INTF(s)) = [s].
951 maybeScopeOf(_, ENUM(s)) = [s].
952 maybeScopeOf(sg, ARRAY(_)) = [s] :-
953 scopes of Builtin{"array"@-} in sg |-> [(_, (_, s))].
954 maybeScopeOf(_, _) = [].
955

956 //---

116

957 //Subtyping
958 //---
959 rules
960

961

962 //---
963 //Ambiguous handling
964 //---
965 rules
966 /*
967 * Resolves a type in the given scope and returns its results.
968 */
969 resolveTypeToPOT : scope * Id -> list((path * (occurrence * TYPE)))
970 resolveTypeToPOT(s, id) = results :-
971 types of Type{id@-} in s |-> results.
972 resolveTypeToPOTIfEmpty : list((path * (occurrence * TYPE))) * scope * Id ->

list((path * (occurrence * TYPE)))
973 resolveTypeToPOTIfEmpty([], s, id) = resolveTypeToPOT(s, id).
974 resolveTypeToPOTIfEmpty(l, _, _) = l.
975

976 /*
977 * Resolves a variable in the given scope. If that has no results, resolves

as type instead.
978 */
979 //Tries as var, if that fails, tries as type.
980 resolveVarsOrTypesToPOT maps resolveVarOrTypeToPOT(list(*), *) = list(*)
981 resolveVarOrTypeToPOT : scope * Id -> list((path * (occurrence * TYPE)))
982 resolveVarOrTypeToPOT(s, id) = results :-
983 {varResults}
984 types of Var{id@-} in s |-> varResults,
985 //if results is empty, tries to resolve as type. Otherwise, returns the

input
986 resolveTypeToPOTIfEmpty(varResults, s, id) == results.
987 resolveVarOrTypeToPOTIfEmpty : list((path * (occurrence * TYPE))) * scope *

Id -> list((path * (occurrence * TYPE)))
988 resolveVarOrTypeToPOTIfEmpty([], s, id) = resolveVarOrTypeToPOT(s, id).
989 resolveVarOrTypeToPOTIfEmpty(l, _, _) = l.
990

991 /*
992 * Handles an ambiguous name, by either resolving it as a Var or as a Type

(in that order).
993 */
994 handleAmbiguous : scope * AmbiguousName -> list((path * (occurrence * TYPE)))
995 handleAmbiguous(s_mtd, AmbiguousName(id)) = results :-
996 {varResults}
997 types of Var{id@-} in s_mtd |-> varResults,
998 //if varResults is empty, tries to resolve as type. Otherwise, returns the

input
999 resolveTypeToPOTIfEmpty(varResults, s_mtd, id) == results.

1000 handleAmbiguous(s_mtd, ambCur@AmbiguousName(amb, id)) = results :-
1001 {firstResults}
1002 //Resolve first part of name

117

B. Statix Specification

1003 handleAmbiguous(s_mtd, amb) == firstResults,
1004 //If empty, we now try to resolve it as a FQT. Otherwise, we try to find

our id in the scopes of our results.
1005 handleAmbiguousIfFirstEmpty(firstResults, s_mtd, ambCur, id) == results.
1006

1007 /*
1008 * Helper function for ambiguous resolution.
1009 * If the given list is empty, it tries to resolve the given AmbiguousName as

a fully qualified name.
1010 * Otherwise, it tries to find the given id in the scopes of the list.
1011 */
1012 handleAmbiguousIfFirstEmpty : list((path * (occurrence * TYPE))) * scope *

AmbiguousName * Id -> list((path * (occurrence * TYPE)))
1013 handleAmbiguousIfFirstEmpty([], s, amb, id) = resolveAmbiguousAsType(s, amb).
1014 handleAmbiguousIfFirstEmpty(l, s, _, id) =

flattenPOT(resolveVarsOrTypesToPOT(flattenScopes(potToScopes(s, l)), id)).
1015

1016 /*
1017 * Resolves an ambiguous name as a fully qualified type.
1018 */
1019 resolveAmbiguousAsType : scope * AmbiguousName -> list((path * (occurrence *

TYPE)))
1020 resolveAmbiguousAsType(s, AmbiguousName(id)) = results :-
1021 types of Type{id@-} in s |-> results.
1022 resolveAmbiguousAsType(s, AmbiguousName(amb, id)) = results :-
1023 {x i pkgs s_ref}
1024 amb2Pkg(amb, []) == Pkg{x@i},
1025 packages of Pkg{x@i} in s |-> pkgs,
1026 new s_ref,
1027 importPackages(s_ref, pkgs),
1028 resolveTypeToPOT(s_ref, id) == results.
1029

1030 /*
1031 * Converts an ambiguous name to a package.
1032 */
1033 amb2Pkg : AmbiguousName * list(Id) -> occurrence
1034 amb2Pkg(AmbiguousName(id), ids) = Pkg{[id|ids]@-}.
1035 amb2Pkg(AmbiguousName(amb, id), ids) = amb2Pkg(amb, [id|ids]).
1036

1037 //---
1038 //Helper functions
1039 //---
1040 rules
1041 joinPOT : list((path * (occurrence * TYPE))) * list((path * (occurrence *

TYPE))) -> list((path * (occurrence * TYPE)))
1042 joinPOT([], l) = l.
1043 joinPOT(l@[_ | _], []) = l.
1044 joinPOT([h | t], l) = [h | joinPOT(t, l)].
1045

1046 potToScopes maps potToScope(*, list(*)) = list(*)
1047 potToScope : scope * (path * (occurrence * TYPE)) -> list(scope)
1048 potToScope(s, (_, (_, T))) = maybeScopeOf(s, T).

118

1049

1050 flattenPOT : list(list((path * (occurrence * TYPE)))) -> list((path *
(occurrence * TYPE)))

1051 flattenPOT([]) = [].
1052 flattenPOT([l]) = l.
1053 flattenPOT([[h | t1] | t2]) = [h | joinPOT(t1, flattenPOT(t2))].
1054

1055 flattenScopes : list(list(scope)) -> list(scope)
1056 flattenScopes([]) = [].
1057 flattenScopes([l]) = l.
1058 flattenScopes([[h | t1] | t2]) = [h | joinScopes(t1, flattenScopes(t2))].
1059

1060 joinScopes : list(scope) * list(scope) -> list(scope)
1061 joinScopes([], l) = l.
1062 joinScopes(l@[_ | _], []) = l.
1063 joinScopes([h | t], l) = [h | joinScopes(t, l)].

119

Appendix C

Benchmark Results

This chapter presents additional benchmark results not used in the evaluation chapter.

2 1

No. of reanalyzed files
0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

Commons CSV

Clean analysis time
Incremental analysis time

Analysis Times after removing a Statement

Figure C.1: A comparison of the analysis time for 100 removals of a randomly selected state-
ment for Commons CSV (small). On the x-axis the number of reanalyzed files. On the y-axis,
the time in seconds for reanalysis.

121

C. Benchmark Results

2 1

No. of reanalyzed files
0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

Commons CSV

Clean analysis time
Incremental analysis time

Analysis Times after duplicating a Statement

Figure C.2: A comparison of the analysis time for 100 duplications of a randomly selected
statement for Commons CSV (small). On the x-axis the number of reanalyzed files. On the
y-axis, the time in seconds for reanalysis.

2 1

No. of reanalyzed files
0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

Commons CSV

Clean analysis time
Incremental analysis time

Analysis Times after removing a Method

Figure C.3: A comparison of the analysis time for 100 removals of a randomly selected
method for Commons CSV (small). On the x-axis the number of reanalyzed files. On the
y-axis, the time in seconds for reanalysis.

122

2 1

No. of reanalyzed files
0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

Commons CSV

Clean analysis time
Incremental analysis time

Analysis Times after adding a Method

Figure C.4: A comparison of the analysis time for 100 additions of a randomly selected
method for Commons CSV (small). On the x-axis the number of reanalyzed files. On the
y-axis, the time in seconds for reanalysis.

6 5

No. of reanalyzed files
0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

Commons CSV

Clean analysis time
Incremental analysis time

Analysis Times after removing a File

Figure C.5: A comparison of the analysis time for 100 removals of a randomly selected files
for Commons CSV (small). On the x-axis the number of reanalyzed files. On the y-axis, the
time in seconds for reanalysis.

123

C. Benchmark Results

6 5 2 1

No. of reanalyzed files
0

10

20

30

40

50

Ti
m

e
(s

)

Commons IO

Clean analysis time
Incremental analysis time

Analysis Times after removing a Statement

Figure C.6: A comparison of the analysis time for 100 removals of a randomly selected state-
ment for Commons IO (large). On the x-axis the number of reanalyzed files. On the y-axis,
the time in seconds for reanalysis.

6 5 2 1

No. of reanalyzed files
0

10

20

30

40

50

Ti
m

e
(s

)

Commons IO

Clean analysis time
Incremental analysis time

Analysis Times after duplicating a Statement

Figure C.7: A comparison of the analysis time for 100 duplications of a randomly selected
statement for Commons IO (large). On the x-axis the number of reanalyzed files. On the
y-axis, the time in seconds for reanalysis.

124

4 2 1

No. of reanalyzed files
0

10

20

30

40

50

Ti
m

e
(s

)

Commons IO

Clean analysis time
Incremental analysis time

Analysis Times after removing a Method

Figure C.8: A comparison of the analysis time for 100 removals of a randomly selected
method for Commons IO (large). On the x-axis the number of reanalyzed files. On the y-
axis, the time in seconds for reanalysis.

7 6 4 2 1

No. of reanalyzed files
0

10

20

30

40

50

Ti
m

e
(s

)

Commons IO

Clean analysis time
Incremental analysis time

Analysis Times after adding a Method

Figure C.9: A comparison of the analysis time for 100 additions of a randomly selected
method for Commons IO (large). On the x-axis the number of reanalyzed files. On the y-
axis, the time in seconds for reanalysis.

125

C. Benchmark Results

29 28 20 19 18 17 13 12 8 4 3

No. of reanalyzed files

0

10

20

30

40

50

Ti
m

e
(s

)

Commons IO

Clean analysis time
Incremental analysis time

Analysis Times after removing a File

Figure C.10: A comparison of the analysis time for 100 removals of a randomly selected file
for Commons IO (small). On the x-axis the number of reanalyzed files. On the y-axis, the
time in seconds for reanalysis.

126

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Overview

	Spoofax and Statix
	The Spoofax Workbench
	Statix
	An Introduction to Scope Graphs
	Defining Type Systems with Statix
	Constraint Solving
	Architecture of Statix

	Background and Related Work
	Attribute Grammars
	Separate Compliation
	Incremental Build Systems and Incremental Pipelines
	Incremental Type Checkers from the Ground Up
	Conclusion

	Modules and Separation
	Splitting a Project into Modules
	Libraries
	Splitting the Solving Process
	Formal Semantics of Modular Statix-core

	Incremental Analysis
	Incremental model
	Dependencies between Modules
	Determining the Impact of a Change
	Concurrent Solving of Modules
	Conclusion

	Strategies
	Optimistic Strategies
	Optimistic Name-based Strategy

	Evaluation
	Setup
	Baseline Performance
	Incremental Performance

	Conclusion and Future Work
	Future Work

	Bibliography
	Glossary
	Mathematic Symbols
	Scope Graphs
	Modules
	Dependencies

	Statix Specification
	Benchmark Results

