Human Window Interaction

Effective window operation

iStock (2023)

Indoor air quality

AR3B025_ Building Technology Graduation Studio

ock (2023)

Indoor air quality

AR3B025 Building Technology Graduation Studie

5

Outdoor air quality Tata Steel, IJmuiden, Netherlands

AR3B025_Building Technology Graduation Studio

T I TT

COLUMN N

AR3B025 Building Technology Graduation Studio

×

6

iStock (2023)

The canary in the coal mine

11111

Stock (2023

The occupant in the building

Stock (2023

Introduction Problem statement

Introduction Problem statement

• There is a lack of evidence to what extent window feedback systems are able to provide a successful cooperation between occupants and windows

- Ackerly and Brager (2013)
- Extent to which existing windows feedback systems play a role in occupant behaviour and response.
- 16 buildings in the US

- Mobistyle (2020) & Avella et al. (2011)
- How behavioural change of occupants can be stimulated with feedback

•

•

•

۰

- Existing and new situation •
- Objective and subjective measurements •

- Existing and new situation •
- Objective and subjective measurements •

- Drivers window operation •
- Window control and feedback •
- Thermal environment •
- Indoor air quality •
- Energy efficiency

- Existing and new situation
- Objective and subjective measurements

- Drivers window operation
- Window control and feedback
- Thermal environment
- Indoor air quality
- Energy efficiency

- Existing and new situation •
- Objective and subjective measurements •

- Drivers window operation •
- Window control and feedback •
- Thermal environment •
- Indoor air quality •
- Energy efficiency

•

•

•

•

•

- Existing and new situation
- Objective and subjective measurements

Window opening behaviour

Drivers of human window opening behaviour:

External		Internal		
Physical	Contextual	Psychological	Physiological	Social
Outdoor temperature Indoor temperature Air velocity Relative humidity Solar radiation CO2 concentration PM2.5 concentration Noise	Occupancy Window Design Distance to façade Façade orientation Thermal mass Security Installations (HVAC) Interior doors Rainfall	Expectations Concerns Habits Lifestyle/schedule Knowledge/education Stress level	Age Gender Health Clothing Activity level Food and beverages	Social norms Interrelationships

Window opening behaviour

Drivers of human window opening behaviour:

External		Internal		
Physical	Contextual	Psychological	Physiological	Social
Outdoor temperature Indoor temperature Air velocity Relative humidity Solar radiation CO2 concentration PM2.5 concentration Noise	Occupancy Window Design Distance to façade Façade orientation Thermal mass Security Installations (HVAC) Interior doors Rainfall	Expectations Concerns Habits Lifestyle/schedule Knowledge/education Stress level	Age Gender Health Clothing Activity level Food and beverages	Social norms Interrelationships

Window opening behaviour

Drivers of human window opening behaviour:

External		Internal		
Physical	Contextual	Psychological	Physiological	Social
Outdoor temperature Indoor temperature Air velocity Relative humidity Solar radiation CO2 concentration PM2.5 concentration Noise	Occupancy Window Design Distance to façade Façade orientation Thermal mass Security Installations (HVAC) Interior doors Rainfall	Expectations Concerns Habits Lifestyle/schedule Knowledge/education Stress level	Age Gender Health Clothing Activity level Food and beverages	Social norms Interrelationships

Reasons for window opening:

TO BE COOLER	75%
FOR FRESH AIR	70%
TO INCREASE AIR MOVEMENT	60%
FOR CONNECTION TO THE OUTDOORS	30%
I notice the 'open' signal	28%

Window opening behaviour

Drivers of human window opening behaviour:

External		Internal		
Physical	Contextual	Psychological	Physiological	Social
Outdoor temperature Indoor temperature Air velocity Relative humidity Solar radiation CO2 concentration PM2.5 concentration Noise	Occupancy Window Design Distance to façade Façade orientation Thermal mass Security Installations (HVAC) Interior doors Rainfall	Expectations Concerns Habits Lifestyle/schedule Knowledge/education Stress level	Age Gender Health Clothing Activity level Food and beverages	Social norms Interrelationships

Reasons for window opening:

TO BE COOLER	75%
FOR FRESH AIR	70%
TO INCREASE AIR MOVEMENT	60%
FOR CONNECTION TO THE OUTDOORS	30%
I notice the 'open' signal	28%

Window opening behaviour

Drivers of human behaviour:

Exte	ernal		Internal	
Physical	Contextual	Psychological	Physiological	Social
Outdoor temperature Indoor temperature Air velocity Relative humidity Solar radiation CO2 concentration PM2.5 concentration Noise	Occupancy Window Design Distance to façade Façade orientation Thermal mass Security Installations (HVAC) Interior doors Rainfall	Expectations Concerns Habits Lifestyle/schedule Knowledge/education Stress level	Age Gender Health Clothing Activity level Food and beverages	Social norms Interrelationships

Reasons for window opening:

TO BE COOLER	75%
FOR FRESH AIR	70%
TO INCREASE AIR MOVEMENT	60%
FOR CONNECTION TO THE OUTDOORS	30%
I notice the 'open' signal	28%

Reasons for window closing:

HEAT I	LOSS

RAIN

WIND

Parameters for measurements and evaluation

Thermal comfort

Heat balance approach

- Indoor air temperature
- Indoor mean radiant temperature
- Indoor air velocity
- Air humidity
- Metabolism
- Clothing

Adaptive approach

• Monthly mean outdoor air temperature

Indoor Air Quality

- Carbon dioxide (CO₂)
- Particulate matter (PM₁₀ & PM_{2.5})
- Volatile Organic Compounds (VOC)
- Formaldehyde (HCHO)
- Radon (Rn)
- Ozone (O₃)
- Carbon monoxide (CO)

Energy efficiency

- Indoor temperature
- Outdoor temperature
- Window opening time
- Air flow rate
 - Air velocity
 - Openable window area

- CO₂ concentration
- Number of occupants

Parameters for measurements and evaluation

Thermal comfort

Heat balance approach

- Indoor air temperature
- Indoor mean radiant temperature
- Indoor air velocity
- Air humidity
- Metabolism
- Clothing

Adaptive approach

• Monthly mean outdoor air temperature

Indoor Air Quality

- Carbon dioxide (CO₂)
- Particulate matter (PM₁₀ & PM_{2.5})
- Volatile Organic Compounds (VOC)
- Formaldehyde (HCHO)
- Radon (Rn)
- Ozone (O₃)
- Carbon monoxide (CO)

Energy efficiency

- Indoor temperature
- Outdoor temperature
- Window opening time
- Air flow rate
 - Air velocity
 - Openable window area

- CO₂ concentration
- Number of occupants

Parameters for measurements and evaluation

Thermal comfort

Heat balance approach

- Indoor air temperature
- Indoor mean radiant temperature
- Indoor air velocity
- Air humidity
- Metabolism
- Clothing

Adaptive approach

• Monthly mean outdoor air temperature

Indoor Air Quality

- Carbon dioxide (CO₂)
- Particulate matter (PM₁₀ & PM_{2.5})
- Volatile Organic Compounds (VOC)
- Formaldehyde (HCHO)
- Radon (Rn)
- Ozone (O₃)
- Carbon monoxide (CO)

Energy efficiency

- Indoor temperature
- Outdoor temperature
- Window opening time
- Air flow rate
 - Air velocity
 - Openable window area

- CO₂ concentration
- Number of occupants

Parameters for measurements and evaluation

Thermal comfort

Heat balance approach

- Indoor air temperature
- Indoor mean radiant temperature
- Indoor air velocity
- Air humidity
- Metabolism
- Clothing

Adaptive approach

• Monthly mean outdoor air temperature

Indoor Air Quality

- Carbon dioxide (CO₂)
- Particulate matter (PM₁₀ & PM_{2.5})
- Volatile Organic Compounds (VOC)
- Formaldehyde (HCHO)
- Radon (Rn)
- Ozone (O₃)
- Carbon monoxide (CO)

Energy efficiency

- Indoor temperature
- Outdoor temperature
- Window opening time
- Air flow rate
 - Air velocity
 - Openable window area

- CO₂ concentration
- Number of occupants

Design Algorithm

Based on 2 principles:

- 1. To enhance energy efficiency, the window should be closed when the outdoor temperature is colder and should be open when the outdoor temperature is warmer.
- 2. The health of occupants is more important than energy efficiency and occupants' comfort.

Design Algorithm

Based on 2 principles:

- 1. To enhance energy efficiency, the window should be closed when the outdoor temperature is colder and should be open when the outdoor temperature is warmer.
- 2. The health of occupants is more important than energy efficiency and occupants' comfort.

Weather conditions Wind velocity > 8,0 m/s Precipitation > 0,1 mm/h Indoor air quality CO_{2 indoor} > 800 ppm PM_{2.5 indoor} > 5 μg/m³ PM_{10 indoor} > 15 μg/m³

Thermal comfort					
T _{in} ≥ 0,33 · T _{rm7} + 18,8 °C +2	FOR	10 < T _{rm7} < 30 °C			
T _{in} ≥ 24,1 °C	FOR	$T_{rm7} \le 10 \text{ °C}$			
T _{in} ≥ 30,7 °C	FOR	$T_{rm7} \ge 30 \text{ °C}$			

Outdoor air quality PM_{2.5 outdoor} > 20 µg/m³ PM_{10 outdoor} > 30 µg/m³

Design Algorithm

Based on 2 principles:

- 1. To enhance energy efficiency, the window should be closed when the outdoor temperature is colder and should be open when the outdoor temperature is warmer.
- 2. The health of occupants is more important than energy efficiency and occupants' comfort.

Important limitations:

- 1. Operative temperature
- 2. Outdoor noise
- 3. Sun radiation
- 4. Internal drivers
- 5. Outdoor air quality more important than indoor air quality

Design Algorithm

Based on 2 principles:

- 1. To enhance energy efficiency, the window should be closed when the outdoor temperature is colder and should be open when the outdoor temperature is warmer.
- 2. The health of occupants is more important than energy efficiency and occupants' comfort.

Important limitations:

- 1. Operative temperature
- 2. Outdoor noise
- 3. Sun radiation
- 4. Internal drivers
- 5. Outdoor air quality more important than indoor air quality

<pre>import time import paho.mqtt.client as mqtt import paho.mqtt.publish as publish import sys from time import sleep from urllib.request import urlopen</pre>
<pre>import datetime as dt import matplotlib.pyplot as plt import matplotlib.animation as animation</pre>
<pre>from requests_html import HTMLSession from bs4 import BeautifulSoup import requests import re</pre>
import numpy as np
Broker = "192.168.4.1"
#CO2 co2_1="" co2_2=""
<pre>#PM 2.5 pm25_1="" pm25_2=""</pre>
<pre>#PM 10 pm100_1="" pm100_2=""</pre>
<pre>#Indoor temperature temp_1="" temp_2=""</pre>

Design Window feedback system

• Ackerly and Brager (2013) as starting point

 Bigger, blinking and higher illumination strength are better perceptible (Lu et al., 2016; Matviienko et al, 2015)

- Red and green colour are the most evident choice
- Most visible position near the centre of the table
- Most understandable position near the openable window

- Limit number of lights (Matviienko et al., 2015)
- Understandability can be improved with additional information and labels

Design Window feedback system

Experiment Measurement set-up

Experiment Measurement set-up

Important limitations:

- 1. Measurement set-up assumes a microclimate
- 2. Duration of the experiment

= ± 23,2 °C

Existing situation

Temperature indoor:

- Maximum value = 26,5 °C
- Minimum value = $19,5 \circ C$
- Median = ± 23,3 °C
- Mean

- Mean difference sensors = 0,23 °C
- Threshold = 24,1 °C
- Total time exceeded = 1664 min
- Mean exceedance per day = 2:19 [h:min]

Temperature outdoor:

- Maximum value = 15,8 °C
- Minimum value = 6,1 °C
- Median = ± 10,5 °C
- Mean = ± 10,8 °C

Existing situation

CO_2 concentration indoor:

- Maximum value = 1047 ppm
- Minimum value = 414 ppm
- Median = ± 660 ppm
- Mean = ± 672 ppm
- Mean difference sensors = 23 ppm Threshold
 - = 800 ppm
- Total time exceeded = 1353 min
- Mean exceedance per day = 1:53 [h:min]

Existing situation

Relative humidity indoor:

- Maximum value = 42,3 %
- Minimum value = 23,4 %
- Median = ± 35,3 %
- Mean = ± 34,3 %
- Mean difference sensors = 1,51 %
- Threshold = 30 %
- Total time exceeded = 1239 min
- Mean exceedance per day = 1:43 [h:min]

Relative humidity outdoor:

- Maximum value = 98,0 %
- Minimum value = 36,0 %
- Median = ± 63,0 %
- Mean = ± 62,6 %

Existing situation

Satisfaction indoor environment: Very dissatisfied 43% 19% 35% Dissatisfied Indoor air quality Neutral Domain Satisfied Very satisfied 32% 27% 41% Thermal environment 0 5 10 15 20 25 30 35 Number of participants

Discomfort indoor environment:

Sources thermal discomfort:

Existing situation

Satisfaction indoor environment: Very dissatisfied 35% 43% 19% Dissatisfied Indoor air quality Neutral Domain Satisfied Very satisfied 32% 27% 41% Thermal environment 0 5 10 15 20 25 30 35 Number of participants

Discomfort indoor environment:

Symptoms related to bad IAQ

Existing situation

PM₂₅ concentration indoor:

- Maximum value = $6,54 \mu g/m3$
- Minimum value = $0,28 \,\mu\text{g/m3}$
- $= \pm 1,45 \,\mu g/m3$ Median
- Mean $= \pm 1,76 \,\mu g/m3$
- Mean difference sensors = $0,23 \mu g/m3$ Threshold
 - = 5 µg/m3
- = 124 min • Total time exceeded
- Mean exceedance per day = 0:10 [h:min]

PM₂₅ concentration outdoor:

- Maximum value = 41,46 µg/m3
- Minimum value = $0,38 \mu g/m3$
- Median $= \pm 5,49 \,\mu g/m3$
- Mean $= \pm 7,92 \,\mu g/m3$
- Threshold • Total time exceeded
 - = 602 min

 $= 20 \, \mu g/m3$

• Mean exceedance per day = 0:50 [h:min]

Existing situation

PM₁₀ concentration indoor:

- Maximum value = $6,73 \,\mu g/m3$
- Minimum value = $0,31 \mu g/m3$
- Median
- Mean

- Threshold
- $= \pm 1,60 \, \mu g/m3$ $= \pm 1,94 \,\mu g/m3$
- = 15 µg/m3 • Total time exceeded = 0 min
 - Mean exceedance per day = 0:0 [h:min]

• Mean difference sensors = $0,27 \,\mu g/m3$

PM₁₀ concentration outdoor:

- Maximum value = 63,31 µg/m3
- Minimum value = $0,59 \mu g/m3$
- Median = ± 15,51 µg/m3
- Mean = ± 16,63 µg/m3

- $= 30 \, \mu g/m3$
- Total time exceeded = 593 min
- Mean exceedance per day = 0:49 [h:min]

Threshold

Existing situation

Window opening time:

• Mean window opening time per workday = 0:48 [h:min]]

Perceived window control:

"Some windows only allow tilting and that could be a limitation"

"Opening operation is limited to only inclination"

"Window settings are either 0 or 1 with no in between options"

"Should be more user friendly"

Results & Discussion Existing situation

Reasons for window opening:

Reasons for window closing:

Existing situation

Social interaction when operating a window:

= ± 23,0 °C

New situation

Temperature indoor:

- Maximum value = 25,7 °C
- Minimum value = 19,5 °C
- = ± 23,3 °C Median
- Mean

- Mean difference sensors = 0,22 °C Threshold
 - = ± 24,1 °C
- Total time exceeded = 674 min
- Mean exceedance per day = 0:52 [h:min]

Temperature outdoor:

- Maximum value = $21,7 \circ C$
- Minimum value = $7,3 \circ C$
- Median = ± 13.8 °C
- Mean = ± 13,7 °C

New situation

CO_2 concentration indoor:

- Maximum value = 1315 ppm
- Minimum value = 384 ppm
- Median = ± 569 ppm
- Mean = ± 596 ppm
- Mean difference sensors = 44 ppm Threshold
 - = 800 ppm
- Total time exceeded = 492 min
- Mean exceedance per day = 0:38 [h:min]

New situation

Relative humidity indoor:

- Maximum value = 54,5 %
- Minimum value = 16,3 %
- Median = ± 42,0 %
- Mean = ± 42,5 %
- Mean difference sensors = 1,02 %
- Threshold = 30%
- Total time exceeded = 0 min
- Mean exceedance per day = 0:0[h:min]

Relative humidity outdoor:

- Maximum value = 98,0 %
- Minimum value = 42,0 %
- Median = ± 76,0 %
- Mean = ± 75,2 %

New situation

PM₂₅ concentration indoor:

- Maximum value = $33,71 \mu g/m3$
- Minimum value = $0,15 \mu g/m3$

 $= \pm 2,99 \,\mu g/m3$

- $= \pm 1,59 \,\mu g/m3$ Median
- Mean

- Threshold
- Mean difference sensors = $0,36 \,\mu\text{g/m}$ = 5 µg/m3
 - = 1030 min • Total time exceeded • Mean exceedance per day = 1:19 [h:min]
- 35 Measured days Mean --- Threshold 30 25 PM25 concentration indoor (µg/m3) 20 15 10 0 18:00 10:00 12:00 14:00 16:00 Time (h)

PM_{2.5} concentration outdoor:

- Maximum value = 65,40 µg/m3
- Minimum value = $0,36 \mu g/m3$
- = ± 7,50 µg/m3 Median
- Mean $= \pm 10,8 \,\mu g/m3$

- $= 20 \, \mu g/m3$
- Total time exceeded = 1397 min
- Mean exceedance per day = 1:47 [h:min]

Threshold

New situation

PM₁₀ concentration indoor:

- Maximum value = $36,65 \,\mu g/m3$
- Minimum value = $0,16 \mu g/m3$
- $= \pm 1,54 \,\mu g/m3$ Median = ± 2,89 µg/m3
- Mean

- Mean difference sensors Threshold
- Total time exceeded = 252 min

= 0,38 µg/m3

 $= 15 \, \mu g/m3$

• Mean exceedance per day = 0:19 [h:min]

PM₁₀ concentration outdoor:

- Maximum value = 87,40 µg/m3
- Minimum value = $0,49 \mu g/m3$
- Median $= \pm 8,49 \,\mu g/m3$
- Mean $= \pm 12,14 \,\mu g/m3$

- $= 30 \, \mu g/m3$
- Total time exceeded = 593 min
- Mean exceedance per day = 1:12 [h:min]

Threshold

New situation

Window opening time:

• Mean window opening time per workday = 4:39 [h:min]]

Parameter	arameter Exceedance Exceedance existing situation [mean per workday] [mean per workday]		Ratio	Improvement
Indoor temperature	2 hours 19 minutes	52 minutes	- 63 %	Yes

Parameter	Exceedance existing situation [mean per workday]	Exceedance new situation [mean per workday]	Ratio	Improvement
Indoor temperature	2 hours 19 minutes	52 minutes	- 63 %	Yes
Indoor relative humidity	1 hour 43 minutes	-	-	Yes

Parameter	Exceedance existing situation [mean per workday]	Exceedance new situation [mean per workday]	Ratio	Improvement
Indoor temperature	2 hours 19 minutes	52 minutes	- 63 %	Yes
Indoor relative humidity	1 hour 43 minutes	-	-	Yes
Indoor CO ₂	1 hour 53 minutes	38 minutes	- 66 %	Yes

Parameter	Exceedance existing situation [mean per workday]	Exceedance new situation [mean per workday]	Ratio	Improvement
Indoor temperature	2 hours 19 minutes	52 minutes	- 63 %	Yes
Indoor relative humidity	1 hour 43 minutes	-	-	Yes
Indoor CO ₂	1 hour 53 minutes	38 minutes	- 66 %	Yes
Indoor PM _{2.5}	10 minutes	1 hour 19 minutes	+ 690 %	No
Outdoor PM _{2.5}	50 minutes	1 hour 47 minutes	+ 114 %	No

Parameter	Exceedance existing situation [mean per workday]	Exceedance new situation [mean per workday]	Ratio	Improvement
Indoor temperature	2 hours 19 minutes	52 minutes	- 63 %	Yes
Indoor relative humidity	1 hour 43 minutes	-	-	Yes
Indoor CO ₂	1 hour 53 minutes	38 minutes	- 66 %	Yes
Indoor PM _{2.5}	10 minutes	1 hour 19 minutes	+ 690 %	No
Outdoor PM _{2.5}	50 minutes	1 hour 47 minutes	+ 114 %	No
Indoor PM ₁₀	-	19 minutes	-	No
Outdoor PM ₁₀	49 minutes	1 hour 12 minutes	+ 47 %	No

Parameter	Exceedance existing situation [mean per workday]	Exceedance new situation [mean per workday]	Ratio	Improvement
Indoor temperature	2 hours 19 minutes	52 minutes	- 63 %	Yes
Indoor relative humidity	1 hour 43 minutes	-	-	Yes
Indoor CO ₂	1 hour 53 minutes	38 minutes	- 66 %	Yes
Indoor PM _{2.5}	10 minutes	1 hour 19 minutes	+ 690 %	No
Outdoor PM ₂₅	50 minutes	1 hour 47 minutes	+ 114 %	No
Indoor PM ₁₀	-	19 minutes	-	No
Outdoor PM ₁₀	49 minutes	1 hour 12 minutes	+ 47 %	No
Window opening time	48 minutes	4 hours 39 minutes	+ 481 %	-

Parameter	Exceedance existing situation [mean per workday]	Exceedance new situation [mean per workday]	Ratio	Improvement
Indoor temperature	2 hours 19 minutes	52 minutes	- 63 %	Yes
Indoor relative humidity	1 hour 43 minutes	-	-	Yes
Indoor CO ₂	1 hour 53 minutes	38 minutes	- 66 %	Yes
Indoor PM _{2.5}	10 minutes	1 hour 19 minutes	+ 690 %	No
Outdoor PM ₂₅	50 minutes	1 hour 47 minutes	+ 114 %	No
Indoor PM ₁₀	-	19 minutes	-	No
Outdoor PM ₁₀	49 minutes	1 hour 12 minutes	+ 47 %	No
Window opening time	48 minutes	4 hours 39 minutes	+ 481 %	-
Ineffective window opening time	2 hours 51 minutes	1 hour 17 minutes	- 55 %	Yes

Comparison

Understanding of the window feedback light colours:

Purpose of window feedback system:

Purpose system

Comparison

Noticing and responsive to window feedback: Never Window feedback 77% Noticing 9% 9% Rarely Sometimes Often Always 59 55% 32% 9% Responsive 0 2 4 6 8 10 12 14 16 18 20 22 Number of participants

Trust and satisfaction of window feedback:

Results & Discussion

Comparison

Output of window feedback system:

Conclusion

- 1. The window feedback system does contribute to a better environment
- 2. Design guidelines:
 - Include mean radiant temperature, outdoor noise and solar radiation in algorithm
 - Reconsider the importance of the outdoor air quality
 - Include a parameter display
 - Avoid blinking lights and messages to phones/computers
 - Reconsider meaning of the lights.

AR3B025_ Building Technology Graduation Studio