
 
 

Delft University of Technology

Metabolic trade-offs arising from increased free energy conservation in Saccharomyces
cerevisiae

Schumacher, Robin

DOI
10.4233/uuid:177e9f4c-f847-436d-9fd4-9ed97ba709d9
Publication date
2018
Document Version
Final published version
Citation (APA)
Schumacher, R. (2018). Metabolic trade-offs arising from increased free energy conservation in
Saccharomyces cerevisiae. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:177e9f4c-f847-436d-9fd4-9ed97ba709d9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:177e9f4c-f847-436d-9fd4-9ed97ba709d9
https://doi.org/10.4233/uuid:177e9f4c-f847-436d-9fd4-9ed97ba709d9


Metabolic trade-offs arising from 
increased free energy conservation 
in Saccharomyces cerevisiae
 

Robin Schumacher



  





Metabolic trade-offs arising from 

increased free energy conservation 

in Saccharomyces cerevisiae 

Dissertation 

for the purpose of obtaining the degree of doctor 

at Delft University of Technology 

by the authority of the Rector Magnificus, Prof.dr.ir. T.H.J.J. van der Hagen, 

chair of the Board for Doctorates 

to be defended publicly on 

Tuesday 16, October 2018 at 12:30 o’clock 

by 

Robin SCHUMACHER 

Diplom-Ingenieur im Bioingenieurwesen, TU Braunschweig, Germany 

born in  Albstadt, Germany 



This dissertation has been approved by the promotors. 
 

Composition of the doctoral committee: 

Rector Magnificus chairperson 

Prof. dr. ir. J. J. Heijnen Delft University of Technology, promotor 

Dr. S. A. Wahl Delft University of Technology, copromotor 

  

Independent members:  

Prof. dr. I. Van Bogaert Ghent University, Belgium 

Prof. dr. H.V. Westerhoff University of Manchester, UK /  

University of Amsterdam  

Prof. dr. H.J. Noorman Delft University of Technology 

Prof. dr. J.T. Pronk Delft University of Technology 

Dr. H. Bachmann VU Amsterdam 

 

 
 
 
 
 
 
 

 

 

 

 

The research work was carried out in the Cell Systems Engineering group 

(CSE), Department of Biotechnology, Faculty of Applied Sciences, Delft 

University of Technology (The Netherlands). 

 

This work was financed within the BE-Basic R&D Program (http://www.be-

basic.org/), which was granted an FES subsidy from the Dutch Ministry of 

Economic Affairs, Agriculture and Innovation (EL & I). 

 

Copyright ©2018 Robin Schumacher 

ISBN 978-94-6375-156-8  



“Grey, dear friend, is all theory 
and green the golden tree of life” 

Johann Wolfgang von Goethe, Faust I / Mephistopheles 



Table of contents 
 

Summary 7 

 

Samenvatting 

 

10 

 

Chapter 1:  

General Introduction 

 

13 

 

Chapter 2:  

Modelling the physiology of S. cerevisiae as a 
function of pH and lactic acid concentration:  

Implications for the design of a direct lactic acid 

fermentation process 

 

27 

 

Chapter 3:  

Enrichment of the more efficient:  

Droplet based cultivation of S. cerevisiae for 

selection of phenotypes with increased free energy 

conservation 

 

61 

 

Chapter 4:  

Exploring the links between energy metabolism, 

cellular physiology and protein allocation in the 

evolution of S. cerevisiae using structured mFBA 

modelling 

 

95 

 

Chapter 5: 

Effective estimation of dynamic metabolic fluxes 

Using 13C Labeling and piecewise affine 

approximation:  

From theory to practical applicability 

 

141 

 

Chapter 6: 

General Conclusions and Outlook 

 

173 

 

Curriculum Vitae / List of publications 

 

178 

 

Acknowledgements 

 

179 



Summary 

This thesis deals with increasing the free energy conservation in 

chemotropic microorganisms with emphasis on S. cerevisiae and investigates 

a number of different aspects related to industrial fermentation processes. 

Chapter 1 outlines the necessity for transduction of Gibbs free energy in 

metabolism and uses the concept of thermodynamic efficiency in order to 

derive the interdependency between the thermodynamic efficiency and the 

yield of an anabolic product pathway on substrate. 

The importance of product yield is discussed with respect to the industrial 

production of commodity chemicals in cell factories and practical examples 

how increased free energy conservation can be achieved in the metabolic 

pathways of S. cerevisiae are illustrated. Furthermore, the chapter 

addresses the fundamental trade-off between thermodynamic efficiency and 

metabolic rate that is observed empirically, in order to line out the 

challenges associated with classical directed evolution for phenotypes with 

increased thermodynamic efficiency. 

Chapter 2 studies exemplary an anaerobic lactic acid production process; a 

low pH process would allow extracting the weak-acid lactic acid directly 

from the fermentation broth, leading to the environmental advantage of 

mitigating the by-product formation of gypsum present in the traditional 

process taking place a near neutral pH. 

A model is presented that allows describing the physiology of S. cerevisiae 
as a function of the relevant operating conditions of pH and lactic acid 

titer using a combination of stoichiometric and kinetic modelling. The model 

is subsequently used to infer the energetic cost as a function of the 

operating conditions with respect to the available Gibbs free energy from 

the product pathway. 

Moreover the applied methodology allows predicting the possible product 

yield globally as a function of the operating conditions making the approach 

a useful tool for quantitative process design and to deduce strain 

improvement targets for a direct lactic acid fermentation process in S. 
cerevisiae. 
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With respect to increased free energy conservation, the knowledge to 

rationally engineer a phenotype with increased free energy conservation is 

not always available. In such situation a selection protocol in order to select 

phenotypes with increased free energy conservation is relevant. 

Therefore in Chapter 3 a previously described experimental methodology 

consisting of repetitive incubation of lactic acid bacteria partitioned into 

droplets is demonstrated for S. cerevisiae. This approach circumvents the 

initially mentioned trade-off between growth rate and growth yield 

existent in homogenous systems. The experimental protocol is adapted to S. 
cerevisiae and furthermore a model for the experimental design of 

enrichment experiments is developed. In order to effectively assess the 

performance of such systems, the ideal performance characteristics of 

partitioned systems are derived. The model formulation is also extended for 

the relevant non-idealities observed in the system and subsequently 

validated experimentally by enriching a model system consisting of a wild-

type population and a phenotype with increased free energy conservation. It 

is shown that the model can predict the experimental enrichment trajectory; 

this allows deducing the general enrichment characteristics of partitioned 

systems from the model. Therewith the model allows predicting the 

performance of the system a priori and also facilitates the quantitative 

design of enrichment experiments by finding appropriate experimental 

settings. 

While Chapter 3 is a top-down approach treating the rate-yield trade-off as 

black-box, Chapter 4 investigates a bottom-up approach. Herein a method 

called structured mass constraint Flux Balance Analysis (mFBA) is used, 

which directly links metabolic fluxes to the mass of cellular protein in the 

cell. The flux solution space is constrained by extending the method to 

multiple protein mass constraints that are imposed by the morphology of 

eukaryotic cells. The model is parametrized to describe the physiology of S. 
cerevisiae with respect to the rate-yield trade-off associated with aerobic 

fermentation, also called Crabtree effect. This allows deriving evolutionary 

trajectories subject to the evolutionary pressure from the environment. 

This is relevant to choose the appropriate selective pressure in evolutionary 

experiments and also allows exploring the evolutionary origins of the 

Crabtree effect with respect to the prevalent environmental conditions. 
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Whereas so far free energy conservation was only considered in steady-

state conditions, also the response to dynamic environments has been shown 

to lead to increased dissipation of Gibbs free energy. This is of interest, 

especially with respect to large scale fermentations where the non-ideal 

mixing continuously exposes the cells to gradients. In order to investigate 

the underlying intrinsic mechanisms, the metabolic fluxes have to be 

estimated under dynamic conditions.  

 

Chapter 5 presents fundamental research on dynamic 13C metabolic flux 

analysis. The presented method avoids some of the inherent conceptual 

disadvantages of the classical methodology of inverse kinetic modelling. 

However the method leads to a partly non-linear, potentially ill-posed and 

high dimensional optimization problem. Effective strategies for the solution 

of the problem are presented using constraints, shape-prescriptive 

modelling and a robust optimization algorithm. The performance of the 

method is demonstrated on experimental data and can be used to trace 

fluxes, e.g. futile cycles that dissipate Gibbs free energy and have an impact 

on the biomass yield, in dynamic conditions. 
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Samenvatting 

 
Dit proefschrift betreft de verhoging van het behoud van de vrije energie in 

vrije energie omzettingen in chemotrofe micro-organismen, in het bijzonder 

Saccharomyces cerevisiae en onderzoekt een aantal verschillende aspecten 

vanuit industriële fermentatie processen. 

Hoofdstuk 1 beschrijft de noodzaak voor omzetting van Gibbs vrije energie 

in metabolisme en gebruikt het concept van thermodynamische efficiëntie 

om de relatie af te leiden tussen efficiëntie en de product opbrengst van 

anabole producten. Het belang van product opbrengst wordt besproken in 

relatie tot industriële microbiële productie van bulkchemicaliën, en met 

voorbeelden wordt geïllustreerd hoe verbeterd behoud van vrije energie kan 

worden bereikt in het metabolisme van S. cerevisiae. Tevens wordt in dit 

hoofdstuk ingegaan op de fundamentele interactie tussen thermodynamische 

efficiëntie en snelheid die empirisch is vastgesteld, ten einde de problemen 

te definiëren van de klassieke gerichte evolutie van fenotypen met 

verhoogde thermodynamische efficiëntie. 

In hoofdstuk 2 worden aspecten van een anaeroob melkzuurproductie proces 

bestudeerd. Met een lage pH in het proces kan het zwakke melkzuur direct 

uit de fermentatie vloeistof worden geëxtraheerd, met als milieuvoordeel 

het vermijden van gipsvorming die optreedt in het traditionele proces bij 

neutrale pH. Een model is ontwikkeld, gebaseerd op stoichiometrie en 

kinetiek welk de fysiologie beschrijft van S. cerevisiae als functie van de 

procesomstandigheden zoals pH en melkzuurconcentratie. Dit model is 

gebruikt om de energiekosten te berekenen als functie van 

procesomstandigheden in relatie tot  de beschikbare Gibbs vrije energie. Met 

dit model kan ook de product opbrengst worden berekend als functie van 

proces omstandigheden en het is ook bruikbaar voor procesontwerp en voor 

het ontwerpen van betere stammen ten behoeve van de melkzuur 

fermentatie met S. cerevisiae. 

Ten aanzien van verhoging van het behoud van Gibbs vrije energie is niet 

altijd de kennis aanwezig voor een rationele modificatie van het 

metabolisme. In zo’n situatie is een selectie protocol relevant voor het 
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selecteren van fenotypen met verhoogd behoud van Gibbs vrije energie. In 

hoofdstuk 3 wordt daarvoor een al bekende experimentele aanpak, een 

herhaalde kweek van melkzuur bacteriën in aparte druppels, toegepast. Deze 

aanpak vermijdt de al genoemde interactie tussen (groei)snelheid en groei 

opbrengst in homogene kweeksystemen. Het beschikbare experimentele 

protocol is aangepast voor S. cerevisiae en tevens is er een model 

ontwikkeld voor het ontwerpen van de selectie experimenten. Om het 

selectie gedrag van deze systemen in te schatten, zijn met een model de 

ideale eigenschappen van deze druppel systemen afgeleid. Het model 

beschrijft ook relevante niet-ideale situaties en is experimenteel getest met 

selectie experimenten tussen een wild-type en een gewenst fenotype met 

verhoogde Gibbs energie behoud. Het model voorspelt de experimenteel 

waargenomen verrijking in het fenotype. Daarmee is het model geschikt om 

verrijking in druppelsystemen te voorspellen en is het bruikbaar om 

verrijkingsexperimenten te ontwerpen. 

Waar hoofdstuk 3 de snelheid-opbrengst interactie als Black Box van boven 

beschrijft, gaat hoofdstuk 4 uit van een benadering van onderaf. Hiervoor 

wordt een methode, genaamd gestructureerde mFBA, gebruikt waarmee 

metabole fluxen worden gekoppeld aan de eiwit massa in de cel. De flux 

oplossingsruimte wordt begrensd door deze methode uit te breiden met 

begrenzingen van meerdere eiwitmassa’s in relatie tot de morfologie van 

eukaryote cellen. Het model wordt geparametriseerd voor de beschrijving 

van de fysiologie van S. cerevisiae ten aanzien van de snelheid-opbrengst 

relatie in de aerobe fermentatie, ook wel Crabtree effect genaamd. Met dit 

model kunnen evolutie paden worden afgeleid in relatie tot evolutie druk uit 

het milieu, wat relevant is voor het kiezen van een geschikte evolutie druk 

in evolutie experimenten en om de evolutionaire oorsprong van het Crabtree 

effect te onderzoeken in relatie tot voorkomende milieucondities. 

Waar tot nu toe het behoud van vrije energie is beschouwd onder condities 

van stationaire toestand is bekend dat dynamische procescondities leiden 

tot meer dissipatie van Gibbs vrije energie. Dit is van belang vooral voor 

fermentatie op grote schaal, waar niet ideale mengcondities de cellen 

blootstellen aan dynamische condities. Ten einde de mechanismen die leiden 

tot hogere dissipatie te kunnen onderzoeken moeten de metabole snelheden 

onder dynamische condities worden gekwantificeerd. Hoofdstuk 5 betreft 
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onderzoek op basis van dynamische 13C flux analyse. De voorgestelde 

methode vermijdt een aantal nadelen van de klassieke aanpak van 

omgekeerde kinetische modelvorming. Echter de methode leidt tot een 

gedeeltelijk niet-linear, hoog dimensioneel parameterschattingsprobleem wat 

zich tevens potentieel slecht gedraagt. Dit probleem kan effectief worden 

aangepakt met gebruik van begrenzingen, zoals voorgeschreven kinetische 

vormen en een robuust schattingsalgoritme. De methode wordt succesvol 

toegepast op dynamische intracellulaire metabolietconcentraties voor 

dynamische flux schattingen, in het bijzonder  “futile cycles” waarmee extra 

Gibbs energie wordt gedissipeerd, wat een negatieve invloed heeft op de 

biomassa opbrengst onder dynamische procescondities. 
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Chapter 1: 

General Introduction 
 

 

 

“Life is the harnessing of chemical energy in such a way that 
the energy-harnessing device makes a copy of itself.” 

Nick Lane et al. (2012) 
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Life as a non-equilibrium thermodynamic process 
As metaphysical and ontological considerations cannot lead to an unequivocal 

definition for life1, modern biology usually tries to formulate an exhaustive and 

exclusive systemic description of life, based on its necessary empirically observable 

predicates, e.g. the one of Perrett2. 

“Life is a potentially self-perpetuating open system of linked organic reactions, 
catalyzed by stepwise and almost isothermally by complex and specific organic 
catalysts which are themselves produced by the system”. 
The sum of biochemical reactions in an organism is called metabolism and has to 

synthetize all building blocks for the self-replication (autopoiesis) of the organism, 

where a sequence of consecutive reactions is called a metabolic pathway. This work 

will primarily focus on the energetic aspects of chemotrophic metabolism with 

emphasis on the eukaryote S. cerevisiae, where it emphasizes on the implications of 

energy on cellular physiology and the design of industrial cell factories. 

It is important to note that biochemical reactions are catalyzed by enzymes and 

transport proteins and the Gibbs free energy determines the direction of a chemical 

reaction. In order to satisfy the second law of thermodynamics a reaction can only 

take place in the desired direction if the change in Gibbs free energy is negative at 

the physiological metabolite concentrations of its educts and products. 

  0rG∆ <   (1.1) 

 

The Gibbs free energy is also directly related to the reaction quotient Q (sometimes 

also referred to as mass-action ratio) of a reaction, which describes in relation to 

the equilibrium constant Keq how far a reaction operates from the chemical 

equilibrium. At equilibrium the net rate of the reaction is zero, which means that life 

is a process that is driven by non-equilibrium conditions. 

 
0 ln( ) lnr r

eq

QG G RT Q RT
K

 
∆ = ∆ + =   

 
  (1.2) 

 

This also means that the Gibbs free energy limits the attainable extracellular 

product concentrations (titer) from a given reactant concentration in a product 

pathway, which would be maximal in a completely reversible process. Clearly this 

situation is purely hypothetical, as such system would have no net-flux and 

therewith no productivity. On the other hand, the distance of a reaction from its 

chemical equilibrium directly defines the amount of Gibbs free energy that is not 

transformed into the highest product concentration but dissipated in creating the 

reaction rate. This dissipated Gibbs free energy dissG∆  is also referred to as 

thermodynamic driving force (tdf). 
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Energy transduction as an integral part of cellular 

metabolism 
Current genome scale metabolic networks for S. cerevisiae have about 1175 

annotated biochemical reactions3, where the products can be distinguished into 

endergonic and exergonic products with respect to the educts. As condition (1.1) has 

to be fulfilled for each reaction in the network that carries a flux, it is imperative 

to have mechanisms that can transduce Gibbs free energy from exergonic into 

endergonic reactions. This can for example be observed in the glycolytic Embden-
Meyerhof-Parnas (EMP) pathway converting glucose to pyruvate; here the overall 

product reaction is thermodynamically favorable, however the first steps of the 

pathway are unfavorable, therefore requiring the coupling of free energy between 

reactions. Two types of coupling can be distinguished, direct and indirect. 

An example for direct energetic linkage between reactions is the PTS system found 

in some prokaryotes; which directly couples the phosphoryl group released in the 

pyruvate kinase reaction to the substrate level phosphorylation. However, such 

direct mechanisms are inflexible and the exception. To deal with the complexity 

arising with the multitude of different reactions, cells have evolved a more flexible 

indirect coupling mechanism for energy transduction. In order to transduce Gibbs 

free energy between reactions the surplus from exergonic reactions gets temporarily 

stored into chemical bonds of a component that can subsequently be used as a 

coenzyme in the endergonic reactions. Here cells usually use nucleoside phosphates 

with the most prevalent one being Adenosine phosphates (AXP). The creation and 

cleavage of the phosphoanhydride bonds allows the transfer of a significant amount 

of Gibbs free energy and the ratio between the three different forms ATP, ADP and 

AMP define the so called adenylate energy charge and therewith the energy status 

of the cell. At physiological energy charge, pH value and Mg2+ concentration the 

hydrolysis of a phosphoanhydride bond yields a potential of about pG∆ = -50kJ/mol 

of Gibbs free energy. Due to its universality ATP is often referred to as the 

currency of free energy in the cell. 

 

As the in vivo reaction quotients for all cellular reactions are typically not known, 

the problem has to be simplified to a more abstract one. This can be done by 

modelling metabolism as a so called free energy converter4 (EC) (see Figure 1.1). Here 

only a catabolic reaction (subscript c) producing a surplus of useful Gibbs free 

energy (in the form of ATP) and an anabolic reaction requiring the net input of ATP 

(subscript a) are distinguished. 
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Figure 1.1: Schematic representation of metabolism as a non-ideal energy converter (adapted 

from Westerhoff5) transducing free energy between catabolism and anabolism. 

By lumping all biochemical pathways into those elementary reactions, with the 

respective change in Gibbs free energy cG∆  and aG∆  with the associated specific 

rates cJ  and aJ , metabolism can be modelled schematically as a grey box and the 

amount of free energy that is conserved between catabolism to anabolism can be 

expressed as a thermodynamic efficiency ECη ; which is defined for growth on a 

single carbon substrate as follows: 

 a a
EC

c c

J G
J G

η − ⋅∆
=

⋅∆
  (1.3) 

 

This shows that there is an intrinsic coupling between the catabolic and the anabolic 

rate, which depends on the thermodynamic efficiency of the coupling between the 

two. Also a relation between the dissipated Gibbs free energy dissG∆  (also called 

thermodynamic driving force) for the overall system can be found. 

 (1 )diss c ECG G η∆ = ∆ −   (1.4) 

It has to be noted that the apparent thermodynamic efficiency is typically not a 

direct result of the theoretical ATP stoichiometry between the catabolic and the 

growth reaction (typically referred to as ,maxATPY 6,7) but only gives an upper 

boundary on the thermodynamic efficiency. There may be other processes further 

increasing dissG∆  (therefore called uncoupling) lowering the observed 

thermodynamic efficiency, e.g. weak acid cycling (see also in Chapter 2), substrate 

cycles or cellular maintenance requirements. 

The biochemically meaningful calculation of thermodynamic efficiencies depends on 

the biochemically sound separation of the macrochemical growth reaction into a 

catabolic and an anabolic reaction, which is consequently challenging in practical 
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application (as also critically reviewed by Heijnen and van Dijken8); however the 

approach is methodologically useful to demonstrate the interrelation between the 

thermodynamic efficiency and the biomass or (ATP consuming) product yield on 

substrate: 

   

 /
1

11
a

a S
aa c

EC
c

JY GJ J
Gη

−
= =

∆− + + ⋅
∆

  (1.5) 

It has been shown that it is possible to correlate the biomass yield empirically to 

the dissipated Gibbs free energy dissG∆ , which can be directly derived from the 

macrochemical growth equation or measured using calorimetry9 and depends mainly 

on the degree of reduction and the chain length of the substrate8,10. Moreover the 

dissG∆ can also be correlated empirically to the (anabolic) biomass yield11 or 

heuristically to the number of irreversible steps in a pathway12. 

 

Free energy conservation and Industrial Biotechnology 
A high product yield on substrate is of major importance in the design of industrial 

fermentation processes, where a substrate (typically a sugar) is subject to microbial 

fermentation to a more valuable product. The advantage of such processes is that 

they can readily utilize renewable feedstocks and therewith have the potential to 

mitigate anthropogenic climate change by reduction of net CO2 emissions. 

However, this also leads to the situation that these products are usually in economic 

competition with building blocks derived from fossil feedstock. Especially for 

comparably low value commodity chemicals the cost for the feedstock has a large 

impact on the achievable final product price13, leading to the implication that the 

product yield on substrate is a very important design variable for a cell factory14. 

 

A product can be produced at the (maximal) theoretical yield under two 

prerequisites: (1) all electrons of the substrate are conserved in the product; which 

is also a sufficient condition that the product can be produced in an anaerobic 

fermentation (i.e. without oxygen as electron acceptor); (2) the Gibbs free energy of 

the product reaction has to be negative (see eq.(1.1)). Therefore it is useful to 

express the Gibbs free energy per degree of reduction in order to analyze if an 

anaerobic production of a given product is thermodynamically not impossible, which 

is indeed the case for many chemicals that are considered relevant for the transition 

to a bio-based economy12,15. 

It has to be noted that such black-box analysis does not make any provisions about 

the enzymatic and transport steps of the regarded product reaction and only allows 

deriving the maximal possible ATP yield of a pathway subject to the limits imposed 

by the second law of thermodynamics, whereas the practically achievable 
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conservation of free energy as ATP depends on the specific pathway reactions and 

topology. 

From eq. (1.5) it becomes clear that improving the thermodynamic efficiency can 

improve the yield of an ATP consuming product pathway on substrate or may even 

(within the thermodynamic constraints) allow transforming a hitherto ATP 

consuming to an ATP generating product pathway. In this case the relation between 

thermodynamic efficiency and product yield also changes; as the (now catabolic) 

product pathway delivers ATP, this will lead to a coupling between the production 

rate and the growth rate. This means in this case a lower ATP yield will lead to a 

higher product yield, as a higher production rate is required to generate the energy 

needed for growth. This also means that further increasing of free energy 

conservation in an ATP generating product pathway will lead to a lower product 

yield and is therefore not useful anymore. On the other hand the product pathway in 

this situation has to provide the ATP required to maintain and synthesize the 

biomass as the biocatalyst, which means a product pathway with zero ATP gain is 

also not desirable. 

Improving the free energy conservation for net ATP consuming products has the 

additional effect that there is less oxygen consumption (due to a lower rate of 

catabolism) and less heat per consumed substrate is released in the fermentation 

process, therewith synergistically decreasing the utility cost associated with cooling 

and aeration of the fermentation broth or allow a higher productivity at the same 

oxygen transfer rate (OTR) in a fermenter. 

However, in the design of an industrial fermentation process the ATP stoichiometry 

of the product pathway is not the only factor that determines the maximal possible 

product yield, but also the process conditions. Such physiological constraints and 

their associated ATP expenditure can have a significant impact on the product yield 

from substrate and have to be taken into account in order to maintain the viability 

of the host organism in a fermentation process. Those mechanisms are studied 

exemplary for a direct lactic acid fermentation process in S. cerevisiae where the 

organism is exposed to high lactic acid levels and osmotic stress and evaluate the 

impact on the attainable product yield quantitatively (see Chapter 2). 

 

Engineering of increased free energy conservation in 

metabolic pathways 
The principle of such engineering is fairly simple in theory: 
Replace reactions with a large Gibbs energy dissipation with energy conserving 
reactions operating closer to the chemical equilibrium. 
The most promising targets for such engineering are reactions that carry high rates 

and are preferably used in catabolism and anabolism. To demonstrate the principle 

two examples related to growth of S. cerevisiae on maltose are presented, which are 

also used later on in this study (see Chapter 3). More targets can be found in the 

review of de Kok et al.16 (see also Figure 1.2). 
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Interesting targets are active uptake mechanisms as in our example where maltose is 

taken up together with a proton17. This allows coupling the maltose import to the 

proton motive force (pmf) of the cell membrane. To restore the proton motive force 

and prevent intracellular acidification the imported proton has to be expelled from 

the cell with an investment of 1 ATP in S. cerevisiae18. 

This allows for several approaches to improve the free energy conservation, first 

the substitution of the symport with a uniporter mechanism decoupling the 

transport from the pmf and thus ATP expenditure. It has to be taken into account 

that such engineering has significant influence on the maximal in/out concentration 

of the transported molecule, which will decrease from about 350 for a proton 

symporter to 1 for a uniporter19 thus requiring a higher extracellular substrate 

concentration to reach the same intracellular substrate concentration. It can also be 

seen that this strategy is not feasible for product export from the low intracellular 

concentrations if any substantial extracellular titer shall be produced. 

 

 
Figure 1.2: Selected opportunities16 for increasing the ATP yield in maltose grown S. cerevisiae 
on the level of maltose uptake and phosphorylation. 

Secondly the proton-ATPase stoichiometry could be improved, i.e. more protons get 

exported with hydrolysis of one molecule of ATP. Whereas the first option seems 

more effective at first hand it is specific to the maltose transport, whereas the 

second option would decrease the ATP requirement for all reactions coupled to the 

pmf across the cell membrane. 
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A third option is the replacement of reactions using ATP as coenzyme with reactions 

using inorganic phosphate (Pi) as a substrate. This can in our example be done by 

replacing the enzyme maltase (which hydrolyses maltose to two molecules of 

glucose) with maltose phosphorylase (EC 2.4.1.8), saving one ATP for substrate level 

phosphorylation of the hexoses. Also, here it has to be taken into account that the 

increased free energy conservation affects the in vivo reaction quotient 

significantly, leading to changed intracellular concentrations that can also influence 

(positively or negatively) the rate of other enzymes in metabolism.  

Whereas the maltose phosphorylase strategy has been demonstrated successfully20 

the rational engineering of a maltose uniporter21 is very challenging in practice. The 

same holds for engineering the stoichiometry of the proton/ATPase18. Because of 

these challenges evolutionary approaches are considered useful to engineer 

phenotypes with increased free energy conservation in this work. When there is a 

lack of rational knowledge, evolutionary engineering (also called directed evolution or 

adaptive laboratory evolution) is a versatile tool to obtain a desired phenotype by 

creating a selective environment, where the desired phenotype having an advantage 

in growth rate can be enriched and later isolated and reverse engineered. 

 

The relation between dissipated Gibbs free energy and rate 
So far the focus was almost exclusively on the relation between thermodynamic 

efficiency and the catabolic yield, neglecting another fundamental relationship. 

This is the inverse relationship between the thermodynamic driving force ( dissG∆ ) 

and the rate of a reaction, which can be observed phenomenologically as a trade-off 

between substrate uptake rate and biomass yield on substrate22-25. The exact shape 

of this rate-yield trade-off can only be observed empirically as current non-

equilibrium thermodynamics do not allow deriving a general relationship ab initio 
from thermodynamic fundamentals, but depend on the complex interaction between 

the mechanism of the enzymes, their specific kinetic factors and the resulting 

metabolite concentrations in the pathway26,27. This holds in particular for reactions 

that are operating far from chemical equilibrium28 and are therefore favorable 

targets for engineering towards increased free energy conservation. 

Under the premise that unicellular organisms are selected by evolution subject to a 

maximized growth rate29,30, it is expected to find an optimal compromise between 

substrate uptake rate and biomass yield on substrate maximizing the growth rate. 

This could explain the typically low thermodynamic efficiencies5 found in such 

systems. Coming back to directed evolution, the existence of such a correlation leads 

to the challenge that a desired phenotype with an increased thermodynamic 

efficiency cannot be linked inherently to an increased growth rate. This renders the 

standard approaches of directed evolution e.g. sequential batch reactors useless for 

the chosen objective and new experimental approaches have to be considered29,31 and 

validated. To address this challenge this work investigates a top-down approach 

comprised of partitioning cells into droplets allowing circumventing the rate-yield 
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trade-off for enrichment of phenotypes with increased free energy conservation 

(see Chapter 3). 

The unknown shape of the rate-yield trade off also impedes the prediction of 

evolutionary outcomes and the rational design of evolution experiments e.g. choosing 

the appropriate evolutionary pressure. There is a lack of modelling tools that allow 

predictions of evolutionary trajectories quantitatively. This work presents a 

bottom-up approach, where a model that can describe the physiology of yeast cells 

based on protein constraints derived from the morphology of cells is developed. This 

allows describing the fluxes as a direct function of cellular protein allocation and is 

further demonstrated to be a useful tool in understanding the evolutionary history 

of yeast (see Chapter 4). Understanding those fundamental mechanisms of evolution 

will help to design better evolutionary experiments and in consequence to create 

more efficient industrial fermentation processes. 

 

Understanding the link between free energy conservation and 

dynamic environments 
While so far always quasi steady-state conditions were considered and a single 

optimization criterion (i.e. maximal growth rate) was applied, in nature 

microorganisms are also exposed to dynamic conditions. Such fluctuations require 

metabolic flexibility in the pathways to maintain the cellular homeostasis in 

transient environments. Exposing cells to dynamic condition therefore coincides with 

an increased dissipation of free energy9 and consequently a decrease in biomass yield 

compared to steady-state conditions32,33. 

This is also of major interest in large scale industrial fermentations, where cells are 

continuously exposed to substrate gradients34,35 in the fermenter which will e.g. lead 

to rapid fluctuations in the substrate uptake rate and effects on the product yield. 

It is imperative to understand the linkage between energy dissipation, in particular 

with respect to energy dissipating futile cycles36 (also called substrate cycles), and 

the underlying regulatory mechanisms37,38 contributing to the phenotypical 

robustness in large scale fermentations. This would also facilitate the scale-up from 

bench to industrial scale and may even allow to rationally engineering more efficient 

or more robust phenotypes. 

However these fundamental connections are largely not understood due to a lack of 

direct observables39,40 but are also hampered by the unavailability of unbiased 

methods that allow a quantitative estimation of metabolic fluxes under dynamic 

conditions. Especially futile cycles can only be observed using labelling techniques41 

as they lead to an underdetermined stoichiometry matrix. Although proven methods 

are available for flux analysis in metabolic steady-state, useful methods that allow 

flux estimation in dynamic conditions have to be developed, a challenge that is 

addressed in this work (see Chapter 5). 
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Scope of the thesis 

In short, this thesis focusses on the following aspects arising from increased free 

energy conservation. 

(1) The relation between the dissipated Gibbs energy ( dissG∆ ) and the 

achievable product yield with respect to the process conditions in a 

fermentation process. 

(2) The additional relation between the dissipated Gibbs energy ( dissG∆ ) and 

the growth rate leading to the rate-yield trade-off is investigated. First 

with respect to a directed evolution strategies that allowing for selection 

of phenotypes with increased free energy conservation. Secondly, a bottom-

up modelling approach is presented allowing to predict adequate selective 

pressures. 

(3) The relation between the dissipated Gibbs energy ( dissG∆ ) and phenotypical 

robustness under dynamic conditions as prevalent in large-scale industrial 

fermentations is analyzed. Here fundamental research on dynamic flux 

estimation is presented that enables identifying flux functions and 

therewith facilitates understanding of the underlying dissipation 

mechanisms. 
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Chapter 2:  
Modelling the physiology of S. cerevisiae as a 

function of pH and lactic acid concentration:  

Implications for the design of a direct lactic 

acid fermentation process 

 
in collaboration with S.A. Wahl and J.J Heijnen 
 

 

 

“The essence of engineering is to find the best compromises 

subject to the given constraints” 
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Abstract 

Lactic acid production processes at low pH have been suggested as a more 

sustainable alternative to bacterial processes at near-neutral pH, as they allow the 

direct removal of lactic acid from the broth and therewith eliminate the formation 

of gypsum as byproduct. 

In this work the physiology of the industrial workhorse S. cerevisiae at high titers 

of lactic acid and lactate is analyzed. A stoichiometric metabolic model coupled to 

kinetic mechanisms is developed to describe the relevant phenomena with respect to 

the cellular physiology in a mechanistic way; (1) energetic uncoupling due to 

diffusion of lactic acid, acetic acid, succinic acid and protons through the cell 

membrane and (2) the response to osmotic pressure leading to elevated glycerol and 

acetate production in anaerobic conditions. For model calibration anaerobic 

chemostat experiments were performed at a variety of pH and nominal lactic acid 

concentrations to estimate the apparent permeability coefficients for lactic acid, as 

well as for glycerol in the mathematical model. 

A thermodynamic analysis is conducted to assess whether a low pH direct lactic acid 

fermentation process could be anaerobic. The analysis shows that the product 

pathway cannot deliver enough Gibbs free energy to generate ATP at pH values 

below the pKa of lactic acid, therewith rendering an anaerobic process at such pH 

impossible. With the parametrized model the maximal lactic acid yield on substrate is 

predicted globally for an aerobic direct lactic acid production process in S. cerevisiae 

as a function of the pH, the lactic acid titer and the osmolarity of the broth. It is 

found that the prevalent effect decreasing the product yield at low pH is the 

uncoupling caused by back diffusion of lactic acid from the broth whereas at near 

neutral pH the effect of glycerol production due to osmotic response is predominant. 

The decrease caused by two effects has approximately the same magnitude leading 

to an optimal pH at around 2.5. The model also allows identifying metabolic 

engineering targets on a quantitative basis for improvement of the product yield e.g. 

reducing the membrane permeability for lactic acid and will be useful in assessing 

the economic feasibility of a direct weak-acid production processes, also with 

respect to the downstream processing. 
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Introduction 

Lactic acid is considered a renewable and decomposable building block for polylactic 

acid (PLA), a polymer that can substitute the mostly oil derived plastic PET1,2. 

Traditional workhorses for industrial lactic acid production are lactic acid bacteria 

(LAB). These bacteria are mostly incapable of oxidative phosphorylation3, where 

homolactic species produce lactate anaerobically from sugars under near neutral pH 

conditions4. In production scale fermentation the near neutral pH of the culture is 

usually maintained by addition of calcium hydroxide5. 

A neutral fermentation pH has the advantage that the resulting product calcium 

lactate forms a solid phase with a solubility limit of ~50g/l at 30̊C6, which can be 

separated readily from the broth. This allows high titers in batch cultivation 

without introducing additional osmotic pressure or product inhibition. However, in 

order to gain the polymerizable lactic acid (HLac) from the calcium lactate (CaLac2), 

this has to be treated with a stronger acid, usually sulfuric acid, leading to 

stoichiometric formation of gypsum as byproduct (0.5mol CaSO4/mol HLac). 

The use of the titrants (calcium hydroxide and sulfuric acid) and the resulting by-

product gypsum not only pose a significant cost factor on the process7, but are also 

considered unacceptable with respect to an ambition for a circular economy. 

 
Figure 2.1. Weak-acid equilibrium of lactic acid and resulting osmolarity using a monoprotic 

base as titrant. 

 

Noting that the lactic acid is a weak acid with a pKa of 3.68, one seemingly straight-

forward strategy to circumvent this use of titrant and consequently the by-product 

formation of gypsum is to perform the fermentation at a pH<pKa, where 

predominantly lactic acid exists in the broth, allowing its direct extraction from the 
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broth8-10. Another advantage of low pH fermentation is that the osmolarity of the 

broth at equivalent lactic acid titer is much lower, as no counter-ion is present (see 

Figure 2.1). Clearly, such direct lactic acid fermentation will require an acid tolerant 

production host; therefore in this work the physiology of the widely used yeast S. 

cerevisiae at high lactic acid titers and low pH is investigated. 

 

Physiological response of S. cerevisiae to osmotic pressure and weak acid 

stress 

One phenomenon regularly observed in fermentations is the so called weak-acid 

cycling11 leading to ATP dissipation. It is caused by the ability of small undissociated 

weak-acids to diffuse through the cell membrane into the cytosol. As the cytosolic 

pH has to be maintained at around neutral pH12, the acid dissociates in the cytosol 

to its anion and a proton. In order to maintain the intracellular pH and therewith the 

cellular state, the proton as well as the respective anion have to be exported back 

to the extracellular space. This creates a futile cycle, where the export against the 

diffusion gradient requires cellular energy in the form of ATP (e.g. H+-ATPase, ABC 

transporter) or indirectly by dissipating the proton motive force over the cellular 

membrane when the anion is exported (e.g. uniport or H+-antiport of the anion). This 

means the magnitude of weak acid cycling is expected to be proportional to the 

concentration of the undissociated acid in the broth and therewith increase with 

more acidic pH at the same nominal titer. Since the ATP consumed in this futile cycle 

has to be provided by the catabolism of substrate, this phenomenon has a direct 

influence on the achievable product and biomass yield. 

There is a second mechanism that has to be taken into consideration, the osmotic 

stress response of S. cerevisiae. The cell membrane has a limited mechanical 

strength, so in order to counteract elevated extracellular concentrations leading to 

osmotic pressure, the cell has to maintain an elevated intracellular concentration of 

an osmolyte (also called compatible solute or osmoprotectant). In S. cerevisiae the 

major osmolyte is glycerol13. However glycerol is also able to diffuse through the 

cell membrane14 leading to glycerol leakage and consequently a loss in carbon due to 

osmotic response15. Furthermore, since the degree of reduction per carbon of 

glycerol is higher compared to the substrate glucose, the cell has to balance its 

redox levels by producing another molecule with a lower degree of reduction per 

carbon e.g. excretion of acetic acid or succinic acid (see Figure 2.2), whereas the 

production of CO2 is not an option in the anaerobic experimental conditions. This by-

product formation is undesirable for anaerobic fermentation processes with high 
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titer as it leads to additional carbon loss and moreover the excreted metabolites are 

weak-acids, which themselves also contribute to the futile cycling. 

 

 
Figure 2.2. A: Schematic representation of the physiology of S. cerevisiae: under lactic acid and 

osmotic stress under anaerobic conditions. B: Schematic representation of the osmotic response 

in S. cerevisiae. 

 

The aim of the presented work is to develop a structured metabolic model capable of 

describing these aspects (futile cycling, osmotic response) of cellular physiology 

under the relevant cultivation conditions for a direct lactic acid fermentation 

process. The model allows predicting the performance of S. cerevisiae and therewith 

allows exploring the design space of relevant conditions for an industrial direct 

lactic acid production process. Of special interest is the prediction of a maximum 

possible product yield, as the cost of substrate is the main cost driver in commodity 

chemical processes7. The model is useful for bioprocess engineers to evaluate 

different process options and for genetic engineers to deduce targets for metabolic 

engineering to improve the host organism. 

 

Materials and Methods 
Experimental methods 

To experimentally quantify the effect of futile cycling and the osmotic response, 

carbon limited chemostat conditions at a constant dilution rate were chosen. The 

rationale for this setup is that the biomass yield on substrate is directly related to 

the steady-state biomass concentration in these conditions. This allows inferring the 

amount of ATP dissipation and carbon loss from the decrease in biomass 
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concentration. In order to have a sensitive system for resolving the change in 

biomass yield due to ATP dissipation, anaerobic conditions were chosen. Additional 

advantages of anaerobic conditions are that the redox requirements of the pathways 

can be quantified readily and that lactate cannot be catabolized. 

As there is no anaerobic lactic acid producing S. cerevisiae strain available16, the 

wild-type S. cerevisiae strain CEN.PK113-7D was used and lactic acid production was 

mimicked by adding L(+)-lactic acid (80% (w/w), Sigma Aldrich) at different 

flowrates to the medium feed using a precision peristaltic pump (ISMATEC, 

Switzerland) before feeding to the bioreactor. 

Three sets of chemostat experiments were performed, where the total lactic acid 

concentration in the broth was increased stepwise by adding lactic acid to the feed. 

The first experiment was performed at a pH of 3, below the pKa of lactic acid, the 

second experiment was performed at a pH above the pKa of lactic acid, at pH 5 and 

the third experiment was performed with adding KCl to the medium to solely 

investigate the effect of osmotic pressure. 

Chemostat cultivations were performed at a dilution rate of 0.1 h-1; the broth 

volume was controlled at 1 liter by a level sensor actuating the effluent pump. The 

pH in the bioreactor was controlled to the respective setpoint by addition of 2mol/l 

KOH (at pH 3), and 4mol/l KOH (at pH 5). The temperature of the broth was 

controlled at 30°C. The vessel was sparged with nitrogen at a flowrate of 0.5 vvm. 

Norprene tubing (Cole-Parmer, USA) with little oxygen permeability was used; 

moreover oxygen was stripped from the medium by sparging nitrogen gas through 

the medium vessel. The offgas concentration of carbon dioxide was measured after 

drying the gas flow using an infrared analyzer (NGA 2000, Rosemount, USA). 

The samples were taken from (quasi) steady-state conditions. A steady-state was 

assumed when the biomass dry weight and carbon dioxide production rates changed 

by less than 4% over at least 2 volume changes. 

For the experiments with addition of lactic acid to the feed, synthetic medium with 

27.5g/l D-(+)-glucose as the limiting carbon and energy source was used as described 

previously11. The medium was also supplemented with the anaerobic growth factors 

ergosterol (10 mg/l) and Tween 80 (420 mg/l). 

The addition of lactic acid and base, as well as the outflow of the chemostat were 

measured by recording the weight of the individual vessels on-line, this also allowed 

to calculate the respective steady-state concentrations. The mass flowrates were 

estimated by linear regression of all recorded data points in the steady-state. For 

the experiments performed with addition of KCl to induce osmotic pressure, the KCl 
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was directly dissolved in the medium and a final glucose concentration of 20g/l was 

chosen. 

Biomass dry weights were determined via filtration of 20g weighed broth sample 

over pre-dried and weighed nitrocellulose filters with a pore size of 0.45 μm. After 

filtration of the broth, the filters were washed twice with demineralized water, 

dried in an oven at 70°C for 72h and weighed. 

Culture supernatants were obtained after sterile filtration of broth with a syringe 

filter with 0.22μm pore size (Merck Millipore) and stored at -80°C until further 

processing. Supernatants and media were analyzed (glucose, glycerol, acetate) via 

HPLC using an Aminex HPX-87H column operated at 60°C with 10 mmol/l H2SO4 as 

mobile phase at a flow rate of 0.6 ml/min. A quantitative succinate analysis was not 

possible as the lactate peak overlapped the succinate peak. 

The osmolarity of the broth was calculated by summing up the salts of the medium, 

the added KOH or KCl respectively and the added lactic acid. 

 

Metabolic core model 

In order to describe the metabolic stoichiometry of S. cerevisiae, the following 

reactions are modelled (see Table 2.1), where all intracellular metabolites together 

with protons (charge conservation) and the cofactors ATP and NADH are balanced. As 

ATP/ADP and NADH/NAD+ are conserved moieties, ADP and NAD+ have been removed 

from the stoichiometry. For simplicity the glucose needed to balance the NADPH 

demand for growth was lumped into the growth reaction as described in 

literature17,18. The model is comprised of the major pathways, glucose catabolism to 

ethanol to provide ATP for the biomass reaction. 

The glycerol pathway has been included to balance the redox of growth under the 

anaerobic experimental conditions and moreover to describe the osmotic response. 

The redox of the osmotic response is on the other hand balanced by the pathways 

that produce acetic acid and succinic acid. Moreover the model considers that lactic 

acid, acetic acid, succinic acid and protons can diffuse through the cell membrane 

where they dissociate. The anions have to be exported under the investment of ATP 

(see also Figure 2.S4) and same holds for the protons that are exported by the 

proton-ATPase. 
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Table 2.1. Reactions for metabolic core model, where extracellular specific rates q and 

intracellular fluxes v are distinguished. 

Name Reaction Mechanism 

Glucose uptake rate qglc,upt Glcec  Glc Facilitated 

diffusion 

Ethanol production 

rate 

vetoh 0.5 Glc   1EtOH + 1 CO2 + 1ATP  

Ethanol excretion  qetoh,diff EtOH  EtOHec Diffusion 

Glycerol production vglyc 0.5Glc + 1ATP + 1NADH  1Glyc  

Glycerol excretion qglyc,diff Glyc  Glycec Diffusion 

Acetate production vac 0.5Glc  1Ac-+ 1H+ + 1ATP  + 

2NADH + 1CO2 

 

Acetate excretion qac,exp Ac- + 1ATP  Ac-
ec ABC export of 

Ac- 

Acetic acid back-

diffusion 

qac,diff 1HAcec  1Ac- +1H+ Back-

diffusion of 

HAc 

Succinate production  vsucc 1Glc  1Succ2- + 2 CO2 + 2ATP + 

5NADH + 2H+ 

Oxidative part 

of TCA cycle 

Succinate excretion qsucc,exp 1Succ2- + 1ATP  1Succ2-
ec ABC export of 

Succ2- 

Succinic acid back-

diffusion 

qsucc,diff 1H2Succec  1Succ2- + 2H+ Diffusion of 

H2Succ 

Carbon dioxide 

excretion 

qCO2 1CO21CO2,ec Diffusion 

Biomass equation µ 0.1865 Glc + 1.34 ATP + 0.17NH4
+ 

1C1H1.87O0.62N0.17 + 0.119 CO2 + 

0.178 NADH + 0.17 H+ 
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Lactic acid back-

diffusion 

qlac,diff 1HLacec  1Lac- + 1H+ Diffusion of 

HLac 

Lactate excretion qlac,exp 1Lac- + 1ATP  1Lac-
ec ABC transport 

of Lac- 

Proton back-

diffusion 

qH,diff 1H+
ec  1H+ Diffusion of 

protons 

Proton excretion qH,exp 1H++ 1ATP  1H+
ec Proton export 

by H+-ATPase 

Cellular maintenance qm 1ATP   

 

Selected free rates and kinetic expressions  

The stoichiometry matrix of the balanced intracellular metabolites has 8 degrees of 

freedom; this means 8 linearly independent rates ( fq ) have to be chosen in order to 

find a unique solution for all rates in the system. Kinetic expressions are introduced 
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(see Table 2.2) that link the operating conditions to the stoichiometry. The same set 

of kinetic equations and parameters is used to describe all experimental conditions; 

this has the advantage that the model with the estimated parameters can be 

extrapolated for other conditions and it also leads to a reduction of parameters to 

be estimated from the observables. 

 

Table 2.2. Mathematical expressions used for the chosen set of linearly independent rates 

Name Expression 

qglyc,diff ( ), , ,glyc diff glyc osm ec turgor solutes icq P a c c c= ⋅ ⋅ + −  

qac,exp 
,exp ,diff , /( )ac glyc glyc ac glycq q q µ l= − ⋅  

µ .constµ =  

qlac ,diff 
, ,

.
, 3.8610 1

lac diff HLac Hlac ec

lac ec
Hlac ec pH

q P a c
cwith c −

= ⋅ ⋅

=
+

 

qac,diff 
ac, Hac,

,
, 4.7610 1

diff Hac ec

ac ec
Hac ec pH

q P a c
c

with c −

= ⋅ ⋅

=
+

 

qsucc,diff 
2 2

,
22

succ, ,

4.2 (4.2 5.6)10 10 1
succ ec

diff H succ H succ ec

H succ pH pH

q P a c

c
with c

− ⋅ −

= ⋅ ⋅

=
+ +

 

qH,diff 
, ,H diff H H ec

q P a c+ + += ⋅ ⋅  

qm 
m ATPq m=   

 
For weak-acids, it is assumed that only the uncharged species can diffuse through 

the cell membrane and that the intracellular concentrations of these species are 

negligible compared to the extracellular concentrations (the mole fractions are well 

below 0.001) at the near neutral pH conditions inside the cell. The concentrations of 

undissociated weak organic acids are calculated from the total concentration and the 

pH in the broth using the Henderson-Hasselbalch equation (see Table 2.2). 

 

Effect of osmotic pressure on the specific cell surface 

The cell volume and therewith the specific cell surface a, are a function of the 

osmolarity. An experimental relation as previously published19 is used here, with an 

initial biomass specific surface area of 2.6791 m2/gDW20. Same holds for the turgor 

pressure, which can be derived using the Boyle-Van’t Hoff relation21 that describes 
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the dependence between the turgor pressure and the observed cell volume22. The 

collected data has been approximated using polynomial regressions (see Appendix and 

Figure 2.S1 therein). The turgor pressure has been converted to concentrations using 

the Van’t Hoff equation for convenience. 

 

Simulation and parameter estimation 

With the set of parameters θ , the independent rates fq  are defined and the 

remaining dependent rates dq  and fluxes v  have been calculated assuming steady-

state conditions for the balanced intracellular metabolites. 
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d f f
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  (2.1) 

 
Using all rates, the set of mass balances for the broth as well as the gas phase 

balances were solved for the extracellular steady-state concentrations in the 

fermenter using the Levenberg-Marquardt algorithm in the MATLAB fsolve optimizer. 
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With this forward simulation on hand, the kinetic parameters have been estimated 

by minimizing the residual sum of squares between experimental observables and 

model prediction with the MATLAB fmincon solver, using the sequential quadratic 

programming algorithm therein. 

The directionality of all dependent fluxes has been constrained to the intended 

direction; also strictly positive steady state concentrations have been enforced 

using non-linear inequality constraints in the optimizer. 
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The used measurement errors iσ  can be found in the Appendix. The comparably 

large error for ethanol reflects the uncertainty associated with ethanol stripping 

from the fermenter23,24. Asymptotic confidence intervals have been computed by 

linearizing the system at the parameter optimum using finite differences and 

performing error propagation. 

 

Prediction of the maximal yield for an aerobic direct lactic acid 

production process 

To predict the maximum possible lactic acid yield on glucose, a flux balance analysis 

(FBA) was performed. Three reactions for aerobic glucose catabolism and oxidative 

phosphorylation have been added to the stoichiometric network where a P/O ratio of 

1.225 was assumed. 

 

Table 2.3. Added reactions for prediction of an aerobic lactic acid production process. 

Name  Reaction 

Aerobic glucose catabolism vglc,cat Glc  6CO2 + 2ATP + 12NADH 

Oxidative phosphorylation qresp NADH + 0.5O2  1.2ATP 

Lactate production vlac Glc  2Lac-+2H++2ATP 

 

The lactic acid excretion rate was maximized, where the glucose uptake rate is set 

to the maximum value. The critical oxygen uptake rate was constrained to its 

experimentally observed maximum value26 to reflect the maximal respiratory 

capacity of the system. 
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Where the achieved product yield then calculates to: 

 
, ,

P/S
,

lac exp lac diff

glc upt

q q
Y

q
−

=   (2.5) 

The FBA has been performed using the MATLAB linprog optimizer, where the 

intended directionality of the fluxes was enforced using bound constraints. 
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Results and Discussion 

Experimental results  

The lactic acid experiments show a comparable decrease in steady-state biomass 

concentration for both the experiment with increasing lactic acid concentration in 

the broth at a pH of 3, but also the pH 5 conditions (see Figure 2.3). 

 
Figure 2.3. Experimental observables and best model fit. Circles are measurements, crosses are 

model simulations (best fit).Top row: pH3 with exposure to lactic acid; middle row: pH5 with 

exposure to lactic acid; bottom row: pH3 exposure to KCl. The abscissa shows the different 

experimental steady-states consecutively. For succinate no measurements were obtained. 
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This indicates that weak-acid cycling of lactic acid is not the only relevant effect 

influencing the biomass yield in the system. Importantly the model predicts the 

steady-state biomass concentrations consistently within 10% of the measurements. 

 

Osmotic response and redox metabolism 

Looking at the concentrations of glycerol it becomes clear that the conditions at pH 

5 with an osmolarity up to 1430 mOsm results in the highest glycerol production 

leading to a steady state concentration up to 45 mmol/l at a pH of 5 (corresponding 

to 14.9% of the carbon uptake), which is slightly underpredicted by the model as the 

optimizer has to find a trade-off for glycP  across all conditions, whereas the effect 

is less pronounced at a pH of 3 with a maximal osmolarity is 930 mOsm (20 mmol/l 

glycerol, corresponding to 8.4% of the carbon uptake). The effect is also observed in 

a comparable magnitude when exposing cells to KCl only (maximum of 1265 mOsm, 

corresponding to 11.7% of the carbon uptake). It is known that glycerol production 

is induced by osmotic pressure27, where the metabolite is a so called compatible 

solute28 that can counteract the osmotic pressure. Therefore the glycerol production 

rate was modelled as a function of the overall osmolarity in the medium. This 

osmolarity is comprised of the salts in the medium, the added lactic acid and the 

added base for pH control. However, a slightly lower glycerol rate in the KCl 

experiment was observed compared to the lactic acid conditions; it seems that S. 

cerevisiae can mitigate osmotic stress towards KCl better than towards lactate (see 

Figure 2.4 left). This is reflected in a higher estimated value for the concentration 

of intracellular solutes solutesc . The observed difference is within the variance of 

previously observed intracellular accumulation of solutes under osmotic stress29. The 

basal glycerol production rate ,glycq µ observed across all conditions is an effect of 

balancing the redox of the biomass equation. Side products such as acetate or 

succinate provide the additional NADH needed to synthesize the glycerol lost in the 

osmotic response. 

Therefore, it is not surprising that the production rate of acetate correlates with 

the observed glycerol production (see Figure 2.4, right). However, when the specific 

rate of glycerol formation is plotted as a function of acetate formation, a 

significant variance in the coupling depending on the imposed conditions can be 

observed. It can be seen that the observed rate of acetate production is not 

sufficient to balance the redox under the lactic acid conditions, where the effect is 

more pronounced at a pH of 3. The KCl condition, on the other hand, shows a good 
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agreement. To reflect this redox deficiency, the model was extended by another 

reaction providing NADH, succinic acid production through the oxidative part of the 

TCA cycle30, where further a linear correlation between the glycerol and the acetate 

production rate is assumed using the empirical proportionality factor /ac glycl (see 

Table 2.2). The secreted weak organic acids lead to additional futile cycling therewith 

affecting the energy metabolism of the cells. Therefore it is crucial that the model 

is able to predict the steady state concentrations as good as possible to get a 

representative picture of the ATP sinks. 

 
Figure 4. Left: Specific glycerol production rate as a function of broth osmolarity, dashed line 

indicates the stoichiometric glycerol production rate caused by biomass formation also taking 

into account the slight increase in dilution rate caused by the addition of base with increasing 

osmolarity. Right: Redox balancing between specific glycerol and specific acetate production 

rate under the different experimental conditions. Dashed line indicates a redox balanced ratio 

between acetate and glycerol formation of / 0.5ac glycl = with the root ,glycq µ . 

 

Estimated model parameters and energy metabolism 

In contrast to the osmotic and redox related effects, the energetic effects, such as 

lactic acid, acetic acid, and proton uncoupling cannot be discriminated from the 

observable rates but have to be inferred from the estimated model parameters. 

From the best fit one can see that the model can reproduce the experimental 

observations sufficiently to investigate the underlying effects on cellular 

physiology. Moreover, all unknown free parameters of the model can be estimated 
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and also identified from the observables. The model also gives a reconciled set of 

rates (see Figure 2.S2). 

 

Table 2.4. Model parameters with asymptotic confidence interval for parameters estimated 

from the experimental observables. 

 Value (±σ , if applicable) Remark 

a  m2/gDW Function of broth osmolarity 

cosm
19; see also Figure S1 

turgorc    Function of broth osmolarity 

cosm
19; see also Figure S1 

Pglyc 1.584∙10-6 ± 0.07∙10-6 m/h This work 

,solutes lacc  330.5 ± 18.64 mmol/l This work; intracellular solute 

concentration for HLac 

experiments 

,solutes KClc  461.4 ± 25.01 mmol/l This work; intracellular solute 

concentration for KCl 

experiments 

HlacP   2.882∙10-6  ± 0.306∙10-6 m/h This work 

HacP  2.6∙10-4 m/h Taken from literature31 

2H succP  3.96∙10-6  m/h Taken from literature 31 

H
P +  

10-3 m/h Taken from literature 31 

ATPm  0.1440 ± 0.3506 mmolATP/gDW/h This work 

2 ,o critq  20 mmol oxygen/gDW/h Taken from literature 26 

,glycq µ   0.7903 mmol glycerol/gDW/h Estimated from growth 

stoichiometry 
1

/
Exp
ac glycl   0.0288  Estimated by linear regression 

from Figure 2.4 (R2=0.80), pH=3 

addition of HLac 
2

/
Exp
ac glycl  0.2506 Estimated by linear regression 

from Figure 2.4 (R2=0.99), pH=5, 

Addition of HLac 
3

/
Exp
ac glycl  0.381 Estimated by linear regression 

from Figure 2.4 (R2=0.97), pH=3, 

Addition of KCl 

 
With the estimated parameters at hand, the contributions of the respective 

mechanisms to the ATP turnover can be calculated. The estimated maintenance 

coefficient is comparable with values estimated previously32,33, this indicates that 

the model reflects the major ATP consuming reactions in S. cerevisiae. 
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At pH 3, the ATP dissipation increases with the concentration of lactic acid in the 

broth and is clearly higher compared to the same nominal titer at lower pH (see 

Figure 2.5). The excreted acetate is coupled to the osmotic response (glycerol) as 

discussed before, where acetic acid is a much more potent uncoupler compared to 

lactic acid with a permeability coefficient 2 orders of magnitude higher (see Table 

2.4). Additionally acetic acid has a higher pKa of 4.76, which leads to substantial 

acetate based uncoupling at pH 5, whereas the uncoupling caused by succinic acid 

was found to be negligible under all experimental conditions. Besides the already 

discussed loss in carbon, the production of glycerol is also the largest sink of ATP at 

pH 5. 

 
Figure 2.5. ATP demand by growth (µ =  0.1 1/h), maintenance, diffusion of the weak-acids 

(acetic, lactic, succinic acid) and protons through the cell membrane and the diffusion of 

glycerol as a function of the total lactic acid concentration. 

 

Analysis of a direct lactic acid production process 

From a process design perspective, anaerobic processes are favored as the 

fermenters do not need aeration; this saves cost for the compression of air as well 

as for agitation (mass-transfer) and also makes it easier to scale-up the process34. 

Therefore the feasibility of an anaerobic microbial production process was evaluated 

by calculating the available Gibbs free energy of the product pathway at conditions 

representative for a production process (see Figure 2.6; for the calculations refer to 

the Appendix). 
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The cost for downstream processing will primarily depend on the concentration of 

lactic acid in the broth and therewith favor a process at a pH below the pKa 

 of lactic acid. However, the disadvantage of a low pH fermentation is that the 

change in Gibbs free energy obtained in the pathway from glucose to lactic acid is 

decreasing with decreasing pH, whereas the amount of Gibbs free energy needed for 

the export of lactic acid from the pH neutral cytosol through the cell membrane 

increases35. Considering that available Gibbs free energy, it can be seen that the 

pathway can deliver 2 ATP (corresponding to a change in Gibbs free energy of about 

50 kJ/mol under physiological conditions) per glucose at neutral pH. However, due to 

the decrease in Gibbs free energy, this ATP production reduces with decreasing pH 

to only 1 ATP below a pH of 6.4 and 0 ATP below a pH of 4.8. This also offers the 

explanation why homofermentative lactic acid bacteria cannot grow anymore at low 

pH4. 

 
Figure 2.6. Black-box thermodynamic considerations for a direct lactic acid production process 

at an extracellular Lac titer of 2 mol/l as a function of the broth pH. Further an intracellular 

Lac concentration of 0.1 mol/l and an intracellular pH of 7 have been assumed. The 

thermodynamic driving force of the pathway has been calculated to 55kJ/mol as presented in 

literature36 with an addition of 20 kJ/mol for the export of the two Lac molecules from the 

cytosol (see also Appendix). 

 

This means that an anaerobic low pH process is thermodynamically impossible under 

the assumed conditions, even using strategies to increase the free energy 

conservation37 will only change this conclusion marginally. Assuming that it would be 

possible to gain another 0.5 ATP from the product pathway38, this would correspond 
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to a decrease of the thermodynamic driving force of one third and reduce the 

feasible pH from 4.8 to 4.15, which is still significantly above the pKa of lactic acid. 

This means the only viable process alternative for a low pH process is an aerobic 

process, where oxidative phosphorylation can provide the ATP for growth and 

maintenance of the system. This may be considered a drawback but at the same time 

it solves another challenge that has been observed in the anaerobic experiment, the 

balancing of redox. In an aerobic process the oxidative TCA cycle can provide the 

NADH needed to balance the glycerol pathway, therewith eliminating the by-product 

formation of acetate and succinate. This has multiple advantages for a process; first 

there is no additional by-product which complicates the downstream processing, 

especially when considering a selective continuous process such as reactive 

extraction5,8,10,39,40 which could lead to accumulation of the byproduct in the broth. 

Secondly, aerobic conditions reduce the uncoupling induced especially by acetic acid 

but also succinic acid which can lead to significant ATP loss at elevated 

concentrations41. Oxidative phosphorylation will lead to CO2 as a by-product that 

undergoes phase separation and can be readily removed from the broth. The third 

advantage is that the carbon in CO2 is fully oxidized and will therewith lead to a 

lower carbon loss compared to acetic or succinic acid produced to compensate for 

the redox lost in glycerol production. 

 
Prediction of the maximal product yield on substrate 

Having found thermodynamically feasible operating conditions, the parametrized 

model allows extrapolating the pH and osmolarity effects to a wide range of pH and 

titer conditions for a producing system. To predict the yield in an aerobic process, 

the stoichiometry matrix is extended with the reactions for the TCA cycle and the 

oxidative phosphorylation as well as the lactate production pathway. This then 

allows calculating the maximum possible yield as a function of the respective pH and 

lactic acid titer conditions.  

In the optimization the availability of the electron acceptor oxygen leads 

consistently to the result that acetate secretion is absent, as it would result in a 

larger carbon and energy loss. The considered mechanisms that decrease the product 

yield are the glucose oxidation to cover up for the ATP demand for cellular 

maintenance and lactate export, the uncoupling due to the lactic acid in the broth 

and the glycerol synthesis for the osmotic response. 
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Figure 2.7. Left: Prediction of the maximum possible lactic acid yield on glucose as a function 

of the lactic acid titer in the broth and the pH in the broth. Right: Estimated glucose 

distributions for lactic acid concentrations of 500 mmol/l (low), 2000 mmol/l (middle) and 

3000 mmol/l (upper). 

 

In Figure 2.7, it can be seen that the yield isoclines show a clear optimum, where the 

optimal pH is around 2.5. This shows that the carbon and ATP loss induced by 

osmolarity, which increases with pH, leads to higher losses in product yield than 

uncoupling due to lactic acid diffusion. It can be clearly seen that a higher lactic acid 

titer will coincide with a loss in product yield due to increasing uncoupling. This 

means a downstream process e.g. a reactive extraction of lactic acid should best be 

operated with a titer as low as possible from a product yield point of view. The 

overall process economics also depend on other factors e.g. for a direct extraction 

of lactic acid a high titer in order to achieve a high mass transfer to the extractant 

will be desirable, which can only be achieved on the cost of product yield. Here, the 

model can help finding the best compromise between the cost for fermentation and 

downstream processing. It can also be seen that at a pH of about 1.6 the system is 

rapidly decaying, the reason for this is that the respiratory capacity cannot provide 

sufficient ATP for the export of the protons. This limit is in agreement with 

experimental observations42. 
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Metabolic engineering targets 

From the model a number of strategies that could improve the product yield on 

substrate can be deduced. 

The model shows that the energetic capacity of S. cerevisiae is sufficient to 

counteract lactic acid diffusion even at high lactic acid titers up to 5.5 mol/l. 

However, high titers can only be achieved on the cost of ATP and therewith product 

yield, leading to a target conflict with respect to downstream processing where a 

high titer will be desirable for minimizing cost. This raises the question how the 

cells could be engineered to increase the product yield at elevated lactic acid titers 

in order to alleviate this conflict. 

The P/O ratio mainly determines the ATP yield on substrate, S. cerevisiae exhibits a 

low ratio due to absence of a proton-translocating NADH dehydrogenase compared to 

other yeasts e.g. Candida utilis17; Here a yeast with a higher P/O ratio would have a 

lower rate of glucose catabolism necessary for the same rate of ATP therewith 

showing an increased product yield. 

S. cerevisiae shows a remarkable osmotolerance29, which comes at the price of 

glycerol production. In contrast to the growth associated glycerol production23,43 

this flux cannot be eliminated e.g. by knockout of the genes encoding the glycerol-3-

phosphate dehydrogenase without obstructing the cellular physiology44. Here a 

possible strategy would be to engineer the cell membrane towards a lower 

permeability for glycerol, therewith reducing the loss by diffusive outflow at 

elevated osmotic pressure. 

Another strategy could be to (over)express a pathway producing an alternative 

compatible solute that does not diffuse out of the cell, e.g. other polyols like 

arabitol, mannitol or sorbitol. Research45 has shown that 6-carbon polyols are 

retained more compared to glycerol and that these components can partly 

complement the lack of glycerol. However the role of glycerol is more complicated as 

it is also involved in the dynamic adaptation to osmotic shock via the HOG46 

pathway using the FPS1 transporter, which may make replacing it a tedious task. 

To reduce the ATP loss from for weak-acid cycling, the same metabolic strategy as 

proposed for glycerol could be applied, reducing the membrane permeability for lactic 

acid47. This has for example been successfully achieved for acetic acid by use of 

directed evolution31. Assuming that the diffusion of lactic acid as well as the carbon 

loss through glycerol diffusion is reduced by 80% the solution space for a high 

product yield of 1.8 mol lactic acid/mol glucose can be extended to a titer of 2.2 

mol/l lactic acid (see Figure 2.S3). 
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Low pH lactic acid production processes have been successfully implemented using 

non-Saccharomyces yeast; whereas efforts in S. cerevisiae to our best knowledge 

have been not successful. Conversely, the results indicate that the seemingly low 

suitability of S. cerevisiae for the production of lactic acid at low pH is not caused 

by energetic limitations or a limited capacity for the active export of lactic acid in 

the applied conditions. It has been shown that a process at low pH would have to be 

aerobic in order to deliver the necessary energy for the product pathway and export. 

However, there are also reports of adverse effect of oxygen in presence of lactic 

acid48,49 leading to a low lactic acid tolerance. The relations causing this effect are 

poorly understood and should be researched, best in comparison to yeast strains 

showing higher robustness to high lactic acid concentrations at low pH in the 

presence of oxygen. This may lead to the situation that the dissolved oxygen 

concentration has to be minimized i.e. a microaerobic process. On the other hand, the 

productivity is dependent on the availability of oxygen to provide the ATP for the 

product pathway and oxygen limitation may have detrimental effects on PDC 

negative cells50,51. 

Independently of the implementation, the modeling approach gives a clear ranking of 

metabolic engineering targets as a function of the defined process targets and can 

help finding an optimal compromise for a direct lactic acid process by evaluating the 

impact of the operating conditions on the cellular physiology and therewith the 

maximum possible product yield in the fermentation. 
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Symbols and Abbreviations 

a   Specific surface area 

c   Concentration 

F   Flow rate 

ATPm   Maintenance coefficient 

N   Stoichiometry matrix 

P   Permeability coefficient 

q  Specific rate 

R   Gas constant 

RSS   Residual sum of squares 

T   Temperature 

t   Time 

v   Flux 

V   Volume 

y   Mole fraction (gas phase) 

/SPY   Product yield on substrate 

θ   Model parameters 

θ̂   
Optimal set of parameters with respect to minimal RSS 

/ac glycl   Stoichiometric coefficient 

σ  Standard deviation 

  

Subscript/Superscript  

ac   Nominal acetic acid 

ac−
 

Acetate 

ATP   Adenosine triphosphate 

cat   Catabolic 

2CO   Carbon dioxide 

crit   Critical uptake rate  

d   Dependent rate/flux 

diff   Diffusion through cell membrane 

etoh   Ethanol 

Exp   Experiment 

ec   Extracellular 

exp   Export from cytosol 

f   Free rate 

gas   Gaseous control volume 

glc   Glucose 

glyc   Glycerol  
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H +
  Proton 

Hac   Acetic acid 

Hlac   Lactic acid 

2H succ  Succinic acid 

i   Generic variable for metabolites 

in   Inflow to control volume 

lac  Nominal lactic acid or refers to experiments using lactic acid in 

feed 

lac−
 

Lactate 

liquid   Liquid control volume 

m   Cellular maintenance 

2O   Oxygen 

osm   Osmotic pressure 

out   Outflow of control volume 

resp   Respiratory 

solutes   Intracellular solutes 

succ  Nominal succinic acid 
2succ −

  Succinate 

turgor   Turgor pressure 

upt   Uptake rate 

, maxupt   Maximal uptake rate 

x   Biomass 

µ   Growth/Biomass 
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Figure 2.S1. Left: Specific surface area as a function of broth osmolarity with polynomial 

approximation. Right: cturgor as a function of broth osmolarity with piecewise linear 

approximation.  

 

 

Table 2.S1. Standard deviations for weighting during parameter estimation and best objective 

function 

 σ   
cx 0.1 gDW/l 

cglc 1.5 mmol/l 

ceth 50 mmol/l 

cac 0.2 mmol/l 

cglyc 1mmol/l 

yCO2 0.2% 

minRSS   1317.92 
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Model prediction for specific rates 
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Figure 3.S3. Yield predictions for 80% reduced lactic acid diffusion and glycerol loss. 
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Thermodynamic calculations 
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Transporter equilibria 

 
Figure 3.S4. Out/In ratios in thermodynamic equilibrium of the transport from the cytosol for 

uniport and ABC transport with a stoichiometry of ATP for acetate, lactate and succinate 

assuming a constant proton motive force of -0.15V and an intracellular pH of 7. 
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Chapter 3:  
Enrichment of the more efficient:  

Droplet based cultivation of S. cerevisiae 
for selection of phenotypes with 

increased free energy conservation 
 

in collaboration with R. Mans, T. van Maris, B. Teusink and S.A. 

Wahl 

 

 

 

“Competition for access to limited resources inevitably leads to 

a conflict between self-interest and the efficient usage of the 

common good.” 

Adapted from ‘The tragedy of the commons’ of Garrett Hardin 
  

61



Abstract 

Increasing the free energy conservation in anabolic product pathways can increase 

the product yield on substrate in cell factories. However, the desired phenotypes 

cannot always be engineered rationally. Adaptive laboratory evolution has been 

shown to be a useful tool to select desired phenotypes. Usually, the desired trait of 

the desired phenotype can be linked to an increased growth rate, which allows 

enriching and isolating the desired mutants. This strategy does not work for the 

enrichment of more ATP efficient mutants as there seems to be a trade-off between 

the growth rate and the ATP efficiency i.e. more efficient strains are likely to grow 

slower. To circumvent this trade-off an experimental methodology consisting of 

repetitive incubation of cells partitioned into droplets is demonstrated for S. 

cerevisiae. A previously described experimental protocol for lactic acid bacteria is 

adapted to S. cerevisiae and furthermore a model for the experimental design of 

enrichment experiments is developed. In order to effectively assess the performance 

of such systems the ideal performance characteristics of partitioned systems are 

derived. The model is then extended for the relevant non-idealities observed in the 

system and subsequently validated experimentally by enriching a phenotype with 

increased free energy conservation and decreased maximal growth rate in presence 

of the wild-type population. It is shown that the model can predict the experimental 

enrichment trajectory which allows deducing the general enrichment characteristics 

of partitioned systems. The model facilitates the design of enrichment experiments 

by finding appropriate experimental settings a priori. 
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Introduction 

Without political incentive, e.g. subsidies, microbial production of bulk chemicals 

from renewable feedstocks is in economic competition with building blocks derived 

from fossil resources. Especially, for low value commodity chemicals the price of the 

feedstock determines to a large extend the price of the final product. This means 

high product yields on substrate are often crucial for an economically viable 

production process1,2. 

The maximum theoretical yield for a product reaction can be derived with a degree 

of reduction balance, while also taking the change in Gibbs free energy into 

consideration3,4. However, the mentioned methodology treats the product reaction as 

a black box and does not consider the actual available metabolic reactions. The 

pathway structure in turn determines how much of the released Gibbs free energy is 

converted to usable cellular energy in the form of ATP. 

In native pathways, the available thermodynamic driving force of the product 

pathway reaction is usually only converted to a small extent to ATP. This can lead to 

the consequence that e.g. a product reaction is ATP neutral or even ATP consuming, 

although the change in Gibbs free energy would be theoretically sufficient to 

produce a surplus of ATP3. In those cases, the ATP requirement of the product 

reaction has to be balanced by another pathway providing ATP, e.g. complete 

catabolism of the substrate. This leads to the formation of side-products like CO2, 

therewith decreasing the achievable product yield on substrate. 

Consequently, strategies to improve the ATP yield in metabolic pathways have been 

proposed5 (see also Chapter 2), i.e. more of the Gibbs free energy of a reaction shall 

be converted to ATP. Still, the rational engineering results often to be very 

challenging. For example, de Kok et al. attempted to increase the ATP efficiency of 

the proton ATPase in S. cerevisiae6. Increasing the export from one to two or three 

protons per ATP a broad variety of yeast bioprocesses could be improved 

significantly7. Unfortunately, the rational engineering failed, urging for alternative 

approaches. 

 

Evolutionary strategies can be a very powerful tool when the rational knowledge to 

engineer a strain with desired phenotype is not available. Also termed directed 

evolution, this method comprises the creation of a selective environment for the 

desired phenotype, here for a phenotype with an increased ATP efficiency. 

Common evolutionary engineering strategies rely on selection of phenotypes with the 

highest growth rate under the applied experimental conditions8-10. Introducing a 

coupling between growth rate and the desired trait e.g. a high rate of product 
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formation with growth then leads to an enrichment of the desired phenotype in the 

system. 

To demonstrate this a simplified equation for the growth rate of an unicellular 

organism exhibiting exponential growth can be written, where the (energy limited) 

growth rate is a function of the specific substrate uptake rate sq , the apparent 

ATP stoichiometry of the catabolic pathway(s) ATPn  and the biomass yield on ATP 

/X ATPY . 

 /ATPS ATP Xq n Yµ =   (3.1) 

Assuming that the experimental setup selects for the fastest growing phenotype, a 

maximization problem can be derived. Furthermore it is assumed that the ATP 

requirement for biomass synthesis ( /ATPXY ) is constant for all phenotypes and 

independent of the growth rate. 

 

max /ATP
,n

/ATP

arg max( )

.

s ATP
S ATP X

q

X

q n Y

with
Y const

m =

=
  (3.2) 

 

At first glance it seems like selecting for the most efficient and at the same time 

highest substrate uptake rate is straightforward, as this will lead to the fastest 

growing phenotype. However, this line of thought assumes that the rate and the 

ATP-stoichiometry in a pathway can be increased independent of each other. But the 

loss of thermodynamic driving force by an increased ATP stoichiometry affects the 

rate of a pathway e.g. for irreversible reactions that operate far from chemical 

equilibrium. 

Such correlation can be observed in nature between the yield and rate of cellular 

pathways, usually referred to as rate-yield trade-off hypothesis11,12. One well-

known example of a rate-yield tradeoff is alcoholic fermentation in the presence of 

oxygen in some yeast species, the so called Crabtree effect13 that leads to a high 

rate of ATP formation, but a low ATP yield compared to respiration. 

This essentially means that nature has to make a compromise between ATP 

stoichiometry and rate in order to achieve a maximal growth rate. The rate-yield 

trade-off at a given (here the maximal) growth rate can be represented as isocline in 

the rate-yield space (Figure 3.1A, black line). 
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Figure 3.1. A) Pareto front with respect to rate and yield and its isocline. B) Left: 

Homogeneous cultivation using a common substrate – the wild-type strain (W) reaches a higher 

growth rate than the mutant (M) and therefore can claim more of the substrate (white 

compared to light red area) and produce more offspring despite lower biomass yield. Right: 

Partitioned cultivation – each strain has its own resource and efficient (high yield) mutants (M) 

generate more offspring compared to the W phenotype. C) Repetitive transfer of the 

partitioned culture upon depletion of the substrate can enrich the mutant population. 

The actual shape of the organism’s rate-yield trade-off (Figure 3.1A, red line) is not 

known a priori and can also be discontinuous. The point(s) of contact with the maxm
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isocline represent the pareto-optimal point(s), where the strain reaches its maximum 

possible growth rate. This representation highlights that evolution that selects for 

maximal growth rate will result in such pareto-optimal phenotypes (here called W) 

subject to the growth rate and will therefore likely not result in strains with a 

maximal ATP-yield (here called M)14. 

This poses an inherent limitation to select for a more efficient phenotype using 

classical laboratory evolutionary engineering approaches. 

To resolve this issue, an approach that allows to partition substrate to different 

cell populations independent of their respective growth rate has been proposed15. 

This eliminates the direct competition for substrate and therewith eliminates the 

selective pressure for the highest growth rate. In contrast cells with a higher ATPn
will (albeit slower growth) produce a higher number of offspring from the same 

amount of available substrate16 (Figure 3.1B). Repeated compartmentalized growth 

(Figure 3.1C) will thus lead to a successive enrichment of more efficient phenotypes. 

The method has successfully shown that Lactococcus lactis populations can be 

enriched under aerobic, partitioned cultivation conditions. Here, this approach is 

established for anaerobic cultures of S. cerevisiae. 

A mathematical model for partitioned cultivation of strains is developed, which is 

used to investigate the ideal properties of the approach and predict its efficiency 

under ideal conditions. Based on rational considerations and observations different 

mechanism that have an influence on the enrichment characteristics under 

experimentally relevant conditions like cell clustering and multiple partitioning of 

droplets are introduced into a rigorous model for selection. The model is validated 

experimentally using two strains with known difference in ATP-yield. Furthermore, 

the applicability of the approach is studied for enrichments from very low mutation 

frequencies using the model. 
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Model description 

Enrichment efficiency for ideal partitioned cultivation of cells 

For the derivation of the model system, it is assumed that there are two cell types:  

(1.) A reference, here termed wild-type (WT) phenotype, described by a growth 

rate 
WT
m  and a biomass (number) yield 

WT
Y  and  

(2.) a mutant strain with, in comparison to WT, lower growth rate 
M

m  and 

higher biomass yield 
M

Y . 

The overall number of cells in the system 
0x at the beginning of an incubation step 

is composed of the two strains and represented by the variables 0
WT

x  and 0
M

x . 

 
0 0 0

WT Mx x x= +   (3.3) 

At the start of the enrichment experiment, the enrichment 0
M

e  of the mutant strain 

is defined as: 

 

0
0 0 0

0 0 , 1M
M WT M

WT M

xe e e
x x

= = −
+

  (3.4) 

The cells are homogenously distributed within the accessible culture volume V . This 

volume (and consequently the contained substrate) is then partitioned between the 

two populations M and WT, where the volumes partitioned to the respective 

populations are defined as 
WT

V  and 
M

V . 

 M WTV V V= +   (3.5) 

In order to express which amount of the accessible volume is partitioned to every 

population, the volume fraction k is defined. 

 M
V

k
V

=   (3.6) 

Under ideal conditions, every cell population will obtain a volume proportional to its 

cell number and k   will be equal to the initial enrichment 
0
Me . 
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0

0

0
M

M

x
k e

x
= =   (3.7) 

It should be noted that this will only hold true under ideal conditions, in contrast to 

the non-ideal cases that will be addressed later. 

As a next step, the partitioned system with the initial number of cells is incubated 

until all accessible substrate is consumed by the cells, leading to an increase in cell 

numbers. The increase for the respective populations will depend on the available 

volume, the substrate concentration 
0
sc  and their apparent biomass (number) yield 

Y . 

 

1 0 0

1 0 0 (1 )V
M M M M M S

WT WT WT WT WT S

M WT

x x x with x Y c kV

x x x with x Y c k

x x x

= +D D =

= +D D = -

D = D +D

  (3.8) 

The number of offspring only depends on the yield and is independent of the growth 

rate of the respective cell population assuming that the ATP  expenditure for 

maintenance is negligible compared to growth17. After the incubation, the reached 

enrichment 
1e  is calculated from the population cell numbers at the end of the 

cultivation (indicated by superscript 1), 

 

1
1

1 1
M

M
M WT

xe
x x

=
+

  (3.9) 

and with the initial enrichment, the successive increase in enrichment for the 

incubation: 

 
1 0

M M Me e e∆ = −   (3.10) 

 

Substituting equations (3.3), (3.8) and (3.9) in (3.10) and leads to an equation for 

Me∆  as a function of the initial enrichment, which can be rewritten in following to 

facilitate the interpretation: 

 

0
0

0
00

1

M
M

M M
M M

x ex x xe e
xx x
x

∆
−+ ∆ ∆∆ = − =

+ ∆ +
∆

  (3.11) 

The nominator expresses the capability of the system to enrich the culture; this will 

only be the case if the mutant is able to produce more offspring compared to the 

wild type. On the other hand, the enrichment in the system will only increase beyond 
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0
Me  when the ratio of mutant offspring to all offspring is higher compared the 

starting enrichment. The physical meaning of the denominator is to correct for the 

initial cell population in the system i.e. mixing the offspring cells with the initial cell 

population; this will lower the achieved final enrichment systematically (under the 

premise that the nominator is positive). 

In order to characterize the enrichment characteristics of a partitioned system, the 

point(s) where the system cannot be enriched from its initial enrichment are of 

particular interest, they will be further referred to as critical point(s). 

 0Me∆ =   (3.12) 

This will always be the case when the nominator of eq. (3.11) is zero. This nominator 

is dimensionless and called enrichment efficiency ( EE ) from here on. The value of 

the enrichment efficiency is always between -1 and 1, where a positive value 

indicates that the mutant strain can be further enriched from the initial enrichment 

during incubation, whereas a negative value is obtained when the enrichment will 

decrease during incubation. If the number of initial cells is very small compared to 

the produced number of offspring, EE  will converge to e∆  . 

 
0M
M

xEE e
x

∆
= −

∆
  (3.13) 

In order to derive an expression for EE  as a function of the model parameters MY  

and WTY  the equation is extended using eq. (3.8). 

 0

(1 )
M

M
M WT

Y kEE e
Y k Y k

⋅
= −

⋅ + ⋅ −
  (3.14) 

As the enrichment efficiency of the system does not depend on the absolute values 

of the yield but only on the relative yield difference between the different cell 

types, the equation can be simplified further by substituting: 

 1M

WT

Y
Y

γ = −   (3.15) 

Leading to final expression for EE  after expansion: 
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0 0

1
M Me k k e kEE

k
γ γ

γ
− − +

= −
+

  (3.16) 

It can be seen that the enrichment efficiency is only a function of 0
Me  and γ , and 

therewith independent of the design variables 
0

x  and 0
S

c . This makes it suitable to 

compare the performance of the system independent of the design variables. 

From the roots of eq. (3.16) the critical initial enrichment can be derived as a 

function of k . This value denotes a zero in the EE  at the initial enrichment 
0
Me  

showing that the system cannot be further enriched at this point (e.g. like an 

azeotrope in distillation). 

 
0

, 1M crit
k ke

k
γ
γ

+
=

+
  (3.17) 

Vice versa also the critical k  as a function of 0
Me can be derived. 

 

0

01
M

crit
M

ek
eγ γ

=
+ −

  (3.18) 

Lastly, also the equation for e∆   as a function of EE  can be derived, where the 

increase in enrichment for a number of transfers can be calculated recursively for a 

number of incubations. 

 
0

01
( (1 ))s WT M

EEe x
c V Y k Y k

∆ =
+

+ −

  (3.19) 

 

Extension to non-ideal partitioned systems 

 

The model so far did not include any previsions on how the partitioning of the 

system is achieved in practice, instead it was assumed that the system is ideally 

partitioned (see eq. (3.7)). 

In a real system, this assumption does not necessarily hold true as droplets are used 

as a means to partition the cell populations into volumes. In droplets, ideal 
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partitioning can only be achieved under two premises; (1) the droplets are only 

occupied with one cell or empty and (2) the probability of a cell to be partitioned 

into a particular droplet is independent of the population it belongs to. Whereas the 

latter requirement is admissible for cells with similar morphology, the first one is 

not. To reflect this behavior, the model is extended in order to describe two effects 

leading to droplets with multiple occupancy; clustering of cells and multiple 

partitioning (See Figure 3.2). 

These extensions can be introduced conveniently into the framework and will not 

require changes in the equations as derived, but instead only require a different 

definition of k .  

 

Modelling the influence of cell clusters 

The formation of cell clusters caused by the missing separation of cells after 

division has been observed in directed evolution experiments of S. cerevisiae18, 

where its occurrence obstructs the enrichment of the desired phenotype. Especially 

when the environment favours cell clustering e.g. in a sequential batch reactor cell 

clusters are retained in the bioreactor thus having a selective advantage. 

 

Figure 3.2. Schematic comparison of ideal and non-ideal partitioning 

 

When cells form agglomerates, a discrepancy between the actual and the apparent 

number of cells in a population will arise. Recalling eq. (3.7), in the ideal case the 
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volume partitioned to the mutant population is proportional to the number of the 

initial mutant population. This means that cell clustering will lead to a 

systematically lower k  compared to 0
Me . 

To reflect this behaviour the single cell ratio κ  is introduced, describing the 

deviation from the ideal system by taking into account the deviation between the 

actual 0x  and the apparent cell number 0
Mx . In case of an optimal partitioned 

system, κ  will be 1, otherwise smaller. 

 

0

0
M

M

x
x

κ =


  (3.20) 

This leads to the following equation for k . 

 
0
Mk ek=   (3.21) 

It is assumed that the wild-type population forms an insignificant amount of 

clusters. Moreover, it is assumed that cell clusters do not interfere with the droplet 

formation and the partitioning of the cell clusters into the droplets is independent 

of the cluster size. 

Modelling the influence of multiple partitioned droplets 

The generation of droplets leads to Poisson distributed droplet occupancies, where 

the mean is the average occupancy for a droplet. Additionally, the created droplet 

volume distribution is not uniform; this means also the average occupancy is a 

function of the droplet volume. Also, in contrast to clustering, this is a purely 

statistical process, i.e. cells belonging to different populations can be partitioned 

into one droplet, which in turn requires an analytic description for the direct 

competition for substrate in a droplet. 

k  can be predicted for a droplet volume distribution knowing the initial cell number 

per volume and the initial enrichment of the system. The droplet volume distribution 

consists of a number of bins characterized by the mean droplet volume in the bin, 

,d binV  and the number of droplets in the bin, binn . The sum of all bins resembles the 

total droplet volume, dV . It is important to note that dV  is typically not equal to 

the accessible volume V , as dV  contains empty droplets. Empty droplet volume is 

not accessible to any cell population and therefore excluded from dV . In contrast to 

the ideal model, it is no longer assumed that all substrate will be consumed at the 
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end of the incubation, which can also lead to a systematically lower V  in 

comparison to dV . 

 

The volume fraction of each bin binf is determined by: 

 

, ,

, ,

d bin d bin
bin

d

d d bin d bin
bin

n V
f

V

with V n V

=

=∑
  (3.22) 

 

For a large number of droplets, the cells will be partitioned into the droplets 

following a Poisson distribution. The number of cells in a droplet is described by the 

variable occ  where *
binocc is the average occupancy of a particular bin. 

 

*
*

occ,bin

0
,* 0

,

0,1, 2,3,...
!

binoccbin
bin

d bin
bin x d bin

d

occf e f for occ
occ

x V
with occ c V

V

−= =

= = ⋅
  (3.23) 

The volume fraction for all occupancies is calculated by summation of all bins of the 

volume distribution. 

 ,occ occ bin
bin

f f=∑   (3.24) 

In order to calculate the split ratio k  the volume fractions accessible for every 

population have to be determined. Here it has to be noted that the distribution is 

not selective for a specific cell (mutant or wild-type), but a random process. For 

example a double occupancy of a droplet can result in two wild type cells, two 

mutant cells or one each. 

To describe the distribution of the volume for all different possibilities, the 

fractions ε  are calculated from a binomial distribution. 
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  (3.25) 

In order to derive k  it needs to be taken into account that the volumes of the 

multiple occupied droplets are shared by the respective cells in such droplets i.e. for 

each population M and WT. 

Therefore, the fractions , , ,MM bin occ occω  and W , ,Mocc occ binω  are introduced and the split 

ratio k   can be described by: 

 ,occ , , , M,occ,occ ,

,occ , , , M,occ,occ , ,occ , , , M,occ,occ ,(1 )

M M M
M

M M M M M M
M M

occ
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f f

ε ω
k

ε ω ε ω

⋅ ⋅
= ⋅

⋅ ⋅ + ⋅ − ⋅

∑∑∑

∑∑∑ ∑∑∑

 (3.26) 

 

Also the accessible volume from the total droplet volume can be determined now. 

 
,occ , , , M,occ,occ , ,occ , , , M,occ,occ ,(1 )

M M M M M M
M M

occ occ

occ bin M occ occ bin occ bin M occ occ bin d
bin occ occ bin occ occ

V f f Vε ω ε ω
 

= ⋅ ⋅ + ⋅ − ⋅ ⋅ 
 
∑∑∑ ∑∑∑

 (3.27) 

In order to derive ω , a model that is able to describe the substrate competition for 

the two populations in a droplet is needed. Here, simple Monod kinetics are used to 

simulate every bin of the droplet volume distribution for all possible initial 

occupancies; 
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With the respective initial conditions: 
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74



Where the ω  calculate to: 
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∫

∫
  (3.30) 

Compared to the ideal model, this model does not make the presumption that all 

substrate is depleted at the end of the incubation. The effect of not completely 

consumed substrate, e.g. if the incubation time in large droplets is not sufficient to 

consume all the substrate is taken into account. In case all substrate in a mixed 

occupied droplet has been depleted, the following simpler relation will hold. 

 WT, , , M, , ,1
M Mocc occ bin occ occ binω ω= −   (3.31) 

Experimental methods 

Measurement of the droplet size distribution 

The droplet size distribution was photographed using a digital camera with a light 

microscope at 400x magnification. Subsequently the ImageJ image processing 

software was used, where the threshold color of the picture was adjusted to 

increase the visibility of the droplets. The droplet areas were then estimated using 

the inbuilt ‘Analyze Particles’ function. The conversion from pixels of the picture to 

length was calibrated using a stage micrometer. Assuming a spherical droplet shape, 

the determined areas were converted to volumes and binned into a droplet volume 

distribution using Microsoft Excel. 

Strains 

Two strains were used in this work, the reference strain CEN.PK113-7D19,20 (WT) 

and a strain with increased free energy conservation derived from CEN.PK113-7D, 

IMX771 (M). IMX771 expresses a heterologous maltose phosphorylase gene from 

Lactobacillus sanfranciscensis, the native MAL11 maltose-transporter gene as the 

sole gene for maltose transport over the cell membrane and the beta-

phosphoglucomutase of Lactococcus lactis. Strain IMX771 was derived from 
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Saccharomyces cerevisiae strain IMZ2265 that was transformed21 using a 

CAN1::KanMX deletion cassette22 in order to create a G418 resistant strain. Mutants 

were selected on solid YP medium (demineralized water, 10 g/L Bacto yeast extract, 

20 g/L Bacto peptone, 2% (w/v) agar), supplemented with 200 mg/l G418 and the 

genotype was confirmed using PCR. IMX771 was kindly provided by the Industrial 

Microbiology group of Delft University of Technology. Both strains were stocked as 

working cell bank in 20% glycerol at -80°C. 

Cultivation conditions 

Pre-cultures were prepared in shake flasks using synthetic medium containing 

17.3g/L maltose, 5g/L (NH4)2SO4, 3g/L KH2PO4, 0.5g/L MgSO4∙7H2O, 1g/L trace 

element solution23 and 1g/L vitamin solution24. 

Enrichment in droplets were performed using synthetic medium as previously 

described25,26 with a maltose concentration of 34 g/L maltose, a TWEEN80 

concentration of 0.78g/L and an ergosterol concentration of 0.015g/L.  

YP maltose plates were used for determination of CFU and contained 10 g/l BD 

Bacto yeast extract, 20g/L Peptone, 15g/L Agar and 17.3g/L maltose. The required 

amounts of yeast extract, peptone and agar were dissolved in 90% of the total 

volume and autoclaved at 121°C. The required amount of maltose was dissolved in 

10% of the final volume and added after filter sterilization. YP maltose G418 

plates, used for selection of IMX771 were prepared the same way as YP maltose 

plates, but supplemented with 200 mg/L G418. All chemicals were purchased at 

Sigma-Aldrich. 

Droplet cultivation system 

Incubation of a mixed population containing CEN.PK113-7D and IMX771 in droplets 

was performed in 5 ml Eppendorf tubes (Eppendorf, Germany). A hole was drilled 

into the cap of 5ml Eppendorf tubes where a sterile filter (Whatman Puradisc FP 30 

CA-S pore size 0.2 µm) was inserted in order to ensure sterile gas exchange with the 

(anaerobic) environment. 

The tubes with filter units were autoclaved at 121̊C for 20min before use. The 

Eppendorf tubes were then filled with 1300µl 3M Novec HFE-7500 including 0.2% 

Pico-Surf surfactant (Dolomite microfluidics, UK) and stored in an anaerobic chamber 

for at least 24h prior to use, in order to minimize the oxygen content of the oil. 700 

µl of cell suspension was then added to the tube and vortexed for two minutes in 

order to create the emulsion. The Eppendorf tubes were incubated at 30̊C in an 

anaerobic chamber for 72h. 
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To break the emulsion 600µl of PFOH (1H,1H,2H,2H-perfluorooctan-1-ol) was added. 

After vortexing for 2 minutes, the tube was set aside for at least 10 minutes to 

separate the phases. The required amount for analysis was withdrawn and the 

remaining volume was diluted back to the desired initial cell concentration and the 

process was repeated in a new tube. 

Analytical methods 

At the end of every incubation, a series of 10-fold dilutions in medium without 

trace elements, vitamins and maltose was prepared in duplicate to a total volume of 

1 mL. 100 µL of the 103 dilution were plated on YP maltose plates in duplicate and 

incubated for 3 days at 30̊C, whereupon the colonies were counted. Subsequently, 

the plates were replicated to YP maltose plates containing 0.2 mg/ml G418 using 

Velveteen squares and a Replica Plating Tool (both Bel-Art, US). The enrichment was 

calculated from the ratio between G418 resistant CFU and overall CFU. 

To estimate the number of cells per gram dry weight, cells concentrations were 

determined using a Coulter counter (Z2 COULTER COUNTER, Beckman Coulter), where 

five independent measurements for a sample were performed and averaged. Dry 

weight concentration was determined by filtering a defined amount of cell 

suspension on a cellulose filter (pore size 0.22µm) and drying the filter at 105 ̊ C. 

Optical cell density (OD) was determined using a spectrophotometer (Biochrom Libra 

S11) at a wavelength of 600 nm. Samples were diluted if needed such that the 

measurement was between OD of 0.05 and 0.6. 

Results 

Ideal performance and impact of suboptimal partitioning on the 

enrichment characteristics 

The ideal system description allows to investigate the best possible performance of 

the approach by calculating the enrichment efficiency ( EE ) using eq. (3.16). The 

ideal system always shows a parabolic shape with roots only at 0 and 1 (see Figure 

3.3, left panel), this means the ideally partitioned system will always allow for a 

complete enrichment regardless of the initial enrichment. For the relevant 

differences in biomass yield, the enrichment efficiency exhibits a maximum at an 

initial enrichment of around 0.5. Consequently, the enrichment is less efficient at 

low and high enrichments resulting in a sigmoidal shape of the enrichment as a 

function of the number of transfers (see Figure 3.6). Moreover, the enrichment 
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efficiency also decreases globally with decreasing difference in yield; this means 

that more transfers will be necessary in order to achieve the same increase in 

enrichment.  

 

Figure 3.3. Enrichment efficiency (EE) as a function of the initial enrichment (
0
Me ); Left: for 

the ideal partitioned system for different yield differences (γ ). The dashed line indicates the 

trajectory for the maximal EE (for derivation see Appendix). Middle: Effect of cell clustering 

for different single cell ratios (κ ) for γ =0.5. Right: Effect of different volume fractions of 

single and double occupied droplets (f1 and f2) on the enrichment efficiency forγ =0.5. 

However, the partitioning may not be optimal and, in the case of cell clustering (see 

Figure 3.2), it leads to a global decrease in EE . Moreover, it can be observed that a 

mutant population exhibiting clustering cannot reach a full enrichment anymore. This 

effect increases with increased clustering, respectively lower single cell ratios. 

By substituting eq. (27) in (23), the critical clustering factor for certain target 

enrichment 
0
Me  can be derived. A function of the dimensionless yield difference is 

obtained: 

 0

1
1crit

Me
κ

γ γ
=
− + +

  (3.32) 

For 0 0Me = , the single cell ratio below which no enrichment ( minκ ) will be achieved 

can be found. 
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1

1
κ

γ
=

+
  (3.33) 

This demonstrates that the method is robust against clustering, which is a useful 

property, i.e. the method will not enrich for phenotypes having a stronger tendency 

to cluster than that of the reference population. 

 

To qualitatively investigate the effect of multiple partitioning (Figure 3.3, right), 

simulations were performed under the following assumptions/simplifications: 

(1.) All droplet volume ( dV ) is accessible and either single or double occupied, 

neglecting any higher occupancies; 

(2.) A droplet with double occupancy is assumed to be fully dominated by a present 

WT cell. This assumption reflects the worst-case enrichment caused by the 

occupancy effect and reduces the calculation complexity by setting all ω to either 0 

or 1. 

(3.) There is no clustering of cells. 

With these assumptions, k  simplifies to: 

 
0 0 0

1 2 ( )M M Mk f e f e e= ⋅ + ⋅   (3.34) 

In contrast to the clustering effect, it is observed that multiple occupied droplets 

have a more critical effect on the performance of the system. Multiple occupancies 

reduce the enrichment efficiency primarily at low enrichments, where it can also 

introduce additional roots to EE . This behavior is a result of the small fraction of 

the double occupied volumes with mutant cells at low enrichment. This fraction 

increases (in this case quadratic) with increasing enrichment and hinders the 

capability of enriching a mutant population from a low initial enrichment, which is 

the main objective of the method. 

 

Model driven design of an enrichment experiment 

The modelling approach allows predicting, understanding and designing the trade-

offs faced in partitioned cultivation systems. The enrichment characteristics of the 

system depends on six variables, (1) the yield differenceγ , (2) the droplet volume 

distribution, (3) the enrichment at the beginning 
starte  and the target enrichment to 

be achieved in the end of the experiment 
ende . Moreover, (4) the initial cell 
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concentration in the system 
0

0
x

d

xc
V

= (see eq.(3.23)), (5) the initial substrate 

concentration in the droplets 0
Sc , and (6) the incubation time per transfer

1t . 

The yield difference is determined by the individual cell populations in the system. 

The droplet volume distribution is determined by the experimental procedure and it 

can only be influenced to a minor extend the approach used here. The enrichment of 

the initial population can usually not be chosen. On the other hand, the target 

enrichment can be set and should be high enough to allow for extraction of cells 

with the desired phenotype. This means only the last three parameters can be chosen 

in an experiment, where the incubation time is not independent with respect to the 

chosen substrate concentration. This leads to two remaining independent design 

variables, 0
Sc and 

0
xc (see also Figure 3.4). 

For practical reasons the transfer the culture is set to 
1 72t h= , in order to 

achieve the maximal enrichment e∆  for each transfer transfers (see eq. (3.19)) a 

maximal 0
Sc  should be chosen to minimize the number of transfers. 

 

0 0
,

0 0
,

arg max

0.95

S opt S

M WT

S S max

c c

suchthat

c c
ω ω

=

+ >
 <

  (3.35) 

However, some constraints have to be taken into account: The wild type population 

grows faster compared to the mutant population, it will deplete their substrate 

faster and therewith temporarily produce more offspring. If the experiment is 

stopped before all substrate is depleted, this will influence the EE  negatively. 

Therefore the first constraint will enforce that at least 95% of the accessible 

substrate in the droplets will be depleted at the chosen incubation time. The second 

constraint ensures that the concentrations in the droplet are within physiological 

limits, in the case of ethanol buildup as in our anaerobic system this will eventually 

lead to growth inhibition27 and is taken into account using the respective substrate 

concentration 0
,maxSc . Other effects could be e.g. substrate repression at high 

substrate concentrations. A feasible solution was found for an initial maltose 

concentration of 0 34 /Sc g l= . 
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Figure 3.4. Schematic representation of the experimental design workflow 

 

Moreover, the optimization yields a full set of ω which also determine k  and 

therewith the enrichment efficiency. The values for droplet occupancies up to three 

cells are shown for the droplet volumes of 12 pL, the median droplet diameter of 

the distribution 70.9 pL and 330 pL (see Table 3.1). The values show that in multiple 

occupied droplets the mutant is only able to gather a minor share of the substrate 

in direct competition with the WT, therewith decreasing the enrichment efficiency. 

The effect is more pronounced in larger droplets, due to the exponential growth of 

the cells which leverages the advantage for the faster growing cell(s). This means 
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that the assumptions made in the previous qualitative prediction, i.e. as soon as 

there is a WT cell in a droplet it owns the complete volume, are admissible if the 

growth rate of the mutant strain is not known. In any case this is a worst-case 

assumption that will always underestimate the performance of the system where the 

selection of ,0d
Sc  with respect to 

1t  creates a cutoff for the growth rate of a 

mutant phenotype and it has to be selected accordingly. 

Table 3.1. , ,MM occ occω  for the droplet volumes 12pL/70.9pL/330pL 

Droplet occupancy 

1 2 3 

,0,0,Mω = 0/0/0 ,0,2Mω = 0/0/0 ,0,3Mω = 0/0/0 

,1,1Mω = 1/1/1 ,1,2Mω =  

0.1573/0.1066/0.0622 

,1,3Mω =  

0.0900/0.0677/0.0428 

 
,2,2Mω =  1/1/1 ,2,3Mω =

0.2751/0.1983/0.1202 

  
,3,3Mω = 1/1/1 

 

After determining the substrate concentration, the initial cell number 0
xc can be 

estimated which will determine primarily the volume occupancies. 

As already mentioned, the droplets occupancies will be Poisson distributed with their 

average occupancy 
*
binocc . Looking at equation (3.23), the average occupancy 

depends on the droplet volume, which leads to the effect that larger droplets have a 

higher average occupancy and are therewith more likely to be multiple occupied 

compared to smaller droplets (see also Figure 3.5). Keeping in mind that the volume 

increases with the order of three as a function of the droplet diameter, this means 

that even a low number of large droplets will contain significant fraction of the 

total droplet volume. 
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Figure 3.5. Top: Measured droplet volume distribution; Left: Predicted droplet occupancies as a 

function of droplet volume for 
0
,x optc ; Right: Predicted overall and accessible volume fractions 

for the different occupancies over the measured droplet volume distribution for 
0
,x optc . 

Large droplets will limit the initial cell concentration in order to keep the multiple 

occupied volume fractions small. This means on the other hand that that small 

droplets will be mostly non-occupied, limiting the volumetric mutant throughput of 

the method compared to a more uniform distribution. However, the major limiting 

effect for the throughput remains the Poisson distribution. Even in uniform droplets 

the average occupancy has to be chosen low to obtain mostly single occupied 

droplets26. 

With known volume fractions, the split ratio k  can be calculated and consequently 

the enrichment efficiency. 

Comparable to the previous optimization for the substrate concentration, another 

optimization is performed, to maximize the volumetric throughput of the 

experiment. 

 

0 0
,

max

arg max( )

0.07

x opt x

start end
crit

c c
suchthat
e e e
EE

=

> <
≥

  (3.36) 
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A trade-off between throughput and performance has to be made, while ensuring 

feasibility of the method in the chosen range of enrichment. Here, the first 

constraint makes sure that there are no critical points crite  in the chosen interval 

(i.e. roots in EE ). Additionally, it has to be taken into account that this measure is 

not sufficient to ensure a desired performance of the system. To address this, a 

second constraint is introduced, limiting the admissible decrease in EE . Here also 

other criteria may be appropriate, but as the first constraint ensures a concave 

shape of the EE , the criterion can be expected to be sufficient in most cases. 

With the model an initial cell concentration 0
xc  of 3.25∙106 cells/mL was estimated, 

corresponding to an initial OD of about 0.6. 

Table 3.2. Parameters for the droplet enrichment simulation  

Parameter Value Source (if applicable) 

max,WTm   0.28 h-1 5 

max,Mm  0.1 -1 5 

SK   4 mmol/L 28 

/ ,X S MY  0.088 gDW/gMaltose 
5 

/ ,X S WTY  0.066 gDW/gMaltose 
5 

MY   2.478∙109 1/gMaltose This work 

WTY   1.485∙109 1/gMaltose This work 

γ   0.6687 calculated from eq. 

(3.15) 
0
,x optc   3.25∙106 cells/ml; OD=0.6 from optimization 

0
,s optc   34g/L from optimization 

0,max
sc   240g/L 27 

starte   0.1 This work 

ende   0.95 This work 

 

Experimental validation of the model 

In order to validate the model, the predictions in enrichment for the designed 

experiment are compared to measurements from an experiment with the S. cerevisiae 

strains IMX771 and CEN.PK113-7D. The model simulations describe the found 

pattern within the experimental error (see Figure 3.6). Also, the loss in performance 
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due to multiple occupied droplets can be clearly seen when comparing to the 

predictions of the ideal system. 

 

Figure 3.6. Left: Prediction of the enrichment efficiency for the ideal (blue) and the 

experimental droplet occupancies (red). Right: Simulation of the enrichment trajectory for the 

ideal system (black squares), Simulations (blue) for the experimental conditions with the 

transfers every 72h (blue dots) and experimental observations (red). The initial decrease in 

enrichment after a transfer is caused by the faster growth rate of the WT population. 

Prediction of the enrichment from low mutation frequencies 

In order to apply the approach for extraction of mutants with increased free energy 

conservation, the method must enrich from a potentially very low initial enrichment. 

The mutation frequencies depend on the objective, e.g. for auxotrophic S. cerevisiae 

they are found in the range of 5∙10-4 29, similar values have been observed for 

Streptomycin resistance30. 
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Figure 3.7. Model predictions for the enrichment characteristics starting from low initial 

enrichments (
starte = 10-5) for different yield differencesγ .   

The calculations suggest that the current system requires approximately 10 

transfers (720h) (see Figure 3.7) to increase the enrichment by one order of 

magnitude. For lower difference in biomass yield the approach the required number 

of transfers already reaches timescales of years for γ =0.25 (192 transfers per 

order of magnitude corresponding to 576 days). 

Conclusions & Discussion 

The aim of the current study was to assess the performance of enrichment for 

phenotypes with increased biomass yield in droplets. 

A model with ideal partitioning characteristics was used to predict and assess the 

maximum performance of the approach. Also non-ideal partitioning i.e. existence of 

multiple occupied droplets in the system was taken into account. Furthermore, a 

non-uniform droplet volume distribution was integrated. Two effects were studied; 

(1) clustering of cells and (2) multiple partitioning of cells into one droplet, where 

both effects affect the performance of the system negatively. Here, the effect of 

multiple partitioning can be identified as more critical, as it decreases the 

performance of the system predominantly in the low enrichment range and can lead 

to the situation that the system cannot enrich anymore from low initial enrichments. 

On the other hand, the analysis of cell clustering showed that the droplet system is 

robust against phenotypes that exhibit cell clustering; this is an advantage 
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compared to non-partitioned systems for directed evolution, where this effect is an 

undesired outcome of an evolution experiment. This means partitioned systems could 

also be taken into consideration as a tool to select for phenotypes with reduced 

clustering. 

A system containing defined and characterized S. cerevisiae strains with a known 

difference in ATP efficiency and thus biomass yield was researched. The model was 

used to design an experiment for our model system, requiring two constrained 

optimizations. First the maximization of the substrate concentration and second the 

trade-off between the volumetric throughput, i.e. the population size that can be 

screened and the performance of the system. The performance depends largely on 

the difference in biomass yield between the populations and the average droplet 

occupancies within the observed distribution in droplet volumes. 

With the resulting operating conditions, the model was validated, where the model 

predictions could be reproduced within the experimental error. The model was also 

extrapolated to very low enrichments in the range of observed mutation frequencies 

for S. cerevisiae, where it would take about 10 transfers in order to increase the 

enrichment by one order of magnitude. 

This demonstrates that the presented methodology is suited for directed evolution, 

however has limitations for lower differences in biomass yield between the 

populations where the number of transfers will rapidly increase with decreasing 

difference in biomass yield. 

The performance in those ranges can only be increased by increasing k  beyond the 

initial enrichment; this is not possible in the presented approach and would require 

an approach sorting the droplets for the contained number of offspring discarding 

the droplets with a lower number of offspring. However, such approach is technically 

significantly more complex and may not be competitive with respect to the mutant 

throughput. 

Alternatively, one could think about methods penalizing faster growing cells e.g. lead 

to rapid loss in viability once the substrate is depleted. However, this also poses the 

risk of selecting false positive growth deficient phenotypes. 

The droplet size distribution in the used experimental approach can hardly be 

influenced. However, also for approaches creating uniform droplets where the 

droplet occupancies are Poisson distributed, the average occupancy has to be chosen 

in a way that around 90% of the created droplets are empty. This means that the 

non-uniform distribution of droplet volumes is not the major limitation for 

throughput of the method. This could be improved using special microfluidic chips26, 
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however it has to be noted that empty droplets do not have negative effects on the 

enrichment and therefore scaling the volume to increase the throughput is possible. 

An inherent characteristic of the partitioned cultivation is that the partitioning 

occurs at the cell level, leading to the enrichment of phenotypes with increased 

biomass number yield. It was found that the difference in number yield is higher 

compared to the biomass yield expressed per gram dry weight of cells (see Table 

3.2), i.e. the system favors mutants having the same gravimetric biomass yield but 

exhibiting a higher number of cells per gram biomass dry weight. This effect 

leverages the enrichment and may be caused by the lower ATPY  of slower growing 

cells due to a lower protein content17 (see also Chapter 5). However with the 

available data a correlation between energy efficient phenotypes and cell number 

yield cannot be generalized and should be further characterized in more detail. 

Currently the partitioned cultivation is labor intensive as the transfers are done by 

hand. To generate high throughput and allow parallelization automatization of the 

method would be desirable. With automatization this method has the potential to 

become a useful tool in selecting phenotypes with increased free energy 

conservation. 

Symbols and Abbreviations 

c   Concentration 

e   Dimensionless enrichment 

f
  

Volume fraction 

EE   Enrichment efficiency 

Sq
  

Specific substrate uptake rate 

K   Affinity constant 

k   
Volume fraction accessible for mutant cells 

n   Number of cells 

ATPn
  

ATP stoichiometry 

occ   Occupancy of a droplet 

RYT   Rate-yield trade-off hypothesis 

V   
Volume 

x   Number of cells 

x   
Apparent number of cells  

Y   Yield 

ε   Fraction from probability distribution 

µ
  Growth rate 
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γ
  relative yield difference 

κ   Single cell ratio 

ω   Volume fraction inside droplet 

  

Subscript/Superscript  

bin   
Bin of a droplet volume distibution 

crit   Critical 

d   
Droplet 

end   
End of experiment 

M   Mutant (more ATP efficient) 

max  maximal 

occ   Droplet occupancy 

opt
  

Optimized 

P   Product 

S   
Substrate 

start   Start of enrichment experiment 

WT   
Wild-type 

x   Biomass 

0   
Start of incubation 

1  End of incubation 

∗   Average 
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Supporting Appendix 

The maximum of EE in the ideal system 

Derivation of the maximum for the EE (eq. (3.16)) in the ideal system, i.e. 
0
Me k=

gives. 

0 0 2

11
( 1)M M

dEE
de e

γ
γ

+
= −

+
  

This means in the interval 
00 1Me< <  there is only one maximum at: 

0 1 1
Me γ

γ
+ −

=   

This means for γ  approaching zero the maximum is close to an 
0
Me  of 0.5, whereas 

it asymptotically approaches 0 for lim
γ →∞

. 

This behavior can be best understood looking at the generic definition of EE  

(see eq. (3.13)) where with increasing yield difference the first term dominates 
0
Me . 
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Chapter 4: 
Exploring the links between energy metabolism, 

cellular physiology and protein allocation in the 

evolution of S. cerevisiae using structured 

mFBA modelling 
 

in collaboration with S.A. Wahl and J.J. Heijnen 

 

 

 

"The flow of energy through a system acts to organize that 

system." 

Harold J. Morowitz 
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Abstract 

Unravelling the mechanisms of evolution is crucial for the understanding of microbial 

ecology, but also in metabolic engineering where adaptive laboratory evolution is 

frequently used as a versatile tool for strain improvement. 

Phenotypical evolutionary fitness, e.g. the growth rate, is the result of complex 

metabolic trade-offs, making it difficult to understand the relation between the 

environmental selective pressure and the resulting phenotype rationally. In these 

cases, a mechanistic model would allow understanding and predicting the outcome of 

laboratory evolution experiments. 

A model for yeast combining kinetics, stoichiometric modelling and the allocation of 

cellular protein to describe the cellular physiology subject to morphological 

constraints, i.e. the limited availability of cell membrane surface, inner mitochondrial 

membrane surface and total protein content is derived and tested. 

The model explicitly links the allocated cellular protein and the catalyzed metabolic 

rates, leading to a description of metabolic trade-offs subject to a metabolic 

objective e.g. growth rate and environmental variables e.g. substrate limitation. This 

makes the approach useful in predicting evolutionary trajectories and to infer 

purposeful adaptive laboratory evolution strategies for strain improvement. 

The applicability of the approach is demonstrated by predicting optimal metabolic 

strategies in yeast under batch as well as in glucose and oxygen limited conditions. 

It was found that the model predicts the Crabtree effect in S. cerevisiae, where it is 

shown that the model exhibits a minimum threshold in mitochondrial protein content 

from whereupon ethanol fermentation can fully restore the maximal growth rate. It 

is hypothesized that this can explain the observed variety in the Crabtree effect 

among different yeast. Moreover the model shows that the occurrence of a Crabtree 

effect is strictly linked to the glucose import mechanism with the only change 

requiring the mutation from a glucose-proton symport to a glucose uniporter. The 

dramatic loss in glucose affinity associated with this change is considered and it is 

shown that the separation of a Crabtree positive phenotype from a Crabtree 

negative progenitor will require elevated glucose concentrations. Moreover the model 

shows that this step does not require oxygen limited or anaerobic conditions, as 

hypothesized previously. Furthermore the effect of increased total protein content 

compared to S. cerevisiae as observed in many Crabtree negative yeast on the 

evolutionary outcome is explored; here it is shown that with evolving a higher 

protein content such yeast can outcompete S. cerevisiae under all glucose and almost 

all oxygen limited conditions, including the niche it emerged from stressing the 

importance of ethanol tolerance. The model prediction is also applied to a practical 
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engineering target, homolactic acid fermentation, also known as Warburg effect in 

other organisms. The difference between the Crabtree effect and the Warburg 

effect (aerobic lactate production) is discussed under the premise of a limited 

availability of cell membrane surface. The fermentative pathways show the same 

ATP yield on glucose but have the distinction that ethanol can diffuse out of the 

cell, whereas lactate needs a transport protein. It is shown that the trade-off 

between the two transporters eliminates the solution space observed with the 

Crabtree effect i.e. a decrease in mitochondrial protein content can never restore 

the maximal growth rate anymore. Still, the model indicates that the directed 

evolution of a homolactic fermenting yeast, where rational knowledge is missing, 

should still be evolutionary favorable from a pyruvate decarboxylase (PDC) negative 

strain under oxygen limited conditions. 

Introduction 

Growth rate as selective pressure in evolution 

According to life-history theory, growth rates are subject to strong directional 

selection due to reproductive and survival advantages1,2. This holds in particular for 

exponentially growing populations of unicellular microorganisms, where faster 

growth allows assimilating more of the public substrate in the environment 

compared to slower growing competitors3. 

Selection pressure is also frequently applied in metabolic engineering, where 

desirable phenotypes can often be linked to increased growth rate. This approach is 

commonly called adaptive laboratory evolution (ALE) or directed evolution4. The 

challenge is to design selective conditions that favor exclusively the growth of the 

desired phenotype5 to avoid undesired or false-positive outcomes. Such predictions 

are very challenging, as the interrelation between the environmental variables and 

the resulting growth rate is not known a priori. This is especially the case when the 

organism faces metabolic trade-offs, where the exact shape of the trade-off is not 

known (as discussed in Chapter 3). 

A mechanistic model will allow predicting the outcomes of evolution and can provide 

a rational basis for the intrinsic understanding of the connection between the 

imposed environmental variables and the resulting growth rate. To do so the model 

has to reflect relevant mechanism determining the growth rate. 

The link between energy metabolism, protein allocation and growth 

Growth of organisms requires large amounts of energy to synthesize cellular 

components. This energy has to be gained from the Gibbs free energy released in the 
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catabolism of substrate. This cellular energy is exchanged between catabolism and 

anabolism using the high energy phosphoanhydride bonds of nucleoside 

triphosphates, mainly adenosine triphosphate (ATP). In the case of the yeast S. 

cerevisiae about one mole of ATP is needed to form 16 grams of cell dry matter 

from glucose6,7. This yield will be further referred to as YATP. The ATP demand for 

growth can be mainly attributed to protein synthesis8, therewith creating a close 

interrelation between the protein content and the YATP, as well as the maximal 

biomass yield on substrate9. On the other hand, the amount of anabolic and catabolic 

protein to catalyze the biochemical reactions determines the achievable metabolic 

rates. Thus, there is also a direct interdependency between proteome and the 

fluxome, e.g. the ATP production rate or growth rate of an organism. 

 

Overflow metabolism as a prominent example for a metabolic trade-off 

An interesting metabolic phenomenon with respect to the ATP yield in catabolism is 

the occurrence of overflow metabolism, which describes a behavior where cells show 

respiro-fermentative activity in the presence of the electron acceptor oxygen. 

Most prominent examples are the production of acetate in the prokaryote E. coli, 

lactate production in mammalian cancer cells termed Warburg effect10 and aerobic 

ethanol formation in the eukaryote S. cerevisiae known as Crabtree effect11. The 

difference in ATP yield between the respiratory and the fermentative pathway is 

striking, i.e. in S. cerevisiae the complete aerobic catabolism of 1 mol glucose yields 

about 16 moles of ATP, whereas the fermentation to ethanol only yield 2 moles of 

ATP. The same yield of 2 ATP/glucose can be obtained with homolactic fermentation, 

under the premise that the formed lactate and proton are exported without expense 

of ATP. In order to acquire a higher energy production rate needed for faster 

growth, organisms must maximize the product of substrate uptake rate and the 

catabolic ATP stoichiometry12. 

Under the prerequisite that the availability of substrate is usually finite in natural 

environments 13 the occurrence of ‘wasteful’ overflow metabolism seems 

counterintuitive at first glance. One would expect that evolution favors efficiency 

under such conditions, as it would lead to a larger ATP production rate and 

therewith a higher growth rate at the same substrate uptake rate. 

However, this line of thought assumes that the rate and the ATP yield of metabolic 

pathways are independent of each other. In metabolic pathways, there seems to be a 

metabolic trade-off between the maximal metabolic rate and the yield of ATP 

production (further referred to as RYT hypothesis)14, leading to a pareto-optimal 

solution maximizing the growth rate15. In 2001 the publication of Pfeiffer et al.16 
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received wide attention, applying the RYT concept to explain overflow metabolism. 

The authors hypothesize that such trade-off could lead to a growth rate advantage 

of phenotypes exhibiting a Crabtree effect17,18. This hypothesis can explain the 

usage of pathways with a lower ATP yield, as it would lead to a competitive 

advantage and has also been discussed extensively as an example for the  tragedy of 

the commons19 leading to an energetically suboptimal use of substrate3,13,20,21. 

 

Alternative hypothesis explaining the emergence of overflow metabolism 

such as the Crabtree effect 

The RYT is not the only hypothesis trying to explain the occurrence of the Crabtree 

effect in S. cerevisiae, another popular hypothesis is the Make-Accumulate-Consume 

hypothesis (MAC)22,23, stating that ethanol production confers an evolutionary 

advantage over its competitors because ethanol is toxic to most other microbes, 

where at the same time the increased glucose uptake rate starves-out competitors. 

The ethanol can then later be converted back to acetaldehyde and consumed. 

There is also no consensus about the ecological niche where the Crabtree effect 

evolved, which could require anaerobic conditions24, semi-anaerobic conditions25 to 

no niche at all26. 

Modelling the link between metabolic rates, proteome and cellular 

physiology 

With the wider availability of proteome data, the RYT hypothesis could also be 

discussed in the context of proteome efficiency (also often referred to as catalytic 

efficiency) of pathways27 (i.e. the amount of enzyme needed to catalyze a certain 

flux). This allows determining the cellular proteome allocation, which can be 

compared to optimal expression levels of enzymes inferred from a metabolic model 

subject to a metabolic target28. This also led to efforts to incorporate constraints 

reflecting the cellular morphology. Most prominent for this approach are the works 

in prokaryotes of Molenaar and Zhuang2,29 introducing a constraint for the 

availability of membrane surface area and Basan et al.30 introducing a constraint for 

the total protein pool of a cell. Although those models are comparably abstract with 

respect to cellular metabolism and morphology, they already demonstrate a 

capability for the mathematical description of overflow metabolism. 

More rigorous and mechanistic models have been developed based on classical 

structured or stoichiometric models together with the optimality model flux balance 

analysis (FBA)31 and used to predict evolutionary outcomes32,33 or overflow 

metabolism in E. coli 34. A key part of FBA is the ability to add constraints on the 
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fluxes; such constraints are useful in FBA, as they lead to a reduction in the solution 

space and also serve as an upper boundary for the optimized set of fluxes without 

setting explicit bound constraints35. Numerous constraints and optimization targets 

have been proposed for FBA and shall not be reviewed in detail here, as this 

contribution focusses exclusively on mass constraints for cellular proteins 36 (thus 

further referred to as mFBA).  

In mFBA, the cost function associates an amount of protein to each flux in the 

metabolic network, i.e. the flux divided by the respective specific activity of the 

protein catalyzing the reaction. The fluxes are then estimated subject to a 

constrained mass of protein. Therefore, this approach introduces an explicit link 

between the proteome and the fluxome for steady-state conditions. This approach 

has recently been applied to the eukaryote S. cerevisiae 37, using a single protein 

mass constraint on intermediary metabolism and has been shown to predict the 

Crabtree effect. 

Aim of the work 

Current models are limited to specific conditions e.g. carbon limitation and have a 

coarse description of yeast morphology and physiology. Here an extension of the 

mFBA approach is presented that will allow to predict the outcomes of evolutionary 

experiments under various conditions by introducing limiting nutrient kinetics that 

allow predicting the cellular rates and protein composition under different 

environmental conditions. 

The model framework is extended to multiple protein constraints, reflecting the 

morphology of eukaryotic cells more closely, i.e. multiple protein constraints posed 

by limited availability of cellular and inner mitochondrial membrane are implemented 

(Figure 4.1). Additionally, special attention is set in order to model the physiology of 

yeast quantitatively, in particular with respect to the metabolic stoichiometry and 

the interrelation between the total protein content and cellular energetics (YATP). 
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Figure 4.1: Schematic representation of the model containing lumped metabolic fluxes (arrows) 

and the associated protein p (circles), where purple indicates catabolic and green anabolic 

reactions. Moreover showing the three incorporated protein mass constraints for cell membrane 

pcm, inner mitochondrial membrane pmm and total cellular protein ptotal. 

With the model, different optimal metabolic strategies can be predicted with 

respect to the achieved growth rate and -yield, where the results are compared to 

the outcomes of published experimental data and interpreted with respect to the 

resulting evolutionary fitness under different conditions. The potential of the 

approach is demonstrated by addressing a number of long standing questions about 

yeast physiology and evolution in a comprehensive way. These questions are: 

(1) Can the concept of proteome efficiency explain why under batch conditions there 

is such a variance in the ratio between fermented and respired glucose among 

different Crabtree positive yeast species and strains?38 

(2) How could evolution divide yeast into Crabtree positive and Crabtree negative 

species and in which environmental conditions are required for this divergence? 

(3) Why can the expression of a glucose proton glucose symport in the cell membrane 

be associated with the Crabtree negative phenotype, whereas the expression of a 

glucose uniporter can be associated with a Crabtree positive phenotype and how 

does the dramatic loss in glucose affinity affect the evolutionary fitness?39 
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(4) If the Crabtree effect causes a growth advantage, why are there Crabtree 

negative yeasts, e.g. C. utilis exhibiting a higher maximal growth rate compared to S. 

cerevisiae? What role does the overall protein content play? 

(5) Can the evolutionary fitness of S. cerevisiae be understood better in terms of 

the RYT hypothesis40 or the “make-accumulate-consume” hypothesis (MAC)22? 

(6) How does the evolutionary fitness of the Warburg effect compare to the 

Crabtree effect and under which conditions could directed evolution lead to a 

homolactic fermenting S. cerevisiae? 

 

Methods 

In this contribution a combination of stoichiometric modelling, kinetic modelling of 

the limiting nutrients and mFBA with multiple protein pool constraints is used. The 

model allows simulating of different environmental conditions and is used to predict 

optimal metabolic strategies in batch and substrate-limited culture for the 

eukaryote S. cerevisiae. This work builds upon a recently published model37 and 

introduces several changes and extensions. 

Model Reactions 

In order to keep the model comprehensive the linear pathways were lumped and the 

respective specific activities of the single enzymes were summed up in the pathway 

as described in the Supporting material (see Table 4.S1). 

The model is structured, meaning it possesses different compartments. Whereas all 

proteins contribute to the total amount of protein, membrane proteins are also 

assigned either to the cell membrane or the inner mitochondrial membrane and will 

therefore also contribute to the respective protein masses. 

The stoichiometry of respiration corresponds to a P/O ratio for NADH and FADH of 

1.241 or 16.4 moles of ATP per glucose (including 2 ATP from glycolysis). The 

conserved moieties ADP and NAD+, Q and CoA have been excluded from the 

stoichiometry matrix as they are redundant in the stoichiometry matrix. GTP is 

balanced as ATP, as both are assumed interconvertible. 
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Table 4.1. Lumped reactions with designated location according to the 3 protein mass 

constraints in the cell membrane (pcm), inner mitochondrial membrane (pmm) and the overall 

cellular protein (ptotal) 

Name Reaction pcm pmm ptotal 

HXT (Glucose 

import)  

Glcec  Glc (uniporter) or  

Glcec + ATP  Glc (glucose-proton symport) 

X  X 

JEN1 (Lactic 

acid export) 

HLac  HLacec  X  X 

JEN1 (Lactic 

acid import) 

Hlacec  HLac X  X 

Glycolysis  Glc  2Pyr + 2ATP + 2NADH   X 

PDC + ADH Pyr + NADH  EtOH + CO2   X 

LDH Pyr + NADH  HLac    X 

MPCfwd Pyr  Pyrmit  X X 

MPCbwd Pyrmit  Pyr  X X 

TCA cycle Pyrmit  3CO2 + 4NADH + FADH2 + ATP   X 

NDI, NDE NADH  QH2  X X 

SDH FADH2  QH2  X X 

2RIP1 + COX O2+2QH2 + 9H+
mit  9H+  X X 

ATP 3.75H+  ATP + 3.75H+
mit  X X 

DWraw 0.413Pyr + 0.005NH3 + 0.65ATP + 0.15H2O  

1C1H1.94O0.91N0.005 + 0.014NADH + 0.24CO2  

   

Protein 0.413Pyr  + 0.275NH3  + 4.59ATP  

1C1H1.581O0.318N0.275  +  0.0065NADH + 0.24CO2 + 

0.442H2O 

  X 

Glycerol 

production 

0.5Glc + NADH + ATP  Glycerol   X 

CYB2 + 0.5 COX HLac + 0.5 O2 + 3H+
mit   Pyr + 3H+

  X X 

ADH+ALD EtOH + 2ATP  AcCoA + 2NADH   X 

Glyoxyate + SFC 

+ PEPCK +PK 

2AcCoA  Pyr + CO2 + 2NADH + 1FADH2  X 

(only 

SFC) 

X 

TCA cycle AcCoA 

+ CAT2 + CRC1  

AcCoA  2 CO2 + 3NADH + FADH + ATP  X 

(only 

CRC1

) 

X 

 

The biomass equation, protein allocation and cellular maintenance for 

growth 

Biomass (DW) is assumed to be composed of two parts: (1) DWraw containing the cell 

constituents carbohydrates, lipids, DNA and RNA42 and (2) a protein fraction ptotal 

containing all cellular protein. Due to a lack of complete data, the composition of 

DWraw is considered to independent of the growth rate. This simplification can be 
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justified, because the named constituents make up a smaller amount of the biomass 

compared to proteins43 and more importantly have a very small influence on the 

bioenergetics (YATP) of the cell compared to protein synthesis44,45. Additionally, this 

has the advantage that all protein fractions p can be expressed over DWraw, leading 

to the growth reaction with the following overall biomass constitution. 

 (D 1W p ) totalrawDW +=   (4.1) 

The reconciled elemental biomass composition (DW), as well as the protein 

composition (ptotal) have been taken from literature46. To obtain DWraw, the protein 

content (47% (w/w) at D=0.1 1/h47) was subtracted from the biomass composition. 

As the biomass and the protein reactions have 5 unknowns but only 4 moieties 

(C,H,O,N), the molar biomass yield on substrate was taken from literature6 to 

balance the equations, where the substrate needed for the formation of NADPH via 

the Pentose phosphate pathway has been accounted for and is therewith not 

explicitly considered in the model. To find a compromise for the predictions with 

fermentative and non-fermentative carbon sources, intracellular pyruvate was 

chosen as the precursor for the biomass and the protein synthesis reaction. 

In contrast to the original model37, the overall protein content (ptotal) is implemented 

directly into the model. Therefore ptotal is divided into two fractions, a constitutive 

amount of protein pconst which is independent of the fluxes and a flux-associated 

protein fraction pflux
30 which is a function of the necessary protein needed to 

catalyze the metabolic fluxes in the model (see also eq.(4.3)). 

 total flux constp p p= +  (4.2) 

The amount of growth independent protein content pconst has been parametrized to 

36.5% (w/w) (corresponding to 0.56 gProtein/gDWraw) at zero growth from 

experimental observations in glucose limited chemostat cultures using linear 

extrapolation9,48. 

The ATP cost for DWraw has been taken from calculations based on the ATP 

requirements for the synthesis of the respective cell constituents9, whereas the ATP 

cost for protein synthesis has been estimated using experimental ATPY  data7, so 

that the overall growth model describes the interrelation between observed YATP and 

protein content as observed experimentally in S. cerevisiae (see Figure 4.S1 in the 

Supporting material). 
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As in all models linking cellular energetics and growth there is a systematic 

discrepancy between the apparent and the theoretical YATP, max
47,49-51. This is usually 

accounted for with a maintenance coefficient linked to the growth rate and a 

growth independent maintenance coefficient52. As the model predicts rates as a 

function of protein masses, this ATP gap is included into the protein reaction i.e. the 

ATP cost is a linear function of the protein content (also see Table 4.1). This explains 

the about 2.5 times higher ATP stoichiometry for cellular protein synthesis 

compared to the usually considered ATP demand6,8,50, which may also be too low53,54. 

Specific protein activities 

The specific protein activities have been used as published before37. Additionally, 

the in vivo specific enzyme activity for the Hexose transporter has been taken from 

literature55. Although being aware that there are many more glucose 

transporters56,57 in S. cerevisiae than assumed in our model abstraction, due to a 

lack of data the high affinity glucose uniporter HXT2 was used as a proxy. The same 

situation holds for the different cytochrome c oxidases58. It is assumed that the 

specific activity of the glucose-proton symport is equal to the glucose uniporter as 

also found experimentally59. This assumption was also tested in the model, where 

the model turned out to be robust with respect to this value in the case of a 

glucose-proton symport. By altering the value by plus and minus 50%, only a marginal 

effect the model prediction could be observed (data not shown). 

Fortunately, the lactate-proton symport JEN1 was characterized using the same 

method as the Hexose transporter60. The specific activity of JEN1 was also used for 

the mitochondrial pyruvate channel (MPC). No specific in vitro protein activities 

could be found for the mitochondrial AcCoA transport, which takes place via multiple 

pathways in S. cerevisiae61. All Acetyl-CoA transport was assumed to be carnitine-

dependent and the specific activity of the carnitine transporter CRC1 was 

parametrized in the order of magnitude of the JEN1 transporter. The same holds for 

the mitochondrial succinate-fumarate carrier (SFC)62 which is needed for growth on 

C-2 compounds to link the glyoxylate pathway to gluconeogenesis (succinate 

dehydrogenase is only expressed in the mitochondrial matrix but not in the cytosol). 

The pathways involving those reactions are only used in growth on non-fermentable 

carbon sources, so the parametrization does not have influence on predictions for 

growth on glucose and a very low sensitivity has been found for the growth 

predictions for the non-fermentable substrates (results not shown). In contrast to 

lactate, ethanol can pass the membrane without a transporter by diffusion. This 

means the ethanol flux is not bounded by the protein constraint for the cell 
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membrane in the model and could theoretically exceed physiological limits. All 

predicted rates are well below the estimated maximal ethanol production rate of 

about 31 mmol/gDW/l7 in anaerobic conditions, thus it was assumed that diffusion 

resistance is not the rate-limiting step under the imposed conditions. Due to the 

very high membrane diffusivity, diffusion limitation is also excluded for the oxygen 

uptake. The specific protein activity for the growth reaction to catalyze the 

synthesis of biomass e.g. ribosomes (pgrowth in Figure 4.1) was calculated based on 

the linear increase in experimentally observed protein content as found in aerobic9,48 

and anaerobic63 glucose limited chemostat cultivations (Figure 4.3, right panel). A 

detailed table with the used specific protein activities can be found in the 

Supporting Materials (refer to Table 4.S1 in the Supporting material). 

Flux prediction 

Flux balance analysis (FBA) is used to optimize a linear combination of fluxes. Here 

the maximization of the growth rate is the objective function subject to a number 

of constraints. Steady-state conditions are enforced in the network and moreover all 

fluxes were constrained to be strictly positive e.g. a reversible reaction was 

introduced as 2 reactions with positive sign to circumvent the calculation of 

negative protein masses. 
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The difference between FBA and mFBA are the inequality constraints in eq. (4.3), 

where the flux vector is divided by the specific protein activity a  (with the units 
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catalyzed flux/mass of enzyme) and a dimensionless saturation factor iσ (can have 

values between 0 and 1) and are set by default to 0.5 as in the original model37. 

 0.5iσ =   (4.4) 

In contrast to the original model37 three protein mass constraints are introduced, 

where pcm constrains the protein mass in the cell membrane, pmm the mass of protein 

in the mitochondrial membrane29 and the overall protein of the cell ptotal (eq.(4.2), 

see also Figure 4.1). A constraint for the mitochondrial lumen was not introduced as 

the mitochondrial morphology and therewith the surface to volume ratio of 

mitochondria was shown to be highly variable in S. cerevisiae 64. 

Implementation of the interdependence between the predicted overall 

protein content and YATP 

However this is not sufficient to reflect the physiology of yeast with respect to the 

multiple protein constraints. As ptotal is an inequality constraint, this means that it 

is not guaranteed that the model will converge towards the total protein content 

constraint. The model has to account for this behavior i.e. describe that the overall 

biomass composition DW (and therewith the YATP) in the stoichiometry matrix N is 

dependent on ptotal (eq.(4.1)), which is in turn is a result of the simulation itself (eq. 

(4.3)). This leads to an implicit problem, which is solved by an additional iterative 

optimization minimizing the difference between the estimated and the actual protein 

content in the model. 
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The inner optimization problem was solved with the MATLAB linprog solver using the 

dual simplex algorithm therein and the MATLAB fzero algorithm was used to solve 

the outer loop. 

 

 

 

107



Simulation of substrate-limited conditions 

For the simulation of oxygen and glucose limited conditions the saturation constant 

iσ  of the hexose transporter or the cytochrome c oxidase (COX) was set to values 

in the interval [0 1[. The respective broth (glucose or oxygen) concentrations are 

derived from the Michaelis-Menten equation (see eq.(4.4)). 

 
1

mKc σ
σ

⋅
=

−
  (4.6) 

The apparent affinity constants Km have been taken from literature as 1 mmol 

glucose/l for the glucose uniport and 0.025 mmol glucose/l for the glucose-proton 

symport mechanism65  and 0.75x10-3 mmol oxygen/l for the cytochrome c 

oxidase66,67 corresponding to 0.32 % air saturation at standard pressure and a 

temperature of 30 ̊C (Oxygen conversion table, PreSens, Germany). 

Results and Discussion 

Base case model parametrization for S. cerevisiae and C. utilis 

There is surprisingly little data about the quantitative physiology for different 

strains of S. cerevisiae with the additional problem that most of all available data 

has been obtained with ‘domesticated’ laboratory or industrial strains, which may 

have altered properties due to selection for certain properties68,69. For example the 

strain DS28911, where the model of Nilsson and Nielsen37 is based on is an aneuploid 

industrial strain used for baking. Such strains are selected for a high rate of CO2 

production under anoxic conditions and thus high alcoholic fermentation rate48. 

Similar the popular laboratory strain CEN.PK 113-7D has been optimized for 

laboratory (chemostat) fermentations and genetic accessibility70. It is known that 

this strain has numerous mutations in the cAMP signaling pathway71 that affect the 

regulation of glucose repression72. It cannot be excluded that the latter or other 

mutations alter the respiro-fermentative characteristics73,74, in particular as CEN.PK 

113-7D shows a very similar behavior compared to DS2891175. 

The strain that has been thoroughly characterized with respect to quantitative 

physiology and may resemble wild-type characteristics better is S. cerevisiae CBS 

8066, which is a hybrid of the strain Y55 originally isolated from wine grapes in 

France during the 1930s76 and a not further described ‘wild-type’ (CBS strain 

database). Therefore the model will be based in following primarily on data obtained 

with CBS 8066. For Crabtree-negative yeast even less quantitative physiological 
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data is available, here the well characterized C. utilis CBS 621 is used as a proxy to 

parametrize the model. 

With the known stoichiometry and the specific enzyme activities, the model has only 

3 free variables to parametrize, the mass constraints for the (1) protein mass in the 

cell membrane pcm, (2) the inner mitochondrial membrane pmm and (3) the total 

protein mass ptotal. As the biomass composition changes with the predicted overall 

protein content, the constraints are expressed relative to the not changing raw 

biomass amount in gProtein/gDWraw. 

Table 4.2. Parameter definition and model parametrization for S. cerevisiae and C. utilis 

Term Value Definition 

pcm 0.012 gProtein/gDWraw Protein constraint for 

Glucose and lactic acid 

transporters in the cell 

membrane, parametrized 

to reflect a maximal 

glucose uptake rate of 16 

mmol/gDW/h. 

ptotal S. cerevisiae (all): 1.37 gProtein/gDWraw 

C. utilis CBS 621: 2.00 gProtein/gDWraw 

Constraint for the overall 

cellular protein, 

parametrized to reflect 

the maximal growth rate 

pmm S. cerevisiae CBS 8066: pmm  = pmm,min 

S. cerevisiae DS 28911: 0.16 

gProtein/gDWraw 

C. utilis CBS 621: unbounded 

Protein constraint for the 

inner mitochondrial 

membrane 

pmm,min S. cerevisiae (all):  0.23 gProtein/gDWraw 

C. utilis: n.a. 

Protein constraint for the 

inner mitochondrial 

membrane, subscript min 

refers to the minimal 

protein mass allowing to 

reach the maximal growth 

rate 

pmm,max 0.45 gProtein/gDWraw Protein constraint for the 

inner mitochondrial 

membrane, subscript max 
refers to the protein mass 

allowing to reach the 

maximal oxygen uptake 

rate of 20 mmol/gDW/h in 

S. cerevisiae 81 
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First pcm was parametrized to a maximal glucose uptake rate of 16 mmol/gDW/h77, 

while leaving the other two constraints unbounded. As a second step the value of 

ptotal was estimated according to the observed maximal aerobic growth rate for the 

S. cerevisiae strain CBS8066 on glucose of 0.49 1/h in minimal medium with NH4
+ as 

a nitrogen source78, where pmm was left unbounded. For C. utilis ptotal is 

parametrized in the same way to a maximal growth rate of 0.59 1/h79. This 

parametrization also leads to a prediction of pmm as the model minimizes the protein 

cost for all constraints simultaneously. This is the minimal amount required to reach 

the maximal growth rate on glucose and is therefore further referred to as pmm,min. 

This means a further increase in mitochondrial membrane protein beyond pmm,min 

cannot increase the maximal growth rate anymore. Also pmm,max was estimated, which 

is the amount of mitochondrial enzyme allowing for the maximal oxygen uptake rate 

as observed experimentally under uncoupling conditions with benzoic acid80. 

Mitochondrial protein constraint pmm with different carbon sources under 

batch conditions 

In the initial parametrization pmm,max is about two times the value of pmm,min showing 

a significant variability. This raises the question how the mitochondrial constraint 

pmm affects the growth on the non-fermentable carbon sources ethanol and lactic 

acid which consume more oxygen per produced biomass and protein. This leads to a 

different situation, i.e. here an in comparison higher mitochondrial protein mass 

could further increase the maximal growth rate (see Figure 4.2, green line). The 

results indicate that the mitochondrial protein content is only partly derepressed 

during growth on ethanol with a pmm about 25% larger compared to pmm,min and 

significantly lower compared to uncoupling conditions (pmm,max) which correspond to 

the maximal oxygen uptake rate of 20 mmol/gDW/h. The ethanol uptake rate at the 

maximal growth rate is predicted to 6.5 mmol/gDW/h, if compared to the ethanol 

production rate under anaerobic conditions this makes a diffusion limitation of 

ethanol in the cell membrane unlikely. It remains unclear if the necessary additional 

mitochondrial surface causes the observed change in mitochondrial morphology 

between growth on glucose and ethanol or under uncoupling conditions64,81. In the 

case of growth on lactic acid one would expect a behavior similar to ethanol; 

however the observed growth rate corresponds to a pmm below the pmm,min on 

glucose. Thereforen, it is unlikely that the growth rate on lactate is limited by the 

mitochondrial membrane capacity or it could be that the experimental growth rate 

on lactate is biased due to uncoupling82. The predicted pmm for the maximal growth 
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rate for a fully respiratory strategy, which was achieved by reducing the glycolytic 

flux using chimeric glucose transporters83 is predicted close to pmm,min. 

 

Figure 4.2. Model prediction for the maximal growth rate of S. cerevisiae as a function of the 

mitochondrial protein constraint pmm,min on different substrates. The predictions are compared 

to the empirically observed maximal growth rates in S. cerevisiae (black circles). Glucose aerobic 

0.49 1/h78, Glucose anaerobic 0.31 1/h7, glucose fully respiratory (34% reduction from wild-

type83) 0.32 1/h, lactic acid 0.18 1/h84 and growth on ethanol 0.21 1/h77. 

Simulations for S. cerevisiae under glucose limited conditions 

In order to investigate the effect of pmm on the cellular physiology further, the 

estimated parameters were used to predict the growth rate of S. cerevisiae under 

glucose limited conditions, where pmm was either set to  pmm,min or left 

unconstrained. 
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Figure 4.3. Left: growth rate as a function of broth glucose concentration for a Crabtree 

positive phenotype (black lines) with pmm=pmm,min (-) and unbounded pmm (--). The cyan area in 

between shows the solution space leading to the maximal growth rate of 0.49 1/h. Red lines 

show a purely respiratory phenotype and the blue line a purely fermenting phenotype. Middle: 

Biomass specific rates for a phenotype with pmm= pmm,min (-), for unbounded pmm (--) and for 

pmm<pmm,min (.-), the cyan area shows the solution space leading to the maximal growth rate of 

0.49 1/h, together with experimental observables in aerobic glucose limited chemostat cultures 

for the S. cerevisiae strains CBS 8066 (+) and DS 28911 (□). Right: Protein content as a 

function of growth for a phenotype with pmm= pmm,min (solid line) and for unbounded pmm 

(dashed line) for ptotal (black), pmm (blue) and pcm (red) together with experimental observables 

for ptotal in aerobic glucose limited chemostat cultures for the S. cerevisiae strains CBS 8066 

(+) and DS 28911 (□). 
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The model predicts ethanol production also for the unconstrained pmm, however this 

happens only once ptotal converges to the boundary, forcing the cell to replace the 

oxidative phosphorylation by the more protein efficient fermentative pathway. This 

transition starts at a growth rate of 0.44 1/h (see Figure 4.3), which is also the 

maximal growth rate predicted for a purely respiratory phenotype. The protein 

rearrangement towards a Crabtree effect is abrupt in the qi-µ plots, also because 

the protein cost for growth rises about the same as the necessary protein cost for 

the catabolic pathways as a function of the growth rate (See Figure 4.S2). It can be 

seen that the higher protein efficiency of the fermentative pathway allows for a 

10% increase in maximal growth rate compared to a non-fermenting phenotype under 

a limitation in the overall protein content. 

Otherwise it is under glucose limited conditions always beneficial in terms of growth 

rate to invest protein into the oxidative pathway. The reason for this behavior is 

that the glucose influx is limited under the applied glucose limited conditions by the 

mass of glucose transporters pcm that can be expressed in the cell membrane, 

therewith favoring the pathway with the higher ATP yield on substrate. 

Interestingly, the Crabtree effect can always restore the maximal growth rate when 

pmm is above pmm,min, this means that this is a free variable in cellular decision 

making, as above this threshold ethanol fermentation with the higher proteome 

efficiency can compensate a reduction in pmm. 

It is found that S. cerevisiae CBS 8066 operates at the lower limit of this solution 

space in pmm, corresponding to an onset of the Crabtree effect at a dilution rate of 

~0.37 1/h, therewith finding an optimal compromise between maximizing the 

substrate uptake rate and the ethanol production rate without compromising the 

maximal growth rate. Still it has to be noted that the Crabtree effect comes at the 

cost of a clear disadvantage in growth rate at the same residual glucose 

concentration, despite the higher protein efficiency of the fermentative pathway 

and thus a fully respiratory strategy would outperform this Crabtree positive 

strategy at glucose concentrations below ~2 mmol/l glucose in terms of growth 

rate. The situation looks different for the strain DS 28911 which operates outside 

the predicted solution space with an onset of the Crabtree effect at a dilution rate 

of ~0.28 1/h. According to the model this must lead to a reduced maximal growth 

rate predicted slightly higher compared to the experimentally observed growth rate 

(0.45 vs. 0.42 1/h75). The reason for this over prediction may be explained by the 

strong decay in the overall protein content and OUR which the model cannot 

reproduce with the chosen objective function of maximizing growth. Also CBS 8066 

shows this behavior at high growth rates, although much less pronounced, whereas it 
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has not been observed in anaerobic conditions63. The reason for this behavior cannot 

be elucidated with the available data, but based on the model simulations the 

possibility that a drop in protein content is caused by the enzymatic rearrangement 

from respiration to fermentation can be excluded. The effect could be caused by a 

changed cellular morphology at high growth rates leading to a reduction of the 

growth independent protein content pconst or lead to a systematic measurement error 

in the biomass concentration85. The model cannot describe such behavior on a 

mechanistic level; however it is clear that a reduction of the growth independent 

protein content would increase the YATP and therefore is positively correlated with 

the growth rate. The benefit of this effect is independent of the metabolic strategy 

and will therefore not influence the general outcomes of this comparative study. 

 

Exploring the link between the glucose uptake mechanism and the 

Crabtree effect in yeast 

So far only yeast phenotype expressing a glucose uniporter a as glucose uptake 

mechanism have been considered, also referred to as facilitated diffusion. It is 

assumed that the progenitor of the modern yeast showed a respiratory behavior24, 

therefore in order to understand the relevant evolutionary mechanism the physiology 

of Crabtree positive and Crabtree negative yeast has to be compared (see Figure 4.4). 

Interestingly, the occurrence of a glucose proton symport has been strictly 

associated with a Crabtree negative phenotype39. This has severe impact on the ATP 

yield as the import of one proton per glucose molecule will cost ATP as the proton 

has to be exported again by the proton ATPase. This will reduce the ATP yield of the 

catabolic pathways, whereas the protein cost for the pathway enzymes stays 

constant. With a proton ATPase stoichiometry of 1proton/ATP86 this leads to a 6% 

lower ATP yield per glucose in the respiratory pathway and a 50% decrease in the 

fermentative pathway. On the other hand, the import of glucose by facilitated 

diffusion makes this reaction reversible and leads to a dramatic loss of glucose 

affinity with an about 40 fold increase in the apparent affinity constant from 

0.025mmol/l to 1mmol/l39. 
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The model predicts the occurrence of a Crabtree negative phenotype with the only 

change being the introduction of a glucose proton symporter instead of a glucose 

uniporter. Reason is that with the 50% decreased ATP yield of the fermentative 

pathway the protein efficiency of the fermentative pathway is no longer higher than 

the respiratory pathway and therewith the occurrence of ethanol fermentation leads 

to a reduction in the maximal growth rate. With the applied protein requirements for 

the critical ATP stoichiometry for the import of glucose leading to the occurrence of 

a Crabtree effect can be calculated from the model to 0.93 mol ATP/mol glucose 
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imported (see Figure 4.S3) and is therewith only slightly below the ATP 

stoichiometry of 1mol ATP/mol glucose when expressing a glucose proton symport. 

Even below this threshold pmm,min is positively correlated with the stoichiometry, 

thus reducing the solution space for the Crabtree effect considerably (see also 

Figure 4.S3). 

Due to the lower overall ATP yield phenotypes showing ATP consuming glucose 

transport always exhibits a lower maximal growth rate compared to the phenotype 

expressing the glucose uniporter at the same overall protein content. On the other 

hand, the advantage of the strategy is, due to the increased glucose affinity, an 

increased glucose uptake rate and therewith growth rate at low glucose 

concentrations despite lower ATP yield of the catabolic pathway. 

The link between total protein content and Crabtree phenotype 

In practice Crabtree negative yeasts often exhibit higher maximal growth rates 

compared to S. cerevisiae, these can only be obtained in the model by an increased 

total protein pool. 

To investigate this behavior simulations were performed varying the overall protein 

constraint for phenotypes with glucose uniporter and bottlenecked mitochondria and 

compare it to the Crabtree positive phenotype with glucose proton symport and 

constrained pmm. 

 

Figure 4.5. Predictions for the maximal growth rate as a function of overall protein content 

for the Crabtree positive (black) (glucose uniporter and pmm=pmm,min) and Crabtree negative 

(red) (glucose proton symport) strategy. Markers indicate observed maximal growth rates for S. 
cerevisiae CBS 8066 (0.49 1/h 78) and C. utilis CBS 621 (0.59 1/h79). The yellow area indicates 

the protein content where the Crabtree positive strategy is favorable under glucose excess. 
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The results show that the constraint in the mitochondrial protein content pmm of the 

Crabtree positive phenotype limits the possible maximal growth rate (see Figure 4.5), 

which can also not be further increased with increased total protein content. Exactly 

opposite is the situation for the phenotype with glucose proton symport. Here an 

increase in overall protein content is directly related to an increase in growth rate, 

also beyond the maximal growth rate of S. cerevisiae. This is in agreement with 

experimental observations which show that Crabtree negative yeasts show higher 

protein content compared to S. cerevisiae e.g. for C. utilis CBS 621 an about 5% 

higher protein content has been determined (62.9%(w/w)) and for Kluyveromyces 

marxianus ATCC 26548 a protein content of up to 71.9% has been observed6,87. In 

general this means that a Crabtree positive strategy i.e. constraining pmm leads to a 

higher growth rate at equivalent protein content however at the same time the this 

strategy also imposes a limit to the achievable growth rate achievable with an 

increase in protein content; in contrast to Crabtree negative phenotypes.  

Prediction of competition between S. cerevisiae and C. utilis under 

glucose and oxygen limitation  

In order to investigate this further, the competition between S. cerevisiae CBS 8066 

and the Crabtree negative yeast C. utilis CBS 621 with a maximal growth rate of 

0.59 1/h was predicted under substrate limitation. Although a higher P/O ratio has 

been hypothesized for C. utilis6 due to a proton translocating NADH dehydrogenase, 

newer research suggests that this is only the case for the external NADH 

dehydrogenase88, whereas the internal NADH dehydrogenase does not export protons 

(as in S. cerevisiae89). The loss of the respiratory complex I took place earlier in the 

evolution of yeast24 and seems therefore not to be directly linked to the 

development of the Crabtree effect.  

The simulations show that C. utilis CBS 261 has a globally higher growth rate at the 

same glucose concentration and also at the same oxygen partial pressure (see Figure 

4.6). The only environment where S. cerevisiae can prevail is under severely oxygen 

limited conditions below a dissolved oxygen concentration of ~0.02 % air saturation. 

These predictions are in agreement with experimental observations from competition 

experiments in chemostat culture79. 
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Figure 4.6. Predicted growth rates of C. utilis CBS 261 (Crabtree negative, red) and S. 

cerevisiae CBS8066 (Crabtree positive, black) yeast under glucose (left) and oxygen limitation 

(right). Dashed lines is unconstrained pmm, solid lines pmm=pmm,min. 

This is interesting from an evolutionary point of view as S. cerevisiae cannot 

compete against the Crabtree negative phenotype in terms of glucose affinity nor in 

maximal growth rate nor in growth on non-fermentable carbon sources (data not 

shown) nor in utmost aerobic conditions. 

Comparison of the Crabtree and the Warburg effect 

Frequently an analogy between the Crabtree and the Warburg effect is made, as the 

lactate fermentation leads to the same ATP yield on glucose compared to ethanol 

fermentation. This raises the question whether the properties observed for the 

Crabtree effect also hold for the Warburg effect. 

While ATP yields are equal, there is one significant difference between the two 

pathways, which is that lactate is dissociated at near neutral cytosolic pH and can 

only leave the cell by a transporter whereas ethanol can diffuse through the cell 

membrane without a transporter. 
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Under the constraint of cell membrane protein (pcm) this leads to a metabolic trade-

off between expression of the glucose uniporter (HXT) and the lactate-proton 

symporter (JEN1) in the cell membrane. This means that the lactate export rate can 

only be increased on cost of a decrease in the specific glucose uptake rate, 

therewith creating to a trade-off between the two rates. 

 

Figure 4.7. Comparison of fully respiratory (blue), Crabtree (black) and Warburg (red) under 

glucose (left) and oxygen limitation (right). Dashed line is pmm=pmm,min, solid line pmm unbounded. 

Comparing the predictions to the ethanol producing stain, it can be seen that this 

leads to the effect that a mitochondrial repression can no longer restore the 

maximal growth rate comparable to the findings in the Crabtree negative yeast (see 

Figure 4.7 left). This situation changes slightly in oxygen limited conditions (Figure 

4.7 right), however also there the lactate producing phenotype with repressed 

mitochondria can only prevail in severe oxygen limitation below 0.07 % air saturation 

compared to the fully respiratory strategy. Also the model predicts that an 

anaerobic growing lactate producing cell is possible, where the maximal growth rate 

is estimated to ~0.2 1/h, about one third less than for anaerobic growth on ethanol. 
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Discussion 

The Crabtree effect leads to a relaxation of mitochondrial function at 

increased glucose concentration, which can explain the observed variance 

in Crabtree effect in nature 

It has been shown that the model exhibits a minimum threshold in pmm from whereon 

the Crabtree effect can always restore the maximal growth rate (see cyan colored 

area in Figure 4.3) and the pmm also directly determines the growth rate where 

fermentation starts. This has two major implications; (1) the fermentative pathway 

can substitute the mitochondrial function with respect to the maximal growth rate 

and (2) means that the growth rate from where the ethanol production starts is a 

free variable for cellular decision making. Therewith the model can reflect the 

relaxation of mitochondrial function as shown in genetic studies compared to 

Crabtree negative yeast90 whereas the occurrence of the solution space can explain 

the observed variance in the occurrence of the Crabtree effect25,38 between 

different yeast strains and species. 

However a relaxation of mitochondrial function i.e. a lower pmm is shown to be 

strictly associated to a growth disadvantage under glucose limiting conditions. This 

growth disadvantage decreases with increasing residual concentration e.g. a 

phenotype with pmm=pmm,min exhibits 95% of the maximal growth rate at a glucose 

concentration of about 5 mmol/l. From an evolutionary standpoint that means that 

phenotypes with a lower pmm can only be competitive at elevated glucose 

concentrations whereas low glucose concentrations will pose an evolutionary 

pressure towards a higher pmm. 

High glucose concentrations and a glucose uniporter are necessary 

conditions for the emergence of the Crabtree effect, whereas anoxic 

conditions are not 

There is limited information available to deduce how the environment looked like 100 

million years ago in the Cretaceous age when the Crabtree effect arose26. Although 

it has been hypothesized that the emergence of Crabtree positive yeast is linked91 

to the diversification of flowering plants (angiosperms) from gymnosperms92,93, 

which has taken place around the same time it is hard to infer the necessary 

environmental conditions for this evolutionary step making the presented model 

approach particularly useful. 

The model simulation show that aerobic fermenting phenotypes can emerge from a 

non-fermentative progenitor in terms of growth rate when only two premises have 
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to be met (1) the mutation from a glucose proton symport to a glucose uniporter 

and (2) elevated glucose concentrations above ~1mmol/l in order to compensate for 

the low glucose affinity of the uniporter (see Figure 4.4).  

This transition may require as little as a single mutation in the H+ binding site, as 

shown in the glucose transporter from Staphylococcus epidermidis which shows high 

sequence homology with eukaryotic hexose transporters94. 

It was found that low oxygen partial pressures mostly favor Crabtree negative 

phenotypes as they exhibit a larger pmm and therefore can take up more oxygen at 

the same oxygen partial pressure. The Crabtree positive phenotype can only 

compensate this disadvantage by fermentation at very low oxygen partial pressures 

(see Figure 4.6). Under this consideration the evolution of Crabtree effect in 

anaerobic conditions is conceivable but not likely also considering the high 

diffusivity of oxygen from the environment. The observed inability of anaerobic 

growth observed in some yeast is not caused by an energetic limitation, but by the 

inability of sterol import95, because the synthesis of sterols is an oxygen requiring 

process96. Research indicates that the ability for sterol import is not strictly 

associated with the occurrence of a Crabtree positive phenotype97 and could have 

evolved independently. 

Another prerequisite for the Crabtree effect is the expression of the enzymes 

pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) converting pyruvate 

to ethanol and CO2. Also Crabtree negative yeast are able to ferment glucose to 

ethanol under oxygen limitation98 and exhibit a phenomenon called short term 

Crabtree effect99 during transition from glucose limitation to glucose excess. In 

oxygen limited chemostat cultures on glucose C. utilis CBS 621 exhibits specific 

ethanol production rates up to 15 mmol/gDW/h98 and therewith in the range as also 

observed for S. cerevisae. This is in agreement with the findings that the protein 

cost for PDC and ADH are negligible compared to the protein cost of glycolysis (se 

also Figure 4.S2) and indicates that the metabolic capacity for glucose uptake, 

glycolysis and the fermentative node may not have been the limiting steps for the 

emergence of the Crabtree effect. 

The role of whole genome duplication (WGD) in the emergence of the 

Crabtree effect 

The model shows that besides the glucose uniporter all essential proteins for the 

emergence of the Crabtree effect are included, raising the question about the role 

of the whole genome duplications (WGD) which has been linked to the emergence of 

the Crabtree effect18,24. 
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Clearly WGD is a key process in the evolutionary history and duplicated genes can be 

found in almost all eukaryotic genomes. WGD is hypothesized to have two major 

functions in evolution (1) it creates a reproductive barrier, where the mechanism has 

been hypothesized to be hybridization followed by a doubling of the genome to 

restore fertility100 and (2) it allows the divergence of gene functions. Modelling 

shows that genome duplication is negatively associated with evolutionary fitness 

and typically only few genes are retained91 favoring the reproductive barrier 

hypothesis. On the other hand research shows a correlation between WGD and the 

evolution of novel regulatory functions22,101-103 which could mean that the WGD 

played an important role in rewiring the metabolism towards glucose repression104. 

The rate-yield trade-off hypothesis (RYT) can explain the emergence of 

Crabtree positive yeast but not the evolutionary persistence of S. 

cerevisiae in its niche 

The simulations show that the evolution of the Crabtree effect from a progenitor is 

possible, however at the same time it is shown that the Crabtree effect also 

impedes the evolution towards higher protein content, leading to the effect that a 

Crabtree negative phenotype with high protein content can gradually outcompete the 

Crabtree positive phenotype, also in the niche it emerged from (see Figure 4.5). 

This finding strongly indicates that the trade-off between growth rate and growth 

yield as stated in the RYT is not the only relevant mechanism in explaining the 

evolutionary persistence of S. cerevisiae in high sugar environments, bringing the 

trait of ethanol tolerance into focus as emphasized by the make-accumulate-

consume (MAC) hypothesis. Ethanol tolerance is often identified as relevant in batch 

competition experiments, where S. cerevisiae exhibits an extraordinary high ethanol 

tolerance compared to other yeast105,106. The used competition experiment in 

chemostat culture leads to significantly lower ethanol concentrations compared to 

aerobic batch conditions due to the washout of ethanol. Experimentally the MIC 

(minimum inhibitory concentration) of C. utilis was determined to 6.3 % (v/v) ethanol 

and the Ki (50% growth inhibition concentration) of  3.4%(v/v)  whereas S. cerevisiae 

shows about double the ethanol tolerance as well as double the Ki
107,108. 

Ethanol toxicity cannot explain the lower protein content of S. cerevisiae compared 

to most Crabtree positive yeast per se, as a higher overall protein content in the 

model is strictly linked to a higher maximal growth rate. This contradiction between 

the model prediction and the experimental observations in batch culture can only be 

resolved by a synergistic interrelation between ethanol tolerance and the protein 

122



content i.e. lower total protein or mitochondrial protein content mitigates ethanol 

toxicity. 

The molecular mechanisms of ethanol tolerance in yeast are very diverse as 

reviewed109,110 and not fully understood. To our knowledge no model exists to 

describe the effects of ethanol stress on yeast mechanistically and although ethanol 

tolerance has been linked to cellular energetics also no quantitative physiological 

data on the energetic cost of ethanol tolerance could be found, e.g. the YATP. The 

model cannot definitely answer the question about the underlying fundamental 

mechanism and specific and systematic research on the quantitative physiology of 

yeast under ethanol stress would be required to answer the question. 

Is the directed evolution towards a homolactic fermenting yeast possible 

from a PDC negative phenotype? 

The model allows predicting the growth rate of a lactate producing stain by 

implementing a heterologous lactate dehydrogenase. It is further elaborated on the 

physiology of a homolactic strain, i.e. it does not produce ethanol and acetate, which 

is usually achieved by removing all PDC genes111. Such strain has been shown not to 

grow anaerobically112,113.  The difference between Crabtree and the Warburg effect 

is that although both pathways lead to 2 ATP per glucose fermented the weak acid 

lactic acid which is dissociated at physiological pH requires a transporter to leave 

the cell. This means that the hexose and the lactate transporter both compete for 

limited membrane space and consequently leading to a trade-off between glucose 

uptake and lactate export. This trade-off eliminates the solution space as observed 

for the Crabtree effect i.e. no pmm,min exists; this means that such phenotype can 

never compensate the loss in growth rate upon a lowering in pmm by lactate 

fermentation. 

This also means that an analogy between the Crabtree effect and Warburg effect 

should be made cautiously. In spite of this trade-off, it cannot explain the lack of an 

anaerobic growing lactate fermenting strain, where the model predicts a maximal 

growth rate of about 0.2 1/h. However the trait only leads to a clear growth 

advantage independent of the pmm under severely oxygen limited conditions (see 

Figure 4.7). However the original function of JEN1 is lactate uptake, therefore the 

transporter is subject to a phenomenon called glucose repression (or more general 

carbon catabolite repression). This means that S. cerevisiae prefers the uptake of 

glucose even when lactate is present in the environment. Therefore, the activity of 

the promoter of JEN1 was shown to be inversely related to the sugar 

concentration114,115 a behavior which can be also predicted by the model (Figure 
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4.S4). This repression is more complicated and takes also place on the post-

transcriptional116 and post-translational level117. However it seems to be possible to 

select mutants not showing glucose repression of lactate uptake118. 

Additionally, the transporter thermodynamics have to be considered; clearly the ATP 

yield of 2 ATP per glucose can only be conserved when the lactate is exported with 

a lactate-proton symport. Such transporter has a maximal out/in ratio of 1 when the 

cytosolic pH is equal to the extracellular pH and decreasing with lower pH119. This 

means a homolactic fermenting strain will likely only be able to grow at near neutral 

pH. Secondly, this means that the JEN1 transporter is ineffective in mitigating weak 

acid stress making it likely that there are additional active exporters that will have 

to be removed. To our best knowledge these transporters have not been identified 

therewith making a rational engineering of a homolactic engineering strain tedious, 

whereas directed evolution could lead to the desired outcome. 

General Conclusions 

The remarkable capacity of a multiple constrained structured mFBA model for the 

description of eukaryotic physiology was demonstrated. It was shown that the 

approach is useful in understand evolution, also with respect to laboratory evolution 

and allows to deduce consistent trajectories of yeast evolution towards the 

Crabtree effect. The particular strength of the approach is the capability in 

predicting metabolic trade-offs with respect to protein allocation e.g. in catabolism 

or carbon catabolite repression. 

The presented model should be extended, here the major bottleneck are in vivo 

specific protein activities in particular for isoenzymes and transporters. It is 

believed that the approach can be useful in exploring many metabolic phenomena, 

especially metabolic trade-offs, on a more mechanistic level and will become a 

standard tool in future. 
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Symbols and Abbreviations 

a   Specific protein activity 

DW   
Dry weight 

mK
  

Affinity constant 

N   
Stoichiometry matrix 

p
 Protein content 

v   flux 

Y   Yield 

σ   Enzyme saturation factor 

µ
  Growth rate 

PDC   Pyruvate decarboxylase 

  

Subscript/Superscript  

ATP   Adenosine triphosphate 

const   Constitutive/growth independent 

cm   Cell membrane 

flux
  

Flux associated 

i   Generic variable for fluxes 

max   maximal 

min   minimal 

mm   Mitochondrial membrane 

raw   Cellular dry weight without protein 

total   
Total cellular protein 
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Supporting Appendix 

 

 

Figure 4.S1. Experimental observables and model fit for the biomass yield on ATP as a function 

of the protein content. 

 

Figure 4.S2. Predicted protein fractions (by function) under glucose limited conditions, (--) 

pmm=pmm,min and (-) pmm unbounded. The enzyme amount for PDH and ADH is so small that it is 

not visible in the figure. 
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Figure 4.S3. Effect of the ATP expenditure in glucose import on the Crabtree effect. An 

abscissa value of 0 corresponds to the glucose uniporter and a value of 1 to the glucose-proton 

symport. 

 

Figure 4.S4. Prediction of the physiology in presence of glucose and lactate excess (red and 

blue (qlac)) and glucose only (black) with respect to growth rate (top), lactate uptake and 

ethanol production rate (middle) and glucose uptake rate (bottom). 
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Table 4.S1. Specific protein activities for the network reactions 

  Enzymes acm 

(mmol/h/

mg) 

amm 

(mmol/h/

mg) 

atotal 

(mmol/h/

mg) 

HXT 

(Glucose 

import)  

Glcec  Glc 

(uniporter) or Glcec 

+ 1ATP  Glc 

(glucose-proton 

symport) 

 3.19  3.19 

JEN1 

(Lactic 

acid 

export) 

HLac  HLacec   6.38  6.38 

JEN1 

(Lactic 

acid 

import) 

Hlacec  HLac  6.38  6.38 

Glycolysis  Glc  2Pyr + 2ATP 

+ 2NADH 

HXK + PGI + PFK 

+ FBA + TPI + 2 

GLD + 2 PGK + 

2 GPM + 2 ENO 

+ 2 CDC + 2 PK 

  0.52 

PDC + 

ADH 

Pyr + NADH  EtOH 

+ CO2 

   88.86 

LDH Pyr + NADH  HLac     137.52 

MPC_fwd Pyr  Pyrmit   2.952 2.952 

MPC_bwd Pyrmit  Pyr   2.952 2.952 

TCA cycle Pyrmit  3CO2 + 

4NADH+FADH2+ATP 

PDH + CIT + 

ACO + IDH + 

KGDKGD2 + 

SDH12 + MDH1 

+ FUM1 

  0.272 

NDI, NDE NADH  QH2   32.14 32.14 

SDH34 FADH2  QH2   18.80 18.80 

2RIP1 + 

COX 

O2+2QH2 + 9H+
mit 

 9H+ 

  1.25 1.25 

ATP1 3.75H+  ATP + 

3.75 H+
mit 

  0.672 0.672 

DWraw 0.413 Pyr + 

0.005NH3 + 0.65 

ATP + 0.15 H2O  

1C1H1.94O0.91N0.005 + 

0.014 NADH + 0.24 

CO2  

    

Protein 0.413 Pyr  + 

0.275NH3  + 4.59 

ATP  

   0.091 
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1C1H1.581O0.318N0.275  

+  0.0065 NADH + 

0.24 CO2 + 0.442 

H2O 

Glycerol 

production 

0.5 Glc + NADH + 

ATP  Glycerol 

   0 

CYB2 + 

0.5 COX 
HLac + 0.5 O2 + 

3H+
mit Pyr + 

3H+
 

  2.86 2.86 

ADH+ALD EtOH + 2ATP  

AcCoA + 2NADH 

   1.99 

Glyoxyate 

cycle + 

SFC + 

FUM1 + 

PCK + PK 

2 AcCoA  Pyr + 

CO2 + 2NADH + 1 

FADH2 

CIT + ACO + 

ICL1 +MLS1 + 

MDH1 + FUM1 + 

PCK + PK + SFC 

 2 (only 

SFC) 

0.17 

TCA cycle 

AcCoA + 

CAT2 + 

CRC1  

AcCoA  2 CO2 + 

3NADH + FADH + 

ATP 

CIT + ACO + IDH 

+ KGDKGD2 + 

SDH12 + MDH1 

+ FUM1 + CAT2 

+ CRC1 

 2 (only 

CRC1) 

0.33 
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Figure 4.S5. Visualization of the model stoichiometry 
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Abstract 

The design of microbial production processes relies on rational choices for metabolic 

engineering of the production host and the process conditions. These require a 

systematic and quantitative understanding of cellular regulation. Therefore, a novel 

method for dynamic flux identification using quantitative metabolomics and 13C 

labeling to identify piecewise-affine (PWA) flux functions has been described 

recently. Obtaining flux estimates nevertheless still required frequent manual 

reinitalization to obtain a good reproduction of the experimental data and, moreover, 

did not optimize on all observables simultaneously (metabolites and isotopomer 

concentrations). In our contribution we focus on measures to achieve faster and 

robust dynamic flux estimation which leads to a high dimensional parameter 

estimation problem. Specifically, we address the following challenges within the PWA 

problem formulation: (1) Fast selection of sufficient domains for the PWA flux 

functions, (2) Control of over-fitting in the concentration space using shape-

prescriptive modeling and (3) robust and efficient implementation of the parameter 

estimation using  

the hybrid implicit filtering algorithm. With the improvements we significantly speed 

up the convergence by effectively exploiting that the optimization problem is partly 

linear and reducing the search space with the constraints. This allows application to 

larger-scale metabolic networks and demonstrates that the proposed approach is not 

purely theoretical, but also practically applicable. 
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Introduction 

In the natural environment, microorganisms are exposed to transient environmental 

conditions that can trigger a wide range of genetic, regulatory and metabolic 

responses to adapt and survive 1,2. These adaption mechanisms are described to 

operate at very different timescales:  

(1) Genetic adaption by mutagenesis and selection with a timescale of several 

generation times 3, 

(2) Adaption of gene expression levels with a timescale of minutes 4, 

(3) Post-translational modifications with a time constant in the order of 

seconds and 

(4) Kinetic response which is considered an inherent property of the enzymes in 

the metabolic network and therefore persistent. 

Kinetic metabolic regulation is a result of complex interactions between enzymes, 

substrates and allosteric effectors. Enzyme kinetics can be investigated in vitro, but 

the validity of estimated kinetic parameters has been shown to be limited for 

reconstruction of the observed in vivo metabolic network properties 5. In vivo, only 

the whole network response can be analyzed, making the identification of kinetics 

highly challenging. Pioneering in vivo research 6 used stimulus-response experiments, 

where typically a perturbation is introduced to the extracellular space and the 

(intracellular) response of the system is captured by rapid sampling and quantitative 

metabolomics. The observations are then interpreted by generation of kinetic 

model(s) and parameter fitting. 

These models use kinetic formalisms to describe the flux as a function of enzyme 

activity (e), substrate and effector concentrations (ci) and kinetic parameters (θ) 

and are typically non-linear. The latter can be either derived from mechanistic 

assumptions e.g., Michaelis-Menten kinetics, or be non-mechanistic e.g., power law 

leading to parameters with no physical meaning 7. 

 ( , )iv e f= ⋅ c θ   (5.1) 

There are mainly two inherent conceptual drawbacks of kinetic modeling: 

(1) The model equations (metabolite balances) are strongly dependent on each 

other, which means the system can hardly be solved from a decomposition 

and commonly also leads to highly correlated parameters 8,9. 

(2) The kinetic functions have to be chosen a priori, which means the mechanism 

of every enzyme and all interactions between metabolites and enzymes 

involved in the regarded metabolic network have to be selected before 
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parameter optimization. Especially, the kinetic formats of each reaction in 

larger metabolic networks are yet unknown, unclear, or shall be deduced from 

the captured observables. 

One solution that has been used to address this issue was to define a family of 

different models, also referred to as ensemble modeling10-13, where it is good 

practise to find the simplest model that can describe the data (Occam’s razor). Also, 

strategies to speed up parameter estimation in kinetic models have been proposed 

using the estimation of fluxes from the metabolic network stoichiometry as an 

intermediate step and scaffold14,15. This approach allows exploiting the linear 

properties of the stoichiometry matrix, i.e., the nullspace, however, the methodology 

requires selecting a kinetic model a priori and cannot directly identify dynamic 

metabolic fluxes. Regardless of those challenges, the number of uncertain reaction 

mechanisms in a kinetic model leads to a rapidly increasing number of models to be 

compared, together with the challenges of parameter estimation in non-linear 

systems, which result in putative non-convex optimization landscapes that quickly 

reach computationally infeasible scales. 

To circumvent these challenges, the proposed hybrid modeling approach16,17 strives 

for direct identification of the intracellular fluxes without a priori assumptions of 

kinetics (see Figure 5.1). The approach builds on piecewise affine (PWA) flux 

functions, which approximate the real fluxes throughout the metabolic network. This 

means only (more readily available) information on the metabolic network structure, 

including the atom transitions of each reaction, together with the directionality of 

the fluxes, is required a priori. 

The approach could be regarded as an extension of DMFA framework18, which also 

builds on PWA flux functions but is only suitable for determined or redundant 

metabolic networks and for underdetermined systems by incorporation of 13C 

labelling19. Therewith the resulting parameter estimation problem becomes much 

more challenging, as the balances for the tracer atoms introduce non-linearity into 

the so far linear system, which moreover has to be solved by numerical integration 

instead of analytically. The metabolic tracers add a second set of observables, 

leading to a multi-objective parameter estimation problem that requires definition 

of a trade-off between the different types of observables. Moreover parameter 

correlations, and especially high dimensionality, need to be tackled. Classical non-

linear optimization approaches were not found practical for the arising ill-posed 

inverse problems at a larger scale as they usually lead to very slow convergence and 

are often not robust enough for practical application in larger-scale metabolic 

networks. 
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Experimental Requirements for in vivo Dynamic Flux Estimation 

Crucial for every modeling approach is sufficient information for the identification 

of the model parameters from the observables20. The identifiability of in vivo flux 

functions strongly depends on the specific metabolic network, the experimental 

design and the captured observables. This has been extensively analyzed for steady-

state21 and the same methodologies can be used in dynamic conditions. Although the 

experimental design is not the focus of this contribution, the main challenges and 

requirements are shortly discussed:  

• A stimulus-response experiment should lead to perturbation(s) strong 

enough to cover a significant (metabolite) concentration space for good 

identification of the kinetic parameters22. 

• The metabolomics should preferably have a complete coverage of the 

regarded intracellular metabolic response, e.g., intracellular concentrations, 

which moreover have to be quantitative. 

• Use of a 13C labeled substrate for improved flux tracing, as the 

concentration information alone is mostly not sufficient to identify all 

intracellular fluxes18,23. 

These experimental requirements are partly conflicting, especially when 

concentration measurements are performed using 13C labeled internal standards24, as 

they require non-labeled intracellular metabolite pools for quantification. The 

putative experimental setups therefore either require repetitive (cyclic) conditions 

or multiple experimental runs to capture the metabolite and 13C enrichment 

information. 

In this work, we build on one dynamic setup that has been demonstrated to be 

advantageous in facilitating concentration and labeling measurements—there cyclic 

and block-wise feeding are used leading to so-called feast-famine conditions25,26. 

Compared to other experimental stimulus-response setups, e.g., pulse experiments or 

step changes, the feast-famine conditions show the following characteristics:  

(1) They generate repetitive concentration patterns in time, allowing for dense 

sampling from multiple cycles as well as application of 13C labeling from a single 

experiment. 

(2) The feast/famine perturbation includes both: the transient from limitation 

to excess as well as a return to limitation in a short timeframe of minutes. 

(3) In this setup, the starting metabolite concentrations of each cycle are the 

same as the endpoint, which means there is no net metabolite accumulation during 

one cycle (material is washed out with the biomass). 
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These properties are beneficial for flux identification, as the concentration and 

enrichment information can be captured over several cycles, i.e., improving data 

density and accuracy. 

 

 

Figure 5.1. “Classical” kinetic modeling requires a priori defined kinetic mechanisms. Using the 

hybrid modeling approach, only the metabolic network structure (incl. atom transitions) is 

required a priori. As a result, the flux profile in time can be identified rather than kinetic 

parameters. With the flux functions on hand, the kinetics of the metabolic network can be 

investigated decoupled from the overall network. 

Materials and Methods 

 

The flux estimation follows a workflow, which will be described in detail in the 

following subchapters. First step is the domain selection procedure selecting the 

breakpoints for the flux functions. This is followed by definition and introduction of 

the non-negativity (prevents negative concentrations) and shape-prescriptive 

constraints. For use of the final step, first a feasible initial iterate has to be 

computed as implicit filtering requires this as an input. The final step performs the 

actual flux identification with incorporation of the enrichment data. 
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Used Models and Data 

The in silico Spiral model was used as described previously16. 

For the practical PenG example, concentration and labeling measurements as well as 

the metabolic network stoichiometry were obtained from a feast/famine cultivation 

of P. chrysogenum as previously reported17. In brief: The culture was supplied by a 

block-wise feeding regime (36 s feed, 324 s no feed) at an average dilution rate of 

D = 0.05 h−1. The feed contained minimal medium with a glucose concentration of 15 

g/L. After several cycles, repetitive offgas and DO measurements were obtained, a 

biomass concentration of 5.7 g/L was obtained (average over the cycle). Samples for 

intracellular metabolites were withdrawn using a rapid-sampling device 27, quenched, 

extracted and analyzed using the ID-MS protocol 17,28. After sampling for 

intracellular concentrations, the feed was switched to a medium with the same 

composition, but containing fully 13C-labeled glucose. The enrichment was monitored 

during three consecutive cycles using rapid sampling and MS analysis. It has to be 

noted that the applicability of the approach is not limited to a particular organism 

but can be directly applied to any organism e.g. S. cerevisiae29 under the provision 

that the necessary quantitative data can be captured and the pathway stoichiometry 

is known or can be inferred from this data. 

Mathematical Modeling of Dynamic 13C Labeling Experiments Using PWA 

Flux Functions 

The modeling approach is based on balances for metabolite concentrations and 

enrichments quantified by isotopomers (cumumers or other formalisms) 23,30. For 

isotopically non-stationary labeling the enrichment can also be simplified using C-

molar enrichment (average enrichment of a metabolite over all C-atoms) 17. The 

respective balances are generated based on the stoichiometry of each reaction and 

the respective C atom transitions. As the approach is well documented in literature 

(especially for steady-state), only an abstract description is given. The metabolite 

balance is based on the flux functions α and the metabolic network stoichiometry N. 

 ( , )d f
dt

=
c N α   (5.2) 

Based on the atom transitions and the stoichiometry, a non-linear function g can be 

derived describing the balance of each single isotopomer concentration (or cumumer, 

EMU, etc.) x of the network: 

147



 ( , , , )inpd g
dt

=
x c α x x   (5.3) 

Integration of the isotopomer balances will yield the time-course of the isotopomer 

concentrations, which can be used to calculate the observables, i.e., mass-isotopomer 

fractions. 

Flux Functions and Nomenclature in the PWA Flux Framework 

Using piece-wise affine functions for the flux description changes some properties 

of the equation system. The piece-wise affine flux functions are defined in time by 

a set of breakpoints tj valid for all fluxes in the considered metabolic network, 

partitioning the flux function vi into number of breakpoints minus one domains in 

time: 
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ìï -ïï , £ £ïïïïï -ïï= , - < £íï -ïïï -ïï , - < £ïï -ïïî

  (5.4) 

The parameters of this function are the value of respective fluxes vi at the 

breakpoint tj and defined strictly positive (so a reversible reaction will have two 

fluxes). Flux values between breakpoints are calculated by linear interpolation on its 

two adjacent breakpoints. Therefore a metabolic network with i fluxes and j 

breakpoints has i × j parameters to be estimated. As will be discussed later, this 

number can decrease for specific experimental setups that introduce additional 

constraints on the concentrations or flux functions. This definition is also valid for 

higher order piecewise-defined flux functions as long as they are to be defined 

unique on the breakpoints, e.g., smooth quadratic splines, but will not be discussed in 

the scope of this paper. 

Balancing of Metabolites and Solution of the Metabolite Mass Balances 

With the previous definition of the flux functions in time, the metabolite mass 

balances can be formulated locally at every breakpoint j by linear combinations 

according to the stoichiometry matrix which can be further divided into known vb 

and unknown vn fluxes
31. 
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If Nn is square and nondegenerate, the matrix can be inverted and a unique solution 

of unknown fluxes can be identified from the concentration transients and the 

known fluxes. 

 1 ( )n n j b b
d

t
dt

- æ ö÷ç ÷= -ç ÷ç ÷çè ø
c

v N N v   (5.6) 

In practice most metabolic networks are underdetermined with respect to the 

number of unknown fluxes f, i.e., they contain parallel pathways, cycles or reversible 

reactions. 

 ( )nrank f<N   (5.7) 

This means the metabolic network does not contain enough measurable (known) 

fluxes in order to identify all fluxes. In this case Nn spans a null space (kernel), 

which contains all linear combinations of its basis vector(s) describing the infinite 

combinations of fluxes that lead to the same solution of 
d
dt
c

. 

 { }| ( )n n n nNull+ = ∧ ∈v w N v const w N   (5.8) 

This is called practical non-identifiability and also directly explains why isotopic 

tracers are needed in order to identify all flux functions of such metabolic 

networks. The right hand side (rhs)   is a linear combination of the flux functions v, 

thus   also results in a PWA function. Therewith the rhs can be described by a linear 

function u on the same breakpoints as v: 
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  (5.9) 

This function can easily be integrated (analytical), leading to a continuous, quadratic 

solution for the concentration in time with the initial concentrations c0: 
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This function can easily be integrated (analytical), leading to a continuous, quadratic 

solution for the concentration in time with the initial concentrations c0: 
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  (5.11) 

As can be seen, this solution is moreover linear with respect to ui,j; with available 

concentration measurements, a linear regression can be performed to obtain the best 

estimate of u. The measurements cM at timepoints tM can be obtained by generation 

of a matrix Y: 

 ( ) 0)T
M

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
=

c
c 1 Y

u
Y

()

  (5.12) 

The weighted linear regression problem (with weight matrix WM) then reads: 

 ( ) 10 T T
M M M

-æ ö÷ç ÷ç =÷ç ÷÷çè ø

c
Y W Y Y W Y c

u
  (5.13) 

Solving the optimization problem 

 ˆ arg min cR=
a

a   (5.14) 

Sufficient Breakpoint Selection  

For the flux functions the location of the breakpoints in time has to be selected as 

also derived previously18. Best practice would be to use all observables 

(concentration and enrichments) for this selection; however, considering the 

150



complexity and dimensionality of the resulting parameter optimization problem, this 

is computationally not feasible on standard computer hardware. The optimization is 

implemented in a nested manner (also see Figure 5.2 top) with the inner loop solving 

equation (5.13) and the outer loop iterating on the breakpoints minimizing the 

weighted residual sum of squares on the concentration observables Rc using the 

PSwarm optimization algorithm32. 

 ˆ arg min
j

j cR=
t

t   (5.15) 

From Rc the adjusted R2 as well as the AIC have been calculated33,34. 

 

Figure 5.2. Overall workflow of the method with breakpoint selection as the first step 

followed by the main optimization and used optimizers in parentheses. The model inputs are 

successively expanded as described on the left columns. The first two steps only use the 

concentration observables whereas the final step additionally incorporates the enrichment 

observables from the 13C tracer. 

Introducing Constraints 

In practical applications, measurement data with random errors (noise) can lead to 

issues during the optimization. Especially, cases that impair the stability of the 

numerical integration have to be prevented to ensure maximal robustness of the 
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high-dimensional parameter estimation: (1) Negative values in the approximation of 

the concentration profile; (2) Overfitting. Additionally, the experimental setup could 

enforce certain conditions that should be reflected in the parameter estimation, like 

in the case of the feast/famine setup, the first and last domain (beginning and end 

of the cycle) have to be equal. 

Moreover the introduction of constraints can significantly reduce the search space 

and will therewith facilitate convergence of the optimizaiton. 

Specific Constraints for Feast-Famine Conditions 

In the previous paragraph, the solution for the best estimate of the concentration 

profile with the given breakpoints has been demonstrated. In the special case of a 

feast/famine experiment the solution should additionally fulfill two (linear) 

constraints: 

(1) In a stable feast-famine regime the metabolite concentration at the end of 

one cycle has the same concentration as in the beginning (of the next cycle). 

(2) Similarly, the flux at the end of the feast famine cycle has to be the same 

as in the beginning. Otherwise no stable, repetitive cycles were obtained. 

The concentration at the end of the cycle is the result of the integration using the 

parameters u (and c0). A column vector C is generated, representing a column of 

matrix Y for the timepoint tend: 

 
endt=C Y   (5.16) 

Integration of the constraint is obtained using Lagrange multipliers λ: 
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A comparable approach is taken to introduce the flux constraint v1 = vj. The vectors 

C and b are extended by an additional row:  

 ( )1 0 ... 1 , 0= . =C b   (5.18) 

As can be seen this equality constraint reduces the number of parameters by one per 

balanced metabolite. 
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Non-Negativity Constraints 

In order to ensure numerical stability of the integration for the isotopomer 

equations, it is crucial that computed negative approximated concentrations are 

detected and eliminated. In order to find a sufficient constraint the piecewise 

quadratic concentration pattern has to be evaluated in every domain.  

In the convex case, the minimum of the vertex value has been computed, whereas in 

the concave case it has to be checked for roots in its interval. These computations 

are trivial but correspond to a nonlinear (quadratic) inequality constraint. 

Rationale for Shape-Prescriptive Constraints 

In practical applications overfitting has to be prevented. Reasons for overfitting can 

be (1) noisy data,(2) outlier or leverage points, (3) suboptimal choice of domains for 

flux functions, (4) suboptimal sample time points, (5) systematic error in 

observables or (6) missing data. Overfitting will lead to flux functions with 

potentially too high gradients. Additionally, because metabolite pools are often 

closely linked, the overfitting will propagate through the metabolic network, leading 

to an ill-posed optimization landscape hindering the parameter estimation 

progression and biased flux functions. 

One obvious approach is to optimize the domain selection as discussed. Nevertheless, 

there are limits to the reduction of domains as all flux functions are defined on the 

same domains, and a trade-off between overfitting prevention and achievable 

convergence of the flux functions has to be found. It has to be noted that the 

proposed linear solution of the domain selection can only be applied to a subset of 

the observables (the concentration measurements), while non-linear differential 

equation systems are required to obtain the labeling profile. Consequently, the 

domains are chosen on a subset of the available data leading to a risk that the 

domain selection yields a good approximation but potentially not the global optimum 

for all data. 

Shape constraints can be applied to “guide” the optimization procedure using shape 

primitives; together with the least squares objective function. This additional 

information on the shape of the (quadratic) concentration patterns has several 

benefits: 

(1) It can facilitate higher convergence orders of the flux functions; (2) The 

constraints restrict the search space and prevent that the optimization algorithm to 

converge in local optima in a noisy optimization landscape; (3) The chosen 

constraints do not introduce additional (unobserved) parameters; (4) The evaluation 

of the constraints is computationally very cheap even at large scale. 
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Shape constraints are (with exception of the non-negativity constraint) linear 

inequality equations, which can be implemented rapidly and intuitive in the PWA 

framework as linear inequality constraints on the parameter vector. This also means 

that feasible parameter sets can be computed almost instantly using linear 

programming. It has to be noted that shape constraints can also be introduced for 

metabolites where no observables are on hand (e.g., the metabolite is very unstable 

and cannot be quantified) which are exceptionally prone to overfitting as they do 

not contribute to the objective function. A strategy that has been used in the 

Penicillium model was to assume non-observed pools to follow the same dynamics as 

their surrounding metabolites. 

Monotonicity and Convexity Constraints  

When constraining the monotonicity in a domain four cases have to be considered for 

PWA flux functions: (1) Monotonous decreasing, (2) Monotonous increasing, (3) 

Switch from monotonous increasing to monotonous decreasing and (4) Switch from 

monotonous decreasing to monotonous increasing. In the case of a quadratic function 

this behavior can be enforced by constraining the right hand side (rhs) u at the 

breakpoints adjacent to the respective domain (see Figure 5.3. Inequality equations for 

the different shape constraints.). 

 

Figure 5.3. Inequality equations for the different shape constraints. 

A direct switch from monotonous increasing to decreasing and the other way round 

is only possible if the rhs between those neighboring domains was zero, leading to a 

double-inequality constraint which is equivalent to an equality constraint, i.e., 

forcing the inflection point to the respective middle knot.  

Generally, convexity and curvature can be constrained independently. Nevertheless, 
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in the case that a change of monotonicity is enforced, also the curvature is 

constrained. It is good practice to check the constraints for feasibility, e.g., by using 

a linear programming solver, e.g., linprog in MATLAB. 

Equality Shape Constraints 

In special cases a more stringent constraint than the inequality constraints could be 

needed. Here, the slope of the concentrations at the breakpoints can also directly be 

constrained using an equality constraint: 

 e,ju A=   (5.19) 

This constraint has been applied in the Penicillium model for metabolites with very 

noisy concentration measurements that did not allow for identifying a trend. The 

slopes have been set to zero, i.e., the (net) influx equals the outflux of a pool at all 

times (details can be found in the Supplementary Material). 

13C DMFA 

The final flux (parameter) estimation problem has to minimize the error subject to 

two sets of objectives: (1) The concentration measurements and (2) The 13C 

enrichment observables. The weighted residual sum of squares (Ri) was chosen, 

whereas a constant a was introduced as scaling factor to weight the two Ri, which 

will lead to different points on the respective pareto frontier; it has been set to 

1.317 to normalize for the different number of observations in either dataset. This 

leads to a multi-objective optimization problem and the L2 global criterion was used 

to define the overall objective function on previously computed aspiration values 

(best fit on either dataset) for the two residual sum                                   of 

squares (Rc and Rx). 
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Computing the aspiration values on first sight seems an unnecessary additional 

effort, but it has to be noted that the best fit of the concentration data is already 

available from the domain selection procedure and a good approximation of the 

enrichments can usually be computed fast, neglecting the concentration observables. 

In practice this has the advantage that the whole dataset can be inspected for 

outliers and leverage values and those observations can be removed or 

downweighted. This procedure will lead to a better posed optimization landscape and 

can speed up the overall parameter estimation process considerably. If no good 

estimate for the errors is available, those could also be estimated using, e.g., an 

iteratively reweighted least squares approach like robust regression. With the 

current scope to analyze the practical optimization convergence, a simplifying 

assumption of an error of 5% of the average value within each dataset was used. 

The Implicit Filtering (imfil) Optimization Algorithm 

The implicit filtering algorithm has been applied as provided (version for MATLAB) 35 

with minor modifications and bug fixes. In brief, implicit filtering is a hybrid 

sampling algorithm that samples points on a so called stencil (with variable size in 

the parameter space called scale centered at the current best iterate) in the 

parameter space comparable to a pattern search or direct search algorithm. From the 

collected points in the iteration, projected gradients are computed, which are then 

used to perform a quasi-Newton iteration. In case no improvement was found using 

the quasi-Newton iteration, the solver will move the center of the stencil to the 

best sampled point. If no better point was sampled, the actual stencil scale is 

adjusted (decreased) or the optimization is terminated. In this work, the quasi-

Newton iteration with the SR1 Hessian update was used. 
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Implementation of the Constraints in the Implicit Filtering Optimizer 

Imfil has to be initialized with a strictly feasible initial parameter set, which was 

computed using the MATLAB fmincon solver. In contrast to fmincon, using imfil, 

constraints have to be implemented as so-called hidden constraints, i.e., a parameter 

set outside the feasible territory is rejected and a failure is returned to the 

algorithm (see Figure 5.4). 

 

Figure 5.4. Workflow of the optimization in imfil. 

This might at first seem overly simplistic, but considering that in the code 99.8% of 

the computational time in the forward simulation is being spent for the numerical 

integration of the isotopomer equations, rejecting parameter vectors without 

performing the numerical integration for non-feasible parameter sets can reduce the 

computational cost notably. Therefore all mentioned constraints have been 

introduced as hidden constraints when imfil was used. Beside the already discussed 

constraints, also a constraint on Rc has been implemented, and this was typically set 

to two times the initial Rc and prevents that a numerical integration of flux 

functions is performed for parameter vectors with a very bad objective function 

value on the concentrations. It is also useful in the initial phase of the optimization, 

when Rx dominates the objective function, in order to constrain the redistribution 

of error into Rc. 
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This might at first seem overly simplistic, but considering that in the code 99.8% of 

the computational time in the forward simulation is being spent for the numerical 

integration of the isotopomer equations, rejecting parameter vectors without 

performing the numerical integration for non-feasible parameter sets can reduce the 

computational cost notably. Therefore all mentioned constraints have been 

introduced as hidden constraints when imfil was used. Beside the already discussed 

constraints, also a constraint on Rc has been implemented, and this was typically set 

to two times the initial Rc and prevents that a numerical integration of flux 

functions is performed for parameter vectors with a very bad objective function 

value on the concentrations. It is also useful in the initial phase of the optimization, 

when Rx dominates the objective function, in order to constrain the redistribution 

of error into Rc. 

Null-Space-Based Sampling 

Hidden constraints can have the risk of compromising the identification of a decent 

gradient. Therefore, it is beneficial to enrich the stencil with additional directions 

that (1) are likely to lead to a better value in objective function and (2) are known 

to fulfill the given constraints together with the central finite differences. Feasible 

directions have been implemented in the algorithm using the vstencil property of the 

solver (see Figure 5.5). 

A powerful set of such directions can be directly derived from Equation (7). Samples 

within this null space will have the same rhs u, and therewith the concentration 

profile as the current best iterate, but still a different solution of the isotopomer 

balances. Using this stoichiometry-based null space is further referred to as null-

space-based sampling. 

This approach allows iterating in the lower dimensional space of fluxes (parameters), 

which cannot be determined by the network stoichiometry and extracellular rates, 

but requiring 13C labeling measurements to be identified. This parameter space 

reduction also eliminates the putative trade-off between concentration and 

enrichment observable residuals in the multi-objective function (i.e., the 

concentration residual remains equal). In order to find the best overall optimum on 

all observables the central finite differences for all parameters are sampled 

together with the null space basis vectors. 
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Figure 5.5. Sampling space for a network with two fluxes and one measured metabolite 

(glucose). When using central finite differences the blue points are sampled. Using the null 

space sampling only the two green points are sampled that fulfill the constraints and best 

reproduce the concentration measurements. 

 

Results and Discussion 

Computation of an Initial Set of Breakpoints Using the Concentration 

Measurements 

In the piecewise affine flux estimation approach, the choice of the number and 

positions of the breakpoints is crucial for a successful approximation of the flux 

profile in time and they directly determine the achievable convergence of the flux 

approximation towards the real fluxes as well as the number of parameters to be 

identified from the observables. 

The method requires that the breakpoints for all flux functions in the metabolic 

network have the same set of breakpoints. To best capture the different response 

of all the metabolites and fluxes a satisfying compromise of breakpoints has to be 

found. Changes in the (net) in- and out-fluxes of a metabolite pool influence the 

metabolite concentration and it is assumed that the major changes in metabolic (net) 
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fluxes are reflected if the flux approximation can reproduce the concentration 

profile well. 

With this assumption, an optimization for the placement of breakpoints (number and 

times) can be performed using the less complex linear metabolite balances and the 

concentration observables leaving the 13C labeling aside. If the reproduction of 

enrichment measurement is not satisfactory, additional domains can be introduced at 

any time in the optimization workflow. Moreover, a trade-off between the number 

of parameters to be estimated and the convergence that can be achieved with the 

PWA flux functions has to be found. Especially, a too high number of breakpoints can 

significantly increase the tendency of the system towards overfitting. 

Using in silico data, the properties of the domain selection are studied. A small 

reaction network, further referred to as the spiral model, is simulated under feast-

famine conditions and the approximation is compared to the noise-free 

measurements of the model with respect to:  

(1) The number of breakpoints and  

(2) The placement of breakpoints. 

In the spiral network, six metabolite pools are observed (extracellular: Aex, 

intracellular A, B, C, D, E) at 13 different time points during a feast/famine cycle of 

140 s. The first and last breakpoints are fixed (0 and 140 s, the start and end of 

the feast-famine cycle). With only these breakpoints, no reasonable approximation 

can be obtained (see Figure 5.6) and the sum of squares is high (579.7, see Table 

5.1). Introducing one additional breakpoint (best at t = 126 s) reduces the sum of 

squares about fourfold (134.1). Nevertheless, the approximation of the 

concentration profiles is visually not yet sufficient. To compare the goodness of fit 

we use the R2 and adjusted   with reference to the scenario without any free 

breakpoint (thus only the fixed points t0 = 0s and tend = 140s). Further, the Akaike 

information criterion (AIC) is calculated and summarized in Table 5.1. All criteria 

equally suggest a not yet sufficient reproduction (R2 = 0.77). 
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Figure 5.6. Approximation of the concentration measurements using piecewise affine 

derivatives with 0 (blue), 1 (orange), 2 (yellow and magenta) and 3 (green and light blue) free 

breakpoints. The respective residual sum of squared errors can be found in Table 5.1. 

 
Table 5.1. Comparison of goodness of fit for different number of breakpoints and placement. 

In all cases 98 observations (measurements) are present, the number of parameters corresponds 

to n∙p (n = number of fluxes, p = number of breakpoints). 

Break Points 
(s) 

#p RSS 2R  2R   AIC 

- 8 579.7 - - 91.7 
126 16 134.6 0.77 0.72 45.5 

25, 131 24 15.1 0.97 0.97 −31.6 
2, 58 24 22.2 0.96 0.95 −15.2 

17, 79, 133 32 2.3 1.00 0.99 −95.7 
1, 14, 83 32 4.7 0.99 0.99 −65.5 

 

With a second free breakpoint (best choice t2 = 25 s, t3 = 131 s), a sum of squares 

of 15.1 (R2 = 0.97) is reached and the concentration measurements can be 

reproduced within the expected error range of 10%. Addition of another, third free 

breakpoint further reduces the RSS to 2.3 (R2 = 0.99). Next to these global optima, 

local minima are observed. 
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The territory of approximation error (RSS) also exhibits local minima. The second 

best combination of breakpoints was obtained with t2 = 2s and t3 = 58s (RSS 22.2). 

For three breakpoints, two clusters with low residual are obtained. The global 

minimum (RSS = 2.3, R2 = 0.996) is found for a combination with t = (17s, 79s, 

133s) whereas the second optimum has a RSS of 4.7 at t2 = 1s, t3 = 14s, t4 = 83s. 

In all cases 98 observations (measurements) are present, the number of parameters 

#p corresponds to n∙p (n = number of fluxes, p = number of breakpoints). These 

local minima differ in sum of squares about two-fold; nevertheless, based on 

expected experimental noise both should be taken into account and compared when 

labeling data is incorporated (isotopomer simulation). 

Clearly, the breakpoint optimization will lead to an optimal sequence of breakpoints 

for the flux functions in terms of the chosen objective function Rc, but likely never 

the optimal one, subject to the complete set of observables. Still, the domain 

selection approach often gives a good sequence of breakpoints in practice. As seen, 

the implementation of the domain selection in the flux estimation leads to a highly 

non-convex optimization landscape, and this makes incorporation of the domain 

selection into the main optimization (using the enrichment information) laborious 

and computationally hardly feasible on standard computer hardware. From a practical 

standpoint, it is desirable to start with a simple model, as extension of a model is 

usually more straightforward than a model reduction, moreover, a smaller number of 

parameters can often be better identified from the observables20. 

Here the use of objective functions penalizing the number of parameters, like 

adjusted R2 or AIC, can help in finding a minimal set of breakpoints. However, also 

using those criteria does not necessarily guarantee a sufficient representation of 

the concentrations, i.e., occurrence of overfitting and no negative concentrations. 

Having in mind those practical limitations of the domain selection, we implemented 

constraints in the approach that allow computing flux functions, even with a 

suboptimal choice of breakpoints and shape-prescriptive constraints. 

Introduction of Shape-Prescriptive Constraints 

As an example the sequence of knots t = (10 s, 79 s, 133 s) is discussed. Two major 

flaws can be observed (Figure 5.7): (1) Negative concentrations have been computed 

for metabolites Aex and A, and (2) Metabolite A shows overfitting in the last 

domain. Negative concentrations are undoubtedly not feasible and cannot be 

accepted; moreover they compromise the numerical integration of the isotopomer 

balances being detrimental to the numerical robustness of the forward simulation. 
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Figure 5.7. Estimated concentration profile using three free breakpoints t = [0s 10s 79s 133s 

140s] (red), non-negativity constraints (green) and shape constraints for metabolite A (blue), 

the corresponding Rc are 4.06 (red) 4.60 (green) and 72.79 (blue). 

To enforce non-negativity quadratic inequality, constraints are introduced. This 

measure prevented all metabolites to reach negative concentrations (Figure 5.3, 

green approximation), but does not improve the overfitting behavior observed for 

metabolite A. Therefore, a shape constraint was introduced enforcing the 

concentration in the last domain to be monotonous decreasing. The constraint 

eliminates the overfitting, but leads to higher deviations from the observables in 

the first and second domain, whereas the fit on Aex is also improved in the last 

domain with respect to overfitting. Thus, the example illustrates that the 

introduction of additional constraints is essential as it ensures a feasible 

concentration profile for the subsequent 13C-based estimation of fluxes. Moreover 

shape constraints are a very efficient measure to prevent overfitting, and this can 

also help to smoothen noise in the optimization landscape which leads to a better-

posed optimization problem. Moreover they can help to achieve a higher convergence 

of the flux functions towards the real fluxes, as overfitting in the concentration 

space can be efficiently eliminated. Considering that the flux estimation problem is 

usually high-dimensional, the constraints also reduce the parameter space that has 

to be searched, which can lead to an increase in convergence speed. This example was 

kept simple for demonstration, an extensively constrained network using 
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experimental data can be found in the next subchapter (also refer to Supporting 

Material for more details on the introduced constraints). 

Estimating Flux Functions Using the Implicit Filtering Algorithm 

To demonstrate the practical performance of the optimization approach, a previously 

described dynamic labeling experiment with P. chrysogenum was re-evaluated. The 

metabolic network for flux identification, further referred to as PenG model, 

comprises 17 balanced metabolites and 28 fluxes.  

Five free breakpoints were determined, leading to a total of seven breakpoints, i.e., 

t = (0 s 18 s 36 s 90 s 185 s 230.5 s 360 s). Because of the dependency of the last 

and first domain (feast/famine setup),  

28 × 6 = 168 flux values need to be estimated. 

The simulations have been performed over three consecutive feast/famine cycles. As 

a starting point for the parameter optimization, a feasible parameter set derived 

from the best fit for the metabolite concentration measurements (including the 

respective constraints) was used. 

We first applied a damped Quasi Newton optimization algorithm as reference 

convergence performance (see Figure 5.8). We found a very slow convergence which 

could originate from (1) stringent hidden constraints or (2) parameter correlations. 

The slow performance was likely not originating from putative over-stringent 

constraints, as the speed was even reduced when no constraints were applied.  

The slow convergence suggests that the PWA optimization problem itself is ill-posed 

and gradient- based solvers underperform. One reason for the failure could be high 

correlation of the parameters, which can be taken as an advantage when the 

correlation is identified and used to determine search directions as implemented in 

the null-space-based sampling approach. 
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Figure 5.8. Objective function as a function of executed integrations. Using only central finite 

differences (cfd), resembling the search directions of a quasi-Newton solver or cfd together 

with shape constraints (shape) leads to a slow decrease in the residual sum of squares. The use 

of null-space-based sampling (null) significantly increases the convergence speed. Combining the 

null-space-based sampling with shape constraints leads to a slight improvement. Even better 

results are obtained when thresholds for improvement within the current stencil are 

introduced. Using a threshold of minimally 1% improvement in objective function (acc) to keep 

the stencil reduces inefficient iterations (green line).  

Null-space-based sampling indeed significantly increases the convergence and shape 

constraints even increase the speed further. This increase supports the hypothesis 

that the shape constraints in the example were not overly stringent nor 

compromised the optimization landscape for the optimizer, although they have been 

implemented as hidden constraints in the implicit filtering algorithm. This means for 

the practical application that all PWA domains can be constrained without loss in 

performance as long as the constraints are not overly stringent. 

It can be observed that the implicit filtering algorithm leads to a step-wise 

convergence (see Figure 5.8).  

This behavior can be explained by the stencil rescaling when no parameter set 

leading to a better value in the objective function is sampled on a particular stencil. 

Steep descents are observed right after a shrinking of the stencil. After a steep 

decent a plateau is reached as the stencil is sampled, until no decent direction can 

be identified anymore, i.e., the gradients become very small. This inefficiency could 
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be reduced by the implementation of a threshold for the improvement between 

subsequent iterations Indeed, this measure (further referred to as accelerator; acc) 

improves the convergence significantly, especially for the first couple of iterations. 

However, it has to be noted that the thresholds can increase the risk of obtaining a 

local optimum. The strategy that has been implemented to prevent such behavior is 

to restart the complete sequence of stencil scales after failure of a stencil. 

Conclusions 

Dynamic flux identification requires advanced experimental and computational 

approaches, especially experimental setups that allow for the simultaneous, 

respective serial measurement of intracellular concentrations and labeling 

enrichments. For the evaluation and interpretation of this experimental data, 

modeling and parameter estimation are crucial and require attention to obtain a good 

approximation of metabolic network fluxes. 

Metabolic networks show an inherent correlation of (flux) parameters and common 

optimization approaches fail to identify the proper search direction. To solve this 

issue, we applied PWA flux functions and a two-staged optimization that resulted to 

be feasible also for larger networks. Especially, the implementation of implicit 

filtering-based optimization algorithms increased the convergence speed and 

basically eliminates manual intervention by frequent re-initialization of the 

optimization.  

The proposed implementation allowed for the obtaining of a reasonable estimate for 

168 parameters within 20,000 function evaluations. Key for fast convergence were 

(1) implementation of null space sampling and (2) shape constraints that prevent 

overfitting and reduce the search space. 

Once the flux functions in time have been identified, these together with the 

respective effector concentration measurements allow for testing of different 

biological hypothesis on the regulatory mechanism. In contrast to the classical 

reaction kinetic approach, the identification of kinetic parameters can now be 

decoupled from the overall metabolic network, i.e., each approximated flux profile 

can be reproduced and tested using different kinetics formats for a small network 

as previously described16. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/2218-

1989/5/4/697/s1 
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Symbols and Abbreviations 

Subscript  

0 Initial condition 

asp Aspiration value 

e Metabolite identifier 

end End of feast famine cycle 

i index of flux 

j index of breakpoint 

k index of domain 

m Index of measurement 

M All measurements 

Superscript  

inp Enrichment of used substrate for labelling 

b Known flux 

n Unknown flux 

f Number of unknown fluxes 

General  

a Scaling factor 

e Enzyme activity 

R, RSS (weighted) residual sum of squares 

R2 Coefficient of determination 

θ Flux function parameters 

α Kinetic parameters 

c (metabolite) concentration 

x (C-molar) enrichment 

v Flux 

u Right-hand-side (dc/dt) 

W Weight matrix 

^ Optimal estimate 

t Time 

λ Lagrange multiplier 

w Translation vector of the null space 

N Stoichiometry matrix 

σ Standard deviation 

imfil Implicit filtering algorithm 

PWA Piecewise affine 

acc Accelerator for imfil 
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DMFA Dynamic metabolic flux analysis 

AIC Aikaike information criterion 
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Chapter 6: 

General Conclusions and 

Outlook 
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The three most important characteristics for industrial fermentations are typically 

summarized as ‘TRY’: Titer, Rate and Yield. 

 Titer is an important size determining the cost for extraction of the product from 

the (aqueous) fermentation broth and also determines the necessary scale of the 

production equipment to produce an amount of product in batch fermentation. Rate 

translates to the (volumetric) productivity that can be achieved and therewith 

determines the size of the equipment for fermentation and downstream processing 

and is in consequence an important criterion to determine the capital cost of a 

process. Yield refers to the amount of carbon that is ending up from the educt in 

the commercial product to be produced and typically determines the production cost 

of the final product, especially when producing low value commodity chemicals. 

  

All of these characteristics are governed by thermodynamics. Maximizing yield, i.e. 

high free energy conservation is counteracting rate and titer, which require high 

thermodynamic driving forces. The metabolic network that determines a specific 

stoichiometric yield influences the obtainable yields and titers. Therefore, network 

fluxes inside a microbial cell factory are not independent of each other, leading to 

complex metabolic trade-offs. 

For that reason, it is crucial to explore and understand the governing principles of 

free energy conservation and how these determine the resulting phenotypes in order 

to make ideal compromises for strain development and also the design of microbial 

cell factories. 

 

To demonstrate this theoretical concept in practice, in Chapter 2 a model system 

(low pH lactic acid fermentation) was evaluated with respect to the attainable 

product yield on substrate, where the versatility of stoichiometric modelling coupled 

to kinetic equations was demonstrated. This methodology is not limited to the 

presented case and can be directly applied to the production of other components 

that lead to uncoupling e.g. succinic acid that is a bio-based precursor for 1,4 

butanediol. The model can describe the relation between operating conditions and 

cellular physiology globally to obtain the best process conditions and identify 

metabolic engineering targets on a rational basis. One additional advantage of 

stoichiometric modelling is that it gives a rich output of information about cellular 

physiology, without requiring a great deal of experimental observables for 

parametrization. This also means that such models can be applied early in the 

development process. At the same time they can be used to reconcile experimental 
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data and serve as a basis to derive new hypothesis and is therefore an underutilized 

tool in (academic) research. 

Whereas targets for increased free energy conservation can be identified rationally 

and improved phenotypes can be simulated readily in silico, this does mean that they 

can also be engineered rationally in practice. In cases where implementation via 

genetic engineering fails, directed evolution could be applied. Directed evolution 

relies on creating an environment that is selective for the desired phenotype and 

therewith leads to an enrichment of the phenotype allowing for its subsequent 

isolation and analysis (Chapter 3). The challenges involved in directed evolution of 

phenotypes with increased free energy conservation are mainly two; (1) finding the 

appropriate experimental setup to enrich the desired phenotypes and (2) 

understanding the interrelation between the applied environmental conditions and 

the favored phenotypes from an intrinsic level. 

 Both challenges were addressed, where first an existing approach using incubation 

of cells in droplet was adapted for S. cerevisiae and validated for a system with 

known difference in free energy conservation. A detailed mathematical description 

was developed to derive the performance and limitations of the approach. In future 

the droplet cultivation system can be employed to isolate phenotypes with increased 

free energy conservation from microbial populations within the now known limits of 

the approach. Genotypic changes can be reverse engineered, characterized and 

incorporated into production strains in order to increase the anabolic product yield 

on substrate. One interesting experiment to carry out with the system may also be 

the characterization of a single yeast deletion library1, were the relative 

enrichments could be assessed and compared using deep barcode sequencing2. This 

could potentially lead to new discoveries on connections between metabolic 

stoichiometry and biomass (number) yield and consequently new targets for 

increased free energy conservation. 

Furthermore, the approach can be used for transporter engineering (e.g. maltose-

proton uniporter to maltose uniporter, see Chapter one) to screen larger mutant 

libraries. The created transporter can be used to realize an increase in free energy 

conservation compared to glucose and would at the same time create knowledge that 

may be used to improve the toolbox for rational engineering of membrane 

transporters in the future. 

Secondly it was attempted to describe the cellular physiology from ‘inside-out’ by 

starting with the constraints posed by the cellular morphology on the enzyme 

activity that can be expressed in the cell applying constraint network modelling and 

kinetic modelling (Chapter 4). The model computes optimal protein compositions in 
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the cell to reach the maximal growth rate for a selected condition. With these 

simulations on hand selective conditions for directed evolution can be derived.  

Overall, it was found that the model can predict a wide range of metabolic 

phenomena like overflow metabolism and catabolite repression making it useful to 

devise experimental strategies for strain improvement. As the model predicts 

optimal enzyme make ups with respect to the objective function it may also be 

interesting to compare the predictions to quantitative proteomic data to derive new 

hypotheses about metabolic functions from the ‘non-idealities’ of cellular proteome 

allocation under the respective conditions. This is a very promising approach with 

respect to the increasing availability of quantitative omics data, especially fluxome 

and proteome data that can be used to refine and extend the parametrization of 

such models. However it also becomes apparent from the work that there is a lack of 

basic quantitative physiological data for different microorganisms, a path of 

research that has been largely abandoned in the post-genomic era and may in future 

pose limitations on the development of useful models. 

 

Even for the described steady-state conditions, kinetic information is required. To 

improve the quality of in vivo kinetics, a new methodology was presented allowing 

the reconstruction of dynamic fluxes in metabolic instationary conditions together 

with a strategy to solve the arising large parameter identification problem. In 

comparison to hitherto existing approach the incorporation of 13C tracing also allows 

for the identification of fluxes in underdetermined metabolic networks and 

therewith lays the foundation for the resolution of energy consuming futile cycles 

within the cells. This is in particular relevant with respect to the inevitable 

dynamics that cells are exposed to in large-scale bioreactors. The research in this 

field is still at its beginning, but is likely to turn more important especially with the 

demand for robust and efficient host organisms for cost-effective large-scale 

fermentation processes from renewable feedstock. So far this approach has not 

received a lot of attention, which may be due to the high analytical requirements 

but also due to the fact that the development of metabolic models describing the 

metabolic state under large-scale conditions are still at the beginning3. However, 

with increasing availability of computational power the interest to develop 

integrated models, in particular to link them with CFD techniques4 is increasing5 and 

will certainly require tools that can resolve transient fluxes in metabolic networks. 
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